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Abstract 

In recent years, the rise in popular awareness over climate change and the consequent 

attention governments have had over the matter has brought to ever-harder goals of 

environmental sustainability in all sectors of industry. Carbon capture and utilization 

schemes are one of the many routes that have been proposed to increase the 

environmental sustainability of the transport and chemical industries, which are two 

of the biggest carbon emitters on the planet. This strategy aims at closing the cycle of 

fossil fuel burning by using renewable energy to transform water and carbon dioxide 

back into fuels and chemicals. In this work, we present a computational study of the 

electronic structure and catalytic performances of two classes of materials, carbon 

nitrides and transition metal carbides. Carbon nitrides are semiconductors used for 

photocatalytic water splitting, a nature-mimicking process which aims at the direct 

conversion of H2O into H2 and O2 using solar irradiation and band gap tuned catalysts; 

in Chapter 3 we will explore their structural and electronic properties, providing a 

rationale for their experimental catalytic activity. Transition metal carbides are 

metallic materials which have been shown to catalyse, among other reactions, the 

electrochemical hydrogen evolution from water and the catalytic reduction of CO2; in 

Chapter 4 and 5 we will explore the catalytic activity of the low-index surfaces of these 

materials, identifying descriptors and proposing routes to achieve the best rates and 

selectivity. The present work aims at improving our understanding of the fundamental 

behaviour of these materials, as part of the global effort in creating a more sustainable 

world. 
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section 2.4. Finally, the calculation of the temperature dependence of the chemical 

potential of hydrogen presented in Chapter 4 was performed by Dr. Alberto Roldan, 
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Chapter 1: 

Introduction 

1.1 Global challenges 
Recent years have seen a sharp increase in popular awareness on the topic of climate 

change, partly due to the increasingly tangible effects of global warming1–3 and the 

efforts of public figures supporting radical policies to reduce greenhouse gas (GHG) 

emissions, such as U.S. Congresswoman Alexandria Ocasio-Cortez4 and Swedish 

student Greta Thunberg.5 The global student movement led by Thunberg, which has 

pushed millions of people to rally the past September,6 and the historic result of the 

European Green Party in the 2019 European Parliament Elections,7 which obtained a 

record number of seats, are just some of the many recent examples of popular initiative 

aimed at influencing the decisions of governmental and intergovernmental bodies 

towards a sharp decrease in GHG emissions within a few years. Past decisions such as 

the Paris Agreement,8 through which 195 UN-registered nation agreed to reduce their 

carbon emissions within a short time span and implement a strategy of energetic 

sustainability in the longer term, have been seen as insufficient by climate activists6 

as well as by the UN-led International Panel on Climate Change (IPCC), which 

recently concluded that an increase in average global temperature of only +1.5° C with 

respect to the pre-industrial era could lead to catastrophic consequences for several 

life forms on Earth and have a deep impact on the economy and wellbeing of several 

countries.9 

The role of chemistry 

The existence of such severe threats and ambitious political goals has sustained 

research aimed at reducing and possibly halting the use of fossil carbon. While many 

ambitious targets can be reached using the current technology for renewable energies, 

certain uses for fossil fuels will require the discovery and application of novel 

solutions to allow for entirely renewable supply chains.10,11 An example of that is the 

synthesis of fuels and chemicals, which cannot yet be fully replaced by energy 

generation and storage technologies, especially in avenues such as the synthesis of jet 
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fuels, in which the weight to energy ratio is of paramount importance, and of base 

chemicals, which are produced in such a scale that the current technologies for 

chemical recycling cannot compete with the use of fossil carbon.11–13 The combination 

of hydrogen generation through water splitting and carbon capture and utilization 

(CCU) schemes is a widely proposed solution14,15 for some of these problems which 

uses water-derived molecular hydrogen either as an environmentally sustainable 

reducing agent for CO2 to chemically recycle it into useful fuels and chemical. 

Significant research effort is being undertaken throughout the world to overcome the 

chemical and technological challenges related to these reactions, including the present 

work: the focus of this thesis is the computational modelling of catalytic materials for 

molecular hydrogen generation and carbon dioxide recycling. 

The hydrogen economy 

The transition from an economy based on the use of fossil fuels for energy production 

to one based on the use of hydrogen as primary energy storing chemical – the so-called 

hydrogen economy – has been a major drive for scientific and engineering research in 

the last few decades. As far back as 2003, the topic was considered important enough 

to be featured in the annual State of the Union address by the U.S. President George 

W. Bush,10 and has since been the long-term goal of countless research. As the effects 

of climate change have become more evident and dramatic over the years, the interest 

in abandoning the oil economy has further increased, but several challenges have yet 

to be overcome in order to make this transition possible. One major issue with the 

transition to a hydrogen-based economy is the energy required to produce the latter 

fuel;14,16–18 molecular hydrogen can be produced from a variety of sources, but the 

technology most often implemented industrially – steam reforming of natural gas – is 

not in any way more environmentally sustainable than traditional fossil fuel 

combustion, as it is estimated to release 8.9 Kg of CO2 into the atmosphere per Kg of 

H2 produced.19,20  

The hydrogen cycle and the carbon cycle 

The only carbon free source of hydrogen is water,21 which can be split into its gaseous 

elemental components H2 and O2. This reaction is endothermic, but since the energy 

required to the break the O-H bond is stored in H2, the latter can be used as a fuel in 

hydrogen fuel cells to provide energy by combining with atmospheric O2, forming 
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H2O again. While this represents a perfect fuel-energy cycle, theoretically waste-free 

and therefore sustainable, the energetic requirements of H2 production from water pose 

substantial research challenges.22,23 The energy required for the H2 evolution to take 

place can be provided in several ways, such as thermally, biochemically, 

electrochemically and photochemically.24–28 In electrochemical and photochemical 

processes, which are of interest here, the energy required for H2 evolution is provided 

through direct reduction of water by an electron, which is brought to a suitable energy 

level either by the potential applied to an electrocatalyst or by absorption of a photon 

of corresponding energy. The details of photochemical and electrochemical water 

splitting will be discussed later, as they are the focus of the research discussed in 

Chapter 3 and Chapter 4 of this work. Once generated, molecular hydrogen can either 

be used as a fuel in the aforementioned hydrogen fuel cells or as a chemical for its 

well-known reducing properties. Carbon capture and utilization (CCU) projects use 

these properties to recycle carbon dioxide.11,12,29 The objective of such projects is of 

course the reduction of the overall CO2 emissions of human technology, as recycled 

CO2, generally in the form of CO or CH3OH, can replace fossil fuels as feedstock for 

the production of fuels and chemicals. As with the hydrogen cycle, this CO2/H2 cycle 

can theoretically be sustainable and waste-free, but the science and technology 

required for carbon dioxide recycling on a global scale are not fully understood yet, as 

we will further investigate in Section 1.5. 

