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Summary 

Huntington’s disease (HD) is a progressive and ultimately fatal neurodegeneration caused 

by a CAG repeat expansion in the huntingtin gene (HTT). The length of the CAG repeat is 

strongly inversely correlated with disease onset, but there remains considerable onset 

variation that is unexplained, even between individuals with the same repeat length. This 

thesis details the investigation of genetic modifiers of HD onset using next-generation 

sequencing (NGS), with an emphasis on rare coding variant identification. 

 

Chapter 1 gives a general introduction. Chapter 2 details the experimental procedures used 

in this study. Chapter 3 explores several HD onset phenotypes in the Registry-HD study, 

derived using the clinician’s estimate of onset and the HD clinical characteristics 

questionnaire. An extreme HD onset cohort (N=500) is then selected using residual age at 

motor onset. 

 

Chapter 4 uses whole-exome sequencing to sequence the 500 HD patients selected in the 

previous chapter. I identified rare damaging variation in several DNA repair genes 

associated with altered disease onset, including FAN1, EXO1, MSH3, LIG1 and PMS1. 

Unbiased whole-exome burden and SKAT(-O) analyses identified NOP14 as an exome-wide 

significant gene. Investigation revealed NOP14 strongly tagged HTT allele structure, 

identifying it as a major modifier of disease onset. 

 

Chapter 5 confirms the HTT allele structures using an independent NGS method. HTT 

alleles possessing additional interruptions were associated with late disease onset; whereas 

alleles lacking interruptions were uniformly found in early onset individuals. I also detail three 

novel HTT alleles associated with extremely delayed onset and explore MiSeq-based 

instability measurements. 

 

In Chapter 6, I discuss the study generally. I give an overall model describing genetic factors 

that modify HD onset, and present my two-fated pathway model for somatic instability. I then 

highlight future studies and approaches in HD given what we have learned from this work. 

The results presented here have important implications for understanding the mechanisms 

underlying HD onset, underscoring DNA and DNA repair as critical components in HD.  
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Lay summary 

Huntington’s disease (HD) is a destructive and untreatable brain disease that affects one in 

10,000 in the UK. HD is usually inherited from an affected parent and has a 50% chance of 

being passed on to children. The later stages of the disease require full-time nursing care, 

and HD is usually fatal 15-20 years after symptoms start. We know what causes HD – an 

error in the huntingtin gene. We all have two copies of this gene (one from mum and one 

from dad), and it’s important for our health. Our genes are made up of four DNA chemicals 

called adenine, cytosine, guanine and thymine, and these are abbreviated as the letters A, 

C, G and T. In HD, three DNA letters in the huntingtin gene, C-A-G, are repeated too many 

times, like a genetic stutter, making the gene faulty. The number of these CAG letters is 

important, as people with more CAGs on average develop HD earlier (an earlier ‘onset’). But 

there is still enormous variability between when people start experiencing HD symptoms that 

we cannot explain. For instance, two people with the same number of CAGs could have HD 

symptoms years or even decades apart from one another. The work detailed in this thesis 

explores how a person’s genetic makeup (the small genetic differences that all make us 

unique) can affect when HD onset occurs. 

 

To begin, I give a background to the current HD research field and introduce important 

concepts to consider in the thesis (chapter 1). Following this, I set out the experimental 

procedures used (chapter 2). In my first results chapter, I explore the symptoms 

experienced by HD patients (chapter 3). HD patients can experience a wide range of 

different symptoms including uncontrollable muscle movements (chorea), depression, 

cognitive decline and psychosis (hallucinations/delusions). Using clinical data, I select a 

group of 500 HD patients (a ‘cohort’) that have early or late onset of motor symptoms given 

their CAG length, and these individuals are then analysed in subsequent chapters. 

 

In the next results chapter (chapter 4), I use a technique called ‘whole-exome sequencing’ 

(WES) in the 500 HD patients selected from the previous chapter. Exome sequencing 

captures all of someone’s DNA that used to make protein. This ‘protein-coding’ part of our 

DNA is considered the most important of our genetic makeup, and large differences to this 

part of our DNA can cause diseases like HD. Small differences in this DNA, called DNA 

‘variants’, however, are normal, and studying these can give critical insight into how we 

genetically differ to one another. Using exome sequencing, I identify several DNA variants in 

genes that are associated with early or late onset HD, mostly in genes involved in 

maintaining and repairing DNA. I also find small differences (independent of length) in the 

Huntingtin gene that are associated with different HD patient onsets. 
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My last results chapter (chapter 5) uses another technique, called targeted ‘MiSeq’ 

sequencing, to confirm the differences seen in Huntingtin. Most Huntingtin genes have a 

single DNA letter difference where a CAG becomes a CAA. So, writing the letters out would 

look something like: ‘CAGCAG…CAGCAACAG’. But I find there are more genetic spelling 

mistakes that can occur, and these are strongly associated with different onsets in HD 

patients. Whenever additional CAAs instead were found, this was associated with later 

disease onset than expected (for example, ‘CAGCAG…CAGCAACAACAG’). However, 

some patients instead only had CAGs with no CAAs, and this was only found in people with 

an earlier than expected HD onset. 

 

In my final chapter (chapter 6), I discuss the project generally. My data have important 

implications for understanding of HD and reinforce that both huntingtin DNA and DNA repair 

mechanisms are important in disease. Understanding these mechanisms is crucial as these 

can identify potential drug targets for therapies. Using my data, and supported by other 

recent work, I present my two-fated pathway model for HD. This model attempts to explain 

how the genes I find in the current study may act to slow or accelerate when people have 

HD onset. Finally, I consider future directions given what we have learned from my study. 

Further work, building on the data presented here, is likely to identify additional genes or 

processes that affect HD, and these may have pharmacological relevance. 
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Chapter 1: General introduction 

1.1 A background to Huntington’s disease 

In 1872, George Huntington gave his seminal lecture ‘On Chorea’, published shortly 

thereafter in The Medical and Surgical Reporter (Huntington, 1872). Huntington described 

what he called the ‘hereditary chorea’, commonly known at the time in New England as 

‘magrums’, in striking detail, possible only through his substantial contact with affected 

individuals and their families. In his paper, Huntington succinctly described three of the 

primary features of the disease: (1) its hereditary inheritance, (2) its motor and psychiatric 

involvement and (3) its fatal outcome. While not the first, the vividness and clarity of 

Huntington’s description attracted significant worldwide interest by the medical community, 

and the disease became known as Huntington’s disease (HD). 

 

Significant progress has been made since the original descriptions of the disease, and one 

of the greatest advances was the discovery of HD in several fishing communities on the 

Venezuelan Lake Maracaibo by physician Americo Negrette (Negrette, 1955; Okun and 

Thommi, 2004). These communities have the highest incidence of HD in the world due to a 

founder mutation, and have become exceptionally well characterised through prolonged 

longitudinal study by Nancy Wexler and colleagues, now over several decades (Wexler et 

al., 2004; Wexler, 2013). Genetic material donated by the Venezuelan HD kindreds greatly 

contributed towards HD research, and in 1983 the locus (4p16.3) containing the causative 

gene for HD was identified (Gusella et al., 1983). 10 years later in 1993, closely following the 

original description of repeat disease by La Spada et al. (La Spada et al., 1991), the 

causative mutation for HD was found: a trinucleotide repeat expansion mutation in the HTT 

(huntingtin) gene (The Huntington’s Disease Collaborative Research Group, 1993). It is now 

known HD is one of a family of polyglutamine diseases (see 1.6 & Table 1.1), a group of 

diseases caused by CAG (encoding glutamine) triplet repeat expansions, and these are part 

of a broader group of repeat diseases (see 1.6 & Table 1.2). 

 

HD is a destructive neurodegeneration, typically fatal 15-20 years following its onset. It often 

presents mid-life (~40-50 years), but can also occur much earlier or later, and juvenile onset 

(<20 years) occurs in ~5% of cases (Quarrell et al., 2012). The clinical symptoms of HD are 

varied, and encompass motor abnormalities, cognitive decline and psychiatric/behavioural 

changes, as explored in the following section (1.2). The size of the CAG repeat expansion is 

a major determinant of disease onset, with CAG repeat size strongly inversely correlated 

with onset (Andrew et al., 1993; Wexler et al., 2004; Lee et al., 2012c) (1.3). Mechanistically, 

the expanded HTT gene predominantly acts via a gain of function mechanism that leads to 
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neuronal death (1.5), preferentially (although not wholly) in the medium spiny projection 

neurons of the striatum, part of the basal ganglia (1.4). Following a general overview of HD 

and a brief introduction of other repeat diseases (1.6), I then discuss the elucidation of 

pathologically relevant genetic modifiers of HD (1.7). The aims of the current thesis are set 

out in 1.8. Principally, these aims are to explore genetic modifiers of HD using next-

generation sequencing techniques in a large cohort of HD patients (Registry-HD, 2.1).  

 

1.2 Clinical symptoms 

1.2.1 An overview of clinical symptoms 

HD is often described as having a triad of symptomatic domains: motor, cognitive and 

psychiatric/behavioural domains. While motor symptoms are outwardly the most obvious 

symptoms experienced by HD patients – indeed, originally HD was called Huntington’s 

chorea – it is increasingly recognised non-motor symptoms of HD play a prominent role for 

patients, who often find these the most debilitating aspects of disease (Vamos et al., 2007; 

Ready et al., 2008; Paulsen et al., 2010; Tabrizi et al., 2013; Bachoud-Lévi et al., 2019). The 

most common clinical assessment for HD is the Unified Huntington’s Disease Rating Scale 

(UHDRS) (Huntington Study Group, 1996), which contains a number of motor, behavioural, 

cognitive, emotional and functional elements. These include Total Functional Capacity (TFC) 

score, a measure of independence that ranges from 13 (no or minimal impairment) to 0 

(advanced disease with total dependence on others), and Total Motor Score (TMS), a 

measure of motor impairment (see 1.2.2). The diagnostic confidence level (DCL) component 

of the UHDRS is often used for defining HD motor onset. The DCL measures how confident 

the assessing clinician that the patient’s motor symptoms are the result of HD, with a score 

of 0 indicating no motor symptoms suggestive of HD, and a score of 4 indicating a ≥99% 

confidence that motor symptoms are due to HD (and thus a motor HD onset). However, 

studies have shown subtle motor, psychiatric and cognitive symptoms precede overt motor 

symptoms in HD individuals, as long as 10-15 years before clinical motor diagnosis (Folstein 

et al., 1983a; Huntington Study Group, 1996; Paulsen et al., 2008, 2014, 2017; Stout et al., 

2011; Tabrizi et al., 2013; Paulsen and Long, 2014; Reilmann et al., 2014; Ross et al., 2014; 

Huntington Study Group PHAROS Investigators et al., 2016; Martinez-Horta et al., 2016). 

 

1.2.2 Motor symptoms 

Chorea, derived from the Greek “dance”, are non-repetitive, involuntary jerky or writhe-like 

movements found in most, but not all, manifest HD patients, although HD individuals may be 

unaware of these involuntary movements (anosognosia) until the movements become more 

advanced (McCusker et al., 2013; Sitek et al., 2014). Choreic movements usually begin in 
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the distal extremities (especially the fingers and toes) and facial muscles. Chorea often 

worsens over disease course, and can severely impact normal functioning leading to 

imbalance, difficulty walking, gait change and risk of falling (Grimbergen et al., 2008; Busse 

et al., 2009). Chorea can also cause speech difficulties (dysarthria), swallowing problems 

(dysphagia) and breathing trouble, depending on the muscle groups involved. Other motor 

abnormalities include muscle rigidity, dystonia (uncontrollable muscle contractions that can 

alter posture), bradykinesia (slowness of movement), akinesia (impaired ability to start 

movement), myoclonus (sudden muscle contractions) and bruxism (involuntary teeth 

grinding/jaw clenching) (Bachoud-Lévi et al., 2019). Together with chorea, motor 

abnormalities eventually result in an inability to walk. The extent of these symptoms varies 

from patient to patient and can often change over the course of disease. For instance, more 

advanced HD patients may have less chorea and more rigidity compared with earlier in 

disease (Roos, 2010).  

 

More subtle motor symptoms can occur before more overt chorea and/or clinical motor 

diagnosis (Biglan et al., 2009). These include slowed finger tapping (Rowe et al., 2010; 

Tabrizi et al., 2012, 2013), gait alteration (Rao et al., 2011) and oculomotor changes. 

Oculomotor HD symptoms include slowed horizontal smooth pursuit of the eye (Winder and 

Roos, 2018), impaired initiating and slowing of saccadic eye movement (voluntary rapid 

movement of the eye between fixation points) and reduction of optokinetic nystagmus 

(normal eye reflex for tracking of moving objects) (Oepen et al., 1981; Blekher et al., 2004, 

2006; Biglan et al., 2009). Motor abnormalities in HD can be clinically assessed using the 

total motor score (TMS) component of the UHDRS, which contains 31 individual motoric 

items assessed by the clinician (reviewed by (Reilmann and Schubert, 2017)). 

 

1.2.3 Cognitive symptoms 

Subtle cognitive deficits occur at least 10 years before clinical HD onset. During this pre-

manifest period, HD individuals experience slight cognitive decline among several domains 

including executive function, visual motor integration skills, emotion recognition and 

psychomotor ability (Lemay et al., 2005; Say et al., 2011; Stout et al., 2011, 2012; Tabrizi et 

al., 2011; Harrington et al., 2012; Papp et al., 2013; Papoutsi et al., 2014; Huntington Study 

Group PHAROS Investigators et al., 2016; Martinez-Horta et al., 2016). Cognitive 

dysfunction worsens over time and working memory, episodic memory and learning are 

often impaired by HD motor onset (Dumas et al., 2013; Papoutsi et al., 2014). Similar to 

chorea, patients may be unaware of these changes as cognitive symptoms are often 

underreported by patients (McCusker and Loy, 2014; Sitek et al., 2014). Certain functions 
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are relatively spared in the early stages of disease, including semantic memory, language 

and spatial awareness (reviewed by (Dumas et al., 2013)). However, advanced HD is 

overwhelmingly associated with cognitive impairment and dementia, although HD dementia 

tends to have a lesser memory component compared to dementia in Alzheimer’s disease 

(Aretouli and Brandt, 2010; Peavy et al., 2010). HD cognitive deficits can be assessed using 

cognitive tests part of the UHDRS – these tests include the Stroop inference test (executive 

function), symbol digit modality test (SDMT) (psychomotor ability), circle tracing test 

(visuospatial ability) and emotion recognition test. 

 

1.2.4 Psychiatric and behavioural symptoms 

HD can encompass a variety of behavioural and psychiatric disturbances, although the 

extent to which individual patients experience these symptoms is quite variable. Depression 

is very common in HD patients and can frequently occur before clinical HD onset (van Duijn 

et al., 2007, 2014; Epping et al., 2013; Martinez-Horta et al., 2016), although depression 

may decline in the latter stages of disease (Paulsen et al., 2005b). Suicide ideation is also 

common in individuals with HD, particularly before receiving a diagnosis of HD or when 

independence is diminished later in disease (Paulsen et al., 2005a; Larsson et al., 2006; 

Robins Wahlin, 2007; Eddy et al., 2016; van Duijn et al., 2018). Approximately ~5-7% of HD 

individuals commit suicide (Sørensen and Fenger, 1992; Cardoso, 2017). Irritability, anxiety 

and perseveration are also experienced by many HD patients (van Duijn et al., 2014), and, 

similar to depression, irritability occurs at elevated rates in pre-manifest HD individuals 

(Bouwens et al., 2015; Martinez-Horta et al., 2016). Psychosis can also be a symptom of 

HD, although this is rarer (only ~5-10% of patients) (van Duijn et al., 2014; Rocha et al., 

2018). Apathy is the most common neuropsychiatric disturbance experienced, being 

reported in at least ~50% of HD patients (Paulsen et al., 2001; van Duijn et al., 2014). 

Apathy is present in pre-manifest HD (Martinez-Horta et al., 2016), and consistently worsens 

during disease course (Tabrizi et al., 2013). 

 

Due to the wide range of behavioural and psychiatric disturbances, there is no single 

accepted assessment battery for these symptoms, although the problem behaviours 

assessment (PBA) (Craufurd et al., 2001) and Hospital Anxiety and Depression Scale 

(HADS) (Zigmond and Snaith, 1983) are commonly used. The long-form PBA contains 40 

items addressing various behavioural abnormalities common in HD (e.g. depression, 

irritability, aggression, etc.), whereas the HADS is a shorter 14 item questionnaire 

addressing depression and anxiety specifically (see later in Table 2.3). Snaith’s irritability 

scale (SIS) can be used for assessing the severity of irritability in HD, and is a short 8 item 
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questionnaire similar to the HADS (Snaith et al., 1978) (Table 2.4). For an excellent review 

of behavioural rating scales in the context of HD, see Mestre et al. (Mestre et al., 2016). 

 

1.2.5 Secondary symptoms 

In addition to the primary HD domains, HD patients can also experience a variety of 

peripheral symptoms. Sleep disturbance is very common, affecting ~70% of patients (Arnulf 

et al., 2008; Videnovic et al., 2009; Bellosta Diago et al., 2017; Bachoud-Lévi et al., 2019). 

Chronic pain is also common amongst HD patients (Arran et al., 2014), with approximately 

40% of patients reporting pain in a recent study (Underwood et al., 2017), although the 

aetiology of this pain is not well understood. Cardiac failure is common in more advanced 

disease, and is the second most common cause of death in patients (second to aspiration 

pneumonia) (Sørensen and Fenger, 1992). There is also some evidence of HD-related 

cardiomyopathy more generally in disease (reviewed by (Critchley et al., 2018)). In male HD 

patients, limited testicular atrophy and decreased testosterone levels can also be apparent 

(Markianos et al., 2005; Van Raamsdonk et al., 2007), although notably this does not appear 

to affect fertility (Pridmore and Adams, 1991).  

 

Perhaps the most reported secondary HD symptom is weight loss, which can occur in pre-

manifest disease (Djousse et al., 2002; Mochel et al., 2007) and also increases in severity 

with HTT CAG length (Aziz et al., 2008). The cause of weight loss in HD is poorly 

understood and is probably multifactorial. Weight loss may partially arise from dysphagia 

(problems swallowing) and increased energy expenditure as motor symptoms advance 

(Trejo et al., 2004; Gaba et al., 2005; Brotherton et al., 2012). Gastrointestinal problems, 

another symptom experienced by many HD patients, could also contribute (Andrich et al., 

2009; Aziz et al., 2010; McCourt et al., 2015; Sciacca et al., 2017). Still, evidence in patients 

and model HD systems have shown weight loss is probably at least partially a consequence 

of gross metabolic imbalance in HD: mitochondria and hepatic (liver) dysfunction (Panov et 

al., 2002; Chiang et al., 2007; Josefsen et al., 2010; Hoffmann et al., 2014), insulin 

insensitivity (Podolsky et al., 1972; Podolsky and Leopold, 1977; Lalić et al., 2008) and 

adipose tissue abnormalities (Lakra et al., 2019) have all been reported as possible 

mechanisms underlying this weight loss phenotype. 

 

1.2.6 Juvenile Huntington’s disease 

Juvenile HD (JHD) occurs in ~5% of HD cases (Potter et al., 2004; Quarrell et al., 2012), and 

is defined as HD onset <20 years of age (Roos, 2010). JHD can arise in individuals where 

HTT CAG is >60 CAG repeats (Douglas et al., 2013), although can also occur at smaller 
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repeat lengths (normally ~50-60 CAGs) (Squitieri et al., 2006; Ribaï et al., 2007). 

Exceptionally long CAGs (>200) may even be associated with an infantile form of JHD 

(Nicolas et al., 2011). Considering JHD is important as its clinical manifestation can differ 

compared to that of adult onset HD. For instance, in JHD cognitive symptoms are often the 

first symptoms noticed, and JHD is associated with marked cognitive decline including 

speech and language delay, learning deficiencies and difficulties at school (Gonzalez-Alegre 

and Afifi, 2006; Squitieri et al., 2006; Yoon et al., 2006; Ribaï et al., 2007). JHD patients, 

especially those that are younger, can also present with seizures and epilepsy (Gonzalez-

Alegre and Afifi, 2006; Cloud et al., 2012), a symptom not typically seen in adult onset HD. 

Chorea in many cases only presents later (10-20 years of age), and JHD is often associated 

more with bradykinesia and rigidity (Roos, 2010). Even within JHD there is marked 

heterogeneity between patients, with larger HTT CAG sizes being associated with a more 

severe disease (Fusilli et al., 2018).  

 

Approximately two-thirds of JHD cases are paternally transmitted (Ridley et al., 1988; Myers 

et al., 1993; Ranen et al., 1995; Gonzalez-Alegre and Afifi, 2006). This is a consequence of 

intergenerational repeat instability, wherein the HTT CAG repeat can become larger when 

transmitted to offspring (this concept is detailed in the next section, 1.3), and most large 

intergenerational CAG expansions occur in the paternal line during spermatogenesis (Yoon 

et al., 2003; Wheeler et al., 2007; Simard et al., 2014; Neto et al., 2017; Jamali et al., 2018). 

Large CAG expansions can also originate in the maternal line (Nahhas et al., 2005), 

although these events are rarer.  

 

1.3 Genetics of HD 

1.3.1 HTT and the CAG repeat tract 

A triplet CAG repeat expansion in the HTT (huntingtin) gene is the aetiological cause of HD. 

The expansion arises from a native repetitive CAG sequence highly polymorphic in size, 

usually between 6-35 CAGs in the normal population (Gardiner et al., 2019). The size of the 

CAG repeat expansion has been shown to be the major determinant of HD onset (Andrew et 

al., 1993; Duyao et al., 1993; Snell et al., 1993), with larger CAG repeat expansions being 

strongly inversely correlated with earlier disease onset (see Fig. 3.4C later). CAG length 

accounts for ~50-60% of the age at motor onset variation in HD (Andrew et al., 1993; Duyao 

et al., 1993; Snell et al., 1993; Illarioshkin et al., 1994; Kieburtz et al., 1994; Rosenblatt et al., 

2001; Aylward et al., 2004; Wexler et al., 2004; Lee et al., 2012c; Rinaldi et al., 2012) 

(discussed in more detail in 3.8.4). The association between CAG length and onset has 

been reported to be as high as ~70% in Venezuelan kindreds (Wexler et al., 2004; Andresen 
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et al., 2007b, 2007a), although this may partially be due to inter-relatedness. Using CAG 

length, it is also possible to predict the age at onset of individuals with HD, although not with 

enough accuracy to be clinically reliable (Brinkman et al., 1997; Langbehn et al., 2004). The 

remaining onset variability (~40%) is partially heritable, indicating other genes have a role in 

determining HD onset (Duyao et al., 1993; Wexler et al., 2004; Andresen et al., 2007b, 

2007a) (see 1.7 for consideration of non-HTT genetic factors that affect HD). 

 

Disease penetrance is also closely tied to HTT CAG repeat length (see Fig. 1.1). HTT alleles 

with 36-39 CAGs are associated with partial disease penetrance, i.e. these alleles can cause 

disease, but only in a subset of individuals. When associated with disease, reduced 

penetrance alleles are frequently associated with late disease onset and an incomplete and 

often milder HD phenotype (Rubinsztein et al., 1996; Migliore et al., 2019). Recently, studies 

have shown reduced penetrance alleles can occur infrequently (~1/400) in the general 

population (Kay et al., 2016; Gardiner et al., 2019). 40 CAG alleles have a high disease 

penetrance, with an estimated ~93% of these alleles being associated with disease 

(Langbehn et al., 2004), and ≥41 CAGs is associated with complete, or very near complete, 

disease penetrance. 

 

Intermediate alleles, commonly defined as HTT alleles with between 27-35 CAG repeats, are 

not associated with disease, but may become pathogenic in subsequent generations 

(Semaka et al., 2013; Migliore et al., 2019), resulting in de novo HD (Myers et al., 1993; Kay 

et al., 2018). This phenomenon of sporadic de novo HD is the result of repeat expansion, 

wherein large CAG tracts can become increasingly long intergenerationally (i.e. repeat 

expansion occurs in gametic cells). How prone intermediate alleles are to vertical instability 

and repeat expansion is somewhat unclear, however, and it appears most intergenerational 

expansions occur towards the larger allelic range (34-35 CAGs) (Brocklebank et al., 2009; 

Hendricks et al., 2009; Semaka et al., 2010, 2013). Semaka and Hayden suggested further 

subdividing intermediate alleles into CAG sizes of low (27-29 CAGs), moderate (30-33 

CAGs) and high (34-35 CAGs) risk (Semaka and Hayden, 2014) to more accurately 

represent the liability of intermediate alleles to expand. 

 

In addition to penetrance, intergenerational CAG repeat instability can also cause clinical 

anticipation, wherein HD tends to have earlier onset in subsequent generations in HD 

families. Anticipation is caused by already pathogenic CAG alleles expanding further when 

vertically transmitted, thus leading to earlier HD onset in the children of HD individuals 

(Ranen et al., 1995; Teisberg, 1995; McInnis, 1996; Demetriou et al., 2018). As alluded to 

previously in 1.2.6, the sex of the transmitting parent is important. Paternally transmitted 
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HTT alleles are more prone to instability and larger CAG repeat expansions, thus leading to 

a larger average anticipation when passed through the male germline (Ridley et al., 1988; 

Duyao et al., 1993; Zühlke et al., 1993; Wheeler et al., 2007; Aziz et al., 2011; Ramos et al., 

2012a). This seems to be due to spermatogenesis being more prone to repeat expansion 

(Yoon et al., 2003; Wheeler et al., 2007; Simard et al., 2014; Neto et al., 2017; Jamali et al., 

2018), although the mechanisms of increased paternal expansion rate are poorly 

understood. It is worth noting that as well as intergenerational repeat expansion (in gametic 

cells), somatic instability (in non-gametic (somatic) cells) occurs in HD and many other 

repeat diseases. This concept of somatic HTT repeat instability may be an important 

pathogenic driver of disease and is considered in 1.5 & 1.7. 

 

 

Figure 1.1: Structure and penetrance of HTT exon 1. Indicated are the ranges for the 

CAG repeat in HTT on the left. Longer CAGs are associated with earlier onset once into the 

fully penetrant pathological range (≥40 CAGs). On the right, a cartoon structure of HTT exon 

1 is shown. Note this figure does not include the sequence 3’ to the polyCCG repeat. 5’-seq: 

The first 51 nucleotides of HTT (which encode the N-terminal first 17 amino acids of HTT); 

PolyCAG: Repetitive CAG tract; PolyCCG: Repetitive CCG tract. 

 

1.3.2 Epidemiology of HD 

HD is most common in those of European descent where estimates vary between ~5-13 

cases per 100,000 (Sackley et al., 2011; Evans et al., 2013; Fisher and Hayden, 2014; 

Rawlins et al., 2016; Squitieri et al., 2016; Kay et al., 2018) (also reviewed generally by (Kay 

et al., 2017)). Comparatively, HD is rarer in those of Finnish decent (2.12 per 100,000) 

(Sipilä et al., 2015), owing to Finland’s genetic heritage compared to the rest of Europe. Both 

African (Hayden et al., 1980; Scrimgeour and Pfumojena, 1992; Baine et al., 2016) and East 

Asian (Chen and Lai, 2010; Kim et al., 2015) ancestries have a low prevalence of HD, with 
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<1 case per 100,000. Expanded HTT alleles from African/Asian populations appear to have 

unique HTT haplotypic origins compared to the commonly expanded European haplotypes 

(Warby et al., 2011; Baine et al., 2013). As demonstrated by the Venezuelan kindred, 

founder effects can result in much higher rates of disease in a local area (Wexler et al., 

2004). Indeed, Huntington originally described HD as mostly confined to the Long Island 

region of New York state (Huntington, 1872). Recently, Kay et al. found the frequency of 

intermediate HTT alleles (27-35 CAGs) closely mirrored the prevalence of HD (Kay et al., 

2018), suggesting that (1) rare expansions in intermediate alleles underlies the prevalence of 

HD in different populations and (2) longer intermediate alleles (which are more common in 

Europeans) are more prone to intergenerational expansion (Kay et al., 2018). 

 

1.4 Neuropathology 

1.4.1 Normal role of the striatum 

Degeneration of the striatum is the neuropathological hallmark of HD (de la Monte et al., 

1988; Aylward et al., 1998; Vonsattel and DiFiglia, 1998). Understanding the normal role of 

the striatum is vital to understanding the neuropathology and dysfunction that occurs in HD 

(1.4.2). The striatum is part of the subcortical basal ganglia, and the basal ganglia has roles 

in regulating motor, mood and cognitive circuitry. The striatum is composed of the dorsal 

(upper) and ventral (lower) striatum. The dorsal striatum is made up of the caudate and 

putamen, separated by the internal capsule, and the ventral striatum is made of the nucleus 

accumbens and olfactory tubercle. The striatum inputs into both the globus pallidus internal 

and globus pallidus externus. The striatum receives dopaminergic input from the substantia 

nigra pars compacta and glutaminergic input from the cortex. The predominant striatal cell 

type (~90-95%) are the medium spiny projection neurons (MSNs) (Kita and Kitai, 1988; 

Waldvogel et al., 2015), which release the inhibitory neurotransmitter γ-aminobutyric acid 

(GABA). Other neuronal cell types, (e.g. cholinergic interneurons) are also present in the 

striatum but are fewer in number. 

 

The striatum has an integral role in the corticostriatal loop, or ‘motor loop’, as indicated in Fig 

1.2 (Alexander and Crutcher, 1990; Parent and Hazrati, 1993, 1995; Graybiel, 1995). In 

healthy individuals, the striatum acts via two pathways: the direct pathway (which facilitates 

movement) and the indirect pathway (which inhibits movement). Notably, these pathways 

are not entirely separate (Haber et al., 2000; Cui et al., 2013; Parker et al., 2018), but here 

we will just consider them as discrete pathways for simplicity. In the direct pathway, inhibition 

of the globus pallidus internal and substantia nigra pars reticularis leads to dis-inhibition of 

the thalamus. In contrast, in the indirect pathway the striatum inhibits the globus pallidus 
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externus; this in turn dis-inhibits the subthalamic nucleus which activates the globus pallidus 

internal, leading to inhibition of the thalamus. The thalamus is a central coordinator of motor 

signalling, and thus the inhibition of the thalamus represses movement (as per the indirect 

pathway), whereas excitation/dis-inhibition of the thalamus promotes movement (as per the 

direct pathway). 

 

The striatum is further subject to modulatory signalling from the substantia nigra pars 

compacta (Albin et al., 1989). The direct pathway is activated by dopaminergic signalling 

from the pars compacta, whereas the indirect pathway is inhibited by this signalling. Fine 

control of the striatum is important for normal basal ganglia-mediated brain functions, and 

breakdown of the corticostriatal loop has important consequences which can lead to the 

symptoms seen in Huntington’s disease or Parkinson’s disease (Rinne et al., 1989). 

 

 

Figure 1.2: The normal function of the basal ganglia and the striatum. Indicated is a 

schematic overview of the corticostriatal loop in a healthy individual. Red arrows are 

dopaminergic; blue arrows are glutamatergic; black arrows are GABAminergic. Excitatory 

signals are shown by lines with arrow heads, whereas blunted, flat arrows show inhibitory 

signals. D1: dopamine receptor type 1; D2: dopamine receptor type 2. Loosely adapted from 

(Sgroi and Tonini, 2018). 
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1.4.2 Dysfunction of the striatum in HD 

As discussed in 1.4.1, the primary neurodegenerative consequence of HD is striatal 

degradation. More specifically, the striatal medium spiny projection neurons (MSNs) are the 

principal cell population affected by HD neurodegeneration (de la Monte et al., 1988; 

Aylward et al., 1998; Vonsattel and DiFiglia, 1998), although more widespread cellular loss 

probably also contributes towards disease (see 1.4.3). Importantly, two sub-populations of 

MSNs can be distinguished: (1) striatonigral MSNs expressing dopamine type 1 receptors 

(D1), substance P and dynorphin and (2) striatopallidal MSNs expressing dopamine type 2 

receptors (D2) and enkephalin (Gerfen, 1992; Gertler et al., 2008; Bunner and Rebec, 2016). 

Although the direct and indirect pathways are not completely separated (Haber et al., 2000; 

Cui et al., 2013), the direct corticostriatal pathway is mostly associated with D1 MSNs, 

whereas the indirect pathway is mostly associated with D2 MSNs (Surmeier et al., 2007).  

 

In HD, striatal neurodegeneration preferentially affects the indirect pathway in early disease 

(Deng et al., 2004; Starr et al., 2008), as D2 striatopallidal MSNs undergo more marked 

neurodegeneration than D1 striatonigral MSNs (Reiner et al., 1988; Albin et al., 1992; 

Richfield et al., 1995; Augood et al., 1996; Wilson et al., 2017; Niccolini et al., 2018). 

Consequently, loss of D2 striatopallidal MSNs leads to repression of the indirect pathway 

and (relative) overactivation of the direct pathway (see Fig. 1.3). In this paradigm, 

overactivation of the direct pathway inhibits the globus pallidus internal and pars reticula of 

the substantia nigra, whereas the subthalamic nucleus is instead inhibited. Dis-inhibition of 

the thalamus promotes motoric activity, and contributes towards the development of 

hyperkinetic motor symptoms (e.g. chorea) seen in HD (Bateup et al., 2010). 

 

Later in disease, substantial loss of both D1 and D2 MSNs occurs (Glass et al., 2000; Deng 

et al., 2004), subsequently resulting in dysfunction of both direct and indirect pathways. The 

dysfunction of both striatal pathways probably leads to the apparent hypokinetic phenotypes 

more often seen in advanced HD (Bateup et al., 2010). As well as affecting the direct and 

indirect corticostriatal pathways, striatal degradation probably also affects other brain 

circuitry. The nucleus accumbens, part of the ventral striatum, is part of the mesolimbic 

pathway and has roles in motivation and reward, for instance (reviewed by (Klawonn and 

Malenka, 2018)). Dysfunction of the limbic systems may, then, play a part in HD 

neuropathology (Mehrabi et al., 2016). The limbic systems help regulate memory, mood and 

emotion (reviewed by (Rolls, 2015)), and their improper functioning could precipitate some of 

the cognitive or behavioural symptoms experienced by HD patients. 
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Figure 1.3: Dysfunction of the basal ganglia and striatum in early HD. Indicated is a 

schematic overview of the corticostriatal loop in an individual with HD. Over activation of the 

direct pathway leads to suppression of inhibition in the thalamus. Red arrows are 

dopaminergic; blue arrows are glutamatergic; black arrows are GABAminergic. Excitatory 

signals are shown by lines with arrow heads, whereas blunted, flat arrows show inhibitory 

signals. D1: dopamine receptor type 1; D2: dopamine receptor type 2. Loosely adapted from 

(Sgroi and Tonini, 2018). 

 

1.4.3 Other neuropathology 

Although the striatum experiences the highest degree of neurodegeneration in HD, other cell 

types are also vulnerable. For instance, the Vonsattel grading system is commonly used to 

score post-mortem HD brains between 0-4 depending on the level of macroscopic 

neurodegeneration (Vonsattel et al., 1985). Higher grades (3-4) in more advanced HD are 

associated with both striatal and cortical neurodegeneration (Vonsattel et al., 1985; de la 

Monte et al., 1988; Rosas et al., 2002; Ruocco et al., 2008; Thu et al., 2010). Gross 

degeneration also occurs in other brain regions including the hypothalamus, cerebellum and 

other parts of the basal ganglia (reviewed in (Waldvogel et al., 2015)). Substantial evidence 

from neuroimaging studies indicate striatal and white matter loss is apparent in pre-manifest 

HD (Rosas et al., 2003; Reading et al., 2004; Ciarmiello et al., 2006; Tabrizi et al., 2009; 

Aylward et al., 2011; Klöppel et al., 2015; Wu et al., 2017), and some patient symptoms are 

associated with these measurable neuropathological changes (Tabrizi et al., 2009, 2013; 
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Langbehn et al., 2019). Thus, pathologically relevant neurodegeneration occurs ahead of 

clinical onset, and is probably the basis for many of the subtle pre-manifest symptoms HD 

patients experience. 

 

1.5 Molecular pathogenesis 

1.5.1 Wild-type Huntingtin 

HTT is a large protein (348 kDa) found in both the nucleus and cytoplasm, and is structurally 

composed of two predominantly HEAT repeat-containing domains connected by an 

interlinking bridge (Guo et al., 2018). The HEAT motif (named after the proteins where these 

repeats are found: Huntingtin, elongation factor 3, protein phosphatase 2A and the Tor1 

kinase in yeast) contains two alpha helices connected by a linking segment, and HEAT 

repeats are found in several regulatory and transport-associated proteins (Andrade and 

Bork, 1995). HTT is also subject to a variety of post-translational modifications such as 

phosphorylation, ubiquitylation and proteolytic cleavage by various enzymes (Ehrnhoefer et 

al., 2011). Although the wild-type functions of HTT are still not well characterised (reviewed 

by (Saudou and Humbert, 2016)), HTT appears to be multifaceted scaffold protein, with roles 

in vesicular trafficking (DiFiglia et al., 1995; Caviston et al., 2007, 2011; Colin et al., 2008), 

autophagy (Steffan, 2010; Martin et al., 2014; Wong and Holzbaur, 2014), transcription 

(Steffan et al., 2000; Dunah et al., 2002; Takano and Gusella, 2002) and DNA repair (Maiuri 

et al., 2017). The role of the polyglutamine repeat in native HTT is unclear. Importantly, HTT 

is required for normal development, as knockout of Htt (the mouse isoform of HTT) is 

embryonically lethal (Duyao et al., 1995; Nasir et al., 1995; Zeitlin et al., 1995).  

 

1.5.2 The generation of toxic species in HD 

HD is conventionally considered a mechanistic gain of function disease, wherein the 

expanded HTT CAG repeat confers toxicity that leads to HD. This is supported by evidence 

from HD mouse models where human transgenic N-terminal HTT fragments containing a 

large CAG repeat confer an HD phenotype (Mangiarini et al., 1996; Schilling et al., 1999; 

Bradford et al., 2009). Moreover, the strong relationship between CAG length and disease 

onset also suggests a primarily toxic gain of function (Andrew et al., 1993; Duyao et al., 

1993; Snell et al., 1993). Haploinsufficiency of HTT (i.e. partial loss of HTT function) could 

nevertheless exacerbate or modify HD pathology (see (Saudou and Humbert, 2016)). 

Furthermore, there is some evidence of a dominant negative function (where mutated HTT 

interferes with normal HTT function), and this may serve as another contributory mechanism 

in HD (Elias et al., 2014; Molina-Calavita et al., 2014; Lopes et al., 2016; Ruzo et al., 2018).  
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As shown in Fig. 1.5, there are several ways by which toxic moieties are generated in HD. 

The classical view is once the encoded HTT polyglutamine segment reaches a critical 

pathogenically relevant size (~36-40 glutamines in HD), mutant HTT (mutHTT) can go on to 

affect many downstream biochemical and cellular systems (see 1.5.3 & Fig. 1.6). As well as 

the production of full-length HTT protein, the generation and subsequent aggregation of 

small N-terminal HTT fragments is characteristic of HD pathology (Davies et al., 1997; 

Mende-Mueller et al., 2001), and N-terminal HTT fragments appear to be especially cytotoxic 

(Mangiarini et al., 1996; Davies et al., 1997; Scherzinger et al., 1997; Barbaro et al., 2015). 

N-terminal fragments can arise through post-translational proteolytic cleavage of HTT via a 

diverse array of enzymes such as caspases (Goldberg et al., 1996; Wellington et al., 1998; 

Kim et al., 2001), calpains (Gafni and Ellerby, 2002; Gafni et al., 2004) and 

metalloproteinases (Miller et al., 2010). Splicing of HTT RNA has been implicated as an 

alternative mechanism by which small HTT exon 1-containing fragments may arise 

(Sathasivam et al., 2013; Neueder et al., 2017; Franich et al., 2019). 

 

Apart from polyglutamine proteins, other toxic protein species may also arise in HD from 

repeat associated non-ATG (RAN) translation (Bañez-Coronel et al., 2015). In RAN 

translation, out of frame translation by ribosomal machinery of expanded HTT RNA leads to 

polyalanine and polyserine proteins derived from sense RNA, as well as polyleucine, 

polycysteine and polyalanine proteins from antisense RNA (Bañez-Coronel et al., 2015). 

How (or if) these repetitive proteins contribute to pathology in HD is unknown (reviewed by 

(Cleary et al., 2018)), although RAN proteins were found in proteinaceous aggregates in 

post mortem HD brains (Bañez-Coronel et al., 2015). 

 

In addition to protein-mediated gain of function, toxic RNA species are also implicated as a 

mechanism in HD. RNA containing CAG repeats can form secondary hairpin/stem-loop 

structures (Fig. 1.4) (Sobczak et al., 2003; Kiliszek et al., 2010; de Mezer et al., 2011; 

Yildirim et al., 2013; Tawani and Kumar, 2015). HTT mRNA with pathogenic CAG hairpins 

can exert toxicity by the sequestration of RNA-binding proteins including MBNL1 

(muscleblind-like protein 1) and other spliceosome pathway components (de Mezer et al., 

2011; Mykowska et al., 2011; Urbanek et al., 2016; Schilling et al., 2019). Dysregulation of 

cellular splicing machinery may contribute towards pathogenesis (Mykowska et al., 2011). 

CAG repeat-containing RNA can also interfere with other RNA metabolism such as Dicer 

and the RNA-induced silencing complex (RISC) pathway (Bañez-Coronel et al., 2012). 

 

Notably, although HTT DNA isn’t directly toxic itself, all toxic species (protein or RNA) 

originate from the DNA. Like RNA, repetitive CAG sequence in DNA can form secondary 
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hairpins (Gacy et al., 1995; Mitas et al., 1995; Grabczyk and Usdin, 2000; Pearson et al., 

2002; Napierala et al., 2005; Sobczak and Krzyzosiak, 2005; Liu et al., 2010a). DNA hairpins 

can act as an interface to which DNA repair components may bind (Owen et al., 2005; 

Burdova et al., 2015; Guo et al., 2016), and mishandling by DNA repair machinery may lead 

to somatic CAG repeat expansion as indicated in Fig. 1.5 (this concept is elaborated more 

fully in 1.7 & 6.3.3). Somatic instability may act as a master toxicity regulator of sorts in HD, 

with successively longer CAG repeats producing more toxic downstream RNA and protein 

components (see also 1.7), a concept discussed by Massey and Jones (Massey and Jones, 

2018). 

 

 

 

Figure 1.4: A repetitive hairpin/stem-loop in RNA/DNA. Shown is an example 

hairpin/stem-loop. This may arise in long, repetitive CAG tracts in either DNA or RNA (and 

can also occur in other repeats such as CUG repeats in myotonic dystrophy type 1 RNA). In 

the figure, CAG sequences bind to their complementary GAC sequence on the opposite 

repetitive sequence, with hydrogen bonds shown by the black lines. 
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Figure 1.5: Mechanisms by which toxic species are generated in HD. Indicated are the ways in which an expanded HTT CAG (shown as 

PolyCAG) can generate toxic species that lead to disease (for downstream mechanisms, see Fig. 1.6). On the left (DNA & transcription), a 

section of CAG in HTT is being transcribed by RNA polymerase (RNAP). Here, RNA could form secondary structures that are toxic (these 

structures can also arise once fully transcribed). Additionally, mishandling by DNA repair could exacerbate pathology by increasing repeat size 

via somatic instability (see 1.7 & 6.3.3). HTT transcripts are then translated, and (incomplete) splicing may alter the size of the mature mRNA. 

Finally, RNA is translated to protein. Full-length or toxic N-terminal HTT fragments lead to toxicity downstream, although possibly in different 

ways. Proteolytic cleavage of full-length HTT may also occur. Finally, repeat-associated non-AUG (RAN) translation may result in additional 

protein-mediated toxicity. 
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1.5.3 Downstream cellular pathology 

The molecular mechanisms governing HD pathogenesis are complex, poorly understood 

and probably multimodal, with both gain of function and loss of function mechanisms 

implicated. A vast array of cellular machinery is disrupted in HD cells, and trying to pinpoint 

the most relevant driving mechanism(s) has been difficult (i.e. determining pathogenic cause 

and effect) – see 1.7 for an overview of the genetic work trying to identify and prioritise the 

most relevant disease-associated pathways. Here, I will just give a brief overview of some of 

the more prominent proposed HD mechanisms for background, and a number of these are 

illustrated in Fig. 1.6. Recent reviews give more detail about the downstream pathology 

which occurs in HD (Sepers and Raymond, 2014; Bates et al., 2015; Saudou and Humbert, 

2016; Adegbuyiro et al., 2017; Jimenez-Sanchez et al., 2017; Jodeiri Farshbaf and Ghaedi, 

2017; Raymond, 2017; Dickey and La Spada, 2018; Lieberman et al., 2019). 

 

One of the more striking features of HD pathology is the formation of proteinaceous 

inclusions in the brain (Davies et al., 1997; Scherzinger et al., 1997), also found in other 

polyglutamine diseases. Protein inclusions can be nuclear or perinuclear (cytoplasmic) in 

origin and arise from the misfolding of monomeric polyglutamine fragments to form 

oligomeric species. These oligomers can form aggregates and eventually large protein 

inclusions incorporating other proteins (reviewed in detail by (Adegbuyiro et al., 2017)), and 

N-terminal HTT fragments readily form aggregates (Scherzinger et al., 1997). The effect of 

HTT aggregation on disease remains uncertain, however, with both protective (Gutekunst et 

al., 1999; Kuemmerle et al., 1999; Arrasate et al., 2004) and neurotoxic (Davies et al., 1997; 

Liu et al., 2015; Woerner et al., 2016; Bäuerlein et al., 2017) effects being reported. It is 

possible protein aggregates could exert both protective and toxic properties, and this may be 

context or disease-stage relevant (Tallaksen-Greene et al., 2003). For instance, early in 

pathology aggregation may help to clear toxic polyglutamine proteins; however, later in 

disease aberrant sequestration of other proteins, overloading of proteasomal pathways or 

autophagy dysfunction could contribute to cell death (see reviews by (Ortega and Lucas, 

2014; Martin et al., 2015; Croce and Yamamoto, 2019; Lieberman et al., 2019)). 

 

Axonal vesicle transport is also impaired in HD cells, possibly through a combination of HTT 

loss of function and dominant negativity. HTT helps facilitate the vesicle trafficking of 

numerous cellular components (detailed by (Saudou and Humbert, 2016)) including 

organelles (Caviston et al., 2011; Liot et al., 2013; Wong and Holzbaur, 2014), GABA 

receptors (Twelvetrees et al., 2010) and brain-derived neurotrophic factor (BDNF) (Gauthier 

et al., 2004), a neurotrophin involved in the neuronal survival and maintenance. HTT also 
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helps regulate BDNF (and other gene) transcription through the binding of various 

transcription factors (Zuccato et al., 2001, 2003). Altered delivery and transcription of BDNF 

and other cell survival proteins may contribute to the neuronal vulnerability in HD. 

Mitochondrial dysfunction also occurs in HD, and may be exacerbated by reduced BDNF 

input (see review by (Jodeiri Farshbaf and Ghaedi, 2017)). 

 

Finally, excitotoxicity has been suggested as a mechanism by which striatal cells could die in 

HD. In excitotoxicity, hyperactivity of glutamate-binding N-methyl-D-aspartate (NMDA) 

receptors leads to gross calcium ion dyshomeostasis and subsequent cellular demise (see 

(Sepers and Raymond, 2014; Raymond, 2017)). Impaired glutamate uptake by astrocytes 

may enhance an excitotoxic phenotype (Faideau et al., 2010; Wood et al., 2018), and 

aberrant activity by reactive glial astrocytes (and possibly other glia) could further contribute 

to neurotoxicity (Liddelow et al., 2017). It is not clear which mechanisms are leading to cell 

death in HD patients, however, and multiple mechanisms of cell death may be operating at 

different points in disease. 
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Figure 1.6: Downstream molecular and cellular dysfunction in HD. Shown are some of the pathogenic mechanisms by which HD may lead 

to cell dysfunction and death. Abbreviations: BDNF: brain-derived neurotrophic factor; GLT-1: Glutamate transporter 1; NMDA receptor: N-

methyl-D-aspartate receptor (binds glutamate); ROS: Reactive oxygen species; TrkB receptor: Tropomyosin receptor kinase B (binds BDNF). 
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1.6 Other repeat diseases 

HD is one of nine polyglutamine diseases, all of which are caused by exonic CAG repeat 

expansions (Table 1.1). Although the repeat expansions occur in different genes, all the 

polyglutamine diseases are neurodegenerations that preferentially atrophy different regions 

of the brain or motor neurons. Eight of the nine polyglutamine disorders are autosomal 

dominant, with the exception being the X-linked recessive spinal and bulbar muscular 

atrophy (SBMA) which only presents in males (heterozygous female carriers are usually 

asymptomatic (Mariotti et al., 2000)). CAG-driven gain of function pathology is thought to be 

an important mechanism in all the polyglutamine diseases, although both dominant 

negativity and/or loss of function mechanisms may contribute to the distinct 

neuropathological and clinical phenotypes seen (the polyglutamine diseases are reviewed 

generally by (Lieberman et al., 2019)). All the polyglutamine diseases show clinical 

anticipation, i.e. the children of affected parents are likely to have earlier ages of disease 

onset caused by intergenerational CAG repeat expansion (Lieberman et al., 2019). As with 

HD, the other polyglutamine diseases are rare, and the epidemiology varies depending on 

ancestry. For instance, Ruano et al. estimates a worldwide prevalence of the dominant 

cerebellar ataxias (which includes some non-polyglutamine ataxias) to be 2.7 per 100,000 

(Ruano et al., 2014).  

 

The polyglutamine diseases are part of a larger group of repeat disorders, encompassing 

>30 diseases (see Table 1.2). The coding polyalanine repeat diseases have been omitted 

(excepting oculopharyngeal muscular dystrophy (OPMD)) from Table 1.2 as their aetiology is 

likely to be different; these are considered elsewhere (Brown and Brown, 2004). The majority 

of the non-glutamine repeat diseases occur in non-coding regions of the genome, and 

various repeat expansion species have been identified as potentially pathogenic. Most are 

trinucleotide repeats (CAG, CTG and CGG and related repeats), but more complex quadri-, 

penta-, hexa- and even dodecanucleotide repeats have been described. Among these 

diseases are Fragile-X syndrome (FRAXA), the most common cause of inherited mental 

disability, Fuch’s endothelial dystrophy type 3 (FECD3), a partially penetrant repeat disease 

that causes corneal dystrophy and visual impairment, and a subtype of amyotrophic lateral 

sclerosis/frontotemporal dementia (ALS/FTD) caused by an expansion mutation in C9orf72. 

Hexanucleotide expansions in C9orf72 account for ~40% of familial ALS, ~25% of familial 

FTD, and between ~3-15% of sporadic ALS/FTD cases (Renton et al., 2011; Pliner et al., 

2014). Almost all repeat diseases are associated with a neurological phenotype of some 

kind.  
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The mechanisms by which non-coding repeat diseases cause pathology are diverse. 

Silencing (loss of function) of genes occurs in autosomal recessive repeat diseases such as 

Friedrich’s ataxia and glutaminase deficiency (GLD) (van Kuilenburg et al., 2019). Gene 

silencing also occurs in Fragile-X syndrome where large repeats (>200 CGGs) in the X-

linked FMR1 gene lead to hypermethylation and loss of the important FMRP protein in males 

(Verkerk et al., 1991; Coffee et al., 1999). Similar to HD, RNA toxic gain of function 

mechanisms are prominent in several repeat diseases such as in the myotonic dystrophies 

(DM1 and DM2) (reviewed in (Sznajder and Swanson, 2019)). Repetitive RNA can form 

hairpins and hence sequester RNA binding and processing proteins including muscleblind-

like protein family members (Timchenko et al., 2001; Fardaei et al., 2002), leading to 

widespread splicing dysregulation.  

 

One of the more intriguing mechanisms in non-coding repeat disease is repeat associated 

non-ATG (RAN) translation (although this may occur in coding repeat disorders too, as it 

does in HD). Here, even normally intronic RNA containing large repeats may be translated to 

form a variety of in- and out-of-register repetitive protein species. RAN translation was 

originally identified in spinal cerebellar ataxia (SCA) type 8 (Zu et al., 2011), but has since 

been implicated across a range of repeat diseases including HD (Bañez-Coronel et al., 

2015), C9orf72 ALS/FTD (Mori et al., 2013), DM1 (Zu et al., 2011), DM2 (Zu et al., 2017) 

and others (see review by (Cleary et al., 2018)). As with HD, the degree to which RAN 

translation contributes towards repeat disease pathology is yet unclear; however, through 

RAN translation, normally non-coding DNA could exert pathogenic effects through toxic 

protein species, blurring the line between traditionally coding and non-coding repeat 

diseases. 
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Disease Repeat Normal Pathogenic Locus Gene Gene symbol Location in gene Reference 

HD CAG 6-35 40->200 4p16.3 Huntingtin HTT Exon 1 
(The Huntington’s 

Disease Collaborative 
Research Group, 1993) 

DRPLA CAG 6-35 48-93 12p13 Atrophin 1 ATN1 Exon 5 (Koide et al., 1994) 

SBMA CAG 11-34 38-68 Xq11-q12 
Androgen 
receptor 

AR Exon 1 (La Spada et al., 1991) 

SCA1 CAG 6-35 39-51 6p23 Ataxin 1 ATXN1 Exon 8 (Orr et al., 1993) 

SCA2 CAG 13-31 35->200 12q24 Ataxin 2 ATXN2 Exon 1 (Sanpei et al., 1996) 

SCA3 CAG 12-44 60-87 14q24-q31 Ataxin 3 ATXN3 Exon 10 (Stevanin et al., 1994) 

SCA6 CAG 4-18 20-33 19p13 CaV2.1 CACNA1A Exon 47 (Jodice et al., 1997) 

SCA7 CAG 10-27 36->400 3p21-p12 Ataxin 7 ATXN7 Exon 3 (David et al., 1998) 

SCA17 CAG 25-40 49-66 6p27 
TATA binding 

protein 
TBP Exon 3 (Nakamura et al., 2001) 

Table 1.1: The polyglutamine repeat diseases. Indicated are the known polyglutamine (polyQ) diseases. Note these all occur in protein 

coding exons. The pathogenic repeat range shows alleles with full (or very high) disease penetrance; smaller expanded repeats (e.g. 36-39 for 

HD) between the normal and pathogenic ranges (reduced penetrance alleles) may still cause disease in some individuals. HD: Huntington’s 

disease; DRPLA: Dentatorubral-pallidoluysian atrophy (also known as Haw-River syndrome); SBMA: Spinobulbar muscular atrophy (also 

known as Kennedy’s disease); SCA: Spinal cerebellar ataxia. SCA3 is also known as Machado-Joseph disease, and SCA17 as Huntington 

disease-like syndrome 4 (HDL4). 
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Disease Repeat Locus Gene Gene symbol 
Location in 

gene 
Inheritance 

modality 
Reference(s) 

ALS/FTD GGGGCC 9p21.2 
Chromosome 9 open 

reading frame 72 
C9orf72 Intron AD 

(DeJesus-Hernandez et 
al., 2011; Renton et al., 

2011) 

BAFME TTTCA/ 
TTTTA 

8q24.11-
q24.12 

Sterile alpha motif domain 
containing 12 

SAMD12* Intron AD 
(Ishiura et al., 2018; 

Mizuguchi et al., 2019) 

BSS GGC 16p12.3 Xylosyltransferase 1 XYLT1 5’-UTR AR (LaCroix et al., 2019) 

CANVAS AAGGG 4p14 
Replication factor C subunit 

1 
RFC1 Intron AR 

(Cortese et al., 2019; 
Rafehi et al., 2019) 

DM1 CTG 19q13.32 Myotonic dystrophin kinase DMPK 3’-UTR AD 
(Brook et al., 1992; 

Mahadevan et al., 1992) 

DM2 CCTG 3q21.3 
CCHC-type zinc finger 

nucleic acid binding protein 
CNBP Intron AD (Liquori et al., 2001) 

EPM1A 
CCCCGC 
CCCGCG 

21q22.3 Cystatin B CSTB 5’-UTR AR (Lalioti et al., 1997) 

FECD3 TGC 18q21.2 Transcription factor 4 TCF4 Intron AD 
(Wieben et al., 2012; 
Mootha et al., 2014) 

FRDA GAA 9q21.11 Frataxin FXN Intron AR (Campuzano et al., 1996) 

FRAXA/ 
FXTAS/ 
FXPOI 

CGG Xq27.3 
Fragile X mental retardation 

1 
FMR1 5’-UTR X-LD 

(Fu et al., 1991; Verkerk et 
al., 1991) 

FRAXE CCG X28 
Fragile X mental retardation 

2 
FMR2 5’-UTR X-LD (Knight et al., 1993) 

FRAXF GCC X28 
Transmembrane protein 

185A 
TMEM185A 5’-UTR X-LD (Parrish et al., 1994) 

FRA2A CGG 2q11 AF4/FMR2 family member 3 AFF3 Intron AD (Metsu et al., 2014b) 

FRA7A CGG 7p11.2 Zinc finger protein 713 ZNF713 Intron AD (Metsu et al., 2014a) 

FRA11A CGG 11q13 
Chromosome 11 open 

reading frame 80 
C11orf80 5’-UTR AD (Debacker et al., 2007) 

FRA12A CGG 12q13.12 
Disco interacting protein 2 

homolog B 
DIP2B 5’-UTR AD 

(Winnepenninckx et al., 
2007) 

GLD GCA 2q32.2 Glutaminase GLS 5’-UTR AR 
(van Kuilenburg et al., 

2019) 
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Disease Repeat Locus Gene Gene symbol 
Location in 

gene 
Inheritance 

modality 
Reference(s) 

HDL2 CTG 16q24.2 Junctophilin 3 JPH3 Exon 2A AD (Holmes et al., 2001) 

NIID(RD) GGC 1q21.2 Notch 2 N-terminal like C NOTCH2NLC 5’-UTR AD 
(Okubo et al., 2019; Sone 

et al., 2019; Tian et al., 
2019) 

OPMD GCG 14q11.2 
Poly(A) binding protein 

nuclear 1 
PABPN1 Exon 1 AD (Brais et al., 1998) 

RCPS CGCA 17q25.3 
Eukaryotic translation 
initiation factor 4A3 

EIF4A3 5’-UTR AR (Favaro et al., 2014) 

SCA8 CTG 13q21.33 Ataxin 8 opposite strand ATXN8OS 3’-UTR AD (Koob et al., 1999) 

SCA10 ATTCT 22q13.31 Ataxin 10 ATXN10 Intron AD (Matsuura et al., 2000) 

SCA12 CAG 5q32 
Protein phosphatase 2 
regulatory subunit beta 

PPP2R2B 5’-UTR AD (Holmes et al., 1999) 

SCA31 TGGAA 16q21 
Brain-expressed associated 

with NEDD4 
BEAN Intron AD (Sato et al., 2009) 

SCA36 GGCCTG 20p13 Nucleolar protein 56 NOP56 Intron AD (Kobayashi et al., 2011) 

SCA37 ATTTC 1p32.2 DAB adaptor protein DAB1 Intron AD (Seixas et al., 2017) 

Table 1.2: The non-coding repeat diseases and disease-associated repetitive fragile sites. Note this table is not exhaustive; see (Brown 

and Brown, 2004) and (Sznajder and Swanson, 2019) for more non-canonical repeat diseases (primarily polyalanine insertions). The OPMD 

repeat is coding. In BAFME (*), repeat expansions were also reported in TNRC6A and RAPGEF2 (Ishiura et al., 2018). Disease abbreviations: 

ALS/FTD: Amyotrophic lateral sclerosis/Frontotemporal dementia; BAFME: Benign adult familial myoclonic epilepsy; BSS: Baratela-Scott 

syndrome; CANVAS: Cerebellar ataxia, neuropathy, vestibular areflexia syndrome; DM1: Myotonic dystrophy (DM) type 1; DM2: DM type 2; 

EPM1A: Epilepsy, progressive myoclonic type 1A (also known as Unverricht-Lundborg disease); FECD3: Fuch’s endothelial dystrophy type 3; 

FRDA: Fredrich’s ataxia; FRAXA: Fragile-X syndrome; FXTAS: Fragile-X associated tremor/ataxia syndrome; FXPOI: Fragile-X associated 

primary ovarian insufficiency; FRAXE: Fragile-X E syndrome; FRAXF: Fragile-X F syndrome; FRA2A: Folate-sensitive fragile site (FSFS) 2A; 

FRA7A: FSFS 7A; FRA11A: FSFS 11A; FRA12A: FSFS 12A; GLD: Glutaminase deficiency; HDL2: Huntington disease-like 2; NIID(RD): 

Neuronal inclusion disease (and related disorders); OPMD: Oculopharyngeal muscular dystrophy; RCPS: Richieri-Costa-Pereira syndrome; 

SCA: Spinal cerebellar ataxia (SCA). Inheritance abbreviations: AD: Autosomal dominant; AR: Autosomal recessive; X-LD: X-linked dominant.
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1.7 Genetic modifiers of Huntington’s disease 

1.7.1 Human genetic studies 

A significant portion of HD age at onset is governed by the length of the HTT CAG repeat 

(~50-60%) in an inverse fashion, with earlier onset occurring at larger repeat lengths 

(Andrew et al., 1993; Duyao et al., 1993; Wexler et al., 2004) (see Fig. 3.4C later), leaving 

~40-50% of onset unexplained. Hence two HD individuals with identical HTT CAG lengths 

could have disease onset as much as 40-50 years apart from each other. Evidence from the 

Venezuelan kindred study (Wexler et al., 2004) showed that ~40% of the remaining variation 

in HD onset is heritable, implicating other genetic factors are responsible for a substantial 

portion of HD onset and therefore disease pathogenesis (Duyao et al., 1993; Wexler et al., 

2004; Andresen et al., 2007b, 2007a). Given the vast array of cellular machinery that is 

dysregulated in HD cells (see 1.5), genetic modifiers of HD can help narrow down which 

pathway(s) are the most critical in disease pathogenesis (Gusella and MacDonald, 2009; 

Gusella et al., 2014). Elucidating important disease components and mechanisms may then 

indicate therapeutically relevant targets. 

 

Early human genetic studies adopted a candidate gene approach, wherein genes thought to 

be involved in HD pathogenic mechanisms were investigated in patients (Gusella and 

MacDonald, 2009; Zuccato et al., 2010). These pioneering human genetic studies implicated 

genes such as APOE (lipid metabolism) (Kehoe et al., 1999), TCERG1 

(transcriptional/splicing regulation) (Holbert et al., 2001), TP53 (transcriptional and other 

regulation) (Chattopadhyay et al., 2005), GRIK2 (glutamatergic synaptic transmission) 

(Rubinsztein et al., 1997; MacDonald et al., 1999; Cannella et al., 2004), PPARGC1A 

(energy metabolism) (Taherzadeh-Fard et al., 2009; Weydt et al., 2009) and HAP1 (HTT 

interaction and vesicular transport) (Metzger et al., 2008), among others (see (Gusella and 

MacDonald, 2009)). But many of these initial findings failed to replicate in further study (Saft 

et al., 2004; Arning et al., 2005; Andresen et al., 2007a; Lee et al., 2012a; Ramos et al., 

2012b). The reasons for these somewhat contradictory findings in early human genetic work 

are discussed by Gusella et al. (Gusella et al., 2014), but are predominantly due to small 

cohort sizes, population stratification (i.e. patient ethnicity) not being properly accounted for 

and multiple testing correction issues. Many of the same problems have been experienced 

more broadly across human genetic studies of the era (Gusella et al., 2014). 

 

It has not been until more recently that modern and unbiased SNP-based approaches have 

been utilised to find modifiers of HD in larger cohorts of human patients. The first GeM-HD 

consortium genome-wide association study (GWAS) identified the locus containing FAN1, a 
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DNA repair gene involved in interstrand crosslink repair, as significant for HD onset 

modification (GeM-HD Consortium, 2015). MLH1, a mismatch repair protein, was also found 

as nominally significant (GeM-HD Consortium, 2015), and confirmed as genome-wide 

significant in a follow-up study shortly after (Lee et al., 2017). The locus containing RRM2B, 

a nucleotide scavenging gene, was also found as nominally significant (GeM-HD 

Consortium, 2015). The findings from the first GeM-HD GWAS had a profound effect on the 

HD field, highlighting that DNA repair was a critical system by which pathogenesis was 

mediated in HD. Following the first GeM-HD study, a relatively small GWAS in a deeply 

phenotyped HD cohort, TRACK-HD, identified a further DNA repair gene as significant 

modifying the clinical trajectory of HD patients, MSH3 (Hensman Moss et al., 2017), and this 

finding was replicated in the recent Flower et al. study (Flower et al., 2019). There is also 

some evidence similar DNA repair mechanisms may be shared between multiple repeat 

diseases (Bettencourt et al., 2016), although there is currently lacking an equivalent GWAS 

in these other repeat diseases to confirm more conclusively. 

 

A second, larger GWAS from the GeM-HD consortium was recently published (GeM-HD 

Consortium, 2019), which highlighted several more loci containing DNA repair genes as HD 

onset modifying, including MSH3, PMS1, PMS2 and LIG1. The study also confirmed the 

RRM2B locus as genome-wide significant, as well as the TCERG1 locus (GeM-HD 

Consortium, 2019). So far, TGERG1 is the only gene from earlier candidate gene study 

which has been confirmed using an unbiased SNP imputation approach (Holbert et al., 

2001). The HTT allele structure was also tagged as onset modifying by the GeM-HD study 

and others very recently at the time of writing this introduction (Ciosi et al., 2019; GeM-HD 

Consortium, 2019; Wright et al., 2019). These data are considered in the context of the 

current thesis in substantially more detail in chapters 5 and 6. Table 1.3 gives an overview of 

the current candidate modifiers of HD from human genetics and model systems (see also 

the next section, 1.7.2). 

 

1.7.2 Functional work in model systems 

DNA repair is thought to mechanistically alter somatic instability, although other interaction 

mechanisms have been proposed (Maiuri et al., 2019). As touched on in 1.5.2, somatic 

repeat expansion may act to accelerate the production of toxic species in HD (discussed in 

(Massey and Jones, 2018)). Indeed, shortly after the HTT was discovered, somatic instability 

was reported in the brain of HD patients (Telenius et al., 1994), and instability occurs 

prominently in the striatum and other disease relevant tissues (Kennedy et al., 2003; 

Shelbourne et al., 2007). Increased somatic instability has been associated with earlier 
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disease onset in post mortem HD brains (Swami et al., 2009). Critically, this repeat instability 

occurs in terminally differentiated postmitotic neurons, thereby implicating DNA maintenance 

and repair, not replicative machinery, as underlying somatic expansion (Shelbourne et al., 

2007; Gonitel et al., 2008). 

 

In hindsight, many of the DNA repair genes and pathways implicated by GWAS have been 

examined by repeat disease animal work over a decade prior (Table 1.3). Knockout of the 

mismatch repair gene Msh2 ablated CAG somatic instability in HD mice (Manley et al., 1999; 

Wheeler et al., 2003), and reduction of Msh3 had a similar effect (Dragileva et al., 2009; 

Tomé et al., 2013). Mlh1 and Mlh3 were also found to be necessary for repeat expansion in 

HD mice (Pinto et al., 2013), and Pms2 in myotonic dystrophy type 1 mice (Gomes-Pereira 

et al., 2004). Importantly, the slowing of somatic instability has been shown to delay HD 

pathology in mice (Wheeler et al., 2003; Kovalenko et al., 2012; Budworth et al., 2015). 

There is also some evidence from HD cells and mice that base excision repair glycosylases 

(OGG1 and NEIL1) may be involved in somatic instability (Kovtun et al., 2009; Møllersen et 

al., 2012; Budworth et al., 2015). More recently FAN1, the top candidate gene from GWAS 

(GeM-HD Consortium, 2015, 2019), was found to protect against repeat instability in an HD 

cell model (Goold et al., 2019) and a fragile X mouse model (Zhao and Usdin, 2018). 

 

As shown in Table 1.4, the primary pathway implicated in HD disease modification is the 

mismatch repair pathway. Mismatch repair canonically repairs small mismatches in DNA; 

see (Jiricny, 2006; Hsieh and Zhang, 2017) for reviews. Briefly, DNA mismatches are 

recognised by one of two MutS homologs, MutSα (MSH2-MSH6) or MutSβ (MSH2-MSH3). 

Recruitment of one of the MutL homologs (usually MutLα (MLH1-PMS2) in post replicative 

repair) then follows, and MutL introduces a nick near the site of damage. EXO1 then 

removes the damaged base region via its exonuclease activity. Polδ repairs the gap left by 

EXO1, and the DNA is re-ligated by LIG1. Improper repair by this system may lead to 

somatic repeat instability (see Fig. 6.3 and 6.3.3 later). Additionally, elements of inter-strand 

crosslink repair could be involved in somatic instability, given the signal seen in FAN1 

through GWAS (GeM-HD Consortium, 2015, 2019; Lee et al., 2017). It is also possible 

elements of base excision repair could have a role in HD somatic mosaicism (reviewed by 

(Polyzos and McMurray, 2017)), however, currently base excision repair components have 

not been found as modifiers of disease in HD patients (excepting LIG1 which is shared 

between multiple pathways). As there is considerable crosstalk between DNA repair 

pathways, these systems may not be entirely separate (see 6.3.3 for a model exploring this). 
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Candidate gene DNA repair? Function of encoded protein Evidence from model systems Evidence from human genetics 

FAN1 Yes 
Endo/Exonuclease in inter-strand 

crosslink repair 
(Zhao and Usdin, 2018)† (Goold et 

al., 2019) 
(GeM-HD Consortium, 2015, 2019; 

Bettencourt et al., 2016; Lee et al., 2017) 

LIG1 Yes 
Ligase, re-ligates DNA during 

various repair pathways 
(Tomé et al., 2011)* (GeM-HD Consortium, 2019) 

MLH1 Yes 
Endonuclease in mismatch repair 
(MutLα/ MutLβ/MutLγ complexes) 

(Pinto et al., 2013) (Lee et al., 2017) 

MLH3 Yes 
Endonuclease in meiosis? (MutLγ 

complex) 
(Pinto et al., 2013) (Zhao et al., 

2018) † 
 

MSH2 Yes 
Mismatch recognition 

(MutSα/MutSβ) 

(Manley et al., 1999; Wheeler et al., 
2003; Seriola et al., 2011; 

Kovalenko et al., 2012) 

 

MSH3 Yes Mismatch recognition (MutSβ) 
(Dragileva et al., 2009; Tomé et al., 

2013) 
(Hensman Moss et al., 2017; Flower et 
al., 2019; GeM-HD Consortium, 2019) 

MSH6 Yes Mismatch recognition (MutSα) 
(Dragileva et al., 2009; Kantartzis 
et al., 2012; Nakatani et al., 2015) 

 

NEIL1 Yes 
DNA glycosylase in base excision 

repair 
(Møllersen et al., 2012)  

OGG1 Yes 
DNA glycosylase in base excision 

repair 
(Kovtun et al., 2009; Budworth et 

al., 2015) 
 

PMS1 Yes 
Unknown, but complexes with 

MLH1 (MutLβ) 
 (GeM-HD Consortium, 2019) 

PMS2 Yes Endonuclease (MutLγ complex) (Gomes-Pereira et al., 2004)* 
(Bettencourt et al., 2016; GeM-HD 

Consortium, 2019) 

RRM2B (UBR5?) No Nucleotide scavenging  (GeM-HD Consortium, 2015, 2019) 

TCERG1 No 
Transcription and splicing 

regulation 
(Arango et al., 2006) 

(Holbert et al., 2001; GeM-HD 
Consortium, 2019) 

Table 1.3: Candidate genetic modifiers of Huntington’s disease. Shown are candidate HD modifiers from model systems (cells or animals) or 

humans. Studies marked by a (*) are from a myotonic dystrophy type 1 model and (†) from a fragile X model. Loci encompassing SYT9, GSG1L and 

CCDC82 from (GeM-HD Consortium, 2019) and SOSTDC1 from (Chao et al., 2018) are not included as the genes driving these signals are not 

confirmed. RRM2B and UBR5 are both given as it is somewhat unclear which is driving the signal seen in GWAS (GeM-HD Consortium, 2019). See 

(Polyzos and McMurray, 2017) for a consideration of other base excision repair components that may also be involved in repeat disease (e.g. FEN1). 

The role of HTT allele structure is not indicated; see chapters 5 and 6 later for an in-depth discussion.
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Pathway Associated lesion Damage sensors 
Signalling/mediator 

proteins 
Effector proteins 

Effector 
polymerases 

Effector ligases 

a-EJ/MMEJ 
DSB, broken DNA 

ends 
PARP1 ATM? 

CtIP, FEN1, MRN 
complex, XPF-ERCC1, 

XRCC1 
Polθ LIG1, LIG3 

HR (SDSA 
and dHJ) 

DSB, typically during 
DNA replication 

MRN complex 
ATM, ATR, MK2, CtIP, 
RPA, BRCA1-BARD1, 

BRCA2, PALB2 

RAD51, RAD54, BLM, 
EXO1, FANCJ, GEN1, 

SMX complex, BTR 
complex 

Polδ, Polε? LIG1, LIG3 

NHEJ 
DSB, broken DNA 

ends (also in CSR and 
V(D)JR 

Ku70, Ku80 DNA-PK 
Artemis, APLF, WRN, 

PAXX, XLF 
Polµ, Polλ, TdT LIG4-XRCC4 

SSA 
DSB, mechanisms not 

well defined 
MRN complex CtIP RAD52, ERCC1 ? ? 

ICL repair 
(canonical 

FA) 

Interstrand crosslinks, 
thought to interface 
with SSB/DSB DNA 

repair machinery 
depending on damage 

context 

FANCM FA core complex, ATR 

BRCA2, BRIP1, PALB2, 
RAD51C, SLX4, 

FANCD2, FANCDI, 
FAN1, others from HR 

Polθ, Polν, REV1, 
other low fidelity 

translesion 
polymerases 

LIG1 

BER 
Removal of smaller 

damaged DNA bases 

APE1, PNKP, DNA 
glycosylases (e.g. 
OGG1 and NEIL1) 

 FEN1 Polβ LIG1, LIG3 

MMR 
Removal of 

mismatched bases or 
small loop repair 

MutSα (MSH2-
MSH6), MutSβ 
(MSH2-MSH3) 

MutLα (MLH1-PMS2) EXO1 Polδ, Polε? LIG1 

NER 

Removal of 
larger/bulky damaged 

DNA bases in DNA 
replication 

XPC, RAD23B 
TFIIH complex (XPB- 

XPD), RPA 
ERCC1, XPG, XPA Polδ, Polε, Polκ? LIG1, LIG3? 

SSB repair Single-strand breaks PARP1  
SRCC1, PNKP, FEN1, 

TDP1, APTX 
Polβ LIG1, LIG3 
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Table 1.4: An overview of the DNA canonical DNA repair pathways. This table shows 

some of the major proteins involved in various repair processes. Note that there is significant 

blending of DNA repair pathways depending on damage and cell context; thus, the 

components of repair may vary. In the context of HD research, genes in blue are implicated 

by functional models as modifying somatic instability and/or disease phenotype; genes in red 

are implicated by both functional models and human genetics as HD modifiers. Note BIR 

(break-induced replication, a subset of homologous recombination for single-stranded 

double-strand break repair) is not shown on the basis it is poorly described in mammalian 

cells; see (Kramara et al., 2018) for a review. Pathway abbreviations: a-EJ/MMEJ: 

Alternative-end joining/Microhomology-mediated end-joining; HR (SDSA and dHJ): 

Homologous recombination, synthesis-dependent strand-annealing or double Holliday 

junction (these are two outcomes/sub-pathways of canonical homologous recombination; 

SDSA is preferred in non-meiotic contexts, dHJ resolution occurs during meiotic crossing 

over to generate genetic variability); NHEJ: Non-homologous end-joining; SSA: Single-

strand annealing; ICL repair: Interstrand crosslink repair; BER: Base excision repair; MMR: 

Mismatch repair; NER: Nucleotide excision repair (note the global-NER pathway 

components are shown; a sister pathway, the transcription-coupled repair (TCR) pathway 

uses the CSA and CSB proteins as initial damage sensors during RNA transcription repair); 

SSB repair: Single strand break repair. Lesion abbreviations: CSR: Class switch 

recombination; DSB: Double-strand break; V(D)JR: V(D)J recombination (generation of 

immunoglobulins). Complex abbreviations: MRN complex: MRE11, RAD50, NBS1; BTR 

complex: BLM-TOPOIIIα-RMI1-RMI2; SMX complex: MUS81, EME1, SLX1, SLX4, XPF-

ERCC1; FA core complex: FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, 

FAAP100. Adapted from (Brown et al., 2017).
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1.8 Thesis aims 

Both human genetics and animal models have underscored DNA repair as important in the 

modification of HD pathology. However, many questions remain as to the specific 

mechanisms by which DNA repair contributes to HD, especially regarding FAN1 which 

appears to protect against repeat expansion. Additionally, how non-DNA repair factors may 

contribute (or protect against) HD pathology is mostly unknown, although several candidate 

loci have been identified through GWAS. The primary goal of this project is to identify 

modifiers of HD age at onset, principally using next-generation sequencing (NGS) 

modalities. NGS offers several advantages over more traditional SNP-array and imputation 

approaches, including (1) the deconvolution of genes at implicated loci from GWAS, (2) the 

possible identification of rare modifiers not well captured by common variation alone and (3) 

the investigation of rare (and often coding) variants that may provide insight into specific 

regions or domains of a gene/protein implicated with disease phenotype. NGS techniques, 

therefore, have the potential to both better characterise and validate existing candidate 

disease modifiers through rare variants, whilst potentially identifying novel modifiers of HD 

poorly tagged by common variation. This thesis will investigate modifiers of HD onset 

through the following aims: 

 

(1) Explore phenotypes in HD using a combination of the clinician’s estimate of onset 

(sxrater) in addition to measures derived from the clinical characteristics 

questionnaire (CCQ). 

(2) Stratify the large Registry-HD cohort by an age at motor onset residual to find the 

earliest and latest onset HD patients given their HTT CAG length. 

(3) Use whole-exome sequencing to investigate rare variation occurring in previously 

highlighted genes of interest from GWAS and other functional study of HD. 

(4) Implementation of an unbiased, rare variant whole-exome approach to find novel 

modifiers of disease onset. 

(5) Study how HTT CAG length and sequence vary between early and late onset HD 

patients, and characterise the effect HTT sequence may have on repeat instability. 
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Chapter 2: Materials and methods 

2.1 Study design 

2.1.1 HD participants 

Participants were taken from the observational European Huntington’s disease Network’s 

(EHDN) Registry-HD study (https://clinicaltrials.gov/ct2/show/NCT01590589). Ethical 

approval for Registry was obtained in each participating country, and participants gave 

written informed consent. All experiments described herein were conducted in accordance 

with the declaration of Helsinki. 

 

2.1.2 Participant data 

R2 and R3 Registry data cuts were used, with R3 data preferentially used when available as 

R3 includes the clinical characteristics questionnaire (CCQ). Where data was only given as a 

year, which was common for estimates of symptom onset given by the rater (sxrater), the 

15th of July (15/07/xxxx) was used for estimation purposes. Table 2.1 contains the details of 

select demographic terms used for calculations. Table 2.2 contains the questions asked in 

the CCQ for all eight symptoms. Finally, Tables 2.3 and 2.4 contain the questions included in 

the hospital anxiety and depression scale with Snaith irritability scale (HADS-SIS) 

questionnaire, originally devised by (Zigmond and Snaith, 1983) and (Snaith et al., 1978). 

8265 participants had CAG length data available, determined by local diagnostic labs. These 

were used in the clinical phenotype analyses in chapter 3. See also the standard Registry-

HD protocols available online: https://www.enroll-hd.org/enrollhd_documents/2016-10-

R1/registry-protocol-3.0.pdf.

https://clinicaltrials.gov/ct2/show/NCT01590589
https://www.enroll-hd.org/enrollhd_documents/2016-10-R1/registry-protocol-3.0.pdf
https://www.enroll-hd.org/enrollhd_documents/2016-10-R1/registry-protocol-3.0.pdf
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Data term Notes 

Brthdtc Date of birth (semi-anonymised) 

Allele 1l Smaller CAG size (determined by local labs) 

Allele 2l Larger CAG size (determined by local labs) 

Sxrater Rater’s estimate of symptom onset (date) 

Sxraterm 
Rater’s judgement of initial major symptom: 1 (motor), 2 
(cognitive), 3 (psychiatric), 4 (oculomotor), 5 (other) or 6 
(mixed) 

Sxfam [What date were] symptoms first noted by family 

Sxfamm 
Initial major symptom noted by family: 1 (motor), 2 
(cognitive), 3 (psychiatric), 4 (oculomotor), 5 (other) or 6 
(mixed) 

Sxsubj [What date were] symptoms first noted by participant 

Sxsubjm 
Initial major symptom noted by participant: 1 (motor), 2 
(cognitive), 3 (psychiatric), 4 (oculomotor), 5 (other) or 6 
(mixed) 

Hddiagn Date of clinical HD diagnosis 

Momhd/dadhd Mother/Father affected [by HD] 

Momagesx/dadagesx Age at onset of symptoms in mother/father [of HD] 

Eduyrs Years of education 

Alcab Does the participant currently drink alcohol? 

