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A macro model for electroadhesive contact

of a soft finger with a touchscreen
I.I. Argatov and F.M. Borodich

Abstract—A contact problem of electroadhesion for a con-
ductive elastic body pressed against a rigid plane surface of a
dielectric coating covering a conductive substrate is formulated
applying the Johnsen–Rahbek approximation for the attractive
surface stresses and the Derjaguin–Muller–Toporov (DMT) hy-
pothesis about the influence of the adhesive stresses on the
deformable shape of the elastic body. An approximate solution
is obtained using the Winkler–Fuss deformation model with the
equivalent (contact load dependent) stiffness coefficient evaluated
according to the Xydas–Kao soft finger model. The friction force
under applied voltage is evaluated as the product of the coefficient
of friction and the integral of the macro contact pressure over
the apparent contact area. The upper and lower estimates for the
friction force are discussed in the case of absence of any external
normal load.

Index Terms—Electroadhesion, elastic contact, soft finger, fric-
tion force, Winkler–Fuss deformation model.

I. INTRODUCTION

When two elastic bodies are pressed one against the other,

both the apparent contact area, A, and the contact approach,

δ, depend on the contact load, FN , the elastic properties

and the shape of the contacting solids. The phenomenon of

adhesion exhibits itself in establishing contact between the

bodies brought into contact even in the absence of external

compressive loads. Physical causes of surface attractive forces

can be different as well as approaches to their modeling [1, 2].

For instance, although both the Johnson–Kendall–Roberts

(JKR) [3] and the Derjaguin–Muller–Toporov (DMT) [4]

theories of the molecular attraction are based on explicit or

implicit use of the Derjaguin approximation and the energy

balance idea [5, 6], these theories differ by their assumptions

about the influence of the surface forces acting between the

contacting surfaces [7, 8].

In recent years (see, e.g., [9]), a considerable research

interest has been paid to modeling of electroadhesion with

application to contact between a finger and a touchscreen (see

Fig. 1). Of a particular interest is the modulation (due to

variable electric voltage) of friction between the finger and

the display screen, which represents the mechanism of one of

emerging haptic technologies [10, 11].

It is known that ‘the arising electrical component of ad-

hesion is especially important for the rapid processes of
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separation of two bodies’ [12]. Therefore, to model the finger-

screen contact one needs to describe properly electroadhesive

interactions of the contacting pair.

Electroadhesion between two nominally flat surfaces having

different electric potentials has been modeled in a number

of publications [10, 13]. The effect of surface roughness was

recently investigated in [14], where, in particular, it is assumed

that the effective loading pressure is represented as the sum

p+pa, where pa is the electric attraction stress and p = FN/A
is the applied pressure. However, the latter assumption (that

is p = const) is expected to be accurate at the micro scale,

whereas at the macro scale the applied pressure is supposed

to vary across the apparent contact area.

b)

FN

a)

Fig. 1. Schematic of contact interaction between a human finger and a
touchscreen (a) and its idealization for an equivalent hemispherical contact
geometry in normal contact under an external load, FN .

Very recently, a JKR-type macro model of electroadhesion

was introduced in [15] via the equivalent specific work of

adhesion. The JKR theoretical framework combined with the

Maugis-Dugdale model of adhesion was used in [16] to

describe the frictional contact between the finger and the

screen under electrovibration. In the present paper, we develop

a DMT-type macro model of electroadhesion by evaluating the

attractive force taking into account the electrostatic attraction

forces acting both inside the contact area and within the annu-

lar zone surrounding the circular contact area. The specificity

of the finger contact deformation is accounted for by means of

the Winkler–Fuss model and the soft finger contact model [17],

which are implemented within a self-consistent framework. A

special focus has been set on the evaluation of the friction

force under electric voltage in the absence of external load.