1.2 Photocatalytic water splitting 
Introduction to photocatalysis 

Photocatalysis is the acceleration of the rate of a reaction obtained by shining light on 

a photosensitive material. This material – the photocatalyst – can absorb a photon as 

a result of exposure to electromagnetic radiation, resulting in the promotion of an 

electron into a higher energy state and in the creation of an electron – hole pair. This 

process can accelerate a redox reaction by enhancing electron transfer to or from the 

adsorbed species, as electron – hole pairs are only metastable and can lead to very 

efficient redox activity. 14,21,30 The principles of photocatalysis were first formalised 

as far back as 1938,31 but a major scientific breakthrough in its application only came 

in 1972, when Fujishima and Honda first reported the photocatalytic electrolysis of 
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water using an electrochemical cell constituted of a TiO2 cathode and a Pt anode, in 

which the source of potential was the light absorption on the former electrode rather 

than the presence of a battery or generator as in traditional electrochemical cells.32 

Since then, photocatalysis has been investigated and applied to various systems and 

practical problems, such as the oxidative degradation of organic compounds, 

sterilization and sanitation of materials, and synthesis of paint pigments and 

cosmetics.33 Beyond TiO2, which has been proved as a suitable photocatalyst for many 

applications, a wide variety of semiconductive materials has been reported as 

photocatalytically active in both heterogeneous and homogeneous systems.21,33,34 

Since photon adsorption is a necessary step of photocatalysis, multiple stable redox 

states and a suitable band gap are necessary in the photocatalytic material, limiting the 

choice of potential catalysts for reactions of this kind. Usually the best photocatalytic 

activity is found for those materials whose photon adsorption is in the visible or 

ultraviolet spectra,22,35 as a result of a series of factors concerning the energy 
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surface if the energy of the latter is lower than that of the former, reducing it; similarly, the 
hole in the VB (h+, in red) can be reduced by an electron from the HOMO of a reactant on the 
material surface if the energy of the latter is higher than that of the former, leading to an 
oxidised product of photocatalysis. If neither of these electron transfer processes happen, the 
electron – hole pair will recombine, reducing the overall efficiency of photocatalysis. 
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associated with those band gaps and the availability of solar light on the surface of 

Earth. The process of photocatalysis is initiated with the absorption of an incident 

photon on a material through the promotion of one of its electrons from its ground 

state to an excited state, creating an electron – hole pair. The energies of the excited 

electron and of the hole direct whether a catalytic reaction can take place on the surface 

of the material. These energies directly depend on the position of valence band (VB) 

and conduction band (CB) for heterogeneous systems and on the energies of the 

highest occupied and lowest unoccupied molecular orbitals for homogenous 

photocatalysts. If the energy gap is sufficient to drive the reaction and the band 

position is suitable to an efficient alignment with the energy levels of the reactants at 

the surface of the catalyst, an electron transfer might take place, leading to a redox 

reaction.14,21 Figure 1.1 shows a simplified scheme of a photocatalytic reaction.  

It follows from such a mechanism that the size of the band gap of a material is of 

paramount importance: a small band gap will correspond to a small energy gain for 

the excited electron, which might be insufficient to drive the reaction or lack the 

necessary band positioning. On the other hand, a wide band gap will drive the reaction 

efficiently, but at the same time will limit the amount of solar light available for photon 

excitation: since only ~5% of the solar radiation hitting the Earth’s crust is in or 

beyond the UV spectrum,36 materials and molecular catalysts with gaps wider than 3 

eV will inevitably harvest the solar spectrum poorly, resulting in equally low catalytic 

conversion rates. For these reasons, the band gap of a material is often one of the 

primary focuses of research in photocatalysis, and its precise modification is part of 

the rationale behind the present work. 

Photocatalytic water splitting 

In photocatalytic water splitting the principles of photocatalysis are applied to the 

production of molecular hydrogen from a clean and renewable energy source such as 

solar light. In its original form,  the reaction is achieved using a single photocatalyst.30 

If a suitable alignment is reached between the potential of VB and CB and that of the 

species in solution, water will be reduced by the electron on the CB and oxidised by 

the hole on the VB, evolving H2 and O2.22 For this process to happen, the potential of 

the conduction band edge (CBE) has to be lower than that of the H+/H2 redox couple 

(0 V, as the standard hydrogen electrode is the reference for half-cell potentials) and 
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simultaneously the potential of the valence band edge (VBE) has to be greater than 

that of the H2O/O2 redox couple, i.e. higher than 1.23 V vs. NHE.21 This requirement 

poses an immediate limitation to the choice of photocatalyst and to the fraction of solar 

light that can be used to drive the water splitting: any material with band gap lower 

than 1.23 eV and any light with wavelength above 1000 nm – over 50% than the total 

solar spectrum – cannot be used. However, a significant overpotential is required to 

drive the reaction, in excess of the thermodynamic requirement for H2O redox 

splitting: driving electrons and holes to the photocatalyst’s surface, overcoming the 

interfacial charge transfer to the adsorbed chemical species and performing the redox 

reduction all of which are causes for significant energy losses. As a result, the few 

photocatalysts capable of single-adsorption H2 evolution all show band gaps around 3 

eV, corresponding to ultra-violet (UV) adsorption;30 as mentioned in the previous 

section, this leads to a major inefficiency of the photocatalytic process, as only ~5% 

of the solar light irradiation that is not filtered by the atmosphere can be harvested by 

these photocatalysts. 