Alcunits [Number of alcohol] units per week 

Tobab Does the participant currently smoke? 

Tobcpd Cigarettes per day 

Tfcscore (TFC) [Total] functional score 

Motscore (TMS) [Total] motor score 

Anxscore (TAS) [HADS-SIS] anxiety subscore 

Depscore (TDS) [HADS-SIS] depression subscore 

Irrscore (TIS) [HADS-SIS] irritability subscore 

Table 2.1: Select demographic and phenotypic data terms. Data terms were taken from 

the Registry-HD R3 data dictionary.
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Data term Notes 

Ccmtr 
Have motor symptoms ever been a part of the participant’s 
medical history? 

Ccmtrage (MTR) At what age did the participant’s motor symptoms begin? 

Cccog 
Has significant cognitive impairment (severe enough to 
impact on work or activities of daily living) or dementia 
ever been a part of the participant’s medical history 

Cccogage (COG) 
At what age did cognitive impairment first start to have an 
impact on daily life? 

Ccapt 
Has apathy ever been a part of the participant's medical 
history? 

Ccaptage (APT) At what age did apathy begin? 

Ccdep 
Has depression (includes treatment with antidepressants 
with or without a formally-stated diagnosis of depression) 
ever been a part of the participant’s medical history? 

Ccdepage (DEP) At what age did depression begin? 

Ccpob 
Has perseverative/obsessive behaviours ever been a part of 
the participant's medical history? 

Ccpobage (POB) At what age did perseverative/obsessive behaviour begin? 

Ccirb 
Has irritability ever been a part of the participant’s medical 
history? 

Ccirbage (IRB) At what age did the irritability begin? 

Ccvab 
Has violent or aggressive behaviour ever been a part of the 
participant’s medical history? 

Ccvabage (VAB) At what age did the violent or aggressive behaviour begin? 

Ccpsy 
Has psychosis (hallucinations or delusions) ever been a part 
of the participant’s medical history? 

Ccpsyage (PSY) 
At what age did psychosis (hallucinations or delusions) 
begin? 

Table 2.2: The clinical characteristics questionnaire (CCQ). Taken from the Registry-HD 

R3 data dictionary. The CCQ consists of an initial binary yes/no question for if the participant 

has ever experienced a symptom, and, if yes, what the approximate age at symptom onset 

was.
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Question (TDS) Reply  Question (TAS) Reply 

I still enjoy the things I 
used to enjoy 

- Definitely as much (0) 
- Not quite so much (1) 
- Only a little (2) 
- Hardly at all (3) 

 
 
I feel tense or 'wound up' 

- Most of the time (3) 
- A lot of the time (2) 
- From time to time, occasionally (1) 
- Not at all (0) 

I can laugh and see the 
funny side of things 

- As much as I always could (0) 
- Not quite so much now (1) 
- Definitely not so much now (2) 
- Not at all (3) 

 
I get a sort of frightened 
feeling as if something 
awful is about to happen 

- Very definitely and quite badly (3) 
- Yes, but not too badly (2) 
- A little, but it doesn’t worry me (1) 
- Not at all (0) 

I feel cheerful 

- Never (3) 
- Not often (2) 
- Sometimes (1) 
- Most of the time (0) 

 
I can sit at ease and feel 
relaxed 

- Definitely (0) 
- Usually (1) 
- Not often (2) 
- Not at all (3) 

I feel as if I am slowed 
down 

- Nearly all the time (3) 
- Very often (2) 
- Sometimes (1) 
- Not at all (0) 

 
Worrying thoughts go 
through my mind 

- A great deal of the time (3) 
- A lot of the time (2) 
- Not too often (1) 
- Very little (0) 

I have lost interest in my 
appearance 

- Definitely (3) 
- I don’t take as much care as I should (2) 
- I may not take quite as much care (1) 
- I take just as much care as ever (0) 

 
I feel restless as if I have 
to be on the move 

- Very much indeed (3) 
- Quite a lot (2) 
- Not very much (1) 
- Not at all (0) 

I look forward with 
enjoyment to 
things 

- As much as I ever did (0) 
- Rather less than I used to (1) 
- Definitely less than I used to (2) 
- Hardly at all (3) 

 
I get a sort of frightened 
feeling like 'butterflies' in 
the stomach 

- Not at all (0) 
- Occasionally (1) 
- Quite often (2) 
- Very often (3) 

I can enjoy a good book 
or radio or television 
programme 

- Often (0) 
- Sometimes (1) 
- Not often (2) 
- Very seldom (3) 

 
I get sudden feelings of 
panic 

- Very often indeed (3) 
- Quite often (2) 
- Not very often (1) 
- Not at all (0) 

Table 2.3: Hospital anxiety and depression scale (HADS) questionnaire. Taken from the Registry-HD R3 data dictionary, originally devised 

by (Zigmond and Snaith, 1983). Questions on the left correspond to the total depression score (TDS) and questions on the right with total 

anxiety score (TAS).
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Question Reply 

I lose my temper and shout or 
snap at others 

- Yes, definitely (3) 
- Yes, sometimes (2) 
- No, not much (1) 
- No, not at all (0) 

I am patient with other people 

- All of the time (0) 
- Most of the time (1) 
- Some of the time (2) 
- Hardly ever (3) 

I get angry with myself and call 
myself names 

- Yes, definitely (3) 
- Sometimes (2) 
- Not often (1) 
- No, not at all (0) 

I feel like harming myself 

- Yes, definitely (3) 
- Yes, sometimes (2) 
- No, not much (1) 
- No, not at all (0) 

The thought of hurting myself 
occurs to me 

- Sometimes (3) 
- Not very often (2) 
- Hardly ever (1) 
- Not at all (0) 

I feel I might lose control and hit or 
hurt someone 

- Sometimes (3) 
- Occasionally (2) 
- Rarely (1) 
- Never (0) 

People upset me so that I feel like 
slamming doors or banging about 

- Yes, often (3) 
- Yes, sometimes (2) 
- Only occasionally (1) 
- Not at all (0) 

Lately I have been getting 
annoyed with myself 

- Very much so (3) 
- Rather a lot (2) 
- Not much (1) 
- Not at all (0) 

Table 2.4: Snaith’s irritability scale (SIS) questionnaire. Taken from the Registry-HD R3 

data dictionary, devised originally by (Snaith et al., 1978).
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2.2 Age at HD onset determination 

2.2.1 Rater’s estimate of onset 

General ages at onset were calculated using the assessing clinician’s (the rater’s) best 

estimate of disease onset (sxrater), coded as a date. The sxrater was used regardless of 

onset type (sxraterm), including if the onset type was unknown. The participant’s birthday 

(brthdtc) was then used to derive an estimated age ((sxrater-brthdtc)/365.25). 

 

2.2.2 Deriving ages at onset (best-estimate) 

Ages at onset were calculated using both the clinician’s estimate for HD onset (sxrater) and 

CCQ data. This age at onset is called a ‘best-estimate’ as it uses the two primary patient 

onset data (sxrater and CCQ) together (note, however, this is not a composite score, as 

detailed here). A best-estimate age at motor onset (AMO) was determined using both the 

clinician’s estimate for HD onset (sxrater) and an individual’s CCQ data. The sxrater was 

used where onset was classed as motor, oculomotor or mixed. Where onset type (as 

assessed by the clinician) was non-motor (psychiatric, cognitive or other), or where sufficient 

data were unavailable, the CCQ for motor onset (ccmtrage) was instead used to obtain an 

AMO. Sxrater was preferentially used where onset was motor, and non-motor onset 

individuals lacking a motor CCQ were excluded. Best-estimate ages at cognitive onset 

(ACO) were calculated similarly. Sxrater was used for ACO estimation for cognitive onset 

types; for all other onsets, cognitive CCQ (cccogage) was used for estimation when 

available. If the cognitive CCQ was not available for non-cognitive onset types, these data 

were excluded. 

 

Quality control (QC) was used to improve onset estimation. For AMO best-estimates, onsets 

classed as motor, oculomotor or mixed were expected to have <2 years difference between 

motor CCQ and sxrater. For non-motor onsets, a motor CCQ was expected to be no more 

than 2 years earlier than sxrater. Likewise, for ACO best-estimates, individuals with cognitive 

onsets were expected to have <2 years difference between sxrater and cognitive CCQ. For 

other onset types, cognitive CCQ was expected to be no more than 2 years earlier than 

sxrater. AMO or ACOs with discrepancies greater than these allowances were manually 

curated. To this end, the sxrater, sxsubj (participant’s estimate of HD onset), sxfam (family’s 

estimate of HD onset), hddiagn (date of clinical HD diagnosis) and the entire CCQ data were 

considered along with clinical notes to assess data consistency and symptom history. Two 

assessors, including one clinician (Dr Thomas Massey), had to agree for data inclusion. 

Onset estimates that could not be accurately determined were excluded. 
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Age at first psychiatric symptom onset (APO) was calculated using either: (1) sxrater for 

psychiatric onsets or (2) the earliest recorded psychiatric CCQ (depression, irritability, VAB, 

apathy, POB or psychosis), whichever occurred earliest. An adjusted version of APO 

removed CCQ data occurring earlier than sxrater at 2, 5 and 10 year cut-offs. 

 

2.2.3 Individual symptom determination using CCQ data 

Unadjusted individual symptom onsets simply used the recorded CCQ data (see Table 2.2). 

For adjusted CCQ data, the sxrater (regardless of onset type) was used to remove CCQ 

data occurring earlier than sxrater at various cut-offs (2, 5 or 10 years earlier than the 

sxrater). A 2 year cut-off difference was most frequently used for downstream calculations. 

For binary symptom data, individuals having a symptom, regardless of age, were recorded 

as 1 (symptom experienced at some point) or were otherwise recorded as 0 (no symptom).  

 

2.2.4 Calculating binary symptom onset using CCQ data 

Binary CCQ data used the yes/no part of the CCQ data where 0 = never experienced the 

symptom and 1 = experienced the symptom at some point in life. A positive response for the 

yes/no segment of the CCQ was treated as a 1 regardless of if the age at onset for the 

symptom was known or not. The adjusted version of this metric removed individual CCQ 

data for which an age at onset for both sxrater and the CCQ data in question was available 

(for cases where either was missing, these data were excluded from the adjusted binary 

CCQ measures). For those with an sxrater/CCQ age at onset, CCQ data occurring >2 years 

earlier than the sxrater were removed. Thus, roughly, 0 = never experienced the symptom, 

1=experienced the symptom in disease course of HD. 
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2.3 Statistical analyses of clinical data 

2.3.1 Linear modelling 

2.3.1.1 Multivariate symptom analysis using binary CCQ 

Multivariate logit generalised linear models were constructed regressing on binary CCQ 

data, both adjusted and unadjusted binary CCQ (2.2.4). Two different series of models were 

constructed. The first, simpler model used sex, CAG length, disease duration and onset (as 

defined by the sxrater, regardless of onset type) as covariates for individuals with CAGs 36-

99 and a known sxrater. Here, disease duration was derived from the individual’s latest visit 

date on record (i.e. latest visit – sxrater disease onset). 

 

The extended second model included many of the same covariates as the (Dale et al., 2016) 

study excluding medication: sex, CAG, disease duration, age at onset (sxrater), alcohol 

consumption in units/week, tobacco usage as cigarettes/day, education years, total 

functional capacity (TFC) score and total motor score (TMS). Only individuals with CAGs 39-

55 and a TFC score >0 (excluding very advanced HD patients) were considered. All juvenile 

HD cases (<20 years at onset) were excluded. The most recent visit data was used where 

multiple visit data were available. Disease duration for the extended model was calculated 

using the visit date for the TFC score. For both the simpler and extended models, both 

unadjusted and adjusted CCQ data were used for comparative purposes. For psychosis 

symptoms only, individuals having a comorbid diagnosis of schizophrenia, schizotypal 

disorder or schizoaffective disorder were excluded from analysis. These were defined as 

F20, F21 or F25, respectively, in the International Statistical Classification of Disease-10 

(ICD) diagnostic criteria. 

 

2.3.1.2 HADS-SIS multivariate analysis 

Total scores from the Hospital anxiety and Depression Scale with the Snaith Irritability Scale 

(HADS-SIS) (Table 2.4) were used to regress on using a generalised linear model: total 

anxiety score (TAS), total depression score (TDS) and total irritability score (TIS) (Table 2.3). 

The same covariates were used as in the extended model in 2.3.1.1. A second modelling 

approach transformed TAS/TDS/TIS scores into binary measures. TAS and TDS were 0-7 

considered ‘normal’ (0) and 8-21 a ‘case’ (1). For TIS, 0-7 was normal (0) and 8-24 a case 

(1). These were then regressed on the same covariates as before (2.3.1.1, extended model). 

 

2.3.1.3 Estimation of CAG length on symptom onset 

Age at onset for each recorded symptom were natural log transformed. Linear models were 

constructed using Ln(Age at onset) ~ [CAG length] for CAGs 36-90 for whom sex was 
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known. One individual with a highly unusual onset was found to lie in or near Cook’s 

distance and was removed from all CAG length analyses (Cook’s distance is useful in 

regression modelling to find unusual outliers which affect the overall model, as was found 

here). Ages at onset <3 years of age were removed as these were found to bias R2 

estimation.  

 

2.3.2 Intergenerational anticipation estimates 

Momagesx and Dadagesx data were used as age at onset estimates for the participant’s 

mother and father, respectively. The rater’s estimate onset for the offspring (sxrater), 

regardless of onset type, was used to estimate anticipation for these calculations, i.e. 

Parental age at onset (Mom/Dadagesx) – Child/Proband age at onset (sxrater). 
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2.4 Selecting an extreme onset cohort 

An expected age at onset (Oexp) was calculated with the Langbehn model (Langbehn et al., 

2004, 2010), shown in equations 2.1 and 2.2, using the local clinical lab CAG lengths for 

each individual (see 2.1). AMO residual was calculated taking the expected onset from the 

patient’s observed age at motor onset (as in equation 2.2). 500 (250 early, 250 late) of the 

individuals with the largest residual AMOs were chosen for sequencing, between CAG 40-

55. Expected ages at onset were calculated using the Langbehn model for CAGs 41-55. For 

40 CAGs, the median age of motor onset for the Registry-HD group for individuals with 40 

CAGs was used as the expected age of motor onset (Oexp) (median CAG40=59 years). 

Individuals with missing onset type from the clinician were excluded from being selected for 

sequencing. All individuals selected for sequencing were re-genotyped by MiSeq (2.8) and 

their residuals recalculated using the MiSeq CAG lengths and the Langbehn model as 

described (2.9). 

 

𝑝(𝐴𝑔𝑒) =  (1 + 𝑒
(

𝜋

√3
×

[−21.54−𝑒(9.56−(0.146 ×[𝐶𝐴𝐺])+𝐴𝑔𝑒

√35.55+𝑒(17.72−(0.327 ×[𝐶𝐴𝐺])
)

)

−1

 

Equation 2.1: Full parametric Langbehn survival model. p(Age) = probability of not 

having neurological symptoms until the given age, [CAG] = CAG length. 

 

𝑂𝑒𝑥𝑝 = 21.54 + 𝑒9.556−(0.146 × [𝐶𝐴𝐺]) 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑂𝑒𝑥𝑝 − 𝑂𝑜𝑏𝑠 

Equation 2.2: Simplified Langbehn model for mean onset at a given CAG length. Oexp = 

expected onset, Oobs = observed onset, [CAG] = CAG length. 
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2.5 DNA Preparation 

2.5.1 DNA used for sequencing 

Early passage patient-derived lymphoblastoid cell (LBC) DNA was acquired for the 500 

individuals selected for sequencing (2.4) from BioRep, Italy, in line with Registry protocols 

(see Registry protocol URL in 2.1.2). Patient whole blood DNA was obtained for a subset of 

these individuals and several ‘normal HD onset’ positive controls (total N=49), also obtained 

from Registry. The normal onset individuals had between -1 to +1 AMO residual using locally 

derived CAGs and the Langbehn model (see 2.4). Induced pluripotent stem cell (iPSC) DNA 

was obtained from N1 and N5 lines originally derived in (HD iPSC Consortium, 2012). The 

iPSCs were grown and DNA extracted by Jasmine Donaldson. Finally, longitudinal 

lymphoblastoid cells and their DNA were grown and extracted by Dr Thomas Massey. 

 

2.5.2 DNA Quantitation 

2.5.2.1 DNA preparation with PicoGreen™ (for plates) 

Quant-iT™ PicoGreen™ (ThermoFisher, P7589) was used for preparation of plates for next-

generation sequencing using standard guidelines. Briefly, a standard curve was constructed 

using standard DNA provided (example in Fig. 2.1). For the assay, 2 µL of DNA was added 

to a black Greiner plate (Greiner Bio-One, 655077) and 98 µL of working PicoGreen™ 

solution (1:200 dilution of original PicoGreen™ with TE buffer) was added to each well. 

Fluorescence was read on a microplate reader (Tecan Infinite 200Pro).  

 

 

Figure 2.1: PicoGreen™ standard curve. Shown is a typical PicoGreen™ standard curve 

with the following DNA concentrations from smallest to highest: 0.00 (blank), 1.56, 3.13, 

6.25, 12.50, 25.00, 50.00 and 75.00 ngµL-1. 
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2.5.2.2 DNA preparation with Qubit™ (for individual samples/libraries) 

Qubit™ dsDNA high-sensitivity (HS) assay kits (Q32584) were used for next-generation 

sequencing library preparation with a Qubit fluorometer. For Sanger sequencing and other 

applications involving DNA, the Qubit™ dsDNA broad range kit (Q32850) was used. Briefly, 

in both instances working solutions of Qubit™ were made (1:200 dilution) with the provided 

Qubit™ solution and buffer. 10 µL of each of the two standard DNA were added to 190 µL 

buffer to generate a standard curve using the Qubit™ fluorometer. DNA samples were 

diluted 1:100 (2 µL in 200 µL).  
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2.6 Whole-exome sequencing (WES) 

2.6.1 Whole-exome library preparation 

DNA samples from lymphoblastoid cells, iPSCs and blood DNA were taken as described 

(see 2.5.1). 12-plex exome libraries were created using TruSeq® rapid exome library kits 

(Illumina, now known as Nextera™ Exome Kit for 96 samples, 20020617). A full protocol is 

available online as TruSeq® Rapid Exome Reference Guide, see 

http://emea.support.illumina.com/downloads/truseq-rapid-exome-library-prep-reference-

guide-1000000000751.html. The following is therefore an outline. 

 

Plates containing 96 DNA samples for library preparation were prepared by PicoGreen™ to 

7.5 ngµL-1. In order to reduce technical variability between sequencing runs, 96-well plates 

were balanced equally between early and late onset patient samples where possible. In 

most cases, each 12-plex library consisted of 6 early and 6 late samples. Prepared DNA was 

fragmented enzymatically via transposase (TDE2). Fragmented libraries were barcoded 

adding i5 and i7 adapters (see Fig. 2.2) using a Biomek liquid handling workstation 

(Beckman Coulter FXP). Following initial amplification, tagmented libraries were then 

cleaned-up using solid phase reversible immobilisation (SPRI) beads (part of the exome kit) 

added by a Biomek liquid handling workstation. Individual libraries were then quantified 

using PicoGreen™ and a sample taken from each row and column was diluted 1:10 and 

checked using a Bioanalyser (Agilent) with a DNA 1000 chip (Agilent, 5067-1505) for QC 

purposes. An example Bioanalyser trace for one of the plates prepared is in Fig. 2.3. 

 

Figure 2.2: WES index overview for plates (96 plate format). Shown are the i5 (Exxx) and 

i7 (N7xx) adapters used to barcode a 96-well plate in whole-exome sequencing (WES). 

Rows A-H and columns 1-12 refer to the position on the plate the barcodes would be 

positioned during exome library preparation. For instance, position C3 would be used to 

create an exome library with two barcodes, E503 and N703. 

 

http://emea.support.illumina.com/downloads/truseq-rapid-exome-library-prep-reference-guide-1000000000751.html
http://emea.support.illumina.com/downloads/truseq-rapid-exome-library-prep-reference-guide-1000000000751.html
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300 ng from each individual 12-plex library was then pooled for a total of 8 pools (Σ=3.6 µg 

DNA per pool) using the Biomek workstation. Following pooling, two hybridisation and 

capture steps were performed. Hybridisation used coding exome oligos (CEX) to enrich for 

the exome, cleaned up again using SPRI beads. The capture step used streptavidin 

magnetic beads (SMB) and an enhanced enrichment wash to select for captured exome 

libraries. Following hybridisation and capture, the library was amplified, and a final clean-up 

performed using SPRI beads. Enriched DNA libraries were quantified by Qubit™. A high-

sensitivity Bioanalyser chip (Agilent, 5067-4626) was then used to (1) check library integrity 

and (2) estimate the average bp size of each pooled library (example in Fig. 2.4), allowing 

for a nM concentration for each library to be determined. Note that these traces include a 

pronounced PCR-bubble (the second smaller broad peak at ~500-1000bp, Fig. 2.4) 

observed during several plate preps, however we had no trouble sequencing these libraries. 

 

2.6.2 Sequencing of WES libraries 

Completed exome libraries were sequenced by the Medical Research Council (MRC) core 

team at Cardiff University on an in-house HiSeq 4000 platform (Illumina). Libraries were 

pooled in equimolar amounts in groups of 96 and run over 8 lanes on the HiSeq4000 

patterned flow cell, excepting plates 1 (12 libraries run on a single lane) and 3 (60 libraries 

run across five lanes). Clustering used Illumina ExAmp regents from a HiSeq® 3000/4000 

PE cluster kit (Illumina, PE-410-1001) on the cBot system. Sequencing used a 2x75bp end 

run with a HiSeq® 3000/4000 SBS kit for 150 cycles (Illumina, FC-410-1002). 
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Figure 2.3: First QC step in WES using a DNA 1000 chip. Shown are Bioanalyser traces 

following the initial creation of the library before exome enrichment using a DNA 1000 chip 

(Agilent, 5067-1505). Each trace is a single library from the plate. The samples taken form a 

‘V’ shape pattern on the plate, i.e. A1, B2, C3, D4 etc., in order to sample all rows and 

columns at least once. 

 

 

Figure 2.4: Second QC step in WES with a HS DNA chip. Shown above are the final 

exome-enriched sequencing libraries using a high-sensitivity Bioanalyser chip (Agilent, 

5067-4626). These traces can be used to calculate the average bp size of each library. Note 

that there are eight pools per plate; the final four traces are the ladder (bottom right) and 

three repeats. 
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2.7 Analyses of whole-exome sequencing data 

2.7.1 Pipelines for variant calling, QC and annotation 

2.7.1.1 GATK pipeline 

We used an in-house genome analysis toolkit (GATK) pipeline for alignment and variant 

discovery (McKenna et al., 2010; DePristo et al., 2011; Van der Auwera et al., 2013), with 

pipeline scripts originally written by Dr Elliott Rees. De-multiplexed FASTQ reads were 

aligned to the GRCh37 reference genome utilising BWA version 0.7.5a (Li and Durbin, 

2009). Duplicate reads were marked with Picard (picard-tools v1.97) 

(https://github.com/broadinstitute/picard). Indel realignment and base recalibration used 

GATK, and this generated variant-ready binary alignment map (BAM) files (Li et al., 2009). 

The GATK haplotype caller (v3.4) was used for calling single nucleotide variants (SNVs) and 

insertions/deletions (indels) to generate a variant calling file (VCF). Variants were annotated 

using GATK’s variant quality score recalibration (VQSR). The VCF underwent initial 

annotation using SnpEff and SnpSift (Cingolani et al., 2012). 

 

2.7.1.2 Exome QC pipeline 

A schematic overview of the exome QC is shown in Fig. 2.5. First, Picard was used to 

generate QC metrics on BAM files using the Nextera™ targeted region manifest v1.2. We 

used 70% of the exome covered at 10X (PCT_TARGET_BASES_10X) as a cut-off, and 

exomes <70% were repeated. A VCF for all exomes was then imported into Hail (v0.1, 

devel-b08433b; https://github.com/hail-is/hail) running version 2.1.1 of Apache Spark™ 

(Zaharia et al., 2016). Anaconda (v2) and Java (v1.8.0_45) were also required. Per-sample 

QC metrics (sample_qc) were generated, and samples where either call rate, mean 

genotype quality or mean depth were >3 standard deviations smaller than the mean were 

excluded and repeated where possible. Contamination was assessed with VerifyBamID 

(v1.1.3; (Jun et al., 2012)) using the sequence-only estimate for contamination, ‘Freemix’. 

Samples with Freemix > 0.075 were excluded, as per the ExAC study (Lek et al., 2016). The 

heterozygote/homozygote ratio (rHetHomVar) in Hail was roughly equivalent. Where 

possible, samples which failed contamination checks were repeated to maximise N. At this 

point, any sample duplicates were removed. Where both duplicates passed QC, the sample 

with the highest QC metrics was used.  

 

Imputed sex was determined using Peddy (v0.3.5; (Pedersen and Quinlan, 2017), 

https://github.com/brentp/peddy) and these compared to sex in the Registry-HD database. 

Any samples which differed between imputed and recorded sex were removed from the 

analysis. One individual with an unknown sex in the Registry database was kept. Ancestry 

https://github.com/broadinstitute/picard
https://github.com/hail-is/hail
https://github.com/brentp/peddy
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was estimated using Peddy by principal component analysis (PCA) against 2504 whole-

genomes from the 1000 genomes project (1000 Genomes Project Consortium, 2015). The 

first 10 principal components (PCs) were then calculated using hail’s built in pca() function, 

which implements PCAs as per (Patterson et al., 2006). Relatedness was calculated using 

PLINK v1.9 ((Purcell et al., 2007; Chang et al., 2015); www.cog-genomics.org/plink/1.9/) 

identity by descent (IBD) cut-off of PI_HAT > 0.5, and for related pairs, the individual with the 

largest residual were retained for analysis. A genetic relatedness matrix (GRM) was also 

calculated in Hail (grm()), equivalent to PLINK’s IBD. Finally, all samples were re-genotyped 

using MiSeq and two early/late onset populations redefined for downstream analysis (2.8-

2.9). 

 

Figure 2.5: An overview of the exome quality control pipeline. Shown is an outline of the 

quality control (QC) pipeline employed. Note that step 7 (MiSeq genotyping of the CAG 

repeat) is detailed in 2.8/2.9 & chapter 5. See also Fig. 4.9. 

 

2.7.1.3 Variant annotation pipeline 

An overview of this pipeline is shown in Fig. 2.6. A VCF containing all samples was imported 

into hail (version devel-b08433b), and exomes failing the QC in 2.7.1.2 or were removed. 

Duplicates were likewise removed. Multiallelic sites were split using Hail’s split_multi() 

function. Heterozygote and homozygote calls were then defined. Where ≤10% of read calls 

were an alternative allele, the variant was a homozygote reference. Equally, where ≥90% 

reads were the alternative allele, the variant was classed as a homozygote alternative. 

Heterozygotes were defined where between ≤25% and ≥75% of reads were the reference. 

Variant calls/genotypes which did not conform to the homozygote/heterozygote definition 

were filtered from the analysis. Per-variant QC filtered sample genotype calls where read 

depth was <10 and genotype quality was <30. 

http://www.cog-genomics.org/plink/1.9/
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The variant effect predictor tool (VEP, version 89.6) (McLaren et al., 2016) was used to 

annotate all variants run alongside v86 of ensembl tools. Three variant classes were 

manually assigned using VEP’s most_severe_consequence flag: loss-of function (LoF), non-

synonymous (NS) and synonymous variants. LoF variants were defined as splice acceptor, 

splice donor, stop gained or frameshift variants. Non-synonymous (NS) variants included all 

LoF variants, inframe indels, stop or start losses and missense variants. Synonymous (SY) 

variants were those with no coding or functional change. The gene ID and symbol where the 

most severe consequence occurs (LoF > NS > SY) was associated with the variant. 

 

Variants were annotated with minor allele frequencies (MAFs) from gnomAD’s non-Finnish 

European (NFE) group (v2.0.2) (Lek et al., 2016; Karczewski et al., 2019). Variants in our 

dataset missing from gnomAD were included at every MAF cut-off. The following MAF cut-

offs were used: MAF ≤0.1% (very rare); MAF ≤1% (rare) and MAF ≤2% (uncommon). 

Damaging scores from dbNSFP v3.0 (Liu et al., 2011, 2016) were also annotated, including 

CADD (Kircher et al., 2014; Rentzsch et al., 2019), SIFT (Ng and Henikoff, 2003; Sim et al., 

2012) and Polyphen2 (Adzhubei et al., 2010). Non-synonymous damaging (NSD) variants 

were defined as rare (≤1% gnomAD MAF) and damaging (either LoF or NS variants with 

CADD PHRED ≥20). Individuals were marked as early, late or neither using the redefined 

early/late/normal populations from MiSeq (2.8/2.9) Similarly, AMO residuals from MiSeq 

(corrected and uncorrected) and TWAS data (GeM-HD Consortium, 2019) were also 

annotated. Baseline variant rates (BVRs) were calculated at different MAFs and filters by 

summing all the variants that pass QC for each sample for each mutation class. These were 

included in downstream whole-exome analyses (2.7.3-2.7.4). 

 

 

Figure 2.6: Overview of the annotation pipeline. Shown is an outline of the annotation 

pipeline employed in Hail for the exomes that passed QC. 
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2.7.2 Exome candidate gene analysis 

2.7.2.1 Identifying NSD variation in candidate genes 

All NS and LoF variants in genes of interest were extracted from genes of interest using the 

dichotomous (early/late) population from 2.9 (N=440). Hail aggregated numbers of 

homozygote references (HomR), heterozygote (Het), homozygote variant (HomV) and N/C 

(not called) variant calls for early and late groups. Non-synonymous damaging (NSD) 

variants were defined as before in 2.7.1; damaging variants (LoF or NS with CADD PHRED 

≥20) either missing from gnomAD or NFE MAF≤1%. 

 

2.7.2.2 Counting CAGs in HTT from WES 

Raw reads from variant ready BAM files (2.7.1) were extracted using SAMtools (v1.9; (Li et 

al., 2009; Li, 2011)) targeting chr4 2,900,000-3,100,000 (GRCh37). Reads were manually 

appraised examining (1) the 5’- of the CAG region (following the TTC in the 5’-seq (encoding 

N17 of HTT), (2) the 3’- of the CAG region (centred around the CAA interruption) and (3) the 

number of CCGs observed in the polyP region. Where read-through of the wild-type repeat 

was possible, inference of the 3’- structure of the expanded repeat was possible. 

 

2.7.2.3 Estimating effects of STR length in MSH3 and TCERG1 

For MSH3, exomes which had at least 2 of the 4 short tandem repeat (STR) calls identified 

by GATK were used in a linear regression model. In TCERG1, exomes were only included in 

a linear regression if all 5 STR variant sites were called. Here, a positive variant call simply 

means the site was not missing due to low coverage. Genotype length was equivalent to the 

number of repeating units gained (positive genotype length) or lost (negative genotype 

length) compared to the reference sequence (a homozygote reference has a genotype 

length of 0). For MSH3, one repeating unit was one amino acid; for TCERG1 one repeating 

unit was two amino acids. In both instances, homozygote variants would be counted as 

having twice the effect on genotype length. For instance, a heterozygote for the 

Pro67Pro69del STR variant in MSH3 would be counted as -3 (3 amino acid change, and 3 

repeating unit change), whereas a homozygote for the variant would count as -6. 

 

2.7.2.4 Determining coverage in target genes 

Exon coordinates for all genes in the GRCh37 build of the genome were downloaded from 

GENCODE (https://www.gencodegenes.org/human/release_19.html; (Frankish et al., 2019)), 

accessed June 2019). Depth at each nucleotide in the canonical transcripts of target genes 

was extracted using custom scripts for BEDTools v2.24.0 (Quinlan and Hall, 2010). Mean 

depth was then calculated on a per-exome and per-plate level for each target transcript. 

https://www.gencodegenes.org/human/release_19.html
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2.7.3 Burden regression analyses 

2.7.3.1 Logistic regression (variant-by-variant) 

A logistic regression for all exome variants passing QC was conducted using the Wald test, 

implemented in Hail using logreg(). We regressed the binary early (1) or late (0) phenotype 

in our dichotomous populations (N=440) (as defined in 2.9) on variant count for each variant 

observed. The covariates used were PC1-5 (Hail) and mean variant sample depth for each 

sample. NS damaging variants could have either CADD PRED ≥20 or missing CADD in this 

test (this differs to the following whole-exome tests where variants had to have a CADD 

PHRED annotation of ≥20 to be considered). Note in the variant-by-variant test, LoF variants 

were not included with the NS damaging variants. 

 

2.7.3.2 Whole-exome logistic regression 

Whole-exome burden regression used the Wald test implemented in Hail (logreg_burden()). 

Individuals were coded from the dichotomous population (2.9; N=440) as early (1) or late (0) 

onset. Variants had to pass the following filters to be included: non-synonymous damaging 

(NSD) (LoF or NS ≥20 CADD PHRED), GATK’s variant quality score recalibration 

(VQSR≥98.5), call rate ≥75% and either (1) an missing MAF from gnomAD (v2.0.2) or (2) a 

MAF≤ the defined filter, if the variant was observed in gnomAD. The MAF filters used were 

0.1% (very rare), 1% (rare) and 2% (uncommon). The following covariates were used: PC1-5 

(from Hail), baseline variant rate (BVR) and the mean variant depth (Hail). For tests which 

used deleterious variant weighting, CADD PHRED was multiplied by the number of non-

reference genotypes. Where imputation of CADD scores was used, missing CADD PHRED 

scores were imputed as 15. For weighting on MAF, we multiplied non-reference genotypes 

by (1/MAF). For MAF imputation where the variant was not observed in gnomAD (v2.0.2), 

we imputed values of 1,000,000 where (equivalent to a singleton in gnomAD). 

 

2.7.3.3 Whole-exome linear regression 

Whole-exome burden linear used linreg_burden() in Hail with the same filters (NSD, 

VQSR≥98.5, call rate≥75%, MAF≤1%) and covariates (PC1-5, BVR and mean variant depth) 

as above in 2.7.3.2. We regressed both uncorrected and corrected AMO residuals (y-

variables; calculated in 2.9) on NSD variant burden (x-variable).  

 

2.7.4 Whole-exome SKAT and SKAT-O analyses 

VDS files from Hail were exported to PLINK format (.bed, .bim and .fam). A custom SetID file 

was created containing variants classified as NSD as in 2.7.1 (MAF ≤1% NFE and either LoF 

or CADD PHRED ≥20) and were VQSR≥98.5. The SKAT package (v1.3.2.1) in R (Wu et al., 
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2011; Lee et al., 2012d) was used to generate an SSD_SetID file to run SKAT and SKAT-O 

tests. PC1-5, BVR and average variant depth were used as covariates, and a missingness 

cut-off of 0.25 was employed. For dichotomous analyses, the N=440 population was used, 

coding early (1) and late (0). For continuous analyses, the 485 population was used with 

corrected and uncorrected residuals (2.9). For SKAT(-O) tests with weighted 

deleteriousness, we imputed missing scores as CADD PHRED 20 for NSD variants, and 30 

for LoF variants. 

 

2.7.5 Pathway analysis 

Gene sets were taken from the Gene Ontology (GO) database (Ashburner et al., 2000; The 

Gene Ontology Consortium, 2019), accessed Apr 2017. p values for genes from whole-

exome burden regression tests and SKAT(-O) tests were taken. Genes p values were then 

combined across GO pathways using Fisher’s method. Fisher’s method uses the -2LN(p) for 

each p value, returning a chi-squared distribution. These are then summed across 

pathways/gene sets, and a p value is calculated from the chi-squared distribution with the 

(genes with a p value)*2 as the degrees of freedom. Genes with missing p values were 

excluded. 

 

 

 

  



53 
 

2.8 MiSeq sequencing 

2.8.1 MiSeq library generation 

2.8.1.1 PCR amplification 

This protocol is now available in Protocol Exchange (Ciosi et al., 2018), and thus the 

following is an outline. Libraries were prepared at Glasgow University, and all initial PCR 

amplification was performed in a laminar flow hood. 2 µL of DNA from patient blood or 

lymphoblastoid cells were equalised to 10 ngµL-1 using PicoGreen™ (methods 2.5.2) in 96-

well plates with at least one positive and negative control on each plate. The negative control 

was 2 µL nuclease-free water, and the positive control was 2 µL of a known HD patient from 

the Venezuelan kindred. The libraries were prepared for 384-plate sequencing; to this end, 2 

µL (5 µM) of each of the forward (S) and reverse (N) primers was added according to the 

plate map in Fig. 2.7. A full list of these primers is available in (Ciosi et al., 2018), 

supplementary table 2. A custom 10X master mix (Sigma-Aldrich, D4545; 45 mM Tris-HCl 

(pH 8.8), 11 mM (NH4)2SO4, 4.5 mM MgCl2, 0.113 mgmL-1 BSA, 4.4 µM EDTA and 1mM 

each of dATP, dCTP, dGTP and dTTP) was used after adding 0.048% v/v β-

mercaptoethanol (β-ME; Sigma-Aldrich, M3148). The final master mix contained 1.5 µL of 

the described 10X custom master mix with 0.048% β-ME, 2.8 µL nuclease-free water, 1.5 µL 

DMSO (Sigma-Aldrich, D8418) and 0.2 µL Taq polymerase (Sigma-Aldrich, D4545); 6 µL of 

the master mix was added to each well for PCR. The PCR amplification programme used 

was 960C for 5 minutes, then 28 cycles of 960C for 45s, 58.50C for 45s and 720C for 180s, 

followed by 720C for 10 minutes. 

 

2.8.1.2 Library clean-up 

After amplification of all four 96-well plates for a 384-plate sequencing run, 5 µL of each 

amplified library was pooled across eight 1.5 mL LoBind DNA tubes (Eppendorf, 

0030108051). Library clean-up used two AMPure XP SPRI bead (Beckman Coulter, 

A63881) steps; an initial 0.6X bead concentration to remove unused primers and 1.4X to 

size select for the expanded HTT allele. These steps are described in detail in (Ciosi et al., 

2018). Pre- and post-clean-up libraries were run on a Bioanalyser (Agilent) with a high 

sensitivity DNA chip for QC purposes (see Fig. 2.8). 

 

2.8.2 Sequencing on the MiSeq 

Libraries were handed over to the staff at Glasgow University for sequencing on a MiSeq. 

Libraries were sequenced using a 600-cycle MiSeq v3 reagent kit (Illumina, MS-102-3003), 

running with 400bp forward and 200bp reverse sequencing. The sequencing parameters are 

described in (Ciosi et al., 2018). 
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Figure 2.7: MiSeq index overview for plates (384 format). Shown are the i5 (S5xx) and i7 (N7xx) primer layouts used for the four 96-well 

plates making up a 384-plate for MiSeq sequencing.  
 m 

 

Figure 2.8: Bioanalyser traces of MiSeq libraries pre- and post-clean-up. (A) shows the initial library, pre-clean-up, following PCR 

amplification, diluted 1:30. Note the primer dimer around ~50-100 bp is so high the Bioanalyser is unable to read these properly (and this 

shows up as partially negative on the trace). (B) shows post SPRI bead clean-up where the primer dimer has been removed and the expanded 

HTT allele has been selected for, diluted 1:4. Both traces used DNA high sensitivity chips (Agilent, 5067-4626).

B A 
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2.9 MiSeq data analyses 

2.9.1 HTT genotyping with Scale-HD 

Bioinformatic processing of MiSeq data used the Scale-HD pipeline (v0.322) written by 

Alastair Maxwell. Our data were demultiplexed and genotyped on Glasgow University’s local 

Galaxy cluster, before being re-analysed locally on the Raven supercomputing cluster 

(ARCCA, Cardiff University). Scale-HD’s installation and usage are described in detail in its 

documentation (https://scalehd.readthedocs.io/en/latest/) and thus the following is an outline. 

Scale-HD trims adapters from reads using cutadapt (Martin, 2011). Reads are aligned to a 

database of 4000 HTT structures with varying structures (i.e. refseq method) using BWA (Li 

and Durbin, 2009). Any atypical structures detected undergo further alignment to a separate 

database of non-canonical HTT structures (8000). This process is repeated for the second 

allele in the sample, and the alignments are used to create a BAM file for each sample. 

Scale-HD also uses freebayes (Garrison and Marth, 2012) for detection of SNPs occurring in 

HTT alleles. Aligned HTT BAM files were manually appraised, visualised with Tablet (Milne 

et al., 2013). In manual curation, care was taken to examine the entire length of the CAG 

repeat to identify possible sequence changes/interruptions occurring in the repeat tract. 

 

2.9.2 Estimating instability in MiSeq with Scale-HD 

Scale-HD was used to estimate instability of the CAG repeat in MiSeq data. The formulae for 

somatic mosaicism (forward instability) and slippage (reverse instability) are shown below in 

Equations 2.3 & 2.4, respectively. More information is available in the Scale-HD 

documentation (https://scalehd.readthedocs.io/en/latest/). 

 

(∑ 𝑛𝑘
10
𝑘=1 )

𝑛0
 

Equation 2.3: MiSeq mosaicism (Scale-HD). In the equation, n is the number of reads per 

peak and k is the distance in peaks from the modal peak (n0=modal peak). 
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Equation 2.4: MiSeq slippage (Scale-HD). In the equation, n is the number of reads per 

peak and k is the distance in peaks from the modal peak (n0=modal peak). 

 

2.9.3 Redefining onset groups using MiSeq 

All samples that were exome sequenced were also sequenced using targeted MiSeq. Two 

measures were derived for each patient (see Fig. 2.9 for a diagrammatic overview). The first 

https://scalehd.readthedocs.io/en/latest/
https://scalehd.readthedocs.io/en/latest/
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was the ‘uncorrected’ residual, polyQ length – 2, to be directly comparable with lengths 

obtained from genescan (which assumes a canonical, single interruption at the 3’ end of the 

CAG repeat, i.e. CAGnCAACAG). The second, ‘corrected’ residual, was the length of the 

pure CAG repeat. The CAC interruption in one HTT allele was treated as a CAG for deriving 

an uncorrected residual. For re-calculation of expected ages at onset using the re-genotyped 

MiSeq CAGs, we used the Langbehn model ((Langbehn et al., 2004); see 2.4 & equation 

2.2), and this was used to recalculate residual age at motor onset. For CAGs 38-40, the 

median age at motor onset for Registry at that CAG length was used for estimation (62, 62 

and 59 years, respectively). Each sample was re-annotated as being early, late or neither 

based on the uncorrected MiSeq residual. AMO residuals ≤-5 were considered early onset 

and ≥5 late onset. Note: for two individuals which failed MiSeq (E265 and L301), we instead 

used an in-house genescan CAG length estimation (see 2.11), and assumed both had 

canonical alleles (so corrected/uncorrected residuals were the same for these two samples).  

 

Figure 2.9: Corrected and uncorrected MiSeq genotyping. Shown are differences in 

sizing between uncorrected (in black) and corrected (in green) genotype lengths for the three 

most common HTT CAG allele structures. 

 

2.9.4 Generalised linear models for MiSeq data 

Generalised linear models (GLMs) were used to investigate the effect of interruption 

structures on onset, regressing residual age at motor onset (both corrected and uncorrected 

lengths; see 2.9.3) on structural features of HTT. Two models were made: in the first, the 

number of interruptions was as coded as a single value, representing the number of 

interruptions observed in the allele. A loss-of interruption allele was coded as 0, a normal 

allele as 1, a duplicated allele (CAACAG)2 or double tandem interruption (CAA2CAG) as 2 
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and a tandem triple interruption (CAA3CAG) or non-Q interruption (CACCAG3CAA) as 3. 

The second modelling approach coded interruptions as two separate values, either as 

having a normal interruption (0, 0), a loss of interruption (0, 1) or an additional interruption of 

any kind (1, 0). As well as interruptions occurring in the expanded HTT allele, the following 

covariates were also used: interruptions in the wild-type HTT, CCG tract interruptions in both 

expanded and wild-type HTT and total pure polyproline (polyP) length in expanded and wild-

type HTT. 

 

Generalised linear models were also used to investigate the relationship between MiSeq 

mosaicism with various covariates (including age at onset) and progression (progression 

measure from (Hensman Moss et al., 2017). MiSeq mosaicism (separately for 

lymphoblastoid and blood DNA) was regressed on corrected residual age at motor onset 

(from pure CAG length), interruption status (expanded allele), pure CAG length and age at 

which the sample was taken from the HD individual. For progression, the progression 

measure was regressed on MiSeq mosaicism, interruption status, sample age and pure 

CAG length. Interruption status in both models was the same as the model in the paragraph 

prior to this, i.e. pure CAG allele as 0, canonical as 1, duplication/double tandem as 2 and 

the non-Q/triple tandem variant as 3.  

 

2.10 Sanger sequencing 

2.10.1 Variant confirmation 

Amplifications for sanger sequencing were performed using MyTaq™ (Bioline, BIO21127) as 

per the Bioline’s guidelines for PCR amplification. Briefly, a master mix containing 10 µL of 

5x MyTaq reaction buffer, 0.5 µL of each fragment (Frag) primer (10 µM) and 26 µL of 

nuclease free water was made up (multiplied by the number of samples). 2 µL of each DNA 

template was added (~10-30 ngµL-1). The programme used was 950C for 2 minutes, 

followed by 30 cycles of 950C for 30s, 550C for 30s and 720C for 60s, finishing with 720C for 

5 minutes. PCR reactions were cleaned up using QIAquick PCR purification kits (28104, 

Qiagen) using the provided protocol for obtaining higher concentration purified samples. 1.5 

µL of the relevant (single) sequencing (Seq) primer (25 µM) was added to each purified 

sample. Sequencing was performed externally using the Eurofins Genomics LIGHTRUN 

service. See Table 2.5 and 2.6 for primer details. 

 

2.10.2 Sanger sequencing of the HTT repeat 

DNA from individuals with atypical HTT alleles was amplified with PCR using TaKaRa LA 

Taq® DNA polymerase with GC buffer (RR02AG, TaKaRa); the master mix consisted of 0.3 
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µL deionised water, 5 µL GC buffer (II), 1.6 µL dNTPs (provided), 0.5 µL of each primer 

(forward and reverse LKH primers from Swami et al., 2009 – see Table 2.6) and 0.1µL of 

polymerase. 2 µL of each DNA template (~10-30 ngµL-1) was added. The programme used 

was an initial 940C for 90s, then 32 cycles of 940C for 30s, 650C for 30s and 720C for 90s. 

The product was run on a 1.5% agarose gel containing ethidium bromide alongside a 100bp 

Hyperladder™ (BIO-33029, Bioline). The expanded and wild-type bands were cut out using 

a clean scalpel and a UV transilluminator. DNA from gel bands was extracted using a 

QIAquick gel extraction kit (28115, Qiagen) using the provided protocol for obtaining high 

concentration DNA. 1.5 µL of 25 µM HTT sequencing primer was added to each 9 µL 

reaction. Sanger sequencing was performed externally with the Eurofins Genomics 

LIGHTRUN service. 

 

2.10.3 Primer design 

Primers for Sanger sequencing were designed using Primer3 (http://primer3.ut.ee/) 

(Koressaar and Remm, 2007; Untergasser et al., 2012) and cross-checked using the UCSC 

in-silico PCR tool (https://genome.ucsc.edu/cgi-bin/hgPcr). For initial amplification, the 

following picking conditions were used: primer size 18-23bp (optimal 20), primer Tm 57-620C 

(optimal 590C) and primer GC% 30-70% (optimal 50%). For sequencing primers: primer size 

17-19bp (optimal 18), primer Tm 52-580C (optimal 560C) and primer GC% 36-60% (optimal 

50%), with a GC clamp on the 3’ end (but no more than 3 G/C in a row). No product Tm was 

specified. Sequencing primers had no more than four identical nucleotides in a row (e.g. 

AAAA). 

http://primer3.ut.ee/
https://genome.ucsc.edu/cgi-bin/hgPcr
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Target(s): FAN1 M50R (Seq_a), T187fs (Seq_b)  Target(s): FAN1 R377W, L395P 

Primer name Length Primer sequence  Primer name Length Primer sequence 

FAN1_Frag1F 23 ACTCATGATGTCAGAAGGGAAAC  FAN1_Frag2F 23 AGGCAAAATCTCATAGTTCTGCA 

FAN1_Frag1R 23 ACCATATGTTCAGGAATGCACTC  FAN1_Frag2R 20 CATCATGCCCCAATCAGAGC 

FAN1_Seq1F_a 19 ACTCATGATGTCAGAAGGG  FAN1_Seq2F 19 CAATGATATCCCTCACAGC 

FAN1_Seq1R_a 17 TAAGCCAACCTGCCCTG  FAN1_Seq2R 18 TGAAAACAAACACGTGCG 

FAN1_Seq1F_b 18 TTGTTTGGGAAGCCTAGC  
 

  

FAN1_Seq1R_b 19 TATGTTCAGGAATGCACTC  
 

  

       

Target(s): FAN1 D498N, R507H, R507C  Target(s): FAN1 P654L, R658W 

Primer name Length Primer sequence  Primer name Length Primer sequence 

FAN1_Frag3F 21 ACTCCTTTCTGCTCCTGAACT  FAN1_Frag4F 20 TGGTAGCTGGCTGTGAGAAT 

FAN1_Frag3R 23 CCAGCCTTCTCAATCTAACTACA  FAN1_Frag4R 22 TCACATGTTTAACGCCATCACA 

FAN1_Seq3F 18 TCCTTTCTGCTCCTGAAC  FAN1_Seq4F 18 TAGCTGGCTGTGAGAATG 

FAN1_Seq3R 19 CCAGCCTTCTCAATCTAAC  FAN1_Seq4R 19 TGTTTAACGCCATCACATC 

       

Target(s): FAN1 D702E, Q717R  Target(s): FAN1 K794R 

Primer name Length Primer sequence  Primer name Length Primer sequence 

FAN1_Frag5F 20 CCTCAAAGTCCCTGTCCTGT  FAN1_Frag6F 21 ACTTTGTGGTAAGGGAGGTCA 

FAN1_Frag5R 23 GGTTGGAAGAACACAGACAAAAG  FAN1_Frag6R 20 CTGGGTGCCACAAGAGAAAG 

FAN1_Seq5F 17 GGTCCTTGGCCTCATTG  FAN1_Seq6F 18 CTTTTGCTGACCTGAGGC 

FAN1_Seq5R 17 TGAGTACCGGTTCCAGG  FAN1_Seq6R 18 CCACAAGAGAAAGCCTGC 

       

Target(s): FAN1 V963W964insL, R969L  Target(s): FAN1 D702E + Q717R 

Primer name Length Primer sequence  Primer name Length Primer sequence 

FAN1_Frag7F 20 CCATTCTCTGTCACGAGGGA  FAN1_Frag8F 20 CAGTGAGAGAGCAGAAGAGC 

FAN1_Frag7R 19 CGGCCCAAAAGCTCTCAAG  FAN1_Frag8R 19 TGGGTGACAGAGCGAGACT 

FAN1_Seq7F 17 CGAGGGAAGTGGCTAAC  FAN1_Seq8F 18 AGTGAGAGAGCAGAAGAG 

FAN1_Seq7R 17 CCTACTTGTGGCCTCTG  FAN1_Seq8R 19 ACCAAATATCCCCAATTCC 
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Target(s): FAN1 M50R + V77I  Target(s): FAN1 R982C + C1004G 

Primer name Length Primer sequence  Primer name Length Primer sequence 

FAN1_Frag9F 23 ACTCATGATGTCAGAAGGGAAAC   FAN1_Frag10F 20 CAGTGAGAGAGCAGAAGAGC  

FAN1_Frag9R 20 ATCACTTTGGCCAGGGGTTA   FAN1_Frag10R 22 ACTGTGTGGAATCAATGAGTGT  

FAN1_Seq9R 19 TGGCCAGGGGTTAAATTTG   FAN1_Seq10F 18 AGTGAGAGAGCAGAAGAG  
 

   FAN1_Seq10R 19 TGTGTGGAATCAATGAGTG  
 

   
 

  

Target(s): FAN1 T187fs  Target(s): FAN1 M50R + V77I 

Primer name Length Primer sequence  Primer name Length Primer sequence 

FAN1_Frag11F 20 TGTTTGGGAAGCCTAGCATC   FAN1_Frag12F 20 TCAGAGTTCGCTTTTCCCCT  

FAN1_Frag11R 23 ACCATATGTTCAGGAATGCACTC   FAN1_Frag12R 22 CACACTACGATTTCTCAGCTCA  

FAN1_Seq11F 18 TTTGGGAAGCCTAGCATC   FAN1_Seq12F 19 ACTCATGATGTCAGAAGGG  

FAN1_Seq11R 18 TGTTCAGGAATGCACTCT   FAN1_Seq12R 18 TTGCTGAATCACTTTGGC  

 

Target(s): FAN1 T187fs 

Primer name Length Primer sequence 

FAN1_Frag13F 20 GGGAAGTAAAGCAGAAGATCAGT  

FAN1_Frag13R 22 TTCTCACATTCCCGGGTAGC  

FAN1_Seq13F 19 GCTGAGAAATCGTAGTGTG  

FAN1_Seq13R 18 GTTCAGGAATGCACTCTTC  

Table 2.5: FAN1 Sanger sequencing primers. Listed are the primers for PCR used for FAN1 variant confirmation. For PCR amplification, the 

fragment (frag) primers were used. For the Sanger sequencing reaction, the sequencing (seq) primers were used. 
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Target(s): HTT exon 1  Target(s): HTT exon 1 CAG 

Primer name Length Primer sequence  Primer name Length Primer sequence 

LKH-1 22 CCCATTCATTGCCCCGGTGCTG  huHTT_Ex1F 
SEQ 

17 ATTCATTGCCCCGGTGC 

LKH-5 22 TGGGTTGCTGGGTCACTCTGTC  huHTT_Ex1R 
SEQ 

19 CTGGGTCACTCTGTCTCTG 

 

Target(s): EXO1 R108H, R121W  Target(s): EXO1 A137S, D143E 

Primer name Length Primer sequence  Primer name Length Primer sequence 

EXO1_Frag1F 23 TGTTACAGTTTCTTGAGTCAGCC   EXO1_Frag2F 23 CTGAGGCTAGTAATAAAGTGGGT  

EXO1_Frag1R 20 GCTTTGGTGAACTTGCCCAT   EXO1_Frag2R 20 GGAGATCCGAGTCCTCTGTA  

EXO1_Seq1F 19 ACAGTTTCTTGAGTCAGCC   EXO1_Seq2F 18 AAGTGGGTTTGAAACAGG  

EXO1_Seq1R 19 TGGTGAACTTGCCCATCTG   EXO1_Seq2R 17 GAGATCCGAGTCCTCTG  

       

Target(s): EXO1 G223V, D249N  Target(s): EXO1 G274R 

Primer name Length Primer sequence  Primer name Length Primer sequence 

EXO1_Frag3F 22 AGATAATGACAAAAGTGGCCCT   EXO1_Frag4F 23 GCAGTTAATGTTTCAATCCCTCT  

EXO1_Frag3R 20 GTGCCTCAGTCATTTGCTCC   EXO1_Frag4R 23 CGTAGCTTAGTGTTTCAGGATCA  

EXO1_Seq3F 19 GAAATTGATCAAGCTCGGC   EXO1_Seq4F 19 CCCTGTTCTTTAGTTGCAG  

EXO1_Seq3R 18 GCCTCAGTCATTTGCTCC   EXO1_Seq4R 18 TTCATAGGCGTTCAGAGG  

       

Target(s): EXO1 E584K, S610G  Target(s): EXO1 1:242048615:G:C, G759E, L790R  

Primer name Length Primer sequence  Primer name Length Primer sequence 

EXO1_Frag5F 20 GCCTCTGGATGAAACTGCTG   EXO1_Frag6F 20 GCGACAGAGTGAGAGTCCAT  

EXO1_Frag5R 21 GACTCCTCGCTCTTTAACTGC   EXO1_Frag6R 21 AGGAAGAGTTGGGAGAAAGGG  

EXO1_Seq5F 18 CTCTGGATGAAACTGCTG   EXO1_Seq6F 18 ACAGAGTGAGAGTCCATC  

EXO1_Seq5R 17 TCAGGCAAAGAGGTGGG   EXO1_Seq6R 18 AGTTGGGAGAAAGGGATG  
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Target(s): EXO1 A827V  Target(s): BRCA2 Thr1738fs 

Primer name Length Primer sequence  Primer name Length Primer sequence 

EXO1_Frag7F 23 TGTTACAGTTTCTTGAGTCAGCC   BRCA2_Frag1F 21 AGTCCTGCAACTTGTTACACA  

EXO1_Frag7R 22 GCTTTGGTGAACTTGCCCAT   BRCA2_Frag1R 22 AGAGCTAGTCACAAGTTCCTCA  

EXO1_Seq7F 18 ACAGTTTCTTGAGTCAGCC   BRCA2_Seq1F 18 TCCTGCAACTTGTTACAC  

EXO1_Seq7R 18 TGGTGAACTTGCCCATCTG   BRCA2_Seq1R 19 TTACAGTTTGTGGGTATGC  

       

Target(s): BRCA2 Lys3326*  Target(s): MSH3 Tyr462fs 

Primer name Length Primer sequence  Primer name Length Primer sequence 

BRCA2_Frag2F 20 GACTGCCTTTACCTCCACCT   MSH3_Frag1F 23 CTCTCTCTTTCTTCAACTTGGGA  

BRCA2_Frag2R 20 TCTTCTGAACTGGTGGGAGC   MSH3_Frag1R 20 ATCCTCCCCTACCTCAGTCT  

BRCA2_Seq2F 18 ATTTGTTTCTCCGGCTGC   MSH3_Seq1F 18 TTCCTCTTCTGGCCAAGA  

BRCA2_Seq2R 17 TCTGAACTGGTGGGAGC   MSH3_Seq1R 18 GAGCTCTTCTTCTCCCAC  

       

Target(s): MSH3 SPLICEACCEPTORc.2254-1G>C  Target(s): MSH3 SPLICEACCEPTORc.2319-1G>A 

Primer name Length Primer sequence  Primer name Length Primer sequence 

MSH3_Frag2F 20 TGTCCCAAGTAGTGAACCCT   MSH3_Frag3F 23 GGAATCAGTAGAGTTCAGGACCA  

MSH3_Frag2R 22 TCAAGAATGTGGCTACGATGAG   MSH3_Frag3R 20 CCATTCAGCACTGCAGTCAA  

MSH3_Seq2F 18 GTCCCAAGTAGTGAACCC   MSH3_Seq3F 19 ATCAGTAGAGTTCAGGACC  

MSH3_Seq2R 18 TACGATGAGCCCAGTAGC   MSH3_Seq3R 18 CCATTCAGCACTGCAGTC  

 

Table 2.6: Other Sanger sequencing primers (not FAN1). Listed are sequencing primers for HTT (targeting the CAG repeat) and primers for 

EXO1, MSH3 and BRCA2. Not all primers were used for sequencing but are listed for any future projects that may find them useful. As before, 

these primers were designed for initial amplification with the frag primers, followed by clean-up and sequencing with the seq primer(s). LKH-1 

and LKH-5 primers were taken from (Swami et al., 2009). 
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2.11 Genescan sizing of HTT CAG 

Lymphoblastoid DNA for extreme early/late onset individuals (2.4) were genotyped using a 

genescan. DNA was prepared to 10-30 ngµL-1 using PicoGreen™, and the samples were 

kindly run and CAG lengths determined by Dr Thomas Massey. Briefly, TaKaRa LA Taq® 

DNA polymerase with GC buffer (RR02AG, TaKaRa) was used for amplification: the master 

mix consisted of 1.3 µL deionised water, 5 µL GC buffer (II), 1.6 µL dNTPs (provided), 0.5 µL 

of each primer and 0.1µL of polymerase. 1.0 µL of each DNA template (~10-30 ngµL-1) was 

added. The forward primer was ATGAAGGCCTTCGAGTCCCTCAAGTCCTTC and the 

reverse primer GGCGGCTGAGGAAGCTGAGGA. The PCR programme used was the same 

as in 2.10.2. 2 µL of each PCR product was added to 27.6 µL Hi-Di fomamide 

(ThermoFisher, 4311320) and 0.4 µL LIZ600 ladder (ThermoFisher, 4366589) was added to 

a new plate, and these run on a GA3130xL Genetic Analyser (Applied Biosystems) per the 

manufacturer’s instructions. GeneMapper software was used to derive pure CAG lengths 

from acquired fluorescent traces by taking the (PCR product length – 86)/3 (assuming a 

canonical CAACAG sequence). 86 nucleotide length comes from the forward (30 nt) and 

reverse (21 nt) primer length, downstream sequence (29) and the canonical CAACAG 

sequence (6). Dr Thomas Massey also calculated both the expansion and instability indices, 

and the derivation of these measures is described elsewhere (Lee et al., 2011). 

 

2.12 Detecting copy number variants in select samples 

DNA from select lymphoblastoid and blood DNA was prepared to 200 ngµL-1 using Qubit™. 

DNA was given to the MRC core team at Cardiff University who kindly genotyped the 

samples using a 24 lane Infinium™ global screening array chip (v2.0) (Illumina, 20024444), 

with an Infinium™ HTS assay. A full set of protocols and workflows are available online at 

https://support.illumina.com/array/array_kits/infinium-global-screening-array/downloads.html. 

Briefly, the 200 ngµL-1 DNA was amplified using the provided MA1/MA2/MSM buffers and 

incubated at 370C overnight. The resultant DNA was fragmented enzymatically (FMS), 

precipitated and resuspended. The amplified fragmented, resuspended DNA was then 

loaded onto the global screening array chip. Following washing and staining, the chip was 

imaged using an Illumina iScan reader. The MRC core team used a standard CNV calling 

analytical pipeline using PennCNV (Wang et al., 2007) to detect CNVs using the CRCh38 

reference assembly. CNVs with <100kb or <10 total SNPs were excluded. 

 

https://support.illumina.com/array/array_kits/infinium-global-screening-array/downloads.html
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2.13 Computing facilities and analytical tools 

Computational work in most of 2.7.1-2.7.3 and 2.9.1 used the Raven supercomputing cluster 

of the Advanced Research Computing Division (ARCCA) at Cardiff University. The auxiliary 

analysis in Appendix 15 used the Hawk supercomputer housed at Cardiff University, part of 

the Supercomputing Wales project, which is part-funded by the European Regional 

Development Fund (ERDF) via the Welsh government. Long-term storage of WES data 

(FASTQ, BAM, VCF and VDS files) is in a dedicated storage cluster on the ROCKS 

computing cluster, housed in the Department of Psychological Medicine and Clinical 

Neurosciences (DPMCN) at Cardiff University. 

 

R (version 3.6.0; R Core Team 2019, https://www.r-project.org) was used for statistical 

analyses throughout and the plotting of many of the figures throughout this work. Packages 

used for figure plotting were the ggplot2, rgl, ggpubr, Hmisc, corrplot, gridExtra, GWASTools 

(part of Bioconductor (BiocManager)), plot3D, plotrix and RColorBrewer packages. The 

QuantPsyc, dplyr, tidyr Hmisc, doBy, e1071 and reshape2 packages were used for data 

manipulation. The SKAT package was used for whole-exome SKAT(-O) analyses. The tools/ 

databases are described in their relevant methods sections, and listed in Tables 2.7 & 2.8. 

 

Database name Version Reference(s) 

Registry-HD R3 cut http://www.ehdn.org/; (Orth et al., 2010) 

dbNSFP 3.0 (Liu et al., 2011, 2016) 

ExAC (*) (Lek et al., 2016) 

CADD (*) (Kircher et al., 2014; Rentzsch et al., 2019) 

Polyphen (*) (Adzhubei et al., 2010) 

SIFT (*) (Ng and Henikoff, 2003; Sim et al., 2012) 

gnomAD 2.0.2 (Karczewski et al., 2019) 

GENCODE Release 19 (Frankish et al., 2019) 

Gene Ontology 
database (GO) 

Accessed Apr 
2017 

(Ashburner et al., 2000; The Gene Ontology 
Consortium, 2019) 

Table 2.7: Databases used for analyses. Listed are the databases used for data 

acquisition and analysis, and their version (accession if unknown). (*) databases were 

included with dbNSFP and thus dependent on its version (v3.0). 

 

 

 

 

 

 

 

https://www.r-project.org/
http://www.ehdn.org/
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Tool/program name Version Reference(s) 

R 3.6.0 https://www.r-project.org/ 

Hail v0.1, devel-b08433b https://github.com/hail-is/ 

Burrows-Wheeler 
Aligner (BWA) 

0.7.5a (Li and Durbin, 2009) 

Genome analysis 
toolkit (GATK) 

3.4 
(McKenna et al., 2010; DePristo et al., 

2011; Van der Auwera et al., 2013) 

Picard (picard-tools) 1.97 https://github.com/broadinstitute/picard/ 

SnpEff 4.1l (Cingolani et al., 2012) 

SnpSift 4.1l (Cingolani et al., 2012) 

VerifyBamID 1.1.3 (Jun et al., 2012) 

Peddy 0.3.5 (Pedersen and Quinlan, 2017) 

PLINK 1.9 (Purcell et al., 2007) 

Variant-effect 
predictor tool (VEP) 

89.6 (McLaren et al., 2016) 

SAMtools 1.9 (Li et al., 2009; Li, 2011) 

BEDTools 2.24.0 (Quinlan and Hall, 2010) 

Scale-HD 0.322 https://github.com/helloabunai/ScaleHD/ 

Tablet 1.19.05.28 (Milne et al., 2013) 

Primer3 Accessed June 2018 
(Koressaar and Remm, 2007; 

Untergasser et al., 2012) 

UCSC In-Silico PCR Accessed June 2018 https://genome.ucsc.edu/cgi-bin/hgPcr 

Table 2.8: Bioinformatic tools used for analyses. Listed are all the tools/programs used 

for analysis (including PCR design) and their version numbers. For primer3 and UCSC in-

silico PCR, these are websites and thus the specific version number is unknown; as such, 

the accession is instead given.

https://www.r-project.org/
https://github.com/hail-is/
https://github.com/broadinstitute/picard/
https://github.com/helloabunai/ScaleHD/
https://genome.ucsc.edu/cgi-bin/hgPcr
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Chapter 3: Phenotypical analysis and cohort selection in 

Registry-HD 

3.1 Introduction 

Huntington’s disease (HD) is a monogenic neurodegeneration whose hallmark are motor 

disturbances, cognitive decline and behavioural/psychiatric symptoms (Roos, 2010) (1.2). 

Mental and behavioural changes are especially disabling for the patient and their family 

(Vamos et al., 2007; Paulsen et al., 2010; Tabrizi et al., 2013), although the extent to which 

patients experience these symptoms varies substantially. Notably, age at HD onset can vary 

considerably between individuals. Although well established that the length of the HTT CAG 

repeat tract is responsible for ~50-70% of this variability (Wexler et al., 2004; Lee et al., 

2012c), the remaining variation is accounted for by a combination of genetic and 

environmental factors (Wexler et al., 2004).  

 

Registry-HD was a multi-site, multi-national longitudinal observational study of Huntington’s 

disease that took place in Europe between 2004 and 2017 (Orth et al., 2010). After an initial 

baseline visit, participants were assessed annually, and biological samples (e.g. blood and 

urine) were collected from those opting to do so. At its completion, Registry-HD comprised 

data for >10,000 manifest HD individuals, at-risk individuals and controls. Although now 

superseded by the international Enroll-HD study, which itself contains Registry individuals 

who rolled over (currently >18,000 participants), Registry still contains a wealth of clinical 

data, both cross-sectional and longitudinal, collected from an HD population for more than a 

decade. These data include demographic information, CAG lengths, TMS/TFC scores and 

distinct phenotypic data for several symptoms.  

 

Of specific interest for this chapter are the phenotypic data describing symptom onset. 

Determination of symptom onset allows for stratification of individuals by their disease 

phenotype and can be factored into cohort selection or post hoc analyses in genome-wide 

association (GWA) studies, sequencing studies, regression modelling or polygenic risk score 

(PRS) derivation. However, genetic studies, including the GeM-HD GWA studies in 2015 

and 2019 and the seminal Venezuelan kindred study (Wexler et al., 2004), have often 

focused on motor onset as the primary outcome measure. This is in large part as motor 

symptoms are well-described, measurable and mostly specific to HD. Given both the 

usefulness of age at onset derivation and the destructive nature of the non-motor symptoms 

in HD, we were interested in deriving symptomatic ages at onset across a range of 

symptoms in a large HD patient cohort. 
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The work presented in chapter 3 will derive ages at onset across the three primary HD 

symptomatic domains: motor, cognitive and psychiatric/behavioural. The usefulness of the 

clinical characteristics questionnaire (CCQ), routinely gathered in the Registry and Enroll-HD 

studies, will be assessed and used to derive distinct symptomatic ages at onset. The degree 

to which CAG length differentially affects symptom onset will then be examined. Inter-

symptom correlations, symptom sex stratification and inter-generational anticipation will also 

be explored using correlation matrices and generalised linear models. Finally, an extreme 

onset cohort (N=500) will be selected by stratifying with a residual age at motor onset to 

select individuals with unexplained early or late HD onset. This cohort will be used for 

genetic analysis in chapters 4 and 5.  
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3.2 Initial onset determination in Registry-HD 

3.2.1 Exploring onset types in Registry 

There are two direct onset measures for Registry-HD participants. The first is the clinical 

rater’s best estimate of onset (sxrater), which describes the onset of the first HD symptom 

experienced. Onset types in Registry are classified as motor, cognitive, psychiatric, 

oculomotor, other (e.g. weight loss or insomnia) or mixed. Analogous onset estimates are 

given by both the family and participant. Fig. 3.1 shows, strikingly, that while motor onset is 

the most common onset in Registry, accounting for 50.3% onsets called by the rater, the 

remaining 49.7% of onsets were mixed or non-motor. The clinician called psychiatric and 

mixed onset types more frequently than the participant or family. 

 

 

 

 

Figure 3.1: HD onset types observed in Registry. Types of onset (first symptom 

experienced) called by the clinical rater (red), family (blue) and participant (green) in 

Registry. Rater N=6855; family N=6336; participant N=6365. 
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In addition to differences between the rater, family and participant, the age at which onset 

occurs also heavily influences the first symptom experienced (Fig. 3.2). Juvenile HD (JHD) 

participants (0-20 years) have substantially fewer purely motoric onsets compared to older 

groups; the oldest onset group, 60-80 years, have motor onset in over two thirds of cases. 

Cognitive onset is almost three times more likely in JHD cases than any other age group, 

and both psychiatric and mixed onset types are also more likely in JHD. Psychiatric onset 

was called at similar levels both in the JHD and 20-40 age groups. Similar patterns emerge 

between the clinician, family and participant between different age groups. 

 

The second onset estimate from Registry derives from the clinical characteristics 

questionnaire (CCQ), a retrospective questionnaire completed with the clinician, HD 

participant and any family present. The CCQ describes the first time a participant has 

experienced a range of different symptoms including motor, apathy and depressive 

symptoms (see methods Table 2.2). It is notable that, unlike the rater’s estimate of onset, 

CCQ does not only describe symptoms exclusively caused by HD. Thus, the CCQ can 

describe symptoms experienced any point in a participant’s life before or after clinical 

diagnosis of HD. This is especially the case for symptoms such as depression which occur 

at high rates in the general population, making interpretation of the CCQ more difficult. 

Nonetheless, sxrater itself is quite limited as it only records the first HD symptom onset for 

each individual, and neglects all later symptoms experienced. We were therefore interested 

in (1) determining how similar sxrater and CCQ symptom onsets were and (2) if it was 

possible to use CCQ in conjunction with sxrater for determination of onset across 

symptomatic domains.
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Figure 3.2: HD onset type by age at onset in Registry. The onset types (i.e. the first symptom HD patients experienced) as called by the 

clinician/rater are shown across four age ranges: 0-20 (red; N=229), 20-40 (blue; N=2454), 40-60 (green; N=3515) and 60-80 (purple; N=612) 

years. Total N=6810. 
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3.2.2 Rater’s estimate of HD onset 

Initially, we wanted to calculate ages at onset determined by the clinical rater, regardless of 

the onset type. These types of combinatorial approaches to determining ages at onset have 

been used elsewhere (Illarioshkin et al., 1994; Pekmezovic et al., 2007; Rinaldi et al., 2012), 

albeit often using different methodologies. Summaries for these analyses can be found in 

Table 3.1. The mean HD onset was 43.73 years (standard deviation (SD) = 12.50 years). 

CAG N Mean/yr Median/yr Max/yr Min/yr SD/yr 

36 11 55.67 57.91 78.92 35.42 14.47 

37 28 56.81 55.00 73.91 39.00 9.30 

38 53 55.38 53.25 84.33 34.00 11.50 

39 159 56.16 56.33 84.41 20.42 11.54 

40 425 57.18 57.92 86.00 16.67 10.06 

41 723 53.48 54.25 78.91 12.42 9.65 

42 970 49.95 50.58 74.75 13.25 8.64 

43 855 46.15 46.67 75.00 14.92 7.97 

44 726 43.05 43.17 67.08 18.00 7.63 

45 562 40.21 40.17 58.83 15.41 6.92 

46 429 37.48 37.41 67.25 7.50 6.90 

47 348 35.50 35.33 64.00 10.75 7.01 

48 228 33.29 32.71 71.00 16.17 7.19 

49 179 32.04 31.08 68.33 8.91 7.39 

50 145 29.81 29.59 62.42 13.59 7.41 

51 91 28.20 27.92 44.08 12.33 5.83 

52 76 25.91 25.29 49.42 6.41 6.94 

53 51 25.45 24.75 40.50 16.33 5.47 

54 35 24.94 25.83 37.42 11.59 5.12 

55 39 24.99 24.41 38.59 15.84 5.35 

56 23 22.55 22.08 30.92 15.75 3.76 

57 15 22.73 21.66 45.58 13.92 7.59 

58 15 22.12 22.00 41.50 6.92 8.64 

59 15 20.39 20.41 30.67 5.17 6.22 

60 13 20.96 18.25 33.83 15.33 5.81 

61 7 21.55 20.59 31.42 17.08 4.98 

62 10 16.60 16.30 24.75 7.92 4.82 

63 10 16.57 15.38 28.25 10.84 5.32 

64 11 17.45 17.34 26.25 12.75 4.10 

65 7 11.12 10.75 15.75 4.58 3.64 

66-70 20 15.14 15.21 21.75 7.92 3.89 

71-75 9 12.61 7.42 50.51 4.25 14.50 

76-80 9 8.17 6.50 24.84 2.75 6.74 

>80 7 6.28 6.17 9.83 3.25 2.36 

Table 3.1: Onset summaries by CAG (general onset). General onsets (as determined by 

the rater (sxrater)) are shown. Mean, median, maximum (Max), minimum (Min) and SD are 

given as years. >65 CAGs have been grouped to avoid identification. SD: Standard deviation
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3.2.3 Motor onset derivation (best-estimate) 

After calculating ages at onset using the clinician’s estimate of onset (sxrater), we wanted to 

explore specific onset types using both CCQ and sxrater. To calculate an age at motor onset 

(AMO), the sxrater for motoric onset (motor or oculomotor) was compared to the motor CCQ 

to derive a ‘best-estimate’ using the two measures (Fig. 3.3A) – a ≤2y difference was 

tolerated to account for age estimation. The motor sxrater and CCQ were concordant in 

2680 of 2917 cases (91.9%). Discrepancies occurred equally in both directions, with 118 

having an earlier motor CCQ and 119 having an earlier sxrater. Onset was resolved through 

manual curation for 158 individuals (see methods 2.2), resulting in 97.3% of cases with an 

estimate for AMO. This process was repeated where onset was mixed. In this case, only 787 

of 987 participants (79.7%) had ≤2y difference between the mixed sxrater and motor CCQ 

(Fig. 3.3B). 164 individuals had an earlier sxrater and only 36 had an earlier motor CCQ. 

Although mixed onset often describes motor symptoms in combination with at least one 

other symptom, upon investigation we found most discrepant individuals with an earlier 

sxrater likely had a mixed psychiatric onset phenotype. For these cases, motor CCQ was 

used for AMO estimation. 172 participants with inconsistent motor onset estimates were 

subsequently resolved leaving 97.2% with an AMO estimate. 

 

Overall, the motor CCQ agreed with sxrater data where onset was motor, oculomotor or 

mixed in most cases (~90%), and using a combination of both sxrater and CCQ (i.e. best-

estimate) resulted in AMO estimates for more individuals (>95%). A best-estimate AMO was 

then calculated for as many individuals as possible for whom at least either motor CCQ or 

motor sxrater was available. 6832 participants available had enough data to calculate AMO 

before quality control (QC) (Fig. 3.4A). Discrepant data were curated as before and those 

with irresolvable AMO estimates were removed, leaving 6704 participants with an AMO 

estimate (Fig. 3.4B). The mean AMO for Registry was 44.95 years (SD = 12.47 years). 

Motor onset ranged from 3 to 87 years. 

 

Of the participants with an AMO, 6520 had CAG information. Plotting AMO against CAG 

shows the expected inverse correlation (Fig. 3.4C; summarised in Table 3.2). As CAG length 

increases, generally both the mean AMO and SD decrease (see Fig. 3.4D). Each additional 

CAG from 40 repeats confers ~2.5-3.5 years earlier onset, although this varies depending on 

CAG length, and larger CAGs have smaller differences between onsets. On an individual 

level there still exists a large variability between individuals at the same CAG length. CAGs 

with partial disease penetrance (36-39 CAGs) have very high SDs, although the numbers of 

these individuals were quite small. The modal CAG length for Registry was 42 and the 

median CAG was 43 for CAGs ≥36.
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Figure 3.3: Comparison of sxrater and CCQ for motor HD onset. Black circles show 

participants where the motor CCQ and sxrater are ≤2 years different. The dotted red lines 

delineate individuals lying outside the ≤2 year range, shown as coloured dots. Blue dots 

indicate individuals where a best-estimate AMO could be resolved despite the discrepancy, 

whereas red dots are individuals where AMO proved impossible to estimate with sufficient 

accuracy. Motor and oculomotor onset types (sxraterm 1 or 4) are shown in (A), N=2917; 

mixed onset types (sxraterm 6) are shown in (B), N=987. In (A), 39 with earlier sxrater and 

40 with earlier motor CCQ could not be resolved. In (B), 12 with earlier sxrater and 16 with 

earlier motor CCQ could not be resolved.

A 

B 
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Figure 3.4: Motor onset in Registry across different ages and CAG repeat lengths. Indicated in (A) and (B) are the motor onset 

distributions in Registry before and after quality control (see Fig. 3.3), respectively (N=6832 and N=6701). Ages at onset calculated from (B) are 

then plotted against CAG length, where possible, for CAGs 36-60 in plot (C), N=6520. The points have been jittered to improve data point 

visibility. (D) shows the AMO distribution for CAGs 42, 44, 46 and 48.

A B 

C D 
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CAG N Mean/yr Median/yr Max/yr Min/yr SD/yr 

36 10 55.36 58.79 78.00 35.42 15.08 

37 28 57.39 56.00 73.91 39.00 9.29 

38 55 57.34 56.17 84.00 35.00 11.03 

39 173 57.28 57.25 84.41 23.00 10.82 

40 459 58.14 59.16 86.00 5.00 9.78 

41 767 54.79 55.17 78.91 25.00 8.87 

42 1016 51.13 51.88 74.75 6.00 8.10 

43 887 47.27 47.67 77.00 21.17 7.67 

44 737 44.36 44.50 67.08 20.17 7.04 

45 573 40.98 41.00 63.00 15.41 6.95 

46 441 38.41 38.00 67.25 7.50 6.99 

47 359 36.35 36.00 64.00 15.00 7.05 

48 231 34.25 33.08 71.00 17.25 7.15 

49 180 32.83 32.21 68.33 12.00 7.43 

50 143 30.99 30.42 64.00 17.67 6.77 

51 93 29.28 29.00 41.00 19.08 4.76 

52 70 27.24 27.71 53.00 6.41 6.76 

53 52 26.42 25.96 49.00 17.00 5.67 

54 36 26.17 25.88 37.42 17.17 4.33 

55 41 25.10 25.50 38.59 15.84 5.50 

56 23 23.56 22.83 32.00 15.75 4.33 

57 14 23.63 21.75 45.58 16.00 7.26 

58 15 23.63 22.00 41.50 14.00 7.26 

59 16 22.62 23.04 30.67 12.42 4.45 

60 12 21.56 21.12 33.83 16.00 5.87 

61 7 21.63 20.59 32.00 17.08 5.17 

62 11 18.31 18.00 24.75 13.00 3.70 

63 11 15.76 14.25 28.25 8.00 5.69 

64 10 17.97 17.75 25.00 13.33 3.64 

65 7 11.56 14.33 15.75 4.58 4.66 

66-70 20 15.96 15.63 21.75 12.00 3.01 

71-75 8 15.04 9.79 50.51 4.25 14.82 

76-80 8 11.47 7.00 50.00 2.75 15.75 

>80 7 7.30 8.00 10.00 4.00 2.15 
 

Table 3.2: Age at motor onset summary statistics. Mean, median, maximum (Max), 

minimum (Min) and SD are given as years. CAGs larger than 65 have been grouped to avoid 

identification. N=6520. SD: Standard deviation.
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3.2.4 Cognitive onset determination (best-estimate) 

We employed a similar strategy for deriving best-estimate age at cognitive onset (ACO). As 

before, we first wanted to assess how well the cognitive CCQ tracked the rater’s estimate for 

cognitive onset. We examined individuals where onset was classed as cognitive by the rater, 

although this reduced the number of participants substantially as only 8.2% had cognitive 

onset as the first HD symptom. Cognitive CCQ and sxrater were the same (≤2 years 

different) in 285 of 373 cases (76.4%; Fig. 3.5). Discrepant data occurred unevenly with 77 

having an earlier sxrater and only 11 having an earlier cognitive CCQ. 78 of these discrepant 

cases were resolved, many by simply using the CCQ for cognitive symptoms when this was 

concordant with other CCQ data (see methods 2.2), giving an ACO for 97.3% of cases. 