Since the model by Xydas and Kao [17] is mainly based on

the analysis of contact deformation of anthropomorphic soft

fingers in robotics, the models developed here are directly

suitable only for describing the frictional contact between an

“artificial” soft finger and a hard screen.
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II. CONTACT PROBLEM OF ELECTROADHESION

With the aim of modeling contact between the human

finger and a touchscreen under electroadhesion, we consider

an axisymmetric contact problem for an elastic solid pressed

against a flat rigid surface. Let the undeformed surface of the

elastic solid be described by the paraboloidal shape function

Φ(r) =
r2

2R
, (1)

where r is the radial coordinate of the cylindrical coordinate

system (r, φ, z), R is the radius of curvature at the initial

point of contact. We note that the solution constructed below

does not depend on the angular coordinate φ due to the

axisymmetry.

Under the action of an external vertical (normal) load, FN ,

the elastic solid undergoes some contact approach towards the

rigid surface, δ, thereby establishing a circular contact area, A,

of radius a. Thus, inside the contact area the vertical surface

displacement is given by

uz(r) = δ − Φ(r), r < a. (2)

We note that Eqs. (1) and (2) are usual assumptions of the

Hertzian contact mechanics about the local contact geometry

and the kinematic condition of contact [18].

R

r

z

FN

H(r)

V

h0

a

Fig. 2. Schematic of axisymmetric contact interaction between a soft finger
and a rigid plane surface of a dielectric coating covering a conductive
substrate. The dash line shows the position of the undeformed finger’s surface.

Let us now additionally assume that the elastic solid is

conducting, whereas the rigid counter-body is made of a

conducting substrate (which is assumed to be rigidly fixed) and

a dielectric coating of thickness h0 with the relative permit-

tivity ε. Under a voltage, V , applied between the conducting

substrate and the conducting elastic solid, the surface of the

elastic solid will experience distributed attractive forces, whose

values depend on the normal gap, H(r), between the solid’s

deformed surface and the surface of the dielectric coating (see

Fig. 2).

In what follows, we apply the parallel-plate-capacitor model

[10, 19] and express the normal component of attractive stress

as follows [15]:

σ(H) =
V 2ε0ε

2

2(h0 + εH)2
. (3)

Here, ε0 is the vacuum permittivity. It is to note here [16] that a

macroscopic model can approximately account for the discrete

nature of contact due to the finger ridges by introducing into

consideration an equivalent air gap. For the sake of simplicity,

the dielectric constant of air can be taken equal to 1.

It is clear that inside the established contact area, H = 0,

while outside the contact area, the normal stress at the de-

formed surface is

σzz(r) = σ
(

H(r)
)

, r > a, (4)

where the normal gap between the contacting surfaces is

defined as

H(r) = Φ(r)− δ + uz(r). (5)

Therefore, the contact approach δ and the contact radius a
are related by the equation

δ = Φ(a) + uz(a). (6)

On the other hand, inside the contact area, we have

σzz(r) = σ0 − p(r), r < a, (7)

where p(r) is the contact pressure due to elastic deformation,

and σ0 = σ(0), that is

σ0 =
V 2ε0ε

2

2h2
0

. (8)

The equation of equilibrium implies that

FN = 2π

∫ a

0

p(r)r dr − πa2σ0 − 2π

∫ b

a

σ
(

H(r)
)

r dr, (9)

where b is the so-called external characteristic size of the elas-

tic solid, where the electroadhesion is taken into consideration.

(For instance, for an elastic sphere of radius R, we can take

b = R.)

To conclude the contact problem formulation, an equation

governing the relation between the surface displacements

uz(r) and the contact pressure p(r) is required. In the present

paper, we develop a simple model based on a simplified

description of elastic deformation in the framework of the

generalized nonlinear Winkler–Fuss model.

III. SIMPLE MODEL OF ELECTROADHESIVE CONTACT

Our first simplification is to employ the Winkler–Fuss model

[20, 21] to evaluate the surface stress as follows:

σzz(r) = −kuz(r), r ≤ a. (10)

Here, k is the Winkler–Fuss stiffness coefficient.

Our second simplification is the DMT hypothesis [4, 7] that

the contact deformations do not increase the adhesion force,

so that outside the contact area Eq. (5) simplifies as

H(r) = Φ(r)− δ, r > a. (11)

Correspondingly, from Eqs. (4) and (11), it follows that

σzz(r) = σ
(

Φ(r)− δ
)

, r > a. (12)

Now, from the continuity of surface stresses, we derive the

condition

σzz(a) = σ0, (13)

which follows from Eq. (4).