Double photon absorption water splitting 

The combination of inefficient solar light harvesting and difficult tuning of the 

catalytic properties of a material acting simultaneously as both cathode and anode has 

resulted in few examples of single-photon water splitting catalysts in literature – most 

notably TiO2 and the GaN:ZnO solid solution37 – all of which demonstrate wide band 

gaps and unsatisfactory catalytic efficiencies. However, a different strategy has been 

implemented in order to overcome the limitations of single photon adsorption 

photocatalytic water splitting. The so called “Z-scheme” water splitting is a 

photocatalytic process that involves two photon absorptions on two different 

photocatalysts, each driving one of the two redox half-reactions.30,38 This design 

mimics what happens in the photosynthetic cells of plants and algae, where water is 

oxidised to O2 as the photosystem II (PSII) absorbs a photon, and the energy from both 

this and the photon absorption occurring on photosystem I (PSI) is stored by reducing 

ADP to ATP and NADP+ to NADPH.14,17 This mechanism is replicated in artificial 

photocatalysis by coupling two narrow band gap semiconductors – which act as 

oxygen evolution photocatalyst (OEP) and hydrogen evolution photocatalyst (HEP) 
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respectively – through a redox or solid mediator capable of transferring electrons 

between the two catalytic systems. This design, which is exemplified in Figure 1.2, 

has several advantages: firstly, separating the two half reactions significantly narrows 

the band gap required, widening the choice of potential catalysts; secondly, decoupling 

the reactions allows for simpler mechanistic and optimization studies, as the 

photocatalyst can be used to perform either H2 or O2 evolution using a sacrificial agent; 

lastly, a double light adsorption increases the maximum theoretical efficiency up to 

40%, and can be used to harvest a wider fraction of the solar light spectrum.17 

However, a double absorption design also has drawbacks: while each component can 

initially be optimised on its own, a fine tuning of the coupling between components is 

also required; furthermore, the electronic connection between different phases induces 
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Design of a Z-scheme photocatalytic process using heterogeneous catalysts and 
ionic redox mediators. The photocatalytic materials are depicted in green, the blue arrows 
are the catalytic reactions, and the red arrows indicate the path followed by the electrons. The 
e- in the VB of the photoanode are excited to the conduction band of the material by an 
absorbed photon (in yellow), leaving a hole in the VB (h+, in white). The presence of h+ allows 
the oxidation of water at the surface of the photocathode, while the e- in the CB can reduce 
the redox mediator by transferring to its LUMO. The mediator is then oxidised at the 
photocathode by a h+ left by the promotion to CB of an e- by a second photon, which then 
reduces the H+ in solution to gaseous H2. Since the spontaneous (i.e. non light-driven) 
movement of electrons is invariably towards lower energy states, it is clear from the scheme 
how the energy levels of the VB and CB of both photocatalytic materials as well as those of the 
redox mediator must be carefully chosen in order to obtain the photocatalysis. 
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recombination and energy losses, which have to be minimised so that OEP, HEP and 

redox mediator can work together efficiently. 

Materials for Z-scheme photocatalysis 

Work on Z-scheme photocatalytic designs for water splitting has been drawing the 

attention of researchers for decades. One of the main research goals is to obtain devices 

capable of solar-to-hydrogen (STH) efficiencies over 10%, as these would allow for 

performances comparable to those of solar panels coupled with water electrolysis.14,17 

To increase the efficiency of the process, an additional component is often added to 

the photochemical reactor: the co-catalyst, which is generally a non-photoactive 

material deposited on the OEP or HEP to accelerate the chemical reaction of the 

photoexcited electron or photogenerated hole. The presence of the co-catalyst often 

leads to significantly higher STH efficiencies, as these materials are designed be good 

catalysts for the redox reactions needed for hydrogen and oxygen evolution by 

allowing fast electron transfer between the photocatalytic materials and the species in 

solution; additionally, co-catalysts can significantly increase the lifetime of the e--h+ 

pair after this is created by physically separating them, as photoexcited electrons and 

holes can migrate from the HEP and OEP to their respective co-catalyst, further 

improving the chances of a chemical reaction before recombination. An often-used 

co-catalyst for hydrogen evolution is Pt, deposited directly on the HEP, although 

cheaper and more abundant Ni-based and Fe-based catalysts have also been 

developed.17,39,40  

The different components of the Z-scheme photocatalytic design have often been 

considered separately, as one of the strengths of this hydrogen evolution process is the 

variety of materials that can be used in a reactor. The aim of the optimization of a 

single component is often the minimization of energy losses, which are particularly 

problematic in relation to the electron shuttle that connects OEP and HEP.17,30 This 

connection is in most cases a redox couple in aqueous solution which is reduced by 

the OEP and oxidised by the HEP, transferring electrons between the two. This set up 

allows for a relatively simple coupling of separately optimized OEP and HEP 

materials: theoretically, any three of these components could be coupled together to 

form a working photocatalytic system as long as the electronic energy of the LUMO 

of the oxidised state of the mediator lies between the potential of the CB of the OEP 
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and that of  the VB of the HEP, as highlighted in Figure 1.2. However, commonly used 

redox couples41 such as IO-/I- and Fe3+/Fe2+ do not allow for efficient electron transfer 

due to charge recombination effects and slow reaction rates,17 limiting the overall 

efficiency of the Z-scheme. For this reason, solid bridge electron shuttles have also 

been developed; these are conductive materials with a suitable band alignment that 

connects the OEP CB and the HEP VB, eliminating the redox diffusion processes 

correlated with the reaction chain of redox mediators and strongly limiting the 

possibility of charge recombination.41,42 For these applications, the use of high-

performance materials such as graphene oxide, carbon dots and gold nanoparticles 

allows for much increased STH efficiencies with respect to comparable heterogenous 

photocatalytic systems. This, however, comes at the cost of considerably more 

complex systems, which can prove difficult to optimise: the components of the Z-

scheme are no longer separable and the optimization of each of them cannot take place 

without a simultaneous fine tuning of the connection between them, limiting the 

applicability of these materials. 