 

Overall, the sxrater and cognitive CCQ did not track as well for ACO estimation (i.e. >2 year 

difference in more cases) as they did for motor symptoms. Notably, sxrater tended to be 

slightly earlier than cognitive CCQ. Despite this, ACO estimates from CCQ/sxrater were still 

within 2 years in approximately three quarters of cases. ACOs were then calculated for every 

individual possible, with most estimates using cognitive CCQ. 3853 individuals had ACOs 

before QC and 3788 following QC (Fig. 3.6A and 3.6B). Plotting these gives a near-normal 

distribution as before (SD = 13.53 after QC), although with a broader distribution than seen 

with AMO. Mean ACO was 47.1 years. CAG length data was available for N=3552 between 

CAG 36-60 (Fig. 3.6C); a summary is available in Table 3.3. 

 

Figure 3.5: Comparison of sxrater and CCQ for cognitive HD onset. Indicated by black 

circles are participants where cognitive sxrater and CCQ are ≤2 years of each other. 

Coloured dots lying outside the dashed red lines indicate a >2 year difference. Blue dots 

were participants where an ACO was possible to calculate, whereas red dots were 

individuals excluded from the analysis. N=373 (only individuals with cognitive HD onset). 6 

individuals with an earlier sxrater and 4 with an earlier CCQ couldn’t be resolved.
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Figure 3.6: Cognitive onset in Registry across different ages and CAG repeat lengths. (A) and (B) show frequency distributions of ACO 

across age ranges before and after QC, respectively (N=3853 and N=3788). The ACO is plotted against CAG length for CAGs 36-60 in (C), 

N=3552.

A B 

C 



78 
 

CAG N Mean/yr Median/yr Max/yr Min/yr SD/yr 

36 6 66.15 70.00 78.92 46.00 12.40 

37 10 58.20 60.50 70.00 40.00 10.12 

38 29 59.57 57.00 82.00 36.00 11.88 

39 93 60.22 60.00 86.00 37.00 10.43 

40 234 61.64 62.29 85.00 35.00 10.56 

41 397 57.36 58.00 84.00 14.00 10.29 

42 557 54.19 55.00 79.00 16.91 8.70 

43 503 50.21 50.00 76.00 14.00 9.00 

44 420 47.02 47.00 75.00 0.33 8.78 

45 297 44.00 44.00 68.00 4.00 8.70 

46 243 41.38 41.00 63.00 13.00 7.37 

47 219 39.10 39.00 71.00 14.34 7.45 

48 133 36.58 36.00 68.00 0.08 8.68 

49 107 35.19 35.00 69.00 8.91 8.63 

50 78 34.68 33.46 68.00 16.33 7.96 

51 52 31.82 31.00 44.08 10.00 6.89 

52 43 29.49 30.00 45.00 14.00 6.82 

53 32 28.12 28.00 47.00 7.00 7.67 

54 16 25.39 24.83 41.00 11.59 7.34 

55 27 28.68 27.00 48.00 16.00 7.75 

56 18 25.75 25.71 33.00 17.75 4.29 

57 11 25.27 22.00 54.00 14.00 10.96 

58 8 23.61 22.50 41.00 6.92 10.67 

59 12 22.60 23.00 31.00 5.17 6.30 

60 7 19.54 18.25 31.00 6.00 7.60 

61 3 27.33 24.00 38.00 20.00 9.45 

62 7 17.42 17.00 27.00 7.92 6.26 

63 6 16.22 16.00 24.00 10.00 5.38 

64 7 17.71 18.25 21.00 12.75 3.22 

65 3 12.58 13.00 14.00 10.75 1.67 

66-70 15 16.91 16.00 25.00 10.08 4.60 

71-75 6 7.67 8.00 10.00 5.00 1.66 

76-80 7 14.95 7.00 59.00 6.00 19.49 

>80 6 6.47 6.96 10.00 3.00 2.60 

Table 3.3: Age at cognitive onset summary statistics. Mean, median, maximum, 

minimum and SD are given as years. Very large CAGs have been grouped together to avoid 

identifying data. N=3612. SD: Standard deviation.
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3.2.5 Psychiatric onset determination (best-estimate) 

Best-estimate age at psychiatric onset (APO) was calculated differently than AMO and ACO. 

Firstly, CCQ for psychiatric and behavioural symptoms is split into six separate symptoms: 

apathy (APT), depression (DEP), irritability (IRB), violent or aggressive behaviour (VAB), 

perseverative or obsessive behaviour (POB) and psychosis (PSY). In contrast, the sxrater 

does not distinguish between specific psychiatric/behavioural phenotypes in psychiatric 

onset types. We first wanted to derive an onset for the first psychiatric/behavioural symptom 

experienced, regardless of specific phenotype, to be equivalent to the best-estimate 

AMO/ACO measures previously calculated. Plotting these data shows that, as expected, 

psychiatric CCQ data are often earlier than the sxrater’s estimate for APO where onset was 

classed as psychiatric (Fig. 3.7A). This is likely due to the CCQ capturing symptoms 

occurring earlier in an individual’s life, which may or may not be related HD pathology. 

Calculating the age when the first psychiatric symptom was experienced (Fig. 3.7B) for the 

entire dataset (using the earliest of psychiatric sxrater or psychiatric CCQ) results in slight 

negative skew (skew = -0.060), although with a pronounced incidence of psychiatric 

symptoms around 15-25 years. The mean and SD were 41.88 and 14.13 years, respectively. 

 

 

Figure 3.7: Initial APO estimation (before adjustment with sxrater). (A) Psychiatric 

sxrater and the age of the first psychiatric CCQ symptom. The dashed red line indicates a >2 

year between sxrater and CCQ. Only individuals with psychiatric onset types are included, 

N=1285. (B) shows the distribution of individuals using the age at first psychiatric onset, 

either sxrater or psychiatric CCQ, whichever is earliest. N=6179. 

B 

A 
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Trying to disentangle which psychiatric symptoms are part of HD pathology and which are 

from other psychiatric disorders is very difficult and is discussed in more detail later (3.8.3). 

For our purposes, we used the first psychiatric symptom which occurred <2 years earlier or 

at any time later than sxrater, to select for symptoms occurring around or after HD diagnosis 

only. For individuals where sxrater was earliest and onset type psychiatric, this was instead 

used. Adjusting for these data result in a more normal Gaussian function (skew = -0.052) 

with a mean APO at 45.39 years and SD of 12.84 years (Fig. 3.8A). Again, plotting onsets 

against CAG lengths produces a graph with an inverse correlation (Fig. 3.8B). A full 

summary by CAG length is available in Table 3.4. 

 

  

  

Figure 3.8: Initial APO estimation (after adjustment with sxrater). (A) Distribution of first 

psychiatric symptom after adjustment for sxrater (only using CCQ data ≤2 years earlier than 

sxrater); N=4836. (B) Age at first psychiatric after adjusting for sxrater across 36-60 CAGs; 

N=4563.

A 

B 
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CAG N Mean/yr Median/yr Max/yr Min/yr SD/yr 

36 9 61.66 66.00 88.00 37.00 16.55 

37 22 58.22 57.50 83.00 40.50 10.64 

38 35 52.90 52.00 80.00 34.00 10.34 

39 117 56.18 56.08 81.00 20.42 11.70 

40 302 58.86 59.34 85.00 16.67 10.83 

41 527 54.71 56.00 81.00 12.00 10.41 

42 722 51.60 52.00 90.00 13.25 9.70 

43 634 47.95 48.00 80.00 14.92 9.26 

44 539 44.75 45.00 74.00 18.00 8.47 

45 421 42.13 42.00 60.00 18.00 7.32 

46 322 39.21 39.00 69.00 17.00 7.49 

47 267 36.97 37.00 71.00 10.75 7.72 

48 158 34.97 34.92 71.00 16.17 7.32 

49 130 34.28 34.00 69.00 9.00 7.91 

50 102 31.57 30.00 67.00 13.59 8.77 

51 66 29.30 29.00 43.00 13.00 6.31 

52 52 27.71 26.84 49.42 12.00 7.81 

53 33 27.64 27.00 45.00 17.00 6.76 

54 23 27.71 28.00 46.00 18.00 6.46 

55 27 26.11 25.00 40.00 17.00 6.23 

56 16 23.46 23.00 31.00 19.00 3.81 

57 8 24.78 20.83 54.00 15.09 12.70 

58 12 23.46 22.71 41.00 10.00 8.32 

59 11 20.36 19.42 30.00 10.00 5.73 

60 8 21.91 22.50 32.00 15.33 5.54 

61 3 26.14 24.00 31.42 23.00 4.60 

62 7 16.86 17.00 21.00 12.00 2.90 

63 5 18.60 21.00 23.00 12.00 4.51 

64 10 17.48 15.76 26.25 13.00 4.75 

65 5 13.70 13.00 16.00 12.00 1.72 

66-70 13 18.08 19.00 27.00 10.58 4.77 

71-75 6 11.22 12.00 17.00 6.00 4.49 

76-80 7 8.69 7.00 24.84 3.00 7.49 

>80 6 8.50 8.50 14.00 3.00 3.83 

Table 3.4: Age at first psychiatric symptom summary statistics. Mean, median, 

maximum (Max), minimum (Min) and SD are given as years. Very large CAGs have been 

grouped together to avoid identifying data. N=4625. SD: Standard deviation.
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3.3 Deriving symptom onset using the CCQ 

3.3.1 Adjusting CCQ for earlier symptom onset 

The CCQ holds more descriptive data than sxrater as (1) data are available regardless of 

onset type, and (2) CCQ captures different psychiatric phenotypes. Simply using CCQ 

without any modification (Fig. 3.9) results in negative skew (longer left-hand tails) for all 

psychiatric symptoms, especially between 15-25 years of age. This effect is particularly 

pronounced for perseveration (-0.34 skew), VAB (-0.14) and psychosis (-0.28). Apathy has a 

more symmetrical distribution (-0.11 skew) and the lowest standard deviation (13.58 years). 

Depression has the smallest skew of all the symptoms (-0.024), the second lowest standard 

deviation (13.60 years) and the earliest symptom onset (42.06 years). A breakdown by CAG 

length is available in Appendix 1.  

 

Symptom N Mean/yr Median/yr SD/yr 

MTR 6324 44.92 45 12.50 

COG 3692 47.27 48 13.61 

APT 3413 46.92 47 13.58 

DEP 4528 42.06 42 13.60 

POB 2325 46.44 47 14.02 

IRB 4018 43.97 44 13.80 

VAB 2062 43.42 44 14.62 

PSY 762 46.46 47 13.99 

Figure 3.9: Distribution of psychiatric symptoms in Registry (before sxrater 

adjustment). Mean, median and SD are given as years. MTR: Motor (N=6324); COG: 

cognitive (N=3692); APT: apathy (N=3413); DEP: depression (N=4528); POB: perseverative/ 

obsessive behaviour (N=2325); IRB: irritability (N=4018); VAB: violent/aggressive behaviour 

(N=2082); PSY: psychosis (N=762).
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As already observed, CCQ can capture bias from symptoms potentially unrelated to actual 

HD pathogenesis, especially for depression, which has a ~10% lifetime prevalence in the 

general population (Salk et al., 2017; Lim et al., 2018), and psychosis, which has a ~0.5-

0.8% lifetime prevalence (Messias et al., 2007; Moreno-Küstner et al., 2018). To partially 

overcome this limitation, we implemented a similar methodology to APO estimation where 

CCQ data would be removed if it occurred much earlier than the sxrater. Figure 3.10 shows 

2, 5 and 10 year cut-offs and how they affect which data are kept or removed for each 

symptom. A breakdown for each CAG for the three cut-offs is available in Appendix 1. The 

most stringent (≤2 year) cut-off was chosen to minimise symptoms occurring that may be 

unrelated to HD pathology, although this cut-off probably removes useful data (i.e. 

symptoms occurring before motor onset due to HD) as well; the limitations of this approach 

are discussed later (3.8.3). 

 

As shown in Fig. 3.11, adjusting for sxrater using a 2 year cut-off produces more normally 

distributed psychiatric onset data, and for all phenotypes decreased the SD and increased 

the average onset (between 0.2 to 3.8 years later). Motor and cognitive symptoms are the 

most unchanged symptom following adjustment by sxrater. Mean apathy symptom onset is 

the most unchanged of the psychiatric/behavioural symptoms following adjustment (1.43 

years later). Again, this is likely as apathy innately captures more HD-specific pathology. In 

contrast, average depression onset is the most changed following modification using the 2 

year sxrater cut-off (3.82 years later), reflecting that many individuals had depressive 

symptoms before HD onset, although it is unclear whether these depression symptoms are 

due to HD pathology ahead of onset or for other unrelated reasons. Despite the sxrater 

modification of the CCQ, depression is still the earliest psychiatric symptom experienced by 

most HD patients. Comparatively, irritability and VAB occur on average half a year later than 

depression symptoms with apathy, perseveration/obsessive behaviour (POB) and psychosis 

occurring the latest. Looking across CAG lengths (Appendix 1), psychosis in particular has 

substantial variability across CAG length, especially for larger CAGs (~50+ CAGs) – it is 

unclear whether this is a true effect or simply due to small sample size. 
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Figure 3.10: Comparing onset estimation between sxrater and CCQ. The red, green and blue dashed lines show the 2, 5 and 10 year 

CCQ/sxrater cut-offs, respectively, with the x-axis showing CCQ-Sxrater difference (in years). 0 on the graph represents the clinician’s estimate 

of onset (sxrater). MTR: Motor; COG: cognitive; APT: apathy; DEP: depression; POB: perseverative/obsessive behaviour; IRB: irritability; VAB: 

violent/aggressive behaviour; PSY: psychosis. Axis limited to -25y and 20y which removed MTR (32), COG (54), APT (40), DEP (70), POB 

(51), IRB (38), VAB (34), PSY (22). Individuals had to have a CCQ age at onset, sxrater and a known CAG length 36-99.
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  Symptom N Mean/yr Median/yr SD/yr   Symptom N Mean/yr Median/yr SD/yr   

 MTR 5471 45.13 45 12.22  POB 1940 48.34 49 12.63  

 COG 3271 47.84 48 13.21  IRB 3029 46.30 46 12.75  

 APT 2815 48.35 49 12.97  VAB 1566 46.18 46 13.29  
  DEP 2984 45.88 46 12.22   PSY 627 48.36 49 12.95   

Figure 3.11: Distribution of psychiatric symptoms in Registry (after sxrater adjustment). CCQ data plotted following adjustment with 

sxrater, which removes any CCQ data that is >2 years earlier than sxrater, with summary statistics in the table (mean, median and SD given as 

years). MTR: Motor (N=5471); COG: cognitive (N=3271); APT: apathy (N=2815); DEP: depression (N=2984); POB: perseverative/obsessive 

behaviour (N=1940); IRB: irritability (N=3029); VAB: violent/aggressive behaviour (N=1566); PSY: psychosis (N=627).
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3.3.2 The relationship between age at onset of different symptoms 

We next wanted to examine whether there were sex-dependent differences in symptom 

ages at onset. To do so, generalised linear models (GLMs) were constructed for each 

symptom onset regressing sex on CCQ onset data before and after sxrater adjustment 

(Table in Fig. 3.12). Using unadjusted CCQ data shows only depression has a significant 

difference between males and females after multiple testing correction (p=6.97E-08; 

p<6.25E-03 Bonferroni p-value threshold); POB has nominal significance. This is illustrated 

in Fig. 3.12A which shows a mean 2.52 year difference between males and females for 

depression and 1.49 years for POB. Following adjustment of CCQ data using the sxrater, 

however, no symptom remains significant for sex. Hence sex differences in depression onset 

are likely driven by earlier onset depression in some women, and this fits with general 

population observations (Salk et al., 2017). 

 

Correlation matrices were produced using a pairwise deletion method for males and females 

using sxrater adjusted and unadjusted CCQ data. Pairwise deletion minimises loss of data 

caused by missingness, and only removes missing data in the model being evaluated. All 

correlations were very high (0.75-0.97) as the differences in ages at different symptom 

onsets were often small. Starting with the correlations for unadjusted data (Fig. 3.13A-B), the 

lowest association is between POB and depression for females, likely reflecting that (1) 

perseveration typically occurs later in disease course and (2) depression is common in 

women in the general population. Depression correlates more highly with other symptom 

onsets in male unadjusted data. Irritability and VAB have the highest correlations with each 

other, which is unsurprising given VAB could be an extreme manifestation of irritability. 

Furthermore, cognitive, apathy and motor symptoms also have high inter-symptom 

correlations, likely as these are more distinct to HD or related to the same degenerative 

pathology. This observation mirrors what was seen in the symptom distribution data. 

 

Applying the <2 year sxrater cut-off (Fig. 3.13C-D) unsurprisingly increases the correlation 

between all symptoms. Psychosis, and to a lesser degree depression, however, are the least 

associated with other symptoms. The association between irritability and VAB ages at onset 

is extremely high (0.96-0.97), and the motor/apathy/cognitive triad association remains high. 

Adjusting for different sxrater cut-offs (2, 5 and 10 years, see Appendix 2) does not greatly 

modify the correlations observed, although correlations are slightly lowered at less stringent 

cut-offs. This indicates CCQ data driving the significant sex differences in depression and 

POB onset before sxrater adjustment probably occur much earlier than HD onset (i.e. >10 

years earlier). 



87 
 

   

    GLM(Sex~CCQ_raw+CAG)   GLM(Sex~CCQ_adj+CAG)   

    CCQ_raw CAG   CCQ_adj CAG   

MTR  2.59E-01 8.73E-02  3.47E-01 9.09E-02  
COG  2.76E-01 1.67E-01  5.16E-01 2.82E-01  
APT  5.14E-02 9.59E-01  2.19E-01 5.40E-01  
DEP  6.97E-08 6.38E-01  3.02E-01 1.11E-01  
POB  4.38E-02 9.49E-01  3.59E-01 5.53E-01  
IRB  6.46E-01 3.43E-02  8.95E-01 2.65E-02  
VAB  5.60E-01 1.78E-01  6.57E-01 1.38E-01  
PSY   4.73E-01 3.34E-01   9.87E-01 6.06E-01   

Figure 3.12: Sex differences for ages at onset for symptoms in Registry. (A) Before adjustment with sxrater (CCQ_raw); (B) after 

adjustment with sxrater (2 year cut-off) (CCQ_adj). Unadjusted data in the table refers to raw CCQ data; adjusted data uses an sxrater 

adjustment (2 year cut-off). Significant values are emboldened; nominally significant values are italicised. MTR: Motor; COG: cognitive; APT: 

apathy; DEP: depression; POB: perseverative/obsessive behaviour; IRB: irritability; VAB: violent/aggressive behaviour; PSY: psychosis.

A B 
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Figure 3.13: Correlation plots for ages at onset comparing between sexes. (A and B) 

Correlation matrices for unadjusted CCQ symptoms for males (A) and females (B). (C and 

D) Correlation matrices for adjusted CCQ symptoms (2 year cut-off) for men (C) and women 

(D). Total male N=4140; total female N=4753. See Appendix 2 for more sxrater cut-offs. 

MTR: Motor; COG: cognitive; APT: apathy; DEP: depression; POB: perseverative/ obsessive 

behaviour; IRB: irritability; VAB: violent/aggressive behaviour; PSY: psychosis.

A B 

C D 
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3.4 Symptom prevalence in HD  

3.4.1 Initial modelling of symptom prevalence 

Having calculated ages at onset for motor, cognitive and psychiatric/behavioural domains 

using the CCQ, we were next interested in investigating how variables such as sex and the 

duration of the disease affected symptom prevalence in HD. In doing so, we also wanted to 

further investigate the degree to which CCQ captures symptoms occurring outside of HD 

disease course, especially for irritability, VAB and depression.  

 

CCQ binary responses (0 = no symptom reported, 1 = symptom experienced at some point 

in life) were used for all individuals for whom sxrater data was available. Both unadjusted 

and sxrater adjusted CCQ data were used (adjusted data removed CCQ observations 

occurring >2 years earlier than sxrater). Initially, we investigated the frequency of all eight 

symptoms in Registry (Table 3.5). Motor symptoms were by far the most common in 

Registry, with >98% of all symptomatic participants having a positive response for motor 

symptoms. The least common symptom was psychosis, with 10.9% of individuals reporting 

having experienced psychotic symptoms during their HD disease course. Women had ~10% 

higher prevalence of depression symptoms compared with men, even after removing people 

with depression onset >2 years earlier than sxrater. A simple chi-square test shows this 

difference is highly significant (before adjustment p=7.67E-21; after sxrater adjustment 

p=2.44E-14). Furthermore, both irritability and VAB were found to have significantly higher 

prevalence in in men both before (chi-square, p=2.88E-06 irritability; p=3.35E-10 VAB) and 

after adjustment (chi-square p=5.64E-05 irritability; p=3.76E-08 VAB). 

 

There is a small (non-significant) difference in CAG length between males and females in 

Registry (CAG mean = 44.08 males vs 44.14 females; p=0.573, Welch two sample t-test). 

To account for potential confounders and investigate both the direction and size of effect, 

binary CCQ symptoms were used to construct multivariate logistic generalised linear 

regression models. GLMs allow for possible confounders to be included as covariates. We 

included CAG length, HD onset age (defined by the clinical rater (sxrater), regardless of 

onset type) and disease duration as covariates in the first set of models. Disease duration 

was available for many participants (N>4500) and was used an approximation for disease 

stage (see 2.3.1 for calculation). Only manifest individuals with a known sxrater were 

included. The outputs of these models are shown in Table 3.6-3.7.  
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Note that as most manifest HD individuals in Registry reported a positive motor CCQ (~98-

99%), the motor models are predicated on a small number of individuals who reported no 

motor symptoms (~1%). This is demonstrated by the (hugely) inflated standardised 

coefficients (β coefficients), and consequently limits the usefulness of the motor models. All 

symptoms are significantly associated with disease duration, and this observation is 

especially true for cognitive impairment. The association with disease duration becomes 

stronger after sxrater adjustment in all cases. Presumably this association is capturing that 

the longer an individual has HD, the more likely they are to experience any given symptom. 

Sex remains significantly associated with symptom prevalence for depression, irritability and 

VAB in the GLMs at a similar significance level. Interestingly, depression, irritability and VAB 

are all associated with earlier onsets (sxrater), suggesting that these psychiatric symptoms 

have a higher prevalence in younger HD adult individuals. This observation is similar to that 

seen with symptom onset type in 3.2.1. Finally, CAG length also is associated with symptom 

prevalence for cognitive impairment, depression and irritability. However, for cognitive 

symptoms CAG length is positively associated (i.e. a larger CAG is associated with a higher 

log odds ratio) and for depression/irritability it is negatively associated.
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  Males  Females   

A   Y N Unknown Freq.   Y N Unknown Freq.   Chi-Square 

MTR  2768 30 369 98.93%  2943 28 353 99.06%  6.22E-01 

COG  1633 1162 372 58.43%  1742 1220 362 58.81%  7.66E-01 

APT  1497 1297 373 53.58%  1542 1414 368 52.17%  2.83E-01 

DEP  1631 1165 371 58.33%  2080 885 359 70.15%  7.67E-21 

POB  1034 1760 373 37.01%  1076 1882 366 36.38%  6.19E-01 

IRB  1759 1032 376 63.02%  1687 1274 363 56.97%  
2.88E-06 

VAB  978 1817 372 34.99%  810 2154 360 27.33%  3.35E-10 

PSY   331 2462 374 11.85%   337 2624 363 11.38%   5.78E-01 

 

    Males   Females     

 B   Y N Missing Filtered Unknown Freq.   Y N Missing Filtered Unknown Freq.   Chi-Square 

MTR  2638 30 27 103 369 98.88%  2798 28 29 116 353 99.01%  6.28E-01 

COG  1547 1162 40 46 372 57.11%  1655 1220 47 40 362 57.57%  7.29E-01 

APT  1394 1297 36 67 373 51.80%  1420 1414 35 87 368 50.11%  2.07E-01 

DEP  1368 1165 32 231 371 54.01%  1613 885 33 434 359 64.57%  2.44E-14 

POB  950 1760 30 54 373 35.06%  988 1882 24 64 366 34.43%  6.21E-01 

IRB  1523 1032 38 198 376 59.61%  1504 1274 34 149 363 54.14%  5.64E-05 

VAB  845 1817 19 114 372 31.74%  721 2154 17 72 360 25.08%  3.76E-08 

PSY   308 2462 7 16 374 11.12%   317 2624 8 12 363 10.78%   6.80E-01 
 

Table 3.5: Prevalence of HD symptoms in men and women. CCQ data before (A) and after (B) adjustment with sxrater (>2 year cut-off), 

using binarily coded CCQ data (0 = no symptom, 1 = symptom experienced). Significant p-values are emboldened (p<6.25E-03). Only 

individuals with an sxrater are included, and this includes all CAG lengths. MTR: Motor; COG: cognitive; APT: apathy; DEP: depression; POB: 

perseverative/obsessive behaviour; IRB: irritability; VAB: violent/aggressive behaviour; PSY: psychosis. Response abbreviations: Y: Yes 

(symptom experienced); N: No (symptom not experienced); Missing (in (B)): Some data missing (e.g. sxrater or CCQ age); Filtered (in (B)): 

CCQ age occurred >2 years earlier than sxrater; Unknown: No response (blank).
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 MTR (N=4624)  COG (N=4615)  APT (N=4609)   
 B β SE p  B β SE p  B β SE p  

Sex 0.002 0.014 0.337 9.94E-01  -0.038 -0.038 0.061 5.37E-01  0.026 0.026 0.060 6.61E-01  

CAG 0.382 19.402 0.058 4.99E-11  0.045 0.423 0.010 1.37E-05  -0.002 -0.017 0.009 8.44E-01  

Duration 0.085 5.472 0.026 1.23E-03  0.089 1.046 0.006 6.53E-47  0.053 0.610 0.006 9.37E-21  

Onset 0.167 23.057 0.019 4.12E-18  0.006 0.148 0.004 1.08E-01  -0.003 -0.086 0.003 3.20E-01  
 

 DEP (N=4618)  POB (N=4612)  IRB (N=4610)  
 B β SE p  B β SE p  B β SE p  

Sex -0.589 -0.617 0.063 1.47E-20  -0.017 -0.018 0.063 7.86E-01  0.285 0.290 0.061 2.82E-06  

CAG -0.079 -0.761 0.010 1.05E-14  0.019 0.182 0.010 4.96E-02  -0.040 -0.376 0.010 2.49E-05  

Duration 0.040 0.487 0.006 5.04E-11  0.058 0.705 0.006 7.04E-25  0.030 0.357 0.006 8.79E-08  

Onset -0.026 -0.684 0.004 2.77E-12  -0.001 -0.026 0.004 7.85E-01  -0.019 -0.470 0.004 1.84E-07  
 

 VAB (N=4615)  PSY (N=4613)   
 B β SE p  B β SE p   

Sex 0.410 0.445 0.065 3.36E-10  0.044 0.069 0.094 6.43E-01  

CAG -0.007 -0.073 0.010 4.63E-01  -0.002 -0.026 0.014 8.98E-01  

Duration 0.053 0.666 0.006 2.64E-20  0.073 1.328 0.007 1.79E-22  

Onset -0.018 -0.477 0.004 3.95E-06  -0.007 -0.260 0.005 2.23E-01  

 

Table 3.6: Unadjusted CCQ data GLMs for symptom prevalence. Generalised linear models (GLMs) for unadjusted CCQ symptom onset 

data are shown. Only individuals CAG 36-99, known sex and known sxrater were included in models. Significant values are emboldened that 

pass multiple correction (8 tests Bonferroni threshold p=6.25E-03); nominally significant values are italicised. B = unstandardised coefficient; β 

= standardised coefficient; SE = standard error. Sex is the effects for males vs females. ‘Onset’ here is a general onset defined by the clinician 

(sxrater) regardless of onset type. MTR: Motor; COG: cognitive; APT: apathy; DEP: depression; POB: perseverative/obsessive behaviour; IRB: 

irritability; VAB: violent/aggressive behaviour; PSY: psychosis.
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 MTR (N=4407)  COG (N=4479)  APT (N=4438)   
 B β SE p  B β SE p  B β SE p  

Sex 0.010 0.053 0.338 9.77E-01  -0.043 -0.043 0.062 4.89E-01  0.038 0.038 0.061 5.29E-01  

CAG 0.383 19.102 0.058 5.43E-11  0.043 0.395 0.010 4.61E-05  -0.002 -0.019 0.009 8.25E-01  

Duration 0.085 5.334 0.026 1.27E-03  0.090 1.051 0.006 9.82E-47  0.055 0.634 0.006 1.21E-21  

Onset 0.167 22.327 0.019 5.95E-18  0.005 0.112 0.004 2.22E-01  -0.004 -0.103 0.004 2.44E-01  
 

 DEP (N=4042)  POB (N=4491)  IRB (N=4288)  
 B β SE p  B β SE p  B β SE p  

Sex -0.504 -0.514 0.066 2.52E-14  -0.006 -0.007 0.064 9.21E-01  0.255 0.257 0.062 4.55E-05  

CAG -0.076 -0.731 0.011 6.71E-13  0.023 0.225 0.010 1.98E-02  -0.039 -0.365 0.010 6.20E-05  

Duration 0.053 0.625 0.006 2.10E-16  0.061 0.754 0.006 2.28E-26  0.035 0.413 0.006 1.29E-09  

Onset -0.028 -0.702 0.004 2.23E-12  0.000 -0.006 0.004 9.50E-01  -0.019 -0.483 0.004 1.38E-07  
 

 VAB (N=4446)  PSY (N=4577)   
 B β SE p  B β SE p   

Sex 0.390 0.434 0.069 1.28E-08  0.036 0.058 0.097 7.14E-01  

CAG -0.004 -0.045 0.010 6.70E-01  0.001 0.014 0.015 9.50E-01  

Duration 0.059 0.768 0.006 2.30E-23  0.077 1.445 0.008 7.46E-24  

Onset -0.018 -0.488 0.004 1.12E-05  -0.006 -0.223 0.006 3.24E-01  

 

Table 3.7: Adjusted CCQ data GLMs for symptom prevalence. Generalised linear models (GLMs) for adjusted CCQ symptom onset data 

are shown (filtering symptoms occurring <2 years earlier than sxrater onset). Only individuals CAG 36-99, known sex and known sxrater were 

included in models. Significant values are emboldened that pass multiple testing correction (8 tests Bonferroni threshold p=6.25E-03); 

nominally significant values are italicised. B = unstandardised coefficient; β = standardised coefficient; SE = standard error. Sex is the effects 

for males vs females. ‘Onset’ here is a general onset defined by the clinician (sxrater) regardless of onset type. MTR: Motor; COG: cognitive; 

APT: apathy; DEP: depression; POB: perseverative/obsessive behaviour; IRB: irritability; VAB: violent/aggressive behaviour; PSY: psychosis.
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3.4.2 Extending the symptom GLMs with additional covariates 

We next wanted to extend our generalised linear modelling approach with more covariables 

to adjust for potential confounders, using the same binary CCQ data as in 3.4.1. We based 

the covariates used in this section from the Dale study (Dale et al., 2016), which found no 

difference between depression in men and women in HD disease course when using the 

Hospital Anxiety and Depression Scale (HADS; see 3.4.3/3.4.4). The covariates we added 

were alcohol use, tobacco use, years in education, total functional capacity (TFC) score and 

total motor score (TMS), from the latest visit data available. We did not include medication, 

as the Dale study did, as these data were not available for most of our sample. The disease 

duration covariate we used in the extended models is explicitly from the visits that were used 

to derive TFC. Furthermore, as in the Dale study, we did not include very advanced HD 

patients with TFC score=0 (TFC score of 0 indicates total reliance on others), and only 

included individuals with HTT CAGs between 39-55. Juvenile HD cases (JHD) were 

removed (sxrater onset <20 years). This left N=~1500 individuals for regression modelling 

(Tables 3.8-3.9). 

 

As before, the motor models are predicated on a small number of individuals who did not 

report motor symptoms. These models have highly inflated βs consequently, and their usage 

is somewhat underpowered; although TMS does have a small amount of significance with 

motor symptom prevalence. Onset (sxrater, regardless of onset type) is nominally and 

positively associated with motor symptoms. TFC score is significantly associated with all 

other symptoms, especially cognitive impairment, with a lower TFC score being associated 

with a higher log odds ratio risk. TFC likely captures disease stage better than simply 

disease duration which is only nominally significant for VAB after sxrater adjustment. Sex-

dependent effects remain significant for depression in both unadjusted and adjusted data, 

however irritability and VAB are only nominally significant adjusting for multiple testing 

correction. Age of onset (sxrater) is significantly and negatively associated with cognitive 

impairment, depression, irritability and VAB, and nominally significant for psychosis, 

indicating younger adults are more likely to experience psychiatric/cognitive symptoms in 

their HD disease course compared to older groups. This was also noted for several 

symptoms in the simpler models. Psychosis was found to be significantly and negatively 

associated with the number of education years. Finally, CAG length was found to be 

negatively associated with depression and irritability, and nominally so for cognitive 

symptoms and VAB. 
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  MTR (N=1494)  COG (N=1494)  APT (N=1494)   

  B β SE p  B β SE p  B β SE p  
Sex 0.921 5.379 0.723 2.03E-01  -0.189 -0.190 0.117 1.06E-01  -0.016 -0.016 0.109 8.83E-01   
CAG -0.010 -0.363 0.138 9.44E-01  -0.067 -0.427 0.029 2.17E-02  -0.010 -0.061 0.027 7.23E-01  
Duration -0.103 -6.511 0.080 1.98E-01  0.013 0.144 0.013 3.07E-01  0.003 0.032 0.012 8.03E-01  
Alcohol -0.030 -2.615 0.039 4.44E-01  0.023 0.340 0.009 7.92E-03  0.001 0.021 0.007 8.44E-01  
Tobacco 0.097 11.188 0.073 1.87E-01  0.004 0.084 0.006 4.78E-01  0.010 0.200 0.006 7.05E-02  
Education -0.117 -4.899 0.104 2.60E-01  0.011 0.080 0.017 5.05E-01  -0.029 -0.206 0.015 6.18E-02  
TFC 0.097 4.191 0.179 5.88E-01  -0.287 -2.139 0.026 1.57E-27  -0.153 -1.136 0.024 1.22E-10  
TMS 0.130 34.313 0.045 3.62E-03  -0.005 -0.217 0.004 2.53E-01  -0.006 -0.256 0.004 1.39E-01  
Onset 0.098 13.783 0.048 4.33E-02  -0.024 -0.580 0.008 2.92E-03  -0.008 -0.190 0.007 2.91E-01   

 

  DEP (N=1496)  POB (N=1493)  IRB (N=1496)   

  B β SE p  B β SE p  B β SE p  
Sex -0.536 -0.553 0.113 1.89E-06  -0.080 -0.087 0.118 4.95E-01  0.326 0.330 0.110 3.06E-03   
CAG -0.124 -0.812 0.028 1.21E-05  -0.051 -0.354 0.029 8.16E-02  -0.080 -0.514 0.027 3.49E-03  
Duration 0.056 0.624 0.013 2.47E-05  0.043 0.508 0.013 5.99E-04  0.050 0.552 0.013 8.39E-05  
Alcohol -0.012 -0.186 0.007 1.04E-01  0.010 0.165 0.008 1.81E-01  0.014 0.207 0.008 9.45E-02  
Tobacco 0.013 0.263 0.006 3.04E-02  0.003 0.068 0.006 5.90E-01  0.017 0.351 0.006 2.81E-03  
Education -0.017 -0.127 0.016 2.79E-01  -0.004 -0.031 0.017 8.13E-01  -0.011 -0.077 0.015 4.90E-01  
TFC -0.122 -0.933 0.025 7.60E-07  -0.126 -1.019 0.026 7.35E-07  -0.089 -0.668 0.024 2.14E-04  
TMS -0.015 -0.702 0.004 1.82E-04  -0.006 -0.305 0.004 1.26E-01  -0.009 -0.411 0.004 2.14E-02  
Onset -0.039 -0.984 0.008 5.66E-07  -0.016 -0.433 0.008 4.10E-02  -0.030 -0.731 0.008 8.04E-05   

 

  VAB (N=1496)  PSY (N=1485)  

  B β SE p  B β SE p  

Sex 0.280 0.311 0.122 2.14E-02  0.225 0.414 0.198 2.57E-01  

CAG -0.037 -0.261 0.030 2.15E-01  -0.098 -1.155 0.050 4.98E-02  

Duration 0.061 0.735 0.013 2.37E-06  0.024 0.479 0.020 2.20E-01  

Alcohol 0.007 0.110 0.008 3.97E-01  0.009 0.255 0.012 4.47E-01  

Tobacco 0.012 0.267 0.006 4.00E-02  -0.002 -0.091 0.010 8.07E-01  

Education -0.025 -0.197 0.017 1.54E-01  -0.108 -1.425 0.030 2.82E-04  

TFC -0.129 -1.064 0.026 1.02E-06  -0.170 -2.323 0.043 8.59E-05  

TMS -0.006 -0.303 0.004 1.49E-01  -0.004 -0.312 0.007 5.66E-01  

Onset -0.029 -0.766 0.008 7.11E-04  -0.024 -1.085 0.013 6.92E-02  
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Table 3.8: Unadjusted CCQ data extended GLMs. Generalised linear models (GLMs) 

showing binary unadjusted CCQ data for individuals with an onset ≥20 (sxrater), >TFC 

score=0, CAGs 39-55. B = unstandardised coefficient; β = standardised coefficient; SE = 

standard error. ‘Onset’ here is a general onset defined by the clinician (sxrater) regardless of 

onset type. Significant values are emboldened that pass multiple testing correction (8 tests 

Bonferroni threshold p=6.25E-03); nominally significant values are italicised. Note that for 

psychosis, individuals with a co-morbid diagnosis of schizophrenia, schizotypal disorder or 

schizoaffective disorder were removed (see 2.3.1). MTR: Motor; COG: cognitive; APT: 

apathy; DEP: depression; POB: perseverative/obsessive behaviour; IRB: irritability; VAB: 

violent/aggressive behaviour; PSY: psychosis. 
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 MTR (N=1416)  COG (N=1450)  APT (N=1434)  
 B β SE p  B β SE p  B β SE p  

Sex 0.981 5.582 0.726 1.77E-01  -0.181 -0.182 0.119 1.26E-01  -0.002 -0.002 0.111 9.83E-01  

CAG 0.008 0.290 0.138 9.54E-01  -0.066 -0.426 0.029 2.36E-02  -0.018 -0.115 0.028 5.10E-01  

Duration -0.001 -0.083 0.079 9.86E-01  -0.008 -0.087 0.014 5.60E-01  -0.004 -0.046 0.013 7.41E-01  

Alcohol -0.030 -2.547 0.039 4.48E-01  0.023 0.340 0.009 8.59E-03  0.002 0.030 0.008 7.84E-01  

Tobacco 0.103 11.757 0.075 1.70E-01  0.004 0.083 0.006 4.88E-01  0.009 0.179 0.006 1.12E-01  

Education -0.115 -4.662 0.104 2.72E-01  0.014 0.102 0.017 3.97E-01  -0.026 -0.185 0.016 1.01E-01  

TFC 0.124 5.207 0.186 5.07E-01  -0.285 -2.115 0.027 1.40E-26  -0.155 -1.150 0.024 1.72E-10  

TMS 0.131 33.280 0.045 3.75E-03  -0.005 -0.220 0.004 2.49E-01  -0.005 -0.246 0.004 1.65E-01  

Onset 0.109 13.787 0.050 2.89E-02  -0.024 -0.546 0.008 2.88E-03  -0.012 -0.260 0.008 1.28E-01  
 

 DEP (N=1302)  POB (N=1461)  IRB (N=1384)   
 B β SE p  B β SE p  B β SE p  

Sex -0.435 -0.439 0.119 2.42E-04  -0.066 -0.073 0.121 5.86E-01  0.267 0.268 0.114 1.86E-02   
CAG -0.137 -0.870 0.030 5.13E-06  -0.055 -0.389 0.030 7.05E-02  -0.091 -0.576 0.028 1.32E-03  
Duration 0.023 0.258 0.014 9.98E-02  0.024 0.286 0.014 8.05E-02  0.020 0.218 0.014 1.37E-01  
Alcohol -0.010 -0.156 0.008 1.90E-01  0.012 0.202 0.008 1.11E-01  0.013 0.184 0.009 1.28E-01  
Tobacco 0.010 0.195 0.006 1.11E-01  0.004 0.083 0.006 5.32E-01  0.016 0.305 0.006 9.27E-03  
Education -0.020 -0.145 0.016 2.31E-01  0.000 0.000 0.017 9.99E-01  -0.009 -0.069 0.016 5.50E-01  
TFC -0.127 -0.957 0.026 8.60E-07  -0.131 -1.071 0.026 6.35E-07  -0.085 -0.636 0.025 5.97E-04  
TMS -0.013 -0.584 0.004 2.50E-03  -0.006 -0.295 0.004 1.54E-01  -0.007 -0.330 0.004 7.31E-02  
Onset -0.042 -0.957 0.008 3.51E-07  -0.016 -0.406 0.008 5.18E-02  -0.033 -0.751 0.008 2.06E-05   

 

 VAB (N=1441)  PSY (N=1472)  

 B β SE p  B β SE p  

Sex 0.258 0.296 0.129 4.51E-02  0.242 0.467 0.210 2.49E-01  

CAG -0.070 -0.508 0.032 2.67E-02  -0.104 -1.284 0.053 4.86E-02  

Duration 0.029 0.355 0.014 4.24E-02  0.000 0.005 0.021 9.91E-01  

Alcohol 0.005 0.079 0.009 5.86E-01  0.015 0.445 0.012 2.11E-01  

Tobacco 0.009 0.205 0.006 1.47E-01  -0.018 -0.673 0.012 1.51E-01  

Education -0.014 -0.113 0.018 4.52E-01  -0.108 -1.488 0.031 5.87E-04  

TFC -0.133 -1.140 0.028 1.96E-06  -0.175 -2.512 0.046 1.38E-04  

TMS -0.003 -0.148 0.004 5.20E-01  -0.002 -0.210 0.007 7.26E-01  

Onset -0.036 -0.939 0.009 4.50E-05  -0.028 -1.238 0.014 4.44E-02  
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Table 3.9: Adjusted CCQ data extended GLMs. Generalised linear models (GLMs) 

showing binary adjusted CCQ data (CCQ data removing >2 years earlier than sxrater were 

filtered) for individuals with an onset ≥20 (sxrater), >TFC score=0, CAGs 39-55. B = 

unstandardised coefficient; β = standardised coefficient; SE = standard error. ‘Onset’ here is 

a general onset defined by the clinician (sxrater) regardless of onset type. Significant values 

are emboldened that pass multiple testing correction (8 tests Bonferroni threshold p=6.25E-

03); nominally significant values are italicised. Note that for psychosis, individuals with a co-

morbid diagnosis of schizophrenia, schizotypal disorder or schizoaffective disorder were 

removed (see 2.3.1). MTR: Motor; COG: cognitive; APT: apathy; DEP: depression; POB: 

perseverative/obsessive behaviour; IRB: irritability; VAB: violent/aggressive behaviour; PSY: 

psychosis. 

 



99 
 

3.4.3 Using the HADS-SIS scales to investigate phenotype 

We were interested whether the independent hospital anxiety and depression score (HADS) 

with the additional Snaith’s irritability scale (SIS; together HADS-SIS) would produce similar 

results to the binary CCQ data. A similar but smaller study using the HADS was carried out 

(Dale et al., 2016) using individuals from Registry, many of whom are likely also in this study. 

The HADS asks 14 questions (methods Table 2.3), 7 of which relate to depression and 7 to 

anxiety (ANX), with scores ranging from 0-3 for each answer. The SIS similarly asks the 

participant a series of 8 questions (methods Table 2.4) related to irritability with scores 0-3 

for each response. Total depression scores (TDS), anxiety scores (TAS) and irritability 

scores (TIS) are then derived from the responses, with higher scores being more associated 

with more of the related phenotype (Snaith et al., 1978; Zigmond and Snaith, 1983). 

 

Using the HADS-SIS scores to construct a generalised linear model (Table 3.10) shows 

there is nominal significant of TDS with sex, however this does not survive multiple testing 

correction. The direction of effect is opposite to what was expected (males have slightly but 

non-significant higher scores on average than women, mean 6.96 vs 6.64). Tobacco usage 

is significantly associated with TDS, and education years is nominally significant. TDS is 

most strongly associated with TFC, with a higher TFC score inversely associated with TDS, 

and this agrees with the association seen between TFC and depression CCQ earlier (Table 

3.9). TAS only shows nominal significance with CAG, education years and age. The TIS on 

the other hand shows a significant association with CAG length, in the same direction as 

TAS, where longer CAGs are associated with less irritability after correcting for other 

variables. This is similar to what was seen in several of the psychiatric symptoms when 

using the binary CCQ (Table 3.9). In addition, TIS is also associated with the onset (sxrater), 

with younger individuals having more irritability, again matching what was seen in several of 

the psychiatric binary CCQ models before. There is a small but non-significant difference in 

TIS between males and females (6.51 vs 6.09 male/female, p=0.23, Welch two sample t-

test). Neither TIS nor TAS were significantly associated with TFC. 

 

A second modelling approach transformed TDS, TAS and TIS data into binary variables with 

scores of 0-7 being “normal” (0) and >8 being a “case” (1) to be more methodologically 

comparable to the binary CCQ GLMs. We chose >8 as TDS/TAS of 8-10 were considered 

possible cases by Zigmond and Snaith, and scores of >11 as definite cases (Zigmond and 

Snaith, 1983). This method mostly had the same findings as numerical TDS/TAS/TIS data 

but with higher p values. The granularity offered by the full TDS/TAS/TIS scales, therefore, 

improved the predictive power of the GLMs. 
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  TDS (N=766)  TAS (N=762)  TIS (N=767)   

 A B β SE p  B β SE p  B β SE p  
Sex 0.656 0.072 0.324 4.36E-02  0.179 0.020 0.329 5.87E-01  0.495 0.051 0.352 1.60E-01   

CAG -0.105 -0.072 0.082 2.04E-01  -0.178 -0.124 0.083 3.28E-02  -0.315 -0.201 0.089 4.30E-04  
Duration -0.064 -0.074 0.039 9.62E-02  -0.095 -0.111 0.039 1.44E-02  -0.085 -0.092 0.041 3.99E-02  
Alcohol -0.011 -0.016 0.025 6.51E-01  -0.008 -0.012 0.025 7.39E-01  -0.017 -0.023 0.027 5.28E-01  
Tobacco 0.048 0.097 0.018 6.96E-03  0.032 0.066 0.018 7.33E-02  0.032 0.062 0.019 9.02E-02  
Education -0.103 -0.080 0.046 2.63E-02  -0.121 -0.096 0.047 9.91E-03  -0.099 -0.073 0.050 4.85E-02  
TFC -0.386 -0.288 0.071 7.91E-08  -0.118 -0.089 0.072 1.04E-01  -0.076 -0.053 0.077 3.26E-01  
TMS -0.010 -0.045 0.012 4.02E-01  -0.010 -0.046 0.012 4.10E-01  -0.017 -0.071 0.013 1.95E-01  
Onset -0.006 -0.015 0.023 7.79E-01  -0.048 -0.119 0.023 3.55E-02  -0.101 -0.230 0.024 4.09E-05   

 

  TDS (N=766)  TAS (N=762)  TIS (N=767)   

B B β SE p  B β SE p  B β SE p  
Sex 0.051 0.052 0.036 1.49E-01  0.024 0.025 0.035 5.04E-01  0.031 0.033 0.035 3.75E-01   

CAG -0.006 -0.035 0.009 5.40E-01  -0.025 -0.163 0.009 4.93E-03  -0.023 -0.151 0.009 8.52E-03  
Duration -0.004 -0.038 0.004 3.94E-01  -0.009 -0.099 0.004 2.98E-02  -0.006 -0.064 0.004 1.51E-01  
Alcohol -0.002 -0.025 0.003 4.89E-01  -0.003 -0.035 0.003 3.46E-01  -0.002 -0.027 0.003 4.62E-01  
Tobacco 0.004 0.068 0.002 6.15E-02  0.003 0.061 0.002 9.94E-02  0.002 0.046 0.002 2.15E-01  
Education -0.005 -0.033 0.005 3.73E-01  -0.007 -0.053 0.005 1.59E-01  -0.006 -0.048 0.005 1.98E-01  
TFC -0.039 -0.267 0.008 8.26E-07  -0.012 -0.086 0.008 1.16E-01  -0.013 -0.091 0.008 9.69E-02  
TMS -0.001 -0.051 0.001 3.44E-01  -0.002 -0.076 0.001 1.72E-01  -0.003 -0.134 0.001 1.54E-02  
Onset -0.001 -0.023 0.002 6.73E-01  -0.006 -0.148 0.002 9.15E-03  -0.007 -0.169 0.002 2.66E-03   

Table 3.10: GLMs for the HADS-SIS scale. Generalised linear models (GLMs) are shown. Both sets of tables use the same individuals, and 

only considered individuals with CAGs 39-55, TFC scores >0, sxrater>=20. B = unstandardised coefficient; β = standardised coefficient; SE = 

standard error. (A) is the raw TDS/TAS/TIS scales, table (B) transforms the binary TDS/TAS/TIS table where scores of 0-7 were considered 

normal (0), and scores >7 were considered cases (1). Significant values are emboldened that pass multiple testing correction (3 tests 

Bonferroni p=1.67E-02), nominal values are italicised. TDS: Total depression score; TAS: Total anxiety score; TIS: Total irritability score.
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3.4.4 Correlations for all covariates, HADS-SIS and binary CCQ 

Correlation matrices were constructed for all adjusted binary CCQ symptoms, HADS-SIS 

scores and covariates used for modelling purposes using a pairwise deletion method (Fig. 

3.14; full numerical table in Appendix 3).  

 

Firstly, as previously established, motor symptoms were reported in most individuals in 

Registry who had clinical onset as defined by the rater (sxrater), thus it has quite weak 

associations with other symptoms (although is weakly correlated with TMS/TFC and onset). 

All three of the HADS-SIS scales are highly correlated with one another, especially the TAS 

and TIS scales (0.681). Unsurprisingly TFC score is negatively associated with most other 

variables except CAG length and disease duration. Both disease duration and TMS have 

similar inverse patterns of correlation compared to TFC, although these are weaker than 

TFC itself. Hence, disease duration may be a useful metric in cases where TFC is not 

available. Psychosis binary CCQ is poorly correlated with other symptoms, analogous to the 

observation that psychotic symptom onset is least correlated with other symptoms. TIS is 

most strongly associated with both irritability and VAB CCQ, which themselves are 

correlated. TAS correlates slightly more strongly with depression CCQ (0.220) than does 

TDS (0.213); TDS has the highest correlation with reporting of apathy CCQ (0.252). Of the 

demographic information collected, education years has the strongest correlation with 

apathy, depression and POB CCQ, and these independent correlations are significant. 

Importantly, these correlations, although useful, do not account for potential confounders. 
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 Figure 3.14: Correlation plot for binary-derived 

CCQ data, HADS-SIS and covariates. 

Constructed using N=6303 individuals for whom 

sxrater was known. Full numerical form of this figure 

(with r, N and p) is in Appendix 3. Symptoms shown 

here are adjusted (ADJ) binary CCQ responses, 

removing symptoms occurring >2 years earlier than 

sxrater. Duration: disease duration; Alcohol: alcohol 

use in units per week; Tobacco: cigarettes per day; 

TFC: total functional capacity score; TMS: total 

motor score; onset: onset defined by sxrater; TDS: 

total depression score; TAS: total anxiety score; 

TIS: total irritability score; MTR_ADJ: Motor CCQ; 

COG_ADJ: cognitive CCQ; APT_ADJ: apathy CCQ; 

DEP_ADJ: depression CCQ; POB_ADJ: 

perseverative/obsessive behaviour CCQ; IRB_ADJ: 

irritability CCQ; VAB_ADJ: violent/aggressive 

behaviour CCQ; PSY_ADJ: psychosis CCQ. 
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3.5 Quantifying variation in symptom onset explained by CAG 

length 

CAG length is the primary modifier for age at onset in HD, accounting for ~60% of age at 

motor onset modification (Wexler et al., 2004; Lee et al., 2012c). However, most estimates 

for the influence of CAG length on HD onset derive entirely from motor onset data. Hence, 

we were interested in quantifying the variation explained by CAG length across different 

symptoms experienced by individuals in Registry. To do so, age at onset data were 

logarithmically transformed and plotted against CAG length using a linear model. Only 

individuals with known sex, ages at symptom onset >3 years and CAGs 36-90 were 

considered. Linear models were assessed by plotting leverages against standardised 

residuals to find potential influential cases; one outlying individual with a high standardised 

residual and leverage was identified. Investigating this individual revealed an aberrantly early 

sxrater, >30 years earlier than all other symptoms called by the family, patient and CCQ. 

This data point was removed to improve all model fits. Representative regression and 

leverage plots are shown for apathy in Fig. 3.15, and are very similar for other symptoms. 

 

All symptoms were highly significantly associated with CAG length (p<2E-16), however the 

R2 values, i.e. the measure of how much variability in age at onset is explained by CAG 

length, varies for each symptom. Starting with R2 derived using unadjusted CCQ data (Table 

3.12A), motor symptoms have the highest R2 with CAG accounting for about 61% of age at 

onset variation (similar to other studies, discussed in 3.8.4). This is followed by cognition and 

apathy which have R2 of 0.551 and 0.460, respectively. POB, irritability and VAB all have 

similar R2 (0.377, 0.367 and 0.350, respectively) whilst psychotic and depressive symptoms 

have the lowest R2 (0.315 and 0.236, respectively). In all cases, using adjusted CCQ data 

increased the R2 between CAG size and symptom onset. Motor symptom onset remains the 

most associated with CAG length (R2 = 0.659). Cognitive R2 is nearly as high (0.644). VAB, 

irritability, POB and apathy have similar R2 (between 0.581 and 0.618). Consistent with their 

relationship before adjustment, both depression and psychosis remain the least associated 

with CAG length with R2 <0.50. 5 and 10 year CCQ/sxrater data cut-offs do not greatly 

change the R2, although R2 is (as expected) slightly lower using more tolerant cut-offs (Table 

3.13). As indicated in Table 3.13A, the best-estimate measures for motor and cognitive 

symptoms decrease the R2 by ~0.035, likely reflecting the reduced stringency of these 

estimates these estimates as these measures attempted to calculate age at onset for as 

many people as possible. Running a generalised linear model regressing ages at onset on 

both expanded CAG length and wild-type CAG length shows no significant role for the wild-

type HTT CAG length for any of the onset types derived from CCQ data (Table 3.11).
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 MTR (N=4555)  COG (N=2660)  APT (N=2258)   

A B β SE p  B β SE p  B β SE p  
WT CAG 0.025 0.007 0.034 4.76E-01  -0.019 -0.005 0.051 7.10E-01  0.052 0.014 0.056 3.52E-01  

Exp CAG -1.889 -0.728 0.026 <2E-16  -1.899 -0.710 0.037 <2E-16  -2.023 -0.700 0.043 <2E-16  
 

 DEP (N=2461)  POB (N=1535)  IRB (N=2460)  
 B β SE p  B β SE p  B β SE p  

WT CAG 0.059 0.018 0.051 2.46E-01  -0.019 -0.005 0.066 7.79E-01  0.002 0.001 0.054 9.73E-01  

Exp CAG -2.009 -0.659 0.046 <2E-16  -1.741 -0.688 0.047 <2E-16  -1.898 -0.678 0.041 <2E-16  
 

 VAB (N=1221)  PSY (N=500)   
 B β SE p  B β SE p   

WT CAG -0.036 -0.009 0.079 6.50E-01  0.064 0.018 0.129 6.19E-01  

Exp CAG -1.841 -0.692 0.055 <2E-16  -1.723 -0.612 0.100 <2E-16  

 

Table 3.11: GLMs examining expanded and wild-type CAGs on age at symptom onset. Generalised linear models (GLMs) for age at 

onset regressing on wild-type CAG (WT CAG) and expanded CAG (Exp CAG) are shown. Significant values are emboldened. Symptoms are 

adjusted for the rater’s estimate of onset, 2 year cut-off. B = unstandardised coefficient; β = standardised coefficient; SE = standard error. MTR: 

Motor; COG: cognitive; APT: apathy; DEP: depression; POB: perseverative/obsessive behaviour; IRB: irritability; VAB: violent/aggressive 

behaviour; PSY: psychosis.
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Figure 3.15: Regression for apathy against CAG length. (A-B) Regression analysis for raw CCQ data for apathy with associated leverage 

plot after standard QC had been applied. (C-D) Similar regression analyses following adjustment of CCQ with sxrater data, sxrater cut-off 2yr. 

In (B) and (D), the x axes are leverage (how far away data is from other observations) and the y axes standardised residuals. Cook’s distance 

(indicated by the red dashed line) is used as a cut-off for identifying greatly influential data points – in this case there are no obvious outliers. 

Note that the age at onset has been logarithmically transformed (LN(symptom onset age)).

A B 

C D 



106 
 

   Male  Female  Both   

  A r R2 N  r R2 N  r R2 N   

 MTR -0.779 0.606 2911  -0.780 0.609 3102  -0.779 0.607 6013  

 COG -0.718 0.515 1689  -0.767 0.588 1819  -0.742 0.551 3508  

 APT -0.677 0.458 1556  -0.680 0.462 1640  -0.678 0.460 3196  

 DEP -0.500 0.250 1780  -0.475 0.226 2381  -0.486 0.236 4161  

 POB -0.632 0.399 1059  -0.595 0.354 1119  -0.614 0.377 2178  

 IRB -0.593 0.351 1877  -0.618 0.381 1855  -0.606 0.367 3732  

 VAB -0.601 0.361 1043  -0.580 0.337 869  -0.592 0.350 1912  
  PSY -0.558 0.312 351  -0.567 0.322 353  -0.562 0.315 704   

 

   Male  Female  Both   

  B r R2 N  r R2 N  r R2 N   

 MTR -0.821 0.674 2579  -0.803 0.645 2724  -0.812 0.659 5303  

 COG -0.794 0.630 1520  -0.812 0.659 1641  -0.803 0.644 3161  

 APT -0.761 0.579 1351  -0.773 0.597 1372  -0.768 0.589 2723  

 DEP -0.687 0.472 1327  -0.712 0.506 1565  -0.703 0.494 2892  

 POB -0.773 0.598 921  -0.783 0.614 952  -0.778 0.606 1873  

 IRB -0.751 0.563 1470  -0.773 0.597 1450  -0.762 0.581 2920  

 VAB -0.792 0.627 811  -0.779 0.607 686  -0.786 0.618 1497  
  PSY -0.664 0.441 295  -0.680 0.462 306  -0.671 0.450 601   

 

Table 3.12: Variance explained by CAG length for symptoms across sexes. (A) shows R2 for unadjusted CCQ; (B) shows sxrater adjusted 

CCQ data R2. MTR: Motor; COG: cognitive; APT: apathy; DEP: depression; POB: perseverative/obsessive behaviour; IRB: irritability; VAB: 

violent/aggressive behaviour; PSY: psychosis.
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   Male  Female  Both   

  A r R2 N  r R2 N  r R2 N   

 C_MTR -0.793 0.628 3161  -0.784 0.615 3350  -0.788 0.621 6511  

 C_COG -0.771 0.594 1746  -0.790 0.624 1858  -0.780 0.609 3604  
 PSYCH -0.740 0.540 2234  -0.735 0.555 2390  -0.745 0.548 4624  

  RTR -0.784 0.614 3079  -0.774 0.599 3221  -0.779 0.606 6300   
 

   Male  Female  Both   

  B r R2 N  r R2 N  r R2 N   

 MTR -0.820 0.672 2638  -0.800 0.641 2793  -0.810 0.655 5431  

 COG -0.796 0.634 1547  -0.809 0.655 1664  -0.803 0.644 3211  

 APT -0.758 0.575 1386  -0.767 0.588 1407  -0.763 0.582 2793  

 DEP -0.689 0.475 1405  -0.709 0.503 1675  -0.702 0.493 3080  

 POB -0.782 0.611 931  -0.774 0.600 970  -0.778 0.606 1901  

 IRB -0.741 0.549 1542  -0.771 0.594 1497  -0.756 0.572 3039  

 VAB -0.783 0.613 849  -0.759 0.576 715  -0.772 0.597 1564  
  PSY -0.676 0.458 299  -0.679 0.462 309  -0.677 0.459 608   

 

   Male  Female  Both   

  C r R2 N  r R2 N  r R2 N   

 MTR -0.818 0.669 2661  -0.800 0.639 2819  -0.808 0.653 5480  

 COG -0.798 0.637 1553  -0.807 0.650 1675  -0.802 0.643 3228  

 APT -0.752 0.565 1400  -0.761 0.579 1435  -0.757 0.573 2835  

 DEP -0.675 0.455 1470  -0.700 0.490 1808  -0.691 0.477 3278  

 POB -0.761 0.579 944  -0.758 0.574 988  -0.760 0.577 1932  

 IRB -0.729 0.531 1590  -0.764 0.584 1542  -0.746 0.557 3132  

 VAB -0.772 0.596 875  -0.753 0.566 734  -0.763 0.583 1609  
  PSY -0.644 0.415 305  -0.674 0.455 312  -0.657 0.432 617   
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Table 3.13: CAG length on less stringent CCQ-derived data. (A) R2 data derived using 

CCQ-sxrater best-estimate data (C_MTR = best-estimate motor onset, C_COG = best-

estimate cognitive onset and PSYCH = age at first psychiatric symptom) and sxrater-derived 

onset (RTR); (B) Adjusted CCQ data using a >5 year cut-off for sxrater; (C) Adjusted CCQ 

data using a >10 year cut-off for sxrater. MTR: Motor; COG: cognitive; APT: apathy; DEP: 

depression; POB: perseverative/obsessive behaviour; IRB: irritability; VAB: 

violent/aggressive behaviour; PSY: psychosis.
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3.6 Estimating anticipation in Registry 

In HD, onset tends to become earlier in each generation due to intergenerational CAG 

repeat expansions – this is known as clinical anticipation. Anticipation tends to be higher 

when HD is passed paternally as spermatogenesis is more prone to repeat expansion (see 

1.3). Retrospective data for parental HD onset were available in Registry which we used to 

estimate anticipation. A summary of these data is available in Table 3.14 – only Registry 

individuals for whom the sxrater was known were included in this analysis. Parental onset 

status was known in 94.8% of cases. Approximately 7.8% of HD cases were de novo, and 6 

individuals had parents who both had HD. 

 

In addition to prevalence data, parental ages at onset HD were available for 3075 individuals 

(Fig. 3.16). When HD was inherited maternally, age at onset in the proband was on average 

2.88 years earlier (SD = 9.85). As expected, when HD was inherited paternally anticipation 

was much higher in the proband with an average of 7.21 years earlier with a higher standard 

deviation (SD = 10.75). The difference between maternal and paternal anticipation is 

significant (p=2.05E-30, Welch two sample t-test). Interestingly at the two extremes of the 

distribution in Fig. 3.16C, both paternal and maternal anticipation is very similar. It is possible 

some of this is due to retrospective error at the two extremes, although in the <20 year group 

this may also represent floor effects. HD onset in mothers (mean=45.1 years) was 

significantly earlier than HD onset in fathers (mean=47.0 years) (p=9.64E-06, Welch two 

sample t-test). Of the JHD cases (HD sxrater onset <20), 64.1% originated paternally.  

 

Parent HD Freq. Percentage 

Father 2802 45.55% 

Mother 2862 46.52% 

Both 6 0.10% 

Neither 482 7.83% 

Unknown 339 N/A 

Table 3.14: Parental HD onset summary information. Indicated are the frequencies 

(Freq.) of HD in parents of the individuals in Registry. Only individuals with an sxrater were 

used for calculations. Both refers to both parents having an HD onset; neither means neither 

parent was reported to have HD; unknown refers to data not filled in.



110 
 

   

 

Figure 3.16: Anticipation in Registry. Paternal (A; N=1443) and maternal (B; N=1632) patterns of anticipation. (C; N=3075) demonstrates 

maternal (blue) and paternal (red) anticipation across age groups (data is averaged in 7 parental onset groups; <20, 20-30 , 30-40, 40-50, 50-

60, 60-70 and >70 years).

A B 

C 
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3.7 Selecting an extreme onset population of Huntington’s disease 

patients 

3.7.1 Selecting early and late onset HD patients using AMO 

In order to carry out whole-exome sequencing in a subset of the Registry participants 

(Chapter 4), it was first necessary to select an appropriate population. As we were financially 

limited in whom could be sequenced (N=500), it made theoretical sense to select patients 

from the extremes of the onset distribution to try to enrich for coding variants of potentially 

large effect on onset. We elected to use a similar methodology as the GeM-HD consortium 

(GeM-HD Consortium, 2015) wherein (1) patients possessing 40-55 CAG repeats were 

considered for selection, as outside this range the relationship between observed and 

expected age at onset is less clear and may be influenced by floor effects, and (2), a 

residual age at motor onset was calculated taking the best-estimate age at motor onset in 

3.2.2 and subtracting the expected AMO for that CAG repeat length. The expected AMO at 

each CAG length was calculated using equation 2.2 (Langbehn et al., 2004).  

 

The Langbehn et al. study used a patient cohort with 41-56 CAGs, and defined age at onset 

as permanent HD neurological symptoms. As shown in Fig. 3.17 and its accompanying 

table, the Langbehn model tracks our data quite well for most repeat sizes, and is <1 year 

different to the mean age at onset observed in our sample for CAGs 43-51. However, at the 

extremes the model begins to deviate from our observed values. For instance, at 41 CAGs 

there was a 2.3 year difference between our mean motor onset and the model’s predicted 

onset. This is especially true when extrapolating outside of the model’s intended range; 

noticeably for the purposes of this study CAG 40 has a difference of 4.5 years. For other 

repeat sizes (41-55) the Langbehn model was used for estimation of expected age at onset, 

and at CAG=40, the median best-estimate age at motor onset at this CAG length (59 years) 

was used to calculate an AMO residual. 

 

For selection purposes, it is notable that due to the decreasing standard deviation of larger 

CAG lengths, selection purely based on residual biases the selection towards smaller repeat 

lengths. A percentile-based system could have been introduced to reduce this bias but was 

not for several reasons. (1) larger repeats have less variability in onset, and any errors in 

calculating onset will be more pronounced at larger CAG sizes. Selection of predominantly 

smaller repeats minimises this effect. (2) smaller repeat sizes are more common and 

therefore more representative of the HD patient population. (3) modifiers have the largest 

effect at smaller repeat lengths, possibly due to more variable CAG-related toxicity. Hence, 

we proceeded using the raw residual age at motor onset for selection purposes.
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 CAG 
Mean 
AMO 

Langbehn Difference  CAG 
Mean 
AMO 

Langbehn Difference  

 36 55.36 95.24 +39.88  51 29.28 29.79 +0.51  

 37 57.39 85.23 +27.84  52 27.24 28.67 +1.43  

 38 57.34 76.58 +19.24  53 26.42 27.70 +1.28  

 39 57.28 69.10 +11.82  54 26.17 26.86 +0.69  

 40 58.14 62.64 +4.50  55 25.10 26.14 +1.04  

 41 54.79 57.06 +2.27  56 23.56 25.51 +1.95  

 42 51.13 52.23 +1.10  57 23.63 24.97 +1.34  

 43 47.27 48.06 +0.79  58 23.63 24.51 +0.88  

 44 44.36 44.46 +0.10  59 22.62 24.11 +1.49  

 45 40.98 41.35 +0.37  60 21.56 23.76 +2.20  

 46 38.41 38.66 +0.25  61 21.63 23.46 +1.83  

 47 36.35 36.33 -0.02  62 18.31 23.20 +4.89  

 48 34.25 34.32 +0.07  63 15.76 22.97 +7.21  

 49 32.83 32.59 -0.24  64 17.97 22.78 +4.81  

 50 30.99 31.08 +0.09  65 11.56 22.61 +11.05  

Figure 3.17: A comparison of the Langbehn model in Registry cohort (AMO). The figure 

shows boxplots for age at motor onset (AMO) in Registry across 36-65 CAGs. Dots are 

individuals outside the expected range for a given CAG (>1.5*IQR). Red lines represent 

expected ages of onset calculated using the Langbehn model (Langbehn et al., 2004). 

Purple asterisks represent expected ages using the Langbehn model extrapolating outside 

its 41-56 CAG range. The table shows the mean AMOs for Registry compared to the 

expected onsets given the Langbehn model and the difference between the two. 
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Upon initial selection of sequencing candidates, it was identified that the early cohort were 

enriched for individuals with no sxrater or known onset type (sxraterm) (~5x more than 

expected), although the absolute numbers of these individuals were still reasonably small 

(N~20). This was not observed in the late cohort which seemed equally distributed between 

individuals and onset types. As we were missing data for individuals without sxrater, the 

CCQ alone was used to calculate AMO. This could have been capturing non-HD symptoms 

or may have been otherwise erroneous given no sxrater onset data was available for 

comparative purposes. As it was important to select individuals for sequencing who had high 

quality data, we filtered out individuals who were missing sxraterm data (no onset type), 

excepting one individual missing sxraterm who was sequenced. >95% of the individuals 

chosen for sequencing had an sxrater. Furthermore, each individual had to be manually 

assessed by two raters, including one clinician, for inclusion in the sequencing cohort – 

those with highly discrepant CCQ/sxrater data, large amounts of missing data or discordant 

clinical notes were excluded. As alluded to, individuals selected were biased towards smaller 

disease-causing repeat sizes (Table 3.15). Late onset individuals had slightly larger CAG 

repeat sizes which was significant (means=42.6 vs 43.6, Welch two sample t-test p=2.68E-

6). 

 

  Early   Late   

  CAG Freq. Expected   CAG Freq. Expected   

 40 30 19.91  40 29 19.91  

 41 64 31.35  41 30 31.35  

 42 51 40.54  42 40 40.54  

 43 40 37.19  43 34 37.19  

 44 26 30.12  44 36 30.12  

 45 13 23.49  45 23 23.49  

 46 11 18.56  46 18 18.56  

 47 5 14.36  47 16 14.36  

 48 3 9.25  48 11 9.25  

 49 4 7.12  49 7 7.12  

 50 2 5.83  50 4 5.83  

 51 0 3.52  51 0 3.52  

 52 1 2.86  52 1 2.86  

 53 0 2.29  53 1 2.29  

 54 0 1.74  54 0 1.74  
  55 0 1.86  55 0 1.86   

Table 3.15: Selected individual CAGs for exome sequencing. The CAG lengths for 

individuals selected using an extreme AMO selection method for the early and late arms. 

Expected refers to the numbers of each CAG length that would be expected if 250 

individuals were randomly selected from our Registry data. 
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Fig. 3.18 shows individuals selected for sequencing based on their AMO residual. Individuals 

were selected in two tranches (marked as red and blue) of roughly equal size (tranche 1 = 

287, tranche 2 = 213) as originally fewer people were planned to be sequenced, with the first 

tranche including the most extreme individuals. The residual AMO for the first tranche 

ranges between +36.7 to +12.5 years for the late onset arm and -30.6 to -14.0 years. The 

second tranche contains several individuals with higher AMO residuals for whom data were 

not available during the initial selection; nonetheless the second tranche primarily includes 

less extreme individuals, ranging from +35.8 to +12.5 years for the late onset and -31.2 to -

12.4 years for the early onset arm. The early onset arm contained 112 males/138 females 

(N=250), and the late arm 114 males/135 females/1 unknown (N=250). A small number 

(N=15) of juvenile HD (JHD) cases (AMO<20 years) were included in the early onset arm. 

 

 

Figure 3.18: Extreme AMO cohort selection for sequencing. (A) Scatterplot showing 

individuals (red and blue dots) chosen based on age at motor onset (AMO) residual. Red 

dots are individuals from the first tranche and blue from the second. Smaller, grey dots are 

those not chosen for sequencing. Note the points on the graph have been jittered to improve 

legibility. Individuals missing sxraterm were not chosen for sequencing (barring one person). 

N=5902. (B) A normal distribution plot showing AMO residual. The first (red) and second 

(blue) tranches of sequencing are shown. No sxraterm individuals not included, N=5902.

A 

B 
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3.7.2 Comparing the extreme cohort across symptoms 

Although the extreme cohort used an AMO residual for selection purposes, we also wanted 

to examine other symptoms experienced by the group. Fig. 3.19 shows individuals selected 

on the basis of their AMO for all eight symptoms, using the best-estimate onset measures 

calculated in 3.2.2 and 3.2.3 for motor/cognitive symptoms, and sxrater adjusted CCQ data 

(2 year cut-off) for all other symptoms. The average ages for symptom onset are shown in 

Table 3.16A-B. For the early onset arm, Motor symptoms are first followed by irritable, 

depressive and psychotic symptoms. Cognitive impairment is the latest symptom on 

average. Comparatively, the first symptom in the late onset group interestingly was 

depression by 1.93 years, followed by motor symptoms and irritability. The latest symptom, 

again, is cognitive impairment. 

 

Investigating further, we examined whether there was a difference between the frequency of 

symptom onsets between the early and late arms. As summarised in Table 3.16C, there are 

significant differences in frequency between depression, irritability and VAB, all of which are 

more frequent in the early onset participants. These remain significant after covarying for 

CAG length in a generalised linear model, which also further reinforces the small (~1 CAG) 

but significant difference in CAG length between early/late onset HD individuals. There is no 

significant difference for motor, cognitive, apathy, POB or psychosis symptoms between the 

two early/late arms. 
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E Yes No Missing Filtered Unknown Mean (Adj.) 

MTR 214 2 7 5 22 34.23 

COG 117 102 5 3 23 39.18 

APT 103 115 4 5 23 38.52 

DEP 134 67 4 22 23 36.59 

POB 63 153 5 6 23 38.19 

IRB 128 77 7 16 22 36.48 

VAB 68 144 4 11 23 37.69 

PSY 22 202 2 2 22 36.73 

 

L Yes No Missing Filtered Unknown Mean (Adj.) 

MTR 206 0 17 6 21 62.65 

COG 105 107 15 2 21 65.61 

APT 98 120 9 2 21 65.00 

DEP 98 99 13 19 21 60.72 

POB 67 154 5 3 21 65.04 

IRB 99 119 5 6 21 62.93 

VAB 42 181 3 2 22 64.31 

PSY 15 211 2 1 21 64.73 

 

Symptom N 
  

Chi-Square p 
    GLM(EorL~CCQ_Adj+CAG+Sex)   

    CCQ_Adj CAG Sex   

MTR 422  1.66E-01   9.81E-01 8.34E-07 6.86E-01  
COG 431  4.18E-01   4.15E-01 1.40E-06 4.53E-01  
APT 436  6.31E-01   2.89E-01 1.80E-06 7.59E-01  
DEP 398  6.20E-04   1.57E-04 8.38E-07 8.20E-01  
POB 437  7.93E-01   9.82E-01 4.73E-06 5.48E-01  
IRB 423  4.49E-04   1.80E-04 4.06E-06 3.67E-01  
VAB 434  1.63E-03   4.48E-04 1.08E-06 5.61E-01  
PSY 449   2.24E-01     1.21E-01 2.18E-06 4.25E-01   

 

Table 3.16: Frequencies of symptoms in the extreme AMO cohort (CCQ). Frequencies 

of symptoms in early (A) and late (B) onset arms. Data used is CCQ data adjusting for 

sxrater using a 2 year cut-off (adj.). Yes = symptom present, No = symptom not experienced, 

Filtered = symptom experienced in lifetime, but >2 years earlier than the rater’s estimate of 

HD onset. (C) shows p values for the same data using a chi-square test and a generalised 

linear model regressing early (1) or late (0) (EorL) on adjusted (Adj) CCQ data and CAG 

length. Note CCQ data was unavailable for 6 earlies and 15 lates, and one late individual 

had an unknown gender who was also excluded. Significant data are emboldened that pass 

multiple testing correction (8 tests Bonferroni p=6.25E-03), nominal values are italicised. 

MTR: Motor; COG: cognitive; APT: apathy; DEP: depression; POB: perseverative/obsessive 

behaviour; IRB: irritability; VAB: violent/aggressive behaviour; PSY: psychosis.

A 

B 

C 



117 
 

 

 

 

 

 

 

A B 

C D 



118 
 

 

 

Figure 3.19: Ages at onset for other symptoms in the extreme AMO cohort. Extreme AMO onset individuals are shown as red circles for 

best-estimate motor (A) N=5585+500; best-estimate cognitive (B) N=3114+244; apathy (C) N=2335+201; depression (D) N=2504+232; POB 

(E) N=1623+130; irritability (F) N=2508+227; VAB (G) N=1288+110; and psychosis (H) N=525+37. Unsequenced individuals correspond to the 

initial number, sequenced numbers by the second number. Data is for CAGs 40-55. Motor/cognitive onset values calculated in 3.2.2 and 3.2.3.

E F 

G H 
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3.8 Discussion 

3.8.1 Overview of results 

This chapter explored the use of the CCQ for HD onset age derivation, and, using these 

data, determined onset across multiple domains in a large cohort of HD patients (Registry-

HD). Multivariate modelling investigated sex-differences in symptoms and found that 

depression is significantly more prevalent in women, and irritability/VAB symptoms are more 

prevalent in men, although irritability/VAB were only nominally significant in an extended 

model. There was no significant difference in the ages at onset of these symptoms between 

males and females after filtering CCQ data removing >2 years earlier than the clinician’s 

estimate of onset (sxrater). Variation in symptom onset explained by CAG length (R2) was 

calculated for each symptom. We find that expanded CAG has the poorest association with 

depressive and psychotic symptom onsets, although CAG still accounted for a large and 

significant proportion of onset variation for these symptoms. Anticipation was also estimated 

for Registry. Finally, an extreme onset cohort was selected using a residual age at motor 

onset calculated based on the Langbehn model (Langbehn et al., 2004). These individuals 

went on to be sequenced, as detailed in the next two chapters. 

 

3.8.2 Best-estimate symptom onset estimation 

The clinician’s estimate of onset is commonly used for in patient studies (Orth and 

Schwenke, 2011; Aziz et al., 2018). Hence, it was chosen as the primary metric for deriving 

age at onset in the best-estimate onset calculations, supplemented by the CCQ. Symptom 

onsets were estimated for motor, cognitive and psychiatric onsets (age at first psychiatric 

symptom) in as many individuals as possible. Comparison of onset estimates between CCQ 

and sxrater for motor onset showed a high degree of concordance (91.9%). Sxrater and 

CCQ for cognition was less consistent, but still agreed in over three quarters of cases 

(76.4%). One reason for this slight disparity between CCQ/sxrater is the cognitive CCQ 

specifically asks when cognitive impairment begins to affect daily life (see Table 2.2). This 

differs for all other CCQ symptoms which ask the participant/family whether a symptom has 

been experienced at all in lifetime rather than assigning any symptom severity. The slight 

distinction in definition may have contributed towards the larger disparity between sxrater 

and CCQ for cognitive onsets, especially given cognitive CCQ tended to be later than 

sxrater-derived estimates.  

 

The best-estimate onset estimation method used has several disadvantages outside of 

subtle (and potentially systematic) differences between the way the CCQ and sxrater are 

called. Best-estimate ages at onset were determined for as many individuals as possible, 
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including those where only one of either sxrater or CCQ was available. As no comparison 

between CCQ/sxrater was possible in these cases, some onset estimates may be less 

reliable. Furthermore, the best-estimate age at onset determination relies on manual 

curation of some data where sxrater and CCQ differ. Although we attempted to be as 

systematic as possible when deriving these estimates, differences between data inclusion 

could arise between research groups. Finally, it is notable we did not factor in the rater’s 

confidence level (sxestcfd) into our analysis, which can either be given as ‘high’ or ‘low’, as 

(1) this was not available for many individuals and (2) we were unsure how accurate the 

metric was. 