Thus, from Eqs. (2), (7), and (10), we readily find that

p(r) = σ0 + k
(

δ − Φ(r)
)

, r < a. (14)



IEEE TRANSACTIONS ON HAPTICS, VOL. 14, NO. 8, AUGUST 2015 3

At the same time, Eqs. (10) and (13) yield

δ = Φ(a)−
σ0

k
. (15)

We note that from Eqs. (6) and (15), it follows that uz(a) =
−σ0/k.

The substitution of (12) and (14) into Eq. (9) yields

FN = πa2kδ − 2πk

∫ a

0

Φ(r)r dr − 2π

∫ b

a

σ
(

Φ(r)− δ
)

r dr.

(16)

In view of (3), three equations (8), (15), and (16) relate four

physical quantities a, FN , δ, and V . It is to emphasize that the

value of the geometric parameter b is supposed to be known.

In the case of parabolic shape function (1), Eq. (15) takes

the form

δ =
a2

2R
−

σ0

k
. (17)

Further, in light of (8), Eq. (3) can be represented as

σ(H) = σ0

(

1 +
εH

h0

)

−2

. (18)

Now, by using (17), we can exclude δ from Eq. (16). More-

over, by using formula (18) and carrying out the integration

in Eq. (16), we obtain

FN =
πa4k

4R
− πa2σ0 −

2πσ0Rh0

ε

{

(

1 +
εσ0

h0k

)

−1

−
(

1 +
εσ0

h0k
+

ε(b2 − a2)

2Rh0

)

−1
}

(19)

The force of friction in the slip stage is assumed to be

FT = 2πµ

∫ a

0

p(r)r dr, (20)

where µ is the coefficient of friction.

The substitution of (14) into Eq. (20) yields

FT = µk
πa4

4R
, (21)

where Eq. (17) has been taken into account.

IV. SOFT FINGER MODEL AND THE EQUIVALENT

WINKLER–FUSS STIFFNESS COEFFICIENT

In the papers [17, 22], the following constitutive equations

have been used for incompressible nonlinear elastic materials

(see also [23]):

ǫij =
( σe

ǫ0E

)n ∂σe

∂σij
. (22)

Here, σe is the Von Mises stress, ǫij are the infinitesimal strain

components, ǫ0 is a characteristic elastic strain, E is Young’s

modulus (a material constant with stress unit), and n is the

stress exponent (0 ≤ n ≤ 1).

The soft finger model [17, 24] predicts a power-law nonlin-

ear relation a = cF γ
N between the contact radius a and the

normal contact force FN , where c is a dimensional constant

that, in particular, depends on the size and curvature of the

soft finger, and

γ =
n

2n+ 1
. (23)

Because the local contact geometry is characterized by the

paraboloid (see Eq.(1)), we have a2 ∼ δR. Now, taking into

account that FN ∼ a1/γ , our dimensionless analysis of the

soft finger model yields the following form of the force-

displacement relationship:

FN = BγER2
( δ

R

)1/(2γ)

. (24)

Here, Bγ is a dimensionless constant, which can be obtained

experimentally (see, e.g., [25]).

On the other hand, the Winkler–Fuss foundation model

predicts the relation

FN = πkR3
( δ

R

)2

. (25)

It is easy to check that Eqs. (24) and (25) will coincide,

provided the equivalent Winkler–Fuss stiffness coefficient is

taken to be

k = B4γ
γ

E

πR

(ER2

FN

)4γ−1

, (26)

where γ is determined by formula (23).

V. TOUCHSCREEN-FINGER FRICTION UNDER VOLTAGE

Let us apply the developed model to the case of contact in

the absence of the external normal load, i.e., when FN = 0.