Hydrogen and oxygen evolution photocatalysts 

Much of the research performed on Z-scheme systems has focused on the oxygen 

evolution and hydrogen evolution photocatalysts.17,27,30,43 The wide variety of natural 

and synthetic semiconductors available calls for extensive research effort, while the 

complexity of the problem – which requires each catalyst to simultaneously possess 

good absorption properties, efficient charge separation, suitable band position and 

high catalytic performances – drives researchers to constantly push the boundaries of 

state-of-the-art photocatalysts. A wide range of materials has been tested for these 

applications, mostly metal oxides, but also nitrides, sulphides, halides, organic dyes 

and polymers, all with their respective variants and co-catalysts. Photocatalysts are 

often first tested in their respective half reaction, using sacrificial agents as either 

electron or hole acceptors, in order to ascertain their performances in a controlled 

environment.  

Even in such simplified systems, several conditions have to be met in a material for it 

to be considered suitable as a OEP or HEP; the band position, the electron-hole pair 

lifetime, and the catalytic activity can all pose limitations to the performances of the 

photocatalyst, and are therefore the focus of investigation. Band position of the OEP 
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and HEP materials affect the performances of the photocatalytic system primarily due 

to the thermodynamic and kinetic limitations of the electron transfer, similarly to the 

case of single-photon photocatalytic water splitting. For this reason, efficient OEPs 

show very positive values for the valence band minimum, as it is the case for the metal 

oxides most commonly used for this application, such as WO3 (~2.7 eV). With the aid 

of RuO2 and Pt-based co-catalysts, used to help reduce the activation barrier of the 

water oxidation, tungsten oxide was the first material to be reported as achieving a 

stoichiometric H2 and O2 production under UV light, in 1997,44 and under visible light, 

in 2002.45 The ability of this material to oxidise water selectively, reducing 

recombination with CB electrons as well as the redox mediator, further increased the 

interest on WO3, as this characteristic improves the performances of the IO3
-/I- 

aqueous redox mediator.17 Other metal oxides have been used as OEPs, such as TiO2, 

Ag3PO4, and BiVO4, the latter showing the highest activity in sacrificial cells but 

showing lower quantum yield in complete Z-scheme systems.46–48 Another class of 

materials that has sparked interest is that of oxynitrides, such a TaON.17 These 

materials show a smaller band gap and can therefore more efficiently harvest the solar 

spectrum. However, their intrinsic tendency to promote back reactions such as the 

oxidation of the material itself rather than H2O has led to their more efficient use as 

HEP. TaON is so efficient as a photocathode that it was reported to show the highest 

quantum yield for an overall Z-scheme water splitting cell, when coated with defective 

magnesium oxide and coupled to PtOx/WO3 via an iodide-based redox mediator.49  

A relatively new avenue of research for hydrogen evolution photocatalysts, as 

mentioned above, is that of organic materials, primarily in the form of dyes and 

polymers. The former take inspiration from the relatively well-established work on 

dye-sensitized solar cells (DSSC) – which make use of the wide and tunable absorption 

spectrum of certain organic molecules to try and increase the efficiency of solar to 

electricity conversion14,17,50 – in order to achieve a similar flexibility in terms of band 

gap in photocatalytic devices; however, these molecules are often unstable in their 

oxidised states, which leads to relatively quick degradation during H2 evolution. 

Similar absorption properties with improved stability have been achieved using 

polymers such as carbon nitride, a well-known hydrogen evolution photocatalyst on 

its own terms, the band gap of which can be further tuned by doping with different 

elements, such as P, B, F, I, S, N or O.51 
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Graphitic carbon nitride 

Graphitic carbon nitride (g-C3N4) is a one of the earliest synthetic polymers, being 

first reported as far back as 1834.52 Its structure is generally accepted as being 

composed of heptazine units connected via their three amino groups to form either 

chains or layers, varying with the synthetic route and the degree of polymerization.53,54 

The polymer is considered stable and nontoxic in all its forms, which further increases 

its potential as “green” catalyst for sustainable energy conversion. It can be synthetized 

from a variety of cheap and common precursors, like melamine, dicyanamide, thiourea 

and urea, obtaining different degrees of polymerization and electronic properties.17 

Despite its very early discovery, graphitic carbon nitride was only reported as an 

effective hydrogen evolution photocatalyst in 2008.55 Since then, g-C3N4 has been 

tested both as HEP in sacrificial cells and in overall Z-scheme systems, showing 

promising H2 evolution rates and demonstrating high activity when coupled with 

Fe3+/Fe2+ and IO3
-/I- redox mediators and Pt co-catalysts.40,53,56,57  

Despite its many advantages, the relatively wide band gap of g-C3N4 (about 2.7 eV) 

limits adsorption to wavelengths shorter than 460 nm, considerably restricting the 

portion of solar light that it can harvest. Furthermore, the material displays a small 

surface area, of the order of 10 m2g-1, which in combination with low charge mobility 

limits the charge transfer with the redox species in solution, favouring charge 

recombination.17,53 Elemental doping has been frequently implemented to try and 

overcome these limitations, allowing for fine tuning of the material’s properties. 

Elemental doping is a well-established practice in crystalline semiconductors; 

however, in polymeric systems such as g-C3N4 the range of synthetic routes and the 

often amorphous structures introduces several unconventional challenges. Metal 

doping has generally been introduced in the material as absorbed or deposited metal 

ions, and has been shown to influence the electronic properties of the material, 

especially in relation with its absorption spectrum and band alignment.56 However, the 

metal-free nature of the polymer has induced researchers to more often focus on non-

metal doping. Sulphur, phosphorus, boron and halogens have all been successfully 

introduced in the material to reduce its band gap and improve its photocatalytic 

activity. The present work is part of a multidisciplinary research aimed at the 

investigation of oxygen doping of carbon nitride polymers. 
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Structure and electronic properties of carbon nitride-based materials 

Computational techniques such as Density Functional Theory (DFT) are often used to 

investigate photocatalytic materials as an aid to experimental characterization. 