 

3.8.3 Symptom onset determination using CCQ 

The CCQ was used to determine the onset of eight symptoms: motor, cognitive, apathy, 

depression, perseveration/obsessive behaviour (POB), irritability, violent/aggressive 

behaviour (VAB) and psychosis. Symptom onset calculated using unadjusted, raw CCQ was 

found to have a variable distribution and some individuals had much earlier symptom onsets 

than expected given their sxrater. This stems from the CCQ capturing symptoms arising 

prior to clinical HD diagnosis. It is known significant neurodegeneration occurs prior to 

traditional neurological signs and HD diagnosis (Aylward et al., 1997, 2004; Paulsen et al., 

2008). Furthermore, it has been reported that pre-manifest HD gene carriers experience 

increased rates of apathy, depression and other neuropsychiatric disturbances than non-

carriers (Folstein et al., 1983b, 1983a; Julien et al., 2007; Klöppel et al., 2010; Tabrizi et al., 

2013; Martinez-Horta et al., 2016) (see also 1.2.1). However, psychiatric symptoms, and 

especially depressive symptoms and major depression, occur at high rates in the general 

population (Kessler et al., 2005; Bromet et al., 2011; Ferrari et al., 2013; Salk et al., 2017). 

Experiencing the deterioration or hospitalisation of a parent with HD may also the risk for 

depression in an HD family. Hence it is extremely difficult to distinguish between symptoms 

that are directly the result of HD neurological changes and those that may originate from 

indirect environmental or general population effects. There may also be interaction effects 

between these factors, although this is beyond the scope of our study.  

 

In our approach, we filtered symptom data occurring >2 years earlier than the clinician’s 

estimate of onset (sxrater). We purposely chose the most stringent cut-off here to contrast 

with the raw CCQ-derived symptom data, however we are likely removing some symptoms 

that are the result of early, pre-manifest HD pathology. Although a comparison of 2, 5 and 10 

year cut-offs only showed minor differences, suggesting most symptoms removed in this 

analysis occurred much earlier than HD diagnosis (>10 years earlier). This stringency does, 
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however, afford the removal of many symptoms that may be unrelated to HD, and may be 

important to consider for the interpretation of symptom data (especially for sex-dependent 

effects, see 3.8.6). Accordingly, we present both unadjusted and adjusted CCQ data in many 

of our downstream analyses with the caveat the stringent adjusted CCQ data is probably 

removing some pre-manifest HD symptoms that we cannot disentangle from population-

based effects using CCQ alone.  

 

We found for several symptoms, especially those more, although not uniquely, characteristic 

of HD such as apathy and motor symptoms, little data was filtered in the sxrater adjusted 

CCQ data. However, this sxrater adjustment approach does preclude individuals without 

both an sxrater and known age at CCQ symptom. A further disadvantage of this method is 

that only one date is recorded by the CCQ; therefore, if someone reports depression earlier 

in life, all subsequent depressive episodes are not recorded. Possibly (or even logically) 

individuals with earlier symptom episodes may be more likely to experience those symptoms 

in their HD, hence this methodology likely underestimates symptom prevalence. In future 

observational studies, collecting data on more than one episode of each symptom in the 

CCQ may allow for a better estimation of symptom prevalence and onset for as many 

participants as possible. 

 

Overall, we find that the CCQ is a useful tool that can complement the rater’s estimate of 

onset, and supplementation with sxrater may be useful to consider in some contexts. Using 

the CCQ without any adjustment has the danger of capturing symptoms that may be 

unrelated to HD, although, as discussed, disentangling the origin of these symptoms is not 

possible with CCQ data alone. Additionally, there are several further limitations to consider 

when using CCQ data. CCQ is an imprecise instrument as its data is retrospectively derived 

and thus subject to participant recall bias and error. It is essentially a pseudo-cross-sectional 

measure as it only captures whether an individual has experienced a symptom and at what 

age this occurred for the first time. CCQ also does not consider symptom severity or 

frequency, and thus relies on other clinically gathered data such as TMS or TFC, or the 

problem behaviours assessment (PBA). Considering other instruments, such as the HADS 

or PBA, may be useful in combination with the CCQ for capturing longitudinal changes in HD 

patients. 

 

Additionally, CCQ lacks granularity. For symptomatic individuals with an sxrater, almost all 

participants in Registry (~98-99%) reported a positive motor CCQ making the predictive 

models for motor symptom data less powerful. CCQ, too, is unlikely to pick up subtle 

cognitive or psychiatric/behavioural changes that occur well before motor conversion, 
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although it may for some individuals. Further investigation of CCQ sensitivity is warranted in 

future study. However, unlike the best-estimate onset measures derived in this chapter, 

CCQ onset data is derived entirely systematically, ensuring estimates between different 

research sites and groups are consistent. Though, adjusting for sxrater does preclude some 

individuals for whom CCQ is not available (this includes the older R2 cut of the Registry 

dataset). CCQ, as with all clinically gathered data, is open to inter-rater variability and 

possibly inter-site variability. 

 

3.8.4 The effect of CAG length on symptom onset 

Motor onset was calculated for a total of 6520 individuals for whom CAG lengths were 

known. To our knowledge, this is the largest study of CAG length on symptom onset in 

Huntington’s disease, with the largest previously having been the study from Lee et al. in 

2012 with 4068 manifest motor-onset participants (Lee et al., 2012c). We find that of the 

eight symptoms investigated, motor symptoms track most consistently with CAG length, 

ranging from R2 = 0.621 to 0.659 depending on the stringency of the cut-offs and derivation 

used (N=6511 and 5303, respectively, see Table 3.12). These results are similar, although 

marginally higher for the most stringent cut-off, to the study from Lee et al. which found R2 

ranging from 0.637 to 0.653 using a similar methodology in a large cohort of HD patients, 

including Registry-HD participants.  

 

Our AMO results are in-line with many other studies (Andrew et al., 1993; Duyao et al., 

1993; Snell et al., 1993; Illarioshkin et al., 1994; Kieburtz et al., 1994; Rosenblatt et al., 2001; 

Aylward et al., 2004; Wexler et al., 2004; Rinaldi et al., 2012), however it is important to note 

the robustness of the CAG and age at onset association is highly dependent on the original 

data derived. Studies using onset data from the Venezuelan kindred, a closely followed and 

assessed cohort of HD participants, many of whom are related, have reported CAG length 

R2 between 0.67-0.73 based on a predominantly motor onset (Wexler et al., 2004; Andresen 

et al., 2007b, 2007a). HD cohorts may also have varying onset estimates, which may stem 

from differences in population (Ramos et al., 2012b), relatedness, clinical assessment and 

study design, and these may also account for the differences seen in the Venezuelan cohort 

compared to our study. We found the mean AMOs in our study track the frequently used 

Langbehn et al., 2004 model very strongly for most repeat lengths for AMO. Disparity 

between our data and the Langbehn model could be due to slight under-reporting at smaller 

CAG lengths (40-41 repeats). It may also be due to ceiling effects; individuals with smaller 

CAG lengths may die from other causes before developing HD and coming to clinical 
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attention, whereas the Langbehn model is based on an HD population with complete (or 

nearly complete) disease penetrance (41-56 CAGs). 

 

In addition to AMO, we also determined CAG length association with age at onset of seven 

other symptoms in HD: cognition, apathy, depression, POB, irritability, VAB and psychosis. 

Our results show that after removing CCQ data occurring much earlier than the clinician’s 

estimate of HD onset, moderate cognitive impairment as described by the CCQ tracks CAG 

length very strongly (R2=0.644) (Table 3.12). Apathy and behavioural changes irritability, 

POB and VAB have similar R2 ranging from 0.581-0.618. Notably both psychosis and 

depression had the lowest association with CAG length (0.450 and 0.494, respectively), 

although the correlation is still quite substantial and significant. 

 

Most studies investigating CAG length on symptom onset in HD have used motor onset as 

the primary outcome measure; several studies have used a combinatorial approach to 

generate an age at first symptom onset across symptomatic domains, however these do not 

distinguish between onset types (Illarioshkin et al., 1994; Brandt et al., 1996; Pekmezovic et 

al., 2007; Rinaldi et al., 2012). Andrew et al., 1993 distinguished between motor symptoms 

(chorea), dementia and psychiatric abnormalities, although only had small numbers of the 

latter two (N=39 for dementia, N=84 for psychiatric signs). They found psychiatric symptoms 

had the weakest correlation compared to dementia and motor symptoms, however 

psychiatric symptoms were not further defined (e.g. depression, apathy, etc.). Consistent 

with our results, dementia onset, a form of advanced cognitive impairment, had a higher 

correlation with CAG length than psychiatric symptoms, but this was lower than the 

correlation of motor symptoms in their study. Vassos et al. (Vassos et al., 2008) found 

similar results; CAG length accounted for a highly significant but lower proportion of the 

variation of first psychiatric symptom onset (n=49, R2=0.51) compared to motor features 

(n=66,R2=0.78). 

 

The finding that psychosis and depression had smaller (although still highly significant) 

associations with CAG length than other symptoms was interesting, although interpretation 

is not straightforward. HD psychopathology can be misattributed to other syndromes (e.g. 

major depression or schizophrenia (SZ)), especially before development of characteristic 

neurological signs (Kumar and Jog, 2011; Martino et al., 2013; Pascu et al., 2015), 

particularly those without a family history of HD. HD patients can also have co-morbidity with 

other disorders which may be distinct from HD (Sipilä et al., 2016) such as SZ, although we 

have attempted to reduce this bias in our study by removing SZ or similar disorders as 

defined by ICD-10 for psychotic symptoms in our extended model. Furthermore, CCQ data is 
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retrospective in nature from patients/family, and while adjusting for the age at onset 

determined by the rater as described likely improves onset estimation, it introduces its own 

biases. These problems can make onset estimates less reliable and affect the R2 values 

calculated in our data. Interestingly, psychotic symptoms in HD tend to have a familial 

predisposition (Lovestone et al., 1996; Tsuang et al., 2000), potentially suggesting additional 

or separate mechanisms by which psychosis arises in HD patients, and several gene 

candidates have been proposed by Tsuang and colleagues (Tsuang et al., 2018). Possibly, 

then, some of the unexplained variability not captured by CAG length may be explained by 

these additional genetic factors. In support of this, a recent study showed a degree of 

genetic overlap between certain HD psychiatric phenotypes and other neurological diseases 

(including schizophrenia) (Ellis et al., 2019).  

 

CAG length was found to correlate almost as highly for CCQ-derived cognitive onset as it did 

for motor symptoms. It is known that mild cognitive impairment, as well as apathy, can 

predate HD diagnosis (Paulsen et al., 2008; Duff et al., 2010) and these worsen over time 

until disease diagnosis (Baake et al., 2017) (see 1.2). Although cognitive CCQ probably 

lacks the sensitivity to capture subtle changes to cognition, the CCQ instead focuses on a 

disease milestone well into HD pathology where cognitive impairment begins to affect every 

day functioning. It would be interesting to see at what point cognitive CCQ conversion 

occurred when comparing to the symbol digit modalities test (SDMT) or more robust 

cognitive batteries such as those included in the UHDRS, e.g. Stroop word test, both of 

which are strong predictors of HD cognitive phenotype (Tabrizi et al., 2013; Braisch et al., 

2019). Further, finding that cognitive, motor and apathy symptoms all have similar levels of 

variation explained by the CAG length is consistent with the same underlying mechanism 

driving pathology for these symptoms. Cognitive, motor and apathy symptoms all track HD 

clinical progression (Thompson et al., 2012; Fritz et al., 2018) and are associated with the 

atrophy of subcortical brain structures (Aylward et al., 1997, 2004; Misiura et al., 2017, 2019; 

Baake et al., 2018). Behavioural symptoms such as POB and irritability/VAB have a large 

amount of their variance explained by CAG length in our study as well. 

 

We found no significant effect of the wild-type HTT CAG length on HD onset (CCQ; Table 

3.11) after accounting for the expanded CAG length. There have been inconsistent findings 

about the role of the wild-type CAG length and whether it has an effect on disease (Farrer et 

al., 1993; Snell et al., 1993; Warner et al., 1993; Djoussé et al., 2003; Aziz et al., 2009); 

however, our findings replicate more recent studies (Klempíř et al., 2011; Lee et al., 2012c) 

that also find no role for wild-type CAG length on onset. Our study, however, does not 

necessarily preclude a role of the wild-type CAG in clinical severity nor progression which 
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have been reported to be linked to wild-type HTT CAG length (Aziz et al., 2009). 

Additionally, we did not explore whether a second expanded allele affected phenotype, as 

has been reported elsewhere (Squitieri et al., 2003). 

 

3.8.5 Anticipation in Registry 

HTT alleles are unstable during intergenerational (vertical) transmission, leading to the 

phenomenon of anticipation where offspring tend to have longer CAG lengths and, thus, an 

earlier age at HD onset (Teisberg, 1995; McInnis, 1996) (1.3). Using retrospectively derived 

onset data for parents, we calculated an average anticipation for maternally inherited alleles 

as 2.88 years and paternal alleles as 7.21 years. It has been well-established that 

anticipation is larger in paternally transmitted alleles (Ridley et al., 1988; Duyao et al., 1993; 

Wheeler et al., 2007; Aziz et al., 2011; Ramos et al., 2012a), probably arising during 

spermatogenesis (Yoon et al., 2003; Wheeler et al., 2007; Simard et al., 2014; Neto et al., 

2017; Jamali et al., 2018). Our estimates for anticipation are similar to several other studies 

(Ranen et al., 1995; Margolis et al., 1999; Demetriou et al., 2018), although slightly lower 

than others (Cannella et al., 2004). Some differences may stem from using retrospective 

non-clinical estimates for age at onset for parents. Having single nucleotide polymorphism 

(SNP) genotype data for these individuals, many of which are available (GeM-HD 

Consortium, 2015, 2019), could allow for an examination of genetic liability for expansions to 

occur vertically using a GWAS. Any identified factors could be similar to those that affect 

onset as reported elsewhere (GeM-HD Consortium, 2015, 2019), although both the 

retrospectively-derived anticipation data and the stochastic nature of anticipation could make 

identification of genetic loci difficult. As others have found, approximately 2/3 of JHD cases 

arise paternally (Ridley et al., 1988; Myers et al., 1993; Ranen et al., 1995). We also find de 

novo HD cases account for ~7.8% of HD cases. 

 

3.8.6 Sex differences in HD symptoms 

We found that there was a ~10.5% higher prevalence of reported depressive symptoms in 

women than men in Registry after removing symptoms occurring >2 years earlier than the 

rater’s estimate of HD onset. This was confirmed using logistic generalised linear modelling 

which found significant sex differences between depression, irritability and VAB symptoms. 

An extended generalised linear model with more stringent inclusion criteria and more 

covariates, although fewer participants, found depression remained significant, and 

irritability/VAB retained nominal significance between males and females. In the general 

population, depression is ~1.5-2.0x more common in women than men (Piccinelli and 

Wilkinson, 2000; Ferrari et al., 2013; Salk et al., 2017), however it has been recently 
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reported that there is no sex difference in the likelihood of depression in HD using the HADS 

(Dale et al., 2016). We do, however, replicate the Dale study finding that TFC score is 

strongly and negatively associated with depression. TFC score was also negatively 

associated with all other symptoms we derived in symptomatic HD patients, with the notable 

exception of motor symptoms where our model was underpowered, demonstrating 

psychiatric disturbances as reported by the CCQ tend to increase over disease course. 

 

The HADS scores, total depression score (TDS) and total anxiety scores (TAS), were then 

used as in the Dale et al. study with the same selection criteria and covariates, excepting 

medication, and gave similar results to their study. Notably, the TDS was strongly associated 

with TFC and negatively nominally significant with education years. We find a nominally 

significant difference for sex using TDS; however, this is in the opposite direction than 

expected, with males having slightly higher TDS than females. TAS had no significant 

correlation with any of the variables explored, and only had a nominally significant 

association with CAG length, education years and age at onset. We also expanded on the 

Dale study by considering the total irritability score (TIS; derived from SIS). We found that 

TIS shows significant and negative associations for both CAG length and age, and these 

results are very similar to those seen with CCQ for irritability. Although there was no 

significant difference for TIS and sex, men tended to have higher scores than women, so it 

would be very interesting to see the TIS repeated in a larger cohort of HD patients. 

 

The reason for the differences between the TDS and depression CCQ are unclear. The Dale 

et al. study used the HADS in a moderately sized cohort of HD patients (N=453) who also 

originate from Registry as those in our study do, and there is likely substantial overlap 

between the participants in our two studies. The HADS is widely used across a range of 

psychiatric disorders and is considered robust (Bjelland et al., 2002); in HD, the HADS has 

been used as a short-form test in HD patient cohorts (De Souza et al., 2010; Dale et al., 

2016) and is a recommended scale for depression by Mestre et al. (Mestre et al., 2016). We 

used our strictest cut-off for CCQ measure to limit any bias originating from symptoms 

occurring before HD onset, so it is unlikely these are affecting the results. Apathy CCQ had 

the strongest association with TDS and depression has the strongest association with TAS, 

although these associations are somewhat small (0.252 and 0.220, respectively). CCQ and 

TDS may simply be capturing depression differently; whereas TDS is a thought-based 

measure of depression from the patient (e.g. I feel cheerful), the CCQ is a binary yes or no, 

completed with input from the participant, family and clinician.  
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Irritability and VAB are only nominally significantly associated with sex following multiple 

testing correction, although this may be due to reduced numbers in the extended model. The 

literature has been somewhat mixed with some studies finding no difference for the sexes in 

HD irritability/violence (Pflanz et al., 1991; Shiwach and Patel, 1993; Reedeker et al., 2012) 

and others finding that male HD patients exhibit more violent behaviour (Tyler et al., 1983). 

One study reported an increase in crime in only male HD patients (Jensen et al., 1998), 

although violent crime on its own was not significantly higher in HD patients, possibly due to 

a small sample size (N=99). Some of these differences in observation likely arise from (1) 

large ranges in N and (2) significant differences in study design and outcome measure. 

There is no single measure that is used to assess behavioural changes in HD (reviewed in 

(Mestre et al., 2016)). Some scales include the neuropsychiatric inventory (NPI) (Paulsen et 

al., 2001), the PBA (Craufurd et al., 2001; Kingma et al., 2008) and the irritability scale (IS) 

(Klöppel et al., 2010; Reedeker et al., 2012). Thus, while we find that there is a significant 

difference in irritability/VAB prevalence between males and females, we would be interested 

to see how other behavioural metrics are associated with the CCQ. 

 

Strikingly we also find that age at onset (sxrater, regardless of onset type) is independently 

and significantly negatively associated with symptom prevalence for cognition, depression, 

irritability and VAB, and nominally so for psychosis in adult HD, i.e. younger manifest HD 

adults are more likely to report cognitive impairment and psychiatric symptoms. This is 

further shown in the types of onsets called in Registry which are more likely to be called as 

psychiatric, mixed or cognitive in younger age groups. A similar effect was reported by 

Rocha et al. (Rocha et al., 2018) for psychotic symptoms. Age being a risk factor for 

psychiatric symptoms may have clinical relevance for the management of HD in younger 

individuals. 

 

Education was identified as being negatively associated with HD psychotic symptoms, with 

individuals having a higher number of education years less likely to report psychiatric 

symptoms in their HD disease course. This is reminiscent of schizophrenia where 

educational attainment is negatively associated with schizophrenia risk (Okbay et al., 2016; 

Bansal et al., 2018; Escott-Price et al., 2019). This observation further supports the previous 

finding that psychotic symptoms are least associated with CAG length in our data, 

suggesting risk factors for psychosis may, in part, be associated with common variation in 

the general population. The largest study of psychosis in HD that we know of is the (Rocha 

et al., 2018) study encompassing 2303 manifest HD individuals, with 248 having psychosis 

in their lifetime. They did not factor educational attainment into their model, however they did 

find significant negative associations with onset and CAG length, as we also find at nominal 
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significance after multiple testing correction. They did not find TFC to be significant in their 

model (although it is approaching significance), however they do find part B of the trail 

making test (TMT-B) significant, and this may be capturing a similar or related effect. 

 

3.8.7 Selection of an extreme onset cohort 

A total of 500 individuals were chosen for whole-exome sequencing by stratifying the cohort 

by residual AMO. AMO was chosen as the primary selection criteria as (1) AMO has been 

used for cohort selection previously and successfully (GeM-HD Consortium, 2015, 2019); (2) 

genotype data was available for many of the calculated AMO individuals through the GeM-

HD GWA study (147 in GWA3, 337 in GWA4); (3) further progression data was available for 

a subset of these individuals (the 147 in GWA3) (Hensman Moss et al., 2017) (4) AMO 

tracked CAG length most strongly of all symptoms. Given only 500 individuals could be 

sequenced, we elected to use motor onset as it was the most strongly associated with CAG 

length, easily identifiable clinically (especially in an at-risk population), readily present in 

most manifest HD patients and reasonably HD-specific. Although other symptom onset 

information could be factored in post hoc. It would be interesting to compare our selection 

method to others in the literature, such as the Braisch et al. (Braisch et al., 2017) extreme 

motor onset cohort or the Braisch et al. (Braisch et al., 2019) cohort selected using extreme 

SDMT scorers. 

 

Significant differences were seen between the disease-causing CAG lengths in the early and 

late groups (42.6 vs 43.6 early/late), which makes CAG length an important covariate for 

downstream analyses when examining the HTT gene. Future cohort selection may find 

balancing CAG length useful for downstream study when considering instability, although 

this is further complicated by potential structural differences in HTT which affect the size of 

the pure CAG (see chapter 5), as HTT alleles are not routinely sequenced currently. 

Significant differences for irritability, VAB and depressive symptoms were seen between the 

early and late arms after covarying for sex and CAG. A comparable effect was seen in the 

generalised linear models where earlier sxrater-derived onset was negatively and 

significantly associated with cognitive, depression, irritability and VAB symptoms, and is also 

similar to the observation earlier onsets are more likely to be classed as psychiatric, 

cognitive or mixed onset types. 

 

This chapter saw the derivation of ages at symptom onset in what we believe is the largest 

study of phenotype and CAG length in HD to date. Eight separate symptoms were analysed, 

primarily drawing from CCQ data. CCQ data was concordant with the rater’s estimate of 
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onset in >90% of cases for motor symptoms and >75% for cognitive impairment. Depression 

was identified as having a significantly higher prevalence in women compared to men in 

disease course when using the CCQ, and irritability and VAB symptoms were significantly 

more prevalent in men. We also find age is a risk factor for several psychiatric symptoms in 

manifest HD individuals. The variation explained by CAG length was then calculated across 

a range of symptoms. Depression and psychosis were the least associated with the length of 

CAG and may reflect mechanistic differences in the pathology of these symptoms. Finally, 

an extreme onset cohort was chosen based on residual age at motor onset. These 

individuals will be sequenced in the proceeding chapters. 
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Chapter 4: Exome sequencing of an extreme motor onset 

cohort of HD patients 

4.1 Introduction 

The HD expanded CAG repeat tract is found in exon 1 the of Huntingtin gene (HTT), and its 

length is the is the primary determinant for age at disease onset (Wexler et al., 2004; Lee et 

al., 2012c) accounting for between ~50-70% of the variance observed (see chapter 3 & 

Tables 3.7-3.8). However, the remaining ~30-50% variation is known to have a significant 

and independent genetic component (Wexler et al., 2004). Recent GWA studies and other 

human genetics have highlighted several candidate genes associated with altered HD onset 

including FAN1, MSH3, MLH1 and HTT allele structure (GeM-HD Consortium, 2015, 2019; 

Lee et al., 2017; Ciosi et al., 2019; Wright et al., 2019). Many of the implicated modifying 

genes from GWA study are involved in DNA repair pathways, and these likely act via 

somatic instability, wherein the extended CAG repeat undergoes progressive expansion in 

somatic cells (see 1.5/1.7).  

 

To date, GWA studies have identified >70,000 trait-associated loci (Buniello et al., 2019). 

GWA studies are effective in identifying common variation associated with disease (Altshuler 

et al., 2008), however one of their main limitations is in narrowing down candidate genes 

from implicated loci, especially given many of the signals identified are non-coding (Maurano 

et al., 2012). Additionally, variants of large effect size such as loss-of-function (LoF) or other 

damaging non-synonymous (NS) variation are typically rare and not captured by standard 

array-based imputation (Cirulli and Goldstein, 2010). In contrast, whole-exome sequencing 

(WES) is a next-generation sequencing (NGS) modality that sequences the entire coding 

portion of the genome (Hodges et al., 2007; Gnirke et al., 2009), constituting ~1% of the total 

human genome. Unlike genotyping arrays, WES can capture the entire coding variation 

present in an individual regardless of rarity and can identify variation that is difficult or 

impossible to detect by GWAS (Visscher et al., 2017). By implicitly examining coding 

variation, exome sequencing has the power to detect rare variants of potentially large effect 

size that translate to changes to protein structure and function.  

 

Since its outset, numerous studies have used WES to identify causative mutations in rare 

disease (Choi et al., 2009; Ng et al., 2009, 2010a, 2010b; Roach et al., 2010; Muona et al., 

2015), and ~25% of rare diseases, predominantly those of known loci, can be clinically 

diagnosed using WES (Yang et al., 2013). WES has also identified de novo variation to be 

both frequent and a major contributary factor towards disorders including schizophrenia (Xu 
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et al., 2011; Fromer et al., 2014; Rees et al., 2019), autism spectrum disorder (ASD) (Neale 

et al., 2012; De Rubeis et al., 2014) and other developmental disorders (Ku et al., 2013; 

Deciphering Developmental Disorders Study, 2017). Further, WES can also be used in rare-

variant association studies to detect low frequency and rare coding variants contributing 

towards common, complex diseases such as diabetes (Flannick et al., 2019), Alzheimer’s 

disease (Bis et al., 2018; Raghavan et al., 2018) and schizophrenia (Purcell et al., 2014; 

Genovese et al., 2016), thereby providing further insight into the genetic architecture of 

disease. 

 

To build upon previous genetic work in HD, we wanted to investigate whether rare genetic 

variants of potentially large effect size could modulate HD disease onset. We stratified 

individuals from the large Registry-HD cohort (N~6000) by their age at motor onset (see 

chapter 3) and sequenced the 250 earliest and 250 latest individuals compared to their 

expected onset based on CAG length alone (age at motor onset residual) using WES. 

Individuals with extreme early/late onset are more likely to be enriched for genetic modifiers, 

and so our strategy maximised the study’s power given we were unable to sequence the 

entire Registry cohort with our resources. This chapter details the generation and quality 

control (QC) of these exome data using in-house sample QC and annotation pipelines. 

These data are then analysed; first, HTT allele structure is assessed using WES. Then, 

candidate genes previously implicated by GWA study and other genetic work are 

investigated such as FAN1, TCERG1 and MSH3. We then performed whole-exome rare-

variant analysis using dichotomous and continuous phenotypes with burden regression and 

sequence kernel association tests (SKAT). Finally, gene set enrichment analyses of rare 

variation are considered. The individuals from this chapter are then used in chapter 5 where 

HTT allele structure is more rigorously assessed using a targeted NGS method.  
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4.2 Exome sequencing of HD patient DNA 

Whole-exome libraries for the 500 selected individuals from 3.7 were prepared using 

TruSeq® Rapid Exome library kits as described (methods 2.6.1). Six plates were prepared 

as 96-plex libraries and one plate as a 12-plex library. Where possible, care was taken to 

distribute early and late onset samples equally during library preparation. Completed 

libraries were then given to the MRC core team where libraries were clustered using a cBot 

system and sequenced on an in-house HiSeq 4000 (methods 2.6.2). 

 

De-multiplexed FASTQ files were aligned to a GRCh37 reference to generate variant-ready 

binary alignment map (BAM) files, and a compiled variant calling file (VCF) was created with 

a local GATK-best practices pipeline (methods 2.7.1.1). Of the six 96-plex libraries, four 

sequenced as expected, one had a single exome failure during initial fragmentation and 

barcoding (95 successful samples) and one plate had three pools fail during one of the two 

capture and hybridisation steps (each pool is 12-plex, i.e. 96-36=60 successful samples). A 

final total of 551 samples were sequenced (Table 4.1), most of these derived from DNA 

extracted from HD patient lymphoblastoid cell lines (LBCs). In addition, four samples from 

patient blood and nine HD induced pluripotent stem cells (IPSC) lines (HD iPSC Consortium, 

2012) were also sequenced. While the analysis of the IPSC lines is outside the scope of this 

project, these samples were included for exome QC purposes. 

 

Sample source N 

Early HD onset (LBC) 250 (16) 

Early HD onset (Blood) 2 

Late HD onset (LBC) 250 (15) 

Late HD onset (Blood) 2 

Normal HD onset (Blood) 7 

IPSC-derived 9 

Table 4.1: An overview of the samples exome sequenced. Note the numbers in brackets 

refer to the number of samples for which sequencing had to be repeated (usually due to 

some sort of QC failure). Final N=551. LBC: lymphoblastoid; IPSC: induced pluripotent stem 

cell. 
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4.3 Exome quality control pipeline 

4.3.1 Establishing exome quality using Picard and Hail 

For an overview of the exome quality control pipeline, see the provided flowchart (methods 

2.7.1.2, Fig. 2.5). Picard, an NGS tool, was used to produce target coverage and mean 

sample depth statistics for each BAM file (https://github.com/broadinstitute/picard). Both 

target coverage and mean depth correlate strongly (r=0.915) and are presented in Fig. 4.1 

for each plate. We opted to use target coverage as an initial QC check, and re-sequenced 

samples with <70% of the exome covered. Although sequencing libraries were prepared with 

equal numbers of early residual and late residual onset samples, there was still a small but 

significant difference between early and late sample QC metrics. Mean exome coverage at 

≥10X in early onset exomes was 82.3% and 80.8% for late exomes (p=3.38E-04 Welch two 

sample t-test). The mean target depth in earlies was 30.34 and 28.82 for lates (p=2.65E-03 

Welch two sample t-test).  

 

Following Picard QC on the BAMs, we then performed a second QC on the resultant VCF 

using Hail (https://github.com/hail-is/hail). Hail computes several QC measures including 

genotype quality mean, call rate and mean variant depth. As before, these metrics correlate 

strongly with each other, although call rate less so than depth/genotype quality (genotype 

quality and depth r=0.98; genotype quality and call rate r=0.74; depth and call rate r=0.71). 

The average genotype quality was 67.82 (early) and 66.64 (late); average depth was 28.80 

(early) and 28.13 (late); and the average call rate was 97.80% (early) and 97.63% (late). To 

be systematic, we removed exomes >3 standard deviations less than the mean for any of 

these metrics (Fig. 4.2). 3 standard deviations was chosen as it gave a good combination of 

stringency and inclusivity (i.e. not losing too many exomes) based on the plots in Fig. 4.2. 

Following sample repetition, 499 of the 500 lymphoblastoid-derived exomes passed both 

Picard and Hail QC. 

 

 

 

 

https://github.com/broadinstitute/picard
https://github.com/hail-is/hail
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Figure 4.1: Quality control metrics for exome libraries using Picard. Picard-derived QC 

metrics are shown for (A) percentage of target exome covered and (B) mean target depth 

(average number of reads). The samples are arranged in order of pooled libraries, and the 

colours refer to the different plates in order of preparation. The red dashed line in (A) 

indicates the 70% coverage rate at 10X. N=551. 

A 

B 
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Figure 4.2: Quality control metrics for exome libraries using Hail. Call rate (callRate) 

and genotype quality mean (gqMean) are shown in (A); call rate and mean variant depth 

(dpMean) are shown in (B). The dashed red line indicates the 3 standard deviation cut-off for 

sample inclusion. QC metrics derived from Hail. N=551 for both (A) and (B). 

A 

B 
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4.3.2 Detecting exome contamination 

Contamination of samples can arise due to handling error during library preparation or 

original sample contamination and must be addressed to prevent biases in the data. 

VerifyBamID (Jun et al., 2012) was used to generate a sequence-only contamination ratio 

(‘Freemix’) in our BAM files passing QC. In addition, we also calculated the 

heterozygote/homozygote (Het/Hom) ratio in our VCF calculated by Hail, as this is roughly 

equivalent (r=0.94). Both approaches detect sites where there are >2 alleles, as such sites 

are indicative of contamination, and results for these analyses are shown in Fig. 4.3. We 

used the same implementation as the ExAC study where samples with a contamination ratio 

> 0.075 were removed (Lek et al., 2016). 5 samples were predicted to have high levels of 

contamination and were repeated. After repetition of these samples, no further 

contamination was detected demonstrating the contamination likely occurred during DNA 

preparation. All lymphoblastoid-derived exomes up to this point, 499 of 500, passed this 

level of QC. 

 

 

Figure 4.3: Detection of exome contamination using VerifyBamID. VerifyBamID 

contamination ratio (‘Freemix’) is plotted against the heterozygote/homozygote (Het/Hom) 

ratio from Hail. N=550 (1 sample repeat with very low quality failed to run in VerifyBamID).
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4.3.3 Comparing imputed sex to our patient database 

At this point, non-lymphoblastoid exomes were removed, and any replicates were similarly 

filtered. In cases where two lymphoblastoid-derived exome replicates passed QC, the exome 

with the highest QC metrics was kept. Sex was imputed using Peddy (Pedersen and 

Quinlan, 2017) in the 499 remaining exomes and compared to our Registry-HD patient 

database (Fig. 4.4). Four exomes were flagged as having different imputed sex compared to 

their recorded sex in our database. In all four cases, the imputed sex was male whilst 

recorded sex was female. In addition, one individual who had a missing sex in our database 

was imputed to be female. The four exomes with discrepancies between imputed sex and 

our clinical database were removed, and the exome whose sex was originally unknown was 

kept, leaving 495 of 500 exomes. 

 

 

Figure 4.4: Sex checks using Peddy. The x-axis is recorded sex in Registry (f : female; m: 

male; u: unknown) and the y-axis is predicted sex imputed using Peddy. The four red circles 

are exomes which failed sex checks. The one green circle was a sample of originally 

unknown sex. Data are jittered on the x-axis to reduce overlap. Total N=499. 
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4.3.4 Principal component analysis and ancestry determination 

A principal component analysis was used to determine population substructures. Population 

substructures (mostly through ancestry) are critical to account for as these can otherwise 

produce spurious gene associations (Price et al., 2010). The first 10 principal components 

were calculated using Hail, and the first three principal components are plotted in Fig. 4.5. 

Peddy was then used to estimate ancestry of samples using a principal components analysis 

against 2504 whole-genome samples from the thousand genomes project (1000 Genomes 

Project Consortium, 2015). As indicated in Fig. 4.6, 479 of the 495 exomes (~97%) came 

from individuals with a European ancestry as indicated by Peddy. Of those that had other 

ancestries, six were estimated to be ad mixed American (AMR), two were South Asian 

(SAS), one was African (AFR) and seven were of unknown descent (although at least three 

of these may be of European descent, but were not classified as such by Peddy – see Fig. 

4.6).  

 

No individuals were excluded based on ancestry, and Hail principal components were used 

in downstream analyses to adjust for population substructures (see 4.7-4.10). Hail principal 

components were preferred as Peddy only samples the VCF at ~25,000 sites whilst Hail 

utilises all available variant sites, at the cost of computing time. It is notable that principal 

components may not properly adjust for ancestry where there are only a few individuals of a 

given ancestry, as seen here. This is discussed in 4.11.2, however an auxiliary analysis 

recapitulating the main downstream burden/SKAT(-O) tests from 4.7-4.9 removing 

individuals with a non-European ancestry showed very similar results (Appendix 15) as 

having kept these individuals in the analysis. 

 

Figure 4.5: Hail-derived principal components. Principal components (PCs) are shown for 

the exomes, N=490 (5 individuals are excluded from this graph with very large PCs – see 

Fig. 4.6). Points are coloured according to the first principal component.
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Figure 4.6: Ancestry of WES samples estimated by Peddy. Principal components (PCs) 

calculated using Peddy are plotted based on principal components from the 1000 genomes 

project (1000 Genomes Project Consortium, 2015). PC1 and PC2 are shown in (A); PC1 and 

PC3 are shown in (B). N=495. AFR: African; AMR: Ad mixed American; EUR: European; 

SAS: South Asian; UNK: Unknown.

A 

B 
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4.3.5 Removal of related individuals 

We next removed highly related individuals from our analysis using PLINK ((Purcell et al., 

2007; Chang et al., 2015); www.cog-genomics.org/plink/1.9/) identity by descent (IBD) ratios. 

We used a PI-HAT cut-off of 0.5 to identify first-degree relatives, and identified nine pairs of 

highly related individuals (Fig. 4.7). For these related pairs, we kept the individual with the 

highest age at motor onset residual, leaving 486 exomes. Notably, in all but one of these 

nine cases, early onset individuals segregated with other related early onset individuals and 

vice versa. The only exception identified was a mother-daughter pair where both had the 

same CAG length (41 measured by MiSeq), but the daughter had a 15 years earlier onset 

than the mother. Using Hail’s genetic relationship matrix (GRM) identified the same nine 

related pairs (Fig. 4.8). 

 

 

Figure 4.7: Identity by decent ratios for WES samples. VDS files were exported to 

PLINK, which was then used to generate identity by decent (IBD) ratios for N=495 

individuals. The graph displays IBD PI-HAT results for 122,265 individual pairs in order of 

relatedness (x axis as sample pair). We used a cut-off of PI HAT = 0.5. 

 

 

http://www.cog-genomics.org/plink/1.9/
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Figure 4.8: Genetic relationship matrices for WES samples. Genetic relationship 

matrices (GRMs) were calculated using Hail. (A) shows the most related pairs of individuals 

and (B) the second most related pair. Cut-off was chosen as 0.125, indicated on both plots 

as the dashed red line. ‘Order’ on the x-axis indicates the order in which samples are 

arranged (from highest to lowest GRM).

A 

B 
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4.3.6 Redefining early and late populations post re-genotyping 

Although HD individuals were originally chosen for WES based on their age at motor onset 

(AMO) residual, centrally measured CAG lengths were unavailable for many patients at the 

time of sample selection. As a result, CAGs derived from local clinical labs were instead 

used to calculate expected ages of onset in chapter 3. CAG lengths from local labs are 

generally considered less accurate as these are not (1) systematic or (2) subject to the same 

level of QC as centrally measured CAG lengths. To address this issue, we re-genotyped all 

500 individuals chosen for sequencing using a targeted MiSeq methodology (2.8/2.9 & (Ciosi 

et al., 2018)) – see chapter 5 for these results in full. One individual who failed MiSeq and in-

house genescan genotyping (2.11) was excluded, leaving a final 485 exomes passing QC 

(see Fig. 4.9 for an overview in flowchart format). 

 

MiSeq data (see 2.8-2.9 and chapter 5) was used to calculate two AMO residuals. The 

uncorrected residual derived an expected age at onset using an individual’s total 

polyglutamine length-2, to be equivalent to non-sequencing CAG sizing methods (e.g. 

genescan). Typically, non-sequencing HTT sizing methods assume a canonical CAACAG at 

the end of the HTT CAG repeat tract (a canonical HTT allele is shown in Fig. 4.12, and has a 

single penultimate CAA codon at the 3’ end of the repeat). The corrected residual instead 

used pure CAG length to estimate expected onset.  

 

We redefined our early and late onset groups where the uncorrected AMO residual was ≥5 

years earlier or later than expected using the Langbehn model, respectively (Fig. 4.10), as 

~5 years is equivalent to ~±2 CAGs (Langbehn et al., 2004), and >±1 CAG error accepted 

for most sizing methods (Massey et al., 2018). A subset (N=44, ~9%) of the original 500 

were found to have uncorrected AMO residuals between -5 to 5 years after recalculation 

using MiSeq polyglutamine length-2, and these individuals were reclassified as having a 

‘normal’ or expected HD onset. With these data in mind, we created two groups for analyses. 

Group 1, the continuous phenotype group, contained all 485 QC-passing exomes (N=243 

early, 242 late), and was used in continuous whole-exome analyses. Group 2, the 

dichotomous/binary group, contained 440 samples who both passed QC and had ≥5 |AMO 

residual| (N=225 early, 215 late) (see also Fig. 4.9). One originally late individual had an 

early onset upon re-genotyping and was excluded from group 2. The dichotomous group 

was used for determining variant counts and in whole-exome logistic analyses. 
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Figure 4.9: A flowchart of the exomes kept/lost in the quality control pipeline. Shown 

are the steps in the exome quality control pipeline (4.3); also see Fig. 2.5. Abbreviations: 

QC: Quality control; PCA: Principal components analysis. 
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Figure 4.10: Redefining early and late populations with MiSeq genotypes. The plot uses 

uncorrected residual age at motor onset (polyglutamine length-2 in re-genotyped HTT 

alleles) as calculated from MiSeq CAG lengths (see methods 2.8-2.9). The dashed red lines 

distinguish the redefined early (≤-5 year AMO residual) and the late onset groups (≥5 year 

AMO residual). E: Early; L: Late.
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4.4 Annotation pipeline and variant prioritisation 

A flowchart for the annotation pipeline is available in Fig. 2.6 in methods 2.7.1.3. The 485 

exomes passing QC from 4.2 were annotated using an in-house annotation pipeline. Multi-

allelic sites were first split into separate calls, and individual variant sites were subject to QC 

for each sample. Variants where quality was low (<10 reads or <30 GQ) were excluded, and 

sites of ambiguous homo/heterozygosity were similarly filtered. Variants were then 

annotated using the variant effect predictor tool (VEP) (McLaren et al., 2016). Several other 

databases, including gnomAD (Karczewski et al., 2019) and dbNSFP (Liu et al., 2011, 

2016), were additionally used to annotate variants. 

 

An important concept in interpretation of sequencing data is that of variant prioritisation. For 

our purposes, we focused on three variant features. (1) Whether a variant was predicted to 

have a tangible functional effect (i.e. coding change), (2) if the variant was predicted to have 

a damaging effect, and (3), how rare the variant was. Taking (1) and (2) into account, we 

defined non-synonymous damaging (NSD) as variants that either resulted in a loss-of-

function (LoF) change, such as a frameshift or loss of a splice acceptor, or a missense 

variant. For missense variants, we considered those with a CADD PHRED score ≥20 to be 

damaging. CADD score is a prediction of how damaging a particular variant is (Kircher et al., 

2014), and PHRED is a logarithmic scale (Ewing and Green, 1998; Ewing et al., 1998). 

CADD PHRED of ≥20 represents the top 1% predicted most damaging variants in the 

genome.  

 

For (3), we defined rare variants as those which were either missing from gnomAD (and may 

represent very rare, or private, singleton variants), or variants with a known minor allele 

frequency (MAF) ≤1% using gnomAD’s non-Finnish European population. The non-Finnish 

European population was chosen as ~97% of our sequenced population were of European 

descent and is gnomAD’s largest single sample (>50,000 exomes). This frequency cut-off for 

defining rare variants is similar to those implemented and suggested elsewhere (Jalali Sefid 

Dashti and Gamieldien, 2017; Retshabile et al., 2018; Flannick et al., 2019).  

 

In our dichotomous early/late onset cohort that passed QC (N=440), 335,435 variants of all 

classes were present in at least one sample passing variant-level QC. 150,188 of these were 

non-synonymous (NS) changes, and slightly less than half (67,335) of these were 

considered potentially damaging (i.e. NSD) using CADD PHRED ≥20. 47,666 of these NSD 

variants had known gnomAD MAFs ≤1% and 34,416 had known gnomAD MAFs ≤0.1%. Of 

the NSD variants, 9,732 were LoF variants, and 5,661 of these had a known gnomAD MAF 
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≤1%. Of the 17,087 NS variants without gnomAD MAFs, 13,998 were missense variants and 

2,273 were LoF variants. Variants were annotated to a total of 21,860 genes and open 

reading frames (ORFs), and 13,970 genes/ORFs had at least one NSD variant. Fig 4.11 

shows the frequency of NSD variants across all exomes in the dichotomous population in 

annotated genes (21,860 genes). 

 

 

 

Figure 4.11: Non-synonymous damaging (NSD) variants across the exome. NSD 

variants (CADD ≥20 and either (1) minor allele frequency (MAF) ≤1% gnomAD or (2) not 

present in gnomAD) passing QC filters were collapsed across all annotated genes and 

ORFs (21,860 genes) and are shown between 0-20 and >20 NSD variants per gene. N=440 

exomes (225 early, 215 late).
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4.5 Calling HTT CAG structure with WES 

Initially, we wanted to investigate HTT sequence from our exomes to examine whether cis 

variation in HTT was a modifier of HD onset. However, as read length from WES was only 

75 bp, complete read-through of expanded HTT CAG short tandem repeat (STR) sequences 

(~120-160 bp) was not possible. Furthermore, the Genome Analysis Toolkit (GATK) variant 

calling pipeline performed poorly in identification of variants in the CAG repeat, both in 

expanded and wild-type alleles. To overcome this limitation, reads from the first exon of HTT 

were extracted from BAM files using SAMtools as detailed (2.7.2.2). Although our reads 

were not large enough to span expanded HTT alleles, it was possible to (1) read-through 

most wild-type CAGs up to ~21 CAGs (63 bp) and (2) examine the 5’ and 3’ structures of 

both wild-type and expanded alleles. Therefore, where exome read depth was high enough, 

we could dephase the wild-type allele structure and thus infer the 5’ and 3’ structure of HTT 

on each chromosome. The results from this analysis are shown in Table 4.2.  

 

The canonical structure of the HTT CAG region is shown in Fig. 4.12, which contains a 

single penultimate CAA interruption at the 3’ end of the CAG repeat (CAA also encodes 

glutamine). We found that the most common alternative allele is the CAG(CAGCAA)2CAG 

structure, and this is found in both early and late populations. Crucially, however, this 

structure was only found on the expanded allele in late onset participants. A Fisher’s exact 

test on dephased expanded alleles comparing atypical CAG(CAGCAA)2CAG and canonical 

structures between early and late onset individuals shows statistical significance (p=8.96E-

04) (183, 150; 0, 9). Furthermore, we also found two more alternative CAG structures 

containing additional interruptions, CAG(CAA)2CAG and CAG(CAA)3CAG in three late onset 

individuals. These were dephased in two cases, both found on the expanded allele. By 

contrast, we also identify a further allele with no CAA interrupting structure in seven 

individuals. Unlike CAG(CAGCAA)2CAG, the pure CAG allele only appears in early onset 

individuals on the expanded allele where dephasing was possible. A Fisher’s exact test 

between dephased canonical and pure CAG alleles in early and late onset individuals shows 

modest statistical significance (p=3.61E-02) (183, 150; 6, 0). 

 

As indicated, however, allele structure could only be determined in ~80% of cases, and of 

those with atypical alleles, dephasing was possible only ~65% of the time. This is due to the 

high variability of HTT CAG repeat read depth, ranging from >60 reads and, in other cases, 

<5 reads. Furthermore, manual assessment of BAM reads was slow and potentially prone to 

human error. A more systematic and targeted NGS-based technique (MiSeq) and 

bioinformatic analysis (Scale-HD) is explored in much greater detail in chapter 5. 
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  Early (N=225)   Late (N=215)   

  EXP WT UNK   EXP WT UNK   

(CAG)nCAACAGCCG 183 185 N/A  150 157 N/A  

(CAG)nCCG 6 0 1  0 0 0  

(CAG)n(CAACAG)2CCG 0 4 2  9 4 7  

(CAG)n(CAA)2CAGCCG 0 0 0  1 0 1  

(CAG)n(CAA)3CAGCCG 0 0 0  1 0 0  

Unknown allele structures 33 33 N/A  46 46 N/A  

Total 222 222 3 (6)  207 207 8 (16)  

 

Table 4.2: Atypical HTT allele structures identified by WES. The numbers of atypical HTT CAG structures are shown with interruptions 

(CAA) emboldened. The EXP (expanded), WT (wild type) and UNK (unknown) indicate the dephasing of atypical repeat structures. UNK 

indicates the structure was unable to be dephased. N=440 (225 early, 215 late). Note that the ‘Total’ row does not add up to the exact number 

of alleles as would be expected in EXP/WT as the unknown alleles are capturing two alleles (shown in the brackets). Adding up the UNK 

bracketed number and the EXP/WT numbers gives the number of alleles as would be expected (i.e. 450 early, 430 late). 

 

 

 

5’-TTC(CAG)nCAACAGCCGCCA(CCG)7-3’ 

Figure 4.12: The canonical HTT CAG repeat structure. Shown is the canonical structure of polyCAG in the first exon of HTT. The sequence 

in blue is the CAG repeat region (encoding polyglutamine), with the interrupting CAA triplet codon emboldened. The green sequence is CCG 

repeat region (encoding polyproline), with the interrupting CCA triplet emboldened. The first 16 codons of HTT are not shown.
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4.6 Candidate gene analysis 

4.6.1 Selection of candidate genes 

We were next interested whether there was an excess of damaging variants observed in 

genes previously associated with either HD or other repeat disease. We chose a group of 13 

disease-associated candidate genes whose exonic variants would be explored in more detail 

in our patient cohort. Nine candidate genes were genes from loci implicated by the most 

recent HD onset GWAS (GeM-HD Consortium, 2019): FAN1, MSH3, LIG1, TCERG1, MLH1, 

PMS1, PMS2, SYT9 and RRM2B. We also included HTT itself as a candidate, and MLH3, 

OGG1 and EXO1, all of which have been implicated in varying degrees by functional study 

in repeat disease systems (Pinto et al., 2013; Budworth et al., 2015; Zhao et al., 2018). 

 

4.6.2 FAN1 

Four independent signals at the FAN1 locus were significant in the most recent HD GWAS 

(GeM-HD Consortium, 2019). We were therefore very interested in determining whether 

there were FAN1 NSD variants associated with extreme onset as these may inform 

mechanism. A full list of all coding variants are shown in Table 4.3 (for non-coding variants, 

see Appendix 5). 14 distinct NSD variants were identified. Of the 35 individual instances of 

these variants, 26 were in early onset individuals and 9 in late individuals (note that these 

were found in 24 early and 8 late individuals, respectively, as two early individuals had two 

damaging FAN1 variants each, and one late individual had two damaging FAN1 variants). 

This enrichment is significant with a Fisher’s exact test (p=5.54E-03) (201, 207; 24, 8). The 

NSD variants are plotted against a schematic of FAN1 structure in Fig. 4.13.  

 

Two primary groups of early-associated damaging variation emerge. A cluster of variants 

positioned centrally encompass the Arg507His, Arg507Cys and Asp498Asn mutations in the 

SAF-A/B, Acinus and PIAS (SAP) domain of FAN1. The second cluster of early-onset 

associated variation is in the virus-type replication repair nuclease (VRR-Nuc) domain at the 

C-terminal end of FAN1 which includes the Val963Trp964ins, Arg982Cys and Cys1004Gly 

variants. The Arg969Leu, although not NSD by our classification (CADD 19.5), was also 

found here. A smaller sub-cluster of NSD variants, Arg377Trp and Leu395Pro, was 

additionally observed. Notably, both the Arg507His and Arg377Trp variants can appear in 

both early and late onset individuals but are highly enriched in early onset (12:4 and 6:1, 

respectively). We also find LoF frameshift variant, Thr187fs, in one early onset patient. The 

variant has a very low MAF in gnomAD (8.97E-06).  
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Further, we also identify a third cluster of late onset associated variants occurring in the 

tetratricopeptide (TPR) domain of FAN1: Arg658Trp, Asp702Glu and Lys794Arg. All three 

variants are rare singleton variants. Notably, however, the Pro654Leu variant, found in a 

single early onset individual, is also found in the same domain. Finally, although not a NSD 

variant, we do find a non-coding putative splice variant, 15:31212744:T:C, present only in 

four late onset individuals (Appendix 5). To our knowledge, the Asp498Asn and Asp702Glu 

NSD variants are novel and have not been described before (gnomAD, accessed July 2019). 

 

 

Figure 4.13: Structural overview of identified FAN1 variants. NS variants MAF≤1% are 

shown plotted against a schematic of the FAN1 protein. The dashed line indicates the CADD 

20 cut-off. The unmarked cyan bars indicate Mg++ binding sites. Numbers of each mutation 

are not indicated. Red circles represent variants more associated with early onset (E); green 

triangles are variants more associated with late onset (L). Zn finger: zinc finger; HD: Helical 

domain; WHD: winged-helix domain; SAP: SAF-A/B, Acinus and PIAS; TPR: 

tetratricopeptide repeat; VRR-Nuc: virus-type replication repair nuclease. N=225 early, 215 

late HD patients. Domain boundaries are taken from UniProt (UniProt Consortium, 2019) 

and (Jin and Cho, 2017).
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            Early   Late   

Variant Location DP gnomAD CADD   N/C HomR Het HomV   N/C HomR Het HomV   

Met50Arg 15:31197015:T:G 15.72 2.70E-03 28.4  123 102 0 0  130 84 1 0  

Val77Ile 15:31197095:G:A 17.95 8.95E-06 0.1  38 186 1 0  36 179 0 0  

Gln123Arg 15:31197234:A:G 32.64 0.00E+00 0.2  1 224 0 0  0 214 1 0  

Arg145His 15:31197300:G:A 34.95 2.19E-03 3.3  0 223 2 0  0 215 0 0  

Thr187fs [*] 15:31197423:CCA:C 18.76 8.97E-06 N/A  30 194 1 0  38 177 0 0  

Gln204Arg 15:31197477:A:G 25.51 8.97E-06 1.2  5 219 1 0  3 212 0 0  

Gly233Glu 15:31197564:G:A 24.08 4.28E-01 0.0  11 71 111 32  8 86 92 29  

Glu240Lys 15:31197584:G:A 24.81 5.19E-03 11.5  3 220 2 0  5 209 1 0  

Ala261Val 15:31197648:C:T 35.61 2.69E-05 17.1  0 224 1 0  0 215 0 0  

Pro366Arg 15:31197963:C:G 35.70 NA 16.2  0 225 0 0  0 214 1 0  

Arg377Trp 15:31197995:C:T 31.85 7.21E-03 23.0  0 219 6 0  0 214 1 0  

Leu395Pro 15:31198050:T:C 16.17 1.72E-04 29.2  50 174 1 0  67 148 0 0  

Glu437Gly 15:31200396:A:G 27.23 7.08E-04 13.6  8 216 1 0  6 207 2 0  

Asp498Asn 15:31202933:G:A 27.89 NA 23.8  2 222 1 0  0 215 0 0  

Arg507Cys 15:31202960:C:T 25.58 0.00E+00 34.0  6 218 1 0  8 207 0 0  

Arg507His 15:31202961:G:A 25.57 9.64E-03 24.5  7 206 12 0  8 203 4 0  

Asn621Ser 15:31210417:A:G 31.70 7.16E-05 0.0  0 224 1 0  1 214 0 0  

Ala631Thr 15:31210446:G:A 34.33 2.69E-05 15.0  0 224 1 0  0 215 0 0  

Pro654Leu 15:31212765:C:T 31.38 3.78E-04 26.9  0 224 1 0  0 215 0 0  

Arg658Trp 15:31212776:C:T 32.57 6.29E-05 35.0  1 224 0 0  0 214 1 0  

Asp702Glu 15:31214491:C:A 30.96 NA 23.1  0 225 0 0  0 214 1 0  

Lys794Arg 15:31218035:A:G 35.69 8.33E-04 24.2  0 225 0 0  0 214 1 0  

Pro894Ser 15:31221493:C:T 27.69 1.71E-02 0.0  8 209 8 0  14 197 4 0  

Val963_Trp964insLeu 15:31222845:G:GTGT 36.32 0.00E+00 22.6†  0 224 1 0  0 215 0 0  

Arg969Leu 15:31222864:G:T 35.29 NA 19.5  0 224 1 0  2 213 0 0  

Arg982Cys 15:31229349:C:T 19.21 8.96E-06 35.0  47 177 1 0  50 165 0 0  

Cys1004Gly 15:31229415:T:G 27.34 NA 27.6  2 222 1 0  2 213 0 0  
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Table 4.3: Coding variation from FAN1 from WES. Non-synonymous damaging (NSD) 

variants (NS CADD≥20 or LoF, and MAF≤1% in gnomAD NFE) are emboldened. Under 

gnomAD, ‘NA’ denotes variants not found in gnomAD v2.0.2, and 0.00E+00 indicates 

variants found in gnomAD but not in non-Finnish Europeans. Loss of function (LoF) are 

marked by [*]. Genomic locations are based on hg19/GRCh37 and CADD PHRED scores 

from dbNSFP 3.0 unless otherwise marked with a †; these were missing and were estimated 

using https://cadd.gs.washington.edu/score (accessed April 2019). Total N=440 (225 early; 

215 late). DP: Mean depth of variant site in early and late samples; NS: non-synonymous; 

N/C: not called (failed by-variant DP/GQ check); HomR: homozygote reference; Het: 

heterozygote; HomV: homozygote variant.

https://cadd.gs.washington.edu/score
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To verify the robustness of calling FAN1 variants in WES, and to assess how well the 

sample quality control and annotation pipelines in sections 4.3 and 4.4 performed, Sanger 

sequencing was performed to confirm FAN1 variants. 18 variants were Sanger sequenced, 

including all 14 NSD variants. All variants passing WES QC were confirmed by Sanger 

(Table 4.4; see Appendix 4 for representative Sanger sequencing traces). Notably, a variant 

originally called by WES, Gln717Arg, that failed subsequent exome QC was not confirmed 

by Sanger sequencing. In three cases, WES QC removed variants in individuals that were 

confirmed by Sanger sequencing. Hence, the stringency of QC may occasionally result in 

false negatives, but no instances of false positives were observed at our level of QC 

stringency in the WES in FAN1. 

 

    Early   Late   

    Pre-QC Post-QC Sanger   Pre-QC Post-QC Sanger   

 Met50Arg 0 0 0  1 1 1  

 Val77Ile 1 1 1  0 0 0  

 Thr187fs 1 1 1  0 0 0  

 Pro366Arg 0 0 0  1 1 1  

 Arg377Trp 6 6 6  1 1 1  

 Leu395Pro 2 1 2  0 0 0  

 Asp498Asn 1 1 1  0 0 0  

 Arg507Cys 1 1 1  0 0 0  

 Arg507His 14 12 14  4 4 4  

 Pro654Leu 1 1 1  0 0 0  

 Arg658Trp 0 0 0  1 1 1  

 Asp702Glu 0 0 0  1 1 1  

 Gln717Arg 1 0 0  0 0 0  

 Lys794Arg 0 0 0  1 1 1  

 Val963_Trp964insLeu 1 1 1  0 0 0  

 Arg969Leu 1 1 1  0 0 0  

 Arg982Cys 1 1 1  0 0 0  
  Cys1004Gly 1 1 1  0 0 0   

Table 4.4: Sanger sequencing confirmation of FAN1 variants. Samples with FAN1 

variants identified by WES were sequenced using Sanger sequencing. The ‘pre-QC’ column 

gives variant counts in the raw VCFs called by GATK preceding per-variant quality control in 

the annotation pipeline (2.7.1.3 & 4.4). The ‘post-QC’ column refers to variant counts after 

per-variant QC, which removes low quality variant calls. ‘Sanger’ refers to variant counts 

determined by Sanger sequencing (Sanger sequencing was performed for all variants in the 

‘Pre-QC’ column). Relevant variants are emboldened. Representative Sanger sequencing 

traces are available in Appendix 4. Variant calls which differ in at least one stage are 

emboldened for visibility. N=485 (continuous group). 
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4.6.3 EXO1 

The endonuclease 1 gene, EXO1, was not originally implicated as significant via GWAS 

(GeM-HD Consortium, 2015, 2019), though it showed modest significance in a subsequent 

TWAS (GeM-HD Consortium, 2019). Further, it has been implicated as a modifier in a fragile 

X mouse model (Zhao et al., 2018). Hence, we were interested in seeing whether a similar 

pattern of NSD variant was also present in EXO1. Coding EXO1 variants identified in WES 

are presented in Table 4.5 (see Appendix 5 for non-coding variants), with 13 early variants 

and 25 late variants (in 12 and 24 early/late patients, respectively). The 11 NSD variants 

found in EXO1 are plotted in Fig. 4.14. The enrichment of late-associated damaging 

variation in people is approaching significance (p=5.69E-02, Fisher’s exact test) (203, 201; 

12, 24). 

 

Strikingly, a cluster of late-associated variation appears around the N-terminal MSH3-EXO1 

interaction domain (Schmutte et al., 2001). The signal here is driven by five late-associated 

variants, all of which very rare and predicted to be quite damaging, ranging between 25.2-

34.0 CADD PHRED. The Gly274Arg variant may be of particular interest as it appears in 4 

individuals. Two further variants, Gly759Glu and Lys790Arg, occur near the C-terminal end 

of the protein which are also associated with late onset. Interestingly, this is near the MLH1-

EXO1 interaction domain of the EXO1 protein. The Gly759Glu variant here is more common 

(9.34E-03, gnomAD MAF) and identified in 9 late and 2 early onset individuals.  

 

Both the Asp249Asn and Ala827Val variants, found in the MSH3-EXO1 and MLH1-EXO1 

domains, respectively, occurred in equal numbers of early and late patients. Two early-

associated NSD variants were observed: Ser610Gly and Arg121Trp. Arg121Trp is a 

singleton whereas Ser610Gly occurs in one late and three early individuals. As there are few 

early-associated variants, it is difficult to draw firm conclusions. Unlike the MSH3-EXO1 and 

(potentially) the MLH1-EXO1 interaction domains, the MSH2-EXO1 interaction domain only 

contains one variant (Ser610Gly). Finally, a LoF (a splice acceptor variant) was observed in 

equal numbers of early and late individuals (1:242048615:G:C). This is found at a modestly 

low gnomAD MAF (2.63E-03). 
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            Early   Late   

Variant Location DP gnomAD CADD   N/C HomR Het HomV   N/C HomR Het HomV   

Arg108His 1:242016701:G:A 36.89 3.58E-05 33.0  0 225 0 0  0 214 1 0  
Arg121Trp 1:242016739:C:T 37.42 1.25E-04 32.0  0 224 1 0  0 215 0 0  
Ala137Ser 1:242020650:G:T 22.19 1.30E-03 25.7  2 223 0 0  4 210 1 0  
Asp143Glu 1:242020670:T:A 24.09 8.24E-04 25.2  5 220 0 0  2 212 1 0  
Gly223Val 1:242021932:G:T 36.49 2.69E-05 31.0  0 225 0 0  0 214 1 0  

Asp249Asn 1:242022009:G:A 30.89 4.45E-03 26.7  1 220 4 0  1 211 3 0  
Gly274Arg 1:242023882:G:A 35.06 3.10E-03 34.0  1 224 0 0  0 211 4 0  
Asn279Ser 1:242023898:A:G 37.67 3.18E-02 26.9  0 212 11 2  0 198 15 2  
His354Arg 1:242030151:A:G 45.63 5.56E-01 0.0  1 48 91 85  2 51 103 59  
Thr439Met 1:242035382:C:T 22.42 8.23E-02 20.2  10 182 32 1  13 180 21 1  
Val458Met 1:242035438:G:A 38.13 2.42E-01 0.0  2 134 80 9  2 126 78 9  
Val460Leu 1:242035444:G:C 38.03 1.03E-02 2.3  0 223 2 0  0 211 3 1  
Asn469Asp 1:242035471:A:G 38.57 NA 0.1  0 224 1 0  1 214 0 0  
Glu589Lys 1:242042301:G:A 23.36 3.77E-01 0.7  11 69 102 43  12 70 101 32  
Ser610Gly 1:242042364:A:G 19.77 3.82E-03 21.3  19 203 3 0  23 191 1 0  
Arg634Gln 1:242042437:G:A 12.24 2.14E-03 5.0  194 30 1 0  200 15 0 0  
Pro640Ser 1:242042454:C:T 12.62 6.41E-03 7.4  191 33 1 0  199 15 1 0  
Glu670Gly 1:242042545:A:G 11.90 6.35E-01 0.2  174 10 16 25  177 3 20 15  
Asn688Ser 1:242042599:A:G 16.29 NA 0.0  57 168 0 0  58 156 1 0  
Arg723Cys 1:242045275:C:T 25.84 9.76E-01 22.6  6 0 10 209  8 0 9 198  

Splice acceptor 
c.2212-1G>C [*] 

1:242048615:G:C 35.84 2.63E-03 24.2  0 223 2 0  0 213 2 0 
 

Pro757Leu 1:242048674:C:T 38.55 1.57E-01 29.3  2 153 61 9  0 151 59 5  
Gly759Glu 1:242048680:G:A 37.11 9.34E-03 22.0  1 222 2 0  0 206 9 0  
Lys790Arg 1:242048773:A:G 38.14 NA 24.0  0 225 0 0  0 214 1 0  
Ala827Val 1:242052841:C:T 36.85 5.65E-04 24.4  0 224 1 0  0 214 1 0   
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Table 4.5: Coding variation from EXO1 from WES. Non-synonymous damaging (NSD) 

variants (NS CADD≥20 or LoF, and MAF≤1% in gnomAD NFE) are emboldened. Under 

GnomAD, ‘NA’ denotes variants not found in gnomAD v2.0.2. Loss of function (LoF) are 

marked by [*]. Genomic locations are based on hg19/GRCh37 and CADD is from dbNSFP 

3.0. Total N=440 (225 early; 215 late). DP: Mean depth of variant site in early and late 

samples; NS: non-synonymous; N/C: not called (failed by-variant DP/GQ check); HomR: 

homozygote reference; Het: heterozygote; HomV: homozygote variant.
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Figure 4.14: Structural overview of identified EXO1 variants. Variants with a MAF≤1% are plotted against a schematic of the EXO1 protein. 

The dashed line indicates the CADD 20 cut-off. The unmarked maroon box in the first MLH1-EXO1 interaction domain refers to the nuclear 

localisation signal. Numbers of each mutation are not indicated. Red circles represent variants more associated with early onset (E); green 

triangles are variants more associated with late onset (L); blue squares are variants that are not skewed in either direction (N). N=225 early, 

215 late HD patients. Domains boundaries taken from UniProt (UniProt Consortium, 2019) and (Schmutte et al., 2001).
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4.6.4 MSH3 

MSH3 is a mismatch repair protein, and MSH3 has been implicated as a modifier of HD 

onset (GeM-HD Consortium, 2019) and progression (Hensman Moss et al., 2017), as well as 

in animal work in both HD and myotonic dystrophy (van den Broek et al., 2002; Tomé et al., 

2013). Hence, we again wanted to examine if there was rare, damaging variation in MSH3 

that could underlie HD onset modification. Coding variants from WES are shown in Table 4.6 

(see non-coding variation in Appendix 5).  

 

Firstly, we identify three, to our knowledge, novel LoF singleton variants in MSH3 that are all 

in patients with late onset (note: this is only near significant using Fisher’s exact due to the 

rarity of these events, p=5.69E-02 (225, 212; 0, 3)). Two are splice acceptor variants in 

exons 16 and 17, respectively, that both occur in the final guanine critical for splicing. The 

third LoF variant is a frameshift occurring in exon 9. Unlike FAN1 or EXO1, numbers of other 

NSD variants was low (excluding LoF, N= 7), and these do not seem to segregate to 

functional domains associated with early/late onset in any substantive fashion. For instance, 

Pro681Ser and Val682Leu variants are singletons only one residue apart yet occur in a late 

and early residual age at motor onset HD patient, respectively. The Glu82Val and Asn118Ile 

singleton variants, although not NSD, lie in the EXO1-MSH3 interaction domain (Schmutte et 

al., 2001). Overall, non-LoF NSD variants are less clearly associated with early/late HD 

onset than the LoF variants in MSH3 with 4 early onset-associated NSDs and 7 late onset-

associated NSDs (in 6 late onset patients), when including LoF variants – this is not 

significant using Fisher’s exact test (p=5.36E-01) (221, 209; 4, 6). 

 

Another feature of MSH3 is its imperfect repeat encoding a Pro/Ala tract between residues 

49 to 73, and this has been implicated as being associated with altered HD onset (Flower et 

al., 2019). However, as with the HTT CAG repeat, we found MSH3 calling was poor for 

STRs. This is reflected in the large numbers of missing genotypes of these variants (~14% 

call rate) and the lower depth coverage of this region compared to the rest of the gene. 

Attempts to manually assess read structure using extracted reads from SAMtools was 

largely unsuccessful due to its variable WES coverage and repetitive structure. We used 

estimates for genotype length using MSH3 STR genotype calls (see 2.7.2.3) and plotted 

these against corrected age at motor onset residual, however this was not significant using a 

linear model (p=0.359) (see Appendix 8). Inconsistent coverage and a depleted N (only 108 

exomes with enough genotype calls) may be responsible for this finding. 
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            Early   Late   

Variant Location DP GnomAD CADD   N/C HomR Het HomV   N/C HomR Het HomV   

Pro49Arg 5:79950692:C:G 31.70 9.99E-06 0.0  170 54 1 0  145 70 0 0  

Ala57_Ala62del 
5:79950699:TGCAG 

CGGCTGCAGCGGCC:T 
22.21 2.73E-01 NA  192 9 19 5  175 10 14 16 

 
Ala60_Ala62dup 5:79950708:TGCAGCGGCC:T 20.45 5.76E-03 NA  180 45 0 0  163 50 2 0  

Ala60Pro 5:79950724:G:C 17.80 3.48E-02 10.6  214 9 2 0  196 19 0 0  
Ala61_Pro63dup 5:79950724:G:GCCGCAGCGC 17.45 3.48E-02 NA  214 10 1 0  197 16 2 0  
Pro67_Pro69del 5:79950741:GCCCCCAGCT:G 23.45 3.38E-01 NA  194 13 5 13  168 17 7 23  

Ile79Val 5:79950781:A:G 21.17 8.67E-01 0.0  192 0 4 29  165 2 7 41  
Glu82Val 5:79952237:A:T 42.50 NA 16.3  0 225 0 0  0 214 1 0  
Asn118Ile 5:79952345:A:T 42.46 5.37E-05 12.1  0 225 0 0  0 214 1 0  

Tyr462fs [*] 5:80021311:CATTT:C 35.91 NA NA  0 225 0 0  0 214 1 0  
Glu523Lys 5:80024783:G:A 20.43 6.29E-05 10.2  59 166 0 0  67 147 1 0  
Thr552Ile 5:80040326:C:T 19.59 5.42E-05 28.2  11 214 0 0  19 195 1 0  

Arg669Trp 5:80063860:C:T 36.13 8.96E-06 33.0  0 225 0 0  0 214 1 0  
Pro681Ser 5:80063896:C:T 36.15 1.56E-03 22.8  0 225 0 0  0 214 1 0  
Val682Leu 5:80063899:G:C 35.34 3.50E-04 23.7  0 224 1 0  0 215 0 0  

Splice 
Acceptor [*] 

5:80071512:G:C 27.45 NA 25.2  3 222 0 0  4 210 1 0 
 

Splice 
Acceptor [*] 

5:80074538:G:A 36.37 NA 26.1  0 225 0 0  0 214 1 0 
 

Arg779His 5:80074556:G:A 36.85 2.33E-04 35.0  0 225 0 0  0 214 1 0  
Glu853Gln 5:80088565:G:C 26.92 5.39E-05 26.9  3 221 1 0  4 211 0 0  
Asn861His 5:80088589:A:C 29.53 8.97E-06 13.8  3 222 0 0  2 212 1 0  
Leu911Trp 5:80109479:T:G 37.76 3.38E-03 25.0  0 223 2 0  0 215 0 0  
Gln949Arg 5:80149981:A:G 24.72 8.41E-01 4.9  9 2 67 147  13 5 65 132  

Asp1000Glu 5:80150135:T:G 20.04 0.00E+00 14.9  30 193 2 0  49 166 0 0  
Ala1045Thr 5:80168937:G:A 31.85 7.14E-01 7.3  3 19 102 101  5 26 81 103   
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Table 4.6: Coding variation in MSH3 from WES. Non-synonymous damaging (NSD) 

variants (NS CADD≥20 or LoF, and MAF≤1% in gnomAD NFE) are emboldened. Under 

GnomAD, ‘NA’ denotes variants not found in gnomAD v2.0.2, and 0.00E+00 indicates 

variants found in gnomAD but not in NFEs. Loss of function (LoF) are marked by [*]. 

Genomic locations are based on hg19/GRCh37 and CADD is from dbNSFP 3.0. Total 

N=440 (225 early; 215 late). DP: Mean depth of variant site in early and late samples; NS: 

non-synonymous; N/C: not called (failed by-variant DP/GQ check); HomR: homozygote 

reference; Het: heterozygote; HomV: homozygote variant. 
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4.6.5 TCERG1 

The transcription elongation regulator 1 gene, or TCERG1 (formerly CA150, (Suñé et al., 

1997)), has been implicated as an onset modifier of HD (Holbert et al., 2001) and lies close 

to a significant singleton SNP in the most recent GWAS (GeM-HD Consortium, 2019). 

However, it is still unclear whether the other candidate gene at the locus, GPR151, is 

responsible for the significant signal seen in GWAS (GeM-HD Consortium, 2019). Upon 

investigation, we found there were few NSD variants in TCERG1 in our sample (Table 4.8 

and Appendix 5), with only 3 singleton NSDs observed. We find more NSD variants in 

GPR151 (Table 4.7 and Appendix 5), including several LoF variants, but there is no 

significant segregation of variants between early and late onset patients (p=0.37, Fisher’s 

exact test) (212, 207; 13, 8) and no segregation of variants to functional domains. 

 

However, we identify several short tandem repeat (STR) variants centred in TCERG1’s 

imperfect repeat tract associated with altered HD onset. The TCERG1 protein has a 

repetitive glutamine-alanine (Q-A) structure, flanked by semi-repetitive glutamine-

alanine/valine tracts (Q-A/V) on both the N and C terminal regions (see Fig. 4.15). The 

reference sequence for the TCERG1 protein is (Q-A/V)2(Q-A)29(Q-A/V)7, however, and 

importantly for read alignment, the repetitive coding sequence is imperfect. Both glutamine 

codons and all four codons each of alanine and valine are used throughout the entirety of 

the quasi repeat tract. Consequently, unlike HTT or MSH3 repeats, our 75bp reads are 

capable of effectively reading through TCERG1’s repeat, and the average depth of these 

variants was very high (mean depth = 39.3-42.3) with equally high call rates (>98%). 

 

As indicated in table 4.8, we identify five STR variants. All the variants, bar one, revolve 

around the deletion or insertion of a hexanucleotide repeat, (GCCCAG)n, encoding Q-A. The 

one exception was an individual with a (GCCCAG)2(GCCCAA)2 deletion ((Q-A)4). Individuals 

with smaller STR tracts tended to have earlier onset, whereas insertions were associated 

with a later disease onset. To investigate the STR’s impact on onset quantitatively, we 

filtered exomes with missing STRs (see 2.7.2.3), leaving N=440 exomes (E=230, L=210). 

We plotted a linear model where we regressed corrected AMO residual (pure CAG) on 

TCERG1 genotype length. Genotype length was calculated as the glutamine-alanine repeat 

amino acid length compared to the reference sequence and ranged from -4 to +2 amino 

acids (see 2.7.2.3). Exomes with reference length TCERG1 were given values of 0. 

Regressing corrected onset residual against genotype length as per Fig. 4.16 showed 

significance (p=2.48E-03) with B=-3.430 and β=-0.144. Hence, our model finds that for each 

single Q-A added this results in a ~7 year later HD onset in our dataset. Interpreting these 

data is difficult, however, given our extreme phenotype selection; see 6.2.3.
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            Early   Late   

Variant Location DP GnomAD CADD   N/C HomR Het HomV   N/C HomR Het HomV   

Glu387Gln 5:145894518:C:G 36.78 2.69E-05 26.1 
 

0 224 1 0 
 

0 215 0 0 
 

Ser366Thr 5:145894580:C:G 34.52 8.95E-06 0.0 
 

0 225 0 0 
 

0 214 1 0 
 

Leu304fs [*] 5:145894764:TGA:T 30.51 1.79E-05 NA 
 

1 224 0 0 
 

0 214 1 0 
 

Ile288Thr 5:145894814:A:G 28.27 NA 9.8 
 

1 223 1 0 
 

3 212 0 0 
 

Pro284Ser 5:145894827:G:A 28.72 NA 23.9 
 

2 222 1 0 
 

0 215 0 0 
 

Leu261Val 5:145894896:G:C 44.20 2.00E-01 0.0 
 

0 138 78 9 
 

0 140 68 7 
 

Phe175fs [*] 5:145895150:CTA:C 25.98 1.70E-04 NA 
 

2 223 0 0 
 

6 208 1 0 
 

Ala144Val 5:145895246:G:A 38.58 1.37E-03 22.8 
 

0 225 0 0 
 

0 213 2 0 
 

Arg95Ter [*] 5:145895394:G:A 39.59 7.07E-03 36.0 
 

0 216 9 0 
 

0 211 4 0 
 

Pro40Leu 5:145895558:G:A 42.65 7.78E-02 16.4 
 

0 196 28 1 
 

0 182 33 0 
 

Tyr27Ter [*] 5:145895596:G:T 37.28 8.93E-04 36.0 
 

0 223 2 0 
 

0 215 0 0 
 

Phe23Leu 5:145895608:A:C 34.43 8.23E-04 25.0 
 

0 224 1 0 
 

0 215 0 0 
 

Table 4.7: Coding variation in GPR151 from WES. Non-synonymous damaging (NSD) variants (NS CADD≥20 or LoF, and MAF≤1% in 

gnomAD NFE) are emboldened. Under GnomAD, ‘NA’ denotes variants not found in gnomAD v2.0.2. Loss of function (LoF) are marked by [*]. 

Genomic locations are based on hg19/GRCh37 and CADD is from dbNSFP 3.0. Total N=440 (225 early; 215 late). DP: Mean depth of variant 

site in early and late samples; NS: non-synonymous; N/C: not called (failed by-variant DP/GQ check); HomR: homozygote reference; Het: 

heterozygote; HomV: homozygote variant.
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            Early   Late   

Variant Location DP GnomAD CADD   N/C HomR Het HomV   N/C HomR Het HomV   

Ala33Thr 5:145834656:G:A 26.40 1.74E-03 27.5  5 219 1 0  1 214 0 0  
Gln222_Ala223insGlnAla 5:145838635:T:TCAGGCC 39.60 NA NA  3 221 1 0  4 211 0 0  

Gln222_Ala223ins 
GlnAlaGlnAla 

5:145838635:T:TCAG 
GCCCAGGCC 

39.60 NA NA 
 

3 216 6 0 
 

4 209 2 0 
 

Gln222_Ala223del 
GlnAlaGlnAla 

5:145838635:TCAGGCC 
CAGGCC:T 

39.60 NA NA 
 

3 217 5 0 
 

4 196 14 1 
 

Gln222_Ala223del 
GlnAlaGlnAlaGlnAla 

5:145838635:TCAGGCC 
CAGGCCCAGGCC:T 

39.39 NA NA 
 

4 212 9 0 
 

4 186 25 0 
 

Gln222_Ala229del 
AlaGlnAlaGlnAlaGlnAlaGln 

5:145838656:GGCCCAG 
GCCCAGGCCCAAGCCCAA:G 

42.25 5.88E-04 NA 
 

12 213 0 0 
 

27 187 1 0 
 

Thr283Ala 5:145838855:A:G 28.31 0.00E+00 14.4  0 224 1 0  3 212 0 0  
Val329Ala 5:145843207:T:C 37.29 1.43E-04 19.5  0 225 0 0  0 214 1 0  
Met412Val 5:145849142:A:G 22.00 6.30E-05 13.0  11 213 1 0  8 207 0 0  

Asn742Ser 5:145872595:A:G 20.44 NA 15.8  16 208 1 0  18 197 0 0  

Ala779Val 5:145878203:C:T 21.92 NA 25.8  12 213 0 0  13 201 1 0  
Ile1008Val 5:145888735:A:G 13.87 NA 22.0   134 91 0 0   150 64 1 0   

Table 4.8: Coding variation in TCERG1 from WES. Non-synonymous damaging (NSD) variants (NS CADD≥20 or LoF, and MAF≤1% in 

gnomAD NFE) are emboldened. Under GnomAD, ‘NA’ denotes variants not found in gnomAD v2.0.2, and 0.00E+00 indicates variants found in 

gnomAD but not in NFEs. Loss of function (LoF) are marked by [*]. Genomic locations are based on hg19/GRCh37 and CADD is from dbNSFP 

3.0. Total N=440 (225 early; 215 late). DP: Mean depth of variant site in early and late samples; NS: non-synonymous; N/C: not called (failed 

by-variant DP/GQ check); HomR: homozygote reference; Het: heterozygote; HomV: homozygote variant. 
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Figure 4.15: Structure of the TCERG1 repeat. Indicated is the amino acid structure of the TCERG1 protein and the semi-repetitive codons in 

the TCERG1 gene. Reference sequence in GRCh37 is a=2, b=29 and c=7, i.e. (Q-A/V)2(Q-A)29(Q-A)7. Q: Glutamine; A: alanine. 

