
Who is the Centre of the Movie Universe?
Using Python and NetworkX to Analyse the Social Network of Movie Stars

Rhyd Lewis

School of Mathematics,
Cardiff University, Cardiff, Wales.

LewisR9@cf.ac.uk, http://www.rhydlewis.eu

February 27, 2020

Abstract

This paper provides the technical details of an article originally published in The Conversation in February
2020 [11]. The purpose is to use centrality measures to analyse the social network of movie stars and thereby
identify the most “important” actors in the movie business. The analysis is presented in a step-by-step, tutorial-
like fashion and makes use of the Python programming language together with the NetworkX library. It reveals
that the most central actors in the network are those with lengthy acting careers, such as Christopher Lee, Nassar,
Sukumari, Michael Caine, Om Puri, Jackie Chan, and Robert De Niro. We also present similar results for the movie
releases of each decade. These indicate that the most central actors since the turn of the millennium include people
like Angelina Jolie, Brahmanandam, Samuel L. Jackson, Nassar, and Ben Kingsley.

1 Introduction
Social network analysis is a branch of data science that allows the investigation of social structures using networks
and graph theory. It can help to reveal patterns in voting preferences, aid the understanding of how ideas spread,
and even help to model the spread of diseases [7, 12, 14].

A social network is made up of a set of nodes (usually people) that have links, or edges between them that
describe their relationships. In this article we analyse the social network formed by movie actors. Each actor in this
network is represented as a node. Pairs of actors are then joined by an edge if they are known to have appeared in a
movie together. This information is taken from the Internet Movie Database IMDb [3]. Our analysis is carried out
using the Python programming language and, in particular, the tools available in the NetworkX library [4].

2 A Small Example
Figure 1 shows a small social network formed by the actors appearing in Christopher Nolan’s three Batman movies,
The Dark Knight Trilogy. As mentioned, each node in this network corresponds to an individual actor. An edge
between a pair of nodes then indicates that the two actors appeared in the same movie together.

A number of features are apparent in this network. We can see that the nodes seem to be clustered into four
groups. The tight cluster in the centre contains Christian Bale, Michael Caine, Gary Oldman and Morgan Freeman,
who starred in all movies of the trilogy. In contrast, the remaining clusters hold the actors who appeared in just

1

ar
X

iv
:2

00
2.

11
10

3v
1

 [
cs

.S
I]

 2
6

Fe
b

20
20

LewisR9@cf.ac.uk
http://www.rhydlewis.eu

Tom Hardy

Anne Hathaway

Joseph Gordon-Levitt

Marion Cotillard

Maggie Gyllenhaal
Heath Ledger

Aaron Eckhart

Katie Holmes

Liam Neeson

Rutger Hauer

Ken Watana

Tom Wilkinson

Cillian Murphy

Morgan Freeman
Christian Bale

Gary Oldman

Michael Caine

Batman Begins

The Dark Knight

The Dark Knight Rises

Figure 1: Relationships between actors appearing in The Dark Knight Trilogy.

one of the movies. The cluster at the top-right shows the actors who appeared in Batman Begins, the cluster at
the bottom contains the stars of The Dark Night, and the cluster on the left shows the actors from The Dark Night
Rises. We also see, for example, that Tom Hardy was in the same movie as Joseph Gorden Levitt (in The Dark
Knight Rises), but did not appear alongside actors such as Liam Neeson (who was a star of Batman Begins), or
Heath Ledger (who appeared in The Dark Night).

3 A Dataset of All Movies
While the Batman example shown in Figure 1 is helpful for illustrative purposes, in this article we are interested
in investigating the social network of all actors from all movies. As mentioned, for this study we use information
taken from the Internet Movie Database [3]. Specifically, we use a dataset compiled by the administrators of the
Oracle of Bacon website [5]. Complete and up-to-date versions of this dataset can be downloaded directly from [1].

Our version of this dataset was downloaded at the start of January 2020 and contains the details of 164,318
different movies. Each movie in this set is stored as a JSON object containing, among other things, the title of
the movie, a list of the cast members, and the year of its release. The complete dataset it is obviously too large to
reproduce here, but to illustrate the basic format, the box below shows the three-movie example used to produce
the small social network shown in Figure 1.

{"title ":" Batman Begins","cast ":[" Christian Bale","Michael Caine","Liam Neeson

","Katie Holmes","Gary Oldman","Cillian Murphy","Tom Wilkinson ","Rutger

Hauer","Ken Watanabe","Morgan Freeman "],"year ":2005}

{"title ":"The Dark Knight","cast ":[" Christian Bale","Michael Caine","Heath

Ledger","Gary Oldman","Aaron Eckhart","Maggie Gyllenhaal ","Morgan Freeman

"],"year ":2008}

{"title ":"The Dark Knight Rises","cast ":[" Christian Bale","Michael Caine","Gary

Oldman","Anne Hathaway","Tom Hardy","Marion Cotillard","Joseph Gordon -Levitt

","Morgan Freeman "],"year ":2012}

Before proceeding with our analysis, note that is was first necessary to remove a few “dud” movies from this
dataset. In our case, we decided to remove the 44,075 movies that had no cast specified. We also deleted a further
5,416 movies that did not include a year of release. This leaves a final “clean” database of 114,827 movies with

2

which to work. In the following Python code we call this file data.json.

4 Input and Preliminary Analysis
In this section we show how the dataset can be read into our program using standard Python commands. We then
carry out a preliminary analysis of the data, produce some simple visualisations, and use these to help identify
some inconsistencies in the dataset.

4.1 Reading the Dataset
To read the dataset, we begin by first importing the relevant Python libraries into our program. Next, we transfer
the contents of the entire dataset into a Python list called Movies. Each element of this list contains the information
about a single movie. The command json.loads(line) is used to convert each line of raw text (in JSON format)
into an appropriate Python data structure. This is then appended to the Movies list.

import json

import networkx as nx

import matplotlib.pyplot as plt

import collections

import statistics

import time

import random

Movies = []

with open("data.json", "r", encoding="utf -8") as f:

for line in f.readlines ():

J = json.loads(line)

Movies.append(J)

Having parsed the dataset in this way, we are now able to access any of its elements using standard Python
commands. For example, the statement Movies[0] will return the full record of the first movie in the list; the
statement Movies[0]["cast"][0] will return the name of the first cast member listed for the first movie; and so on.

4.2 Two Simple Bar Charts
Having read the dataset into the list Movies, we can now carry out some basic analysis. Here we will look at
the number of movies produced per year, and the sizes of the casts that were used. The code below uses the
collections.Counter() method to count the number of movies released per year. This information is written to
the variable C, which is then used to produce a bar chart via the plt.bar() command.

C = collections.Counter ([d["year"] for d in Movies])

plt.xlabel("Year")

plt.ylabel("Frequency")

plt.title("Number of Movies per Year")

plt.bar(list(C.keys()), list(C.values ()))

plt.show()

The resultant bar chart is shown below. As we might expect, we see that nearly all movies in this dataset were
released between the early 1900’s and 2020, with a general upwards trend in the number of releases per year.
However, the fact that the horizontal axis of our chart goes all the way back to 1800 hints at the existence of
outliers and errors in the dataset. In fact, a few errors do exist. For example, the movie Cop starring James Woods
is stated as being released in the year 1812, which is clearly ridiculous (James Woods wasn’t born until 1947, and
Cop was actually released in 1988). On the other hand, a movie called Avatar 5 is given a “release date” of 2025

3

in the dataset, which is also incorrect (at present, only one Avatar movie has been made). Nevertheless, we will
accept such oddities and continue with our investigation.

1850 1900 1950 2000
Year

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

Number of Films per Year

We now take a look at the sizes of casts used in movies. The following code produces a bar chart in the same
way as the previous example.

C = collections.Counter ([len(d["cast"]) for d in Movies])

plt.xlabel("Cast Size")

plt.ylabel("Frequency")

plt.title("Number of Movies per Cast Size")

plt.bar(list(C.keys()), list(C.values ()))

plt.show()

This leads to the following bar chart:

0 50 100 150 200 250
Cast Size

0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y

Number of Films per Cast Size

This indicates that nearly all movies have casts of between one and fifty actors. However, there are again some
outliers with much larger casts. To get the names of these movies, the following code reorders the list Movies into
descending order of cast size. The first five movies on this list are then written to the screen.

Movies = sorted(Movies , key=lambda i: len(i["cast"]), reverse=True)

for i in range (5):

print(Movies[i]["title"], "=", len(Movies[i]["cast"]))

4

This produces the following output, indicating the five movies with the largest cast sizes.

Cirque du Soleil: Worlds Away = 268

Hollywood Without Make -Up = 132

The Longest Day (film) = 117

The Founding of a Party = 116

The Founding of a Republic = 106

As a final point, we can also see in the above bar chart that there is a preponderance of movies with a cast size
of one. In some cases this is correct, such as with the 2018 stand-up comedy movie Russell Brand: Re:Birth. On
the other hand, this also reveals some further problems in the dataset. For example, the movie Lady with a Sword
(1971) is also recorded as having a cast size of one despite the fact that many actors actually appeared in it, such
as Lily Ho, James Nam and Hsieh Wang.