Computational aid is especially valuable for heterogenous photocatalysts, as these are 

often difficult to characterise both in their optical properties and in their structure. The 

latter is particularly true for polymeric materials, and specifically the structure of g-

C3N4 has long been cause for debate.54,58 The computational studies reported in this 

field display a wide range of techniques and theoretical frameworks used. In DFT 

studies, GGA and hybrid-GGA functionals have been used, making functionals such 

as PBE and HSE06 the de facto standard modelling frameworks for photocatalytic 

heterogeneous materials, often coupled with plane-wave basis sets.59–61  

In the present work, a computational study has been performed to investigate the 

polymeric structure and electronic properties of graphitic carbon nitride after its 

doping with tunable amounts of oxygen, following input from experimental 

collaborators in University College London. The structure of the oxygen-doped 

polymeric carbon nitride derivative was synthetized and characterised by our 

collaborators, while this study has focused on correlating quantum mechanical 

calculations with experimental data. Our approach is similar to several other 

computational studies on analogous materials, in which in silico models are often used 

to clarify the structure of the photocatalyst and its relationship with electronic 

properties and photocatalytic performances, as highlighted by characteristics such as 

band gap and charge localization. This investigation will be presented in Chapter 3. 

1.3 Electrochemical hydrogen evolution 
Water electrolysis 

The advent of ever-cheaper and more efficient solar and wind power has driven 

scientific interest towards the study of the hydrogen evolution reaction (HER) and the 

oxygen evolution reaction (OER). These two processes are the cathodic and anodic 

half-reactions of water electrolysis, which produces molecular hydrogen without the 

need for oxidation of organic compounds through the electrochemical disproportion 

of H2O. Water electrolysis has been known for more than a century and has been 

extensively studied and used in lab-scale applications, but it has found little industrial 
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success: due to the high running costs compared to fossil-fuel based alternatives, water 

electrolysis only accounts for roughly 4% of the global H2 production.22 However, the 

widespread fear for climate change has been reigniting interest in this reaction in the 

last two decades, leading to extensive experimental and theoretical literature on the 

topic. Compared to photochemical water splitting, which was analysed in the previous 

section, water electrolysis presents the clear drawback of being powered by electricity 

rather than directly harvesting a renewable energy source, therefore introducing an 

additional energy conversion step that may lead to energy losses.11 However, 

decoupling solar harvesting and hydrogen evolution results in increased flexibility and 

more efficient electrochemical reactions, as the electrolytic cell does not have the 

spatial and temporal limitations typical of solar light harvesting and the electrodes can 

be more efficiently optimized for electrocatalysis. In acidic medium, the HER is the 

electrochemical combination of two protons with two electrons from a cell cathode to 

obtain molecular hydrogen, as in the reaction: 

ାܪ2 + 2݁ି → ௖ܧ   ଶܪ = 0.0 V ݏݒ. NHE 

When combined with the OER: 

ଶܱܪ2 → ܱଶ + ାܪ4 + ௔ܧ                 4݁ି = .ݏݒ ܸ 1.23 NHE 

the two half-reactions give rise to the electrochemical water splitting: 

ଶܱܪ2 → ଶܪ2 + ܱଶ     ܧ߂ = 1.23 ܸ 

The thermodynamic potential is constant with pH, electrode material and solution 

composition, but in practice no gas is evolved when a potential of 1.23 V is applied, 

and industrial cells use voltages of about 1.8 to 2.3 V in order to obtain significant H2 

evolution.62 The overpotential (η) required to drive the reaction is therefore cause of a 

significant reduction of the efficiency and a corresponding increase in the amount of 

energy required to produce a given quantity of hydrogen, which is of about 4.8 

kWh/m3 if a potential of 2 V is applied, corresponding to an efficiency just above 

60%.62 In order to make H2 evolution from water a viable energy storage solution for 

a carbon-neutral world, the efficiency of both anodic and cathodic processes has to be 

improved. Hydrogen evolution will be the focus of this work, and therefore the 

cathodic half-reaction of water splitting is more thoroughly analysed in the following 

section. 
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Modelling the hydrogen evolution reaction 

The cathodic reduction of water to molecular hydrogen is a two-step process. Initially, 

a proton has to adsorb and discharge on the surface of the electrode, resulting in an 

intermediate state in which a hydrogen atom is chemisorbed: 

(௔௤)ܪ
ା + ݁(௖௔௧)

ି →  ௔ௗ௦௢௥௕௘ௗܪ

This is called the Volmer reaction, after which the adsorbed hydrogen can desorb 

either combining with a similarly adsorbed hydrogen on the surface of the electrode, 

through the Tafel reaction, or with a proton in solution simultaneously with its 

discharge, through the Heyrowský reaction: 

௔ௗ௦ܪ + ௔ௗ௦ܪ →  ଶ (௚)ܪ

௔ௗ௦ܪ + (௔௤)ܪ
ା + ݁(௖௔௧)

ି →  ଶ (௚)ܪ

in which the subscripts ܽ݀ݐܽܿ ,ݍܽ ,ݏ and ݃ stand respectively for adsorbed on the 

surface of the cathode, in aqueous solution, from the cathode and gaseous.  

Which of the two desorption steps is the dominant mechanism and whether the rate 

limiting step is the desorption or discharge heavily depend on the reaction conditions 

and the material chosen for the cathode.63,64 Since desorption and discharge are 

competitive, it has been theorized that a good catalyst for HER will need to balance 

adsorption and desorption. This principle has found practical application in the so-

called volcano plot: if the current density is plotted for several cathodes as a function 

of their M-H binding energy, a peak in catalytic activity will occur around ΔGads = 0.65 

For this reason, computational modelling of materials for HER electrodes has often 

focused on calculating the hydrogen adsorption energy: this quantity, expressed either 

in terms of ΔGads or electronic energy, is relatively simple to calculate and is more 

accurate than experimental values for M-H binding energy, allowing fine control of 

the model surface and obtaining easily replicable results.66 Because of this, a wide 

variety of materials can be easily benchmarked for the HER, obtaining an adequate 

qualitative measure of their catalytic activity without the need for often complicated 

and hardly replicable syntheses.  

However, some inherent contradictions of volcano plots have been highlighted. 