A. Upper bound for the friction force

For the paraboloidal contact geometry (1), it makes sense

to consider the limit situation as b → ∞. Then, according to

Eqs. (19) and (21), the upper bound for the friction force is

given by

FT = µπa2σ0 + 2πµσ0Rh0ε
−1

(

1 +
εσ0

h0k

)

−1

, (27)

where the contact radius a solves the equation

ka4

4R
= σ0a

2 + 2σ0Rh0ε
−1

(

1 +
εσ0

h0k

)

−1

. (28)

It is suggested to make use of Eqs. (27) and (28) within a

self-consistent framework by requiring that the Winkler–Fuss

modulus k is determined by Eq. (26), where FN is replaced

with FT /µ, that is

k = B4γ
γ

E

πR

(µER2

FT

)4γ−1

. (29)

We recall that σ0 is proportional to the voltage squared (see

Eq. (8)). Note also that Eq. (27) was derived from Eq. (19)

under the simplifying assumption that R/b ≪ 1.

Let us introduce dimensionless variables

f =
FT

µπR2σ0
, α =

a

R
. (30)

Then, the substitution of (30) into Eq. (29) yields

kh0

σ0
=

B4γ
γ

π4γ

(σ0

E

)

−4γ h0

R
f1−4γ . (31)

Therefore, in light of (30) and (31), Eqs. (27) and (28) imply

f =
Bγ

π

(σ0

E

)

−1( α
√
2

)1/γ

. (32)
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Hence, the substitution of (30)–(32) into Eq. (27) results in

the following equation for the relative contact radius:

α1/γ =
π21/(2γ)σ0

BγE

{

α2 +
2h0

εR

(

1

+
πεσ0R

BγEh0

( α
√
2

)(4γ−1)/γ
)

−1}

. (33)

For a given value of voltage drop across the contact inter-

face, Eqs. (30)2 and (33) determine α as a function of V ,

whereas Eqs. (30)1 and (32) produce the sought for relation

between V and FT . It is interesting to note that the same result

can be recovered by first assuming that b = R in Eq. (19)

and second by simplifying the resulting equation under the

condition that R is much larger than h0.

Finally, let us consider the friction under voltage in the

Winkler–Fuss model-based framework (27), (28). It is readily

seen that Eqs. (27) and (28) yield

FT = µ
πka4

4R
, (34)

where Eq. (28) can be rewritten in the form of bi-quadratic

equation

( a

R

)4

−
4σ0

Rk

( a

R

)2

−
8σ0h0

εR2k

(

1 +
εσ0

h0k

)

−1

= 0, (35)

from where it follows that

a2

R2
=

2σ0

Rk

{

1 +

√

1 +
2h0k

εσ0

(

1 +
εσ0

h0k

)

−1
}

, (36)

and the substitution of (36) into Eq. (34) results in the voltage-

force relation.
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Fig. 3. Variation of the contact radius and contact friction force in the absence
of external load as functions of the voltage.

It is interesting that, in view of (8), each of Eqs. (34) and

(36) can be characterized by a single core line, provided an

appropriate scaling procedure was applied (see Fig. 3).

B. Lower bound for the friction force

Let us now consider the case where b = a, so that the

attractive forces outside the contact area are neglected. Then,

Eq. (19) simplifies to

FN =
πa4k

4R
− πa2σ0, (37)

from where, in the absence of external normal load (FN = 0),

it follows that

a2 =
4Rσ0

k
. (38)

At the same time, Eq. (21) reduces to

FT = µπa2σ0. (39)

Hence, in view of Eq. (26) for the Winkler–Fuss stiffness

coefficient, Eqs. (39) and (38), respectively, yield

FT = µ(2πσ0)
1/(1−2γ)R2(BγE)−2γ/(1−2γ), (40)

πa2 = (2π)1/(1−2γ)R2
( σ0

BγE

)2γ/(1−2γ)

. (41)

We note that, in view of (23), we have 1/(1− 2γ) = 2n+ 1
and 2γ/(1− 2γ) = 2n.

On the other hand, for the Winkler–Fuss model, Eqs. (39)

and (38) simply imply that

FT = µ
4πR

k
σ2
0 , (42)

because the stiffness coefficient k is assumed to be constant.

C. Touchscreen-finger friction in the Winkler–Fuss model

In many practical situations we have h0 ≪ R, and therefore,

Eq. (19) can be simplified as follows:

FN =
πa4k

4R
− πa2σ0 −

2πσ0Rh0

ε

(

1 +
εσ0

h0k

)

−1

. (43)

Let us introduce the dimensionless normal force as

fN =
FN

kRh2
0

, α =
a

R
. (44)
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Fig. 4. Variation of the contact radius as a function of the voltage for different
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The behavior of the solution to Eqs. (21) and (44) is shown

in Figs. 4 and 5 both for positive and negative values of the

relative normal force (44).