5 Forming the Social Network
In this section we now construct the complete social network of actors using our dataset together with tools avail-
able in the Python library NetworkX. As mentioned earlier, our network is made up of nodes (actors in this case),
with edges connecting actors that have appeared in a movie together. Probably the most appropriate type of net-
work to use here is a multigraph. Multigraphs allow us to define multiple edges between the same pair of nodes,
which makes sense here because actors will often appear in multiple movies together. Note also that the edges in
this network are not directed. This means that if actor A has appeared with actor B, then B has also appeared with
A.

The following code constructs our network G using the Movies list from the previous section. As shown, the
code considers each movie in turn. It then goes through each pair of actors that appeared in this movie and adds
the appropriate edge to the network. Each edge is also labelled with the corresponding movie title. Upon construc-
tion of the network, the methods G.number_of_nodes() and G.number_of_edges() are then used to output some
information to the screen.

G = nx.MultiGraph ()

for movie in Movies:

for i in range(0, len(movie["cast"]) - 1):

for j in range(i + 1, len(movie["cast"])):

G.add_edge(movie["cast"][i], movie["cast"][j], title=movie["title"])

print("Number of nodes in this multigraph =", G.number_of_nodes ())

print("Number of edges in this multigraph =", G.number_of_edges ())

As shown in the following output, the resultant network is very large, with a total of 395,414 different nodes
(actors) and 9,968,607 different edges.

Number of nodes in this multigraph = 395414

Number of edges in this multigraph = 9968607

6 Analysing Connections in the Network
Having formed our social network of actors, we can now analyse some of its interesting features. In this section we
start by calculating the total number of movies that each actor has appeared in. We then determine the most prolific
acting partnerships in the movie business by calculating the number of movies that each pair of actors has starred
in.

5

6.1 Movies Per Actor
The following piece of code calculates the total number of movies per actor and lists the top five. For each node
in our network, this is achieved by going through its incident edges and forming a set S of all the different labels
(movie titles) appearing on these edges. The final results are stored in the dictionary D. For output purposes, the
contents of D are then put into a sorted list L, and the first five entries in this list are written to the screen.

D = {}

for v in G.nodes():

E = list(G.edges(v, data=True))

S = set()

for e in E:

S.add(e[2]["title"])

D[v] = S

L = sorted(D.items(), key=lambda item: len(item [1]), reverse=True)

for i in range (5):

print(L[i][0], ":", len(L[i][1]))

The output below shows the results. We see that the top positions are occupied by actors from Indian cinema,
with the great Sukumari (1940–2013) winning the competition with 703 recorded movie appearances. The top
one-hundred actors from this list are shown in Appendix A at the end of this document.

Sukumari : 703

Jagathy Sreekumar : 695

Adoor Bhasi : 579

Brahmanandam : 576

Manorama : 558

6.2 Acting Partnerships
We now consider the number of collaborations between different pairs of actors—that is, the number of movies
that each pair of actors has appeared in together.

The following code calculates these figures. It goes through every pair of actors that are known to have ap-
peared in at least one movie together, and then counts the total number of edges between the corresponding nodes.
This information is collected in the dictionary D, which is again copied into an ordered list L. Again, the top five
collaborations are then reported.

D = {}

for e in G.edges():

D[e[0] + " and " + e[1]] = G.number_of_edges(e[0], e[1])

L = sorted(D.items(), key=lambda kv: kv[1], reverse=True)

for i in range (5):

print(L[i][0], ":", L[i][1])

The output from this code is below. We see that the most prolific acting partnership in this network is due
to the late Indian actors Adoor Bhasi (1927–1990) and Prem Nazir (1926–1991), who appeared in an impressive
292 movies together. Next on the list are Larry Fine and Moe Howard (two of the Three Stooges) who co-starred
in 216 movies. By comparison, the comedy partnership of Oliver Hardy and Stan Laurel resulted in a paltry 105
movies, putting them at position 46 in the list overall. The top one-hundred acting partnerships are also listed in
Appendix A.

Adoor Bhasi and Prem Nazir : 292

Larry Fine and Moe Howard : 216

Adoor Bhasi and Sankaradi : 207

Adoor Bhasi and Bahadoor : 198

6

Brahmanandam and Ali : 193

7 Calculating Shortest Paths
As we have seen, when two actors have not appeared in a movie together there will be no edge between the
corresponding nodes in the social network. However, we can still look for connections between actors by using
paths of intermediate actors. This is similar to the so-called “Six Degrees of Separation”—the idea that all people
are six or fewer social connections away from each other [6].

Connecting actors using chains of intermediate actors is an idea popularised by the Oracle of Bacon website [5],
who provide a simple tool for finding shortest paths between any pair of actors. As mentioned earlier, the Oracle
of Bacon is also the source of the dataset used in this work.

As an example, according to our dataset we find that the actors Anthony Hopkins and Samuel L. Jackson
have never appeared in a movie together. In our network, this means that the corresponding two nodes have no
edge between them. However, these nodes can still be regarded as fairly “close” to one another because, in this
case, they are both linked to the node representing Scarlett Johansson. (Specifically, Anthony Hopkins acted with
Scarlett Johansson in Hitchcock, and Samuel L. Jackson appeared with Johansson in Captain America: The Winter
Soldier). The shortest path from Anthony Hopkins to Samuel L. Jackson therefore has a length of two, since we
need to travel along two edges in the network to get from one actor to the other. In reality, there may be many paths
between Anthony Hopkins and Samuel L. Jackson in our network. However, determining the shortest path tells us
that there are no paths with fewer edges.

Before looking at the techniques used in identifying shortest paths, we will first simplify our network slightly
by converting it into a “simple graph”. Simple graphs allow a maximum of one edge between a pair of nodes;
hence, when we have multiple edges between a pair of nodes in our multigraph (because the two actors have
appeared in multiple movies together), these will now be represented as a single edge. Note that this conversion
maintains the number of nodes in the network but it reduces the number of edges. It will therefore make some of
our calculations a little quicker. The following code constructs our simple graph. The final line then checks whether
this new network is connected. (A network is connected when it is possible to form a path between every pair of
nodes.)

G = nx.Graph()

for movie in Movies:

for i in range(0, len(movie["cast"]) - 1):

for j in range(i + 1, len(movie["cast"])):

G.add_edge(movie["cast"][i], movie["cast"][j], title=movie["title"])

print("Number of nodes in simple graph =", G.number_of_nodes ())

print("Number of edges in simple graph =", G.number_of_edges ())

print("Graph Connected? =", nx.is_connected(G))

This produces the following output. As can be seen, the network G still has 395,414 nodes, but it now contains
8,676,962 edges instead of the original 9,968,607—a 13% reduction. We also see that the network is not connected;
that is, it is composed of more than one distinct connected component.

Number of nodes in simple graph = 395414

Number of edges in simple graph = 8676962

Graph Connected? = False

Shortest paths can now be found in our social network using the NetworkX command nx.shortest_path(). If
the edges of the graph are unweighted (as is the case here) then this invokes a breadth first search; otherwise the
slightly more expensive Dijkstra’s algorithm is used. Both of these methods are reviewed by Rosen [13]. In either
case, the output from this command is a list of nodes P that specifies the shortest path between the two specified
nodes. For example, the code:

7

P = nx.shortest_path(G, source="Anthony Hopkins", target="Samuel L. Jackson")

print(P)

gives the following output.

[Anthony Hopkins , Scarlett Johansson , Samuel L. Jackson]

While this code does indeed tell us the shortest path between Anthony Hopkins and Samuel L. Jackson, it does
not give the names of the movies involved in this path. In addition, if no path exists between the actors, or if we
type in a name that is not present in the network, then the program will halt with an exception error. A better
alternative is to therefore put the nx.shortest_path statement into a bespoke function, and then add some code
that (a) checks for errors, and (b) writes the output in a more helpful way. The following code does this.

def writePath(G, u, v):

print("Here is the shortest path from", u, "to", v, ":")

if not u in G or not v in G:

print(" Error:", u, "and/or", v, "are not in the network")

return

try:

P = nx.shortest_path(G, source=u, target=v)

for i in range(len(P) - 1):

t = G.edges[P[i],P[i+1]]["title"]

print(" ", P[i], "was in", t, "with", P[i+1])

except nx.NetworkXNoPath:

print(" No path exists between", u, "and", v)

writePath(G, "Catherine Zeta -Jones", "Jonathan Pryce")

writePath(G, "Homer Simpson", "Neil Armstrong")

The bottom two lines of the above code make two calls to the writePath() function, resulting in the following
output.

Here is the shortest path from Catherine Zeta -Jones to Jonathan Pryce

Catherine Zeta -Jones was in Ocean ’s Twelve with Albert Finney

Albert Finney was in Loophole with Jonathan Pryce

Here is the shortest path from Homer Simpson to Neil Armstrong

Error: Homer Simpson and/or Neil Armstrong are not in the network

8 Connectivity and Centrality Analysis
In this section we now use three techniques from the field of centrality analysis to help us identify who the most
“central” and “important” actors are in our social network.