 

Figure 4.16: TCERG1 genotype length plotted against corrected AMO residual. The length of the repetitive STR tract is plotted against 

corrected AMO residuals from MiSeq. Points have been jittered on the x-axis and exomes with missing genotypes were removed. N=240; 

E=230, L=210. Genotype length was defined as the length of the TCERG1 glutamine-alanine tract (in repeating units) relative to the reference 

sequence (see 2.7.2.3).
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4.6.6 LIG1 

The DNA Ligase 1 gene (LIG1) is another DNA repair gene that participates in several DNA 

repair processes including mismatch repair and base-excision repair (BER), and has been 

implicated by GWAS as an HD onset modifier (GeM-HD Consortium, 2019). LIG1 coding 

variation is shown in Table 4.9 (see Appendix 5 for non-coding variation) and plotted in Fig. 

4.17. While there is no significant enrichment in either early or late onset groups (NSD early 

variants=11; NSD late variants=7, p=4.74E-01, Fisher’s exact test (214, 208; 11, 7), there is 

some degree of domain clustering observed. The DNA ligase A N domain (DNA binding) has 

three early-associated variants occurring near each other: Pro395Leu, Val349Met and 

Leu335Phe. The segregation of the remaining variation, however, is less clear. While parts 

of the DNA ligase A M domain (nucleotidyltransferase) have further early-associated 

variants, the call rates of the Arg774Gln and Val753Met variants (in DNA ligase A C domain 

containing the oligonucleotide-binding fold), both of which occur on exon 24, are quite low, 

especially for Val753Met (call rate ~20%). The Lys845Asn variant was associated with late 

onset. Therefore, while functional domain clustering in LIG1 between in HD onset may be of 

interest, poorer coverage of LIG1, especially exon 24, affects interpretation of these data. 

 

Figure 4.17: Structural overview of identified LIG1 variants. Variants with MAF≤1% are 

shown plotted against a cartoon of the LIG1 protein. The dashed line indicates the CADD 20 

cut-off. Numbers of each mutation are not indicated. Red circles represent variants more 

associated with early onset (E); green triangles are variants more associated with late onset 

(L); blue squares are not associated strongly with either (N). Domain boundaries are taken 

from PhosphoSitePlus® (Hornbeck et al., 2015), (Pascal et al., 2004) and (McNally and 

O’Brien, 2017). N=225 early, 215 late HD patients. 
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            Early   Late   

Variant Location DP GnomAD CADD   N/C HomR Het HomV   N/C HomR Het HomV   

Lys845Asn 19:48620943:C:A 38.36 1.69E-03 29.0  0 224 1 0  0 210 5 0  
Arg774Gln 19:48624491:C:T 20.18 1.18E-04 23.4  27 198 0 0  28 185 2 0  
Val753Met 19:48624555:C:T 12.61 9.24E-03 21.9  166 56 3 0  182 32 1 0  
Glu705Lys 19:48626467:C:T 40.05 0.00E+00 28.7  0 224 1 0  0 215 0 0  
Arg672Cys 19:48626566:G:A 37.04 3.49E-04 35.0  0 224 1 0  0 215 0 0  
Arg409His 19:48640807:C:T 36.30 2.06E-02 23.5  0 217 7 1  2 212 1 0  
Pro395Leu 19:48640849:G:A 28.25 5.43E-05 21.4  0 224 1 0  5 210 0 0  
Ala369ValΔ 19:48640902:G:A 16.95 1.36E-02 NA  64 159 2 0  72 137 6 0  
Val349Met 19:48643270:C:T 41.31 2.48E-03 26.3  0 223 2 0  0 215 0 0  
Leu335Phe 19:48643312:G:A 40.67 2.53E-03 27.6  0 224 1 0  0 215 0 0  

Asn267Ser 19:48647197:T:C 40.88 7.16E-05 16.6  0 225 0 0  0 214 1 0  

Thr227Met 19:48653362:G:A 25.72 8.96E-06 16.0  5 220 0 0  6 208 1 0  

Arg94Cys 19:48660361:G:A 35.15 2.43E-03 11.1  1 223 1 0  0 214 1 0  

Ala60Gly 19:48664693:G:C 41.55 NA 10.9  0 224 1 0  0 215 0 0  
Ser47Phe 19:48664732:G:A 36.69 9.05E-04 22.7   0 224 1 0   1 213 1 0   

Table 4.9: Coding variation in LIG1 from WES. Non-synonymous damaging (NSD) variants (NS CADD≥20 or LoF, and MAF≤1% in gnomAD 

NFE) are emboldened. Under GnomAD, ‘NA’ denotes variants not found in gnomAD v2.0.2, and 0.00E+00 indicates variants found in gnomAD 

but not in NFEs. Loss of function (LoF) are marked by [*]. Δ denotes variants where the most damaging consequence only occurs in the non-

canonical transcript. Genomic locations are based on hg19/GRCh37 and CADD is from dbNSFP 3.0. Total N=440 (225 early; 215 late). DP: 

Mean depth of variant site in early and late samples; NS: non-synonymous; N/C: not called (failed by-variant DP/GQ check); HomR: 

homozygote reference; Het: heterozygote; HomV: homozygote variant.
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4.6.7 Other candidate genes 

We also investigated other genes identified as candidate modifier genes from the most 

recent HD GWAS (GeM-HD Consortium, 2019), and tables for these are available in 

Appendix 5 (non-coding) and Appendix 6 (coding). Firstly, we considered whether there 

were rare variants in HTT itself present, independent of CAG length and allele structure, 

associated with altered onset. However, only five NSD variants were found in HTT: 

Gly696Glu, Asp1082His, Thr1260Met, Val1551Ala and Arg2002His. There was no clear 

association of these variants with early or late onset.  

 

Several NSD variants were identified in MLH1: Ala188Val, Tyr379Cys, Lys618Glu, 

Lys618Thr, Val716Met and His718Tyr, but with no clear overall segregation to early or late 

onset groups. Notably, though, we did identify a common NS variant (MAF=32%), Ile219Val 

(rs1799977), that had association with late onset (p=4.90E-03, Fisher exact test) (123, 84, 

16; 86, 98, 28). Rs179997 in MLH1 was identified as a candidate SNP for onset modification 

in GWAS and elsewhere (Lee et al., 2017; GeM-HD Consortium, 2019), and plotting 

genotype against our MiSeq corrected residuals in our continuous population (N=485) shows 

an additive, dose-dependent effect (Fig. 4.18; linear model p=1.63E-03, B=2.92 and 

β=0.143). 

 

MLH1 binds PMS1, PMS2 and MLH3 forming the MutL complexes. We next investigated 

these as two of these three have been implicated by GWAS (PMS1 and PMS2, (GeM-HD 

Consortium, 2019)). There were 3 NSD variants identified in the canonical transcript of 

PMS1: Thr75Ile, Gly501Arg and Arg569Gln. These were all in late onset individuals. The 

Arg202Lys PMS1 variant, although not NSD (CADD = 19.2, MAF NFE gnomAD=1.38%), 

was found in an excess of late individuals (2:7 E:L). There was no clear early or late 

association of damaging coding variants in PMS2 or MLH3 (Appendix 6). 

 

We also investigated OGG1 as it has been implicated as a CAG repeat modifier elsewhere 

(Kovtun et al., 2009; Budworth et al., 2015). No clear onset or domain segregation of 

variants was seen in OGG1, although the Gly308Glu NSD variant was found in a slightly 

larger number of late onset individuals (3:6, E:L). A single early-associated (6:1, E:L) NSD 

variant, Leu353Val, was found in SYT9, although the coverage of this gene was lower; see 

Appendix 9. Although we attempted to investigate variation in RRM2B, the coverage of the 

gene was very low (coverage for target genes in Appendix 9), and no NSD variants were 

identified.
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Figure 4.18: Effect of the MLH1 Ile219Val variant (rs1799977) on residual AMO. All individuals where the MLH1 Ile219Val (rs1799977 / 

3:37053568:A:G) variant is called (N=480; 241 early, 239 late) are included. The y-axis uses corrected residual from MiSeq (pure CAG length, 

correcting for HTT allele structure). HomR: homozygote reference; Het: heterozygote; HomV: homozygote variant.
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4.7 Logistic burden regression analysis 

Until now, our analysis has focused on genes with prior evidence for either HD onset 

modification in GWAS or that have been implicated through other work (e.g. EXO1 and 

OGG1). For this reason, we wanted to implement a technique to detect genetic variation in 

potentially novel genes and pathways in an unbiased fashion. 

 

As a starting point, we implemented a logistic regression using each variant identified (a 

variant-by-variant analysis) to see if there were single variants that were found in 

disproportionate numbers in our early and late populations (Appendix 10; methods 2.7.3.1). 

No NSD or LoF variant passed exome-wide significance (Bonferroni threshold p=6.68E-07 

for NSD; p=3.55E-06 for LoF) with the covariates used (PC1-5 and mean depth). This test 

was likely unsuccessful as (1) Bonferroni multiple test correction results in very low p value 

thresholds and (2) rare (e.g. ≤1% MAF) variants are likely spread out between many 

different individual variant calls and are unlikely to achieve significance individually. 

Furthermore, we realised that we needed to further refine our input data into the burden 

regression by incorporating a MAF filter, as this would allow us to investigate rare modifiers 

only (i.e. ≤1% MAF). 

 

Taking these issues into account, we devised a whole-exome burden regression test 

(methods 2.7.3.2) whereby individuals from our dichotomous exome group (N=440) were 

coded as early (1) or late (0) onset. As testing individual rare variants has limited power due 

to their inherent small frequency (Zuk et al., 2014), we aggregated damaging variants (≥20 

CADD or LoF) across genes at different MAF cut-offs: very rare (MAF≤0.1%), rare 

(MAF≤1%) and uncommon (MAF≤2%). Note that variants at lower MAF cut-offs were also 

included at higher MAF cut-offs. We filtered variants by GATK’s variant quality score 

recalibration (VQSR≥98.5) and call rate (call rate≥75%). Covariates chosen were principal 

components 1-5, mean sample variant depth and baseline variant rate (BVR). Baseline 

variant rate allows for differences in genetic architecture or coverage between exomes to be 

considered in the analysis. We initially produced these statistics for most of the previously 

investigated candidate genes in 4.6 (Table 4.10). Notably, FAN1 was nominally significant at 

MAF 1 and 2% (p~1E-02) and EXO1 is approaching nominal significance (p~6E-02) at the 

same MAFs. Possibly due to our relatively small sample set, none of the candidate genes 

were significant at MAF 0.1%.  

 

We then extended this analysis to the entire exome at MAFs 0.1, 1 and 2%. The top 15 

genes are available in Table 4.11. A total of 21,864 genes and ORFs were tested, with 6234 
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producing a p value. We further refined this by introducing a filter wherein only genes/ORFs 

with >5 damaging variants at the MAF being investigated were considered leaving 1590, 

4261 and 5084 genes tested at MAF 0.1, 1 and 2%, respectively. No gene was found to 

pass exome-wide significance adjusting for multiple testing correction (Bonferroni threshold 

p=3.14E-05 (MAF 0.1%); p=1.17E-05 (MAF 1%); p=9.83E-06 (MAF 2%)), although FAN1 

was the 7th highest in the exome at MAF 1% (p=1.17E-2). Interestingly, NOP14 was also 

found with a low p value at MAF 1%. NOP14 is found on the short arm of chromosome 4 

(4p16.3), ~133kb from HTT. Investigation of the NOP14 signal revealed a single NSD variant 

(26.5 CADD), Arg697Cys (4:2943419:G:A), that drives most of the NOP14 signal. 

Arg697Cys was highly skewed, found as a heterozygote in 18 late onset individuals and no 

early individuals. Following targeted MiSeq sequencing (chapter 5), we found that in 16 of 

the 18 variant calls, Arg697Cys was found in an individual with a (CAGCAA)2CAG atypical 

HTT allele. In the 2 outstanding cases of this NOP14 variant, both HTT alleles had canonical 

structures. The Arg697Cys variant, therefore, seems to be in strong linkage disequilibrium 

(LD) with (CAGCAA)2CAG HTT structure. 

 

We next explored potential extensions to the basic logistic burden regression approach by 

weighting variants. Initially, we weighted based on rarity (1/MAF), however we found that this 

enriched for unusual genes and the p values were very high (Appendix 11), and imputing 

missing MAFs artificially selected for variants poorly covered in gnomAD but better covered 

in our study. Instead, we found weighting variants based on their CADD PHRED score (a 

measure of deleteriousness) was viable (Appendix 12), although we did not find this greatly 

changed the p values obtained. Still, weighting may be a useful addition to future modelling.  

 

Finally, we wanted to examine the effectiveness of logistic burden regression by plotting a 

quantile-quantile (Q-Q) plot of the obtained p values for genes with >5 variants. Fig 4.19 

shows the logistic burden regression method has more deflated p values than one would 

expect, with a very low genomic inflation factor (λ) of 0.645. One would expect λ to be near 1 

if there is no inflation or deflation of p values. Consequently, we wanted to explore other 

options available for whole-exome analyses, as detailed in the next three sections. 
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    MAF≤0.1%   MAF≤1%   MAF≤2%   

    B SE p   B SE p   B SE p   

EXO1  -0.704 0.877 4.22E-01  -0.630 0.344 6.74E-02  -0.629 0.345 6.80E-02  

FAN1  0.696 0.717 3.32E-01  1.045 0.414 1.17E-02  1.035 0.414 1.24E-02  

HTT  -0.171 0.626 7.84E-01  0.278 0.493 5.72E-01  0.288 0.493 5.59E-01  

LIG1  0.394 0.744 5.97E-01  -0.004 0.500 9.94E-01  0.004 0.500 9.94E-01  

MLH1  -0.510 1.250 6.83E-01  -0.228 0.568 6.88E-01  -0.219 0.568 7.00E-01  

MLH3  -0.022 0.026 3.92E-01  -0.004 0.018 8.19E-01  -0.003 0.018 8.50E-01  

MSH3  -1.100 0.855 1.98E-01  -0.519 0.660 4.32E-01  -0.505 0.660 4.44E-01  

OGG1  0.261 1.050 8.04E-01  0.000 0.019 9.86E-01  0.000 0.019 9.92E-01  

PMS1  NA NA NA  NA NA NA  NA NA NA  

PMS2  5.904 10.428 5.71E-01  5.879 10.226 5.65E-01  0.152 0.684 8.24E-01  

RRM2B  NA NA NA  NA NA NA  NA NA NA  

SYT9  NA NA NA  1.706 1.088 1.17E-01  1.681 1.088 1.23E-01  

TCERG1  NA NA NA  -0.227 1.439 8.74E-01  -0.227 1.442 8.75E-01  

Table 4.10: Logistic regression for candidate genes. Indicated are the β, SE and p values from candidate genes using logistic burden 

regression (Wald) in Hail (same as in Table 4.11). Filters used (for variants): VQSR≥98.5, MAF (0.1, 1 and 2%), NS damaging (LoF or CADD 

PHRED ≥20), call rate ≥75%. Covariates used (for samples): PC1-5, BVR, mean variant depth. No weighting of variants was used, and no filter 

based on the number of variants was in place for the targeted test. Nominally significant p values are emboldened. B: unstandardised beta; SE: 

standard error; MAF: minor allele frequency; PC: Principal component; BVR: baseline variant rate. 
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  MAF≤0.1% (N=1590 adj)   MAF≤1% (N=4261 adj)   MAF≤2% (5084 adj)   
 Gene B SE p  Gene B SE p  Gene B SE p   
 DENND4B 1.378 4.53E-01 2.32E-03  CUBN 1.596 4.35E-01 2.42E-04  DENND4B 1.403 4.54E-01 1.98E-03  
 CUBN 1.831 6.47E-01 4.62E-03  DENND4B 1.380 4.52E-01 2.28E-03  CUBN 0.685 2.31E-01 2.99E-03  
 MMP21 -2.444 1.06E+00 2.08E-02  ERAP2 -2.234 7.57E-01 3.16E-03  ERAP2 -2.220 7.57E-01 3.36E-03  
 MYO18B 1.198 5.20E-01 2.12E-02  SIPA1L2 1.828 6.31E-01 3.80E-03  PGC 2.259 7.72E-01 3.43E-03  
 GLDC -1.788 7.86E-01 2.29E-02  GLI3 1.371 5.11E-01 7.34E-03  SIPA1L2 1.832 6.31E-01 3.71E-03  
 TENM2 -1.504 6.67E-01 2.41E-02  C9 2.011 7.76E-01 9.59E-03  ZNF462 -2.979 1.03E+00 3.99E-03  
 PCDH15 -1.233 5.70E-01 3.05E-02  FAN1 1.045 4.14E-01 1.17E-02  GLI3 1.371 5.10E-01 7.22E-03  
 FBRSL1 2.279 1.07E+00 3.27E-02  ZNF462 -2.632 1.05E+00 1.19E-02  AKR1C3 1.376 5.23E-01 8.52E-03  
 SYT10 -2.261 1.06E+00 3.36E-02  ATP1A4 -1.445 5.78E-01 1.24E-02  PCDH15 -0.958 3.69E-01 9.38E-03  
 TRPM1 1.401 6.61E-01 3.41E-02  CC2D1A -1.613 6.53E-01 1.35E-02  C9 2.012 7.76E-01 9.52E-03  
 STAB1 -1.132 5.36E-01 3.47E-02  CACNA1I -1.648 6.71E-01 1.41E-02  RNMTL1 0.776 3.00E-01 9.70E-03  
 MACF1 -1.145 5.46E-01 3.60E-02  ANXA11 1.875 7.64E-01 1.42E-02  TRIM66 -0.955 3.70E-01 9.90E-03  
 ITGB4 -1.049 5.01E-01 3.61E-02  MYO1A 1.226 5.01E-01 1.45E-02  NLRP1 -2.691 1.04E+00 1.00E-02  
 COL17A1 -2.190 1.07E+00 4.04E-02  NOP14 -0.922 3.78E-01 1.48E-02  DNAJA4 -1.709 6.66E-01 1.03E-02  
 DNAH7 -1.264 6.21E-01 4.18E-02  UNC5B -1.572 6.47E-01 1.51E-02  ATG4B -1.939 7.71E-01 1.19E-02   

 

Table 4.11: Logistic regression of the entire exome (MAF 0.1, 1 and 2%), no weighting. Indicated are the β, SE and p values for the top 15 

genes using logistic burden regression (Wald) in Hail. Filters used (for variants): VQSR≥98.5, MAF (0.1, 1 and 2%), NS damaging (LoF or 

CADD PHRED ≥20), call rate ≥75%. Covariates used (for samples): PC1-5, BVR, mean variant depth. No weighting of variants was used. 

Indicated at the top of each column are the adjusted (adj) values for each MAF cut-off, which is a count of how many genes/ORFs were tested 

that resulted in a p value and have >5 variants at the MAF tested. B: unstandardised beta; SE: standard error; MAF: minor allele frequency; PC: 

Principal component; BVR: baseline variant rate. 
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Figure 4.19: Q-Q plot of whole-exome burden regression. p values from unweighted 

whole-exome logistic regression (Wald test) are taken from those presented in Table 4.11 for 

MAF 1%. Genomic inflation factor (λ)=0.645. Genes plotted had >5 variants NSD variants at 

MAF 1%. 
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4.8 Linear burden regression analysis 

A dichotomous whole-exome analysis indicated that burden regression can detect variation 

associated with altered onset in our HD exomes, including a known onset-modifying gene 

(FAN1) as well as NOP14, which is in LD with HTT CAG structure. However, logistic burden 

regression showed highly deflated p values with a very low λ. Hence, we wanted to 

investigate linear burden regression as an alternative method, regressing AMO residual as a 

continuous phenotype on the total number of NSD variants (2.7.3.3). Linear regression has 

the additional advantage of incorporating all exomes passing QC (N=485). We adopted a 

similar method as before, collapsing variants by genes using PC 1-5, BVR and mean sample 

depth as covariates (methods 2.7.3.3). As before, only variants with >5 damaging variants 

(LoF or NS CADD≥20) were considered for the whole-exome analyses.  

 

To begin with, we regressed uncorrected AMO residuals from MiSeq (i.e. (polyQ)n-2 CAG 

lengths used to calculate estimated AMOs) on the NSD variant load. The top 15 genes from 

the burden regression are shown in Table 4.12. The uncorrected residual does not correct 

for CAG allele structure. Thus, it is unsurprising that NOP14 has a low p-value (NOP14, 

p=3.42E-03), as the NOP14 Arg697Cys variant tags the non-canonical CAGn(CAACAG)2 

allele, as discussed previously. CUBN is exome-wide significant at MAF 1% (p=6.96E-06; 

Bonferroni threshold p=1.06E-05), although only nominally at MAF 0.1% (p=2.15E-04; 

Bonferroni threshold p=2.61E-05) and MAF 2% (p=8.86E-04; Bonferroni threshold p=9.05E-

06). CUBN codes for the Cubilin protein, a cotransporter involved in the uptake of cobalamin 

(vitamin B12). Interestingly, the MUT gene, coding for methylmalonyl-CoA mutatase (MUT) 

also involved with vitamin B12 metabolism, has a low (but only nominally significant) p value 

(p=8.25E-04). The coding variants for CUBN, NOP14, and MUT are available in Appendix 7. 

 

The linear burden regression was then repeated, this time using the corrected residual from 

MiSeq (pure CAG length) (Table 4.14). As before, FAN1 and other candidate genes from 4.5 

are shown in Table 4.13. Notably, FAN1, EXO1, OGG1 and PMS1 showed at least nominal 

significance at least one MAF, however none survive multiple testing correction. As 

expected, using the corrected AMO residual ablates most of the NOP14 signal (p=3.42E-03 

uncorrected to p=6.17E-02 corrected). CUBN is also exome-wide significant here at 

p=7.97E-06. As before, we were also able to weight variants based on deleteriousness 

(Appendix 13). Plotting a Q-Q plot of the unweighted linear burden regression data using 

corrected residuals (pure CAG length) (Fig 4.20) shows the p-values generated are much 

more in line with what are expected given the null hypothesis (λ=1.047). Thus, 

linear/continuous analyses seem to be much more appropriate compared to 

dichotomous/logistic techniques in our HD cohort, at least when considering burden testing.
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  MAF≤0.1% (N=1915)   MAF≤1% (N=4737)   MAF≤2% (N=5524)   

  Gene B SE p   Gene B SE p   Gene B SE p   

 CUBN -11.005 2.951 2.15E-04  CUBN -8.806 1.937 6.96E-06  ZNF462 13.239 3.140 2.98E-05  

 CACNA1G -15.685 4.414 4.18E-04  SIPA1L2 -10.962 3.009 2.99E-04  PGC -12.064 3.235 2.15E-04  

 ZNF462 13.442 3.900 6.18E-04  ERAP2 11.153 3.177 4.90E-04  SIPA1L2 -10.991 3.008 2.87E-04  

 CGN 17.081 5.291 1.33E-03  TEKT1 18.378 5.287 5.55E-04  ERAP2 11.101 3.185 5.36E-04  

 DENND4B -7.914 2.472 1.46E-03  CACNA1G -13.718 4.056 7.79E-04  TEKT1 18.336 5.284 5.68E-04  

 FBRSL1 -14.091 4.418 1.52E-03  MUT -11.678 3.470 8.25E-04  CACNA1G -13.720 4.054 7.72E-04  

 GLRA4 -14.955 4.759 1.78E-03  ZNF462 12.216 3.635 8.41E-04  MUT -11.603 3.463 8.70E-04  

 GLDC 11.472 3.894 3.37E-03  KIAA0319 -14.014 4.224 9.77E-04  KIAA0319 -14.161 4.226 8.71E-04  

 KIAA0319 -16.115 5.710 4.97E-03  ENPP7 -10.878 3.306 1.08E-03  CUBN -4.639 1.387 8.86E-04  

 PRKRIR 11.239 4.034 5.55E-03  GRTP1 14.430 4.443 1.25E-03  NLRP1 10.023 3.018 9.66E-04  

 DMRT2 -17.302 6.265 5.97E-03  DENND4B -7.955 2.471 1.37E-03  ENPP7 -10.908 3.305 1.04E-03  

 TEKT2 -14.856 5.406 6.22E-03  ANXA11 -11.195 3.526 1.59E-03  GRTP1 14.495 4.431 1.15E-03  

 NUP210L -12.661 4.688 7.17E-03  GLRA4 -15.121 4.770 1.62E-03  DENND4B -8.070 2.471 1.17E-03  

 SON 11.399 4.241 7.44E-03  SCYL1 -14.668 4.657 1.74E-03  RNMTL1 -5.179 1.594 1.24E-03  

  SYNPO2 13.189 4.951 7.98E-03  PCDH15 8.367 2.735 2.34E-03  ANXA11 -11.243 3.521 1.50E-03   

Table 4.12: Linear regression (uncorrected residual) of the entire exome (MAF 0.1, 1 and 2%), no weighting. Indicated are the β, SE and 

p values for the top 15 genes using linear burden regression in Hail. Exome-wide significant genes which survive multiple testing correction are 

emboldened. The uncorrected residual from MiSeq (polyglutamine-2) was used for regression. Filters used (for variants): VQSR≥98.5, MAF 

(0.1, 1 and 2%), NS damaging (LoF or CADD PHRED ≥20), call rate ≥75%. Covariates used (for samples): PC1-5, BVR, mean variant depth. 

Variants were not weighted. Indicated at the top of each column are the adjusted (adj) values for each MAF cut-off, which is a count of how 

many genes/ORFs were tested that resulted in a p value and have >5 variants at the MAF tested. N=485. B: unstandardised beta; SE: standard 

error; MAF: minor allele frequency; PC: Principal component; BVR: baseline variant rate. 
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  MAF≤0.1%  MAF≤1%  MAF≤2%  

  B SE p  B SE p  B SE p  

EXO1  3.457 5.102 4.98E-01  4.978 2.067 1.64E-02  4.982 2.067 1.63E-02  

FAN1  -3.905 4.505 3.87E-01  -6.816 2.25 2.59E-03  -6.768 2.251 2.78E-03  

HTT  0.507 3.945 8.98E-01  -1.147 3.075 7.09E-01  -1.102 3.072 7.20E-01  

LIG1  -3.335 4.786 4.86E-01  0.429 3.222 8.94E-01  0.382 3.222 9.06E-01  

MLH1  4.369 6.012 4.68E-01  1.746 3.489 6.17E-01  1.763 3.489 6.14E-01  

MLH3  3.238 4.282 4.50E-01  0.538 2.648 8.39E-01  0.539 2.650 8.39E-01  

MSH3  2.063 4.506 6.47E-01  1.613 3.76 6.68E-01  1.573 3.761 6.76E-01  

OGG1  -21.983 9.430 2.02E-02  -1.527 3.767 6.85E-01  -1.570 3.76604 6.77E-01  

PMS1  6.023 6.727 3.71E-01  12.272 5.472 2.54E-02  12.274 5.472 2.54E-02  

PMS2  -14.521 7.718 6.05E-02  -14.672 7.718 5.79E-02  -1.673 4.276 6.96E-01  

RRM2B  NaN NaN NaN  NaN NaN NaN  NaN NaN NaN  

SYT9  NaN NaN NaN  -7.524 5.088 1.40E-01  -7.422 5.094 1.46E-01  

TCERG1   15.051 13.38 2.61E-01   -0.265 9.517 9.78E-01   -0.275 9.518 9.77E-01   

Table 4.13: Linear regression for candidate genes. Indicated are the β, SE and p values from candidate genes using linear burden 

regression in Hail with corrected residual age at motor onset (pure CAG length – the same as in Table 4.14). Filters used (for variants): 

VQSR≥98.5, MAF (0.1, 1 and 2%), NS damaging (LoF or CADD PHRED ≥20), call rate ≥75%. Covariates used (for samples): PC1-5, BVR, 

mean variant depth. No weighting of variants was used, and no filter based on the number of variants was in place for the targeted test. Genes 

and MAFs that pass nominal significance are emboldened. B: unstandardised beta; SE: standard error; MAF: minor allele frequency; PC: 

Principal component; BVR: baseline variant rate. 
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  MAF≤0.1% (N=1915)   MAF≤1% (N=4737)   MAF≤2% (N=5524)   

  Gene B SE p   Gene B SE p   Gene B SE p   

 CUBN -10.756 2.824 1.58E-04  CUBN -8.383 1.856 7.97E-06  ZNF462 12.293 3.012 5.26E-05  

 CACNA1G -14.769 4.229 5.23E-04  SIPA1L2 -10.658 2.881 2.42E-04  PGC -11.498 3.100 2.33E-04  

 DENND4B -7.926 2.365 8.67E-04  ERAP2 10.701 3.044 4.80E-04  SIPA1L2 -10.681 2.881 2.34E-04  

 FBRSL1 -14.124 4.226 8.98E-04  DENND4B -7.967 2.365 8.17E-04  CUBN -4.827 1.326 3.01E-04  

 GLRA4 -15.193 4.552 9.10E-04  GLRA4 -15.245 4.564 9.03E-04  ERAP2 10.690 3.051 5.02E-04  

 CGN 16.870 5.064 9.31E-04  CACNA1G -12.974 3.887 9.10E-04  RNMTL1 -5.329 1.524 5.17E-04  

 GLDC 12.057 3.722 1.28E-03  KIAA0319 -13.396 4.047 1.00E-03  DENND4B -8.058 2.366 7.15E-04  

 ZNF462 11.916 3.742 1.54E-03  MUT -10.886 3.326 1.14E-03  CACNA1G -12.992 3.885 8.91E-04  

 DMRT2 -17.310 5.995 4.06E-03  GRTP1 13.787 4.257 1.29E-03  KIAA0319 -13.505 4.050 9.21E-04  

 TEKT2 -14.806 5.174 4.40E-03  ENPP7 -10.103 3.170 1.53E-03  NLRP1 9.580 2.892 9.95E-04  

 SON 11.350 4.059 5.37E-03  ANXA11 -10.758 3.377 1.54E-03  GLRA4 -14.901 4.543 1.12E-03  

 PRKRIR 10.678 3.864 5.94E-03  ZNF708 -16.047 5.089 1.72E-03  GRTP1 13.852 4.246 1.18E-03  

 SYNPO2 13.056 4.739 6.09E-03  ZNF462 10.940 3.488 1.81E-03  MUT -10.783 3.320 1.25E-03  

 ZNF530 -15.063 5.469 6.11E-03  NCF2 12.165 3.883 1.84E-03  ANXA11 -10.806 3.373 1.45E-03  

  KIAA0319 -15.015 5.471 6.29E-03  SCYL1 -13.663 4.464 2.34E-03  ENPP7 -10.129 3.169 1.49E-03   

Table 4.14: Linear regression (corrected residual) of the entire exome (MAF 0.1, 1 and 2%), no weighting. Indicated are the β, SE and p 

values for the top 15 genes using linear burden regression in Hail. Exome-wide significant genes which survive multiple testing correction are 

emboldened. The corrected residual from MiSeq (polyglutamine-2) was used for regression. Filters used (for variants): VQSR≥98.5, MAF (0.1, 

1 and 2%), NS damaging (LoF or CADD PHRED ≥20), call rate ≥75%. Covariates used (for samples): PC1-5, BVR, mean variant depth. 

Variants were not weighted. Indicated at the top of each column are the adjusted (adj) values for each MAF cut-off, which is a count of how 

many genes/ORFs were tested that resulted in a p value and have >5 variants at the MAF tested. N=485. B: unstandardised beta; SE: standard 

error; MAF: minor allele frequency; PC: Principal component; BVR: baseline variant rate. 
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Figure 4.20: Q-Q plot of whole-exome linear regression (corrected residual). p values 

from unweighted whole-exome linear regression using corrected MiSeq residual. Data is 

taken from those presented in Table 4.14 for MAF 1%. Genomic inflation factor (λ)=1.047. 

Genes plotted had >5 variants NSD variants at MAF 1%. 

 

 

 



179 
 

4.9 SKAT and SKAT-O analyses 

Burden regression is a useful method for summing variants across a gene or gene-set 

(pathway), however, one of its critical disadvantages is in considering genes/gene-sets with 

many non-associated variants or bidirectionality, i.e. where separate variants in a gene may 

be associated with opposite directions of effect. This is especially important in a gene 

set/pathway analysis where genes may act in different directions. To overcome this and to 

explore further exome-wide analytical methods, we used the SNP-set kernel association test 

(SKAT) (Wu et al., 2011; Lee et al., 2012e). SKAT can tolerate non-causal variants more 

effectively than standard burden tests (i.e. less affected by the presence of variants with no 

effect). We also use the optimised SKAT (SKAT-O) (Lee et al., 2012e), which integrates 

SKAT with a burden test. We ran these with the same covariates as before, PC1-5, BVR and 

mean sample depth, and used similar filters with missingness ≤25% and MAF=1% gnomAD 

(see 2.7.4). We elected to use MAF 1% as our primary cut-off as it was the lowest MAF 

where we had been able to detect substantial signal in our burden tests.  

 

Q-Q plots for the six SKAT and SKAT-O tests are shown in Fig. 4.21. As indicated by the 

genomic inflation factors (λ), SKAT has slightly inflated p values in the linear models, 

whereas SKAT-O behaves appropriately for both logistic and linear tests, indicating SKAT-O 

is the best performing test. 

 

FAN1, PMS1, PMS2, LIG1 and EXO1 are all nominally significant in at least one SKAT(-O) 

test, with FAN1 having the lowest p value of these as before (Table 4.15). Both SKAT 

logistic and SKAT and SKAT-O continuous analyses with the polyglutamine-2 residual 

identified NOP14 as exome-wide significant (p=2.58E-06 – 8.83E-06; Table 4.16), and the 

logistic SKAT-O for NOP14 is nearly exome-wide significant (p=1.83E-05). As with the linear 

burden regression, applying SKAT/SKAT-O to the corrected CAG length residual (pure 

CAG) ablates most, although not all, of the NOP14 signal (p=2.68E-03 SKAT; 5.22E-03 

SKAT-O). No other genes pass exome-wide significance, however CUBN comes close in 

both the uncorrected and corrected residual continuous SKAT-O analyses (Bonferroni 

threshold p=1.16E-05 (4737 genes); CUBN p=1.83E-05 and p=2.13E-05). Notably, CUBN 

has little to no signal in both SKAT continuous tests (p=4.02E-02 uncorrected; p=3.27E-02 

corrected), possibly due to having a large number of rare, singleton NSD variants driving the 

signal in burden regression (variants available in Appendix 7). As before, it is also possible 

to weight variants on deleteriousness. This time, we were able to weight classes of variants 

differently; NS variants missing CADD annotations were imputed as CADD PHRED = 20, 

whereas LoF variants were imputed as CADD PHRED = 30 (Appendix 14). 
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Figure 4.21: Q-Q plots for SKAT and SKAT-O analyses. p values from SKAT and SKAT-O whole-exome regressions are plotted, for genes 

with >5 variants. Data is taken from Tables 4.15 and 4.16. Genomic inflation factors (λ) are shown on the corresponding Q-Q plot. Filters used 

(for variants): MAF (1% only), NSD (LoF or CADD PHRED ≥20), missingness ≤25%. Covariates used (for samples): PC1-5, BVR, mean variant 

depth. Variants were not weighted. Genes plotted had >5 variants. Linear regression used the N=485 continuous HD exomes and logistic the 

N=440 dichotomous group. Uncor: linear regression on the uncorrected (polyglutamine-2) AMO residual; Cor: Linear regression on the 

corrected (pure CAG) AMO residual; BVR: baseline variant rate.

SKAT (logistic; λ=0.971) 

SKAT-O (logistic; λ=1.047) 

SKAT (uncor; λ=1.162) 

SKAT-O (uncor; λ=1.033) 

SKAT (cor; λ=1.147) 

SKAT-O (cor; λ=1.038) 
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  Cor (SKAT-O)  Uncor (SKAT-O)  Cor (SKAT)  Uncor (SKAT)  Logistic (SKAT-O)  Logistic (SKAT)  

  p  p  p  p  p  p  

EXO1  2.82E-02  6.21E-02  4.47E-02  6.53E-02  1.08E-01  1.13E-01  

FAN1  4.39E-03  6.62E-03  6.71E-03  9.58E-03  1.52E-02  2.55E-02  

HTT  8.52E-01  8.34E-01  8.86E-01  9.41E-01  7.55E-01  7.63E-01  

LIG1  5.60E-02  3.97E-02  3.17E-02  2.24E-02  9.40E-02  5.40E-02  

MLH1  7.99E-01  6.40E-01  8.55E-01  8.27E-01  8.68E-01  8.67E-01  

MLH3  1.00E+00  8.99E-01  8.52E-01  7.36E-01  1.00E+00  8.04E-01  

MSH3  7.94E-01  8.62E-01  5.84E-01  6.66E-01  4.27E-01  2.84E-01  

OGG1  1.14E-01  1.12E-01  7.25E-02  7.26E-02  3.24E-01  2.32E-01  

PMS1  3.91E-02  4.84E-02  6.16E-02  7.35E-02  1.37E-02  7.41E-02  

PMS2  4.57E-02  2.76E-02  3.86E-01  2.82E-01  2.02E-02  2.17E-01  

RRM2B  N/A  N/A  N/A  N/A  N/A  N/A  

SYT9  1.40E-01  1.55E-01  1.40E-01  1.55E-01  7.58E-02  7.58E-02  

TCERG1  3.63E-01  4.01E-01  2.65E-01  2.96E-01  9.05E-01  7.53E-01  

Table 4.15: SKAT and SKAT-O dichotomous and continuous tests. Indicated are the p values calculated from SKAT and SKAT-O for 

candidate genes examined in 4.5. Genes and MAFs which are nominally significant are emboldened (none of these pass multiple testing 

correction: logistic Bonferroni threshold p=1.16E-05 (4307 genes); linear Bonferroni threshold p=1.06E-05 (4737 genes). Filters used (for 

variants): MAF (1%), NS damaging (LoF or CADD PHRED ≥20), missingness ≤25%. Covariates used (for samples): PC1-5, BVR, mean variant 

depth. Variants were not weighted and no total variant number filter was included for target genes. Linear regression used the N=485 

continuous HD exomes and logistic the N=440 dichotomous group. Uncor: linear regression on the uncorrected (polyglutamine-2) AMO 

residual; Cor: Linear regression on the corrected (pure CAG) AMO residual; BVR: baseline variant rate.
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 Cor (SKAT-O)  Cor (SKAT)  Uncor (SKAT-O)  Uncor (SKAT)  Logistic (SKAT-O)  Logistic (SKAT)  

 Gene p  Gene p  Gene p  Gene p  Gene p  Gene p  

 CUBN 1.47E-05  MUT 1.32E-03  NOP14 7.60E-06  NOP14 2.58E-06  NOP14 1.83E-05  NOP14 8.83E-06  

 MUT 8.40E-04  CRAMP1L 1.43E-03  CUBN 1.21E-05  TEKT1 6.23E-04  NUP210L 6.18E-05  NDOR1 1.18E-03  

 SIPA1L2 9.49E-04  DENND4B 1.64E-03  TEKT1 6.84E-04  FBP2 1.58E-03  CUBN 7.55E-05  TEKT1 2.18E-03  

 ERAP2 1.03E-03  GLRA4 1.64E-03  MUT 7.93E-04  MUT 1.60E-03  ERAP2 4.61E-04  DENND4B 2.57E-03  

 GLRA4 1.04E-03  ZNF708 2.59E-03  SIPA1L2 9.64E-04  CRAMP1L 2.46E-03  KIAA0319 1.03E-03  TRPM4 3.02E-03  

 ANXA11 1.86E-03  FBP2 2.62E-03  ERAP2 1.06E-03  DENND4B 2.67E-03  ZNF462 1.14E-03  PEG3 3.27E-03  

 KIAA0319 1.97E-03  NOP14 2.68E-03  CACNA1G 1.72E-03  GLRA4 2.91E-03  MAMDC2 1.81E-03  BRCA2 3.53E-03  

 CACNA1G 2.01E-03  OR2B11 2.91E-03  ANXA11 1.80E-03  ZNF708 3.56E-03  CACNA1G 2.01E-03  SSH2 3.54E-03  

 GRTP1 2.03E-03  UNC5B 3.38E-03  GLRA4 1.83E-03  PRKRIR 3.74E-03  C9 2.35E-03  ETV7 3.84E-03  

 ZNF708 2.04E-03  CDC20B 3.64E-03  ENPP7 1.85E-03  UNC5B 3.99E-03  NDOR1 2.38E-03  UNC5B 3.91E-03  

 DENND4B 2.11E-03  HGFAC 3.86E-03  ZNF462 1.87E-03  OR2B11 4.21E-03  GRTP1 2.80E-03  C9 3.93E-03  

 ENPP7 2.51E-03  NSFL1C 4.04E-03  KIAA0319 1.88E-03  SLC38A2 4.79E-03  SIPA1L2 2.93E-03  C2CD3 4.04E-03  

 CRAMP1L 2.59E-03  PRKRIR 4.07E-03  GRTP1 2.02E-03  FGL1 5.11E-03  TEKT1 2.98E-03  TULP1 4.30E-03  

 NCF2 3.13E-03  AC012313.1 4.21E-03  FBP2 2.25E-03  FAM198A 5.33E-03  DENND4B 3.10E-03  FGL1 4.39E-03  

 OR2B11 3.43E-03  TEKT1 4.83E-03  ZNF708 2.92E-03  NRIP3 5.38E-03  TGM3 0.003115  ASIC4 4.58E-03  

Table 4.16: Whole-exome dichotomous and continuous SKAT and SKAT-O tests. Shown are the p values calculated from SKAT and 

SKAT-O for the top 15 genes. Genes passing exome-wide significance are emboldened (logistic Bonferroni threshold p=1.16E-05 (4307 

genes); linear Bonferroni threshold p=1.06E-05 (4737 genes)). Filters used (for variants): MAF (1%), NS damaging (LoF or CADD PHRED 

≥20), missingness ≤25%. Covariates used (for samples): PC1-5, BVR, mean variant depth. Variants were not weighted, and only genes with >5 

NSD variants were included. Linear regression used the N=485 continuous HD exomes and logistic the N=440 dichotomous group. Uncor: 

linear regression on the uncorrected (polyglutamine-2) AMO residual; Cor: Linear regression on the corrected (pure CAG) AMO residual; BVR: 

baseline variant rate. 
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4.10 Pathway analysis 

After investigating whole-exome analyses where we collapsed variants based on genes, we 

then asked whether rare damaging variation in gene sets was enriched in early or late onset 

HD. To examine this, we performed a pathway analysis using gene sets taken from the 

Gene Ontology Consortium (The Gene Ontology Consortium, 2019). Fisher’s method was 

used to combine p values across genes in each pathway. This was performed on continuous 

SKAT, continuous SKAT-O and unweighted linear burden regression analyses at MAF 1% 

on NSD variants (CADD ≥20 and MAF ≤1% gnomAD) – see methods 2.7.5. An advantage of 

the Fisher method is it does not make assumptions about the directionality of effects, which 

is useful if genes in gene sets/pathways have effects in different directions. In all three tests, 

we used the corrected (pure CAG length) age at motor onset residual. 

 

The results from the pathway analysis are presented in Tables 4.17. No pathways survive 

multiple testing correction (GO pathways with p values=7764; Bonferroni threshold p=6.44E-

06), although in both the linear burden and SKAT-O tests cobalamin binding (GO:0031419) 

had the lowest p value. This observation is mostly driven by the contributions of MUT and 

CUBN variants, which constitute ~70% of the observed signal. As expected, SKAT has a 

less significant p value for the cobalamin pathway (p=4.12E-02) as CUBN has a less 

significant p value in SKAT. The endonuclease activity pathway (GO:0016803), which has 

p=4.71E-04 in linear burden regression, has FAN1 and EXO1 as pathway members, 

although these only contribute ~20% of the signal. The top two pathways from SKAT-O 

continuous analyses (from Table 4.17B) are shown in Fig. 4.22. 

A GO Pathway 
Genes 
with p 

Total 
genes in 
pathway 

p Term  

 GO:0031419 10 10 1.64E-04 cobalamin binding  

 GO:0016893 29 40 4.71E-04 
endonuclease activity, active with either 
ribo- or deoxyribonucleic acids and 
producing 5'-phosphomonoesters 

 

 GO:0042359 10 12 8.28E-04 vitamin D metabolic process  

 GO:0045211 177 226 1.01E-03 postsynaptic membrane  

 GO:0005245 36 40 1.22E-03 voltage-gated calcium channel activity  

 GO:0098794 321 423 1.31E-03 postsynapse  

 GO:0019203 9 10 2.15E-03 carbohydrate phosphatase activity  

 GO:0050308 9 10 2.15E-03 sugar-phosphatase activity  

 GO:0033017 32 39 2.20E-03 sarcoplasmic reticulum membrane  

 GO:0016176 7 10 2.23E-03 
superoxide-generating NADPH oxidase 
activator activity 

 

 GO:0009235 19 21 2.42E-03 cobalamin metabolic process  

 GO:0033013 48 57 2.51E-03 tetrapyrrole metabolic process  

 GO:2001235 116 176 2.52E-03 
positive regulation of apoptotic 
signaling pathway 

 

 GO:0070509 28 34 2.92E-03 calcium ion import  

 GO:0010803 41 59 2.92E-03 
regulation of tumor necrosis factor-
mediated signaling pathway 
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B GO Pathway 
Genes 
with p 

Total 
genes in 
pathway 

p Term  

 GO:0031419 10 10 2.42E-04 cobalamin binding  

 GO:0042359 10 12 3.95E-04 vitamin D metabolic process  

 GO:0042953 11 16 8.25E-04 lipoprotein transport  

 GO:0044872 11 16 8.25E-04 lipoprotein localization  

 GO:0019203 9 10 2.31E-03 carbohydrate phosphatase activity  

 GO:0050308 9 10 2.31E-03 sugar-phosphatase activity  

 GO:0086067 9 10 4.23E-03 
AV node cell to bundle of His cell 
communication 

 

 GO:2001267 18 23 5.49E-03 
regulation of cysteine-type 
endopeptidase activity involved in 
apoptotic signaling pathway 

 

 GO:0016893 32 40 5.74E-03 endonuclease activity  

 GO:1902652 98 115 6.16E-03 secondary alcohol metabolic process  

 GO:0006775 26 33 7.06E-03 fat-soluble vitamin metabolic process  

 GO:0050711 11 14 7.61E-03 
negative regulation of interleukin-1 
secretion 

 

 GO:0016176 8 10 8.21E-03 
superoxide-generating NADPH oxidase 
activator activity 

 

 GO:0008203 95 110 8.46E-03 cholesterol metabolic process  

 GO:0050713 8 11 1.01E-02 
negative regulation of interleukin-1 beta 
secretion 

 

 

C GO Pathway 
Genes 
with p 

Total genes 
in pathway p Term  

 GO:2001267 18 23 2.62E-03 
regulation of cysteine-type 
endopeptidase activity involved in 
apoptotic signaling pathway 

 

 GO:0050711 11 14 6.71E-03 
negative regulation of interleukin-1 
secretion 

 

 GO:0019203 9 10 7.24E-03 carbohydrate phosphatase activity  

 GO:0050308 9 10 7.24E-03 sugar-phosphatase activity  

 GO:0070059 25 30 8.64E-03 
intrinsic apoptotic signaling pathway in 
response to endoplasmic reticulum 
stress 

 

 GO:0032692 21 25 9.47E-03 
negative regulation of interleukin-1 
production 

 

 GO:0055106 13 17 1.04E-02 
ubiquitin-protein transferase regulator 
activity 

 

 GO:0050713 8 11 1.25E-02 
negative regulation of interleukin-1 beta 
secretion 

 

 GO:0090502 54 72 1.33E-02 RNA phosphodiester bond hydrolysis  

 GO:0005540 19 21 1.50E-02 hyaluronic acid binding  

 GO:0016893 32 40 1.77E-02 endonuclease activity  

 GO:0005031 18 24 2.02E-02 
tumor necrosis factor-activated receptor 
activity 

 

 GO:0005035 18 24 2.02E-02 death receptor activity  

 GO:0002664 9 10 2.19E-02 regulation of T cell tolerance induction  

 GO:0004521 46 58 2.38E-02 endoribonuclease activity  

Table 4.17: Pathway analysis of NSD variants. p values were taken from whole-exome 

linear burden (A) and whole-exome continuous SKAT-O (B) and SKAT (C) tests at MAF=1% 

examining NSD variants. p values were combined using Fisher’s method using pathways 

taken from the Gene Ontology (GO) database. Pathways with p value N=7764.
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Figure 4.22: Members of the top pathways from gene set analysis. Data from continuous linear burden pathway analysis (Table 4.17A) are 

shown for the top two pathways (top: cobalamin binding (GO:0031419); bottom: Endonuclease activity (GO:0016893)).
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4.11 Discussion 

4.11.1 Overview of results 

Chapter 4 detailed the development of an in-house bioinformatic pipeline for the QC and 

annotation of WES data from the individuals chosen for sequencing in chapter 3. 

Interrogation of the HTT CAG repeat in these samples identified atypical structures strongly 

associated with altered HD onset. These structures will go on to be more rigorously 

examined in chapter 5 using MiSeq. Further, we identified NSD variation in several genes 

implicated in HD onset modification including FAN1, EXO1 and MSH3. NSD variants in other 

genes such as PMS1 and LIG1 were also identified. In addition, shorter Q-A tracts in 

TCERG1 were found to be associated with a later disease onset. Finally, we used whole-

exome burden regression and SKAT(-O) analyses to detect novel variation occurring in the 

exome associated with altered onset. These tests identified NOP14, a proxy for HTT allele 

structure, as exome-wide significant. CUBN was found as exome-wide significant using 

burden regression and was nominally significant using SKAT-O. 

 

4.11.2 Development of in-house pipelines for exome analysis 

We used a standard GATK best practices pipeline for initial alignment and variant discovery 

(McKenna et al., 2010), and then extended on this with our own custom sample QC and 

variant annotation pipelines for downstream analyses. We loosely based the sample QC on 

the ExAC/gnomAD studies (Lek et al., 2016; Karczewski et al., 2019), with some 

modifications, such as the use of Hail as this was unavailable during the time of the ExAC 

study. 495 exomes passed initial QC and 486 of these passed relatedness checks. One 

problem we did encounter was some of our cohort had different CAG lengths when re-

genotyped with MiSeq compared with our original patient database. This was a 

consequence of using locally derived CAGs (explored in chapter 5) and was overcome by 

redefining early and late onset groups using CAG lengths from MiSeq. However, this issue 

did reduce the number of extreme onset individuals originally selected and slightly weakened 

the power of the study (see also 6.2). CAG length discrepancies are less likely in future 

studies as centrally measured CAG lengths are now available for a substantial portion of 

Registry through BioRep, and these should be more accurate and consistent than local 

diagnostic labs. Furthermore, the new Enroll-HD study, which superseded Registry, has 

collected data more rigorously, including centralised CAG length determination 

(Landwehrmeyer et al., 2016). 

 

In our primary whole-exome burden analyses, we explored three main MAF cut-offs: very 

rare (MAF≤0.1%), rare (MAF≤1%) and uncommon (MAF≤2%) frequencies. We elected to 
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use MAF 1% in our candidate gene analyses and whole-exome analyses (burden and 

SKAT(-O)) as it seemed to offer a reasonable balance between common variation, likely 

picked up by GWAS, and very rare variation which we were underpowered to detect at the 

whole-exome level. MAF 1% has also been suggested in other studies as a rarity cut-off (Li 

et al., 2011; Agarwala et al., 2013; Auer and Lettre, 2015; Bomba et al., 2017; Rees et al., 

2019), but other studies have defined rare variation as ≤0.5% MAF (Cirulli and Goldstein, 

2010; Mistry et al., 2015; Nagasaki et al., 2015; Dekker et al., 2019; Flannick et al., 2019). 

Our study was limited by its N (~500 total exomes), and we found that 0.1% MAF led to 

much higher p values for most genes; however, using the 1% MAF identified several variants 

in FAN1 already been picked up by GWAS, namely Arg507His and Arg377Trp (GeM-HD 

Consortium, 2019). Future studies with a larger number of exomes may find a smaller MAF 

threshold (e.g. ≤0.5%) useful for finding entirely novel variation not at all captured by GWAS 

in HD. 

 

Another element of the analytical pipeline that may need to be considered in further exome 

analysis, especially if using Enroll-HD, is that of ancestry. Although we did calculate ancestry 

and included principal components into our whole-exome analyses, candidate gene 

analyses should take ancestry into account if a substantial part of the sequenced population 

is of a non-European decent. Additionally, it is important to consider how to handle diverse 

ancestries. Here, we included all individuals regardless of ancestry; however, principal 

components alone cannot effectively account for more diverse ancestries where there are 

only a small number of individuals, such as we observe in the current study (see 4.2.4). 

Auxiliary analyses (see Appendix 15) demonstrate the removal of non-European ancestries 

did not substantially change the results found this study, although, CUBN was no longer 

exome-wide significant following multiple testing correction. Still, future analyses will benefit 

from the removal of rarer ancestries if there are an insufficient number of individuals of these 

ancestries for principal component analysis to be effective. Finally, other MAFs for different 

populations (i.e. not just non-Finnish Europeans) may need to be considered and integrated 

into future work. Linear mixed models could be used in whole-exome analyses to account for 

population structures, and are supported in the most recent version of Hail (v0.2). 

 

For annotation, we used dbNSFP v3.0 (Liu et al., 2011, 2016) and added CADD (Kircher et 

al., 2014; Rentzsch et al., 2019), SIFT (Sim et al., 2012; Vaser et al., 2016) and Polyphen2 

(Adzhubei et al., 2010) scores to our variants. We primarily focused on CADD score as it 

amalgamates many different scores and has been used in numerous studies, databases and 

tools (Liu et al., 2016; McLaren et al., 2016; Nissen et al., 2018; Cunningham et al., 2019; 

Sandri et al., 2019). The developers of the CADD score recommend using a scaled CADD 
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PHRED score cut-off of between ≥10-20; we opted to use a fixed score of ≥20, which 

describes the top 1% damaging variants in the genome. However, while CADD≥20 is 

effective for identifying possible damaging variation (Itan et al., 2016), its stringency may 

remove disease-relevant variants, especially given the variants may only alter the function of 

the resultant protein, and are not necessarily LoF. Thus, future study may find different 

CADD cut-offs useful (e.g. CADD PHRED 15), or, equally, un-scaled CADD scores could be 

used. Additionally, using other scores or ‘meta-scores’ (e.g. DANN, (Quang et al., 2015)) for 

variants may also be worth pursuing. Finally, annotation of functional domains using InterPro 

(Mitchell et al., 2019), or similar, would allow for variants in specific domain functional 

families to be aggregated across the exome, and this may inform downstream outcomes. 

 

4.11.3 Short tandem repeats in HTT, MSH3 and TCERG1 

Short tandem repeats (STRs) are repetitive regions of the genome and are intrinsically 

difficult to read through with current second-generation NGS technologies, such as have 

been used in this study (Illumina 75bp paired end), due to STRs length and repetitive nature 

(discussed later generally in 6.2.3 and 6.4.1). Thus, variants from MSH3 and HTT STRs 

tended to be inaccurate when called in our GATK-based pipeline. To overcome this, we 

extracted reads containing the HTT CAG repeat and were able to identify structural 

differences strongly associated with altered HD onset. These non-canonical HTT alleles 

have very recently been identified in three independent studies (Ciosi et al., 2019; GeM-HD 

Consortium, 2019; Wright et al., 2019) and constitute a major modifier of onset in a subset of 

patients. The atypical alleles we identify will be discussed in much greater detail in chapter 5. 

 

Manual assessment of reads in MSH3 was not as successful, mainly as the entirety of the 

repeat structure had to be assessed as opposed to just the 5’- and 3’- ends as in HTT. The 

polymorphic Pro/Ala MSH3 repeat in MSH3 ranges from ~3aa (27bp) to ~9aa (81bp), not 

including further repetitive flanking sequence (Coleman et al., 1994; Nakajima et al., 1995). 

We were able estimate the genotype lengths, although there was no significant association 

between MSH3 genotype length and residual age at onset (p=0.359). Recent study has 

identified the MSH3 repeat structure as being associated with altered onset in both HD and 

DM1 (Flower et al., 2019). Notably our (non-significant) direction of effect matches that seen 

in the Flower study where the shorter MSH3 allele was associated with later disease onset in 

HD and attenuated somatic expansion. How the MSH3 variant is affecting onset is unclear; it 

may be STRs are simply tagging non-coding modifiers (e.g. eQTLs) which are then driving 

onset modification through expression changes in MSH3 (Flower et al., 2019). Additionally, 

the EXO1 interaction domain in MSH3 lies close to the repetitive tract (Schmutte et al., 
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2001), and this interaction could be in some way modified by the number of repeats in 

MSH3. There is evidence for EXO1 as a modifier of HD in this study (discussed in 4.11.5) 

and as a modifier of somatic instability in a fragile X mouse (Zhao et al., 2018). 

 

Unlike HTT or MSH3, the imperfect repetitive Q-A tract in TCERG1 was read-through 

effectively with WES due to alternating codons throughout its structure. The TCERG1 locus 

was significant in the most recent HD GWAS (GeM-HD Consortium, 2019), and the repeat 

itself in TCERG1 has been implicated previously as an HD modifier (Holbert et al., 2001; 

Arango et al., 2006). Linear regression analysis in our data showed a significant negative 

effect of the STR on onset (p=2.5E-03), i.e. later onset is associated with shorter Q-A tracts 

in TCERG1. More work is needed to uncover the specific mechanism of action of TCERG1; 

however, our study lends further support that TCERG1 is likely the gene responsible for the 

signal at this locus, and not GPR151 where no clear excess of variation between early and 

late onset individuals was observed. A possible mechanism (altering the splicing and/or 

transcription of HTT) by which TCERG1 may modify onset is discussed later in 6.3.4.  

 

4.11.4 NSD variation in FAN1 

FAN1 has 5’ flap endonuclease and 5’-3’ exonuclease activity, and is known to be involved 

in interstrand crosslink (ICL) repair (Kratz et al., 2010; Liu et al., 2010b; MacKay et al., 2010; 

Smogorzewska et al., 2010). FAN1 interacts with mismatch repair (MMR) proteins including 

MLH1, MLH3 and PMS2 (Smogorzewska et al., 2010), and biallelic LoF or very damaging 

missense mutations in FAN1 cause the kidney disease karyomegalic interstitial nephritis 

(KIN) in humans (Zhou et al., 2012) and in mice (Airik et al., 2016; Lachaud et al., 2016; 

Thongthip et al., 2016). KIN is marked by karyomegaly in kidney and progressive renal 

decline (Isnard et al., 2016; Hard, 2018), although there is evidence for karyomegaly in other 

tissues including the liver and brain (Spoendlin et al., 1995). In HD, FAN1 has now 

implicated by genetic study as a modifier of disease onset (GeM-HD Consortium, 2015, 

2019), and functional work has suggested a protective role of the protein in somatic 

expansion in fragile X and HD models (Zhao and Usdin, 2018; Goold et al., 2019). FAN1 

may also have a modifying role in other repeat diseases (Bettencourt et al., 2016). 

 

Using WES, we identified an overall enrichment of NSD variation associated with an early 

HD onset (26:9 E:L; 29:9 from later Sanger sequencing confirmation). In addition, we also 

identified a very rare (MAF=6.17E-05) LoF frameshift variant in an early onset HD patient. 

Early associated variants seemed to mostly fall into two primary clusters: a cluster centred 

near Arg507His in the SAF-A/B, Acinus and PIAS (SAP) domain, involved in DNA binding 
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and recruitment of FAN1 to sites of damage (Gwon et al., 2014; Zhao et al., 2014; Thongthip 

et al., 2016), and variants on the C-terminal end of the protein in the virus-type replication-

repair nuclease (VRR-Nuc). The Arg377Trp variant and Leu395Pro variants are also nearby 

the former cluster. Crucially, both early variant clusters appear in areas of the protein that 

contact DNA (Wang et al., 2014; Jin and Cho, 2017). We also find an additional smaller 

cluster in the tetratricopeptide repeat (TPR) domain associated with late onset. Notably both 

the Arg507His (MAF=0.96%) and Arg377Trp (MAF=0.72%) have been identified now by 

GWAS as modifiers (GeM-HD Consortium, 2019), however ~1/3 of the variants (11 

singletons) we identify here are very rare (≤0.1% MAF) and have not been previously been 

associated with HD. In addition, we identify at least two variants which, to our knowledge, 

are novel (Asp498Asn and Asp702Glu). 

 

Variants in the VRR-nuclease domain are of particular interest as missense variants in this 

domain can cause KIN (Zhou et al., 2012). Indeed, the Arg982Cys variant may be especially 

damaging as it has a very high CADD score and is in a DNA binding domain near the active 

site at a position highly conserved between human and bacteria (Yan et al., 2015). Asp981-

Arg982 mutated FAN1 has substantially reduced endonuclease activity (MacKay et al., 

2010). Goold and colleagues (Goold et al., 2019) recently found inactivation of FAN1’s 

nuclease activity through the Asp960Ala missense mutation did not affect the protein’s ability 

to stabilise the HTT CAG repeat in an HD cell model (Goold et al., 2019). However, our 

study clearly suggests functionality of the nuclease domain is still important, which is 

perhaps unsurprising given the nuclease’s importance in other FAN1 biology including ICL 

repair (MacKay et al., 2010; Yoshikiyo et al., 2010; Thongthip et al., 2016; Jin et al., 2018), 

replication fork restart (Shereda et al., 2010; Chaudhury et al., 2014; Porro et al., 2017) and 

KIN (Zhou et al., 2012). Hence damaging mutations in the VRR-Nuc domain in HD patients 

may compromise the protective effect of FAN1 in HD and lead to an accelerated disease 

onset. 

 

TPR domains are found in a large number of proteins and often have roles in protein-protein 

binding (Perez-Riba and Itzhaki, 2019). FAN1’s TPR domain is involved in the dimerisation 

of the protein (Zhao et al., 2014). The identification of a cluster of late-associated variants in 

this domain, then, is interesting, especially as these variants are all very rare or novel 

(MAF≤0.1%). It is possible these variants could affect FAN1 dimerisation or other protein-

protein interaction (Jin and Cho, 2017). Potentially, as suggested by Pennell and colleagues 

(Pennell et al., 2014), this dimerisation could affect the substrate specificity of FAN1. 

Changes in the capability of FAN1 to dimerise could affect FAN1’s ability to resolve HTT 

CAG repeat secondary structures. It is equally possible these late-associated variants could 
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affect DNA binding in some way as these are still close to predicted DNA contact points 

(Wang et al., 2014; Zhao et al., 2014), and the TPR domain is known to bind post-nick 5’-flap 

DNA. 

 

None of the variants we identify have been formally associated with KIN (ClinVar, accessed 

July 2019), however this is likely as KIN is a rare autosomal recessive disease and both 

copies of FAN1 would have to be lost for KIN to occur. Indeed, the LoF variant we find 

(Thr187fs) would likely be associated with KIN in biallelic loss of FAN1. Interestingly, the 

Arg507His variant (MAF=0.97%) was associated with KIN in a recent phenotype risk score 

study (Bastarache et al., 2018), further suggesting that the variant is likely deleterious to 

FAN1 function. The variant has been implicated as modifying protein-protein interaction 

effects rather than a direct effect on DNA contact (Jin and Cho, 2017), and the SAP domain, 

where Arg507His occurs, is involved in dimerisation of FAN1 (Zhao et al., 2014). 

 

4.11.5 NSD variation in EXO1 

EXO1 encodes exonuclease 1 (EXO1), a 5’-3’ exonuclease involved in many facets of DNA 

maintenance and repair, including MMR (Genschel et al., 2002; Tran et al., 2004) where it 

binds MLH1, MSH2 and MSH3 proteins (Tishkoff et al., 1997; Schmutte et al., 2001; Dherin 

et al., 2009). EXO1 also possesses substrate-specific flap endonuclease (Lee and Wilson, 

1999) and RNase H activity (Qiu et al., 1999; Liu et al., 2017). Although not genome-wide 

significant in the most recent GWAS (GeM-HD Consortium, 2019), functional work in a 

murine model of fragile X identified the gene as a modifier of repeat instability (Zhao et al., 

2018). In our exomes, we find an excess of late-associated NSD variation in the MSH3-

EXO1 interaction domain, such as the Gly274Arg mutation present in 4 late onset individuals 

with a high CADD score (34). We also find two further late-associated variants in the MLH1-

EXO1 interaction domain, including the more common variant Gly759Glu (MAF=0.93%). No 

clustering of early or late onset variants, barring one (Ser610Gly), was observed in the 

MSH2 interaction domain.  

 

Somewhat surprisingly, Zhao et al. find EXO1 to be protective in their fragile X mouse model 

(Zhao et al., 2018), whereas our study suggests EXO1 is normally deleterious. A possible 

explanation for this is the class of mutation; in the Zhao study, they use knockout Exo-/- mice. 

Comparatively, we only identify clustering associated with NSD variants in EXO1. Hence this 

might suggest differing effects for EXO1 depending on whether its functionality is entirely 

ablated or only modified (through damaging mutations). Interestingly, it has been suggested 

that FAN1 may act as a compensatory nuclease in the absence or knockdown of EXO1 
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(Desai and Gerson, 2014), suggesting at least some degree of functional overlap between 

the two proteins.  

 

Why EXO1 was not identified through GWAS is unclear, but it may be the result of the rarity 

of the variants observed. ~70% of the NSD variants we see are very rare (≤0.5% MAF), and 

array-based imputation methods struggle to effectively impute these rarer alleles (Cirulli and 

Goldstein, 2010). The Gly759Glu variant is of a similar MAF to FAN1 Arg507His, however its 

effect size may be substantially less. Larger GWAS may identify EXO1 in future work. 

 

4.11.6 LoF variants in MSH3 

MSH3 forms a heterodimer with MSH2 (MutSβ), and binds to small and large loop-outs in 

DNA, up to 14 bp in size in vitro (Habraken et al., 1996; Palombo et al., 1996), where it 

coordinates with other MMR machinery such as MLH1-PMS2 (MutLα), EXO1 and LIG1 – 

mismatch repair reviewed generally by (Fishel and Lee, 2016; Hsieh and Zhang, 2017). 

MSH3 has been shown to bind repeat trinucleotide repeat structures (Owen et al., 2005; 

Burdova et al., 2015; Guo et al., 2016; Lai et al., 2016), and is a modifier of disease onset in 

HD (Flower et al., 2019; GeM-HD Consortium, 2019) and DM1 (Morales et al., 2016; Flower 

et al., 2019), and a modifier of HD progression (Hensman Moss et al., 2017). 

 

In our exomes, there seemed to be a slight excess of late-associated variation in MSH3’s 

MutS III domain (lever domain) and early-associated variation in or near the MutS V domain 

(ATPase domain) (Obmolova et al., 2000; Boland and Goel, 2010; Kumar et al., 2013). 

However, the clustering of variants to early/late onset was somewhat unclear, and some 

variants (e.g. Pro681Ser and Val682Leu) occurred in late and early individuals. No NSD 

variants occurred near the EXO1 interaction domain. However, we identify three novel LoF 

variants in MSH3 all associated with a late disease onset, highlighting a dose-dependent 

effect of MSH3 expression on HD onset as shown through imputed transcriptome wide 

association study (TWAS) in patients (GeM-HD Consortium, 2019). This effect is similar to 

the MSH3 dose-dependent effect seen on repeat instability in animal models (Foiry et al., 

2006; Dragileva et al., 2009; Tomé et al., 2013). Demonstrating LoF mutations occur in late-

onset HD patients helps validate MSH3 as a potential therapeutic target, especially due to its 

(partial) redundancy in mismatch repair with MutSα (MSH2-MSH6 heterodimer). 

 

4.11.7 WES of other GWAS candidate genes 

We also examined other genes implicated as potential modifiers of HD from GWAS (GeM-

HD Consortium, 2019) and other functional work (Budworth et al., 2015): HTT (independent 
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of its CAG length/structure), OGG1, RRM2B, SYT9 and the MMR genes LIG1, MLH1, 

MLH3, PMS1 and PMS2. The coverage of RRM2B was poor and hence no NSD variants 

were identified. SYT9, which was a single rare significant SNP in GWAS (GeM-HD 

Consortium, 2019), also had lower exome coverage, although we did identify a single NSD 

variant associated with early onset in this gene, Leu353Val (MAF=0.98%), and this is the 

same directionality as seen in the GeM GWAS. SYT9 encodes synaptotagmin 9 involved in 

calcium sensing and transmission, and is highly expressed in the striatum of mice (Xu et al., 

2007), the most relevant disease tissue in HD. NSD variants in HTT did not segregate to 

early or late onset. 

 

MLH1 forms heterodimers with PMS2 (MutLα), PMS1 (MutLβ) and MLH3 (MutLγ). We 

investigated all four of these genes as MLH1, PMS1 and PMS2 have all been identified as 

HD onset modifiers in GWAS (GeM-HD Consortium, 2019). Three NSD variants in PMS1 

were observed in four individuals, all of whom had a late HD onset, suggesting a potential 

deleterious role for PMS1 in HD onset, and matches the findings of the 2019 GeM GWAS. 

Neither PMS2, MLH3 or MLH1 had obvious aggregation of NSD variants with altered onset 

in our cohort. However, we reproduced the common signal in MLH1 (Ile219Val) associated 

with altered onset seen in other genetic studies (Lee et al., 2017; GeM-HD Consortium, 

2019). As Ile219Val is common and not predicted to be extremely damaging (13.9 CADD), 

the variant may be in LD with other factors responsible for modifying onset. Of the four MutL 

monomers, it is interesting that PMS1 may harbour the most relevant NSD variants in our 

study. The function of the MutLβ PMS1-MLH1 heterodimer has been somewhat enigmatic 

with no MMR activity described (Räschle et al., 1999), so it is possible there may be some 

novel role the complex plays in repeat resolution alongside its binding partner MutS.  

 

The LIG1 gene was significant in the HD GWAS (GeM-HD Consortium, 2019), and has 

broad roles in DNA repair including mismatch repair and base excision repair(Montecucco et 

al., 1998; Levin et al., 2000). We found a small amount of clustering of early variants in the 

DNA ligase A N (DNA binding) and DNA ligase A M (nucleotidyltransferase) LIG1 domains 

(Pascal et al., 2004), and late-associated variation in the C-terminal DNA ligase A C domain 

(oligonucleotide-binding fold). LIG1 can promote trinucleotide repeat expansion both in vitro 

(Crespan et al., 2015) and in vivo (Subramanian et al., 2005; Tomé et al., 2011). The late-

associated variants we identify may affect LIG1’s ability to associate with other repair DNA 

repair factors. The mechanism of the early variants here are less clear, however; potentially 

the variants could affect LIG1’s ability to complete repair, and this may lead to a larger 

amount of instability (a mechanism is discussed in 6.3.3). It is also difficult to know which 

pathway(s) LIG1 is acting via; although we did not find any clear segregation of variants in 



194 
 

OGG1, base excision repair may still be involved in onset determination in HD in addition to 

mismatch repair. 

 

4.11.8 Whole-exome analyses 

Using a combination of continuous (linear) burden, SKAT and SKAT-O tests, we identified 

two genes as reaching exome-wide significance in at least one test. NOP14 was exome-

wide significant at MAF≤1% in SKAT and SKAT-O tests, although not significant by burden 

test (p=3.42E-03, linear uncorrected AMO residual burden), possibly as SKAT(-O) tends to 

perform better than burden testing when there is a single skewed variant in a gene (Wu et 

al., 2011; Lee et al., 2012e). The NOP14 significance is almost entirely driven by a single 

late-associated coding variant, Arg697Cys, in high LD with the (CAGCAA)2CAG atypical 

HTT repeat structure. As we demonstrate, using the corrected (pure CAG) AMO residual 

ablates NOP14’s signal. >80% (16 of 18 instances) of the (CAGCAA)2CAG expanded alleles 

in our dataset possess the Arg697Cys variant in our data, which is ~133kb away from the 

CAG repeat tract in HTT. Notably, the HTT haplotype is not one of the seven most common 

HD haplotypes (Lee et al., 2012b), and the Arg697Cys variant is instead probably tagging 

the so-called 4AM2 HTT haplotype from GWAS (GeM-HD Consortium, 2019). These data 

suggest the majority of European (CAGCAA)2CAG HTT alleles originate from a single 

common allelic ancestor that has expanded into the pathogenic repeat range many times. 

 

The second exome-wide significant signal was CUBN. CUBN encodes Cubilin, involved in 

vitamin B12 (cobalamin) uptake in the small intestine, and was an unexpected result from 

our study. Notably, while CUBN was exome-wide significant by burden testing, it was only 

nominally significant by SKAT-O (p=1.21E-05) and SKAT (p=2.59E-02), (Bonferroni 

threshold p=1.15E-05). CUBN had a very large number of NS variants (72 NS variants, see 

Appendix 7), and this probably reflects the large size of the CUBN protein (3623aa). 23 of 

these variants were NSD and enriched in early onset individuals (31:7 E:L). It is difficult to 

know how to interpret these data. Most of the NSD variants were very rare and only 

singletons, and this is probably why SKAT did not find CUBN to be exome-wide significant 

(Wu et al., 2011; Lee et al., 2012e). Further study is needed with more exomes before 

attempting to conclude anything from CUBN.  

 

Gene set analysis did not identify any significant pathways in our data, although using the 

linear burden regression p values identified cobalamin binding (driven mostly by CUBN and 

MUT; GO:0031419) and endonuclease activity (including FAN1 and EXO1; GO:0016893) as 

the pathways with the lowest p values. 
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Our identification of NOP14 as an HD modifier (indirectly tagging HTT allele structure) 

proves the utility and tractability of whole-exome rare-variant analyses in HD. It also reflects 

the remarkably strong effect size of the HTT allele structure on HD onset, which was exome-

wide significant despite our relatively small sample set (N=500; discussed later in 6.2.2 and 

& 6.2.4). It is likely that with more HD exomes (ideally >1,000), we will have the power to 

detect rare variation exome-wide in DNA repair genes, and possibly in novel genes/gene 

sets (see 6.4.1 for future extensions to sequencing work). The following final results chapter 

will examine the HTT allele structure identified originally through WES in greater depth using 

MiSeq sequencing. The ramifications of these findings will then be discussed.
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Chapter 5: Using MiSeq to investigate structure and 

instability of the HTT CAG repeat 

5.1 Introduction 

As demonstrated in chapter 4, we found expanded HTT allele sequence was a major 

modifier of disease onset in a subset of HD patients. A variant in NOP14, Arg697Cys, was 

additionally found to be exome-wide significant, and this appears to be strongly tagging the 

expanded atypical HTT CAGn(CAGCAA)2 allele. Our observation that CAG sequence of 

HTT is an important disease modifier is similar to those reported in HD recently, where 

variants in the repeat structure were associated with altered HD onset (Ciosi et al., 2019; 

GeM-HD Consortium, 2019) and HD penetrance (Wright et al., 2019).  

 

A growing body of evidence across repeat disease points to allele structure as an important 

modifier of disease onset, disease penetrance and intergenerational transmission. For 

instance, CGG repeat expansions in the X-linked FMR1 gene cause Fragile X; AGG 

interruptions toward the 5’ end of the repeat confer intergenerational repeat stability (Eichler 

et al., 1994; Yrigollen et al., 2012; Nolin et al., 2015), and alleles without interruptions were 

enriched in those with disease (Falik-Zaccai et al., 1997). Various interrupted alleles have 

been described in several other repeat diseases including spinal cerebellar ataxia (SCA) 

type 1 (Chung et al., 1993; Chong et al., 1995; Menon et al., 2013), SCA2 (Choudhry et al., 

2001), SCA10 (Matsuura et al., 2006; McFarland et al., 2014), and Friedreich’s ataxia 

(Pearson et al., 1998). More recently, complex interruption arrays in myotonic dystrophy type 

1 (DM1) were found to be associated with delayed onset, attenuated disease phenotype and 

reduced somatic expansion rates (Musova et al., 2009; Braida et al., 2010; Cumming et al., 

2018; Pešović et al., 2018). 

 

Hence, the finding that HTT allele structure plays a role in HD onset is consistent with other 

repeat diseases. However, there were several limitations in the calling of HTT repeat 

structure in our exomes: (1) coverage was found to vary substantially, and it was not 

possible to call repeats in all cases, (2) phasing (i.e. determining which allele, expanded or 

wild-type, harboured alternate HTT alleles) was not always possible and (3) we did not have 

an automated repeat calling pipeline, making structural calling slow and prone to error. 

Therefore, we wanted to confirm and dephase the repeat structures we identified in WES 

using an independent and systematic method.  
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There are several ways to assess CAG length in HD (Massey et al., 2018), with the current 

gold standard being capillary electrophoresis of repeat-containing PCR products using 

genescan (Applied Biosystems). Genescan uses fluorescent PCR to estimate HTT repeat 

size and quantify somatic instability. Genescan also has the advantage of being medium 

throughput as it is plate-based, and a typical genescan run can accommodate 48-96 

samples. However, crucially, genescan does not determine repeat sequence, and instead 

approximates pure CAG size based on a ‘typical’ HTT sequence with a single interrupting 

CAA. Interruptions can be detected by triplet-primed PCR coupled with genescan (Chen et 

al., 2010; Hayward et al., 2016; Hayward and Usdin, 2017), and triplet-primed PCR is often 

used for clinical applications. But triplet-primed PCR may lack sensitivity in the context of HD 

where interruptions are very closely spaced, and the tandem interruptions we find here (e.g. 

CAACAA) also may not be detected using triplet-primed PCR. First generation sequencing 

modalities, i.e. Sanger sequencing, can be used to obtain sequence level information, 

however are low throughput and the necessary gel extraction step or cloning for isolating a 

single allele is laborious (Massey et al., 2018; Wright et al., 2019). 

 

To address these issues and confirm HTT allelic structures from WES, we utilised a targeted 

next-generation sequencing approach (Ciosi et al., 2018) on the Illumina MiSeq platform to 

specifically amplify the CAG and CCG repeats in exon 1 of HTT. MiSeq is high-throughput, 

supporting both 96 or 384 library formats (with other plexities possible), and can sequence 

through repeats up to ~210-240bp (70-80 CAGs) in addition to flanking sequence. Chapter 5 

will explore the use of this protocol in our extreme early/late onset patient cohort. First, 

repeat sequence is called and allelic structures phased using the Scale-HD bioinformatic 

pipeline (https://scalehd.readthedocs.io). Following this, MiSeq sequencing is validated by 

comparing data from the same individuals from a locally run genescan. Differences between 

lymphoblastoid and whole blood DNA are also considered. Finally, we consider how disease 

phenotype, age at onset and disease progression, may be associated with CAG instability 

using generalised linear models. Limitations of this modelling approach are also discussed.

https://scalehd.readthedocs.io/
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5.2 MiSeq sequencing and Scale-HD 

We utilised a targeted next-generation MiSeq sequencing method (developed by (Ciosi et 

al., 2018), see 2.8) to amplify and sequence the repetitive stretches of HTT exon 1. All 500 

lymphoblastoid (LBC) samples exome sequenced in chapter 4, alongside 49 blood DNA 

from a subset of these samples, were chosen for sequencing. Seven 96 well plates were 

prepared and pooled to form two 384 multiplex libraries which were MiSeq sequenced. Raw 

sequencing files (FASTQ) were aligned and HTT structures called with Scale-HD 

(https://scalehd.readthedocs.io/en/latest/index.html). Scale-HD employs a reference 

sequence (refseq) alignment using the BWA-MEM alignment algorithm. Reads are aligned to 

4000 imputed ‘canonical’ HTT exon 1 alleles with varying CAG and CCG structures. 

Samples with low alignment scores are re-aligned to 8000 ‘atypical’ HTT alleles to determine 

structure of both wild-type and expanded HTT alleles. Scale-HD also produces a variety of 

other metrics including QC metrics via FastQC (Appendix 16), SNPs using freebayes 

(Garrison and Marth, 2012) and measures of somatic instability and polymerase slippage 

(Equations 2.3 & 2.4). 

 

645 non-control samples were sequenced (including blood DNA, sequenced twice) as 

indicated (Table 5.1). Of the 645 samples sequenced, 642 were sequenced successfully 

(>99%). All three failing samples were lymphoblastoid DNA which failed amplification, 

however; blood and longitudinal lymphoblastoid DNA was available for one of these samples 

resulting in structural determination for 498 of the 500 sequenced. In addition, one sample 

was successfully amplified but only a wild-type allele was seen with MiSeq and subsequent 

genescan – this individual was removed from downstream analyses here and in chapter 4. 

Of the 649 samples (including 7 positive controls) successfully sequenced, the average 

number of mapped reads for expanded alleles was 48,542 and 48,142 for wild-type alleles. 

An equal balance between expanded/wild-type alleles was achieved using solid phase 

reversible immobilisation (SPRI) beads for size selection during the library preparation (2.8). 
 