VI. DISCUSSION

In this section, we overview the proposed approach and

discuss its assumptions and limitations.



IEEE TRANSACTIONS ON HAPTICS, VOL. 14, NO. 8, AUGUST 2015 5

0

0.5

1

1.5

2

, , 

, , 

, , 

, , 

, -, 

, -, 

, -, 

Relative voltage

0 0.20.1 0.40.3 𝑉𝜀 𝜀0/ 2𝑘ℎ03

R
el

at
iv

e 
co

n
ta

ct
 r

ad
iu

s

𝐹𝑇𝜇𝑘𝑅ℎ02
1

0.5
0

1.5
𝜀 = 4.0

𝑓𝑁 = 0.3 0.2
−0.3−0.2−0.100.1

Fig. 5. Variation of the contact friction force as a function of the voltage for
different values of the relative normal force.

A. Some generalizations

First of all, observe that, strictly speaking, the Winkler–

Fuss model is applicable to thin elastic compressible layers

(see, e.g., [26]). The Winkler–Fuss model allows analytical

treatment of contact problems even for non-convex indenters

[27]. The JKR-type adhesive contact problem for thin elastic

layers have been considered in [28–32]. The Winkler–Fuss

modeling framework has been used in a number of papers

(see, e.g., [33]) for the purpose of modeling the finger contact

deformation. In our analysis, we made use of the Winkler–Fuss

model not only to simplify the solution of the electroadhesion

contact problem (1)–(9), but also to utilize it as an auxiliary

solution for incorporating the soft finger model [17] via a self-

consistent approach.

We would like to emphasize that the power-law relation (24)

is of the same form as that obtained in [6, 34] in the problems

of frictionless and non-adhesive contact for an anisotropic

physically nonlinear elastic medium, using both the self-

similarity technique and the Hertzian half-space approxima-

tion. Indeed, from Eq. (22) it follows that the elastic energy

potential is a homogeneous function of degree (1+n)/n with

respect to the strain components ǫij . Therefore, for a more

general case of a power-law description of the finger shape

(cf. Eq. (1))

Φ(r) = Λrλ, (45)

where 1 ≤ λ is a real number, and Λ is a dimensional constant,

the self-similar solution of Borodich [6, 34] predicts that

a(FN ) = a(1)F
n/[2n+λ−1]
N , (46)

δ(FN ) = δ(1)F
λn/[2n+λ−1]
N , (47)

where a(1) and δ(1) are the contact radius and the contact

approach under action of unit load.

In the case λ = 2, when Eq. (45) reduces to Eq. (1) with

Λ = (2R)−1, Eq. (47) implies FN ∼ δ(2n+1)/(2n), which, in

view of (23), exactly corresponds to Eq. (24). By the way, the

self-similarity formulas (46) and (47) are recommended for

the use in the soft finger model.

Further, it is to note again that the upper bound solution

presented above for the special case FN = 0 assumes that

R ≪ b. However, this simplification can be easily removed by

replacing the factor (1+εσ0/(h0k))
−1 in Eqs. (27), (28), and

(35) with the expression from the curly braces in (19). This

will modify Eqs. (33) and (35), so that the simple formula

(36) is not valid any more.

a)
FN

FT

b)

Fig. 6. Schematic of the human finger structure, including skin, fat, bone (dis-
tal phalanx), and nail (a) and its idealization for an equivalent hemispherical
contact geometry and a layered tissue inhomogeneity in normal and tangential
contact under external loads, FN and FT .