Sabatier’s principle and both its early and modern67 applications in volcano plots are 
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simple schemes that are based on a solid chemical basis and allow for an early 

screening of materials, but cannot encompass the full complexity of the reaction and 

the chemical nature of the M-H bond on different materials. For this reason other 

descriptors have been proposed, although often unsuccessfully,66 and computational 

work often focuses on finer detail of the chemical interaction between material and 

hydrogen, such as surface coverage or reaction mechanism, in order to obtain more 

meaningful insight in the catalytic activity of each material. One key success of the 

volcano plot, however, lies in the accurate prediction of unparalleled activity for d-

metals: at the peak of the volcano plot is Pt, which is the most efficient hydrogen 

evolution catalyst material, requiring only η = 20 mV in order to evolve H2 with a 

comparatively high current density of i = 1 mA/cm2 in acidic medium.64,68 

Catalysts for the hydrogen evolution reaction 

Due to their high performances, platinum-based catalysts are the most commonly used 

cathodes for lab-scale applications. However, the scarcity and cost of Pt are amongst 

the reasons for the limited industrial application of water electrolysis,22,63 as they make 

the use of such catalysts impractical and expensive for a large-scale use. Cheaper 

materials are often used as HER electrocatalyst in industrial applications, such as mild 

steel, which is employed in the Chloro-alkali reaction.12 However, the overvoltage 

needed to drive the reaction (up to 1V) is too high for an economically and 

environmentally sustainable large-scale production of H2. For these reasons, research 

has been driven towards the development of new catalysts, with the aim of achieving 

similar performances to Pt – especially in terms of overpotential required – with 

cheaper, more abundant and more resistant materials.  

Several metals have been reported as catalyst for HER, such as Cu, Au, Mo, Pd, Rh, 

Fe, Ni and Ti. Some of the best results are found for Ni, Fe and Co catalysts, but they 

suffer from corrosion and passivation23. Nanostructured materials22,69 have been 

reported in the forms of nanoparticle alloys, doped and supported materials, and 

heterostructures. Some of these make use of Pt in very small loadings on carbon 

nanotubes and similar supports in order to maintain the low overvoltage while 

reducing the costs of the electrode;70,71 alloys of Ni, Co, Mo and Fe have been reported 

to improve activity and stability over the pure metals; 2D multi-layered transition 

metal sulfides can have similar activity to that of Pt; most of these materials still 
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present major drawbacks that prevent them from replacing Pt in conventional 

electrolytic cells, but all show promising results and require a significant research 

effort to optimize their performance, cost and stability.23,69 One interesting class of 

materials for this application is that of transition metal carbides, which couple low cost 

and extreme durability with well-known Pt-like catalytic activity, and have been the 

focus of extensive research in the past decade.64,72 

Transition metal carbides 

Transition metal carbides (TMCs) are a class of materials traditionally known for their 

hardness and their mechanical as well as chemical resistance. For that reason, they are 

often the material of choice as coating for high-end stress-resistant materials, such as 

cutting tools, ultra-high-vacuum turbines and jet engines. In 1973, however, the 

ground-breaking work of Levy and Boutart highlighted a “platinum-like” catalytic 

activity in tungsten carbide over several reactions involving hydrogen.73 From that 

moment TMCs have been tested and reported as catalysts for a wide range of reactions, 

either involving hydrogen, such as hydrogenation, water-gas shift, hydro-treatment 

isomerization and methane reforming,27–33 or involving oxygen transfer, such as the 

OER, CO2 reduction and several organic reactions involving the activation or scission 

of a C-O bond.75,79–81  

The structure of these materials is well known and understood. All transition metals 

of groups 4-6 and Fe form at least one stable carbide phase at standard conditions. 

Groups 4-5 form stable carbides with 1:1 stoichiometry and rock salt structure, 

although often with defective structures that highlight the higher metal/carbon ratio. 

Cr, Mo and W form carbides with a variety of structures and stoichiometries, but in 

all cases and no matter how defective the carbon content is the structure is different 

from that of the parent metal.63,82–84 The electronic structure of these material has been 

investigated experimentally and theoretically, highlighting their promising d-band 

position and rationalising their catalytic activity towards reactions such as hydrogen 

evolution from water and CO2 reduction to CO and CH3OH. Several transition metal 

carbides have been reported for the hydrogen evolution reaction. WC and Mo2C have 

been have been the most extensively studied and are reported to show good catalytic 

activity, although still not comparable to Pt: carbon nanotubes-supported molybdenum 

carbide has been shown to allow a current density of i = 1 mA/cm2 at η = 63 mV, while 
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WC showed a relatively high exchange current density of i0 = 0.35 mA/cm2 and an 

onset potential of η ≈ 100 mV. Even though the latter displays lower activity, it has 

been extensively used as HER catalyst due to its very high corrosion resistance under 

acidic condition, which also inspired its use as catalyst support for low Pt loadings, 

with HER activities more than an order of magnitude higher than the commercial Pt/C 

catalysts.71,81,85–87 

Hydrogen adsorption on early transition metal carbides 

Lately, TiC has also been studied as HER catalyst, both experimentally and 

computationally.86,88 Despite its small exchange current density, TiC nanopowder has 

an onset potential close to 0 V vs. RHE and a good corrosion resistance that make it a 

potentially interesting material for HER cathodes,86 and computational studies of the 

bulk electronic structure of early transition metal carbides have highlighted how some 

of these show promise for a high catalytic activity of the HER and CO2 conversion.89 

Chapter 4 of this work expands on this knowledge by studying the adsorption of 

molecular hydrogen over the low-index surfaces of TiC, VC, ZrC and NbC and 

investigates the correlation between the energetics of adsorption and the activity of the 

material as a HER electrocatalyst by analysing the thermodynamics of hydrogen 

coverage on the system. 