DNA source Sequenced (total) Sequenced (successful) 

Lymphoblastoid 500 497 

Blood 49* 49* 

Longitudinal lymphoblastoid 47 47 

Positive Control 7 7 

Negative Control 7 N/A 

Table 5.1: Details of DNA sequenced using MiSeq. Successful sequencing refers to 

samples where amplification and sequencing were successful. Note, for blood DNA, all DNA 

was sequenced twice (total 49*2=98). 42 of the 49 blood DNA had matched lymphoblastoid 

DNA (blood and lymphoblastoid DNA from the same person). 

https://scalehd.readthedocs.io/en/latest/index.html
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5.3 Determining HTT allele structure 

5.3.1 Interruptions in the CAG repeat tract 

As indicated in WES, HTT structure was strongly associated with altered age at onset. Using 

WES alone, we were originally only able to estimate allele structure in ~80% of cases and 

could dephase structures in ~65% of cases (4.5). Using MiSeq, we were able to successfully 

obtain (1) pure CAG length, (2) pure poly-proline length and (3) interruption sequences 

occurring in the CAG repeat for 498 of the 500 selected individuals. As MiSeq sequencing 

was deep (~50k per allele), structure calling was robust. As shown (Fig. 5.1 & Table 5.2), 16 

different HTT allele structures were identified independent of CAG length. The two most 

common alleles, (CAG)nCAACAGCCGCCA(CCG)7(CCT)2 and 

(CAG)nCAACAGCCGCCA(CCG)10(CCT)2, represent 70.0% and 20.2% of the total (N=497) 

sequenced alleles, respectively. Interestingly, the 10 CCG repeat common allele appears to 

be less associated with expanded HTT than the more common 7 CCG repeat allele.  

 

Notably, while the Scale-HD pipeline was able to detect most allele structures (494 of 498), 

very rare interruption structures (e.g. CAG(CAA)2CAG) were miscalled by the pipeline. 

Hence, all alignments were manually assessed (methods 2.9.1) in addition to automatic 

calling. MiSeq detected a high rate (11.4%) of atypical CAG interruption structures occurring 

in our extreme onset group (N=438), with most (>80%) of these occurring on the expanded 

HTT allele. We also identify a novel non-Q interruption (CAC) in one late onset individual 

previously undetected by WES on an expanded allele, as well as confirming and phasing all 

three CAG(CAA)2CAG and CAG(CAA)3CAG structures to expanded HTT alleles. Before 

correcting for pure CAG size, the non-Q interruption individual had a residual age at motor 

onset of -25.7 years (counting the CAC interruption as a CAG), whereas after correction the 

residual was -10.0 years (41 pure CAGs). Comparing the structure calls from WES and 

MiSeq (Table 5.3) demonstrates WES effectively captured most of the (CAGCAA)2CAG 

alleles (~90% of those detected by MiSeq), although with a single false positive (~7%). A 

single individual with a CAG(CAACAG)2CAG was classified as having an early disease 

onset after correcting for pure CAG size (uncorrected MiSeq CAG length: -3.66 years; 

corrected MiSeq CAG length: -9.46 years). 

 

In contrast, WES had a low power to detect non-interrupted CAG repeats, only identifying 

33% of those found through MiSeq. This probably reflects the difficulty in manually 

delineating where a pure CAG repeat ends without a CAA interruption. Unlike the 

(CAGCAA)2 haplotype, there are at least four haplotypes we observed without interruptions. 

No wild-type allele we sequenced lacked an interruption. Phasing of expanded alleles shows 
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perfect segregation of uninterrupted alleles with early onset and multiple interrupted alleles 

with late onset. All interruptions observed were at the 3’ end of the repeat tract; we did not 

find any alleles with interruptions in the 5’ or middle of the repeat. 

 

We also observe variation in the polyproline-encoding tract. HTT’s polyproline tract, formed 

of the CCG and CCT repetitive stretch just 3’ of the HTT CAG repeat, was found to vary 

between 8 to 15 amino acids in length. In terms of coding sequence, the tract canonically 

contains a single CCA interruption near the 5’ start of the CCG repeat. Expanded alleles 

lacking this CCA interruption were associated with an early onset, although only two of these 

were in normally interrupted CAG alleles (both in early onset individuals). We did not see 

any further interruption species in the polyCCG and polyCCT tracts.
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Figure 5.1: Visualisation of observed HTT alleles from MiSeq. The frequency of HTT allele structures are shown for wild-type (WT) and 

expanded (EXP) alleles. Note allele numbers shown refer to the numbers (No.) in Table 5.2, and these are listed in the same order. N=497. 
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   All individuals (N=497)  Dichotomous population (N=438)  

Allele structure No.  E - WT E - EXP L - WT L - EXP  E - WT E - EXP L - WT L - EXP  

5’-TTC(CAG)nCAACAGCCGCCA(CCG)7(CCT)2-3’ 1  132 209 146 209  122 188 127 180  

5’-TTC(CAG)nCAACAGCCGCCA(CCG)10(CCT)2-3’ 2  86 13 85 17  77 12 72 13  

5’-TTC(CAG)n(CAACAG)2CCGCCA(CCG)7(CCT)3-3’ 3  8 1 4 18  5 0 4 16  

5’-TTC(CAG)nCAACAG(CCG)9(CCT)2-3’ 4  14 2 5 0  12 2 3 0  

5’-TTC(CAG)nCAACAGCCGCCA(CCG)9(CCT)2-3’ 5  6 1 8 0  6 1 7 0  

5’-TTC(CAG)n(CCG)12(CCT)2-3’ 6  0 9 0 0  0 9 0 0  

5’-TTC(CAG)nCCGCCA(CCG)7(CCT)2-3’ 7  0 8 0 0  0 8 0 0  

5’-TTC(CAG)n(CCG)10(CCT)2-3’ 8  0 3 0 0  0 2 0 0  

5’-TTC(CAG)n(CCG)9(CCT)2-3’ 9  0 2 0 0  0 2 0 0  

5’-TTC(CAG)n(CAA)2CAGCCGCCA(CCG)7(CCT)2-3’ 10  0 0 0 2  0 0 0 2  

5’-TTC(CAG)nCAACAGCCGCCA(CCG)7(CCT)3-3’ 11  0 0 0 1  0 0 0 1  

5’-TTC(CAG)n(CAA)3CAGCCGCCA(CCG)7(CCT)2-3’ 12  0 0 0 1  0 0 0 1  

5’-TTC(CAG)nCAC(CAG)3CAACAGCCGCCA(CCG)7(CCT)2-3’ 13  0 0 0 1  0 0 0 1  

5’-TTC(CAG)nCAACAGCCGCCA(CCG)11(CCT)2-3’ 14  1 0 0 0  1 0 0 0  

5’-TTC(CAG)nCAACAGCCGCCA(CCG)4(CCT)2-3’ 15  1 0 0 0  1 0 0 0  

5’-TTC(CAG)nCAACAGCCGCCA(CCG)9(CCT)3-3’ 16  0 0 1 0  0 0 1 0  
 

Table 5.2: Identified HTT structures in an extreme onset HD cohort. Here, the ‘all individuals’ column refers to all samples which were 

successfully sequenced (N=497; two failed sequencing and one had no expanded allele). Equally, the dichotomous population describes the 

subset of samples with ≥5 |uncorrected AMO residual| sequenced (N=438; dichotomous group defined in 4.3.6). The numbers in the ‘No.’ 

column refer to Fig. 5.1. Interruptions in the CAG and CCG repeat tracts, CAA and CCA, respectively, are emboldened. A CAC interruption 

observed in one allele is similarly emboldened. Blue text refers to sequence encoding the polyglutamine repeat; green text is sequence 

encoding the polyproline repeat. WT: Wild-type; EXP: Expanded; E: Early; L: Late. 
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  Early   Late   

  
Total 

(WES) 
Total 

(MiSeq) 
False 

positive 
False 

negative 
Previously 
unknown 

  
Total 

(WES) 
Total 

(MiSeq) 
False 

positive 
False 

negative 
Previously 
unknown 

  

(CAG)nCCG 7 21 0 8 6 
 

0 0 0 0 0 
 

(CAG)n(CAACAG)2CCG 6 5 1 0 0  20 20 1 0 1 
 

(CAG)n(CAA)2CAGCCG 0 0 0 0 0 
 

2 2 0 0 0 
 

(CAG)n(CAA)3CAGCCG 0 0 0 0 0 
 

1 1 0 0 0 
 

(CAG)nCAC(CAG)3CAACAGCCG 0 0 0 0 0   0 1 0 1 0   

Table 5.3: Comparing WES and MiSeq HTT structural calls. The total counts for expanded and wild-type alleles are shown for both exome 

data (WES) and MiSeq data in early and late onset individuals. False positive, false negative and previously unknown counts refer to 

differences between WES and MiSeq calls. Previously unknown calls in WES are those with very poor coverage where an estimation of allele 

structure could not be made (see also Table 4.2). 
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5.3.2 The effect of interruption structures on age at onset 

Having obtained HTT allele structures, we next wanted to investigate how strongly 

alternative allele structures were associated with modified HD onset. Generalised linear 

models (GLMs) were constructed regressing age at motor onset (AMO) residual on HTT 

allele structure in the continuous phenotype population previously defined (N=483; 4.3.6). 

Allele structure was coded by the number of interruptions present: 0, 1, 2 or 3 (see 2.9.4). 

We added several additional features of HTT structure as covariates in both expanded and 

wild-type alleles: number of CAG repeat interruptions, CCG interruption (CCA) and the 

length of the polyproline repeat. Results are shown in Table 5.4.  

 

First, we used the uncorrected residuals calculated in 2.9.3/4.3.6, where expected age at 

onset was estimated using polyglutamine length-2 to be equivalent to genescan. These data 

showed interruptions in expanded HTT alleles were strongly and significantly associated with 

age at motor onset residual (p=2.83E-10). Our model predicts a ~15 years later onset for 

each interruption present (and thus a ~15 year earlier onset where CAA is missing), 

although this is probably an overestimate as we are examining an extreme onset cohort 

(6.2.2). Wild-type CAG repeat interruptions were not associated with onset modification 

(p=4.61E-01). Additionally, interruptions in the CCG repeat and the total polyproline length 

were equally not associated with onset residual in either expanded or wild-type HTT. 

However, it is notable that due to the relative infrequency of expanded alleles lacking the 

CCA interruption in our data (N=2 independent structures), this does not entirely preclude a 

role for the polyproline tract interruptions in onset modification. 

 

Secondly, we used the corrected age at onset residual in a generalised linear model, where 

expected age at onset was estimated using the length of the pure CAG repeat. Here, the 

significance of interruptions was reduced, but still significant (p=4.13E-04). Therefore, a 

large portion of the significance is driven by mis-sizing of the pure CAG length when 

calculating a predicted age at onset residual for individuals with non-canonical alleles. 

However, as some of the signal remains, this indicates interruptions may have further effects 

on age at onset modification. An alternative generalised linear model (Appendix 18) coded 

HTT alleles as canonical (0, 0), containing an additional interruption of any type (1, 0) or as 

loss of interruption (0, 1) (see 2.9.4). This modelling approach indicates the remaining 

significance following correction of motor residual using pure CAG length appears to be 

accounted by alleles with additional interruptions (p=1.45E-03) and not by loss-of-

interruption (LOI) alleles (p=1.81E-01).
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 Uncorrected (N=483)  Corrected (N=483)  

 B β SE p  B β SE p  

CAG tract interruption (EXP) 14.728 0.321 2.285 2.83E-10  8.133 0.185 2.287 4.13E-04  

CAG tract interruption (WT) -2.836 -0.031 3.841 4.61E-01  -2.849 -0.033 3.843 4.59E-01  

CCG tract interruption (EXP) 5.249 0.065 5.034 2.98E-01  4.428 0.057 5.038 3.80E-01  

CCG tract interruption (WT) 6.231 0.084 3.182 5.08E-02  6.195 0.087 3.185 5.23E-02  

PolyP length (EXP) 0.120 0.009 0.777 8.78E-01  0.161 0.012 0.778 8.36E-01  

PolyP length (WT) -0.446 -0.045 0.425 2.95E-01  -0.439 -0.046 0.425 3.03E-01  

Table 5.4: GLMs for HTT allele structure on residual HD age at motor onset. Shown are 

generalised linear models (GLMs) for different structural features of HTT in both expanded 

and wild-type alleles, regressing uncorrected and corrected AMO residuals on various 

structural features of HTT. Interruptions are coded between 0 to +3 depending on the 

number of interruptions they contain (see 2.9.4). Individuals previously quality controlled 

from 4.3.6 are used; N=483 as two individuals failed MiSeq sequencing. See Appendix 18 

for an alternative GLM. EXP: Expanded allele; WT: wild-type allele; PolyP: polyproline. B = 

unstandardised coefficient; β = standardised coefficient; SE = standard error. 
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5.4 Validating MiSeq using genescan data 

5.4.1 CAG length 

Scale-HD finds the two modal peaks in its sequencing data to determine CAG size (see Fig. 

5.5 later). As previously discussed in chapter 4, MiSeq was used to calculate two lengths: 

polyglutamine-2 (uncorrected length), which assumes a single CAA interruption at the 3’ end 

of the repeat to be in-line with non-sequencing genotyping techniques, and pure CAG length 

(corrected length). Uncorrected MiSeq polyglutamine-2 lengths ranged from 39 to 53 

whereas MiSeq pure CAG lengths varied between 38 to 52. To help validate and explore 

MiSeq CAG length data, we wanted to compare our data to that of genescan, as this is 

routinely used for CAG length determination (Massey et al., 2018). We generated genescan 

data for all individuals sequenced by MiSeq and compared CAG lengths from these to those 

derived by local labs in our Registry database. Graphs comparing CAG lengths from MiSeq, 

local labs (from Registry) and genescan (Fig. 5.2) and the resultant residual ages at motor 

onset (Fig. 5.3 & 5.4) illustrate several important points.  

 

As expected, local lab derived CAG lengths show the smallest correlation with AMO 

(R2=0.043), as we used these CAG lengths to derive AMO residual and select our early/late 

individuals in 3.7. Local CAG lengths also produced the largest age at motor onset residual 

standard deviation (SD) at 16.79 years. Genescan CAGs show a much higher correlation 

(R2=0.239) and smaller SD (14.37 years), demonstrating local labs tended to have different 

(and likely less accurate) CAG measurements compared to our genescan-derived CAGs, 

probably due to be local technical variation. Local CAGs were the same as genescan 18.5% 

of the time, within ±1 CAG 61.8% of the time and within ±2 CAGs 82.5% of the time. 

Uncorrected MiSeq CAG lengths had comparable, but slightly larger correlations (R2=0.284) 

and smaller SDs, than genescan (14.05 years), suggesting MiSeq may be more accurate in 

determining HTT allele size than genescan even when not factoring HTT sequence. 

Additionally, genescan seemed to consistently be ~1-2 CAGs shorter compared to either 

local lab or MiSeq lengths. Finally, as anticipated, corrected pure CAG lengths from MiSeq 

have both the highest R2 (0.364) and lowest SD (13.46 years). Thus, these data show mis-

sizing of the expanded pure CAG stretch due to the presence of atypical allele structures 

roughly accounts for ~8% of the residual age at motor onset variation in our data. 
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Figure 5.2: Comparing CAG lengths from MiSeq, genescan and local labs. CAG sizes from different sources are shown: MiSeq corrected 

(pure CAG size) and uncorrected (polyglutamine-2) CAG lengths (N=497 for both); genescan (N= 499); and local labs (N=500). The individual 

whose expanded allele did not amplify is not included in the genescan/MiSeq graphs.
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Figure 5.3: Residual ages at motor onset from MiSeq, genescan and local labs. 

Standard deviations (SDs) for residual age at motor onset were calculated using CAG 

lengths from MiSeq (corrected (N=491) and uncorrected (N=492)), genescan (N=454) and 

local labs (N=500) where CAG length was ≥40 CAG. Both mean and SD are given in years.
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Figure 5.4: CAG lengths before and after using MiSeq against age at motor onset. 

CAG lengths from either local labs (A) or MiSeq (B) are plotted against age at motor onset, 

with individuals possessing atypical expanded HTT alleles highlighted in both. MiSeq CAG 

lengths plotted in B refer to pure CAG length. Total N of non-sequenced (grey circles) = 

5851; N sequenced (various colours) = 500 (A), N=498 (B). The legend refers to 

interruptions occurring in the CAG repeat. Age at onset are best estimates calculated in 

3.2.3. In order: canonical (5’-CAGCAACAG-3’); CAA duplication (5’-(CAGCAA)2CAG-3’); 

tandem CAA (2) (5’-CAG(CAA)2CAG-3’); tandem CAA (3) (5’-CAG(CAA)3CAG-3’); non-Q 

interruption (5’-CAGCAC(CAG)3CAACAG-3’); pure CAG (5’-(CAG)n-3’ (no interruption)).

B 

A 
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5.4.2 Repeat instability 

In addition to CAG length and HTT structure, MiSeq read distribution data can be used to 

produce metrics for both expansion and contraction of CAG repeats. These data are 

produced as part of the Scale-HD workflow examining peak heights (see methods 2.9.2 and 

Equations 2.3 & 2.4). Scale-HD calculates forward CAG repeat instability (somatic 

mosaicism) using the first 10 CAG peaks larger than the modal repeat, and backwards 

repeat instability (slippage) using the 2 CAG peaks smaller than the modal CAG. Somatic 

mosaicism was significantly higher in expanded HTT alleles compared to those in wild type 

alleles (0.026 vs 0.39, p=<2E-16 Welch two sample t-test). Similarly, slippage was also 

larger in expanded alleles (0.102 vs 0.405, p=<2E-16 Welch two sample t-test). Note, 

however, slippage is predominantly a technical measure of polymerase slippage, and is not 

correlated with MiSeq somatic mosaicism (p=0.71). Interestingly, we also observe a certain 

degree of instability of the CCG repeat, although this is much less marked than the CAG 

repeat. An example read frequency plot for a late onset individual for CAG and CCG sizes in 

both expanded and wild-type HTT alleles is available in Fig. 5.5. 

 

Genescan can also produce measures of CAG instability in a similar way to MiSeq. We 

generated both expansion indices (which only considers forward instability) and instability 

indices (which consider both backwards and forwards instability) from our genescan data in 

line with (Lee et al., 2010). Expansion and instability indices from our genescan data were 

plotted against MiSeq instability measures (Fig. 5.6). For MiSeq mosaicism, both genescan 

expansion and instability indices were highly correlated (R2=0.77 for expansion index; 

R2=0.63 for instability index), although expansion index more so, likely as genescan 

expansion index is calculated in a similar way to MiSeq somatic mosaicism. Comparatively, 

genescan instability index considers peaks smaller than the modal CAG. MiSeq slippage 

was not correlated with either measure, unsurprising given it is not correlated with MiSeq 

mosaicism. Overall, genescan expansion index, genescan instability index and MiSeq 

somatic mosaicism are similar and can be used for assaying instability of the CAG repeat. 

Importantly, the MiSeq-derived somatic mosaicism is robust between plates with minimal 

batch effects observed (see Appendix 17). 
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 Figure 5.5: CAG repeat read frequency plots for wild type and expanded alleles. 

Example read distribution plots are shown for DNA taken from an individual with late HD 

onset (lymphoblastoid DNA). Shown are reads that map ±3 CAGs from the modal CAG 

repeat as well as ±2 from the modal CCG repeat at each CAG length. (A) shows the wild-

type allele, (B) shows the expanded allele. 

 

Figure 5.6: MiSeq and genescan somatic instability measures. MiSeq somatic 

mosaicism (top) and slippage (bottom) are shown for genescan expansion index (left) and 

instability index. The adjusted R2 is shown. N=494 for all cases, and DNA are all derived 

from lymphoblastoid cells.

A B 
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5.5 Comparing lymphoblastoid and blood DNA 

So far, the analysis has focused on the lymphoblastoid-derived DNA data as these DNA 

were available for all subjects (N=500). However, we had both whole blood and 

lymphoblastoid DNA for a subset of individuals (N=42), and we sequenced both with MiSeq 

to investigate how CAG length and instability differed. In most cases, CAG length was 

identical between blood and lymphoblastoid DNA (83%; Table 5.5). In cases where 

differences arose, most were ±1 CAG (>95%) and no more than ±2 CAG. Somatic 

mosaicism measures for these samples were more varied (Fig. 5.7), and lymphoblastoid and 

blood-derived mosaicism measures were not significantly associated with each other in our 

somewhat small dataset (N=42), although the p value is approaching significance (p=0.10, 

B=0.11, R2=0.043).  

 

The lymphoblastoid DNA used for exome sequencing and MiSeq were early passage 

samples from BioRep (see 2.5.1). However, in addition to these, we also had a small 

number of lymphoblastoid cells which had been grown over successive months. Longitudinal 

samples from these lymphoblastoid cells were sequenced to examine how CAG length and 

repeat instability change over time in culture. As indicated in Fig 5.8, CAG length was 

consistent over time in most grown lymphoblastoid lines. However, somatic mosaicism in all 

but one line (L96) decreased or remained mostly static after being grown in culture. We were 

curious whether the mosaicism changes were driven by variation acquired through time in 

culture. A SNP genotyping array for detecting copy number variants (CNVs) was carried out 

to investigate (Appendix 19). Most CNVs were identical between lymphoblastoid and blood 

DNA. The two exceptions were CNVs in late onset lymphoblastoid samples (L21 and L31). 

Both samples contained the chr22:22,300,000-22,904,555 CNV (GRCh38) not found in their 

paired blood DNA. Given the CNV was the same in both samples, it is possible this was 

either picked up through the immortalisation process with Epstein Barr virus (EBV) or 

through time in culture. 

 

CAG difference Frequency 

-2 CAG 2 

-1 CAG 1 

Same CAG 35 

+1 CAG 4 

+2 CAG 0 

Table 5.5: Differences between blood and lymphoblastoid CAG lengths (MiSeq). 

Frequency of CAG size differences between lymphoblastoid (LBC) and blood are shown 

(LBC-blood). N=42. 
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Figure 5.7: CAG instability in blood and lymphoblastoid cells. (A) Plot of lymphoblastoid 

(LBC) and blood DNA somatic instabilities (N=40). (B) Boxplots showing the variability of 

mosaicism in lymphoblastoid and blood DNA in early (E) and late (L) individuals in the same 

samples (N=38; 26 early, 12 late). LBC (All) covers all lymphoblastoid cell DNA (N=436; 224 

early, 212 late). 

 

 

 

A 

B 
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Sample ID 
Months in 

culture 
CAG 

(earliest) 
CAG 

(latest) 
Difference 

E119 1 43 43 0 

E13 3 42 42 0 

E14 2 46 46 0 

E144 1 46 46 0 

E29 1 46 46 0 

E34 1 43 43 0 

E40 1 41 41 0 

E6 1 46 47 +1 

E61 1 43 43 0 

E70 2 43 43 0 

E71 1 41 41 0 

L118 3 50 49 -1 

L21 1 42 42 0 

L22 1 41 41 0 

L52 1 45 45 0 

L96 2 39 39 0 

N25 2 50 52 +2 

 

 

Figure 5.8: Longitudinal lymphoblastoid cell CAG length and mosaicism. Longitudinal 

lymphoblastoid DNA samples were sequenced. The top table indicates the earliest and 

latest passages for which DNA was available and the corresponding pure CAG lengths. The 

bottom plot shows how somatic mosaicism of the expanded CAG changes through time in 

culture. Month when the DNA was taken is shown on the x-axis, plotted against their MiSeq 

somatic mosaicism. Lines N=17, total sample N=41. The codes refer to cells from early (E), 

late (L) and normal/expected (N) HD onset individuals.
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5.6 Repeat instability in early onset and late onset individuals 

Somatic instability of the HTT repeat has been implicated as a driver of disease 

pathogenesis (Kennedy et al., 2003; Shelbourne et al., 2007; Swami et al., 2009), likely 

influenced by DNA repair machinery (Tomé et al., 2013; Budworth et al., 2015; GeM-HD 

Consortium, 2015; Hensman Moss et al., 2017; Lee et al., 2017; GeM-HD Consortium, 2019; 

Flower et al., 2019) (see also 1.7 & Table 1.3). Thus, we next wanted to investigate whether 

there were discernible differences in CAG repeat instability in early or late onset patients, 

and these data are plotted in Fig. 5.9. Lymphoblastoid DNA has a weak but marginally 

significant (p=1.74E-02) negative relationship between onset and mosaicism. Blood 

mosaicism in Fig. 5.9 appears to have the opposite relationship than expected (where later 

onsets are associated with larger degrees of somatic mosaicism; p=8.44E-03), although the 

sample size is very small. To understand these data further, we constructed generalised 

linear models accounting for (1) age of the individual and (2) CAG length, as both these can 

modify instability (Lee et al., 2011; Ciosi et al., 2019). We also covaried for (3) CAG 

interruption structure. The results are shown in Table 5.6 for both lymphoblastoid and blood-

derived DNA using the corrected age at onset residual (pure CAG length). 

 

CAG size is positively and significantly correlated with somatic mosaicism where longer CAG 

tracts are associated with higher degrees of CAG instability, as expected. The age of 

sampling, i.e. the age of the individual when their blood was taken (either directly for blood 

DNA or making lymphoblastoid cell lines), approaches significance in lymphoblastoid cells 

and is significant in blood DNA. The presence of a CAA interruption is significantly 

associated with mosaicism in blood DNA but not lymphoblastoid-derived DNA. Corrected 

residual age at motor onset was not significant in either model, although it is approaching so 

in the lymphoblastoid DNA (p=1.16E-01, B=-0.004).  

 

The modelling approach we have utilised, however, is hampered by our study’s selection 

criteria. By purposely enriching our sequenced population for early and late onset 

individuals, both CAG length (43.62 in early and 42.26 in late individuals, N=483) and 

sampling age (42.10 years in early and 67.75 in late individuals, N=465) are significantly 

different (p=1.13E-11 and p=<2.2E-16, respectively, Welch two sample t-test). This may 

explain the counter-intuitive findings we observed in blood mosaicism. An approach to 

mitigate this in an updated model is discussed later (5.8.5). 
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Figure 5.9: MiSeq mosaicism and age at onset (LBC and blood). Corrected residual ages at motor onset are plotted against MiSeq 

mosaicism from lymphoblastoid (A; N=496) and blood (B; N=42) DNA. E: early onset; L: late onset; N: normal/expected onset. Colours refer to 

the type of onset as defined by the corrected residual (normal onsets = <5 |age at motor onset residual|). 

  Lymphoblastoid (N=461)   Blood (N=40)   

  B β SE p 
 

B β SE p   

Corrected residual -0.004 -0.146 0.003 1.16E-01  -0.004 -0.194 0.004 3.38E-01  

Interruption -0.043 -0.032 0.056 4.51E-01  0.139 0.267 0.057 1.96E-02  

Sample age 0.005 0.203 0.003 6.29E-02  0.011 0.543 0.004 1.49E-02  

CAG length 0.094 0.528 0.011 4.78E-17   0.113 0.825 0.017 1.71E-07   

Table 5.6: GLMs interrogating modifiers of somatic mosaicism. Generalised linear models (GLMs) regressing MiSeq mosaicism on various 

covariates are shown (including corrected age at motor onset). Here, sample age refers to when blood was collected (either to form 

lymphoblastoid cells or blood DNA directly), and interruption refers to the number of interruptions seen. For example, (CAGCAA)2 would be 

coded as 2 (methods 2.9.4). LBC: lymphoblastoid cell; B: unstandardised coefficient; β: standardised coefficient; SE: standard error. 

A B 
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5.7 Disease progression and repeat instability 

Having explored somatic mosaicism in early and late onset individuals, we finally wanted to 

consider if mosaicism in our HD patients was associated with an independent disease 

phenotype. For this, we chose a recently published HD progression measure (Hensman 

Moss et al., 2017). This progression measure was available for 146 individuals for whom we 

had lymphoblastoid cell DNA and 15 for whom we had blood DNA.  

 

In the progression measure, larger values indicate faster disease progression. 

Unexpectedly, early onset HD patients tended to have slower progression (mean=-0.24) 

compared to late onset individuals (mean=0.23). This may be an age-related effect as 

regressing progression on corrected residual in a generalised linear model is significant 

(p=6.71E-03) covarying for interruption and expanded CAG length. Both age at motor onset 

and corrected age at motor onset residual were significantly positively associated with 

progression (Fig. 5.10; p=1.31E-02 and p=6.99E-4). Plotting disease progression against 

mosaicism calculated by lymphoblastoid DNA shows no significance (p=7.12E-01; Fig. 

5.11), however; plotting mosaicism using whole blood approaches significance despite our 

low N (N=15, p=1.32E-01; Fig. 5.11). To investigate further, generalised linear models were 

built (Table 5.7). CAA interruption status was significantly associated with progression in 

lymphoblastoid DNA (p=1.86E-02, B=0.59), however in the opposite direction than expected. 

Again, this may be the result of our extreme cohort. MiSeq mosaicism nor any other variable 

pass the multiple testing significance threshold (p=2.50E-02). However, these tests are 

hampered by the same problems as already mentioned in section 5.6 (discussed in 5.8.5). 

Furthermore, our low N (N=129 and N=12) in these models further limits their usefulness. 

 

Figure 5.10: Comparing progression and age at motor onset. Indicated are plots for age 

at motor onset against progression (A) and residual age at motor onset against progression 

(B). Both N=147.

A B 
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Figure 5.11: Relationship between MiSeq mosaicism and progression (LBC and blood). Plotted is progression against MiSeq CAG 

mosaicism for lymphoblastoid (A, N=146) and blood DNA (B, N=15). For both plots, the E (earlyonset), L (late onset) and N (normal/expected 

onset) colours refer to the type of onset as defined by the corrected residual (normal onsets = <5 |age at motor onset residual|). 

 

  Lymphoblastoid (N=129)   Blood (N=12)   

  B β SE p 
 

B β SE p   

Somatic mosaicism -0.065 -0.034 0.180 7.20E-01  0.907 0.131 2.995 7.71E-01 
 

CAA interruption 0.588 0.212 0.247 1.86E-02  0.720 0.214 1.081 5.27E-01 
 

Sample age 0.014 0.218 0.007 4.89E-02  0.036 0.536 0.039 3.87E-01 
 

CAG length 0.083 0.226 0.042 4.92E-02   0.439 1.112 0.293 1.78E-01   

Table 5.7: GLMs interrogating modifiers of HD disease progression. Indicated are generalised linear regression models (GLMs) for 

lymphoblastoid cell (LBC) and blood DNA. Significant values are emboldened, nominally significant values are italicised (using multiple testing 

correction cut-off Bonferonni p=2.50E-02).

A B 
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5.8 Discussion 

5.8.1 Overview of results 

Chapter 5 has detailed the use of a targeted MiSeq method to sequence the HTT CAG 

(polyglutamine) and CCG/CCT (polyproline) repeat tracts. Using MiSeq, we identified 16 

HTT repeat structures, and several of these are heretofore novel, including a non-glutamine 

interruption. Dephasing atypical alleles found those with additional interruptions were 

uniformly associated with late onset, and alleles lacking interruptions were wholly associated 

with early onset, supporting the findings in chapter 4 (4.5). We validated MiSeq by 

comparing it to the current gold standard of CAG length determination in HD, genescan. In 

our hands, MiSeq outperforms a locally run genescan with and without considering allele 

structure. Lymphoblastoid and blood were seen to generate equivalent CAG lengths in most 

cases, however CAG mosaicism was different between lymphoblastoid cells and blood DNA. 

Finally, we considered mosaicism in the context of two disease phenotypes: motor onset and 

disease progression. Although mostly inconclusive in our data, future study may investigate 

these phenotypes further, especially if using blood-derived mosaicism. 

 

5.8.2 Robustness of the MiSeq protocol and analysis 

The MiSeq protocol (Ciosi et al., 2018) in our hands had few failures (<1%). It was noted this 

was a lower rate of failure than previously observed for this protocol, possibly as we had a 

more rigorous DNA normalisation prior to sequencing using PicoGreen™. Few batch effects 

were observed. We found both CAG length and instability estimates from MiSeq were 

comparable to in-house genescan measurements, although MiSeq may have outperformed 

genescan slightly even when not considering allele structure. Non-canonical expanded HTT 

allele structure accounted for ~8% of the unexplained variation in residual age at motor 

onset seen in our sample. 

 

MiSeq gives the longest continuous sequence of any second-generation sequencing 

platform currently available, capable of 600 sequencing cycles, and is well suited towards 

polyglutamine diseases where CAG repeats are often <80 CAGs in most patients (reviewed 

in (Lieberman et al., 2019); see also Table 1.1). Furthermore, interruption structures may still 

be detected even if complete read through is impossible, especially for HD where 

interruptions are only known to exist in the extreme 3’ end of the CAG repeat. Given the 

importance of repeat interruptions in HD and repeat diseases in general (discussed in 3.8.4), 

a highly scalable method such as MiSeq has wider applications in the polyglutamine disease 

field. MiSeq is capable of high multiplexity (e.g. 384 samples) and is methodologically 

flexible. A modified MiSeq method was recently used to assay MSH3 genotype in HD 
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(Flower et al., 2019), for instance. A similar MiSeq method could be extended to other STRs 

of interest such as TCERG1 in chapter 4. One could also target multiple STR loci at once, at 

the cost of read depth per locus. For example, a recent study found intermediate allele sizes 

were higher than previously though in the general population (Gardiner et al., 2019). A high-

plexity MiSeq method could sequence multiple disease-relevant loci at once, and in addition 

to repeat length, would provide insight into the role interruptions or other non-canonical 

structures play in a non-disease population. 

 

Still, the primary limitation of second-generation short-read sequencing technologies such as 

MiSeq is that of read size. Illumina-based platforms are typically unable to handle large 

fragments (>~1,000bp) as these cluster poorly (Bronner et al., 2014), probably as longer 

inserts are less able to fold over during cyclical bridge amplification. Further, limitations in 

sequencing by synthesis chemistry leads to PHRED score drop off at the end of sequencing 

molecules as clusters become successively desynchronised (reviewed in (Fuller et al., 

2009), also see Appendix 16). Hence while we ran the MiSeq with 400 forward cycles, the 

maximum resolvable sequence using this protocol is unclear. Another limitation of second-

generation sequencing is the necessary PCR needed for cluster formation as these may 

introduce artificial PCR slippage/amplification in repeats. Thus, while for most HD patients 

(and probably polyglutamine diseases in general) MiSeq offers a high throughput method for 

assessment of both repeat length and structure, limitations in its read size restrict its usage 

in longer repeats found in other repeat diseases. Furthermore, MiSeq is unable to assay the 

repeats from HD disease models as these regularly have >120-150 CAGs. For these 

applications, a long-read sequencing approach will probably become the standard as 

protocols are established and cost comes down. 

 

Bioinformatically, the Scale-HD pipeline (https://scalehd.readthedocs.io/) resolved most 

repeat structures accurately (~99%). However, several novel and very rare alleles were 

incorrectly called as they were missing from Scale-HD’s reference sequence (refseq) library. 

Hence, we further had to employ manual curation of all alignments, and this was laborious 

and time consuming. In future analyses, we would suggest the refseq repository Scale-HD 

uses for alignment be expanded considering the alleles found in our study, especially the 5’-

CAG(CAA)2-3CAG-3’ alleles. Ideally, a non-refseq approach should be used alongside the 

current pipeline which could flag very rare atypical repeats. Differences between the refseq 

and non-refseq approaches could then be examined manually. 

 

 

 

https://scalehd.readthedocs.io/
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5.8.3 Lymphoblastoid and blood DNA 

Lymphoblastoid cell lines are an effective way to preserve and maintain patient DNA (Amoli 

et al., 2008; Sie et al., 2009; Omi et al., 2017) without expending non-renewable sources 

such as blood. Lymphoblastoid lines are generated using Epstein Barr virus (EBV) with few 

genomic changes (Neitzel, 1986; Mohyuddin et al., 2004). Most of our WES (chapter 4) and 

MiSeq used early passage lymphoblastoid cell samples, however it was unclear the effect 

immortalisation had on CAG repeat instability. Thus, we compared MiSeq sequencing data 

from a subset of individuals for whom we had lymphoblastoid and blood DNA. In doing so, 

we showed CAG length was comparable in most samples (≤1 CAG difference in ~95% 

cases). However, CAG mosaicism was not significantly associated between the two DNA 

types. Furthermore, longitudinal lymphoblastoid samples showed marked changes to CAG 

instability over time in culture, with mosaicism decreasing or staying the same in all but one 

sample. CAG length was seen to be largely static in culture in our longitudinal samples. 

These results are similar to Cannella et al. where the CAG repeat was stable in 

lymphoblastoid lines with <~60 CAGs (Cannella et al., 2009). Other studies have reported 

similar findings, where lymphoblastoid CAG repeats were mostly stable (Duyao et al., 1993; 

MacDonald et al., 1993). A genotyping array to detect copy number variants (CNVs) did not 

detect clear differences between blood and lymphoblastoid DNA for most samples. It is 

possible time in culture results in a more clonal lymphoblastoid population through 

successive passages, and this may explain the CAG stability observed in our data. 

 

Our findings indicate lymphoblastoid cells are suitable for estimating the size of the CAG 

repeat, although with slight differences in some cases. However, for estimating an 

individual’s CAG mosaicism, we would strongly recommend using blood DNA, as mosaicism 

in lymphoblastoids was (1) different from blood and (2) changed drastically over time in 

culture. Blood DNA at least partially recapitulates repeat instability from disease relevant 

tissues (i.e. brain) in HD (MacDonald et al., 1993), although instability from blood tends to be 

lower than seen in brain (Telenius et al., 1994). Blood DNA has been used as a proxy for 

somatic instability in both HD (Flower et al., 2019) and myotonic dystrophy type 1 (DM1) 

(Morales et al., 2016; Cumming et al., 2018; Pešović et al., 2018; Flower et al., 2019). 

However, to our knowledge there is currently lacking a comprehensive comparison between 

brain and blood DNA in HD. Obtaining the necessary post-mortem brain samples, blood and 

phenotype data for such a study may prove difficult, but would give insight into the 

usefulness of blood DNA as a proxy for somatic CAG instability in patients. 
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5.8.4 Atypical repeat structures and HD onset 

A striking finding from our study was the near perfect segregation of interrupted and non-

interrupted expanded HTT alleles in late and early onset HD patients, respectively. Using 

MiSeq, we confirmed all but one of the atypical repeat structures from WES and identified 

several additional pure CAG repeat alleles. Several alleles were missed from WES (4.5) 

likely as (1) coverage of HTT was variable and (2) there are innate inconsistencies in 

manually assessing read structure, especially for pure CAG alleles. Using MiSeq, we 

confirmed three alleles which we believe to be novel: 5’-CAG(CAA)2CAGCCG-3’, 5’-

CAG(CAA)3CAGCCG-3’ and 5’-CAGCAC(CAG)3CAACAG-3’, all of which were in expanded 

alleles in late HD onset individuals. Of the 438 early/late HD onset individuals sequenced, 

10.7% had expanded alleles with non-canonical interruptions. Neither polyproline length nor 

the CCA interruption in the polyCCG tract were seen to have significant associations with 

age at motor onset in our models. 

 

Several interruption species have now been described across repeat disease such as CAT 

interruptions in SCA1 (Chung et al., 1993; Chong et al., 1995), CAA interruptions in SCA2 

(Choudhry et al., 2001; Sobczak and Krzyzosiak, 2005) and SCA17 (Zühlke et al., 2001; 

Maltecca et al., 2003; Gao et al., 2008), GAG interruptions in Friedreich’s ataxia (Montermini 

et al., 1997) and AGG interruptions in fragile X syndrome (Eichler et al., 1994; Yrigollen et 

al., 2012). Non-canonical interruption sequences in HTT alleles have been described before 

in several HD families as rare occurrences (Goldberg et al., 1995; Pêcheux et al., 1995; Yu 

et al., 2000). Only more recently has it become apparent these atypical alleles are more 

widespread, and can affect both HD penetrance (Wright et al., 2019) and age at onset (Ciosi 

et al., 2019; GeM-HD Consortium, 2019). 

 

Critically, the interruptions we identify in the current study, barring one, are all CAA. As CAA 

and CAG both encode glutamine, the interruptions are silent coding variants and do not 

affect the polyglutamine length of HTT. Hence, this directly implicates pure CAG length as 

the primary determinant of age of onset in HD, not the length of the polyglutamine, as now 

suggested by others (Ciosi et al., 2019; GeM-HD Consortium, 2019; Wright et al., 2019). The 

non-glutamine interruption we identify is the first of its kind reported in HD to our knowledge. 

As a result of our findings and those from the rest of the HD field (Ciosi et al., 2019; GeM-HD 

Consortium, 2019; Wright et al., 2019), sequencing approaches such as MiSeq or third 

generation technologies (e.g. Pacific Bioscience (PacBio) platforms) are likely to become the 

standard for assessing the HTT allele. Considering allele structure may be especially 

important in effectively stratifying HD patients and outcome measures in clinical trial design. 
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Previous evidence has demonstrated pure CAG alleles have enhanced repeat instability 

both somatically and intergenerationally (Goldberg et al., 1995). Multiple CAA interruptions 

confer stability in the bacterial artificial chromosome (BAC) HD mouse model (Gray et al., 

2008; Pouladi et al., 2012). Finally, evidence from other repeat diseases including DM1 

(Cumming et al., 2018; Pešović et al., 2018; Tomé et al., 2018), SCA1 (Chung et al., 1993; 

Quan et al., 1995), SCA2 (Choudhry et al., 2001), SCA3 (Almaguer-Mederos et al., 2018), 

SCA17 (Maltecca et al., 2003) and fragile X syndrome (Eichler et al., 1994; Yrigollen et al., 

2012; Nolin et al., 2013, 2015) suggest repeat interruptions confer stability, and their loss 

can lead to instability both somatically and intergenerationally. In SCA2, the configuration of 

the interruptions can also affect disease phenotype (Charles et al., 2007; Elden et al., 2010; 

Yu et al., 2011). 

 

Repeat structures readily form non-B secondary DNA structures including slipped hairpins, 

G-quadruplexes and R-loops (reviewed in (Neil et al., 2017; Polyzos and McMurray, 2017; 

Massey and Jones, 2018; McGinty and Mirkin, 2018)). Interruptions are thought to stabilise 

repeat tracts and reduce the frequency of secondary DNA structures, whereas loss of 

interruptions can lead to increased formation of non-B DNA (Pearson et al., 1998; 

Rolfsmeier and Lahue, 2000; Jarem et al., 2010). It is unclear the degree to which 

interruptions in HTT contribute towards (in)stability and secondary DNA structures, however, 

as they occur at the 3’ edge of the repeat in HTT, and probably affect (in)stability less than 

interruptions in the middle of a repeat (such as SCA1). Potential mechanisms by which 

repeat interruptions act are discussed generally in 6.3.2. 

 

It is also worth noting the GeM-HD study is probably under calling the frequency of atypical 

HTT alleles. In addition to very rare interruption alleles which will not be captured from 

GWAS, we find about ~15% of our (CAGCAA)2 alleles are not associated with the NOP14 

variant from chapter 4 (Arg697Cys). Thus these alleles are likely on a different HTT 

haplotype than the 4AM2 HTT haplotype described as significant through GWAS (GeM-HD 

Consortium, 2019). Equally, we find at least four HTT haplotypes with loss of interruptions, 

the most common of which, 5’-(CAG)n(CCG)12(CCT)2, only constitutes ~40% of all loss of 

interruption alleles. Hence up to 60% of loss of interruptions may not be captured by GWAS 

alone. 

 

5.8.5 Repeat instability in early and late onset 

Examining CAG instability in our sample was difficult as early and late onset individuals 

intrinsically had significantly different ages at which samples were taken (p<2E-16), and 
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similarly early onset individuals had significantly larger CAGs than our late onset group 

(p=1.13E-11). Both age and CAG length had to be added as covariates as these contribute 

to instability (Lee et al., 2011; Ciosi et al., 2019), and the large imbalances in sample age 

between early/late onset groups reduces the power to detect other effects (such as 

instability). A possible solution in future is to use a model of CAG mosaicism from a less 

extreme HD population with age and CAG length as variables. We are aware of a model 

which may be used for this purpose once finalised ((Ciosi et al., 2019), in press at time of 

writing). 

 

Furthermore, metrics from blood DNA seemed to perform much better than those from 

lymphoblastoid cells, especially for progression. Reasons why this may be the case have 

already by explored in 5.8.3, but again indicate lymphoblastoid mosaicism metrics have 

limited utility outside of deriving CAG length. Future work should focus on using blood DNA 

to derive CAG instability measurements from HD patients. This coupled with improved 

modelling approaches will allow for CAG instability to be explored in multiple HD phenotypic 

outcomes. 

 

This chapter has explored a targeted next-generation sequencing approach (MiSeq) to 

examine HTT structure in our early/late onset cohort. We confirmed most of the alleles from 

WES as well as phasing and identifying several additional interruption structures. Individuals 

with additional interruptions had later disease onset in all but one case, whereas loss of 

interruption was uniquely associated with earlier onset. Lymphoblastoid DNA was roughly 

equivalent to blood DNA for CAG length, but blood DNA performs better for determining 

useful patient somatic instability. Improved modelling and more blood DNA will allow for 

deeper study into how instability is associated with HD disease phenotype. The final chapter 

will discuss the results from the thesis generally and consider future research directions. 
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Chapter 6: General discussion 

6.1 Summary of findings 

The primary objective of this study was to find modifiers of Huntington’s disease (HD) onset. 

Data from HD patients who participated in the Registry-HD study were used to explore 

different HD age at onset phenotypes, using both the clinician’s best estimate of disease 

onset (sxrater) and the clinical characteristics questionnaire (CCQ). 500 patients with 

extremely early or late HD motor onset given their HTT CAG length were then selected (250 

early and 250 late), and these individuals were whole-exome sequenced to examine rare 

modifiers of age at onset in HD. Non-synonymous damaging (NSD) variants were found 

skewed between early and late onset patients in several DNA repair genes including FAN1, 

EXO1, LIG1 and PMS1, and loss-of-function variants in MSH3. Length-dependent short-

tandem repeats (STRs) in TCERG1 were also found to be associated with altered HD onset. 

Analyses using whole-exome burden linear regression and SKAT(-O) identified a variant in 

NOP14, found to be tagging an atypical HTT allele 5’-(CAGCAA)2CAG-3’, as exome-wide 

significant. HTT allele sequences were then confirmed using an independent sequencing 

modality, MiSeq. MiSeq revealed expanded HTT alleles lacking CAA interruptions uniformly 

had early disease onset, whereas alleles with additional interruptions had late disease onset 

in all but one instance. These data also identified several novel expanded HTT alleles, two 

with tandem CAA interruptions, and one with a non-glutamine interruption. 

 

6.2 Study limitations 

6.2.1 Calculating residual age at onset 

Although we explored several HD onset phenotypes in chapter 3 (motor, cognitive, apathy, 

depression, perseveration, irritability, violent/aggressive behaviour and psychosis), age at 

motor onset (AMO) onset was chosen as the primary outcome measure as this represents a 

significant milestone for most HD patients (see 3.8.7). Some of the difficulties estimating 

onset in HD patients have already been discussed (3.8.2), but in summary: (1) manual 

curation of data where the clinician and the CCQ differed was slow, and in some cases 

determining which data to use was difficult, (2) slight, but systematic, differences between 

the rater and CCQ (mainly for cognitive symptoms) and (3) lower data quality for some 

Registry individuals, especially those lacking rater-derived measures of onset and onset 

type. Any inaccuracies estimating AMO would have affected both the stratification of 

individuals for whole-exome sequencing (WES) and downstream analyses (such as the 

linear regressions undertaken in chapters 4 & 5). Considerations for additional disease 

phenotypes are discussed in 6.4.1. 
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For calculating residual AMO, we utilised the model presented by Langbehn and colleagues 

((Langbehn et al., 2004); see Equations 2.1 and 2.2) to estimate expected AMO using CAG 

lengths from Registry, derived from local diagnostic labs. While mean Registry AMOs 

matched predicted onsets closely (<1 year difference for most CAGs), after re-genotyping 

our sequenced individuals using MiSeq, we discovered we had sequenced a less extreme 

cohort than originally intended. This is as CAG lengths from local diagnostic labs were of 

variable quality and not systematic. Consequently, we had selected some individuals with a 

more typical HD onset due to mis-sizing of the CAG repeat. Although we factored these 

findings into our quality control (QC) pipeline and re-defined our early and late cohorts for 

analysis (4.3.6), we probably lessened the power of our study to detect variation associated 

with altered onset given our small sample size (N=500). 

 

6.2.2 Sample size and extreme phenotype sampling 

A major limitation of the current study is sample size. Although we had access to ~6000 

manifest HD individuals from Registry, many of whom had DNA available, we only had the 

resources to sequence 500 exomes, many fewer than in recent exome studies with 

thousands or tens of thousands of individuals (e.g. (Raghavan et al., 2018; Tin et al., 2018; 

Flannick et al., 2019; Satterstrom et al., 2019)). Small sample sizes in sequencing studies 

can increase both type I (false positive) and type II (false negative) error rates (Lee et al., 

2014; Wang et al., 2015; Wu and Pankow, 2016). Hence, there are almost certainly 

modifiers of onset for which we are currently underpowered to detect. Equally, a higher rate 

of type I error could have resulted in spurious association. CUBN, an unexpected exome-

wide significant gene from the sequencing in chapter 4, may be the result of such an error, 

especially given CUBN was only significant in the burden tests and not SKAT or SKAT-O. 

More sequencing and experimental work is needed to determine the role (if any) of CUBN in 

HD.  

 

We partially mitigated our small sample size by utilising an extreme phenotype sampling 

approach. Extreme phenotype stratification has been used in a number of mostly smaller 

(N<1,000) sequencing studies (Emond et al., 2012; Weeke et al., 2014; Bruse et al., 2016; 

Gréen et al., 2016; Scott et al., 2016; Kleinstein et al., 2018; de Carvalho-Siqueira et al., 

2019) as a way to increase power, as the extremes of a phenotypic distribution are more 

likely to harbour variants of large effect (Li et al., 2011; Barnett et al., 2013; Peloso et al., 

2016). Furthermore, additional type I inflation from extreme sampling is low when population 

substructure is accounted for using principal components as covariates (Luo et al., 2018; 

Panarella and Burkett, 2019), as we have done in the current study. 



227 
 

Still, while detection of variants was aided by our extreme phenotype selection, one problem 

we encountered was effectively modelling the effect these variants had on AMO. For 

instance, individuals with the MLH1 variant (Ile219Val/rs1799977) had ~3 years later onset 

per copy of the variant present in our data. This is three-fold higher than reported elsewhere 

(Lee et al., 2017; GeM-HD Consortium, 2019), and almost certainly an overestimate 

stemming from our extreme phenotype approach. Similarly, individuals with atypical 

expanded HTT alleles had ~14 years earlier (no interruption) or later (two interruptions) in 

our model, a larger effect than in other reported studies (GeM-HD Consortium, 2019; Wright 

et al., 2019). As explored in chapter 5, it was also difficult to model CAG instability in our 

sample given the large imbalance in age between our two extreme onset groups. Models 

examining CAG instability and progression were similarly hampered by age-associated 

effects. Thus overall, while our extreme sampling approach enhanced the ability of this study 

to detect variation associated with disease onset, it is unclear both (1) the quantitative effect 

(in years hastened or delayed) identified variants may have on onset and (2) the distribution 

and effect of these variants in a more typical, non-extreme HD patient population. Similarly, it 

is possible an extreme patient recruitment strategy could have been influenced by 

ascertainment or survival biases. For instance, late HD onset individuals may die from age-

related illnesses before coming to clinic, and thus would not be included in our study.  

 

6.2.3 Lymphoblastoid and blood DNA 

Our study primarily used DNA from low passage lymphoblastoid cells from the BioRep HD 

biorepository. Previous literature has reported few differences between lymphoblastoid and 

blood DNA (Londin et al., 2011; Nickles et al., 2012; Schafer et al., 2013). The only major 

difference reported for some lymphoblastoid cell lines are the frequency of copy number 

variants (CNVs) (Jeon et al., 2007; Nickles et al., 2012; Shirley et al., 2012; Joesch-Cohen 

and Glusman, 2017), and we found few CNVs calls that differed between the lymphoblastoid 

and blood DNA in samples that were genotyped. However, as discussed in chapter 5 (see 

5.8.3), HTT CAG repeat instability measurements from lymphoblastoid DNA were not 

comparable to those from blood. Therefore, in future study we would recommend the use of 

blood DNA for modelling repeat instability as these are more biologically relevant (see also 

5.8.4); however, for CAG length determination or WES/WGS, lymphoblastoid DNA is 

probably faithful. 

 

6.2.4 General challenges of NGS and WES 

Next generation sequencing (NGS) has transformed the genetics field, offering highly 

scalable sequencing across a range of biological and clinical applications. Despite its 
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advantages and successes, the field still faces a number of challenges (reviewed by (Bertier 

et al., 2016; Hoffman-Andrews, 2017; Petersen et al., 2017; Schwarze et al., 2018; Suwinski 

et al., 2019)). In a research setting, these include sequencing cost, computing resources and 

storage, a current lack of consensus in downstream analyses (especially for rare variant 

analyses) and the interpretation of variants of uncertain significance (VUS).  

 

Our relatively small sample size (N=500) is the direct consequence of sequencing cost. And 

even using a supercomputing cluster (see 2.13), our GATK-based alignment/variant calling 

pipeline alone took ~26-28 computing hours per exome. While the NGS field is developing 

quickly, with recent large reference studies including the 1000 genomes project (1000 

Genomes Project Consortium, 2015), ExAC (Lek et al., 2016), DiscovEHR (Dewey et al., 

2016) and gnomAD (Karczewski et al., 2019) helping to standardise some of the analytical 

procedures, the nascence of many of the current bioinformatic tools capable of handling the 

size of sequencing data may have restricted the interpretation of our data compared to the 

tools/analyses available in more mature fields (e.g. GWAS). The introduction of new 

programs and analyses specifically designed for NGS will improve the interpretability and 

comparability of data across the field, especially for understanding rare variants – some of 

these are considered in 6.4.2. 

 

It is also important to point out while variant calling is typically robust (especially when 

implementing per-variant read depth QC as we have here), variants may escape detection at 

lower quality sites (e.g. RRM2B in this study), and confirmatory Sanger sequencing is still 

considered the gold standard (Mu et al., 2016). Indeed, while we observed no false positives 

in FAN1, WES QC removed three variants in FAN1 confirmed by subsequent Sanger 

sequencing. The degree to which variants were missed by variant calling was probably 

influenced by our coverage; we report here an average coverage of ~30 for most of our 

exomes and this is lower than the 100x depth suggested for clinical exome sequencing 

(Suwinski et al., 2019). Higher coverage sequencing in future would enable more variants to 

be confidently identified. 

 

We were also limited by the variant prediction tools we have available; as discussed in 

4.11.2, we primarily focused on CADD score (Kircher et al., 2014) as it is both (1) widely 

used and (2) considered robust, being an combinatorial score. However, while CADD greatly 

helped in the prioritisation of variants, especially those that were non-synonymous but not 

loss-of-function, the damaging scores are still only predictive. Functional work is still needed 

to analyse the effect (if any) identified variants have on proteins in question (see 6.4.4). It is 

also worth bearing in mind sequencing can only capture variation that is present – damaging 
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variation in the ~3000 loss-of-function intolerant genes as defined by ExAC (Lek et al., 2016) 

may be extremely rare or not at all present, and this includes genes such as PCNA, 

important for coordinating DNA repair machinery. Not finding variants in these genes, then, 

does not preclude them from a role in disease mechanism. 

 

A further limitation of the current study comes from whole-exome sequencing (WES) itself. 

Although cost-effective and capable of a relatively high average coverage in coding portions 

of the genome, WES by its very nature has poor coverage of most non-coding regions. 

While coding variants are easier to interpret, the role of the non-coding genome is becoming 

increasingly recognised (reviewed by (Takata, 2019)), particularly in regulation; 

considerations for whole-genome sequencing (WGS) are discussed in 6.4.2. In addition to 

non-coding sequence, WES also suffers from uneven coverage in regions less amenable to 

capture during library preparation (Wang et al., 2017), such as seen in RRM2B and SYT9 in 

this study. In general, regions of the exome such as those with high GC content, repeats or 

large exons are generally less well captured by standard exonic enrichment techniques 

(Wang et al., 2017). 

 

Finally, there are also limitations of second-generation NGS technologies in general, 

especially in the interpretation of short tandem repeats (STRs) and other repetitive regions of 

the genome. While we showed some imperfect repeats (e.g. those in TCERG1) can be read 

through with some accuracy, overall STRs in our WES are difficult to read through natively 

using 75 bp reads, especially in larger repetitive motifs (as in MSH3) or very long repeat 

stretches (as in HTT). This may have been exacerbated further due to the number of PCR 

cycles needed to prepare the WES libraries. Hence the interpretation of STR regions is 

difficult using our WES alone. MiSeq sequencing offers the longest reads of any second-

generation sequencing platform, with its version 3 chemistry capable of 600 sequencing 

cycles. However, as previously explored in 5.8.2, MiSeq still suffers from (1) limitations of 

sequencing by synthesis, especially PHRED score drop off towards the 3’ end of sequence, 

(2) PCR amplification biases in STRs (although far fewer cycles than in WES) and (3) 

somewhat limited bioinformatic tools for the interpretation of STRs in targeted sequencing, 

especially where there may be novel interruption sequences. MiSeq is also much lower 

throughput compared to other Illumina platforms (e.g. HiSeq or NovaSeq), and hence per 

base WES/WGS is relatively expensive using MiSeq. Improvements to the analysis of STRs 

in second-generation NGS are discussed in 6.4.2; and third-generation sequencing 

technologies are briefly considered in 6.4.3. 
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6.3 Mechanisms underlying HD onset 

6.3.1 An overall model for onset 

Our study has further confirmed the role of the HTT DNA itself in onset modification of HD. 

Both damaging variants in several DNA repair genes and atypical HTT repeat sequences 

were associated with altered onset in HD patients. Using our data, and supported by other 

human genetic (Holbert et al., 2001; GeM-HD Consortium, 2015; Bettencourt et al., 2016; 

Hensman Moss et al., 2017; Lee et al., 2017; GeM-HD Consortium, 2019; Ciosi et al., 2019; 

Flower et al., 2019; Wright et al., 2019) and functional work (Holbert et al., 2001; Arango et 

al., 2006; Dragileva et al., 2009; Bourn et al., 2012; Tomé et al., 2013; Neueder et al., 2017; 

Zhao et al., 2018; Franich et al., 2019; Goold et al., 2019), we constructed a model 

containing mechanisms affecting HD onset, shown in Fig. 6.1.  

 

While this model is by no means exhaustive, it does present the major modification 

mechanisms currently known in HD: (1) repeat sequence (a cis-modifier) , (2) members of 

DNA repair pathways, mostly mismatch repair components (trans-modifiers) and (3) other 

less-defined factors that may affect downstream pathology. Both mechanisms (1) and (2) 

focus on the dynamic instability of the HTT CAG, which we suggest are acting through 

somatic instability, although other interaction mechanisms could be at play (Maiuri et al., 

2019). Interruptions and the presence of FAN1 help to stabilise the repeat, reducing the rate 

of expansion. MSH6 may also promote CAG stability by outcompeting MSH3 binding of 

MSH2. Conversely, aberrant handling of repeats by other DNA repair factors act to promote 

repeat expansion. Repeat instability (mainly expansion) of the expanded HTT allele then 

occurs over life, modified by the mechanisms in (1) and (2); longer CAG repeats probably 

contribute towards disease by the generation of longer (and more toxic) RNA and/or protein. 

The mechanisms of (1) and (2) are explored more fully in 6.3.2 and 6.3.3, respectively. 

 

We also indicate a possible role for TCERG1 as a regulator of splicing and transcription of 

HTT. As suggested elsewhere (Sathasivam et al., 2013; Neueder et al., 2017; Franich et al., 

2019), incomplete splicing of HTT can lead to the generation of small, highly toxic HTT exon 

1 fragments that may be a contributory factor in disease pathogenesis. This pathology could 

additionally be mediated by mechanisms of RNA toxicity (Schilling et al., 2019). It may be, 

however, that TCERG1 is acting through an entirely separate mechanism (e.g. 

expression/transcription of other modifiers). We have also included SYT9 and GPR151 as 

additional putative downstream modifiers found through GWAS (GeM-HD Consortium, 

2019), although we did not find significant enrichment of non-synonymous damaging (NSD) 

variants in either gene. These modifiers are briefly discussed in 6.3.4. 
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Figure 6.1: Proposed mechanisms for onset modification in HD. Here, we show 

mechanisms which may alter onset of Huntington’s disease. In (1), interruptions in HTT 

sequence act to stabilise the CAG repeat in DNA (see 6.3.2 and Fig. 6.2). In (2), DNA repair 

and metabolism can act to promote or supress expansion (see 6.3.3 and Fig. 6.3). Also 

shown is a postulated role for TCERG1 in the splicing and/or transcription of HTT. SYT9 and 

GPR151 are shown as downstream mechanisms of modification, although these are at 

present poorly described. The dotted arrows in RNA and protein indicate mechanisms by 

which pathology is mediated downstream (see 1.5 and Fig. 1.6). Blunted arrows are 

mechanisms acting to slow down or inhibit a process. Note p53R2 is encoded by RRM2B. 

 

6.3.2 Allelic interruptions and their contribution to HD onset 

Atypically interrupted expanded HTT alleles comprise between ~5% (GeM-HD Consortium, 

2019; Wright et al., 2019) to 10.7% (this study) of HD alleles, although the prevalence in our 

study is highly enriched due to examining extreme onset phenotypes. In patients with these 

non-canonical alleles, interruptions represent a major contributory factor towards disease 

onset. As previously discussed in 5.8.4, interruptions confer repeat stability across a range 

of repeat diseases including several spinal cerebellar ataxias (SCAs) (Chung et al., 1993; 

Choudhry et al., 2001; Maltecca et al., 2003; McFarland et al., 2014, 2015; Almaguer-

Mederos et al., 2018), myotonic dystrophy types (DM) 1 and 2 (Bachinski et al., 2009; 

Cumming et al., 2018; Pešović et al., 2018), and Fragile X syndrome (Eichler et al., 1994; 

Yrigollen et al., 2012). Conversely, repeats lacking interruptions are instead unstable, both 

vertically and somatically (Goldberg et al., 1995; Wright et al., 2019). Indicated in Fig. 6.2 is 

a model indicating how interruptions may be contributing functionally towards disease 
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pathology. The model shows two alleles with the same polyglutamine length but differing 

numbers of pure CAG. These alleles have different propensities to form non-B DNA, as 

secondary DNA structures are more energetically viable in uninterrupted, longer pure repeat 

tracts (Gacy et al., 1995; Grabczyk and Usdin, 2000; Napierala et al., 2005; Sobczak and 

Krzyzosiak, 2005).  

 

The formation of repeat non-B DNA probably represents a critical step in the molecular 

pathology of HD, and secondary DNA structures may affect CAG repeat instability in several 

ways. For instance, MutSβ (MSH2-MSH3) binds to CAG hairpin loops (Owen et al., 2005; 

Burdova et al., 2015; Guo et al., 2016), and improper resolution by mismatch (and potentially 

other) repair machinery may directly act to promote expansion, as laid out in 6.3.3. It has 

also been suggested that non-B DNA may be more susceptible to damage; for instance, 

guanine in Z-DNA is more damaged by ionising and oxidative sources of DNA damage than 

in B-DNA (Ribeiro et al., 1992; Tartier et al., 1994). Additionally, the modification of guanine 

to 8-oxoguanine (8oxoG) by reactive oxygen species can affect the conformation of slipped 

hairpins (Volle et al., 2012; McCauley et al., 2018), and this may affect the handling of these 

structures by DNA repair. R-loops, RNA:DNA hybrids which transiently arise during 

transcription, may also contribute towards instability of CAG repeat sequences (Lin et al., 

2010; Reddy et al., 2011, 2014; Su and Freudenreich, 2017; Freudenreich, 2018), although 

it is currently unclear whether repeat interruptions would influence the formation or stability 

of these structures in the same way as cruciforms or slipped hairpins. However, a role for R-

loops may be compatible with the model presented in 6.3.3 (Fig. 6.3), wherein secondary 

DNA may form on the unbound single stranded DNA which could persist following R-loop 

resolution. These could then interface with DNA repair. 

 

While probably less relevant in the neurodegeneration that occurs in HD post-mitotic 

neurones, secondary DNA structures also represent major challenges for replicative 

machinery in dividing cells (Liu et al., 2010a, 2013a). Issues during replication may lead to 

fork collapse and necessitate DNA repair (reviewed in (Polyzos and McMurray, 2017) and 

(McGinty and Mirkin, 2018)), and these mechanisms could affect intergenerational repeat 

mutability. It is also possible repeat interruptions may additionally guard against the 

formation of repetitive RNA hairpins, as these can occur in CAG repeat sequences (Sobczak 

et al., 2003; Kiliszek et al., 2010; Yildirim et al., 2013; Tawani and Kumar, 2015) and may 

affect disease pathology through various mechanisms of RNA toxicity (Li et al., 2008; de 

Mezer et al., 2011; Hsu et al., 2011; Bañez-Coronel et al., 2012; Rué et al., 2016; Urbanek 

et al., 2016; Jain and Vale, 2017). 
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An integral question is whether repeat interruptions, such as those we find in the current 

study, are associated with altered onset simply due to mis-sizing of the pure CAG repeat, or 

whether interruptions have an additional stabilising effect on the repeat. For instance, would 

repeat instability in a pure (CAG)44 allele and a doubly interrupted (CAG)44(CAACAG)2 be 

the same, given they both have the same pure CAG length? Our data suggests interruptions 

may exert an additional stabilisation effect even after correcting residuals for the pure CAG 

length in alleles with additional interruptions (5.3.2), but the age imbalances in our cohort 

make the interpretation of these data difficult. The recent GeM-HD study did not find this 

effect to be genome-wide significant through GWAS following pure CAG length correction 

(GeM-HD Consortium, 2019). More study of HTT-centric 3’ repeat interruptions (for instance, 

in vitro modelling) will elucidate the mechanistic role of interruptions in HD disease 

pathology. 

 

 

 

Figure 6.2: Repeat sequence and secondary DNA structure. Shown on the left are two 

HTT repeat sequences: (CAG)44 (top) and CAG40(CAACAG)2 (bottom). The blue bars in the 

bottom CAG40(CAACAG)2 allele are CAA interruptions. Both alleles have the same 

polyglutamine (polyQ) length, however different pure CAG lengths. Shown on the right are 

secondary DNA structures; from top to bottom, cruciform DNA, slipped hairpin DNA and an 

R-loop (RNA:DNA hybrid) with a slipped hairpin formed on the single-stranded DNA. As 

indicated by the central arrows, longer pure CAG tracts (without interruptions) are more 

readily able to form secondary DNA structures. Secondary DNA could influence pathology 

by through DNA damage/repair, leading to subsequent somatic instability. Possibly, 

secondary RNA hairpins could exert alternative toxic effects through sequestration of RNA-

binding proteins. RNAP: RNA polymerase.
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6.3.3 DNA repair mechanisms may stabilise or destabilise repeats 

In Fig. 6.3, I present my two-fated pathway model for repeat expansion. This model is 

focused on mechanisms underlying DNA repair occurring in post-replicative cells, given 

neurodegeneration in HD occurs in terminally differentiated neurones (Gonitel et al., 2008). 

For a recent review of replicative pathways implicated in repeat expansion in replicative 

cells, see (McGinty and Mirkin, 2018). As with most DNA repair pathways, my presented 

pathway has four main steps: damage recognition (1), excision and removal of DNA damage 

(2-4a/b), re-synthesis (5) and ligation (5). These steps are explored more fully below. 

 

First (Fig 6.3, (1)), a slipped hairpin is formed. As already explored in 6.3.2, hairpins (and 

other secondary DNA) can form intrinsically in repetitive sequence (Gacy et al., 1995; Mitas 

et al., 1995; Grabczyk and Usdin, 2000; Pearson et al., 2002; Napierala et al., 2005; 

Sobczak and Krzyzosiak, 2005; Liu et al., 2010a). It is also possible hairpins could arise from 

single-stranded DNA in an R-loop, as suggested by Freudenreich (Freudenreich, 2018) and 

others, and hairpins may persist following R-loop resolution. Regardless of origin, here we 

indicate the mismatch repair heterodimer MutSβ (MSH2-MSH3) binding the secondary DNA 

hairpin structure, as MutSβ is known to bind hairpins in repetitive DNA (Owen et al., 2005; 

Burdova et al., 2015; Guo et al., 2016). As discussed in 4.11.6, our study identified novel 

loss-of-function variants in MSH3 associated with late disease onset, which is further 

supported by recent studies indicating MSH3 is a modifier of HD onset (Flower et al., 2019; 

GeM-HD Consortium, 2019) and HD progression (Hensman Moss et al., 2017). Msh3 also 

drives repeat expansion in a dose-dependent manner in mouse models of HD (Dragileva et 

al., 2009; Tomé et al., 2013). 

 

We also suggest a possible minor role for MSH6 in onset modification (see Fig 6.1), 

potentially through competitive binding of MSH2, although MSH6 was not significant in the 

current study or by GWAS as onset modifying (GeM-HD Consortium, 2019). Where MutSβ 

binds insertion/deletion loops up to 14 bp in size in vitro (Habraken et al., 1996; Palombo et 

al., 1996), and smaller (~3 CAG) slip-outs in repetitive DNA (Panigrahi et al., 2010; Zhang et 

al., 2012), MutSα (MSH2-MSH6) instead binds small 1-2 bp mismatches with high affinity 

(Drummond et al., 1995; Palombo et al., 1995; Acharya et al., 1996). However, whether 

MSH6 promotes or protects from repeat expansion is currently unclear, and this may be 

context dependent. For instance, MSH6 expression seems to protect against repeat 

expansion in a yeast (Kantartzis et al., 2012) and human cell system (Nakatani et al., 2015). 

Similarly, Msh6 expression appears to protect against somatic CTG repeat expansion in a 

DM1 mouse model (van den Broek et al., 2002). However, MSH6 expression promoted 
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repeat expansion in other repeat disease models (Bourn et al., 2012; Du et al., 2012; Zhao 

et al., 2016), and Msh6 knockdown in a DM1 mouse decreased maternal intergenerational 

repeat expansion (Foiry et al., 2006). Thus, the role of MSH6 we have suggested is largely 

speculative, and it is currently unclear as to the specific role of MSH6 (if any) in modifying 

HD onset in humans. 

 

Shown next (Fig 6.3, (2)) is the recruitment of MutL to the hairpin by MutSβ, followed by 

MutL-mediated endonucleotide cleavage of DNA. Note while we have suggested a 3’ DNA 

nick in (2), it is possible additional nicks may occur 5’ to the hairpin either additionally or 

alternatively (and possibly utilising other endonucleases), as mismatch repair can proceed 

5’- or 3’ (Hsieh and Zhang, 2017). As for the specific MutL complex, both MutLα (MLH1-

PMS2) and MutLβ (MLH1-PMS1) complexes are probably involved, as in the current study 

we find rare damaging variation in PMS1 associated with late onset, as well as a common 

variant associated with altered onset in MLH1 (the same found in (Lee et al., 2017) and 

(GeM-HD Consortium, 2019)). GWAS has identified all three dimer components of MutLα 

and MutLβ (PMS1, PMS2 and MLH1) as modifiers of onset (GeM-HD Consortium, 2019). 

These data are interesting given MutLβ is not known to have a role in canonical mismatch 

repair (Räschle et al., 1999; Cannavo et al., 2005); this suggests a novel mechanism 

through which repair is proceeding. 

 

Although excess variants in MLH3 were not found to be associated with altered onset by this 

study or by GWAS (GeM-HD Consortium, 2019), there may be additionally be a role for 

MutLγ (MLH1-MLH3). Indeed, evidence from HD mice show MutLγ is a powerful mediator of 

somatic instability (Pinto et al., 2013), and a similar finding was recently reported in Fragile X 

mice (Zhao et al., 2018) and a Fredrich’s ataxia disease human cell model (Halabi et al., 

2018). Interestingly, another recent study in yeast found a role for MutLγ in R-loop-

dependent CAG repeat instability (Su and Freudenreich, 2017); again, such a mechanism 

(R-loop -> hairpin -> DNA repair component binding) may be feasible.  

 

The next step is the recruitment of further downstream effectors by MutL (Fig 6.3, (3)), and 

here we have indicated competitive binding of MLH1 by FAN1 and EXO1. Our data show 

rare, late-associated damaging variants in the MSH3-interaction domain of EXO1 

(suggesting a normally deleterious role for EXO1:MSH3 interaction). Conversely, we identify 

rare, early-associated variants in FAN1’s DNA-contacting SAP and VRR-nuclease domains 

(suggesting a normally protective effect for FAN1 DNA handling). Hence, we believe this to 

be the step that decides the pathway fate: either an error-free FAN1-driven pathway (4a-5a) 

or an error-prone EXO1-driven pathway (4b-5b). 
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In support of this concept, FAN1 is known to directly interact with most MutL heterodimer 

components: MLH1, MLH3, and PMS2 (Cannavo et al., 2007; Kratz et al., 2010; 

Smogorzewska et al., 2010), and possibly indirectly with PMS1 (Smogorzewska et al., 

2010). This also lends support to the notion discussed that all MutL complexes (α, β and γ) 

could play a role in hairpin resolution, although only MutLα and MutLβ in humans have been 

implicated by this study and others (Lee et al., 2017; GeM-HD Consortium, 2019). Crucially, 

MLH1 is required for FAN1-mediated stability in an HD mouse model (Wheeler VC, personal 

communication), further indicating MutL driven recruitment of FAN1 is a critical step in the 

pathway. EXO1, on the other hand, is the canonical 5’->3’ nuclease involved in mismatch 

repair (reviewed in (Fishel, 2015)). EXO1 interacts with MLH1, MSH2 and MSH3, and is 

similarly recruited by MutL in mismatch repair (Tishkoff et al., 1997; Schmutte et al., 1998, 

2001). It is notable FAN1 and EXO1 both possess 5’->3’ exonuclease activity and 5’-flap 

endonuclease activity, and it has been reported there is redundancy between the two 

nucleases, with FAN1 compensating for Exo1 loss in a mouse model (Desai and Gerson, 

2014). 

 

Following this, the pathways diverge. In the FAN1-centric error-free pathway (4a), FAN1 is 

effectively able to carry out the removal of the secondary DNA hairpin without expansion. 

Although it is not currently known how this occurs, it may proceed in several ways. For 

instance, FAN1 could initiate repair and then act as a scaffold to recruit additional effectors. 

These putative effectors, however, are not known, but could include alternative 

exonucleases such as FEN1 (which has been shown to modify repeat expansions before 

(Liu and Bambara, 2003; Liu et al., 2009)), or the structure specific endonuclease MUS81 as 

suggested by (MacKay et al., 2010) and (Pizzolato et al., 2015) in the context of interstrand 

crosslink repair. Equally, this may even include Fanconi anaemia proteins, with which FAN1 

is known to interact (MacKay et al., 2010). Indeed, a blended mismatch-interstrand crosslink 

repair pathway is appealing given the known overlap between the two pathways. For 

instance, MutS can bind to cisplatin DNA interstrand crosslinks (Yamada et al., 1997), and 

MLH1 loss can sensitise cells to crosslinking agents (Williams et al., 2011). It has recently 

been demonstrated that repair, driven by MutS, MutL and EXO1, could repair interstrand 

crosslinks in vitro (Kato et al., 2017). 

 

Alternatively, or additionally to the above concept, FAN1 could act by the mechanism 

suggested by Zhao and colleagues, whereby FAN1 dimerises and can locally unwind the 

DNA in interstrand crosslinks (Zhao et al., 2014). So, in similar fashion, FAN1 may be able to 

resolve secondary hairpins by local DNA unwinding of the atypical non-B DNA. Given we 

have found damaging variants in the exonuclease domain of FAN1 associated with early 
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disease, we suggest the exonuclease activity of FAN1 is used for excision of hairpin-

containing DNA in (4a). 

 

In the error-prone pathway mediated by EXO1 (4b), we suggest a similar mechanism to that 

of canonical mismatch repair. EXO1 is recruited to the site of damage by MutL where EXO1 

can excise the hairpin-containing DNA using its 5’->3’ exonuclease activity. However, this 

pathway is unable to effectively deal with the hairpin, and this instead persists during repair. 

Why this may be the case is unknown, but possibly due to substrate differences between 

EXO1 and FAN1, EXO1 is unable to properly handle the repeat structure as FAN1 (or its 

effectors) does. For instance, EXO1 is not able to process interstrand crosslink-containing 

DNA substrates in vitro whereas FAN1 can (Pizzolato et al., 2015). Small DNA hairpins may 

also enhance EXO1 activity and excision, as shown recently (Li et al., 2019). As mentioned 

in 4.11.5, the recent report of EXO1 protecting against expansions in a murine Fragile X 

model (Zhao et al., 2018) we believe indicates an alternative, protective role for EXO1 

distinct from the MSH3-driven mechanism we describe here. 

 

Both (4a) and (4b) result in the resolution of hairpin containing DNA, either successfully or 

unsuccessfully, by re-synthesis by a polymerase and re-ligation. The canonical mismatch 

repair polymerase Polδ could be involved (Longley et al., 1997). But equally, given the non-

canonical nature of the described pathway, Polβ, typically involved in base-excision repair 

(Matsumoto and Kim, 1995; Podlutsky et al., 2001), or Polθ, as in interstrand crosslink repair 

and microhomology-mediated end joining (Beagan et al., 2017; Wang et al., 2019), may 

instead be involved. The choice of polymerase may also depend on the pathway (either (5a) 

or (5b)). Interestingly, LIG1 has been identified both in this study and by GWAS (GeM-HD 

Consortium, 2019) as a modifier of disease onset, thereby implicating re-ligation as an 

important mechanism in hairpin resolution. Possibly, as we find mostly early-associated 

damaging variation in the LIG1 ligase A N (DNA binding) and A M (nucleotidyltransferase) 

domains, slower re-ligation by LIG1 may be deleterious. Potentially, slow ligation could allow 

for a DNA hairpin to reform on nascent, un-ligated DNA. Aberrant gap-filling by polymerases 

could then incorporate the hairpin into DNA, leading to repeat expansion. 

 

Notably, we suggest there could be a degree of overlap between mismatch and interstrand 

crosslink repair pathways, possibly indicating a substrate overlap between interstrand 

crosslinks and smaller hairpins/loop outs in repetitive DNA. However, this does not preclude 

other DNA repair pathways as being involved in repeat expansion, although these are not 

currently implicated in HD patients. For instance, a hybrid base excision-mismatch repair 

pathway was recently described in the context of repeat expansion (Guo et al., 2016; Lai et 
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al., 2016), and the base excision glycosylase OGG1 has been previously implicated in HD 

(Kovtun et al., 2009; Budworth et al., 2015), although we did not find clear segregation of 

damaging variants in OGG1 in our data.
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Figure 6.3: A two-fated pathway model for DNA repair in HD. 

(1) Structural recognition: A secondary DNA structure (in this case a DNA slipped hairpin) is 

recognised and bound by the MutSβ (MSH2-MSH3) heterodimer. The secondary structure 

may have arisen intrinsically, or possibly during the resolution of an R-loop. 

(2) Endonucleotide cleavage: MutSβ recruits the MutL heterodimer. An endonuclease nicks 

the 3’ end of the top hairpin, shown in this case by MutL. The * on MutL denotes it is unclear 

which MutL complex(es) participate. MutLα (MLH1-PMS2); MutLβ (MLH1-PMS1); MutLγ 

(MLH1-MLH3). 

(3) Competitive binding of FAN1/EXO1: MutL recruits downstream exonuclease effectors, 

shown here as FAN1 and EXO1. The exonuclease recruited determines the pathway fate. 

(4a) Expansion-free resolution by FAN1: FAN1 exonuclease activity excises nicked DNA 

without expansion occurring, possibly through local unwinding of secondary structure or 

entire excision of non-B DNA. Additionally (or alternatively), FAN1 may act as a scaffold for 

further effectors involved in repair. 

(5a) Re-synthesis and ligation: DNA is successfully re-synthesised with a polymerase 

(possibly POLβ or POLθ) and ligated by LIG1 with no expansion occurring. 

(4b) Error-prone resolution by EXO1: EXO1 successfully excises nicked DNA via its 

exonuclease activity but is unable to resolve the secondary DNA present. Other 5’->3’ 

exonucleases or factors may have a role. 

(5b) Re-synthesis and ligation: DNA is re-synthesised with a polymerase (possibly POLβ or 

POLθ) and ligated by LIG1, but the secondary structure escapes DNA repair and is instead 

incorporated in the resultant DNA, leading to a repeat expansion. 
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6.3.4 Contribution of downstream modifiers of HD onset 

Notably, our model in Fig. 6.1 primarily focuses upstream modifiers of HTT DNA as these 

were identified both in this sequencing study and by others (GeM-HD Consortium, 2015, 

2019; Bettencourt et al., 2016; Hensman Moss et al., 2017; Lee et al., 2017; Ciosi et al., 

2019; Wright et al., 2019). Hence while downstream modifiers probably exist, most of these 

have yet to be identified. Possible downstream modifiers of HD onset include the loci 

containing SOSTDC1 (sclerostin domain containing 1) (Chao et al., 2018), SYT9 

(synaptotagmin 9) and GPR151 (G protein-coupled receptor 151) (GeM-HD Consortium, 

2019). But the mechanism by which these putative modifiers could be operating is currently 

unknown, and further work is necessary to confirm the gene responsible for the signals 

observed at these loci (Chao et al., 2018; GeM-HD Consortium, 2019). As previously 

mentioned in 4.11.7, it is interesting to consider SYT9 as (1) we identified a single damaging 

variant skewed in patients to early onset (6:1) and (2) Syt9 is highly expressed in mouse 

brain striatum (Xu et al., 2007). 