Recall from the last section that our network is currently not connected. This means that the graph is made
up more than one connected component, and that paths between actors in different components do not exist. To
investigate these connected components, we can use the command nx.connected_components(G) to construct a
list holding the number of nodes in each. Details of these can then be written to the screen:

C = [len(c) for c in sorted(nx.connected_components(G), key=len , reverse=True)]

print("Number of components =", len(C))

print("Component sizes =", C)

The output of these statements is shown below. We see that our network of actors is actually made up of 2,533
different components; however, the vast majority of the nodes (96%) all occur within the same single connected

8

component, indicating the existence of paths between all of these 379,859 different actors. We also see that the
remaining components are very small (in most cases they are composed of actors who all appeared in the same
single together movie, but no others).

Number of components = 2533

Component sizes = [379859 , 72, 46, 45, 42, 40,..., 2, 2]

For the remainder of our analysis we will now focus on the single connected component of 379,859 actors. To
do this we first need to isolate this component. We can then use the subgraph() command to form the network
represented by the component.

C = max(nx.connected_components(G), key=len)

G = G.subgraph(C)

print("Number of nodes in simple graph =", G.number_of_nodes ())

print("Number of edges in simple graph =", G.number_of_edges ())

print("Graph Connected? =", nx.is_connected(G))

The output of the above code confirms that this new network is indeed connected as we would expect.

Number of nodes in simple graph = 379859

Number of edges in simple graph = 8612493

Graph Connected? = True

The following three subsections will now investigate the “centrality” of the nodes appearing in this connected
network. As mentioned, three different measures will be considered: degree centrality, betweenness centrality, and
closeness centrality.

8.1 Degree Centrality
In networks, the degree of a node is simply the number of edges that are touching it. For the network of actors
that we have now formed, the degree therefore represents the number of different people that this actor has worked
with. To access the degree of a node, the simplest option is to use the command G.degree(v). For example, the
code:

print(G.degree("Henry Fonda"))

produces the output

1325

telling us that the actor Henry Fonda has appeared in film with 1,325 different actors. A second option is to use the
NetworkX function nx.degree_centrality(G), which calculates the degree centrality of each node in the network.
The degree centrality of a node is determined by dividing the degree of the node by the maximum possible degree
of a node, which in this case is simply the number of nodes in the network minus one (i.e., 379,858). The degree
centrality of Henry Fonda, for example, is therefore calculated as 1,325 divided by 379,858, giving 0.00349. This
figure can be interpreted as the proportion of actors in the network that Henry Fonda has acted with—in this case,
just under 0.35%.

The following code creates a dictionary D that holds the degree centrality of all nodes in the network. As with
previous examples, the top five actors according to this measure are then written to the screen.

D = nx.degree_centrality(G)

L = sorted(D.items(), key=lambda item: item[1], reverse=True)

for i in range (5):

print(L[i][0], ":", L[i][1])

9

This code produces the output below. To determine the actual degree of these nodes (i.e., the number of different
actors that each actor has worked with), we simply need to multiply these figures by the number of nodes minus
one. We then find that Nassar has appeared with a massive 2,937 different actors; Sukumari with 2,549; Manorama
with 2,511; Brahmanandam with 2,460; and Vijayakumar with 2,369. A listing of the top one-hundred actors is
given in Appendix B.

Nassar : 0.007731836633689431

Sukumari : 0.006710402308230971

Manorama : 0.006610364925840709

Brahmanandam : 0.0064761042284222

Vijayakumar : 0.006236541023224468

One other notable actor on this list is the English actor Christopher Lee (1922–2015), who appears at position
11, having appeared on screen with 2,056 different actors. Our reasons for mentioning Christopher Lee in particular
will become apparent in the next two subsections.

8.2 Betweenness Centrality
Betweenness centrality considers the number of shortest paths in a network that pass through a particular node.
In social networks this helps to detect the “middlemen” that serve as a links between different parts of a network.
It also helps to identify “hubs” in the network that, when removed, will start to disconnect parts of the network
from each other. A useful analogy can be drawn with road networks of cities. Shortest paths that travel across the
city will often pass through the same locations in the road network (consider the Arc de Triomphe in Paris, for
example). As a result, the nodes at these locations can be considered more “central” to the network.

The formula for calculating the betweenness centrality of an individual node v in a network is as follows:

C(v) =
∑

s,t∈V

σ(s, t|v)
σ(s, t)

where V is the set of nodes in the network, σ(s, t) is the number of different shortest paths between two nodes s
and t, and σ(s, t|v) is the number of these s-t-paths that are seen to pass through v. In other words, the betweenness
centrality of a node v is the sum of the fraction of all-pairs shortest paths that pass through node v.

We can calculate the betweenness centrality of all actors in our social network using the NetworkX command nx

.betweenness_centrality(G). This uses an algorithm designed by Brandes [8]. However, executing this command
on a network as big as ours is infeasible. This is because it involves having to calculate all of the shortest paths
between all pairs of nodes, which would take a huge amount of calculation. (In technical terms, it involves using
an algorithm that has a complexity of O(nm), where n is the number of nodes and m is the number of edges.)
Luckily, we can make some savings in these calculations by using a sample of k nodes to estimate the betweenness
centrality of all nodes [9]. This is carried out by the following code using a sample of 1,000 nodes. As before, the
top five results are written to the screen. Some statements are also included to allow us to measure how long the
calculation takes.

start = time.time()

D = nx.betweenness_centrality(G, k=1000)

end = time.time()

print("Time taken =", end -start , "seconds")

L = sorted(D.items(), key=lambda item: item[1], reverse=True)

for i in range (5):

print(L[i][0], ":", L[i][1])

The output of this code is shown below. It indicates that Christopher Lee appears on by far the highest number
of shortest paths in the network, followed by Om Puri, Jackie Chan, Anupam Kher, and then Harrison Ford. As
indicated, this calculation took approximately 10 hours to carry out on our computer (a 3.2 GHtz Windows 10

10

machines with 8 GB RAM). This suggests that a full calculation using all nodes instead of just a sample would
have taken something in the region of 150 days to complete. The top one-hundred actors for this measure are listed
in Appendix B.

Time taken = 35078.12739729881 seconds

Christopher Lee : 0.009681571845060294

Om Puri : 0.008096614699536075

Jackie Chan : 0.007916442261041035

Anupam Kher : 0.007905221698069204

Harrison Ford : 0.004888140405090745

8.3 Closeness Centrality
Like betweenness centrality, closeness centrality also considers shortest paths in a network. For a given node v it
represents the mean shortest path length from v to all other nodes in the network [10, 14]. If an actor is found to be
connected to other actors via short paths, they can therefore be considered to be quite central in the network. The
formula used for calculating the closeness centrality of a particular node v is as follows:

C(v) =
1(∑

u∈V d(v, u)
)
/n

where d(v, u) is the length of the shortest path (number of edges) between nodes v and u, and n is the number of
nodes in the network. Higher values of this measure therefore indicate a higher centrality. Note that we can also
calculate the actual mean path length from a node v to all other nodes in the network by simply dividing 1 byC(v).

As with the previous example, calculating the closeness centrality of all nodes in our large network of actors
would take too long on a single computer because, once again, it involves calculating the shortest paths between all
pairs of nodes. In our case we make things easier by restricting our calculations to the top 1,000 actors according to
the betweenness centrality measure from the previous subsection. The following code does this. First, it produces a
list V of all actors in the network, ordered according to their betweenness centrality score. The closeness centrality
is then calculated for each of the first 1,000 actors in this list. These are then ranked, and the top five are output.

V = [L[i][0] for i in range(len(L))]

D = {}

start = time.time()

for i in range (1000):

D[V[i]] = nx.closeness_centrality(G, V[i])

end = time.time()

print("Time taken =", end -start , "seconds")

L = sorted(D.items(), key=lambda item: item[1], reverse=True)

for i in range (5):

print(L[i][0], ":", L[i][1])

The following output shows that, of these actors, Christopher Lee is again the most central. Amazingly, we
find that we can get from Christopher Lee to any other actor in the network in an average of just 2.88 hops. The
next best-connected actors are then, respectively, Michael Caine (average of 2.917 hops), Harvey Keitel (2.922),
Christopher Plummer (2.931) and Robert De Niro (2.936). The top one-hundred actors according to this measure
are also listed in Appendix B.

Time taken = 29075.51345229149 seconds

Christopher Lee : 0.34724000968978963

Michael Caine : 0.3428649311215694

Harvey Keitel : 0.3422440138966974

Christopher Plummer : 0.34123099284135183

Robert De Niro : 0.34059459561239835

11

If we want, we can also take a closer look at the number of actors within a certain number of hops from a
chosen actor. For example, the following code creates a dictionary D that holds the length of the shortest path
between Christopher Lee and all other actors in the network. It then counts the number of actors of distance 0, 1,
2, and so on.

D = nx.shortest_path_length(G, "Christopher Lee")

print(collections.Counter(D.values ()))

The output from this code tells us that all actors can be reached from Christopher Lee using fewer than nine
hops. Exactly one actor can be reached in zero hops (Christopher Lee himself); 2,056 actors can be reached with one
hop; 98,758 with two hops; and so on. In particular, note that over 86% of actors can be reached from Christopher
Lee in fewer than four hops, and 99% in fewer than five hops.