1.4 Carbon dioxide recycling 

Solving the ‘carbon problem’ 

The increasing popular and governmental pressure to tackle climate change has 

resulted in political objectives that might not be feasible with current technology, at 

least within a business-as-usual model.10,12,21 The carbon dioxide targets set in the 

Paris Agreement and the political objective the European Commission has set to 

decrease emission by 80% before 2050 are among those, as the “simple” transition 

from fossil fuels to renewable energy would not be able to yield such results. One 

often proposed solution to this problem is the capture of CO2 from either exhaust gases 

or, as a long-term goal, directly from the atmosphere.12 The practical challenges of 

CO2 separation are well-known, but the best solution for the disposal of quantities of 

CO2 in the order of magnitude of the gigatons is still cause for debate. Two of the 
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strategies that have been designed are the carbon capture and storage (CCS) and the 

carbon capture and utilization (CCU) schemes. The former has been known for 

decades and has already been applied by a few countries:13 after CO2 is captured, 

natural cavities such as coal beds and depleted oil and gas fields are used to store large 

quantities of CO2. These technologies had great early success, and several megatons 

of CO2 are stored every year around the world, but some limitations are preventing 

them from spreading further.12 The main issue with CCS scheme is of course that the 

process is very energy intensive, leading to only marginal improvements in carbon 

emissions as the captured CO2 is balanced by a further use of fossil fuels necessary to 

store it. On top of this, concerns over the long-term safety of natural fields in terms of 

environmental impact and permanence of captured CO2 within the confinement have 

limited the applicability of this strategy.12 

The opposite strategy involves the recycling of CO2 into the products that are currently 

synthesised using fossil carbon. Using carbon dioxide as a building block for 

chemicals is after all the source of many of the fossil fuels we use now, as 

photosynthetic organisms have fixated it and used it as energy storage for millions of 

years, by converting CO2 and H2O in glucose and then into the unlimited variety of 

organic matter that powers most of life on our planet.14,21,30 The most obvious way of 

recycling atmospheric CO2 would therefore be through biomass, which is harvested 

and then converted into fuels and chemicals that can be used in the same processes 

currently used for fossil fuels while reducing their carbon footprint. This, however, 

has been criticised as an unrealistic scenario, as biomass production might be in 

competition with food production for the use of farmland, preventing its application 

on a global scale;11 furthermore, while the photosystems responsible for the light 

harvesting and water splitting in plants and algae are extremely efficient, their further 

use to make glucose and then convert it into the chemicals needed by the organism is 

not, driving the total efficiency of biomass down to 0.1-1% in most agricultural 

crops14,29 and resulting in a high environmental footprint for its use, as highlighted by 

life cycle assessments.11 Carbon capture and utilization designs therefore aim to 

similarly fixate CO2 into reduced carbon-based chemicals while significantly 

improving the efficiency, applicability and scale of such processes. 
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Synthetic carbon utilization 

The synthetic fixation of CO2 into useful fuels and chemicals can be performed 

through two main strategies: introducing CO2 into existing molecular frameworks 

without changing its oxidation state, or reducing the CO2 into base chemicals that can 

be further processed.11,12 The former strategy is already used in several industrial 

applications as it generally involves strongly exothermic (inorganic carbonates) to 

mildly endothermic (urea and organic carbonates) reactions; this is a well-established 

way of reducing the environmental impact of certain chemical processes. However, 

the utilization of CO2 in such processes in 2014 was of 200 Mt/y, only 0.62% of the 

global carbon emissions,12 and the global demand of chemicals is not sufficient to 

drive a significant expansion. Contrary to that, the reduction of CO2 leads to highly-

valued chemicals and fuels, mostly CO, CH3OH and CH4;12,80 these are all strongly 

endothermic reactions that require considerable amounts of energy to be performed, 

and that ultimately store renewably-generated energy into the fuels and chemicals 

produced. 

Renewable reduction of CO2 can be done through systems that harvest and input the 

energy in a single step – as in solar thermal concentrators and photocatalytic systems 

– in two steps – as in inverse methanol fuel cells powered by fossil-free energy and 

through chemical reduction by photosynthetically produced hydrogen – or through a 

three-step process in which renewable energy is harvested, converted into H2 through 

water electrolysis and finally into fuels and chemicals through the reduction of CO2 

with hydrogen.11 While it would be obvious to look at single-step and two-step 

processes to reduce the efficiency losses correlated with energy conversion, it is the 

latter strategy that is currently the most primising.11 One- and two-step processes are 

in fact limited by either their scale or the photochemical complexity of the systems 

involved: size, efficiency and resistance to very high temperatures of all components 

are an issue for solar concentrators; microorganism using light to convert CO2 to short 

chain organic molecules have shown promising results but are a new field that will 

require further research development before it can be scaled-up; similar observations 

can be pointed out for the Z-scheme photocatalytic systems, which still require a 

consistent research effort to obtain the efficiencies required for large-scale industrial 

application; and finally, reverse methanol fuel cells and other means of 

electrochemical reduction of CO2 share with 3-step chemical reduction the advantage 
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of being potentially powered by any fossil-free energy source, but suffer from the even 

higher overpotentials required and more complex catalytic reactions on the 

electrodes.11,25,90-92 On the other hand, the three steps of renewable energy harvesting, 

water electrolysis and catalytic CO2 reduction with H2 all make use of well-established 

science, resulting in a solar-to-fuel conversion that can be higher than 10% when state-

of-the-art technology is used.14 However, as mentioned in the previous sections and 

as it will be highlighted in the rest of this work, several challenges remain, and among 

those the design of a catalyst which combines efficiency, cost and selectivity is 

paramount. 

Activity and selectivity in catalytic CO2 conversion 

Several processes have been proposed for the recycling of CO2 once it has been 

captured using renewably generated H2, most of which make use of technology that is 

already employed by the chemical industry. The closest target chemical for CO2 

reduction is of course CO. This reaction can be performed using either the reverse 

water gas shift process (RWGS), which produces CO and H2O from CO2 and H2, or 

the dry reforming of methane, which produces CO and H2 from CO2 and CH4. Both 

reactions can be readily implemented into existing plants, but further studies are 

needed to increase their efficiency, especially with respect to the Fischer-Tropsch (FT) 

catalysts currently used for RWGS reactions.11 Furthermore, CO is a highly valued 

base chemical,74,93 but has to be further processed in order to be used in fine chemistry 

or as fuel. Further down in the reduction series of CO2 are methanol and methane. 