 

We do, however, suggest a possible role for TCERG1 in the splicing and/or transcription of 

HTT in Fig 6.1. In our WES data, shorter glutamine-alanine tracts in TCERG1 were 

associated with delayed HD onset, and TCERG1 has been implicated as a modifier of HD 

previously (Holbert et al., 2001; Arango et al., 2006). TCERG1 is a transcription elongation 

factor, with high expression in the brain (GTEx Consortium, 2017), that regulates elongation 

and splicing. The protein localises to nuclear speckles (Sánchez-Hernández et al., 2012) 

and binds RNA polymerase II (Goldstrohm et al., 2001; Liu et al., 2013b). Work has shown 

the Q-A domain seems to be necessary for proper localisation to occur (Miller et al., 2016), 

so it is possible coding STR variants may modify TCERG1’s ability to localise to nuclear 

speckles, and this could affect splicing of either HTT or other disease-relevant genes. 

Aberrant splicing of HTT has been implicated in HD (Sathasivam et al., 2013; Neueder et al., 

2017; Franich et al., 2019), and the generation of toxic terminal exon 1 HTT fragments may 

contribute towards disease pathogenesis (Mangiarini et al., 1996; Hazeki et al., 1999; Wang 

et al., 2008; Barbaro et al., 2015). Interestingly, Holbert and colleagues showed HTT 

interacts with the TCERG1 protein (Holbert et al., 2001); the STR variants we identify could 

also be acting via modulation of this interaction, and possibly HTT and TCERG1 proteins 

could cooperate in transcription. 
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6.4 Future directions 

6.4.1 Additional disease phenotypes 

While onset of motor symptoms represents a significant milestone for most HD patients, 

future genetic study should consider other disease phenotypes. Different phenotypes may 

be influenced by other disease-relevant factors; indeed, this is exemplified by the findings in 

chapter 3 where CAG size was seen to influence symptom age at onset to varying degrees 

(especially for depression and psychosis). Recently, it was shown there was a degree of 

overlap in genetic architecture between some of the psychiatric and cognitive symptoms 

experienced by HD patients and those in other neurological and psychiatric disease (Ellis et 

al., 2019), further indicating modifiers of different HD symptom onsets may be driven by 

different factors. As well as investigating onset types independently, one could model 

multiple onset phenotypes at once using multi-SKAT (Dutta et al., 2019) (see 6.4.2). 

 

Phenotypes not directly related to age at onset are also highly relevant. The progression 

measure from Hensman Moss and colleagues (Hensman Moss et al., 2017), modelled in 

chapter 5 with respect to MiSeq CAG instability, is a composite measure that can provide 

insight into patient disease trajectory. Their study found MSH3 is a significant modifier of 

disease progression through GWAS despite a small sample size (N=2,078) (Hensman Moss 

et al., 2017), demonstrating the utility of detailed phenotypic measures. Furthermore, it is 

possible there may be novel modifiers of progression (whether a composite score or 

otherwise) that are not at all or are poorly captured using motor onset of disease alone. 

Intergenerational changes to CAG repeat length would also be worth pursuing, as modifiers 

of vertical CAG transmission may implicate meiotic replicative machinery involved in repeat 

expansion. As explored in 3.8.5, anticipation (the difference in onset between the affected 

parent and offspring) could provide an estimate for vertical repeat expansions, although 

genetic differences between the parent and offspring could make interpretation of 

anticipation complex. 

 

Disease penetrance may also be worth considering. A major modifier of HD penetrance has 

been shown to be HTT allele structure (Wright et al., 2019), where HD individuals in the 

partial penetrance 36-39 CAG range are more likely to have disease when in possession of 

a pure CAG HTT allele. However, many individuals with normally interrupted HTT alleles can 

still develop disease, and it is likely these people harbour HD modifiers. Understanding these 

modifiers would further our understanding the mechanisms contributing towards disease. 
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6.4.2 Additional sequencing and analysis 

This study has shown HD genetic architecture is amenable to whole-exome rare-variant 

analyses, even in a relatively small cohort of HD patients (N=500). Thus, further WES with a 

larger sequencing cohort (>1,000) may have sufficient power to detect variation exome-wide 

in novel genes/gene sets. An extreme phenotype approach, as employed by this study, 

would further augment power, although may make modelling the effect variants have on 

phenotype difficult (see 6.2.2). With enough numbers, it would be possible to forgo extreme 

phenotype sampling, and instead sequence a more representative HD population. Centrally 

measured CAG sizes, now available in both Registry-HD and Enroll-HD, will improve patient 

stratification (if extreme phenotype sampling is employed) and residual age at onset 

calculation, as this should minimise mis-sizing of the CAG repeat. Until sequencing of the 

HTT CAG repeat is standard for HD patients, however, re-genotyping individuals using 

MiSeq or Sanger sequencing is still necessary as (currently) centrally measured lengths do 

not consider HTT allele structure. 

 

Further to additional WES, newer tools and analyses will improve downstream interpretability 

of sequence data. For instance, the newest version of Hail (Hail Team, v0.2) natively 

supports linear mixed models and several non-burden tests. Linear mixed modelling 

approaches may be especially useful in Enroll-HD as there are many more patients with 

non-European ancestries compared to Registry-HD (which is predominantly European). 

Similarly, various additions to the general sequence kernel association test (SKAT) 

framework have been proposed such as SMAAT/GMAAT ((Chen et al., 2019); 

https://github.com/lin-lab/GMMAT) and multi-SKAT ((Dutta et al., 2019); 

https://github.com/diptavo/MultiSKAT). Multi-SKAT allows the weighting of multiple disease 

phenotypes and would be very useful to consider where several HD phenotypes are 

available (see 6.4.1).  

 

It is also worth considering whole-genome sequencing (WGS) in future work as the non-

coding genome is better understood (reviewed by (Gloss and Dinger, 2018) and (Takata, 

2019)). Although WGS is currently financially and computationally expensive, WGS does 

offer several advantages over WES: (1) globally more consistent coverage (as there are no 

hybridisation or capture steps), (2) coverage of non-coding regions, (3) PCR-free 

approaches and (4) the ability to investigate STRs occurring across the genome. Given the 

uniformity of WGS coverage, HTT allele sequence may be resolved more easily than in 

WES, and WGS has been suggested as a way to derive HTT allele sequence by others 

(Wright et al., 2019). Indeed, novel repeat diseases have recently been elucidated using 

https://github.com/lin-lab/GMMAT
https://github.com/diptavo/MultiSKAT
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Illumina-based WGS (Cortese et al., 2019; LaCroix et al., 2019; van Kuilenburg et al., 2019). 

Interpretation of WGS data is still more difficult than that of coding data, but several non-

coding annotation tools have been developed including EIGEN (Ionita-Laza et al., 2016), 

LINSIGHT (Huang et al., 2017), FUN-LDA (Backenroth et al., 2018) and PAFA (Zhou and 

Zhao, 2018). Being an unsupervised approach, CADD can also provide scores for non-

coding regions (Rentzsch et al., 2019).  

 

Improvements to STR calling technology will also benefit sequencing in HD, especially given 

STRs in TCERG1 (as shown in this study) and in MSH3 (Flower et al., 2019) are associated 

with altered HD onset. Newer STR genotyping tools such as HipSTR (Willems et al., 2017), 

STRetch (Dashnow et al., 2018), TREDPARSE (Tang et al., 2017), ExpansionHunter 

(Dolzhenko et al., 2017) and adVNTR (Bakhtiari et al., 2018) will improve STR calling from 

sequence. The adVNTR tool is particularly interesting given it can be applied to both short- 

and long-read WGS in the read-through of very long repeating units in DNA. These STR 

tools should ideally be used with WGS data. Additionally, the introduction of longer 100-

250bp WES/WGS kits and compatible platforms (e.g. Illumina’s NovaSeq) may enable 

shorter STRs to be read-through without the need for additional calling tools. We would 

advocate for the integration of standard WES/WGS variant calling pipelines with STR calling, 

as together these may find novel variation underpinning HD onset.  

 

6.4.3 Considering other sequencing approaches 

Although short-read second-generation NGS (i.e. Illumina platforms) are well-described and 

widely used, there are other sequencing modalities which should be considered. Third-

generation sequencing using either Pacific Biosciences or Oxford Nanopore platforms 

routinely offer reads of >10kb (reviewed in (Mantere et al., 2019)). Long-reads offer a 

powerful way to dissect repetitive tracts of DNA, and have been used to describe repeat 

interruptions in DM1 (Ardui et al., 2018) and new repeat diseases (Ishiura et al., 2018; 

Mizuguchi et al., 2019; Sone et al., 2019; Tian et al., 2019). Long-read technologies will be 

especially useful in HD model systems (>100 CAGs) or other non-CAG repeat diseases 

(100s of repeats) where complete read-through of repeats is not possible using short reads 

due to the repeat size. 

 

Single-cell sequencing approaches may also prove useful in future work. To our knowledge, 

single-cell sequencing is a relatively unaddressed area of research in HD, and is in the 

unique position to interrogate why certain cells are vulnerable to somatic instability and early 

degeneration in HD. A recent bulk RNA sequencing study using isogenic human HD 
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pluripotent stem cells identified several CAG-associated transcriptional phenotypes in 

disease relevant neuronal cells (Ooi et al., 2019). Single-cell transcriptional RNA sequencing 

would offer further granularity (i.e. cell-specific RNA expression profiles) and could be 

applied to both cells and tissues. Furthermore, single-cell sequencing would allow for the 

investigation of cell-specific effects of disease modifiers identified by our WES (e.g. FAN1 or 

MSH3) in a model system. Single-cell sequencing that captures both RNA and DNA from the 

same cell, as described by Macaulay and colleagues (Macaulay et al., 2015, 2016), is 

especially appealing in HD (and other repeat disease) as this may offer critical insight into 

how CAG length can affect the transcriptome on a single-cell basis. 

 

6.4.4 Downstream analysis of implicated variants 

A crucial advantage of sequencing over GWAS is the identification of specific coding 

variants associated with phenotype. This is advantageous as (1) variants can implicate 

particular regions in genes/proteins, helping to elucidate mechanism and (2) variants can be 

examined practically in the lab. For instance, the FAN1 variants we identify in this study 

could be investigated in vitro by engineering artificial DNA structures (5’ flaps, interstrand 

crosslink containing DNA, etc.), as per the (MacKay et al., 2010) and (Pizzolato et al., 2015) 

studies. How efficiently the DNA substrates are processed might indicate how damaging the 

variant in question is. FAN1 variants could also be investigated in a cellular system (as done 

by (Goold et al., 2019)) by examining variant effects on CAG instability and vulnerability to 

crosslinking agents (e.g. mitomycin C or cisplatin). Similar DNA repair assays with other 

repair components identified in this study (e.g. the rare, late associated variants in PMS1) 

could also be explored using a similar strategy. It would be very useful to consider how 

MSH3:EXO1 interactions may be involved in repeat expansion in a model system, for 

instance. 

 

Investigating how the glutamine-alanine (Q-A) variants in TCERG1 affect HD would also be 

of great interest. Given we are currently unsure how TCERG1 is acting (transcription, 

splicing or both), a chromatin immunoprecipitation (ChIP) experiment may elucidate the 

genes which TCERG1 helps regulate. Investigation of whether HTT incomplete splicing is 

modulated by the Q-A variants in TCERG1 could be achieved using a similar system as 

reported by (Neueder et al., 2018), where mouse HTT minigenes were expressed in a 

cellular model to examine incomplete splicing of HTT using quantitative PCR (qPCR). A 

high-throughput RNA sequencing approach (bulk or single-cell) could also be considered for 

an unbiased investigation of differential splicing in HD. 

 



246 
 

6.5 Final conclusions 

The research presented in this thesis has described the successful identification of several 

pathologically relevant modifiers of Huntington’s disease onset using whole-exome 

sequencing. Further to this, atypical HTT alleles, significant modifiers of HD onset, were 

confirmed and partially characterised using an independent next-generation sequencing 

technique. These data have profound implications for understanding the pathogenic 

mechanisms underlying HD, and reinforce the paradigm that HTT DNA itself is a prominent 

driver of disease. Characterisation of the disease relevant variants found in this study in 

future work will further refine our understanding of molecular mechanisms in HD, and this 

has direct pharmacological pertinence. DNA repair genes such as MSH3, PMS1 or the 

postulated protein-protein interaction variants in FAN1 could represent tractable drug 

targets. Some of the identified modifiers may additionally have relevance in other repeat 

diseases, although additional work is needed to explore this. As sequencing becomes ever 

more common place both in research and the clinic, a similar whole-exome or whole-

genome sequencing strategy is likely to find additional modifiers of HD, and thereby inform 

both disease mechanism and therapeutic targets. 
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Appendices 

Appendix 1 – Adjusted CCQ data for 5 and 10 year cut-offs 

Below are the by-CAG mean summaries for CCQ-derived symptoms in Registry (see 3.3.1). (A) describes CCQ data without any sxrater 

adjustment; (B) describes symptoms using a <2 year cut-off for sxrater; (C) describes symptoms using a <5 year cut-off for sxrater; (D) 

describes symptoms using a <10 year cut-off for sxrater. The first number is the mean (in years); the second the N of HD patients. 

CAG MTR COG APT DEP POB IRB VAB PSY 

40 58.10 (425) 61.26 (233) 58.54 (220) 51.42 (309) 58.99 (135) 55.04 (267) 56.24 (118) 55.83 (47) 

41 54.54 (717) 57.41 (386) 57.30 (387) 49.86 (494) 54.52 (233) 51.81 (444) 52.19 (203) 55.07 (86) 

42 51.06 (942) 54.17 (539) 53.07 (483) 47.75 (652) 53.59 (313) 49.77 (568) 50.21 (281) 53.48 (108) 

43 47.23 (834) 50.13 (494) 49.92 (453) 43.40 (618) 49.92 (326) 46.41 (543) 45.81 (288) 49.33 (94) 

44 44.42 (659) 47.23 (408) 47.56 (355) 41.86 (488) 47.36 (268) 43.59 (447) 44.06 (218) 47.24 (92) 

45 40.87 (532) 44.01 (294) 43.26 (279) 39.63 (384) 44.16 (197) 41.03 (311) 41.94 (167) 44.81 (64) 

46 38.54 (399) 41.47 (235) 41.19 (204) 37.72 (261) 42.72 (151) 39.49 (253) 39.82 (131) 40.33 (39) 

47 36.34 (336) 39.23 (215) 38.97 (180) 34.60 (227) 39.87 (129) 36.61 (193) 36.83 (108) 38.60 (45) 

48 34.27 (205) 37.20 (123) 36.58 (108) 33.33 (126) 37.30 (73) 34.58 (136) 35.51 (74) 36.53 (17) 

49 32.98 (166) 35.35 (103) 34.87 (83) 32.50 (102) 35.32 (63) 34.06 (89) 33.44 (48) 38.05 (22) 

50 30.94 (132) 35.01 (74) 33.93 (80) 30.24 (98) 35.33 (51) 31.20 (75) 30.94 (48) 32.08 (12) 

51 29.60 (87) 32.00 (50) 31.10 (41) 29.50 (50) 31.16 (25) 28.98 (56) 30.18 (34) 34.33 (6) 

52 27.39 (64) 29.88 (41) 30.08 (36) 27.50 (38) 30.50 (26) 28.17 (36) 28.14 (29) 32.86 (7) 

53 26.39 (46) 28.55 (31) 27.86 (29) 25.81 (27) 32.13 (16) 26.16 (31) 25.62 (21) 28.70 (10) 

54 26.53 (32) 25.44 (16) 25.67 (18) 28.06 (16) 28.17 (12) 26.61 (18) 24.13 (8) 30.33 (3) 

55 25.10 (39) 29.31 (26) 28.67 (18) 25.00 (23) 28.59 (17) 24.71 (17) 25.00 (11) 23.75 (4) 

56 24.14 (21) 25.76 (17) 25.73 (11) 25.17 (12) 28.55 (11) 22.45 (11) 27.00 (7) 29.75 (4) 

57 23.77 (13) 25.27 (11) 27.89 (9) 25.86 (7) 33.67 (3) 20.00 (5) 22.20 (5) 19.00 (1) 

58 23.38 (13) 20.10 (10) 25.67 (9) 28.50 (6) 29.20 (5) 22.00 (7) 27.20 (5) 21.00 (1) 

59 22.50 (16) 22.67 (12) 24.50 (8) 20.25 (8) 25.00 (5) 21.50 (6) 23.00 (4) 23.00 (2) 

60 20.70 (10) 19.67 (6) 25.20 (5) 19.75 (4) 28.00 (4) 24.50 (6) 23.75 (4) 16.00 (2) 

A A 



248 
 

CAG MTR COG APT DEP POB IRB VAB PSY 

40 58.79 (362) 62.89 (206) 61.69 (175) 57.76 (192) 62.20 (109) 59.80 (184) 60.36 (83) 61.03 (39) 

41 54.94 (619) 57.70 (346) 58.66 (326) 55.02 (327) 57.17 (195) 55.56 (325) 56.07 (155) 57.35 (72) 

42 51.61 (815) 54.65 (487) 54.41 (405) 51.87 (448) 55.4 (269) 52.27 (434) 53.06 (217) 54.72 (94) 

43 47.69 (735) 50.98 (433) 51.84 (376) 47.75 (420) 52.02 (274) 49.56 (418) 49.72 (208) 51.22 (78) 

44 44.49 (594) 47.68 (368) 48.68 (311) 45.19 (343) 49.35 (232) 45.92 (362) 46.64 (177) 48.62 (81) 

45 41.14 (472) 44.81 (268) 44.63 (240) 42.79 (280) 45.91 (172) 43.24 (254) 44.69 (131) 44.37 (54) 

46 38.82 (352) 41.8 (210) 41.98 (183) 40.10 (194) 44.12 (129) 40.87 (215) 41.60 (113) 41.78 (32) 

47 36.71 (299) 39.74 (196) 39.69 (158) 37.11 (166) 40.97 (116) 37.67 (159) 38.46 (90) 41.08 (38) 

48 34.42 (182) 37.14 (110) 36.98 (91) 34.98 (92) 37.83 (65) 35.77 (108) 37.56 (57) 36.53 (17) 

49 33.35 (155) 35.67 (99) 36.01 (74) 35.18 (79) 36.44 (59) 35.04 (81) 34.91 (44) 38.54 (22) 

50 30.85 (120) 34.91 (69) 34.22 (69) 32.24 (74) 35.64 (47) 32.14 (64) 32.15 (40) 34.00 (11) 

51 29.38 (81) 32.27 (44) 31.64 (36) 30.6 (40) 32.35 (20) 29.73 (44) 30.50 (26) 36.33 (3) 

52 27.52 (61) 29.88 (40) 30.11 (35) 29.82 (28) 31.46 (24) 28.97 (33) 29.69 (26) 32.86 (7) 

53 26.33 (43) 29.19 (27) 29.65 (23) 27.55 (20) 32.77 (13) 29.04 (24) 29.47 (15) 31.63 (8) 

54 26.32 (31) 24.67 (15) 26.76 (17) 29.92 (13) 28.17 (12) 27.06 (16) 24.50 (6) 27.00 (2) 

55 25.31 (36) 29.24 (25) 29.24 (17) 26.05 (20) 28.59 (17) 26.07 (14) 25.90 (10) 23.75 (4) 

56 23.83 (18) 25.47 (15) 25.22 (9) 24.8 (10) 28.00 (10) 23.20 (10) 25.83 (6) 29.75 (4) 

57 25.08 (12) 25.27 (11) 27.89 (9) 28.17 (6) 33.67 (3) 20.00 (5) 22.20 (5) 19.00 (1) 

58 24.18 (11) 23.63 (8) 26.50 (8) 28.50 (6) 29.20 (5) 24.33 (6) 27.20 (5) N/A (0) 

59 22.13 (15) 22.67 (12) 24.50 (8) 21.14 (7) 22.50 (4) 21.50 (6) 23.00 (4) 23.00 (2) 

60 20.56 (9) 22.40 (5) 25.20 (5) 21.67 (3) 29.33 (3) 24.60 (5) 23.67 (3) N/A (0) 

 

 

B 
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CAG MTR COG APT DEP POB IRB VAB PSY 

40 58.80 (369) 62.73 (210) 61.55 (181) 57.85 (198) 62.20 (109) 59.75 (188) 60.08 (86) 61.03 (39) 

41 54.88 (634) 57.65 (353) 58.53 (335) 54.71 (348) 57.13 (198) 55.03 (342) 55.38 (162) 57.27 (73) 

42 51.56 (843) 54.53 (495) 54.26 (415) 51.65 (476) 55.31 (271) 52.07 (448) 52.91 (221) 54.80 (95) 

43 47.57 (752) 50.83 (440) 51.48 (388) 47.32 (448) 51.96 (275) 49.08 (438) 48.89 (225) 51.18 (79) 

44 44.48 (608) 47.59 (375) 48.44 (321) 45.01 (363) 49.16 (237) 45.80 (375) 46.41 (184) 48.62 (81) 

45 41.12 (480) 44.64 (272) 44.36 (249) 42.41 (298) 45.82 (173) 43.00 (263) 44.30 (138) 44.31 (55) 

46 38.75 (362) 41.82 (213) 41.98 (184) 39.82 (207) 43.94 (134) 40.72 (221) 41.50 (115) 41.56 (34) 

47 36.71 (307) 39.60 (199) 39.48 (164) 36.90 (177) 40.97 (116) 37.40 (167) 38.28 (95) 41.08 (38) 

48 34.30 (185) 37.14 (110) 36.86 (93) 34.34 (99) 37.88 (68) 35.50 (114) 37.49 (59) 36.53 (17) 

49 33.31 (158) 35.67 (99) 35.68 (77) 34.38 (86) 36.17 (60) 34.69 (85) 34.78 (45) 38.54 (22) 

50 30.96 (124) 34.91 (69) 34.11 (70) 31.21 (84) 35.35 (48) 32.06 (68) 31.76 (42) 34.00 (11) 

51 29.38 (81) 32.27 (44) 31.64 (36) 30.34 (41) 32.35 (20) 29.53 (47) 30.04 (28) 36.33 (3) 

52 27.39 (62) 29.88 (40) 30.11 (35) 28.84 (31) 30.96 (25) 28.97 (33) 29.69 (26) 32.86 (7) 

53 26.33 (43) 29.50 (28) 29.25 (24) 27.19 (21) 32.77 (13) 28.68 (25) 29.47 (15) 31.63 (8) 

54 26.32 (31) 24.67 (15) 26.76 (17) 29.36 (14) 28.17 (12) 27.00 (17) 24.71 (7) 27.00 (2) 

55 25.31 (36) 29.24 (25) 29.24 (17) 25.90 (21) 28.59 (17) 25.87 (15) 25.90 (10) 23.75 (4) 

56 23.83 (18) 25.47 (15) 25.22 (9) 24.80 (10) 28.00 (10) 23.20 (10) 25.83 (6) 29.75 (4) 

57 25.08 (12) 25.27 (11) 27.89 (9) 28.17 (6) 33.67 (3) 20.00 (5) 22.20 (5) 19.00 (1) 

58 23.58 (12) 23.63 (8) 26.50 (8) 28.50 (6) 29.20 (5) 24.33 (6) 27.20 (5) N/A (0) 

59 22.13 (15) 22.67 (12) 24.50 (8) 20.25 (8) 22.50 (4) 21.50 (6) 23.00 (4) 23.00 (2) 

60 20.56 (9) 22.40 (5) 25.20 (5) 21.67 (3) 29.33 (3) 24.60 (5) 23.67 (3) 18.00 (1) 

C 
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CAG MTR COG APT DEP POB IRB VAB PSY 

40 58.82 (373) 62.71 (212) 61.4 (184) 57.57 (205) 61.91 (111) 59.27 (197) 59.80 (89) 61.03 (39) 

41 54.83 (641) 57.61 (355) 58.19 (344) 54.04 (371) 56.92 (200) 54.50 (355) 55.13 (165) 56.83 (75) 

42 51.48 (853) 54.51 (497) 54.08 (419) 51.08 (505) 54.95 (276) 51.64 (469) 52.29 (233) 54.48 (96) 

43 47.53 (755) 50.83 (441) 51.33 (392) 46.73 (478) 51.59 (282) 48.78 (451) 48.59 (230) 50.50 (82) 

44 44.52 (614) 47.54 (377) 48.24 (326) 44.21 (395) 48.88 (241) 45.56 (383) 46.03 (189) 48.45 (82) 

45 40.99 (488) 44.64 (273) 44.12 (254) 41.59 (324) 45.53 (177) 42.76 (268) 43.93 (143) 44.31 (55) 

46 38.71 (364) 41.77 (214) 41.98 (184) 39.20 (221) 43.54 (137) 40.42 (226) 41.35 (117) 41.56 (34) 

47 36.71 (307) 39.56 (201) 39.48 (165) 36.62 (186) 40.58 (118) 37.27 (172) 38.25 (97) 39.90 (40) 

48 34.25 (186) 37.07 (111) 36.86 (93) 34.07 (104) 37.88 (68) 35.33 (117) 37.12 (60) 36.53 (17) 

49 33.25 (159) 35.67 (99) 35.45 (79) 33.71 (91) 36.17 (60) 34.69 (85) 34.78 (45) 38.54 (22) 

50 30.94 (125) 34.91 (69) 33.78 (72) 31.24 (85) 35.35 (48) 31.66 (70) 31.14 (44) 34.00 (11) 

51 29.38 (81) 32.31 (45) 31.64 (36) 29.84 (43) 31.62 (21) 29.33 (49) 29.97 (29) 36.33 (3) 

52 27.33 (63) 29.88 (40) 30.08 (36) 28.03 (35) 30.50 (26) 28.17 (36) 28.64 (28) 32.86 (7) 

53 26.33 (43) 29.50 (28) 28.72 (25) 26.30 (23) 32.77 (13) 28.68 (25) 28.88 (16) 31.63 (8) 

54 26.32 (31) 24.67 (15) 25.67 (18) 28.60 (15) 28.17 (12) 27.00 (17) 24.71 (7) 27.00 (2) 

55 25.08 (37) 29.24 (25) 28.67 (18) 25.50 (22) 28.59 (17) 25.38 (16) 25.00 (11) 23.75 (4) 

56 23.83 (18) 25.47 (15) 25.22 (9) 24.18 (11) 28.00 (10) 22.45 (11) 25.83 (6) 29.75 (4) 

57 25.08 (12) 25.27 (11) 27.89 (9) 25.86 (7) 33.67 (3) 20.00 (5) 22.20 (5) 19.00 (1) 

58 23.58 (12) 21.44 (9) 26.50 (8) 28.50 (6) 29.20 (5) 24.33 (6) 27.20 (5) N/A (0) 

59 22.13 (15) 22.67 (12) 24.50 (8) 20.25 (8) 22.50 (4) 21.50 (6) 23.00 (4) 23.00 (2) 

60 20.56 (9) 22.40 (5) 25.20 (5) 21.67 (3) 29.33 (3) 24.60 (5) 23.67 (3) 18.00 (1) 

 

 

D 
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Appendix 2 – Correlation matrices for CCQ onset data by sex 

Below are the correlation matrices for males and females based on onset data derived from 

the CCQ for unadjusted data (A and B), 2 year adjusted data (C and D), 5 year adjusted 

data (E and F) and 10 year adjusted data (G and H) from 3.3.2. Correlation matrices for 

symptoms in males are presented first (A, C, E and G) and symptoms in females second (B, 

D, F and H). Total male N=4140; total female N=4753. MTR: Motor; COG: cognitive; APT: 

apathy; DEP: depression; POB: perseverative/obsessive behaviour; IRB: irritability; VAB: 

violent/aggressive behaviour; PSY: psychosis. 

 

A MTR COG DEP IRB VAB APT POB PSY 

MTR 1 0.894 0.796 0.830 0.818 0.892 0.840 0.805 

COG 0.894 1 0.824 0.842 0.823 0.904 0.879 0.853 

DEP 0.796 0.824 1 0.815 0.791 0.870 0.815 0.838 

IRB 0.830 0.842 0.815 1 0.939 0.858 0.829 0.793 

VAB 0.818 0.823 0.791 0.939 1 0.840 0.833 0.786 

APT 0.892 0.904 0.870 0.858 0.840 1 0.882 0.862 

POB 0.840 0.879 0.815 0.829 0.833 0.882 1 0.853 

PSY 0.805 0.853 0.838 0.793 0.786 0.862 0.853 1 

 

B MTR COG DEP IRB VAB APT POB PSY 

MTR 1 0.903 0.761 0.853 0.847 0.883 0.821 0.807 

COG 0.903 1 0.787 0.875 0.869 0.915 0.850 0.836 

DEP 0.761 0.787 1 0.791 0.810 0.819 0.750 0.776 

IRB 0.853 0.875 0.791 1 0.938 0.874 0.835 0.841 

VAB 0.847 0.869 0.810 0.938 1 0.881 0.873 0.852 

APT 0.883 0.915 0.819 0.874 0.881 1 0.872 0.845 

POB 0.821 0.850 0.750 0.835 0.873 0.872 1 0.815 

PSY 0.807 0.836 0.776 0.841 0.852 0.845 0.815 1 

 

C MTR COG DEP IRB VAB APT POB PSY 

MTR 1 0.926 0.897 0.916 0.906 0.929 0.908 0.867 

COG 0.926 1 0.912 0.911 0.909 0.931 0.926 0.901 

DEP 0.897 0.912 1 0.926 0.914 0.929 0.909 0.893 

IRB 0.916 0.911 0.926 1 0.973 0.918 0.925 0.869 

VAB 0.906 0.909 0.914 0.973 1 0.914 0.939 0.877 

APT 0.929 0.931 0.929 0.918 0.914 1 0.943 0.881 

POB 0.908 0.926 0.909 0.925 0.939 0.943 1 0.915 

PSY 0.867 0.901 0.893 0.869 0.877 0.881 0.915 1 
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D MTR COG DEP IRB VAB APT POB PSY 

MTR 1 0.929 0.904 0.909 0.893 0.923 0.905 0.846 

COG 0.929 1 0.905 0.916 0.909 0.944 0.913 0.880 

DEP 0.904 0.905 1 0.932 0.910 0.919 0.885 0.867 

IRB 0.909 0.916 0.932 1 0.962 0.919 0.915 0.878 

VAB 0.893 0.909 0.910 0.962 1 0.920 0.919 0.881 

APT 0.923 0.944 0.919 0.919 0.920 1 0.936 0.899 

POB 0.905 0.913 0.885 0.915 0.919 0.936 1 0.876 

PSY 0.846 0.880 0.867 0.878 0.881 0.899 0.876 1 

 

E MTR COG DEP IRB VAB APT POB PSY 

MTR 1 0.925 0.896 0.913 0.905 0.925 0.908 0.867 

COG 0.925 1 0.909 0.907 0.906 0.929 0.926 0.902 

DEP 0.896 0.909 1 0.919 0.909 0.925 0.906 0.893 

IRB 0.913 0.907 0.919 1 0.969 0.917 0.922 0.873 

VAB 0.905 0.906 0.909 0.969 1 0.914 0.940 0.883 

APT 0.925 0.929 0.925 0.917 0.914 1 0.942 0.887 

POB 0.908 0.926 0.906 0.922 0.940 0.942 1 0.914 

PSY 0.867 0.902 0.893 0.873 0.883 0.887 0.914 1 

 

F MTR COG DEP IRB VAB APT POB PSY 

MTR 1 0.928 0.906 0.908 0.892 0.921 0.901 0.844 

COG 0.928 1 0.899 0.913 0.897 0.940 0.907 0.877 

DEP 0.906 0.899 1 0.931 0.908 0.917 0.882 0.858 

IRB 0.908 0.913 0.931 1 0.961 0.918 0.909 0.873 

VAB 0.892 0.897 0.908 0.961 1 0.920 0.908 0.859 

APT 0.921 0.940 0.917 0.918 0.920 1 0.932 0.895 

POB 0.901 0.907 0.882 0.909 0.908 0.932 1 0.867 

PSY 0.844 0.877 0.858 0.873 0.859 0.895 0.867 1 

 

G MTR COG DEP IRB VAB APT POB PSY 

MTR 1 0.922 0.885 0.907 0.901 0.923 0.901 0.867 

COG 0.922 1 0.898 0.902 0.900 0.924 0.921 0.897 

DEP 0.885 0.898 1 0.911 0.900 0.916 0.899 0.874 

IRB 0.907 0.902 0.911 1 0.964 0.909 0.916 0.856 

VAB 0.901 0.900 0.900 0.964 1 0.908 0.931 0.866 

APT 0.923 0.924 0.916 0.909 0.908 1 0.935 0.882 

POB 0.901 0.921 0.899 0.916 0.931 0.935 1 0.910 

PSY 0.867 0.897 0.874 0.856 0.866 0.882 0.910 1 
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H MTR COG DEP IRB VAB APT POB PSY 

MTR 1 0.925 0.892 0.899 0.883 0.915 0.892 0.834 

COG 0.925 1 0.886 0.906 0.892 0.936 0.899 0.873 

DEP 0.892 0.886 1 0.909 0.886 0.906 0.868 0.847 

IRB 0.899 0.906 0.909 1 0.957 0.913 0.905 0.866 

VAB 0.883 0.892 0.886 0.957 1 0.915 0.904 0.853 

APT 0.915 0.936 0.906 0.913 0.915 1 0.925 0.879 

POB 0.892 0.899 0.868 0.905 0.904 0.925 1 0.859 

PSY 0.834 0.873 0.847 0.866 0.853 0.879 0.859 1 
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Appendix 3 – Full binary symptom, HADS-SIS and covariate correlation matrix  

Below, (A) is a correlation matrix for all the covariates used to construct GLMs using adjusted (ADJ) binary CCQ data for CAGs 36-99 in 

Registry data with a pairwise deletion method (see 3.4.4). The adjusted binary CCQ removed individuals with CCQ symptoms occurring > 2 

years earlier than the clinician’s estimate for onset (sxrater). Only individuals with sxrater were included in this analysis (N=6303). Number of 

individuals for each association used is available in the second table (B) and p values for the correlations in (C). Note p values shown as 0 are 

p<2E-16. Duration: disease duration; Alcohol: alcohol use in units per week; Tobacco: cigarettes per day; TFC: total functional capacity; TMS: 

total motor score; onset: onset defined by sxrater; TDS: total depression score; TAS: total anxiety score; TIS: total irritability score; MTR_ADJ: 

Motor; COG_ADJ: cognitive; APT_ADJ: apathy; DEP_ADJ: depression; POB_ADJ: perseverative/ obsessive behaviour; IRB_ADJ: irritability; 

VAB_ADJ: violent/aggressive behaviour; PSY_ADJ: psychosis. 

 

A Sex CAG Duration Alcohol Tobacco Education TFC TMS Age TDS TAS TIS MTR_ADJ COG_ADJ APT_ADJ DEP_ADJ POB_ADJ IRB_ADJ VAB_ADJ PSY_ADJ 

Sex 1 0.018 -0.016 -0.122 -0.001 0.005 -0.065 0.066 -0.005 -0.021 0.041 -0.007 0.005 0.007 -0.017 0.111 -0.008 -0.054 -0.076 -0.005 

CAG 0.018 1 -0.056 -0.064 0.058 0.029 -0.157 0.193 -0.701 -0.039 -0.057 -0.006 0.019 0.057 0.005 -0.059 0.046 -0.005 0.057 0.001 

Duration -0.016 -0.056 1 -0.063 -0.106 -0.145 -0.449 0.381 -0.138 0.108 0.004 -0.006 0.011 0.217 0.153 0.158 0.166 0.115 0.176 0.170 

Alcohol -0.122 -0.064 -0.063 1 0.135 0.052 0.135 -0.138 0.035 -0.020 0.009 0.027 -0.013 -0.001 0.015 -0.028 0.016 0.048 0.022 -0.012 

Tobacco -0.001 0.058 -0.106 0.135 1 0.057 0.112 -0.110 -0.142 0.074 0.072 0.097 0.003 -0.023 0.026 0.020 -0.016 0.066 0.046 -0.018 

Education 0.005 0.029 -0.145 0.052 0.057 1 0.175 -0.135 -0.076 -0.019 0.018 0.025 -0.021 -0.037 -0.061 -0.075 -0.068 -0.027 -0.034 -0.041 

TFC -0.065 -0.157 -0.449 0.135 0.112 0.175 1 -0.722 0.035 -0.280 -0.064 -0.015 -0.098 -0.402 -0.246 -0.159 -0.236 -0.118 -0.223 -0.216 

TMS 0.066 0.193 0.381 -0.138 -0.110 -0.135 -0.722 1 -0.062 0.178 -0.020 -0.056 0.132 0.292 0.155 0.092 0.174 0.058 0.134 0.119 

Age -0.005 -0.701 -0.138 0.035 -0.142 -0.076 0.035 -0.062 1 0.021 -0.017 -0.105 0.074 -0.066 -0.038 -0.057 -0.063 -0.072 -0.117 -0.047 

TDS -0.021 -0.039 0.108 -0.020 0.074 -0.019 -0.280 0.178 0.021 1 0.551 0.463 -0.009 0.149 0.252 0.213 0.075 0.118 0.132 0.044 

TAS 0.041 -0.057 0.004 0.009 0.072 0.018 -0.064 -0.020 -0.017 0.551 1 0.681 -0.017 0.043 0.173 0.220 0.077 0.168 0.148 0.053 

TIS -0.007 -0.006 -0.006 0.027 0.097 0.025 -0.015 -0.056 -0.105 0.463 0.681 1 -0.011 0.047 0.130 0.165 0.086 0.275 0.244 0.038 

MTR_ADJ 0.005 0.019 0.011 -0.013 0.003 -0.021 -0.098 0.132 0.074 -0.009 -0.017 -0.011 1 0.070 0.010 -0.021 0.022 0.023 0.006 -0.026 

COG_ADJ 0.007 0.057 0.217 -0.001 -0.023 -0.037 -0.402 0.292 -0.066 0.149 0.043 0.047 0.070 1 0.280 0.161 0.204 0.205 0.215 0.146 

APT_ADJ -0.017 0.005 0.153 0.015 0.026 -0.061 -0.246 0.155 -0.038 0.252 0.173 0.130 0.010 0.280 1 0.279 0.253 0.269 0.218 0.119 

DEP_ADJ 0.111 -0.059 0.158 -0.028 0.020 -0.075 -0.159 0.092 -0.057 0.213 0.220 0.165 -0.021 0.161 0.279 1 0.133 0.211 0.178 0.119 

POB_ADJ -0.008 0.046 0.166 0.016 -0.016 -0.068 -0.236 0.174 -0.063 0.075 0.077 0.086 0.022 0.204 0.253 0.133 1 0.284 0.277 0.186 

IRB_ADJ -0.054 -0.005 0.115 0.048 0.066 -0.027 -0.118 0.058 -0.072 0.118 0.168 0.275 0.023 0.205 0.269 0.211 0.284 1 0.476 0.142 

VAB_ADJ -0.076 0.057 0.176 0.022 0.046 -0.034 -0.223 0.134 -0.117 0.132 0.148 0.244 0.006 0.215 0.218 0.178 0.277 0.476 1 0.244 

PSY_ADJ -0.005 0.001 0.170 -0.012 -0.018 -0.041 -0.216 0.119 -0.047 0.044 0.053 0.038 -0.026 0.146 0.119 0.119 0.186 0.142 0.244 1 
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B Sex CAG Duration Alcohol Tobacco Education TFC TMS Age TDS TAS TIS MTR_ADJ COG_ADJ APT_ADJ DEP_ADJ POB_ADJ IRB_ADJ VAB_ADJ PSY_ADJ 

Sex 6303 6303 5272 4470 4481 4577 4563 4549 6303 2374 2362 2366 5323 5407 5354 4875 5407 5162 5358 5530 

CAG 6303 6303 5272 4470 4481 4577 4563 4549 6303 2374 2362 2366 5323 5407 5354 4875 5407 5162 5358 5530 

Duration 5272 5272 5272 4468 4479 4575 4561 4547 5272 2373 2361 2365 4407 4479 4438 4042 4491 4288 4446 4577 

Alcohol 4470 4470 4468 4470 4436 4470 4448 4434 4470 2300 2289 2294 4238 4306 4268 3882 4313 4121 4273 4396 

Tobacco 4481 4481 4479 4436 4481 4481 4459 4445 4481 2317 2303 2309 4247 4318 4278 3888 4325 4131 4285 4409 

Education 4577 4577 4575 4470 4481 4577 4549 4535 4577 2364 2351 2355 4337 4406 4365 3975 4415 4215 4370 4500 

TFC 4563 4563 4561 4448 4459 4549 4563 4540 4563 2369 2357 2361 4323 4395 4353 3963 4404 4204 4361 4488 

TMS 4549 4549 4547 4434 4445 4535 4540 4549 4549 2369 2357 2361 4309 4381 4340 3951 4391 4191 4348 4475 

Age 6303 6303 5272 4470 4481 4577 4563 4549 6303 2374 2362 2366 5323 5407 5354 4875 5407 5162 5358 5530 

TDS 2374 2374 2373 2300 2317 2364 2369 2369 2374 2374 2337 2342 2246 2300 2271 2077 2292 2190 2267 2339 

TAS 2362 2362 2361 2289 2303 2351 2357 2357 2362 2337 2362 2334 2236 2289 2258 2067 2280 2177 2255 2327 

TIS 2366 2366 2365 2294 2309 2355 2361 2361 2366 2342 2334 2366 2239 2293 2263 2072 2285 2184 2260 2333 

MTR_ADJ 5323 5323 4407 4238 4247 4337 4323 4309 5323 2246 2236 2239 5323 5185 5133 4701 5169 4965 5128 5276 

COG_ADJ 5407 5407 4479 4306 4318 4406 4395 4381 5407 2300 2289 2293 5185 5407 5233 4759 5254 5037 5213 5367 

APT_ADJ 5354 5354 4438 4268 4278 4365 4353 4340 5354 2271 2258 2263 5133 5233 5354 4774 5225 5031 5184 5321 

DEP_ADJ 4875 4875 4042 3882 3888 3975 3963 3951 4875 2077 2067 2072 4701 4759 4774 4875 4768 4627 4734 4851 

POB_ADJ 5407 5407 4491 4313 4325 4415 4404 4391 5407 2292 2280 2285 5169 5254 5225 4768 5407 5052 5218 5370 

IRB_ADJ 5162 5162 4288 4121 4131 4215 4204 4191 5162 2190 2177 2184 4965 5037 5031 4627 5052 5162 5110 5133 

VAB_ADJ 5358 5358 4446 4273 4285 4370 4361 4348 5358 2267 2255 2260 5128 5213 5184 4734 5218 5110 5358 5324 

PSY_ADJ 5530 5530 4577 4396 4409 4500 4488 4475 5530 2339 2327 2333 5276 5367 5321 4851 5370 5133 5324 5530 

 

 

C Sex CAG Duration Alcohol Tobacco Education TFC TMS Age TDS TAS TIS MTR_ADJ COG_ADJ APT_ADJ DEP_ADJ POB_ADJ IRB_ADJ VAB_ADJ PSY_ADJ 

Sex NA 0.162506 0.254247 2.22E-16 0.929209 0.732307 1.09E-05 8.58E-06 0.678815 0.30893 0.047226 0.743098 0.731666 0.61531 0.217017 8.44E-15 0.543973 0.000105 3.12E-08 0.731052 

CAG 0.162506 NA 4.43E-05 1.80E-05 0.000111 0.046809 0 0 0 0.057336 0.005287 0.777595 0.175095 2.59E-05 0.695461 3.62E-05 0.000738 0.704433 3.32E-05 0.943221 

Duration 0.254247 4.43E-05 NA 2.35E-05 1.13E-12 0 0 0 0 1.22E-07 0.832463 0.776341 0.48501 0 0 0 0 4.49E-14 0 0 

Alcohol 2.22E-16 1.80E-05 2.35E-05 NA 0 0.000534 0 0 0.018499 0.331453 0.652786 0.194791 0.39729 0.966221 0.313935 0.086445 0.294249 0.002036 0.157798 0.418501 

Tobacco 0.929209 0.000111 1.13E-12 0 NA 0.00014 7.24E-14 2.21E-13 0 0.000398 0.000572 2.96E-06 0.848009 0.130985 0.088514 0.207665 0.286626 2.34E-05 0.002448 0.225387 

Education 0.732307 0.046809 0 0.000534 0.00014 NA 0 0 2.78E-07 0.358544 0.3924 0.217194 0.165007 0.013622 6.23E-05 1.93E-06 6.45E-06 0.075977 0.024444 0.005546 

TFC 1.09E-05 0 0 0 7.24E-14 0 NA 0 0.019691 0 0.001957 0.477871 8.79E-11 0 0 0 0 1.69E-14 0 0 

TMS 8.58E-06 0 0 0 2.21E-13 0 0 NA 3.11E-05 0 0.329079 0.006436 0 0 0 7.89E-09 0 0.000191 0 1.33E-15 

Age 0.678815 0 0 0.018499 0 2.78E-07 0.019691 3.11E-05 NA 0.316722 0.405602 3.09E-07 5.44E-08 1.04E-06 0.004983 6.43E-05 3.75E-06 2.25E-07 0 0.00042 

TDS 0.30893 0.057336 1.22E-07 0.331453 0.000398 0.358544 0 0 0.316722 NA 0 0 0.685986 6.63E-13 0 0 0.000352 3.15E-08 2.46E-10 0.03159 

TAS 0.047226 0.005287 0.832463 0.652786 0.000572 0.3924 0.001957 0.329079 0.405602 0 NA 0 0.410455 0.039907 0 0 0.000251 3.11E-15 1.74E-12 0.010621 

TIS 0.743098 0.777595 0.776341 0.194791 2.96E-06 0.217194 0.477871 0.006436 3.09E-07 0 0 NA 0.603961 0.023283 5.68E-10 4.57E-14 3.73E-05 0 0 0.064397 

MTR_ADJ 0.731666 0.175095 0.48501 0.39729 0.848009 0.165007 8.79E-11 0 5.44E-08 0.685986 0.410455 0.603961 NA 4.70E-07 0.489164 0.146689 0.111973 0.112399 0.681316 0.061325 

COG_ADJ 0.61531 2.59E-05 0 0.966221 0.130985 0.013622 0 0 1.04E-06 6.63E-13 0.039907 0.023283 4.70E-07 NA 0 0 0 0 0 0 

APT_ADJ 0.217017 0.695461 0 0.313935 0.088514 6.23E-05 0 0 0.004983 0 0 5.68E-10 0.489164 0 NA 0 0 0 0 0 

DEP_ADJ 8.44E-15 3.62E-05 0 0.086445 0.207665 1.93E-06 0 7.89E-09 6.43E-05 0 0 4.57E-14 0.146689 0 0 NA 0 0 0 0 

POB_ADJ 0.543973 0.000738 0 0.294249 0.286626 6.45E-06 0 0 3.75E-06 0.000352 0.000251 3.73E-05 0.111973 0 0 0 NA 0 0 0 

IRB_ADJ 0.000105 0.704433 4.49E-14 0.002036 2.34E-05 0.075977 1.69E-14 0.000191 2.25E-07 3.15E-08 3.11E-15 0 0.112399 0 0 0 0 NA 0 0 

VAB_ADJ 3.12E-08 3.32E-05 0 0.157798 0.002448 0.024444 0 0 0 2.46E-10 1.74E-12 0 0.681316 0 0 0 0 0 NA 0 

PSY_ADJ 0.731052 0.943221 0 0.418501 0.225387 0.005546 0 1.33E-15 0.00042 0.03159 0.010621 0.064397 0.061325 0 0 0 0 0 0 NA 
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Appendix 4 – FAN1 Sanger sequencing traces 

Shown below are Sanger sequencing traces for every distinct FAN1 variant sequenced 

successfully (17 variants), including 14 non-synonymous damaging (NSD) variants. Note the 

Gln717Arg variant was confirmed to be absent and is not included (as it is a negative trace). 

Traces visualised using Chromas (Technelysium). See 4.6.2 for the results of the Sanger 

sequencing in text, which are summarised in Table 4.4. 

 

M50R: ATG (M) -> AGG (R) 

 

 

V77I: GTT (V) -> ATT (I) 
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T187fs: CCA (T) -> Cfs 

 

 

P366R: CCT (P) -> CGT (R) (reverse) 

 

 

R377W: CGG (R) -> TGG (W) 
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L395P: CTC (L) -> CCC (P) 

 

 

D498N: GAC (D) -> AAC (N) 

 

 

R507C: CGT (R) -> CAT (H)  
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R507H: CGT (R) -> CAT (H) 

 

 

P654L: CCA (P) -> CTA (L) 

 

 

R658W: CGG (R) -> TGG (W) 
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D702E: GAC (D) -> GAA (E) 

 

 

K794R: AAG (K) -> AGG (R) 

 

 

V963_W964insL: TGT insertion 
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R969L: CGT (R) -> CTT (L)  

 

 

R982C: CGT (R) -> TGT (C) 

 

 

C1004G: TGC (C) -> GGC (G) 
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Appendix 5 – Non-coding variation identified by WES in other candidate genes 

Listed below are non-coding variants for the genes described in 4.6. This includes synonymous mutations and variants in intronic/splice site 

regions. Genomic locations are based on hg19/GRCh37. MAF annotations taken from v2.0.2 of gnomAD. Total N=440 (225 early; 215 late). 

DP: Mean depth of variant site in early and late samples; NS: non-synonymous; N/C: not called (failed by-variant DP/GQ check); HomR: 

homozygote reference; Het: heterozygote; HomV: homozygote variant. 

 

     Early  Late  

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV  

Arg58Arg 15:31197040:G:A 13.61 8.87E-04  134 89 2 0  143 72 0 0  

Asp201Asp 15:31197469:C:T 23.46 1.53E-03  3 222 0 0  7 207 1 0  

Asn214Asn 15:31197508:C:T 22.20 8.97E-06  16 209 0 0  23 191 1 0  

Ala261Ala 15:31197649:G:A 35.62 4.39E-04  0 225 0 0  0 213 2 0  

Thr370Thr 15:31197976:C:T 36.30 1.42E-02  0 209 16 0  0 206 9 0  

Glu398Glu 15:31198060:G:A 15.37 1.02E-03  83 141 1 0  94 121 0 0  

Intron 15:31198640:A:G 38.21 5.16E-04  0 224 1 0  0 215 0 0  

Leu443Leu 15:31200415:A:G 21.29 1.53E-04  23 201 1 0  24 191 0 0  

Ser617Ser 15:31210406:C:T 28.33 2.39E-02  4 212 9 0  0 204 10 1  

Splice region 15:31212744:T:C 30.15 5.76E-03  0 225 0 0  3 208 4 0  

His650His 15:31212754:C:T 30.53 0.00E+00  0 224 1 0  3 212 0 0  

Arg706Arg 15:31214503:A:C 32.48 9.22E-04  0 224 1 0  0 214 1 0  

Ala750Ala 15:31217407:C:T 28.54 0.00E+00  1 223 1 0  0 215 0 0  

Pro757Pro 15:31217428:G:C 27.00 3.76E-04  2 222 1 0  0 215 0 0  

Asp806Asp 15:31218072:C:T 37.04 4.52E-03  0 224 1 0  0 214 1 0  

Thr905Thr 15:31221528:G:A 20.76 5.41E-05  9 215 1 0  9 206 0 0  

His1005His 15:31229420:T:C 27.98 4.40E-01  11 68 105 41  9 88 88 30  

FAN1 
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     Early  Late  

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV  

Splice region 4:3107081:C:T 24.53 7.35E-04  1 222 2 0  3 212 0 0  

Splice region 4:3107171:G:T 35.13 7.34E-04  5 220 0 0  1 213 1 0  

Leu295Leu 4:3117168:C:G 15.17 3.29E-02  86 128 11 0  95 114 6 0  

Thr396Thr 4:3123074:C:T 36.11 4.05E-02  0 217 8 0  0 199 16 0  

Gly428Gly 4:3124626:T:C 15.26 4.49E-05  66 159 0 0  71 143 1 0  

Ala539Ala 4:3129205:C:T 36.49 0.00E+00  0 225 0 0  1 213 1 0  

Tyr861Tyr 4:3136217:T:C 36.83 1.79E-05  0 225 0 0  0 214 1 0  

Thr969Thr 4:3142345:G:A 31.72 9.05E-04  2 222 1 0  4 211 0 0  

Intron 4:3158974:G:A 24.95 4.36E-04  24 200 1 0  21 194 0 0  

Leu1267Leu 4:3162056:C:T 44.92 2.98E-01  0 151 64 10  0 147 65 3  

Thr1722Thr 4:3189554:G:A 19.99 7.16E-05  36 189 0 0  31 183 1 0  

Val2016Val 4:3208683:A:G 14.73 9.04E-06  147 77 1 0  141 73 1 0  

His2087His 4:3210608:C:T 27.10 1.62E-04  0 225 0 0  2 212 1 0  

Glu2139Glu 4:3213658:G:A 16.73 2.42E-04  42 183 0 0  43 171 1 0  

Glu2197Glu 4:3213832:G:A 13.49 3.02E-01  144 46 31 4  138 40 34 3  

Leu2392Leu 4:3219613:A:C 33.05 1.00E+00  0 0 0 225  1 0 0 214  

Leu2599Leu 4:3227419:A:G 37.34 3.03E-01  3 151 62 9  2 144 66 3  

Ala2646Ala 4:3230431:C:G 12.57 1.08E-03  203 21 1 0  202 13 0 0  

Leu2719Leu 4:3231661:G:A 32.55 6.92E-02  0 210 15 0  0 199 16 0  

Thr2725Thr 4:3231679:A:C 34.43 2.68E-03  0 224 1 0  0 215 0 0  

Leu2886Leu 4:3237376:C:T 39.71 2.16E-03  0 225 0 0  0 214 1 0  

Asp2985Asp 4:3240237:C:T 28.69 1.88E-04  0 224 1 0  2 213 0 0  

Gln3010Gln 4:3240312:G:A 18.69 5.14E-03  63 161 1 0  64 150 1 0  

Thr3026Thr 4:3240568:C:T 16.86 9.13E-06  44 181 0 0  45 169 1 0  

Phe3059Phe 4:3240667:C:T 22.41 6.83E-03  20 204 1 0  18 195 2 0  

HTT (CAG tract variants are not shown)
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     Early  Late  

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV  

Intron 1:242015734:ATC:A 25.26 3.58E-05  3 221 1 0  4 211 0 0  

Intron 1:242020804:A:G 27.00 8.25E-02  23 165 36 1  37 153 24 1  

Intron 1:242023808:T:C 26.92 1.79E-05  2 223 0 0  2 213 0 0  

Leu408Leu 1:242030312:T:C 36.80 0.00E+00  1 224 0 0  0 215 0 0  

Intron 1:242030382:G:A 27.45 5.61E-05  2 222 1 0  1 214 0 0  

Pro564Pro 1:242042228:G:A 39.20 2.69E-05  0 224 1 0  0 215 0 0  

Pro622Pro 1:242042402:G:A 14.89 6.27E-05  115 109 1 0  121 94 0 0  

Intron 1:242042690:A:G 15.53 8.07E-01  60 3 49 113  62 2 45 106  

Ser725Ser 1:242045283:T:A 23.97 2.32E-02  13 201 11 0  22 186 7 0  

Intron 1:242045336:A:AT 19.87 9.17E-04  120 105 0 0  125 90 0 0  

Intron 1:242045336:A:T 19.78 9.17E-04  109 115 1 0  114 101 0 0  

Intron 1:242045336:AT:A 19.70 9.17E-04  132 93 0 0  125 87 3 0  

Intron 1:242048600:G:T 34.65 NA  0 224 1 0  0 215 0 0  

Intron 1:242048896:C:T 33.33 5.53E-05  1 224 0 0  0 214 1 0  

3'UTR 1:242052915:G:A 34.04 8.98E-06  1 223 1 0  0 215 0 0  

EXO1 

 

     Early  Late  

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV  

Ser259Ser 5:145894900:A:G 39.83 8.96E-06  0 225 0 0  0 214 1 0 
 

Thr97Thr 5:145895386:C:G 39.04 1.79E-05  0 224 1 0  0 215 0 0 
 

GPR151
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     Early  Late   

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV   

5'UTR 5:79950497:C:T 19.75 2.74E-01  177 23 22 3  150 31 25 9  
5'UTR 5:79950508:C:T 20.36 1.77E-01  144 61 19 1  128 69 16 2  
5'UTR 5:79950512:A:G 21.12 6.61E-01  150 5 37 33  130 12 31 42  

Ala7Ala 5:79950567:G:A 21.01 7.49E-03  66 155 4 0  81 133 1 0  
Thr37Thr 5:79950657:C:T 34.71 1.40E-04  2 223 0 0  0 214 1 0  
Ala43Ala 5:79950675:A:G 28.45 9.88E-06  13 211 1 0  16 199 0 0  

Intron 5:79952390:T:C 48.25 2.70E-01  0 113 98 14  0 100 89 26  
Intron 5:79960929:A:G 22.51 3.61E-04  9 216 0 0  13 201 1 0  

Splice region 5:79960955:G:A 27.92 2.76E-01  8 110 97 10  14 92 86 23  
Pro231Pro 5:79966029:G:A 40.58 5.91E-02  0 199 26 0  0 185 30 0  

Intron 5:79966178:G:A 25.32 5.49E-02  25 175 23 2  32 162 21 0  
Intron 5:79968716:C:G 32.48 6.28E-05  11 214 0 0  10 204 1 0  
Intron 5:79974930:T:G 35.82 2.70E-05  0 224 1 0  0 215 0 0  
Intron 5:80021399:T:C 28.40 1.17E-03  1 223 1 0  1 214 0 0  
Intron 5:80057353:CTT:C 41.65 2.39E-03  0 223 2 0  0 215 0 0  

Ser598Ser 5:80057395:G:A 41.54 1.75E-03  0 225 0 0  0 214 1 0  
Lys632Lys 5:80057497:A:G 41.31 9.87E-05  0 225 0 0  0 214 1 0  

Intron 5:80063740:T:A 19.59 9.01E-06  13 212 0 0  16 198 1 0  
Splice region 5:80063744:A:G 20.18 6.48E-04  20 205 0 0  18 194 3 0  
Gln664Gln 5:80063847:G:A 36.26 1.77E-03  0 223 2 0  0 215 0 0  

Intron 5:80071494:T:G 25.95 5.73E-03  8 213 4 0  9 206 0 0  
Intron 5:80083371:G:T 41.79 1.54E-03  0 225 0 0  0 213 2 0  
Intron 5:80109375:AT:A 25.82 NA  0 225 0 0  4 210 1 0  
Intron 5:80160596:AAATG:A 13.29 5.52E-01  139 4 51 31  161 5 27 22  
Intron 5:80160610:T:A 16.32 8.08E-02  47 148 29 1  61 129 23 2  

Splice region 5:80160765:T:G 34.25 2.69E-05  0 225 0 0  0 214 1 0   

MSH3
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     Early  Late  

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV  

Tyr47Tyr 2:190660503:T:C 32.40 6.27E-05  0 224 1 0  0 215 0 0  

Gly58Gly 2:190660536:G:T 35.91 4.68E-03  1 223 1 0  0 214 1 0  

Tyr90Tyr 2:190660632:C:T 35.49 1.16E-04  0 225 0 0  0 214 1 0  

Splice region 2:190660683:G:A 34.30 3.74E-02  0 208 17 0  0 203 10 2  

Intron 2:190660727:T:G 27.14 4.55E-05  10 215 0 0  14 200 1 0  

Intron 2:190670332:C:T 24.20 9.05E-06  10 214 1 0  9 206 0 0  

Asp115Asp 2:190670407:T:C 33.03 1.79E-04  1 223 1 0  1 214 0 0  

Intron 2:190682952:T:TAAAC 18.15 2.33E-02  45 167 13 0  57 150 8 0  

Intron 2:190717335:G:A 19.89 1.71E-04  21 204 0 0  24 190 1 0  

Intron 2:190717358:C:A 28.38 5.74E-04  1 223 1 0  1 214 0 0  

Intron 2:190717517:G:GA 16.74 1.33E-04  175 49 1 0  158 57 0 0  

Ser490Ser 2:190719468:T:C 39.18 NA  0 225 0 0  0 214 1 0  

Intron 2:190719895:A:G 23.93 3.77E-05  12 213 0 0  14 200 1 0  

Intron 2:190722244:T:C 18.09 5.70E-04  46 179 0 0  35 179 1 0  

Intron 2:190722245:A:G 18.04 1.28E-02  48 174 3 0  38 175 2 0  

Intron 2:190729102:G:T 23.33 1.79E-05  6 218 1 0  15 200 0 0  

Intron 2:190729105:C:T 23.98 7.31E-05  2 223 0 0  13 201 1 0  

Intron 2:190729106:G:A 23.54 5.16E-02  1 204 19 1  15 176 24 0  

Intron 2:190738196:A:G 22.29 2.74E-05  12 213 0 0  10 204 1 0  

Intron 2:190738210:T:C 23.77 1.91E-03  7 218 0 0  5 208 2 0  

Intron 2:190741968:G:A 12.84 8.97E-06  129 95 1 0  139 76 0 0  

PMS1   
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     Early  Late   

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV   

Leu822Leu 7:6013153:A:G 14.59 1.44E-01  209 7 9 0  204 5 6 0  
Intron 7:6017189:T:C 17.05 7.94E-03  62 161 2 0  79 136 0 0  
Intron 7:6018185:A:G 18.74 4.74E-03  44 179 2 0  52 161 2 0  

Leu729Leu 7:6018315:G:C 28.45 1.12E-03  13 212 0 0  9 205 1 0  
Asn683Asn 7:6022580:G:A 16.15 1.35E-04  138 85 2 0  160 55 0 0  

Splice region 7:6022626:C:T 11.55 1.41E-01  209 14 2 0  200 11 4 0  
Splice region 7:6022629:G:A 11.59 6.63E-02  215 8 2 0  208 5 2 0  
Splice region 7:6026384:C:T 16.84 4.14E-02  50 165 10 0  50 159 6 0  
Ser523Ser 7:6026827:G:C 31.03 3.70E-03  0 223 2 0  1 212 2 0  
Tyr519Tyr 7:6026839:A:G 29.81 8.06E-05  1 224 0 0  2 212 1 0  
Pro440Pro 7:6027076:T:C 34.95 1.52E-04  0 225 0 0  0 214 1 0  

Intron 7:6027261:C:T 31.39 7.41E-05  0 225 0 0  1 213 1 0  
Arg295Arg 7:6035183:C:T 38.01 NA  0 224 1 0  0 215 0 0  
Ser260Ser 7:6036980:G:C 39.53 8.17E-01  3 8 69 145  0 3 78 134  

Splice region 7:6037057:G:GA 17.31 4.27E-01  98 110 17 0  83 102 30 0  
Splice region 7:6037057:G:GAA 17.76 4.27E-01  52 173 0 0  51 162 2 0  
Splice region 7:6037057:GA:G 17.99 4.27E-01  96 20 109 0  88 31 95 1  
Splice region 7:6037057:GAA:G 16.85 4.27E-01  113 97 15 0  89 109 17 0  
Splice region 7:6037057:GAAA:G 17.82 4.27E-01  64 160 1 0  58 156 1 0  

Intron 7:6038703:G:A 34.68 1.46E-02  0 221 4 0  0 210 5 0  
Intron 7:6038714:C:T 35.97 0.00E+00  0 225 0 0  0 214 1 0  
Intron 7:6038722:T:C 46.90 4.12E-01  1 83 109 32  3 63 111 38  

Splice region 7:6042274:G:A 39.09 0.00E+00  0 224 1 0  0 215 0 0  
Intron 7:6043295:G:A 21.71 9.35E-06  9 216 0 0  12 202 1 0  

Ala96Ala 7:6043386:G:A 37.58 2.95E-02  0 214 11 0  0 204 10 1  
Intron 7:6043443:A:C 33.81 1.62E-03  0 224 1 0  1 214 0 0  
Intron 7:6048618:C:G 40.34 2.92E-03  0 223 2 0  0 214 1 0  

5'-UTR 7:6048725:A:G 34.19 4.62E-05  2 222 1 0  0 215 0 0   

PMS2
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     Early  Late  

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV  

5'-UTR 3:37035011:A:G 44.71 1.24E-03  0 224 1 0  0 215 0 0  

5'-UTR 3:37035032:C:T 44.78 1.13E-03  0 224 1 0  0 215 0 0  

Intron 3:37038063:TTAGAG:T 35.58 1.79E-05  0 225 0 0  2 212 1 0  

Intron 3:37038094:C:G 38.00 1.79E-05  0 225 0 0  0 214 1 0  

Thr66Thr 3:37038191:C:T 39.59 5.11E-04  0 225 0 0  0 213 2 0  

Intron 3:37045863:C:A 29.81 5.28E-03  1 223 1 0  0 213 2 0  

Ala125Ala 3:37045960:A:G 35.88 5.38E-04  0 225 0 0  0 214 1 0  

Intron 3:37048435:GTATC:G 28.34 7.19E-05  3 221 1 0  0 215 0 0  

Intron 3:37048441:A:G 30.57 2.87E-04  2 223 0 0  3 211 1 0  

Intron 3:37048579:A:G 29.44 5.28E-03  3 221 1 0  2 211 2 0  

Intron 3:37050254:T:C 29.77 2.87E-02  0 214 11 0  0 202 12 1  

Intron 3:37053271:T:C 30.80 8.96E-06  2 223 0 0  1 213 1 0  

Intron 3:37053364:G:C 36.60 4.48E-05  0 225 0 0  0 214 1 0  

Intron 3:37053401:AAG:A 30.08 NA  2 222 1 0  2 213 0 0  

Thr212Thr 3:37053549:C:T 36.85 4.49E-05  0 225 0 0  0 214 1 0  

Splice 
region 

3:37055919:A:G 28.35 2.69E-05  0 223 2 0  1 214 0 0  

Thr237Thr 3:37055956:C:T 35.28 NA  0 225 0 0  0 214 1 0  

Intron 3:37056045:A:G 33.79 3.37E-03  0 224 1 0  0 214 1 0  

Intron 3:37058951:C:T 50.65 NA  0 225 0 0  1 213 1 0  

Intron 3:37059129:G:A 52.14 7.89E-04  0 224 1 0  0 215 0 0  

Intron 3:37061777:T:A 36.6909 0.001934  0 223 2 0  0 215 0 0  

His318His 3:37061870:C:T 34.70 2.69E-05  0 225 0 0  0 214 1 0  

MLH1  
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     Early  Late  

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV  

Gln900Gln 19:48618966:T:C 36.37 7.17E-05  0 225 0 0  0 214 1 0  

Pro884Pro 19:48619154:C:T 36.83 1.35E-02  0 219 6 0  0 212 3 0  

Intron 19:48619232:C:T 38.36 2.87E-03  0 222 3 0  0 215 0 0  

Intron 19:48620861:A:G 19.67 1.71E-04  11 213 1 0  23 192 0 0  

Intron 19:48620873:G:A 22.06 7.47E-05  4 221 0 0  10 204 1 0  

Ala814Ala 19:48621036:C:G 55.42 4.29E-01  0 68 112 45  0 69 110 36  

Intron 19:48622375:C:T 26.11 1.05E-01  4 182 37 2  3 163 42 7  

Intron 19:48622376:G:A 26.14 0.00E+00  4 220 1 0  4 211 0 0  

Intron 19:48622382:G:A 29.04 1.28E-04  2 223 0 0  2 212 1 0  

Asp802Asp 19:48622427:A:G 40.69 5.29E-01  5 47 109 64  5 43 99 68  

Intron 19:48622483:A:G 35.62 4.23E-01  9 67 107 42  5 67 107 36  

Intron 19:48624625:C:T 10.67 4.42E-01  220 1 3 1  208 1 5 1  

Intron 19:48626159:T:C 40.23 9.85E-05  0 225 0 0  0 214 1 0  

Intron 19:48626181:C:T 40.73 1.16E-04  0 225 0 0  0 214 1 0  

VAl729Val 19:48626236:A:G 41.79 3.56E-03  0 223 2 0  0 211 4 0  

Intron 19:48626389:C:T 36.87 1.23E-02  0 218 7 0  0 206 9 0  

Intron 19:48626604:G:A 35.30 5.89E-02  2 196 26 1  0 187 28 0  

Asp661Asp 19:48630555:G:A 36.35 NA  0 224 1 0  0 215 0 0  

Ala648Ala 19:48630594:C:T 34.51 4.83E-04  0 224 1 0  0 215 0 0  

Intron 19:48631131:C:G 43.11 3.73E-02  0 214 11 0  0 196 18 1  

Ala622Ala 19:48631233:G:A 42.38 0.00E+00  0 224 1 0  0 215 0 0  

Val613Val 19:48631260:G:A 42.32 NA  0 224 1 0  0 215 0 0  

Intron 19:48634298:C:T 37.66 1.12E-01  1 184 38 2  0 166 42 7  

Intron 19:48634319:T:A 49.43 4.31E-01  2 66 113 44  0 68 111 36  

LIG1 (part 1)
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     Early  Late  

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV  

Intron 19:48634473:A:G 22.73 NA  15 209 1 0  21 194 0 0  

Intron 19:48640234:C:G 37.13 5.87E-02  1 198 26 0  0 187 28 0  

Splice region 19:48640276:C:T 39.26 1.91E-04  0 225 0 0  0 214 1 0  

Intron 19:48640363:C:T 28.61 1.03E-04  1 224 0 0  2 212 1 0  

Intron 19:48640763:G:A 32.54 9.19E-05  1 223 1 0  1 214 0 0  

Splice region 19:48643361:G:A 25.44 1.23E-03  5 219 1 0  10 203 2 0  

Intron 19:48646775:C:G 48.56 7.99E-04  166 58 1 0  157 58 0 0  

Intron 19:48646785:G:T 62.12 7.30E-03  134 89 2 0  135 78 2 0  

Intron 19:48646883:T:C 74.99 5.42E-01  0 47 111 67  0 43 104 68  

Splice region 19:48647225:G:A 40.80 1.07E-04  0 225 0 0  0 214 1 0  

Intron 19:48647241:T:C 48.95 1.12E-01  0 185 38 2  0 166 42 7  

Intron 19:48652975:G:A 32.94 3.64E-05  0 224 1 0  0 215 0 0  

Intron 19:48654466:G:A 16.04 1.89E-04  60 165 0 0  60 154 1 0  

Splice region 19:48654553:G:T 55.06 4.85E-01  0 58 116 51  0 57 103 55  

Intron 19:48654606:G:T 42.61 1.25E-04  0 224 1 0  0 215 0 0  

Intron 19:48660445:T:C 11.45 3.81E-01  202 8 12 3  196 9 8 2  

Splice region 19:48664769:A:G 18.40 6.74E-04  30 192 3 0  30 185 0 0  

Intron 19:48664798:G:A 15.61 3.81E-01  83 41 78 23  95 40 61 19  

Intron 19:48665643:A:C 26.50 4.56E-04  3 222 0 0  6 208 1 0  

Intron 19:48668795:G:A 42.29 3.81E-01  2 80 104 39  2 85 100 28  

5'-UTR 19:48668830:G:A 40.58 1.23E-01  0 180 42 3  1 159 50 5  

5'-UTR 19:48673428:C:T 21.03 NA  38 183 4 0  46 161 8 0  

5'-UTR 19:48673458:G:A 27.98 3.84E-01  13 78 96 38  23 76 92 24  

LIG1 (part 2) 

 

 



271 
 

 

     Early  Late  

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV  

Phe14Phe 5:145826954:C:T 31.85 8.49E-04  3 222 0 0  1 212 2 0  

Ala22Ala 5:145834625:C:T 17.73 2.09E-02  37 184 4 0  43 163 9 0  

Pro32Pro 5:145834655:G:A 26.14 1.79E-05  2 222 1 0  0 215 0 0  

Gln202Gln 5:145838614:A:G 36.79 1.63E-03  2 221 2 0  2 212 1 0  

Gln224Gln 5:145838680:A:G 43.41 1.63E-04  4 221 0 0  2 212 1 0  

Lys785Lys 5:145878222:A:G 18.06 9.01E-04  27 197 1 0  31 184 0 0  

Thr976Thr 5:145887453:G:A 19.61 7.68E-02  26 175 23 1  20 167 28 0  

Ser1040Ser 5:145890028:A:G 19.57 9.43E-01  12 0 16 197  14 1 29 171  

Pro1087Pro 5:145890169:C:T 26.82 1.67E-02  5 212 8 0  1 208 6 0  

TCERG1 

 

     Early  Late  

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV  

Asp117Asp 11:7324475:T:C 55.39 1.00E+00  0 0 0 225  0 0 0 215  

Asp212Asp 11:7334764:C:T 36.45 2.69E-05  0 224 1 0  0 215 0 0  

Intron 11:7335444:G:A 22.76 1.00E-04  18 207 0 0  9 205 1 0  

Thr414Thr 11:7439264:C:T 42.40 1.39E-01  0 178 43 4  0 155 56 4  

Splice region 11:7441737:T:C 22.67 1.22E-01  17 170 35 3  11 154 47 3  

Glu451Glu 11:7441752:G:A 28.97 8.96E-06  2 222 1 0  2 213 0 0  

Intron 11:7487978:G:A 14.94 3.78E-03  208 17 0 0  201 13 1 0  

SYT9 



272 
 

     Early  Late  

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV  

Intron 3:9792129:G:A 37.89 2.08E-03  0 225 0 0  0 214 1 0  

Leu109Leu 3:9792818:G:C 38.45 4.48E-05  0 224 1 0  0 215 0 0  

Ser143Ser 3:9793497:T:A 39.54 NA  0 224 1 0  0 215 0 0  

Splice 3:9796384:G:A 34.63 2.06E-02  0 216 9 0  1 205 9 0  

Gly200Gly 3:9796422:C:A 36.56 NA  0 225 0 0  0 214 1 0  

Intron 3:9798140:C:G 34.14 2.24E-01  2 138 75 10  1 127 77 10  

3'-UTR 3:9798572:G:A 40.66 0.00E+00  0 225 0 0  0 214 1 0  

Intron 3:9800838:G:A 40.45 4.03E-04  0 224 1 0  0 215 0 0  

3'-UTR 3:9807858:G:A 39.32 1.84E-05  0 225 0 0  0 214 1 0  

Intron 3:9792129:G:A 37.89 2.08E-03  0 225 0 0  0 214 1 0  

Leu109Leu 3:9792818:G:C 38.45 4.48E-05  0 224 1 0  0 215 0 0  

Ser143Ser 3:9793497:T:A 39.54 NA  0 224 1 0  0 215 0 0  

Splice 3:9796384:G:A 34.63 2.06E-02  0 216 9 0  1 205 9 0  

Gly200Gly 3:9796422:C:A 36.56 NA  0 225 0 0  0 214 1 0  

Intron 3:9798140:C:G 34.14 2.24E-01  2 138 75 10  1 127 77 10  

3'-UTR 3:9798572:G:A 40.66 0.00E+00  0 225 0 0  0 214 1 0  

Intron 3:9800838:G:A 40.45 4.03E-04  0 224 1 0  0 215 0 0  

OGG1
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     Early  Late  

Variant Location DP gnomAD  N/C HomR Het HomV  N/C HomR Het HomV  

Gln1421Gln 14:75483812:T:C 8.24E+01 5.33E-01  0 53 100 72  1 51 95 68  

Intron 14:75485489:A:G 4.91E+01 1.00E+00  0 0 0 225  0 0 0 215  

Intron 14:75485492:A:G 4.26E+01 1.80E-05  0 224 1 0  0 215 0 0  

Intron 14:75485504:C:G 4.35E+01 1.62E-03  0 223 2 0  0 215 0 0  

Intron 14:75485519:G:C 4.34E+01 7.40E-03  0 218 7 0  0 207 8 0  

Intron 14:75489632:C:T 5.57E+01 4.67E-01  0 72 100 53  0 69 95 51  

Intron 14:75489756:G:A 3.84E+01 9.20E-03  0 220 5 0  0 210 5 0  

Intron 14:75497231:G:A 3.89E+01 7.87E-03  0 220 5 0  0 210 5 0  

Intron 14:75497428:T:TA 3.09E+01 7.00E-02  97 127 1 0  87 125 3 0  

Intron 14:75497428:TA:T 3.01E+01 7.00E-02  168 47 10 0  160 42 13 0  

Intron 14:75498727:G:A 3.52E+01 2.91E-04  0 224 1 0  0 215 0 0  

Intron 14:75498906:T:C 4.05E+01 8.96E-06  0 224 1 0  0 215 0 0  

Intron 14:75505008:G:C 5.17E+01 4.84E-01  1 63 101 60  1 58 96 60  

Intron 14:75505016:A:G 5.61E+01 1.00E+00  0 0 0 225  0 0 0 215  

Intron 14:75506585:T:TA 2.08E+01 7.15E-04  45 179 1 0  43 171 1 0  

Intron 14:75506586:T:A 2.18E+01 1.43E-02  71 152 2 0  81 130 4 0  

Intron 14:75506586:T:TA 2.18E+01 NA  71 154 0 0  81 133 1 0  

Intron 14:75506586:T:TATA 2.18E+01 1.43E-02  71 153 1 0  81 134 0 0  

Intron 14:75506586:T:TATATATATA 2.18E+01 1.43E-02  71 153 1 0  81 134 0 0  

Intron 14:75506721:A:G 2.90E+01 NA  8 217 0 0  17 197 1 0  

Intron 14:75508280:G:GA 2.65E+01 6.70E-03  118 106 1 0  124 89 2 0  

Intron 14:75508280:GA:G 2.69E+01 6.70E-03  154 67 4 0  143 65 7 0  

Ser1137Ser 14:75508372:C:T 3.88E+01 0.00E+00  0 225 0 0  0 214 1 0  

Glu1025Glu 14:75513284:T:C 3.86E+01 0.00E+00  0 225 0 0  0 214 1 0  

Cys279Cys 14:75515522:G:A 2.43E+01 6.36E-04  16 208 1 0  16 199 0 0  

Lys222Lys 14:75515693:C:T 2.55E+01 7.32E-03  4 214 7 0  3 204 8 0  

Asp136Asp 14:75515951:A:G 2.93E+01 8.47E-03  0 222 3 0  0 212 3 0  

MLH3
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Appendix 6 – Coding variation identified in other candidate genes 

Listed below are the coding variants for the genes described in 4.5.6. Non-synonymous damaging variants (CADD PHRED≥20 or LoF) are 

emboldened. Genomic locations are based on hg19/GRCh37. MAF annotations taken from v2.0.2 of gnomAD. Δ denotes variants where the 

most damaging consequence only occurs in the non-canonical transcript. Total N=440 (225 early; 215 late). LoF variants are marked with a [*]. 

DP: Mean depth of variant site in early and late samples; NS: non-synonymous; N/C: not called (failed by-variant DP/GQ check); HomR: 

homozygote reference; Het: heterozygote; HomV: homozygote variant. 