It is interesting to compare the lower bounds for the friction

force (40) and (42). The soft finger model-based Eq. (40)

predicts that FT ∼ σ2n+1
0 , whereas the Winkler–Fuss model-

based Eq. (34) implies that FT ∼ σ2
0 as σ0 → 0. On the other

hand, in view of (8), the Popov–Heß model [15] suggests that

FT ∼ σ
5/3
0 , which is quite close to the last case, whereas

2n+ 1 ∈ (1, 3] as n ∈ (0, 1].
It should be emphasized that the developed macro model

suffers from several drawbacks. First, formula (3) for the

electric attraction stress does not account for the micro-gap

due to the skin surface roughness. However, following [9],

formula (3) can be generalized to account for the air film as

well. Also, using the multi-scale modeling approach [35, 36],

the effect of surface roughness can be incorporated into the

analysis by constructing a hierarchy of mathematical models,

which links the macro model with the corresponding micro

model.

Second, the friction force is calculated by the simple for-

mula (20), using the concept of the coefficient of friction. At

the same time, it is known [37] that the friction of human skin

against smooth surfaces can be more accurately described by

the adhesion model of friction, which takes into account the

real contact area and the interfacial shear strength [38]. The

corresponding generalization can be achieved via the multi-

scale modeling approach [39, 40].

Third, it is well known that the structure of the human

finger is complicated (see Fig. 6), and, so far as possible, the

issue of macro inhomogeneity should be accounted for upon

prescribing the finger’s deformation response. In particular, the

developed model can be extended to describe more realistically

the contact between the human finger and screen by taking into

account the effect of skin, including the deformation of the

stratum corneum as well as the presence of the finger ridges

and roughness, which influence the air gap thickness.

B. Why apparent contact area is reduced during sliding?

Let us now discuss the main limitation of the proposed

approach, and this is the infinitesimal strain theory, which is

the basis of the Hertzian contact mechanics and commonly

adopted in the JKR and DMT theories of adhesive contact.

Indeed, consider a weightless elastic spring of stiffness k
and length l (see Fig. 7) with its upper end fixed and a gap of
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Fig. 7. Schematic of the tangential deformation of the soft tissue: (a) a spring
of stiffness k in the undeformed state; (b) the deformed state of the spring,
which is brought in contact with a flat base by an attractive force, Fa; (c) the
force diagram in the slip state (limit state of equilibrium).

width h between the lower end and a rigid base. As the first

step, under the action of a vertical force, Fa, the lower end

can be brought into contact with the initial support reaction

N0 = Fa − kh. As the second step, the upper spring end is

displaced horizontally to some distance, v, while the lower

spring end is assumed to be restricted due to friction. Let

ϕ denote the current angle between the spring axis and the

vertical, so that sinϕ = v/L and cosϕ = (h+ l)/L, where L
is the length of the deformed spring. The spring tension force,

T , is proportional to the elongation (L − l)/l, that is T =
k(L− l). The equilibrium equations yield N = Fa − T cosϕ
and Fx = T sinϕ.

Finally, in the limit state before the onset of slip, we have

Fx = µN . Therefore, the maximum displacement will be v∗ =
h(1 + χ−1) tanϕ∗, where χ = h/l and ϕ∗ is the maximum

value of ϕ. By excluding the variables N and T from the

above equations, we find that ϕ∗ is the root of the equation

Fa

kh
=

1

χ

( 1

µ
tanϕ+ 1

)

(χ+ 1− cosϕ). (48)

It can be shown that N∗ < N0, so that the shear deformation

results in diminishing the contact pressure as well as in detach-

ment of those elements, where the initial contact pressure is

relatively low. Thus, the initial decrease in the contact area at

the beginning of slip can be explained by the nonlinear shear

deformation of the soft tissue.

It is to note that the issue of contact area reduction under

tangential loading was observed in [41–43] in experiments

with a soft rubber with high adhesive hysteresis and a rough

elastomer block. Very recently, this phenomenon was modeled

theoretically in [44–46] based on the linear elasticity fracture

mechanics and using the concept of mixed-mode interfacial

fracture [47]. Here we emphasize the effect of nonlinear shear

deformation.

VII. CONCLUSION

To conclude, in the present work we have emphasized

the importance of the macro contact pressure distribution

across the apparent contact area in the electroadhesive contact

between a soft finger and a touchscreen. The main result is

the formulation of the DMT-type electroadhesive contact prob-

lem (2)–(9) and its approximate solution obtained using the

Winkler–Fuss deformation model with the equivalent stiffness

coefficient, which can be determined experimentally.
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