Counter ({0: 1, 1: 2056, 2: 98758, 3: 226350 , 4: 48625 , 5: 3655, 6: 369, 7: 36,

8: 9})

8.4 Distribution of Actors’ Closeness Centrality Scores
Finally, it is also interesting to look at the distribution of different actors’ closeness centrality scores. We have
already seen that actors like Christopher Lee, Om Puri, and Michael Caine are very central and well connected,
but what is the score of a “typical” actor. Once again, the expense of calculating shortest paths between all pairs of
actors is prohibitively expensive for a large network like ours. Instead, the code below takes a random sample of
1,000 actors, calculates their closeness centrality scores, works out the mean and standard deviation of this sample,
and then uses the bespoke function doHistogramSummary() to plot this information to the screen.

def doHistogramSummary(X, xlabel , ylabel , title):

plt.xlabel(xlabel)

plt.ylabel(ylabel)

plt.title(title)

plt.hist(X, bins =20)

plt.show()

random.shuffle(V)

D = {}

for i in range (1000):

D[V[i]] = 1 / nx.closeness_centrality(G, V[i])

L = D.values ()

print("Mean =", statistics.mean(L))

print("SD =", statistics.stdev(L))

doHistogramSummary(L, "Average distance to all Actors", "Frequency", "Closeness

centrality distribution")

The output from this code is shown below. As we can see, the average distance between any two actors in this
sample is just over 4.27 hops. As a comparison, this is slightly lower than the six hops hypothesised in the Six
Degrees of Separation; however, it is slightly higher than the mean of 3.57 found in a similar analysis of Facebook
friendships carried out by Facebook Research in 2016 [2].

Mean = 4.2704787482812225

SD = 0.4701311459607602

12

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Average distance to all Actors

0

20

40

60

80

100

120

140

160

Fr
eq

ue
nc

y

Closeness centrality distribution

9 Conclusions and Further Discussion
This article has used tools from the NetworkX library to help determine the most important people in the social
network of movie actors. Regardless of the measures used, the most central actors are consistently those who
have or had very long acting careers, such as Christopher Lee, Nassar, Sukumari, Michael Caine, Om Puri, and
Jackie Chan. This is quite natural, because long careers bring more acting opportunities, helping to improve an
actor’s connectivity in the network. To contrast these findings, Appendix C shows the twenty most central actors
by decade. These statistics were found in the same way as above, but only used movies that were released in that
particular decade. As we might expect, this causes many new names to crop up. For movies released in the 1950’s,
for example, actors such as Louis de Funes (1914–1983) and George Thorpe (1891–1961) seem to be very central;
for the 1990’s on the other hand, the most central actors are people like Samuel L. Jackson, Om Puri, Vijayakumar,
Roshan Seth and Frank Welker.

There are other ways in which we might have performed this analysis. Alternative centrality measures are also
included in the NetworkX library, such as page rank centrality, Eigenvector centrality, Katz centrality, and current-
flow closeness centrality. A good review of these measures can be found in the book of Needham and Hodler [12].
In the future, it would also be interesting to add some kind of values to the edges of the network in order to give
more information about the nature of an acting collaboration. This could include the number of minutes that both
actors appeared on screen, the critical ratings of the movie, or the financial earnings. Such factors would certainly
influence the set of central actors that are identified.

All materials from this study are available online:

• A complete listing of the dataset, code, and results tables can be found at http://www.rhydlewis.eu/movies/
all.zip,

• A shorter web version of this document can be found at http://www.rhydlewis.eu/movies.

References
[1] Complete dataset. https://oracleofbacon.org/data.txt.bz2. Accessed 18/02/2020.

[2] Facebook Research: Three and half degrees of separation. https:// research.fb.com/blog/2016/02/
three-and-a-half-degrees-of-separation/ . Accessed 18/02/2020.

[3] Internet movie database. https://www.imdb.com/ . Accessed 18/02/2020.

13

http://www.rhydlewis.eu/movies/all.zip
http://www.rhydlewis.eu/movies/all.zip
http://www.rhydlewis.eu/movies
https://oracleofbacon.org/data.txt.bz2
https://research.fb.com/blog/2016/02/three-and-a-half-degrees-of-separation/
https://research.fb.com/blog/2016/02/three-and-a-half-degrees-of-separation/
https://www.imdb.com/

[4] NetworkX library. https://networkx.github.io/ . Accessed 18/02/2020.

[5] Oracle of Bacon. https://oracleofbacon.org/ . Accessed 18/02/2020.

[6] Six degrees of separation wikipedia page. https://en.wikipedia.org/wiki/Six degrees of separation. Ac-
cessed 18/02/2020.

[7] Social network analysis wikipedia page. https://en.wikipedia.org/wiki/Social network analysis. Accessed
18/02/2020.

[8] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25(2):163–
177, 2001.

[9] U. Brandes and C. Pich. Centrality estimation in large networks. International Journal of Bifurcation and
Chaos, 17(7):2303–2318, 2007.

[10] L. Freeman. Centrality in networks: Conceptual clarification. Social Networks, 1:215–239, 1979.

[11] R. Lewis. Five degrees of separation from De Niro – charting the so-
cial networks of movie stars. The Conversation https:// theconversation.com/
five-degrees-of-separation-from-de-niro-charting-the-social-networks-of-movie-stars-131936, Febru-
ary 2020.

[12] M. Needham and A. Hodler. Graph Algorithms: Practical Examples in Apache Spark and Neo4j. O’Reilly
Media, 2019.

[13] K. Rosen. Discrete Mathematics and its Applications. Mcgraw Hill, 8th edition, 2018.

[14] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge University
Press, 1994.

A Movies per Actor and per Partnerships
The following table shows the top one hundred actors (left) and acting partnerships (right) according to the number of movies
they have appeared in. Note that position 68 in the right list is occupied by a pair of actors called “TBA and TBA”. This is clearly
a fault in the underlying dataset.

Movies Per Actor Movies Per Acting Partnership
1 Sukumari 703 Adoor Bhasi and Prem Nazir 292
2 Jagathy Sreekumar 695 Larry Fine and Moe Howard 216
3 Adoor Bhasi 579 Adoor Bhasi and Sankaradi 207
4 Brahmanandam 576 Adoor Bhasi and Bahadoor 198
5 Manorama 558 Brahmanandam and Ali 193
6 Sankaradi 545 Brahmanandam and Kota Srinivasa Rao 170
7 Prem Nazir 518 Adoor Bhasi and K. P. Ummer 170
8 Nedumudi Venu 470 Prem Nazir and Bahadoor 163
9 Bahadoor 450 Brahmanandam and Tanikella Bharani 157
10 Nassar 438 Adoor Bhasi and Jayabharathi 156
11 Meena 413 Sankaradi and Bahadoor 155
12 Mammootty 395 Senthil and Goundamani 151
13 Senthil 381 Harold Lloyd and Snub Pollard 148
14 Nagesh 375 Prem Nazir and Sankaradi 147
15 Oliver Hardy 373 Bebe Daniels and Harold Lloyd 146
16 Innocent 371 Bebe Daniels and Snub Pollard 146
17 Vijayakumar 368 Sukumari and Sankaradi 145
18 Shakti Kapoor 365 K. P. Ummer and Prem Nazir 144
19 Madhu 357 Jagathy Sreekumar and Sukumari 141
20 Mohanlal 348 Meena and Adoor Bhasi 139
21 Mithun Chakraborty 347 Jayabharathi and Prem Nazir 138

14

https://networkx.github.io/
https://oracleofbacon.org/
https://en.wikipedia.org/wiki/Six_degrees_of_separation
https://en.wikipedia.org/wiki/Social_network_analysis
https://theconversation.com/five-degrees-of-separation-from-de-niro-charting-the-social-networks-of-movie-stars-131936
https://theconversation.com/five-degrees-of-separation-from-de-niro-charting-the-social-networks-of-movie-stars-131936