 

      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Gly696Glu 4:3133113:G:A 40.58 3.49E-03 22.7  0 221 4 0  0 213 2 0  

Gly893Arg 4:3137674:G:A 15.48 6.01E-02 24.4  90 115 18 2  83 107 24 1  

Pro972del 4:3142351:TCCA:T 24.93 NA NA  5 219 1 0  15 200 0 0  

Leu989Val 4:3144512:C:G 27.74 3.58E-05 11.7  6 218 1 0  2 212 1 0  

Val1064Ile 4:3148570:G:A 39.07 6.18E-02 3.8  0 191 31 3  0 177 35 3  

Leu1074Pro 4:3148601:T:C 37.99 NA 25.8  0 224 1 0  0 215 0 0  

Asp1082His 4:3148624:G:C 38.40 2.34E-03 28.1  0 224 1 0  0 215 0 0  

Ile1091Met 4:3148653:T:G 33.12 5.12E-02 16.7  2 215 8 0  1 201 13 0  

Thr1260Met 4:3162034:C:T 37.32 8.77E-04 22.2  0 223 2 0  0 211 4 0  

Met1306Ile 4:3174100:G:A 38.90 9.85E-05 18.5  0 225 0 0  0 214 1 0  

Val1551Ala 4:3182281:T:C 28.64 1.79E-05 26.6  1 223 1 0  0 214 1 0  

Cys1708Arg 4:3189510:T:C 37.83 4.57E-03 10.7  0 224 1 0  0 214 1 0  

Thr1720Asn 4:3189547:C:A 22.71 1.11E-01 0.0  23 180 22 0  27 150 36 2  

Arg2002His 4:3208640:G:A 18.10 2.06E-04 24.8  30 194 1 0  27 186 2 0  

Tyr2309His 4:3215835:T:C 10.33 4.24E-01 15.23  224 0 1 0  213 0 2 0  

Lys2337Arg 4:3216894:A:G 34.72 9.67E-04 0.1  0 225 0 0  0 214 1 0  

Glu2444Asp 4:3221998:A:T 25.31 2.40E-03 5.9  2 222 1 0  3 211 1 0  

Glu2643del 4:3230410:AGAG:A 13.03 6.99E-02 NA  181 28 14 2  188 17 10 0  

Val2786Ile 4:3234980:G:A 14.71 3.01E-01 4.4  126 69 27 3  138 53 22 2  

HTT 



275 
 

      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Ala188Val 3:37053328:C:T 36.90 8.97E-06 23.9  0 225 0 0  0 214 1 0  

Ile219Val 3:37053568:A:G 36.51 3.20E-01 13.9  2 123 84 16  3 86 98 28  

Tyr379Cys 3:37067225:A:G 40.33 0.00E+00 24.9  0 224 1 0  0 215 0 0  

Ser406Asn 3:37067306:G:A 39.57 1.29E-03 7.3  1 224 0 0  0 214 1 0  

Ala441Thr 3:37067410:G:A 37.49 5.29E-04 3.5  0 225 0 0  1 213 1 0  

Lys618Glu 3:37089130:A:G 42.06 5.63E-03 27.8  0 224 1 0  0 214 1 0  

Lys618Thr 3:37089131:A:C 42.07 5.62E-03 28.0  0 224 1 0  0 214 1 0  

Gln689Arg 3:37090471:A:G 37.98 4.67E-04 17.0  0 224 1 0  0 215 0 0  

Val716Met 3:37092019:G:A 42.81 1.88E-03 24.6  0 224 1 0  0 214 1 0  

His718Tyr 3:37092025:C:T 42.67 1.88E-04 29.0  0 225 0 0  0 214 1 0  

MLH1 

 

      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Arg46Gln 3:9792107:G:A 37.93 3.83E-03 34.0  0 223 2 0  0 215 0 0  

Ala85Ser 3:9792744:G:T 43.12 2.79E-03 0.0  0 224 1 0  0 215 0 0  

Arg197Trp 3:9796411:A:T 35.69 2.60E-04 26.1  0 224 1 0  0 215 0 0  

Arg229Gln 3:9796508:G:A 30.54 2.94E-04 23.4  3 222 0 0  2 212 1 0  

Ala288Val 3:9798270:C:T 17.40 2.46E-03 17.3  29 196 0 0  49 165 1 0  

Gly308Glu 3:9798475:G:A 37.75 6.57E-03 31.0  0 222 3 0  0 209 6 0  

Pro332Ala 3:9798773:C:G 31.77 2.23E-01 3.0  2 138 75 10  4 124 77 10  

Gln362Ter[*],Δ 3:9798863:C:T 20.00 NA 0.4  13 211 1 0  26 189 0 0  

Phe324Ser 3:9800893:T:C 40.63 1.74E-04 4.6  0 224 1 0  0 215 0 0  

Gly348Glu 3:9807587:G:A 24.54 6.71E-04 13.1  4 221 0 0  3 211 1 0  

Pro402Ala 3:9807748:C:G 31.26 NA 9.5  1 224 0 0  0 214 1 0  

OGG1
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      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Val154Met 11:7324584:G:A 15.53 3.35E-02 0.9  81 133 11 0  81 124 10 0  

Ser319Arg 11:7335424:C:G 23.94 5.71E-01 NA  15 43 97 70  24 41 86 64  

Leu353Val 11:7437285:C:G 34.65 9.84E-03 29.2  0 219 6 0  0 214 1 0  

SYT9 

 

      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Glu59Lys 2:190660537:G:A 35.95 4.68E-03 18.5  1 223 1 0  0 214 1 0  

Thr75Ile 2:190660586:C:T 35.75 1.08E-03 32.0  0 225 0 0  0 213 2 0  

Leu164ValfsTer4[*],Δ 2:190670539:T:TA 28.09 2.44E-02 NA  63 86 74 2  94 75 46 0  

Lys163SerfsTer15[*],Δ 2:190670539:TA:T 26.16 2.44E-02 NA  114 99 12 0  120 82 13 0  

Arg202Lys 2:190708712:G:A 38.67 1.38E-02 19.2  0 223 2 0  0 208 7 0  

Lys433Arg 2:190719296:A:G 28.05 1.80E-05 0.0  6 218 1 0  4 211 0 0  

Gly501Arg 2:190719499:G:A 32.60 5.84E-04 25.9  4 221 0 0  7 207 1 0  

Leu524Ser 2:190719569:T:C 20.97 0.00E+00 0.0  17 207 1 0  24 191 0 0  

Glu537Lys 2:190719607:G:A 17.31 2.97E-03 10.4  66 159 0 0  76 138 1 0  

Arg569Gln 2:190719704:G:A 26.05 1.26E-04 22.6  1 224 0 0  0 214 1 0  

Tyr793His 2:190732559:T:C 31.12 5.66E-04 0.1  0 225 0 0  1 213 1 0  

PMS1 
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      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Gly857Ala 7:6013049:C:G 16.14 2.67E-01 9.8  121 58 44 2  112 49 51 3  

Leu729fs[*] 7:6018314:TGA:T 28.43 1.56E-04 NA  11 213 1 0  9 204 2 0  

Thr728Ala 7:6018320:T:C 27.34 1.71E-04 11.6  14 210 1 0  16 197 2 0  

Lys647Ter 7:6026457:T:A 23.28 NA 38.0  24 200 1 0  29 186 0 0  

Met622Ile 7:6026530:C:T 36.90 2.34E-02 18.1  0 216 9 0  0 212 3 0  

Thr597Ser 7:6026607:T:A 38.99 1.47E-02 0.0  0 219 6 0  0 209 6 0  

Arg563Leu 7:6026708:C:A 39.18 8.77E-03 13.1  0 217 8 0  0 208 7 0  

Lys541Glu 7:6026775:T:C 45.28 8.50E-01 0.1  3 8 59 155  4 3 59 149  

Thr511Met 7:6026864:G:A 23.97 2.78E-04 5.4  3 221 1 0  7 207 1 0  

Thr511Ala 7:6026865:T:C 23.85 3.02E-02 0.0  3 210 12 0  6 201 8 0  

Thr485Lys 7:6026942:G:T 40.11 4.24E-02 0.0  0 207 18 0  1 201 13 0  

His479Gln 7:6026959:G:C 41.14 3.63E-03 0.6  0 223 2 0  1 214 0 0  

Pro470Ser 7:6026988:G:A 74.13 4.16E-01 0.1  1 83 108 33  0 63 112 40  

Thr458Ser◊ 7:6027024:T:A 41.12 NA 0.0  0 225 0 0  0 214 1 0  

Val415Met◊ 7:6027153:C:T 40.48 2.15E-04 10.0  0 225 0 0  0 214 1 0  

Asn371His 7:6029464:T:G 32.77 NA 19.7  0 224 1 0  1 214 0 0  

Asn335Ser 7:6029571:T:C 20.50 4.66E-04 26.7  61 164 0 0  68 146 1 0  

Val159Met 7:6042146:C:T 36.99 1.44E-04 24.1  0 224 1 0  0 215 0 0  

Ala116Thr 7:6043328:C:T 35.19 9.33E-06 33.0  0 224 1 0  0 215 0 0  

Phe80Phe 7:6043613:G:A 36.60 1.44E-04 10.9  0 224 1 0  1 214 0 0  

Arg20Gln 7:6045627:C:T 42.62 7.60E-02 21.7  0 192 32 1  0 190 24 1  

Ile18Val 7:6045634:T:C 39.86 1.15E-02 25.6  0 223 2 0  0 211 4 0  

PMS2
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      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Glu387Gln 5:145894518:C:G 36.78 2.69E-05 26.1  0 224 1 0  0 215 0 0  

Ser366Thr 5:145894580:C:G 34.52 8.95E-06 0.0  0 225 0 0  0 214 1 0  

Leu304fs[*] 5:145894764:TGA:T 30.51 1.79E-05 NA  1 224 0 0  0 214 1 0  

Ile288Thr 5:145894814:A:G 28.27 NA 9.8  1 223 1 0  3 212 0 0  

Pro284Ser 5:145894827:G:A 28.72 NA 23.9  2 222 1 0  0 215 0 0  

Leu261Val 5:145894896:G:C 44.20 2.00E-01 0.0  0 138 78 9  0 140 68 7  

Phe175fs[*] 5:145895150:CTA:C 25.98 1.70E-04 NA  2 223 0 0  6 208 1 0  

Ala144Val 5:145895246:G:A 38.58 1.37E-03 22.8  0 225 0 0  0 213 2 0  

Arg95Ter 5:145895394:G:A 39.59 7.07E-03 36.0  0 216 9 0  0 211 4 0  

Pro40Leu 5:145895558:G:A 42.65 7.78E-02 16.4  0 196 28 1  0 182 33 0  

Tyr27Ter 5:145895596:G:T 37.28 8.93E-04 36.0  0 223 2 0  0 215 0 0  

Phe23Leu 5:145895608:A:C 34.43 8.23E-04 25.0  0 224 1 0  0 215 0 0  

GPR151 

 

      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Met393Thr 8:103220407:A:G 26.96 NA 12.4  9 216 0 0  8 207 0 0  

Arg56fs[*] 8:103250839:C:CG 23.45 8.33E-02 NA  48 149 25 3  53 141 16 5  

Ala26Thr 8:103250930:C:T 26.58 8.66E-02 NA  19 170 31 5  29 161 19 6  

Arg16Pro 8:103250959:C:G 30.92 2.19E-03 NA  1 224 0 0  1 209 5 0  

RRM2B
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      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Glu1451Lys 14:75483796:C:T 44.48 1.50E-03 23.6  0 223 2 0  0 215 0 0  

Ile1391fs[*] 
14:75483904:T:TCTATGGG 

AAGAAAGAATAACTTC 
AATTAGCAATATGA 

54.05 8.95E-06 NA  0 224 1 0  0 215 0 0  

Ser1167Asn 14:75506684:C:T 32.09 8.95E-06 21.0  0 225 0 0  1 213 1 0  

Val1156Ile 14:75506718:C:T 29.31 1.52E-04 24.7  7 217 1 0  16 199 0 0  

Asn1147Ile 14:75508343:T:A 39.27 6.27E-04 31.0  0 224 1 0  0 213 2 0  

Asp1105Glu 14:75509146:G:T 40.45 3.69E-03 15.4  0 223 2 0  0 214 1 0  

Asp1073Asn 14:75513142:C:T 28.02 2.06E-04 26.9  1 224 0 0  2 212 1 0  

Pro1070Arg 14:75513150:G:C 25.65 NA 23.9  2 223 0 0  7 207 1 0  

Val971Ile 14:75513448:C:T 31.94 5.29E-04 13.5  1 224 0 0  1 213 1 0  

Ser966Pro 14:75513463:A:G 31.54 1.69E-02 0.2  1 216 8 0  1 209 5 0  

Gln943Pro 14:75513531:T:G 39.11 NA 23.4  0 224 1 0  0 215 0 0  

Ser845Gly 14:75513826:T:C 44.38 7.30E-03 0.0  0 218 7 0  0 208 7 0  

Pro844Leu 14:75513828:G:A 95.60 4.60E-01 5.1  0 77 97 51  0 74 93 48  

Asn826Asp 14:75513883:T:C 125.36 1.00E+00 0.0  0 0 0 225  0 0 0 215  

Arg797His 14:75513969:C:T 44.38 8.96E-05 0.0  0 223 2 0  0 215 0 0  

Val741Phe 14:75514138:C:A 43.98 7.37E-03 21.4  0 218 7 0  0 207 8 0  

Tyr720Cys 14:75514200:T:C 37.87 1.52E-04 0.0  0 224 1 0  0 215 0 0  

Glu624Gln 14:75514489:C:G 27.10 1.09E-02 17.0  7 211 7 0  10 201 4 0  

Arg546Ile 14:75514722:C:A 18.14 5.47E-04 1.5  32 192 1 0  35 180 0 0  

Val420Ile 14:75515101:C:T 14.21 1.60E-02 0.0  104 117 4 0  117 97 1 0  

Tyr238Ser 14:75515646:T:G 17.32 4.50E-05 24.8  35 190 0 0  52 162 1 0  

Lys231Gln 14:75515668:T:G 19.70 1.88E-02 12.4  17 198 10 0  19 188 8 0  

Phe50Tyr 14:75516210:A:T 39.45 5.19E-04 14.4  0 224 1 0  0 215 0 0  

Lys3Arg 14:75516351:T:C 35.54 2.88E-04 8.9  0 224 1 0  0 215 0 0  

MLH3
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Appendix 7 – Coding variation in CUBN, MUT and NOP14 

Listed below are the coding variants for MUT, CUBN and NOP14 (see 4.7-4.9 which identifies these genes in unbiased exome-wide tests). 

Non-synonymous damaging variants (CADD PHRED≥20 or LoF) are emboldened. Genomic locations are based on hg19/GRCh37. MAF 

annotations taken from v2.0.2 of gnomAD. Total N=440 (225 early; 215 late). Δ denotes variants where the most damaging consequence only 

occurs in the non-canonical transcript. LoF variants are marked with a [*]. DP: Mean depth of variant site in early and late samples; NS: non-

synonymous; N/C: not called (failed by-variant DP/GQ check); HomR: homozygote reference; Het: heterozygote; HomV: homozygote variant. 

      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Arg694Trp 6:49403213:G:A 38.08 1.79E-05 35.0  0 225 0 0  0 214 1 0  

Ala676Thr 6:49403267:C:T 36.03 8.96E-05 34.0  0 223 2 0  0 215 0 0  

Ile671Val 6:49403282:T:C 45.96 6.21E-01 3.0  0 40 111 74  0 27 124 64  

Ala664Val 6:49403302:G:A 35.42 6.46E-04 34.0  0 223 2 0  0 215 0 0  

Met622Thr 6:49408010:A:G 37.08 8.96E-05 27.4  1 224 0 0  0 214 1 0  

Arg532His 6:49412433:C:T 21.87 3.65E-01 21.9  15 93 93 24  17 90 87 21  

Ala499Thr 6:49415448:C:T 36.69 1.10E-01 16.0  1 175 45 4  0 174 40 1  

Met375Ile 6:49419386:C:T 25.25 2.78E-03 24.8  1 218 6 0  2 213 0 0  

Thr359Ser 6:49421305:G:C 18.16 NA 27.6  23 201 1 0  24 191 0 0  

Lys335Asn 6:49421376:T:A 17.96 0.00E+00 23.7  36 189 0 0  39 175 1 0  

Gln293Arg 6:49423826:T:C 24.24 5.11E-04 15.7  7 217 1 0  7 207 1 0  

Asn189Ile 6:49425591:T:A 34.86 0.00E+00 28.3  3 222 0 0  1 213 1 0  

Arg154His 6:49425696:C:T 18.51 8.98E-06 23.1  20 204 1 0  21 194 0 0  

Ala141Val 6:49425735:G:A 22.34 0.00E+00 31.0  4 220 1 0  8 207 0 0  

Thr78Ala 6:49426948:T:C 37.85 0.00E+00 12.3  0 224 1 0  0 215 0 0  

Ile69Val 6:49426975:T:C 37.68 3.49E-03 0.2  0 224 1 0  0 213 2 0  

MUT 
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      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Arg3612Trp 10:16867012:G:A 44.32 2.35E-04 13.4  0 225 0 0  0 214 1 0  

Val3596Met 10:16867060:C:T 43.78 2.73E-05 10.7  0 225 0 0  0 214 1 0  

Gly3587Arg 10:16870809:C:T 37.66 1.26E-04 29.5  0 224 1 0  0 215 0 0  

Asn3552Lys 10:16870912:G:T 48.73 8.40E-02 12.6  0 197 28 0  0 186 24 5  

Thr3432Ser 10:16877080:G:C 37.63 5.29E-04 1.9  0 225 0 0  0 214 1 0  

Thr3422Ile 10:16877110:G:A 36.74 2.75E-02 12.7  2 216 7 0  3 205 7 0  

Gly3347Arg 10:16878375:C:T 33.46 4.22E-04 4.6  0 224 1 0  0 215 0 0  

Ser3293Leu 10:16882483:G:A 36.62 9.04E-06 28.3  0 224 1 0  0 215 0 0  

Thr3253Met 10:16882952:G:A 37.12 5.38E-05 24.2  0 224 1 0  0 215 0 0  

Pro3242Ser 10:16882986:G:A 35.09 5.38E-05 25.7  0 224 1 0  0 215 0 0  

Ile3189Val 10:16893332:T:C 44.80 4.48E-05 23.9  0 225 0 0  0 214 1 0  

Arg3148Trp 10:16911647:G:A 39.20 3.59E-05 21.9  0 224 1 0  0 215 0 0  

Gly3114Ser 10:16911749:C:T 40.18 1.10E-02 32.0  0 224 1 0  0 212 3 0  

Asp3100Asn 10:16911791:C:T 36.13 1.79E-04 31.0  0 224 1 0  0 215 0 0  

Thr3069Ile 10:16916403:G:A 38.33 7.17E-05 0.3  0 225 0 0  0 214 1 0  

Glu3002Gly 10:16918997:T:C 49.56 1.03E-01 11.0  0 170 53 2  0 167 47 1  

Val2990Ile 10:16919034:C:T 45.29 1.97E-04 0.1  0 224 1 0  0 215 0 0  

Ile2984Val 10:16919052:T:C 46.13 1.03E-01 6.4  0 173 50 2  0 168 47 0  

Glu2968Gln 10:16930419:C:G 32.32 2.28E-02 23.3  0 222 3 0  1 205 9 0  

Phe2965Ser 10:16930427:A:G 31.62 2.71E-03 27.2  2 221 2 0  2 213 0 0  

Ala2914Val 10:16932384:G:A 44.26 1.42E-02 34.0  0 218 7 0  0 209 6 0  

Val2891Ile 10:16932454:C:T 42.83 7.34E-04 0.0  0 224 1 0  0 215 0 0  

Leu2879Ile 10:16932490:G:T 45.92 3.84E-02 24.1  0 209 16 0  0 197 18 0  

Thr2800Ile 10:16942635:G:A 41.50 1.20E-03 21.8  0 224 1 0  0 215 0 0  

Ile2613Leu 10:16948277:T:G 43.82 1.88E-04 23.7  0 224 1 0  0 215 0 0  

Pro2575Arg 10:16948390:G:C 43.95 1.60E-02 0.2  0 215 10 0  0 207 8 0  

Asp2550Gly 10:16949563:T:C 39.33 3.58E-05 26.3  0 224 1 0  0 215 0 0  

Arg2489Gln 10:16955877:C:T 37.27 8.95E-06 6.6  0 225 0 0  0 214 1 0  

CUBN (part 1) 



282 
 

 

      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Asp2455Glu 10:16955978:A:T 38.67 8.80E-03 6.4  0 221 4 0  0 210 5 0  

Met2449Thr 10:16957036:A:G 36.71 2.91E-03 0.0  0 222 3 0  0 213 2 0  

Ser2344Arg 10:16957998:A:T 33.82 NA 22.1  1 224 0 0  0 214 1 0  

Glu2310fs 10:16960686:ATAACCTC:A 36.43 2.78E-04 NA  0 225 0 0  0 214 1 0  

Phe2263Cys 10:16961995:A:C 39.78 5.21E-03 25.0  0 219 6 0  0 215 0 0  

Val2221Ile 10:16962122:C:T 33.02 2.51E-04 1.2  0 225 0 0  0 214 1 0  

Asn2157Asp 10:16967417:T:C 32.74 6.75E-03 26.4  1 218 6 0  0 212 3 0  

Leu2153Phe 10:16967586:C:G 40.96 1.21E-01 24.9  0 168 55 2  0 165 49 1  

Gly2093Ser 10:16967768:C:T 28.56 1.80E-05 34.0  0 224 1 0  1 214 0 0  

Gln2048Glu 10:16970285:G:C 41.45 9.00E-06 12.6  0 225 0 0  0 214 1 0  

Thr2031Ala 10:16975119:T:C 43.19 5.65E-04 0.0  0 224 1 0  0 215 0 0  

Arg2030Gln 10:16975121:C:T 43.19 1.79E-05 0.6  0 224 1 0  0 215 0 0  

Pro1975Leu 10:16979593:G:A 37.34 1.03E-02 21.6  0 217 8 0  0 210 5 0  

Pro1971Thr 10:16979606:G:T 37.65 1.75E-02 25.0  0 216 9 0  0 207 8 0  

Gly1953Arg 10:16979660:C:G 38.34 8.98E-06 23.3  0 225 0 0  0 214 1 0  

Ser1935Gly 10:16979714:T:C 45.05 1.84E-01 6.7  0 145 75 5  0 148 61 6  

Gln1930Ter[*] 10:16979729:G:A 40.81 NA 37.0  0 224 1 0  0 215 0 0  

Ile1850Leu 10:16982031:T:A 32.20 6.30E-05 0.2  0 225 0 0  0 214 1 0  

Gly1840Ser 10:16982061:C:T 34.92 1.81E-02 19.8  0 216 9 0  0 206 9 0  

Arg1810Ter[*] 10:16982151:G:A 37.99 2.06E-04 43.0  0 224 1 0  0 215 0 0  

Val1769Ile 10:16989271:C:T 36.98 9.16E-04 12.7  0 224 1 0  0 215 0 0  

Thr1730Met 10:16990497:G:A 35.95 2.42E-04 14.0  0 225 0 0  0 214 1 0  

Ala1690Val 10:16992011:G:A 32.45 3.33E-03 28.3  1 222 2 0  0 215 0 0  

Cys1620Ter[*] 10:16994384:G:T 41.08 NA 35.0  0 225 0 0  0 214 1 0  

Ser1606Cys 10:16996426:G:C 40.83 NA 23.7  0 224 1 0  0 215 0 0  

Pro1559Ser 10:17024503:G:A 36.32 8.89E-01 10.5  2 3 47 173  0 3 51 161  

Leu1484Gln 10:17026178:A:T 37.49 8.95E-06 26.5  0 224 1 0  0 215 0 0  

Leu1465Met 10:17026236:G:T 37.46 NA 21.8  0 224 1 0  0 215 0 0  

CUBN (part 2)
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      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Gly1390Ser 10:17061832:C:T 40.15 0.00E+00 29.5  0 224 1 0  0 215 0 0  

Arg1349Cys 10:17061955:G:A 40.16 0.00E+00 33.0  0 224 1 0  0 215 0 0  

Arg1311Gln 10:17083117:C:T 37.27 1.79E-05 13.9  0 224 1 0  0 215 0 0  

Ser1251Thr 10:17085903:C:G 42.07 8.96E-06 12.4  0 225 0 0  0 212 3 0  

Ala1202Thr 10:17087074:C:T 36.23 1.02E-03 10.1  0 225 0 0  0 214 1 0  

Leu1119Ser 10:17088067:A:G 24.53 2.04E-03 0.4  9 214 2 0  6 208 1 0  

His919Arg 10:17110639:T:C 25.22 6.70E-03 6.6  7 215 3 0  13 196 6 0  

Ser865Asn 10:17113456:C:T 38.30 1.15E-02 8.6  0 219 6 0  0 213 1 1  

Phe831Cys 10:17113558:A:C 24.91 2.69E-05 24.3  6 218 1 0  6 209 0 0  

His730Tyr 10:17126383:G:A 37.23 5.63E-03 0.0  0 219 6 0  0 210 5 0  

Leu648Phe 10:17130168:G:A 38.69 NA 27.9  0 224 1 0  0 215 0 0  

Pro389Thr 10:17147521:G:T 74.58 6.66E-01 23.6  0 23 106 96  0 21 109 85  

Phe253Ser 10:17156151:A:G 45.12 6.61E-01 0.1  2 25 97 101  0 16 97 102  

Gly126Ala 10:17168770:C:G 37.90 NA 0.0  0 225 0 0  0 214 1 0  

Gly66Arg 10:17171176:C:T 37.58 1.07E-03 34.0  0 225 0 0  0 214 1 0  

Ile37Leu 10:17171656:T:G 37.95 2.95E-04 0.0  0 225 0 0  0 214 1 0  

CUBN (part 3)
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      Early  Late  

Variant Location DP gnomAD CADD  N/C HomR Het HomV  N/C HomR Het HomV  

Asn780AspΔ 4:2940027:T:C 13.53 5.90E-04 0.3  142 83 0 0  149 66 0 0  

Glu775Lys 4:2941066:C:T 26.81 0.00E+00 34.0  1 223 1 0  3 212 0 0  

Splice donor[*],Δ 4:2941265:C:T 24.63 2.69E-05 9.6  2 222 1 0  4 211 0 0  

Leu749Phe 4:2941327:G:A 36.83 6.09E-04 10.9  0 225 0 0  0 214 1 0  

Gln716Arg 4:2943361:T:C 45.99 4.16E-01 0.0  4 103 101 17  3 102 89 21  

Arg697Cys 4:2943419:G:A 37.98 5.29E-03 26.5  1 224 0 0  0 197 18 0  

Thr558Ala 4:2946920:T:C 34.12 5.00E-03 22.8  0 218 7 0  0 208 7 0  

Arg537Gln 4:2948164:C:T 29.97 4.48E-05 33.0  0 224 1 0  0 215 0 0  

Met525Thr 4:2948200:A:G 36.10 0.00E+00 12.9  0 225 0 0  0 214 1 0  

Ala524Val 4:2948203:G:A 36.12 4.12E-04 24.7  1 223 1 0  0 214 1 0  

Tyr424Cys 4:2951672:T:C 36.86 2.69E-05 10.0  0 225 0 0  1 214 0 0  

Leu380Ser 4:2951804:A:G 70.73 4.26E-01 9.5  0 99 108 18  0 99 94 22  

Arg295Gln 4:2952959:C:T 21.04 8.06E-05 22.4  17 208 0 0  20 194 1 0  

Asp251Asn 4:2954121:C:T 16.85 2.07E-04 34.0  100 125 0 0  119 95 1 0  

Leu171Pro 4:2956251:A:G 25.07 2.78E-04 11.5  11 213 1 0  11 204 0 0  

Asp149Glu 4:2958422:A:T 20.59 NA 0.0  18 206 1 0  20 195 0 0  

Asn141Ser 4:2958447:T:C 27.77 9.85E-05 8.4  2 222 1 0  0 215 0 0  

Lys103Gln 4:2959356:T:G 25.37 5.37E-05 12.5  2 223 0 0  7 207 1 0  

Gly8Trp 4:2965025:C:A 21.74 0.00E+00 19.8  149 76 0 0  132 83 0 0  

NOP14
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Appendix 8 – Modelling estimated STR length in MSH3 

Each point represents one HD patient using the continous phenotype group where at least 

two of the four STRs observed in MSH3 are called (N=108; 45 early, 63 late) (methods 

2.7.2.3). Note that ‘called’ here can be a HomR, Het or HomV call. The y-axis uses corrected 

residual from MiSeq (pure CAG length to calculate age at motor onset residual). MSH3 

genotype is calculated from the short tandem Pro/Ala repeat where homozygotes are treated 

as having twice the genotype. Canonical genotype lengths are given 0 values. The x-axis 

has been jittered to improved readability. See 4.6.4 for this figure in context. 
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Appendix 9 – Average coverage of target genes from WES 

Shown is the coverage for exons of canonical transcripts for 12 of the 13 candidate genes examined in 4.6 (note MLH3 is not included). 

Calculations used bedtools as described (methods 2.7.2.4). N=483 (2 samples, 1 early and 1 late, failed coverage determination). 

 

  Gene Transcript (canonical) Plate 1 Plate 2 Plate 3 Plate 4 Plate 5 Plate 6 Plate 7 Average   

 EXO1 ENST00000366548.3 43.02 40.83 41.56 43.75 42.26 39.54 29.47 39.63  

 FAN1 ENST00000362065.4 32.75 29.33 31.01 30.10 29.65 29.54 24.74 29.08  

 GPR151 ENST00000311104.2 27.63 21.61 24.25 21.73 20.82 23.66 23.95 22.66  

 HTT ENST00000355072.5 30.03 24.21 29.03 27.01 26.83 26.67 24.19 26.25  

 LIG1 ENST00000263274.7 70.91 53.21 66.40 56.94 52.64 57.91 59.50 57.40  

 MLH1 ENST00000231790.2 90.65 70.57 82.70 82.02 78.07 75.82 64.27 75.50  

 MSH3 ENST00000265081.6 50.07 44.54 48.46 48.91 48.40 44.23 33.61 44.69  

 OGG1 ENST00000302036.7 50.72 39.86 47.41 41.41 38.76 42.45 38.98 41.31  

 PMS1 ENST00000441310.2 39.43 36.85 38.17 42.08 39.08 35.74 25.95 36.33  

 PMS2 ENST00000265849.7 85.89 67.21 81.74 80.62 78.36 77.86 58.93 74.05  

 RRM2B ENST00000251810.3 15.86 14.32 15.44 15.84 15.23 14.26 11.23 14.38  

 SYT9 ENST00000318881.6 23.96 18.02 21.24 19.25 17.62 18.41 17.37 18.59  

  TCERG1 ENST00000296702.5 32.71 25.95 33.32 25.59 23.88 23.97 22.84 25.60   

 

 



287 
 

Appendix 10 – Variant-by-variant logistic regression in exomes 

The tables below show the top 20 (lowest p value) variant sites identified by variant-by-variant logistic regression analyses (Wald) in the 

dichotomous (N=440; 225 early, 215 late) HD exomes (see 4.7). The top table (A) shows results for nonsynonymous damaging (NSD) variants 

(CADD ≥20) or where CADD was missing, and the bottom table (B) for predicted loss-of-function (LoF) variants. No MAF or other filters were 

used. Covariates used: PC1-5 and mean variant depth. The top 20 variants are shown in each table.  

 

A Variant DP gnomAD Gene CADD β SE p  

 14:106330446:T:C 3.12E+01 2.05E-04 IGHJ4 NA -66.15 15.38 1.71E-05  

 5:43502596:G:A 1.85E+01 9.61E-06 C5orf34 23.00 -129.24 30.19 1.87E-05  

 1:148342488:T:C 6.45E+01 3.51E-01 NBPF20 NA 1.05 0.26 5.59E-05  

 5:140762659:C:T 1.64E+01 4.66E-04 PCDHGA7 34.00 -180.12 46.51 1.08E-04  

 17:65716059:A:G 1.78E+01 1.87E-05 NOL11 28.90 -162.77 44.21 2.31E-04  

 2:219868693:C:T 1.62E+01 3.52E-04 CCDC108 23.70 -281.95 77.92 2.96E-04  

 19:53571679:T:C 1.61E+01 1.21E-03 ZNF160 23.60 -208.44 57.85 3.14E-04  

 19:12358222:A:T 1.68E+01 NA ZNF44 NA -308.86 86.60 3.61E-04  

 9:95237024:C:CTCA 1.78E+01 NA ASPN NA -0.81 0.23 3.92E-04  

 9:94495611:G:A 2.08E+01 5.49E-05 ROR2 32.00 336.65 95.84 4.44E-04  

 3:108118027:C:A 3.73E+01 1.17E-04 MYH15 28.20 -225.62 65.85 6.12E-04  

 7:156433296:A:G 1.50E+01 9.93E-04 C7orf13 NA 70.40 20.60 6.30E-04  

 1:223991119:G:T 1.65E+01 8.99E-02 TP53BP2 28.90 1.22 0.36 6.68E-04  

 22:38483165:T: 
TCATGGGGGA 

2.17E+01 1.39E-04 BAIAP2L2 NA -452.61 133.95 7.28E-04  

 22:50969647:C:G 4.25E+01 4.01E-02 ODF3B 23.00 1.39 0.41 8.03E-04  

 2:11295712:C:G 1.73E+01 0.00E+00 PQLC3 22.80 98.59 29.42 8.04E-04  

 14:106330445:G:C 3.09E+01 0.00E+00 IGHJ4 NA -363.57 108.83 8.36E-04  

 14:92480795:T:A 2.42E+01 4.89E-04 TRIP11 20.80 -272.80 81.93 8.69E-04  

 1:180148012:G:C 3.91E+01 1.59E-01 QSOX1 31.00 0.65 0.20 1.09E-03  

Non-synonymous (NS) variants, CADD PHRED≥20 (or missing) 
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B Variant DP gnomAD Gene CADD β SE p  

 19:38055666:TC:T 1.64E+01 NA ZNF571 NA -296.06 72.24 4.16E-05  

 6:154567863:C:T 2.56E+01 7.06E-02 OPRM1 34.00 -1.18 0.31 1.23E-04  

 11:31811483:TACTGTAA:T 2.32E+01 1.05E-03 PAX6 NA -58.72 16.68 4.32E-04  

 16:81012303:C:A 2.52E+01 2.06E-01 CMC2 NA 0.64 0.19 6.03E-04  

 10:124214484:TTC:T 2.03E+01 0.00E+00 ARMS2 NA -441.27 133.18 9.22E-04  

 X:46360423:G:A 2.11E+01 6.45E-03 ZNF674 32.00 -79.32 24.15 1.02E-03  

 15:55722882:C:A 2.19E+01 8.62E-02 DYX1C1 42.00 -0.88 0.27 1.28E-03  

 17:67190117:AAT:A 1.64E+01 1.04E-03 ABCA10 NA -114.05 35.42 1.28E-03  

 2:107074109:G:A 1.35E+01 9.21E-04 RGPD3 35.00 -69.70 22.20 1.69E-03  

 1:153907305:G:GC 4.30E+01 1.30E-02 DENND4B NA 1.35 0.45 2.62E-03  

 17:28887134:G:A 8.09E+01 6.83E-02 TBC1D29 0.00 0.86 0.29 2.66E-03  

 5:39316049:G:GCATAAAA 1.61E+01 2.73E-05 C9 NA -182.71 61.09 2.78E-03  

 11:31811483:TA:T 2.25E+01 1.05E-03 PAX6 NA -105.26 35.26 2.83E-03  

 6:17601125:C:CA 1.77E+01 NA FAM8A1 NA 63.42 21.29 2.89E-03  

 7:99722497:C:T 1.48E+01 1.53E-04 CNPY4 38.00 -191.81 64.88 3.11E-03  

 14:106330441:CA:C 3.13E+01 NA IGHJ4 NA -342.87 117.02 3.39E-03  

 2:98810932:C:T 1.98E+01 4.48E-05 VWA3B 35.00 -239.04 83.55 4.22E-03  

 6:17601127:G:GCCTAAC 1.76E+01 NA FAM8A1 NA 60.78 21.35 4.41E-03  

 5:149374879:CT:C 3.22E+01 6.57E-01 TIGD6 NA 0.44 0.15 4.42E-03  

 14:22690191:G:A 3.39E+01 7.23E-02 TRAV35 NA -0.78 0.27 4.55E-03  

Loss-of-function (LoF) variants 
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Appendix 11 – Whole-exome logistic regression weighting on MAF 

Indicated are the β, SE and p values for the top 15 genes using logistic burden regression (Wald) in Hail for the dichotomous population 

weighting on minor allele frequency (MAF) from gnomAD (N=440; 225 early, 215 late) (see 4.7). Filters used (for variants): VQSR≥98.5, MAF 

(0.1, 1 and 2%), NS damaging (LoF or CADD PHRED ≥20), call rate ≥75%. Covariates used (for samples): PC1-5, BVR, mean variant depth. 

Weighting used MAF from gnomAD (1/MAF); for the imputed values (bottom table), imputed 1/MAF used 1000000. Indicated at the top of each 

column are the adjusted (adj) values for each MAF cut-off, which is a count of how many genes/ORFs were tested that resulted in a p value 

and have >5 variants at the MAF tested. β: standardised beta; SE: standard error; MAF: minor allele frequency; PC: Principal component; BVR: 

baseline variant rate. 

 

  MAF = 0.1% (N=698)   MAF = 1% (N=2768)   MAF = 2% (N=3424)   

  Gene β SE p  Gene β SE p  Gene β SE p  

 DENND4B 9.16E-02 2.99E-02 2.21E-03  CUBN 5.89E-02 1.64E-02 3.29E-04  DENND4B 9.33E-02 3.00E-02 1.89E-03  

 CUBN 7.12E-02 2.58E-02 5.72E-03  DENND4B 9.18E-02 2.99E-02 2.17E-03  SIPA1L2 7.11E-02 2.45E-02 3.72E-03  

 MYO18B 4.63E-02 1.95E-02 1.75E-02  SIPA1L2 7.10E-02 2.45E-02 3.81E-03  ERAP2 -7.87E-02 2.75E-02 4.24E-03  

 MMP21 -9.75E-02 4.35E-02 2.49E-02  ERAP2 -7.92E-02 2.75E-02 3.98E-03  CUBN 2.39E-02 8.45E-03 4.60E-03  

 MACF1 -4.57E-02 2.04E-02 2.50E-02  NOP14 -3.94E-02 1.52E-02 9.58E-03  AKR1C3 6.37E-02 2.28E-02 5.23E-03  

 GLDC -5.94E-02 2.70E-02 2.79E-02  GLI3 4.89E-02 1.89E-02 9.68E-03  ZNF462 -1.22E-01 4.36E-02 5.25E-03  

 STAB1 -4.54E-02 2.08E-02 2.88E-02  C9 7.42E-02 2.89E-02 1.02E-02  PGC 5.18E-01 1.91E-01 6.70E-03  

 ITGB4 -3.85E-02 1.78E-02 3.05E-02  CACNA1I -7.01E-02 2.82E-02 1.30E-02  TRIM66 -4.06E-02 1.54E-02 8.25E-03  

 TENM2 -5.38E-02 2.52E-02 3.33E-02  ATP1A4 -5.02E-02 2.02E-02 1.32E-02  GLI3 4.89E-02 1.89E-02 9.58E-03  

 TRPM1 5.49E-02 2.59E-02 3.40E-02  ANXA11 7.86E-02 3.19E-02 1.37E-02  C9 7.42E-02 2.89E-02 1.01E-02  

 FBRSL1 9.24E-02 4.36E-02 3.41E-02  FAN1 4.02E-02 1.64E-02 1.45E-02  DNAJA4 -7.01E-02 2.73E-02 1.02E-02  

 CEP350 6.00E-02 2.91E-02 3.89E-02  ZNF462 -1.07E-01 4.40E-02 1.54E-02  NLRP1 -1.13E-01 4.42E-02 1.03E-02  

 INTS1 -6.11E-02 3.00E-02 4.14E-02  KIAA0556 -5.25E-02 2.19E-02 1.63E-02  RNMTL1 3.14E-02 1.23E-02 1.05E-02  

 SYT10 -9.07E-02 4.44E-02 4.14E-02  DENND2C 6.93E-02 2.90E-02 1.68E-02  NOP14 -3.89E-02 1.53E-02 1.07E-02  

 EIF4G1 -4.61E-02 2.26E-02 4.14E-02  MYO1A 4.08E-02 1.72E-02 1.76E-02  PLEKHA7 -2.58E-02 1.03E-02 1.21E-02  

MAF not imputed, weighted (1/MAF) 
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  MAF = 0.1% (N=736)  MAF = 1% (N=2796)  MAF = 2% (N=3450)   

  Gene β SE p  Gene β SE p  Gene β SE p   

 DENND4B 1.38E-06 4.53E-07 2.32E-03  DENND4B 1.38E-06 4.52E-07 2.28E-03  DENND4B 1.40E-06 4.54E-07 1.98E-03  

 GAPDHS -1.24E-05 6.80E-06 6.86E-02  TTN-AS1 1.91E-02 9.14E-03 3.64E-02  PGC 3.91E-02 1.44E-02 6.70E-03  

 FJX1 -7.29E-04 5.11E-04 1.54E-01  ENTHD2 -1.45E-02 6.96E-03 3.73E-02  DNAJA4 -2.67E-02 1.14E-02 1.95E-02  

 PRKRIR -7.31E-05 5.20E-05 1.60E-01  ENPP7 4.81E-03 2.36E-03 4.17E-02  ATG4B -1.93E-02 8.46E-03 2.28E-02  

 GPR98 1.34E-06 1.00E-06 1.81E-01  NSG1 8.63E-03 4.32E-03 4.58E-02  SAMD10 -1.92E-02 8.55E-03 2.48E-02  

 RRH 7.76E-05 5.81E-05 1.81E-01  NDUFA10 1.62E-02 8.20E-03 4.77E-02  CENPBD1 1.19E-02 5.49E-03 3.06E-02  

 OR4K1 -2.74E-04 2.06E-04 1.83E-01  CYR61 1.44E-02 7.40E-03 5.11E-02  KIAA1644 -3.40E-02 1.59E-02 3.29E-02  

 GPR142 7.07E-04 5.33E-04 1.84E-01  OR5H2 -1.25E-02 6.50E-03 5.35E-02  VPS37C -2.61E-02 1.24E-02 3.53E-02  

 PLXND1 -1.06E-04 8.08E-05 1.89E-01  TNFRSF13C 1.08E-02 5.61E-03 5.36E-02  ENTHD2 -1.44E-02 6.96E-03 3.80E-02  

 SLIT3 4.58E-04 3.50E-04 1.91E-01  MCEE 7.09E-03 3.69E-03 5.48E-02  TTN-AS1 1.90E-02 9.14E-03 3.81E-02  

 GOLGB1 -1.44E-06 1.12E-06 1.98E-01  GAPVD1 6.41E-03 3.43E-03 6.17E-02  OR1I1 -1.16E-02 5.65E-03 3.97E-02  

 IFT122 3.96E-05 3.08E-05 1.99E-01  TXNDC17 1.65E-02 8.88E-03 6.32E-02  ENPP7 4.83E-03 2.37E-03 4.13E-02  

 C19orf44 -3.05E-04 2.39E-04 2.03E-01  TTC6 -2.32E-03 1.26E-03 6.56E-02  RAP1B -2.93E-02 1.44E-02 4.26E-02  

 USH1C 1.04E-04 8.13E-05 2.03E-01  OXR1 -1.29E-02 7.04E-03 6.67E-02  KIF9 1.87E-02 9.32E-03 4.51E-02  

  GLI1 -6.09E-04 4.83E-04 2.08E-01  GAPDHS -1.24E-05 6.79E-06 6.70E-02  NSG1 8.59E-03 4.32E-03 4.66E-02   

Imputed MAF, weighted (1/MAF)
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Appendix 12 – Whole-exome logistic regression weighted on deleteriousness 

Indicated are the β, SE and p values for the top 15 genes using logistic burden regression (Wald) in Hail weighting on deleteriousness (CADD 

PHRED score) (see 4.7). Filters used (for variants): VQSR≥98.5, MAF (0.1, 1 and 2%), NS damaging (LoF or CADD PHRED ≥20), call rate 

≥75%. Covariates used (for samples): PC1-5, BVR, mean variant depth. Variants were weighted using CADD PHRED; missing CADD scores 

were imputed as 15. Indicated at the top of each column are the adjusted (adj) values for each MAF cut-off, which is a count of how many 

genes/ORFs were tested that resulted in a p value and have >5 variants at the MAF tested. β: standardised beta; SE: standard error; MAF: 

minor allele frequency; PC: Principal component; BVR: baseline variant rate. 

 

 MAF = 0.1% (N=1590 adj)  MAF = 1% (N=4261 adj)  MAF = 2% (N=5084 adj)  

 Gene β SE p  Gene β SE p  Gene β SE p  

 DENND4B 9.16E-02 2.99E-02 2.21E-03  CUBN 5.89E-02 1.64E-02 3.29E-04  DENND4B 9.33E-02 3.00E-02 1.89E-03  

 CUBN 7.12E-02 2.58E-02 5.72E-03  DENND4B 9.18E-02 2.99E-02 2.17E-03  SIPA1L2 7.11E-02 2.45E-02 3.72E-03  

 MYO18B 4.63E-02 1.95E-02 1.75E-02  SIPA1L2 7.10E-02 2.45E-02 3.81E-03  ERAP2 -7.87E-02 2.75E-02 4.24E-03  

 MMP21 -9.75E-02 4.35E-02 2.49E-02  ERAP2 -7.92E-02 2.75E-02 3.98E-03  CUBN 2.39E-02 8.45E-03 4.60E-03  

 MACF1 -4.57E-02 2.04E-02 2.50E-02  NOP14 -3.94E-02 1.52E-02 9.58E-03  AKR1C3 6.37E-02 2.28E-02 5.23E-03  

 GLDC -5.94E-02 2.70E-02 2.79E-02  GLI3 4.89E-02 1.89E-02 9.68E-03  ZNF462 -1.22E-01 4.36E-02 5.25E-03  

 STAB1 -4.54E-02 2.08E-02 2.88E-02  C9 7.42E-02 2.89E-02 1.02E-02  PGC 5.18E-01 1.91E-01 6.70E-03  

 ITGB4 -3.85E-02 1.78E-02 3.05E-02  CACNA1I -7.01E-02 2.82E-02 1.30E-02  TRIM66 -4.06E-02 1.54E-02 8.25E-03  

 TENM2 -5.38E-02 2.52E-02 3.33E-02  ATP1A4 -5.02E-02 2.02E-02 1.32E-02  GLI3 4.89E-02 1.89E-02 9.58E-03  

 TRPM1 5.49E-02 2.59E-02 3.40E-02  ANXA11 7.86E-02 3.19E-02 1.37E-02  C9 7.42E-02 2.89E-02 1.01E-02  

 FBRSL1 9.24E-02 4.36E-02 3.41E-02  FAN1 4.02E-02 1.64E-02 1.45E-02  DNAJA4 -7.01E-02 2.73E-02 1.02E-02  

 CEP350 6.00E-02 2.91E-02 3.89E-02  ZNF462 -1.07E-01 4.40E-02 1.54E-02  NLRP1 -1.13E-01 4.42E-02 1.03E-02  

 INTS1 -6.11E-02 3.00E-02 4.14E-02  KIAA0556 -5.25E-02 2.19E-02 1.63E-02  RNMTL1 3.14E-02 1.23E-02 1.05E-02  

 SYT10 -9.07E-02 4.44E-02 4.14E-02  DENND2C 6.93E-02 2.90E-02 1.68E-02  NOP14 -3.89E-02 1.53E-02 1.07E-02  

 EIF4G1 -4.61E-02 2.26E-02 4.14E-02  MYO1A 4.08E-02 1.72E-02 1.76E-02  PLEKHA7 -2.58E-02 1.03E-02 1.21E-02  

 

 



292 
 

Appendix 13 – Whole-exome linear regression weighted on deleteriousness 

Indicated are the β, SE and p values for the top 15 genes using linear burden regression in Hail weighting on deleteriousness (CADD PHRED) 

(see 4.8). Filters used (for variants): VQSR≥98.5, MAF (0.1, 1 and 2%), NS damaging (LoF or CADD PHRED ≥20), call rate ≥75%. Covariates 

used (for samples): PC1-5, BVR, mean variant depth. Variants were weighted using CADD PHRED; missing CADD scores were imputed as 15 

for both tables. Indicated at the top of each column are the adjusted (adj) values for each MAF cut-off, which is a count of how many 

genes/ORFs were tested that resulted in a p value and have >5 variants at the MAF tested. β: standardised beta; SE: standard error; MAF: 

minor allele frequency; PC: Principal component; BVR: baseline variant rate. 

 

  MAF = 0.1% (N=1614)   MAF = 1% (N=4307)   MAF = 2% (N=5129)   

  Gene β SE p   Gene β SE p   Gene β SE p   

 CUBN -0.374 0.102 2.70E-04  CUBN -0.305 0.069 1.30E-05  ZNF462 0.495 0.118 3.24E-05  

 CACNA1G -0.616 0.174 4.31E-04  SIPA1L2 -0.429 0.116 2.37E-04  SIPA1L2 -0.430 0.116 2.27E-04  

 ZNF462 0.479 0.140 6.83E-04  TEKT1 0.806 0.232 5.55E-04  PGC -1.315 0.376 5.22E-04  

 FBRSL1 -0.543 0.162 8.54E-04  ERAP2 0.391 0.115 7.06E-04  TEKT1 0.804 0.232 5.68E-04  

 CGN 0.673 0.208 1.26E-03  KIAA0319 -0.536 0.158 7.48E-04  KIAA0319 -0.542 0.158 6.57E-04  

 DENND4B -0.517 0.162 1.54E-03  ZNF462 0.450 0.133 8.13E-04  ERAP2 0.389 0.115 7.77E-04  

 GLRA4 -0.536 0.170 1.77E-03  CACNA1G -0.524 0.157 9.22E-04  NLRP1 0.419 0.126 9.14E-04  

 KIAA0319 -0.573 0.200 4.30E-03  ANXA11 -0.464 0.144 1.34E-03  MUT -0.397 0.121 1.10E-03  

 GLDC 0.387 0.137 5.01E-03  GLRA4 -0.542 0.171 1.61E-03  ANXA11 -0.465 0.143 1.26E-03  

 DMRT2 -0.681 0.244 5.55E-03  SLC38A2 0.563 0.180 1.91E-03  SLC38A2 0.565 0.180 1.85E-03  

 PRKRIR 0.471 0.169 5.64E-03  ENPP7 -0.403 0.130 2.02E-03  AKR1C3 -0.388 0.124 1.85E-03  

 COL17A1 0.424 0.154 6.24E-03  GRTP1 0.682 0.222 2.26E-03  CUBN -0.157 0.050 1.92E-03  

 NUP210L -0.472 0.174 6.90E-03  AMPD2 -1.209 0.402 2.80E-03  GRTP1 0.685 0.221 2.09E-03  

 MMP21 0.413 0.152 7.01E-03  NMUR2 0.551 0.185 3.09E-03  OR1I1 0.315 0.102 2.24E-03  

  SON 0.464 0.172 7.04E-03  NUP210L -0.478 0.161 3.20E-03  NCF2 0.447 0.146 2.36E-03   

Weighted (deleteriousness), uncorrected AMO residual (polyglutamine length – 2) 
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 MAF = 0.1% (N=1614)  MAF = 1% (N=4307)  MAF = 2% (N=5129)  

 Gene β SE p  Gene β SE p  Gene β SE p  

 CUBN -0.366 0.097 1.94E-04  CUBN -0.292 0.066 1.35E-05  ZNF462 0.458 0.113 6.05E-05  

 FBRSL1 -0.544 0.155 4.84E-04  SIPA1L2 -0.411 0.111 2.32E-04  SIPA1L2 -0.412 0.111 2.24E-04  

 CACNA1G -0.582 0.167 5.16E-04  ERAP2 0.373 0.110 7.43E-04  RNMTL1 -0.220 0.063 5.81E-04  

 CGN 0.665 0.199 8.74E-04  KIAA0319 -0.507 0.151 8.62E-04  CUBN -0.166 0.048 6.25E-04  

 GLRA4 -0.545 0.163 9.01E-04  DENND4B -0.521 0.155 8.66E-04  DENND4B -0.527 0.155 7.60E-04  

 DENND4B -0.518 0.155 9.20E-04  GLRA4 -0.547 0.163 8.90E-04  ERAP2 0.373 0.110 7.80E-04  

 ZNF462 0.425 0.134 1.68E-03  CACNA1G -0.497 0.151 1.03E-03  KIAA0319 -0.512 0.151 7.83E-04  

 GLDC 0.412 0.131 1.79E-03  ANXA11 -0.443 0.138 1.37E-03  NLRP1 0.401 0.120 9.30E-04  

 DMRT2 -0.681 0.234 3.74E-03  MUT -0.369 0.116 1.58E-03  CACNA1G -0.498 0.150 1.01E-03  

 SON 0.462 0.164 5.07E-03  ZNF708 -0.703 0.223 1.72E-03  GLRA4 -0.535 0.163 1.09E-03  

 TEKT2 -0.639 0.227 5.11E-03  NCF2 0.440 0.140 1.79E-03  AKR1C3 -0.389 0.119 1.13E-03  

 KIAA0319 -0.528 0.191 5.94E-03  ZNF462 0.402 0.128 1.79E-03  ANXA11 -0.445 0.137 1.29E-03  

 PRKRIR 0.448 0.162 6.01E-03  GRTP1 0.660 0.213 2.03E-03  PGC -1.152 0.361 1.54E-03  

 ZNF530 -0.709 0.261 6.75E-03  SLC38A2 0.533 0.173 2.17E-03  ZNF708 -0.704 0.223 1.68E-03  

 NUP210L -0.447 0.167 7.54E-03  SON 0.433 0.143 2.69E-03  NCF2 0.442 0.140 1.69E-03  

Weighted (deleteriousness), corrected AMO residual (pure HTT CAG length) 
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Appendix 14 – Whole-exome continuous SKAT-O test weighted on deleteriousness 

Indicated are the p values for the top 15 genes from a continuous whole-exome SKAT-O test using the corrected AMO residual (pure CAG 

length) and weighted on deleteriousness (see 4.9). Filters used (for variants): MAF (1%), NS damaging (LoF or CADD PHRED ≥20), 

missingness ≤25%. Covariates used (for samples): PC1-5, BVR, mean variant depth. Variants were weighted on CADD PHRED score, and 

missing scores were imputed as 30 for LoF variants and 20 for other NS variants missing CADD PHRED scores. Only genes with >5 variants 

were tested, leaving 4737 genes (Bonferroni threshold p=1.06E-05). N=485 exomes from the continuous HD group. BVR: baseline variant rate. 

 

 Gene p  

 CUBN 4.48E-05  

 SIPA1L2 7.17E-04  

 ERAP2 8.12E-04  

 MUT 8.79E-04  

 GLRA4 9.92E-04  

 DENND4B 1.31E-03  

 ANXA11 1.87E-03  

 KIAA0319 1.95E-03  

 ZNF708 1.96E-03  

 NOP14 2.02E-03  

 CACNA1G 2.04E-03  

 GRTP1 2.20E-03  

 NCF2 2.69E-03  

 SLC38A2 3.04E-03  

 FBP2 3.06E-03  
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Appendix 15 – Whole-exome auxiliary analysis excluding non-

European individuals 

Shown in this section are the results from whole-exome logistic and linear burden 

regression, and dichotomous and continuous SKAT(-O) tests where individuals with non-

European ancestries (as determined by Peddy in 4.3.4) were excluded. (A) An extended 

flowchart showing the QC process used (this is a modified version of Fig 4.9 in 4.3.6 that 

shows the removal of individuals with non-European ancestry); (B) Logistic burden 

regression (Wald); (C) Linear burden regression using the uncorrected residual; (D) Linear 

burden regression using the corrected residual; (E) SKAT and SKAT-O tests at MAF≤1%; (F) 

Logistic burden regression (Wald) for candidate genes; (G) Linear burden regression 

(corrected residual) for candidate genes; (H) SKAT(-O) analyses (both logistic and linear 

regression) for candidate genes. All logistic tests had N=426 exomes and all 

linear/continuous tests had N=469 individuals. For B-E, the 15 genes with the lowest p value 

and >5 variants at the tested MAF are shown, and whole-exome genes are emboldened. For 

F-H, nominally significant p values (p<0.05) are emboldened. Logistic Bonferroni p 

thresholds: MAF 0.1% p=3.57E-05 (1399 genes); MAF 1% p=1.23E-05 (4052 genes); MAF 

2% p=1.02E-05 (4906 genes). For linear Bonferroni p thresholds: MAF 0.1% p=2.98E-05 

(1679 genes); MAF 1% p=1.12E-05 (4482 genes); MAF 2% p=9.43E-06 (5302 genes). 

Filters used (for variants): VQSR≥98.5, MAF (0.1, 1 and 2%), NS damaging (LoF or CADD 

PHRED ≥20), call rate ≥75%. Covariates used (for samples): PC1-5, BVR, mean variant 

depth. No weighting of variants was used. B: unstandardised beta; SE: standard error; MAF: 

minor allele frequency; PC: Principal component; BVR: baseline variant rate; Uncor: linear 

regression on the uncorrected (polyglutamine-2) AMO residual; Cor: Linear regression on 

the corrected (pure CAG) AMO residual.
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B MAF≤0.1% (N=1399 adj)   MAF≤1% (N=4052 adj)   MAF≤2% (4906 adj)   
 Gene B SE p  Gene B SE p  Gene B SE p   
 

DENND4B 1.51E+00 4.74E-01 1.38E-03 
 

CUBN 1.57E+00 4.36E-01 3.27E-04 
 

DENND4B 1.55E+00 4.75E-01 1.08E-03  
 

CUBN 1.78E+00 6.58E-01 6.74E-03 
 

DENND4B 1.52E+00 4.73E-01 1.31E-03 
 

SIPA1L2 1.87E+00 6.39E-01 3.39E-03  
 

PCDH15 -1.59E+00 6.46E-01 1.41E-02 
 

SIPA1L2 1.87E+00 6.38E-01 3.45E-03 
 

ZNF462 -2.98E+00 1.04E+00 4.08E-03  
 

MYO18B 1.24E+00 5.28E-01 1.93E-02 
 

GLI3 1.59E+00 5.57E-01 4.24E-03 
 

PCDH15 -1.11E+00 3.85E-01 4.12E-03  
 

TRPM1 1.85E+00 8.09E-01 2.23E-02 
 

ERAP2 -2.90E+00 1.04E+00 5.27E-03 
 

GLI3 1.59E+00 5.56E-01 4.34E-03  
 

DNHD1 1.10E+00 4.96E-01 2.60E-02 
 

PCDH15 -1.52E+00 5.67E-01 7.37E-03 
 

ERAP2 -2.88E+00 1.04E+00 5.55E-03  
 

TENM2 -1.48E+00 6.68E-01 2.68E-02 
 

MYO1A 1.29E+00 5.01E-01 9.96E-03 
 

PGC 2.12E+00 7.73E-01 6.02E-03  
 

MMP21 -2.36E+00 1.07E+00 2.76E-02 
 

NOP14 -9.94E-01 3.90E-01 1.09E-02 
 

CUBN 6.47E-01 2.42E-01 7.52E-03  
 

EIF4G1 -1.36E+00 6.18E-01 2.79E-02 
 

FAN1 1.05E+00 4.14E-01 1.10E-02 
 

DNAJA4 -2.00E+00 7.67E-01 9.08E-03  
 

LRIG1 1.71E+00 7.90E-01 3.08E-02 
 

SPECC1L -1.22E+00 4.83E-01 1.12E-02 
 

RNMTL1 7.77E-01 2.99E-01 9.37E-03  
 

MYO1A 2.25E+00 1.04E+00 3.13E-02 
 

C9 1.95E+00 7.72E-01 1.17E-02 
 

WDR64 -1.29E+00 5.00E-01 9.64E-03  
 

FBRSL1 2.31E+00 1.08E+00 3.18E-02 
 

ZNF462 -2.63E+00 1.05E+00 1.23E-02 
 

SPECC1L -1.25E+00 4.83E-01 9.78E-03  
 

GLDC -1.67E+00 7.89E-01 3.40E-02 
 

UNC5B -1.60E+00 6.50E-01 1.36E-02 
 

MYO1A 1.29E+00 5.01E-01 1.02E-02  
 

SYT10 -2.23E+00 1.07E+00 3.66E-02 
 

ANXA11 1.87E+00 7.67E-01 1.49E-02 
 

NLRP1 -2.65E+00 1.05E+00 1.14E-02  
 

MEGF8 2.23E+00 1.08E+00 3.97E-02 
 

CACNA1I -1.62E+00 6.71E-01 1.56E-02 
 

C9 1.95E+00 7.72E-01 1.15E-02   

Logistic burden regression
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C MAF≤0.1% (N=1679)   MAF≤1% (N=4482)   MAF≤2% (N=5305)   

  Gene B SE p   Gene B SE p   Gene B SE p   

 CACNA1G -16.100 4.439 3.19E-04 
 

CUBN -8.745 1.985 1.31E-05 
 

ZNF462 13.868 3.247 2.36E-05  

 CUBN -10.882 3.096 4.84E-04 
 

ERAP2 12.198 3.284 2.28E-04 
 

ERAP2 12.147 3.291 2.51E-04  

 ZNF462 14.350 4.094 5.01E-04 
 

SIPA1L2 -10.933 3.107 4.76E-04 
 

SIPA1L2 -10.950 3.108 4.68E-04  

 DENND4B -8.466 2.521 8.50E-04 
 

CACNA1G -14.152 4.079 5.71E-04 
 

CACNA1G -14.186 4.077 5.49E-04  

 FBRSL1 -14.086 4.469 1.73E-03 
 

TEKT1 18.336 5.330 6.35E-04 
 

PGC -11.606 3.352 5.85E-04  

 CGN 16.792 5.369 1.88E-03 
 

KIAA0319 -14.581 4.257 6.69E-04 
 

KIAA0319 -14.705 4.263 6.13E-04  

 DLGAP2 -17.359 5.727 2.58E-03 
 

DENND4B -8.544 2.518 7.49E-04 
 

DENND4B -8.683 2.520 6.22E-04  

 KIAA0319 -17.037 5.750 3.20E-03 
 

ZNF462 12.863 3.800 7.73E-04 
 

TEKT1 18.344 5.331 6.32E-04  

 PCDH15 8.977 3.102 3.99E-03 
 

PCDH15 9.455 2.850 9.81E-04 
 

PCDH15 7.547 2.238 8.09E-04  

 GLDC 11.487 4.105 5.36E-03 
 

ENPP7 -10.898 3.329 1.14E-03 
 

ENPP7 -10.904 3.330 1.14E-03  

 SON 11.820 4.305 6.27E-03 
 

FBP2 12.389 3.797 1.19E-03 
 

RNMTL1 -5.242 1.607 1.19E-03  

 CCHCR1 12.667 4.705 7.35E-03 
 

SCYL1 -14.874 4.683 1.59E-03 
 

FBP2 12.390 3.800 1.20E-03  

 PRKRIR 10.927 4.063 7.41E-03 
 

ANXA11 -11.045 3.551 1.99E-03 
 

SCYL1 -14.887 4.684 1.58E-03  

 SYNPO2 13.327 4.984 7.76E-03 
 

NCF2 12.495 4.096 2.42E-03 
 

ANXA11 -11.122 3.549 1.84E-03  

  MIOX 15.318 5.770 8.21E-03 
 

GRTP1 14.252 4.753 2.86E-03 
 

NLRP1 9.583 3.064 1.88E-03   

Linear burden regression (uncorrected residual)
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D MAF≤0.1% (N=1679)   MAF≤1% (N=4482)   MAF≤2% (N=5305)   

  Gene B SE p   Gene B SE p   Gene B SE p   

 CUBN -10.637 2.961 3.64E-04 
 

CUBN -8.335 1.900 1.43E-05 
 

ZNF462 12.793 3.113 4.70E-05  

 CACNA1G -15.179 4.250 3.93E-04 
 

ERAP2 11.714 3.144 2.18E-04 
 

ERAP2 11.709 3.151 2.27E-04  

 DENND4B -8.520 2.410 4.48E-04 
 

DENND4B -8.591 2.408 3.97E-04 
 

DENND4B -8.688 2.410 3.46E-04  

 FBRSL1 -14.134 4.273 1.01E-03 
 

SIPA1L2 -10.551 2.974 4.29E-04 
 

SIPA1L2 -10.555 2.975 4.28E-04  

 CGN 16.511 5.135 1.40E-03 
 

CACNA1G -13.418 3.906 6.46E-04 
 

RNMTL1 -5.383 1.536 5.03E-04  

 ZNF462 12.557 3.926 1.48E-03 
 

KIAA0319 -13.940 4.076 6.81E-04 
 

PGC -11.078 3.209 6.09E-04  

 GLDC 12.210 3.921 1.96E-03 
 

FBP2 12.253 3.633 8.07E-04 
 

CACNA1G -13.460 3.904 6.18E-04  

 PCDH15 8.905 2.967 2.84E-03 
 

PCDH15 8.703 2.731 1.54E-03 
 

KIAA0319 -14.014 4.082 6.51E-04  

 DLGAP2 -16.345 5.483 3.03E-03 
 

NCF2 12.475 3.918 1.55E-03 
 

FBP2 12.283 3.636 7.91E-04  

 KIAA0319 -15.840 5.506 4.20E-03 
 

ENPP7 -10.079 3.190 1.69E-03 
 

PCDH15 7.196 2.143 8.52E-04  

 SON 11.707 4.117 4.66E-03 
 

ANXA11 -10.624 3.400 1.89E-03 
 

CUBN -4.595 1.423 1.33E-03  

 TMC6 -14.212 5.120 5.74E-03 
 

ZNF462 11.385 3.645 1.90E-03 
 

NCF2 12.542 3.914 1.45E-03  

 SYNPO2 13.175 4.767 5.94E-03 
 

SCYL1 -13.897 4.486 2.07E-03 
 

ENPP7 -10.074 3.191 1.70E-03  

 MIOX 15.093 5.520 6.49E-03 
 

FAN1 -6.951 2.265 2.28E-03 
 

ANXA11 -10.680 3.398 1.78E-03  

  PRKRIR 10.364 3.889 7.96E-03 
 

SLC38A2 14.133 4.791 3.34E-03 
 

NLRP1 9.134 2.934 1.97E-03   

Linear burden regression (corrected residual)



300 
 

E Cor (SKAT-O)  Cor (SKAT)  Uncor (SKAT-O)  Uncor (SKAT)  Logistic (SKAT-O)  Logistic (SKAT)  

 Gene p  Gene p  Gene p  Gene p  Gene p  Gene p  

 
CUBN 2.41E-05 

 
DENND4B 7.60E-04 

 
NOP14 1.37E-05 

 
NOP14 5.19E-06 

 NOP14 1.83E-05  
NOP14 4.17E-06 

 

 
ERAP2 5.44E-04 

 
CRAMP1L 1.30E-03 

 
CUBN 2.12E-05 

 
TEKT1 7.04E-04 

 NUP210L 6.18E-05  
TEKT1 2.98E-04 

 

 
DENND4B 9.63E-04 

 
SLC22A14 2.15E-03 

 
ERAP2 5.46E-04 

 
DENND4B 1.41E-03 

 CUBN 7.55E-05  
ST7L 1.19E-03 

 

 
FBP2 1.36E-03 

 
ST7L 2.89E-03 

 
TEKT1 7.76E-04 

 
CRAMP1L 2.26E-03 

 ERAP2 4.61E-04  
DENND4B 1.42E-03 

 

 
KIAA0319 1.39E-03 

 
MUT 3.58E-03 

 
CACNA1G 1.30E-03 

 
NRIP3 2.67E-03 

 KIAA0319 1.03E-03  
FBP2 1.91E-03 

 

 
CACNA1G 1.48E-03 

 
NRIP3 3.84E-03 

 
KIAA0319 1.33E-03 

 
FBP2 2.71E-03 

 ZNF462 1.14E-03  
NRIP3 2.55E-03 

 

 
SIPA1L2 1.66E-03 

 
NOP14 3.97E-03 

 
FBP2 1.62E-03 

 
MUT 3.67E-03 

 MAMDC2 1.81E-03  
PRKRIR 3.18E-03 

 

 
ANXA11 2.24E-03 

 
FGL1 4.23E-03 

 
SIPA1L2 1.64E-03 

 
GNA15 3.90E-03 

 CACNA1G 2.01E-03  
CDC20B 4.05E-03 

 

 
CRAMP1L 2.37E-03 

 
FBP2 4.41E-03 

 
ZNF462 1.71E-03 

 
ST7L 4.05E-03 

 C9 2.35E-03  
CRAMP1L 4.09E-03 

 

 
NCF2 2.71E-03 

 
HGFAC 4.46E-03 

 
DENND4B 1.83E-03 

 
FGL1 4.10E-03 

 NDOR1 2.38E-03  
GNA15 4.94E-03 

 

 
ENPP7 2.86E-03 

 
UNC5B 4.66E-03 

 
ENPP7 1.93E-03 

 
SLC38A2 4.81E-03 

 GRTP1 2.80E-03  
MKI67 5.10E-03 

 

 
PCDH15 3.03E-03 

 
SLC38A2 5.00E-03 

 
PCDH15 2.07E-03 

 
ERAP2 4.86E-03 

 SIPA1L2 2.93E-03  
UNC5B 5.38E-03 

 

 
SLC22A14 3.56E-03 

 
OR2B11 5.02E-03 

 
ANXA11 2.19E-03 

 
SLC22A14 4.96E-03 

 TEKT1 2.98E-03  
MUT 6.54E-03 

 

 
FAN1 3.83E-03 

 
UNK 5.12E-03 

 
SCYL1 2.87E-03 

 
PRKRIR 5.06E-03 

 DENND4B 3.10E-03  
FGL1 6.86E-03 

 

 
MUT 3.86E-03 

 
TEKT1 5.20E-03 

 
MUT 3.32E-03 

 
UNC5B 5.22E-03 

 TGM3 3.12E-03  
SHARPIN 7.28E-03 

 

SKAT(-O) analyses
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F   MAF≤0.1%   MAF≤1%   MAF≤2%   

    B SE p   B SE p   B SE p   

EXO1  
-0.647 0.883 4.64E-01 

 
-0.598 0.348 8.52E-02 

 
-0.600 0.347 8.43E-02 

 

FAN1  
0.721 0.717 3.14E-01 

 
1.052 0.414 1.10E-02 

 
1.035 0.413 1.22E-02 

 

HTT  
-0.439 0.669 5.11E-01 

 
0.178 0.507 7.25E-01 

 
0.186 0.507 7.13E-01 

 

LIG1  
0.244 0.779 7.54E-01 

 
-0.110 0.514 8.31E-01 

 
-0.098 0.514 8.49E-01 

 

MLH1  
-0.359 1.271 7.78E-01 

 
-0.152 0.575 7.92E-01 

 
-0.148 0.575 7.97E-01 

 

MLH3  -0.386 0.659 5.58E-01  0.103 0.426 8.09E-01  0.117 0.426 7.83E-01  

MSH3  
-0.927 0.868 2.86E-01 

 
-0.388 0.668 5.62E-01 

 
-0.375 0.668 5.74E-01 

 

OGG1  -0.647 0.883 4.64E-01  0.188 0.584 7.47E-01  0.192 0.581 7.41E-01  

PMS1  NA NA NA  
NA NA NA 

 
NA NA NA 

 

PMS2  NA NA NA  
NA NA NA 

 
-0.048 0.721 9.47E-01 

 

RRM2B  NA NA NA  
NA NA NA 

 
NA NA NA 

 

SYT9  NA NA NA  
1.510 1.105 1.72E-01 

 
1.481 1.106 1.80E-01 

 

TCERG1  NA NA NA  
-0.236 1.442 8.70E-01 

 
-0.235 1.445 8.71E-01 

 

Logistic burden regression, candidate genes 
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G   MAF≤0.1%   MAF≤1%   MAF≤2%   

    B SE p   B SE p   B SE p   

EXO1  
3.328 5.136 5.17E-01  4.978 2.088 1.76E-02  4.993 2.088 1.72E-02 

 

FAN1  
-4.034 4.527 3.73E-01  -6.951 2.265 2.28E-03  -6.875 2.264 2.53E-03 

 

HTT  
1.383 4.140 7.38E-01  -0.934 3.170 7.68E-01  -0.869 3.167 7.84E-01 

 

LIG1  
-2.335 5.139 6.50E-01  1.138 3.329 7.33E-01  1.084 3.329 7.45E-01 

 

MLH1  
3.799 6.095 5.33E-01  1.558 3.531 6.59E-01  1.570 3.531 6.57E-01 

 

MLH3  2.945 4.308 4.95E-01  -0.117 2.743 9.66E-01  -0.134 2.747 9.61E-01  

MSH3  
1.558 4.576 7.34E-01  1.306 3.799 7.31E-01  1.306 3.800 7.31E-01 

 

OGG1  -24.224 9.566 1.17E-02  -2.138 3.841 5.78E-01  -2.263 3.828 5.55E-01  

PMS1  
4.770 6.846 4.86E-01  11.651 5.568 3.69E-02  11.532 5.565 3.88E-02 

 

PMS2  
-14.283 7.778 6.69E-02  -14.379 7.782 6.53E-02  -0.630 4.531 8.90E-01 

 

RRM2B  NA NA NA  NA NA NA  NA NA NA  

SYT9  NA NA NA  -5.629 5.538 3.10E-01  -5.558 5.547 3.17E-01 
 

TCERG1  
14.430 13.514 2.86E-01  -0.976 9.615 9.19E-01  -0.940 9.617 9.22E-01 

 

Linear burden regression (corrected residual), candidate genes 
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H  Cor (SKAT-O)  Uncor (SKAT-O)  Cor (SKAT)  Uncor (SKAT)  Logistic (SKAT-O)  Logistic (SKAT)  

  p  p  p  p  p  p  

EXO1  3.05E-02  6.77E-02  4.74E-02  6.85E-02  9.54E-02  7.24E-02  

FAN1  3.83E-03  5.75E-03  5.90E-03  8.41E-03  8.95E-03  1.24E-02  

HTT  8.99E-01  8.75E-01  7.61E-01  8.87E-01  1.00E+00  8.96E-01  

LIG1  4.74E-02  3.37E-02  2.70E-02  1.91E-02  3.35E-02  1.93E-02  

MLH1  8.34E-01  6.84E-01  8.32E-01  7.99E-01  7.36E-01  7.13E-01  

MLH3  1.00E+00  8.64E-01  8.25E-01  6.78E-01  8.60E-01  6.71E-01  

MSH3  8.42E-01  8.99E-01  6.40E-01  7.19E-01  8.63E-01  6.72E-01  

OGG1  1.22E-01  1.18E-01  7.74E-02  7.50E-02  1.31E-01  8.40E-02  

PMS1  5.62E-02  6.48E-02  6.48E-02  7.40E-02  1.69E-02  2.30E-02  

PMS2  5.39E-02  3.25E-02  4.20E-01  3.07E-01  4.40E-02  3.69E-01  

RRM2B  NA  NA  NA  NA  NA  NA  

SYT9  3.10E-01  3.24E-01  3.10E-01  3.24E-01  3.54E-01  3.54E-01  

TCERG1  3.74E-01   4.05E-01   2.73E-01   2.98E-01   4.45E-01   3.31E-01  

SKAT(-O), candidate genes
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Appendix 16 – FastQC QC metrics for MiSeq 

Shown are select FastQC QC metrics: sequence length, per-base sequence quality, mean 

sequence quality and GC content per base (this relates to the MiSeq sequencing from 

chapter 5). These data are taken from E86, the longest pure CAG length measured 

(wildtype: (CAG)17CAACAGCCGCCA(CCG)10(CCT)2; expanded: 

(CAG)52CAACAGCCGCCA(CCG)7(CCT)2. Note in the per-base plot, only lengths up to ~270 

should be considered as indicated by the sequence length plot. 
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Appendix 17 – Inter-run consistency of MiSeq 

Shown are MiSeq somatic mosaicism measures for N=49 individuals for whom blood DNA 

was available (see chapter 5; 5.2). These DNA were run on two separate plates to 

investigate batch effects. The plot for CAG length determined for both plates is not shown as 

these were identical between plates (i.e. R2=1, p=0). 
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Appendix 18 – Alternative GLMs for allele structure on residual HD age at motor onset 

Shown are generalised linear models (GLMs) for different structural features of HTT in both expanded and wild-type alleles, regressing 

uncorrected (polyglutamine-2) and corrected (pure CAG length) age at motor onset residuals on various covariates. Individuals previously 

quality controlled from 4.3.6 are used; N=483 as two individuals failed MiSeq sequencing. This is a sister Table to Table 5.4 in 5.3.2 where the 

number of interruptions are coded on a scale (0-3); here alleles are either loss-of-interruption (LOI), canonical or possess additional 

interruptions (INT) (see 2.9.4). Significant p values are emboldened. EXP: Expanded allele; WT: wild-type allele; PolyP: polyproline. B = 

unstandardised coefficient; β = standardised coefficient; SE = standard error. 

 

 

  Uncorrected (N=483)   Corrected (N=483)   

  B β SE p   B β SE p   

CAG tract interruption (EXP, INT) 16.383 0.238 2.976 6.07E-08  9.543 0.145 2.979 1.45E-03  

CAG tract interruption (EXP, LOI) -13.441 -0.195 4.243 1.63E-03  -5.693 -0.086 4.247 1.81E-01  

CAG tract interruption (WT) -2.791 -0.031 3.846 4.68E-01  -2.777 -0.032 3.850 4.71E-01  

CCG tract interruption (EXP) 6.126 0.083 3.189 5.53E-02  6.086 0.086 3.193 5.72E-02  

CCG tract interruption (WT) 5.978 0.074 5.689 2.94E-01  6.158 0.080 5.695 2.80E-01  

PolyP length (EXP) -0.470 -0.048 0.426 2.70E-01  -0.453 -0.048 0.426 2.88E-01  

PolyP length (WT) 0.034 0.002 0.784 9.66E-01   0.081 0.006 0.785 9.18E-01   
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Appendix 19 – SNP genotyping array of lymphoblastoid cells 

Genotyping and analysis were carried as described by the MRC core team (see methods 

2.12) using an Illumina global screening array v2.0. These are the CNVs passing PennCNV 

QC (excluding CNVs <100kb or <10 total SNPs). Note these use the GRCh38 reference 

assembly. This relates to results in section 5.5. 

 

 

Sample ID Signal Intensity File CNV Locus Approx Position Status Length (bp) July 2019 Reanalysis

E06 /home/wptahe/HD_April2019.203480150002_R04C01 None CONFIRMED

E06B /home/wptahe/HD_April2019.203480150002_R03C01 None CONFIRMED

E144 /home/wptahe/HD_April2019.203480150002_R06C02 3q26.1 chr3:162097606-162297315 Duplication 250,000 CONFIRMED

E144 /home/wptahe/HD_April2019.203480150002_R06C02 7q11.21 chr7:62630551-62986989 Duplication 270,000 CONFIRMED

E144B /home/wptahe/HD_April2019.203480150002_R05C02 3q26.1 chr3:162097606-162297315 Duplication 250,000 CONFIRMED

E144B /home/wptahe/HD_April2019.203480150002_R05C02 7q11.21 chr7:62630551-62986989 Duplication 270,000 CONFIRMED

E40 /home/wptahe/HD_April2019.203480150002_R12C02 None CONFIRMED

E40_PE /home/wptahe/HD_April2019.203480150002_R01C01 None CONFIRMED

E40_PL /home/wptahe/HD_April2019.203480150002_R02C01 None CONFIRMED

E40B /home/wptahe/HD_April2019.203480150002_R11C02 None CONFIRMED

E71 /home/wptahe/HD_April2019.203480150002_R10C02 19q13.2-q13.31 chr19:42878161-43192104 Deletion 315,000 new

E71B /home/wptahe/HD_April2019.203480150002_R09C02 19q13.2-q13.31 chr19:42878161-43192104 Deletion 315,000 new

L118 /home/wptahe/HD_April2019.203480150002_R04C02 None CONFIRMED

L118B /home/wptahe/HD_April2019.203480150002_R03C02 None CONFIRMED

L15 /home/wptahe/HD_April2019.203480150002_R08C01 None CONFIRMED

L15B /home/wptahe/HD_April2019.203480150002_R07C01 None CONFIRMED

L21 /home/wptahe/HD_April2019.203480150002_R10C01 22q11.22 chr22:22,300,000-22,904,555 Deletion 600,000 CONFIRMED

L21B /home/wptahe/HD_April2019.203480150002_R09C01 None CONFIRMED

L31 /home/wptahe/HD_April2019.203480150002_R12C01 14q12 chr14:27180734-27290823 Deletion 110,000 new

L31 /home/wptahe/HD_April2019.203480150002_R12C01 22q11.22 chr22:22,300,000-22,904,555 Possible small duplication then deletion 300,000 + 500,000 CONFIRMED

L31B /home/wptahe/HD_April2019.203480150002_R11C01 14q12 chr14:27180734-27290823 Deletion 110,000 new

L96 /home/wptahe/HD_April2019.203480150002_R06C01 14q21.1-q21.2 chr14:43,350,001-43,800,000 Duplication 450,000 CONFIRMED

L96_PE /home/wptahe/HD_April2019.203480150002_R07C02 14q21.1-q21.2 chr14:43,350,001-43,800,000 Duplication 450,000 CONFIRMED

L96_PL /home/wptahe/HD_April2019.203480150002_R08C02 14q21.1-q21.2 chr14:43,350,001-43,800,000 Duplication 450,000 CONFIRMED

L96B /home/wptahe/HD_April2019.203480150002_R05C01 14q21.1-q21.2 chr14:43,350,001-43,800,000 Duplication 450,000 CONFIRMED

N25_PE /home/wptahe/HD_April2019.203480150002_R01C02 19q13.2-q13.31 chr19:42878161-43192104 Deletion 315,000 new

N25_PE /home/wptahe/HD_April2019.203480150002_R01C02 22q11.22 chr22:22,300,000-22,904,555 Deletion 500,000 CONFIRMED

N25_PL /home/wptahe/HD_April2019.203480150002_R02C02 19q13.2-q13.31 chr19:42878161-43192104 Deletion 315,000 new

N25_PL /home/wptahe/HD_April2019.203480150002_R02C02 22q11.22 chr22:22,000,000-22,904,555 Deletion 900,000 CONFIRMED
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