22 Kota Srinivasa Rao 346 Sukumari and Adoor Bhasi 134
23 Ali 343 Sheela and Adoor Bhasi 127
24 Srividya 333 Jayabharathi and Bahadoor 126
25 Prakash Raj 329 Adoor Bhasi and Sreelatha Namboothiri 123
26 Kuthiravattam Pappu 329 Sheela and Prem Nazir 122
27 Tanikella Bharani 324 Harold Lloyd and Sammy Brooks 120
28 Thilakan 319 Brahmanandam and M. S. Narayana 120
29 Jayabharathi 318 Meena and Prem Nazir 120
30 K. P. Ummer 316 Meena and Sankaradi 119
31 Mala Aravindan 312 Snub Pollard and Sammy Brooks 115
32 Kaviyoor Ponnamma 310 Moe Howard and Curly Howard 114
33 Siddique 301 Bebe Daniels and Sammy Brooks 113
34 Rekha 296 Larry Fine and Curly Howard 113
35 Sivaji Ganesan 295 Mohanlal and Sukumari 110
36 Anupam Kher 290 Jagathy Sreekumar and Innocent 110
37 Lakshmi 288 Jayabharathi and Sankaradi 110
38 N. T. Rama Rao 285 Roscoe ’Fatty’ Arbuckle and Fatty Arbuckle 109
39 Indrans 283 Adoor Bhasi and Thikkurissi Sukumaran Nair 109
40 M. N. Nambiar 280 Brahmanandam and Venu Madhav 108
41 Ambika 276 Meena and Bahadoor 108
42 Jose Prakash 276 Paravoor Bharathan and Sankaradi 108
43 Prathapachandran 276 Jagathy Sreekumar and Indrans 107
44 Asrani 275 Prem Nazir and Jose Prakash 107
45 MG Soman 272 Sukumari and Nedumudi Venu 106
46 Vadivelu 271 Oliver Hardy and Stan Laurel 105
47 Vijayaraghavan 270 Jagathy Sreekumar and Nedumudi Venu 105
48 Sheela 265 Madhu and Adoor Bhasi 104
49 Saikumar 264 Adoor Bhasi and Paravoor Bharathan 104
50 Aruna Irani 264 Thikkurissi Sukumaran Nair and Prem Nazir 104
51 Mukesh 261 Madhu and Sankaradi 103
52 Devan 258 K. P. Ummer and Bahadoor 103
53 Paravoor Bharathan 257 Prem Nazir and T. S. Muthaiah 101
54 Venniradai Moorthy 256 Ali and Kota Srinivasa Rao 100
55 Rajkumar 256 Brahmanandam and Raghu Babu 99
56 Gulshan Grover 256 Kaviyoor Ponnamma and Sankaradi 99
57 Goundamani 254 Innocent and Sukumari 98
58 Delhi Ganesh 252 Sreelatha Namboothiri and Prem Nazir 98
59 V. K. Ramasamy 252 Salim Kumar and Jagathy Sreekumar 97
60 Kader Khan 251 Mammootty and Sukumari 97
61 Murali 247 Ali and Tanikella Bharani 97
62 Raymond Hatton 247 N. T. Rama Rao and Relangi 97
63 Pandari Bai 246 Innocent and Nedumudi Venu 96
64 Dharmendra 244 Kaviyoor Ponnamma and Adoor Bhasi 96
65 Kovai Sarala 244 Adoor Bhasi and Jose Prakash 96
66 Harry Carey 244 K. P. Ummer and Sankaradi 96
67 KPAC Lalitha 244 Kader Khan and Shakti Kapoor 96
68 Salim Kumar 242 TBA and TBA 95
69 Manobala 242 Sankaradi and MG Soman 94
70 Kalpana 241 Adoor Bhasi and T. R. Omana 92
71 Balakrishna 241 K. S. Ashwath and Rajkumar 92
72 Mamukkoya 240 Allu Ramalingaiah and N. T. Rama Rao 91
73 Prem Chopra 240 Mohanlal and Nedumudi Venu 90
74 Cochin Haneefa 239 Satyanarayana and N. T. Rama Rao 90
75 Avinash 239 Madhu and Bahadoor 89
76 Allu Ramalingaiah 236 Adoor Bhasi and T. S. Muthaiah 89
77 K. S. Ashwath 236 Harold Lloyd and Charles Stevenson 88
78 Charle 236 Brahmanandam and Jaya Prakash Reddy 88

15

79 Akkineni Nageswara Rao 234 Brahmanandam and Chalapathi Rao 88
80 Manivannan 232 Sukumari and Thilakan 88
81 Seema 232 Manorama and Nagesh 88
82 Jagadish 231 K. P. Ummer and Jayabharathi 88
83 Vivek 230 Akkineni Nageswara Rao and Gummadi 88
84 Chalapathi Rao 230 M. S. Narayana and Ali 87
85 M. S. Narayana 229 Sukumari and Bahadoor 87
86 Jayaram 228 Satyanarayana and Allu Ramalingaiah 87
87 Ashok Kumar 228 Mikkilineni and N. T. Rama Rao 86
88 Sukumaran 227 Balakrishna and Rajkumar 86
89 Chandra Mohan 226 Narasimharaju and Rajkumar 86
90 Thikkurissi Sukumaran Nair 224 Venu Madhav and Ali 85
91 Kunchan 224 Mohanlal and Jagathy Sreekumar 85
92 Bebe Daniels 223 Jagathy Sreekumar and Jagadish 85
93 Nizhalgal Ravi 223 Joe Cobb and Allen Hoskins 85
94 Jeetendra 222 Jagathy Sreekumar and Thilakan 84
95 Moe Howard 221 Adoor Bhasi and Sathyan 84
96 Kalabhavan Mani 220 Brahmanandam and Dharmavarapu Subramanyam 83
97 Satyanarayana 219 Kota Srinivasa Rao and Tanikella Bharani 83
98 Sreelatha Namboothiri 219 Adoor Bhasi and S. P. Pillai 83
99 Lalu Alex 218 Prem Nazir and S. P. Pillai 83
100 Larry Fine 217 Meena and K. P. Ummer 82

B Centrality Analysis of the Entire Network
The following table lists the top one hundred actors according to degree centrality, closeness centrality and betweenness centrality.
These statistics were calculated on the single connected network comprising 379,859 nodes (actors) and 8,612,493 edges. Note
the presence of some spurious entries in the table such as “Tarzan”, “King Kong”, and “Sam”, which reveal some problems with
the underlying dataset.

Degree Centrality Closeness Centrality
(Num. Acting Collaborations) Betweenness Centrality (Mean Path Length)

Actor Score Actor Score Actor Score
1 Nassar 2937 Christopher Lee 0.00968 Christopher Lee 2.880
2 Sukumari 2549 Om Puri 0.00810 Michael Caine 2.917
3 Manorama 2511 Jackie Chan 0.00792 Harvey Keitel 2.922
4 Brahmanandam 2460 Anupam Kher 0.00791 Christopher Plummer 2.931
5 Vijayakumar 2369 Harrison Ford 0.00489 Robert De Niro 2.936
6 Prakash Raj 2349 Klaus Kinski 0.00470 Donald Sutherland 2.937
7 Jagathy Sreekumar 2223 Nassar 0.00468 Harrison Ford 2.943
8 Mithun Chakraborty 2142 Tarzan 0.00467 John Hurt 2.954
9 Rekha 2116 Marcello Mastroianni 0.00448 Willem Dafoe 2.964
10 Nedumudi Venu 2063 Rutger Hauer 0.00448 Martin Sheen 2.965
11 Christopher Lee 2056 Kabir Bedi 0.00437 Sean Connery 2.972
12 John Carradine 2027 Jeanne Moreau 0.00405 Samuel L. Jackson 2.975
13 Meena 1944 Gerard Depardieu 0.00403 Anthony Hopkins 2.976
14 Anupam Kher 1943 Isabelle Huppert 0.00395 Ben Kingsley 2.977
15 Emory Parnell 1912 George Kennedy 0.00394 Max von Sydow 2.979
16 Frank Welker 1912 Stellan Skarsgard 0.00371 Ernest Borgnine 2.981
17 Andy Lau 1908 Saeed Jaffrey 0.00371 Dennis Hopper 2.985
18 Ali 1894 Max von Sydow 0.00361 David Carradine 2.988
19 Lakshmi 1884 Ben Kingsley 0.00348 Terence Stamp 2.988
20 John Wayne 1883 Shakti Kapoor 0.00348 John Gielgud 2.992
21 Ashish Vidyarthi 1869 Louis de Funes 0.00337 Trevor Howard 3.003
22 Tanikella Bharani 1844 Raja 0.00332 Vanessa Redgrave 3.003
23 Kota Srinivasa Rao 1837 Geraldine Chaplin 0.00328 Gerard Depardieu 3.004

16

24 Shakti Kapoor 1837 Joseph 0.00318 Stellan Skarsgard 3.004
25 Saikumar 1833 Shabana Azmi 0.00315 Frank Welker 3.010
26 Mammootty 1816 Donald Sutherland 0.00309 Peter O’Toole 3.011
27 Devan 1813 Michael Caine 0.00305 Donald Pleasence 3.011
28 Nagesh 1791 Amrish Puri 0.00303 James Caan 3.011
29 Manobala 1776 Jean-Claude Van Damme 0.00296 Alfred Molina 3.015
30 Kalpana 1774 Alex 0.00294 George Kennedy 3.016
31 Paul Fix 1766 John Savage 0.00286 Sylvester Stallone 3.016
32 Irving Bacon 1760 Michel Piccoli 0.00284 Anthony Quinn 3.018
33 Delhi Ganesh 1757 I. S. Johar 0.00282 Rutger Hauer 3.018
34 Mohanlal 1756 Martin Sheen 0.00280 Roger Moore 3.019
35 J. Farrell MacDonald 1749 Naseeruddin Shah 0.00279 John Cleese 3.019
36 Siddique 1740 Gulshan Grover 0.00279 Roddy McDowall 3.022
37 Om Puri 1702 George Baker 0.00275 Ned Beatty 3.022
38 Geetha 1678 Dennis Hopper 0.00273 Robert Duvall 3.022
39 Indrans 1664 Harvey Keitel 0.00270 Liam Neeson 3.022
40 Raymond Hatton 1657 Jason Flemyng 0.00266 Michael Madsen 3.023
41 Jackie Chan 1652 Thomas Kretschmann 0.00262 Malcolm McDowell 3.023
42 Eric Tsang 1651 Haluk Bilginer 0.00259 Harry Dean Stanton 3.023
43 Louis de Funes 1646 Liam Neeson 0.00255 Orson Welles 3.025
44 Madhu 1639 King Kong 0.00253 Elliott Gould 3.025
45 Vijayaraghavan 1639 Mithun Chakraborty 0.00253 Geraldine Chaplin 3.026
46 Mickey Rooney 1631 Daniel Olbrychski 0.00252 John Mills 3.026
47 Charles Lane 1613 Udo Kier 0.00252 Rod Steiger 3.026
48 Jackie Shroff 1600 Rade Serbedzija 0.00251 James Mason 3.026
49 Ambika 1599 Charlotte Rampling 0.00247 Richard Attenborough 3.027
50 Innocent 1596 Danny Trejo 0.00242 Udo Kier 3.028
51 Michael Caine 1595 Ahn Sung-ki 0.00242 Christopher Lloyd 3.032
52 Danny Trejo 1595 Claudia Cardinale 0.00242 Michael Hordern 3.032
53 Senthil 1592 Omar Sharif 0.00241 John Carradine 3.032
54 Jayaram 1581 David Carradine 0.00240 James Fox 3.033
55 Gulshan Grover 1579 Sean Connery 0.00237 Eli Wallach 3.033
56 Marcello Mastroianni 1573 John Carradine 0.00236 Joss Ackland 3.033
57 Kovai Sarala 1558 Roshan Seth 0.00225 Michael York 3.034
58 Murali 1557 Anthony Quinn 0.00223 Bruce Dern 3.035
59 Pierre Watkin 1554 Prem Chopra 0.00222 Christopher Walken 3.036
60 Vivek 1551 Ashish Vidyarthi 0.00222 David Niven 3.036
61 Ward Bond 1544 Tom Alter 0.00221 Klaus Kinski 3.036
62 Srividya 1539 Franco Nero 0.00220 Omar Sharif 3.036
63 Dharmendra 1528 John Hurt 0.00219 Paul Guilfoyle 3.037
64 Gerard Depardieu 1514 Shin Seong-il 0.00217 Morgan Freeman 3.037
65 Samuel L. Jackson 1513 Michael Kelly 0.00217 Alan Arkin 3.038
66 Avinash 1496 Shashi Kapoor 0.00215 John Cusack 3.038
67 Mukesh 1485 Bruno Ganz 0.00213 Bruce Willis 3.040
68 Nizhalgal Ravi 1484 Eric Roberts 0.00212 Ron Perlman 3.041
69 Rajesh 1475 Mohan Agashe 0.00212 Keith David 3.041
70 Sharat Saxena 1475 Maria 0.00212 Charlton Heston 3.042
71 Klaus Kinski 1471 Rohini Hattangadi 0.00210 Gene Hackman 3.042
72 Russell Hicks 1470 Trevor Howard 0.00210 Robert Mitchum 3.042
73 Naseeruddin Shah 1466 Paul Guilfoyle 0.00210 Jason Robards 3.043
74 Asrani 1462 Willem Dafoe 0.00207 Steve Buscemi 3.044
75 George Chandler 1461 Christopher Plummer 0.00207 John Malkovich 3.044
76 Prabhu 1459 Sam Anderson 0.00204 Jack Nicholson 3.047
77 Donald Sutherland 1453 Fernando Rey 0.00204 Danny Trejo 3.047
78 Hubert von Meyerinck 1451 Anthony Hopkins 0.00204 Sam Neill 3.047
79 Anthony Quinn 1443 Anil Kapoor 0.00202 Helen Mirren 3.047
80 Thilakan 1434 Vittorio Gassman 0.00201 Burt Reynolds 3.048

17

81 James Mason 1433 Dharmendra 0.00201 Jack Palance 3.049
82 Harold Goodwin 1429 Eric Tsang 0.00200 Antonio Banderas 3.049
83 Donald Pleasence 1427 Juliette Binoche 0.00200 Ian Holm 3.049
84 Sayaji Shinde 1426 Richard Attenborough 0.00199 Vernon Dobtcheff 3.050
85 J. Carrol Naish 1425 Akim Tamiroff 0.00196 Claudia Cardinale 3.050
86 Wade Boteler 1417 Giancarlo Giannini 0.00195 Mickey Rooney 3.050
87 Prem Chopra 1416 Sam 0.00194 Denholm Elliott 3.051
88 Douglas Fowley 1413 Peter Stormare 0.00192 Robert Morley 3.052
89 Andy Devine 1409 Ernest Borgnine 0.00190 Derek Jacobi 3.052
90 Venniradai Moorthy 1409 Mickey Rooney 0.00189 Shirley MacLaine 3.052
91 Cochin Haneefa 1407 Michael Hordern 0.00188 Bruce McGill 3.053
92 Chandra Mohan 1406 Samuel L. Jackson 0.00187 Nicolas Cage 3.054
93 Paul Guilfoyle 1403 John Wood 0.00187 Kiefer Sutherland 3.054
94 Thurston Hall 1400 Terence Stamp 0.00187 Stacy Keach 3.054
95 Ashok Kumar 1398 Jean Rochefort 0.00186 Jim Broadbent 3.054
96 Regis Toomey 1396 Walter Rilla 0.00185 Martin Landau 3.054
97 Keith David 1390 Jean Marais 0.00185 Charlotte Rampling 3.056
98 M. N. Nambiar 1390 Simon Abkarian 0.00184 Whoopi Goldberg 3.057
99 Urvashi 1389 Orson Welles 0.00183 Dean Stockwell 3.057
100 Salim Kumar 1388 Irrfan Khan 0.00183 Jackie Chan 3.058

C Centrality Analysis by Decade
The following table lists the top twenty actors in movies released by decade according to degree centrality, closeness centrality
and betweenness centrality. Once again, note the presence of a small number of strange entries in this tables, such as actors with
the single names “Art”, “Joseph”, “David” and “John”.

Degree Centrality Closeness Centrality
(Num. Acting Collaborations) Betweenness Centrality (Mean Path Length)

Actor Score Actor Score Actor Score
1910–1920 (single connected network with 9,282 nodes (actors) and 109,181 edges.)
1 Mary Pickford 353 Anna Jordan 0.14071 Mary Pickford 2.859
2 Harold Lloyd 327 Lottie Pickford 0.06066 James Neill 2.896
3 Herbert Standing 308 Ludwig Trautmann 0.04839 Tully Marshall 2.901
4 Harry Carey 307 Asta Nielsen 0.03744 Edythe Chapman 2.910
5 James Neill 298 Friedrich Kuhne 0.03082 Herbert Standing 2.929
6 Spottiswoode Aitken 296 Charles Villiers 0.02735 Charles West 2.932
7 Theodore Roberts 293 Armand Cortes 0.02530 Wallace Reid 2.933
8 Lillian Gish 282 Arthur Shirley 0.02527 Owen Moore 2.937
9 Raymond Hatton 280 Rita Jolivet 0.02235 Thomas Meighan 2.940
10 Lionel Barrymore 276 George Moss 0.02155 Jack Pickford 2.942
11 Lon Chaney 275 Herbert Standing 0.02131 Marguerite Clark 2.948
12 Robert Harron 269 Winter Hall 0.02036 Theodore Roberts 2.962
13 Wallace Reid 262 Victor Janson 0.01816 Robert Harron 2.963
14 Alfred Paget 261 Gertrude McCoy 0.01715 Mae Marsh 2.965
15 Bebe Daniels 253 Maria Caserini 0.01616 Raymond Hatton 2.980
16 Tully Marshall 251 Lina Cavalieri 0.01607 Alfred Paget 2.982
17 Marguerite Clark 251 Mary Pickford 0.01515 Irving Cummings 2.984
18 Walter Long 245 Marguerite Clark 0.01494 Donald Crisp 2.984
19 Bud Jamison 245 Harry Beaumont 0.01406 Frank Losee 2.990
20 William Elmer 244 Harry Lorraine 0.01390 Wilfred Lucas 2.998
1920–1930 (single connected network with 15,519 nodes (actors) and 297,025 edges.)
1 Hermann Picha 695 Oreste Bilancia 0.02072 George Fawcett 2.628
2 George Fawcett 618 Charles Puffy 0.02064 Mary Carr 2.631
3 Karl Platen 589 Letizia Quaranta 0.01821 Winter Hall 2.644
4 Frida Richard 587 Ivan Koval-Samborsky 0.01673 Lionel Barrymore 2.649

18

5 Wilhelm Diegelmann 573 Luiza Valle 0.01647 Charles Puffy 2.651
6 Louise Fazenda 557 Igo Sym 0.01502 Nigel Barrie 2.661
7 Fritz Kampers 547 Victor Varconi 0.01402 Clive Brook 2.668
8 Tully Marshall 527 Nato Vachnadze 0.01309 Edmund Burns 2.679
9 Lionel Belmore 510 Augusto Anibal 0.01262 Gustav von Seyffertitz 2.680
10 Margarete Kupfer 509 Henry Victor 0.01241 Pola Negri 2.684
11 Lucien Littlefield 505 Warwick Ward 0.01211 Anna May Wong 2.686
12 Maria Forescu 499 Mary Carr 0.01197 George Siegmann 2.688
13 Hans Albers 486 Sylvia Torf 0.01193 Evelyn Brent 2.689
14 Wallace Beery 484 Nita Naldi 0.01152 Betty Compson 2.689
15 Eduard von Winterstein 471 Lionel Barrymore 0.01117 Ben Lyon 2.692
16 Boris Karloff 469 Vsevolod Pudovkin 0.01109 Emily Fitzroy 2.694
17 Lydia Potechina 461 Nigel Barrie 0.01070 Warwick Ward 2.695
18 Julius Falkenstein 459 Edmund Burns 0.01039 Norman Kerry 2.698
19 Josef Swickard 455 Mary Nolan 0.01008 Percy Marmont 2.700
20 Georg John 453 Pola Negri 0.01007 Neil Hamilton 2.703
1930–1940 (single connected network with 22,986 nodes (actors) and 645,435 edges.)
1 Spencer Charters 912 Charlie 0.05117 Vladimir Sokoloff 2.824
2 Ward Bond 890 Ivan Koval-Samborsky 0.04690 Peter Lorre 2.832
3 George Irving 888 Leonid Kmit 0.03409 C. Aubrey Smith 2.848
4 Wade Boteler 863 Art 0.03391 Ben Welden 2.886
5 Irving Bacon 850 Willy Castello 0.02206 Herman Bing 2.887
6 J. Farrell MacDonald 824 Vladimir Sokoloff 0.02132 Lilian Harvey 2.893
7 Paul Hurst 811 Jan Kiepura 0.02053 Frank Reicher 2.896
8 Paul Fix 802 Bing Crosby 0.02012 Edward Everett Horton 2.898
9 Henry Kolker 801 Heintje Davids 0.01787 Spencer Charters 2.899
10 Warren Hymer 772 Carlos Machado 0.01534 Reginald Owen 2.902
11 Paul Horbiger 746 Peter Lorre 0.01414 Morgan Wallace 2.905
12 Willard Robertson 738 Morgan Wallace 0.01350 Edmund Lowe 2.905
13 Oscar Apfel 737 Sig Arno 0.01271 Paul Porcasi 2.907
14 Robert Warwick 731 Igor Ilyinsky 0.01249 J. Carrol Naish 2.909
15 Frank Reicher 728 Mesquitinha 0.01189 Henry Kolker 2.910
16 Berton Churchill 725 Yakub 0.01170 Robert Warwick 2.912
17 Stanley Fields 725 Papanasam Sivan 0.01155 Paul Fix 2.916
18 Joseph Crehan 723 Conchita Montenegro 0.01148 Ray Milland 2.919
19 George Chandler 717 Tutta Rolf 0.01115 Victor Varconi 2.924
20 Karl Platen 717 Alberto Terrones 0.01043 Billy Gilbert 2.926
1940–1950 (single connected network with 23,656 nodes (actors) and 603,812 edges.)
1 Emory Parnell 1066 Pal 0.14073 Harry Davenport 3.103
2 Pierre Watkin 971 Dev Anand 0.09101 Alan Napier 3.147
3 Irving Bacon 863 Rossano Brazzi 0.06714 Reginald Owen 3.157
4 Russell Hicks 839 Amir Banu 0.04972 Fortunio Bonanova 3.158
5 Ray Walker 835 Arturo de Cordova 0.04787 Emory Parnell 3.159
6 Addison Richards 753 Kamala Kotnis 0.04722 Frank Puglia 3.163
7 Joseph Crehan 736 Hans Klering 0.03536 Morris Ankrum 3.173
8 Jerome Cowan 734 Yelena Tyapkina 0.03188 Marcel Dalio 3.182
9 Lloyd Corrigan 732 Signe Hasso 0.02587 Gene Lockhart 3.183
10 John Litel 715 Marcel Dalio 0.02525 Akim Tamiroff 3.186
11 Thurston Hall 699 Anjali Devi 0.02310 Peter Lawford 3.188
12 Chester Clute 698 Hans Straat 0.01624 Joseph Cotten 3.206
13 Byron Foulger 688 Mai Zetterling 0.01623 Sig Ruman 3.212
14 Selmer Jackson 687 Erich Ponto 0.01555 Leon Ames 3.212
15 Richard Lane 685 Ingrid Bergman 0.01444 Lloyd Corrigan 3.212
16 Edward Gargan 676 Florence Marly 0.01441 Mikhail Rasumny 3.215
17 Roy Barcroft 658 Fortunio Bonanova 0.01406 Lloyd Nolan 3.219
18 Douglas Fowley 652 Pushpavalli 0.01351 Ray Walker 3.219
19 Charles Halton 649 Kishore Sahu 0.01330 Jerome Cowan 3.220

19

20 Harry Davenport 642 Virgilio Teixeira 0.01277 Matthew Boulton 3.221
1950–1960 (single connected network with 36,549 nodes (actors) and 786,464 edges.)
1 Louis de Funes 1110 George Thorpe 0.04861 Peter van Eyck 2.970
2 Sam Kydd 773 Helen 0.03457 Yvonne De Carlo 3.005
3 Sid James 755 David 0.02746 Orson Welles 3.009
4 Richard Wattis 685 I. S. Johar 0.02325 Dawn Addams 3.009
5 Eric Pohlmann 650 Dora Bryan 0.02036 Herbert Lom 3.014
6 Emory Parnell 645 Carlos Thompson 0.01939 Sid James 3.018
7 Morris Ankrum 607 Padmini 0.01665 Finlay Currie 3.020
8 Geoffrey Keen 578 Nadira 0.01647 Eric Pohlmann 3.026
9 Hans Leibelt 553 Nikolai Kryuchkov 0.01635 Richard Wattis 3.038
10 Martin Boddey 535 Louis de Funes 0.01549 Anthony Quinn 3.039
11 Marianne Stone 534 Sonja Ziemann 0.01482 Milly Vitale 3.040
12 Michael Ripper 532 Nicole Maurey 0.01405 Patricia Medina 3.043
13 Ernst Waldow 530 Raymond Burr 0.01391 Gina Lollobrigida 3.048
14 Reinhard Kolldehoff 528 Marvin Miller 0.01387 Jack Lambert 3.052
15 Cyril Chamberlain 526 William Holden 0.01203 Raymond Burr 3.057
16 Myron Healey 525 Peter van Eyck 0.01116 Rock Hudson 3.058
17 Whit Bissell 524 Steve Cochran 0.01085 Fernandel 3.061
18 Nerio Bernardi 513 Johnson 0.01071 Mario Siletti 3.067
19 Lyle Talbot 509 Willi Narloch 0.01069 Kirk Douglas 3.069
20 Laurence Naismith 507 Ada Vojtsik 0.01043 Victor McLaglen 3.071
1960–1970 (single connected network with 39,217 nodes (actors) and 704,331 edges.)
1 Nagesh 700 William Kerwin 0.00343 Sylva Koscina 2.884
2 John Le Mesurier 654 Lando Buzzanca 0.00341 Klaus Kinski 2.890
3 Klaus Kinski 639 Brian Keith 0.00340 Senta Berger 2.935
4 Manorama 619 Peter Finch 0.00338 Orson Welles 2.937
5 Terry-Thomas 605 Glenn Ford 0.00336 Terry-Thomas 2.940
6 David Lodge 588 Dean Martin 0.00332 Adolfo Celi 2.947
7 Warren Mitchell 582 Juan Carlos Galvan 0.00332 Robert Morley 2.950
8 Marianne Stone 574 Curd Jurgens 0.00329 Harry Andrews 2.956
9 John Wayne 561 Trevor Howard 0.00329 Wolfgang Preiss 2.960
10 Narasimharaju 561 Claudine Auger 0.00326 Gert Frobe 2.968
11 Jayanthi 554 Walter Pidgeon 0.00325 Mark Damon 2.974
12 Balakrishna 540 Philippe Noiret 0.00324 Curd Jurgens 2.980
13 Rajkumar 539 Kirk Douglas 0.00323 Akim Tamiroff 2.985
14 Jean-Paul Belmondo 534 Margaret Lee 0.00319 Elke Sommer 2.987
15 Fernando Sancho 515 Lee Pang-fei 0.00319 Norman Rossington 2.992
16 Sylva Koscina 508 Marne Maitland 0.00319 Sergio Fantoni 2.996
17 Robert Morley 503 Jagdev 0.00318 David Niven 2.997
18 Kirk Douglas 492 Merry Anders 0.00315 Yul Brynner 2.999
19 Graham Stark 489 Chan Wai-yue 0.00311 Henry Fonda 2.999
20 Richard Wattis 489 Tito Garcia 0.00308 John Wayne 3.002
1970–1980 (single connected network with 47,321 nodes (actors) and 751,203 edges.)
1 Manorama 691 John Saxon 0.03881 Adolfo Celi 3.116
2 Sankaradi 674 I. S. Johar 0.03065 Harry Andrews 3.120
3 Adoor Bhasi 668 Kabir Bedi 0.02926 Michael Caine 3.136
4 Bahadoor 617 Richard Attenborough 0.02461 Donald Pleasence 3.140
5 Lakshmi 556 Ivo Garrani 0.02299 Denholm Elliott 3.147
6 Helen 551 Joseph 0.01756 John Saxon 3.160
7 Jayabharathi 521 Dharmendra 0.01548 George Kennedy 3.165
8 Prem Nazir 514 Adolfo Celi 0.01423 Christopher Lee 3.166
9 Klaus Kinski 508 Peter Jones 0.01339 Martin Balsam 3.175
10 Balakrishna 503 Klaus Kinski 0.01305 Orson Welles 3.180
11 John Carradine 502 Geraldine Chaplin 0.01221 Joseph Cotten 3.182
12 K. P. Ummer 496 Donald Pleasence 0.01211 James Mason 3.189
13 Ku Feng 492 Aruna Irani 0.01191 Elke Sommer 3.195

20

14 Sukumari 484 Harry Andrews 0.01126 Ray Milland 3.197
15 Christopher Lee 482 Oleg Vidov 0.01073 Donald Sutherland 3.203
16 Donald Pleasence 480 Sylvia Miles 0.01027 Richard Attenborough 3.208
17 Manjula 475 Sanjeev Kumar 0.01009 Fernando Rey 3.210
18 Nagesh 470 Christopher Lee 0.00975 Elliott Gould 3.211
19 Denholm Elliott 466 George Kennedy 0.00967 John Carradine 3.213
20 Hsu Hsia 465 William Thomas 0.00955 Gene Hackman 3.218
1980–1990 (single connected network with 50,628 nodes (actors) and 776,358 edges.)
1 Sukumari 766 Amrish Puri 0.04610 Martin Sheen 3.188
2 Ambika 765 Saeed Jaffrey 0.02497 John Hurt 3.217
3 Anuradha 752 Roy Chiao 0.01607 John Gielgud 3.221
4 Jayamalini 722 Martin Sheen 0.01461 Max von Sydow 3.238
5 Mithun Chakraborty 665 Tom Alter 0.01454 Richard Griffiths 3.245
6 Seema 663 Roy Kinnear 0.01304 Denholm Elliott 3.250
7 Radha 654 Janaki 0.01228 Kenneth McMillan 3.262
8 Manorama 649 John Gielgud 0.01200 Christopher Lee 3.269
9 Silk Smitha 640 James Fox 0.01159 Harvey Keitel 3.274
10 Vishnuvardhan 628 Christopher Lee 0.01150 Michael Hordern 3.284
11 Geetha 623 Max von Sydow 0.01146 M. Emmet Walsh 3.289
12 Jagathy Sreekumar 622 Klaus Kinski 0.01095 Oliver Reed 3.289
13 Shakti Kapoor 620 John Hurt 0.01095 Donald Pleasence 3.291
14 Srividya 602 Isabelle Huppert 0.01015 Robert Loggia 3.296
15 Mammootty 593 Jackie Chan 0.00995 Klaus Kinski 3.299
16 Nedumudi Venu 583 Klaus Maria Brandauer 0.00967 Peter Boyle 3.306
17 Madhavi 578 Igor Yasulovich 0.00944 Harry Dean Stanton 3.307
18 Amrish Puri 570 Marcello Mastroianni 0.00915 Roy Kinnear 3.312
19 Andy Lau 566 Everett McGill 0.00886 Shane Rimmer 3.313
20 Rekha 565 Rohini Hattangadi 0.00849 Edward Fox 3.315
1990–2000 (single connected network with 56,962 nodes (actors) and 966,791 edges.)
1 Vijayakumar 1065 Om Puri 0.03197 Samuel L. Jackson 3.067
2 Senthil 1038 Roshan Seth 0.03107 Frank Welker 3.102
3 Goundamani 865 Shabana Azmi 0.01726 Greta Scacchi 3.123
4 Srividya 857 Suman 0.01631 Whoopi Goldberg 3.123
5 Brahmanandam 815 Danny Denzongpa 0.01532 John Cusack 3.124
6 Nassar 806 Greta Scacchi 0.01502 Julianne Moore 3.147
7 Murali 802 Maggie Cheung 0.01450 Christopher Walken 3.150
8 Frank Welker 796 Nagma 0.01419 Stephen Tobolowsky 3.152
9 Andy Lau 794 Shakti Kapoor 0.01408 Paul Guilfoyle 3.158
10 Mithun Chakraborty 781 Captain Raju 0.01401 James Earl Jones 3.160
11 Venniradai Moorthy 781 Gulshan Grover 0.01072 Mike Starr 3.161
12 Jagathy Sreekumar 772 Stellan Skarsgard 0.01057 Dan Hedaya 3.165
13 Shakti Kapoor 763 Valeria Golino 0.00985 Val Kilmer 3.166
14 Sukumari 755 Frank Welker 0.00915 John Turturro 3.170
15 Meena 751 Shashi Kapoor 0.00908 Denzel Washington 3.173
16 Manorama 732 King Kong 0.00847 Anthony Hopkins 3.178
17 Thilakan 726 Rekha 0.00813 Richard E. Grant 3.179
18 Delhi Ganesh 709 Tcheky Karyo 0.00787 Bruce Willis 3.179
19 Charle 696 Michael Ironside 0.00736 Denis Leary 3.180
20 Rekha 683 Pete Postlethwaite 0.00720 David Thewlis 3.181
2000–2010 (single connected network with 91,150 nodes (actors) and 1,441,852 edges.)
1 Brahmanandam 1307 Om Puri 0.03160 Angelina Jolie 3.135
2 Nassar 1129 Jackie Chan 0.02348 Samuel L. Jackson 3.142
3 Prakash Raj 1108 David Carradine 0.01230 David Carradine 3.145
4 Ashish Vidyarthi 1022 Anupam Kher 0.01108 Keith David 3.152
5 Tanikella Bharani 1008 Snoop Dogg 0.00958 Michael Madsen 3.158
6 Ali 987 Ashish Vidyarthi 0.00864 Jackie Chan 3.160
7 Jagathy Sreekumar 973 Juliette Binoche 0.00738 Harvey Keitel 3.161

21

8 Venu Madhav 921 Monica 0.00732 Brian Cox 3.162
9 Sunil 910 Naseeruddin Shah 0.00682 Owen Wilson 3.171
10 M. S. Narayana 887 Gerard Depardieu 0.00641 Snoop Dogg 3.177
11 Kota Srinivasa Rao 887 Irrfan Khan 0.00612 Steve Coogan 3.177
12 Kalabhavan Mani 876 Stellan Skarsgard 0.00580 Steve Buscemi 3.181
13 Vivek 858 Milind Soman 0.00573 John Cleese 3.185
14 Vijayakumar 833 Nassar 0.00558 Danny Trejo 3.186
15 Vadivelu 825 Sonu Sood 0.00548 Morgan Freeman 3.186
16 Dharmavarapu Subramanyam 811 Eriq Ebouaney 0.00545 Peter Stormare 3.189
17 Cochin Haneefa 805 Anthony Wong 0.00536 Willem Dafoe 3.189
18 Devan 801 Gulshan Grover 0.00529 Luke Wilson 3.190
19 Om Puri 761 Thomas Kretschmann 0.00528 Woody Harrelson 3.190
20 Salim Kumar 759 Udo Kier 0.00525 Thomas Kretschmann 3.191
2010–2020 (single connected network with 108,739 nodes (actors) and 1,756,677 edges.)
1 Nassar 1689 Nassar 0.02662 Ben Kingsley 3.151
2 Manobala 1314 Anupam Kher 0.02412 Shea Whigham 3.170
3 Prakash Raj 1312 Om Puri 0.01406 Liam Neeson 3.180
4 Jayaprakash 1101 Adil Hussain 0.01301 Naomi Watts 3.185
5 Brahmanandam 1099 Isabelle Huppert 0.00841 Anupam Kher 3.192
6 Indrans 1001 Peter Stormare 0.00789 Charles Dance 3.199
7 Siddique 957 Sam Anderson 0.00752 Fred Tatasciore 3.201
8 Ashish Vidyarthi 948 Ben Kingsley 0.00726 Alfred Molina 3.205
9 Ajay 925 Sridhar 0.00694 Toby Jones 3.208
10 Avinash 914 Irrfan Khan 0.00688 Danny Huston 3.211
11 Sayaji Shinde 901 Liam Neeson 0.00677 Samuel L. Jackson 3.213
12 Thambi Ramaiah 899 Charles Dance 0.00635 Willem Dafoe 3.213
13 Ali 877 Vinnie Jones 0.00627 Antonio Banderas 3.213
14 Rajendran 859 Joy Badlani 0.00626 James Franco 3.223
15 Nedumudi Venu 848 Boman Irani 0.00609 Mark Strong 3.227
16 Vijayaraghavan 845 Eric Roberts 0.00596 Vinnie Jones 3.228
17 Vennela Kishore 844 Danny Trejo 0.00592 Tom Wilkinson 3.230
18 Lena 837 Sanjay Mishra 0.00585 Danny Trejo 3.241
19 Sunil Sukhada 835 Willem Dafoe 0.00585 Stephen Lang 3.241
20 Tanikella Bharani 831 John 0.00583 Christopher Lloyd 3.244

22

	1 Introduction
	2 A Small Example
	3 A Dataset of All Movies
	4 Input and Preliminary Analysis
	4.1 Reading the Dataset
	4.2 Two Simple Bar Charts

	5 Forming the Social Network
	6 Analysing Connections in the Network
	6.1 Movies Per Actor
	6.2 Acting Partnerships

	7 Calculating Shortest Paths
	8 Connectivity and Centrality Analysis
	8.1 Degree Centrality
	8.2 Betweenness Centrality
	8.3 Closeness Centrality
	8.4 Distribution of Actors' Closeness Centrality Scores

	9 Conclusions and Further Discussion
	A Movies per Actor and per Partnerships
	B Centrality Analysis of the Entire Network
	C Centrality Analysis by Decade