Methanol is often produced from syngas over Cu/ZnO-based or iron oxide 

catalysts,11,94 but the chemistry of these systems is very complex and often determined 

by defective and multi-phasic morphologies which limit our understanding of the 

process.94 Direct CO2 to methanol routes have also been proposed, using molybdenum 

sulphide clusters (Mo6S8) and Pd-based catalysts supported on carbon nanotubes.11,95 

Both FT-based and direct routes to methanol have also been reported, with either 

B-based or Ru-based catalysts, at lower temperatures.11,94 Finally, CO2 can be 

converted to methane, short-chain olefins and other short-chain organic fuels such as 

dimethyl ether and formic acids through various routes, either involving FT processes, 

through direct hydrogenation on a suitable catalyst, or electrochemically.96–99 
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For many of the routes explored, selectivity is an issue that must be tackled. Such 

complex reaction processes can often lead to multiple products, but separation can be 

complex and expensive, leading to a less valuable product. For this reason, several 

studies have investigated the product selectivity of CO2 reduction over various 

catalysts. For example, Mo2C and Fe3C were demonstrated as viable catalysts for the 

RWGS reaction, with better performances than their respective metal sulphides.95 

Homogeneous catalysts for the direct, low temperature synthesis of methanol have 

been proposed, both complex-based and metal-free;11,90 the former makes use of a 

three-step cascade process based on Ru- and Sc-complexes to produce methanol 

through a formic acid intermediate, while the latter exploits the concept of frustrated 

Lewis pairs to obtain CH3OH with 100% selectivity.  

Computational studies of carbon dioxide reduction 

Theoretical studies have often focused on either the activation of CO2 or the 

mechanism for reduction, trying to connect such data with the experimental results on 

activity and selectivity. Mo2S was shown experimentally to have a strong selectivity 

towards CO, with a ratio of 154:1 over CH3OH, and its performances could be 

correlated with its computed oxygen binding energy.80 Other theoretical studies were 

performed on a copper catalyst with metal oxide support, showing that hydrogen binds 

preferentially on the metal while CO2 favours adsorption on the oxide, predicting 

higher activity at the interface.95 Adsorption studies have also been performed on 

Cu2O, In2O3 and TiO2,100 highlighting the effect of oxygen vacancies and surface 

morphology on carbon dioxide activation. Several reaction pathways have been 

investigated, making it possible to identify two main paths, which are selected by the 

site of first hydrogenation of CO2: if this  is on the carbon atom, producing an HCOO 

species on the catalyst’s surface, the first step is rate determining and the catalyst 

cannot catalyse the RWGS reaction as the product will necessarily be hydrogenated; 

if the first hydrogenation happens on the oxygen, both CO and CH3OH formation are 

possible, depending on the relative rate of CO desorption and CO hydrogenation, as 

the latter will be the rate determining step on methanol formation.94 Even on the same 

material, different mechanisms have been proposed in some cases: CO2 methanation 

on Cu was proposed to go preferentially through CHO if the metallic surface is 

exposed to vacuum but through COH if a continuum solvent model is used,100 

highlighting the difficulties related to the modelling of such complex systems. Finally, 
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computational catalyst screening studies have also been performed, but the lack single 

reliable and widely-accepted descriptor – even if the oxygen binding energy has been 

proposed for RWGS reaction in the aforementioned paper – has limited their 

applicability.80,100 

TiC has been proposed for CO2 reduction, both as a catalyst and as catalyst 

support.79,101–103. However, not as much computational effort has been spent on group 

IV TMCs as on other carbides such as Mo2C.81,104 For this reason, and building on our 

previous work on the hydrogen adsorption on group IV TMCs101 as well as on the 

several studies of the bulk properties and catalytic reduction of CO2 on TMCs,89,102 

Chapter 5 of this work will be focused on the CO2 reduction on TiC and ZrC. 
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Chapter 2:  

Computational Methodology 

2.1 Density functional Theory 
Solving the Schrödinger equation 

The computational investigation of metal carbides and carbon nitride derivatives has 

been performed using accurate ab initio methods. These techniques use quantum 

mechanics to obtain a mathematical representation of the behaviour of electrons in 

molecules or extended materials. This strategy enables computational chemists to 

investigate the geometry, electronic properties and chemical reactivity of the systems 

examined. The main objective of the use of computational power in ab initio methods 

is to obtain an approximate, iterative solution of the time independent Schrödinger 

equation: 

ψܪ = εψ             (1) 

where H is the Hamiltonian operator, ψ is the wave function or eigenstate of the system 

and ε is the respective (ground-state) eigenvalue for the energy. The Born-

Oppenheimer approximation is used to decouple the movement of electrons and 

nuclei, allowing for the classical treatment of the latter over a potential energy surface 

(PES) given by the quantum mechanical interactions of the electrons between each 

other and with the nuclei, at each given position of these. This results in the equation: 

[ ௘ܶ + ௘ܸே + ௘ܸ௘]ψ = εψ             (2) 

in which ܶ ௘ is the kinetic operator of the electrons, ௘ܸே is the potential operator relative 

to the interaction of each electron with all the nuclei, and ௘ܸ௘ is the potential operator 

relative to the interaction of each electron with all other electrons. Since no analytical 

solution to ௘ܸ௘ is known, ab initio software uses iterative numerical solutions to the 

Schrödinger equation which are approximations of the exact solution obtained either 

through systematic improvement of averaged interaction (post-Hartree Fock methods) 

or through approximation of the exchange and correlation energy within Density 

Functional Theory (DFT). 
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In DFT, the main objective of the calculation is the solution of the Kohn-Sham 

equations: 

ቂ− ଵ
ଶ

∇ଶ + (࢘)௘௫௧ߥ + (࢘)ுߥ + ቃ(࢘)௫௖ߥ ߮௜(࢘) =  (3)  (࢘)௜߮௜ߝ

In this equation the potential operating on each electron is divided into three 

components: ߥ௘௫௧(࢘) is the operator related to the interaction between electron ݅ and 

the nuclei; ߥு(࢘) is the coulombic interaction between electron ݅ and the average 

electron density due to all other electrons; finally, ߥ௫௖(࢘) is the exchange and 

correlation potential due to the dynamic interaction of electron ݅ to all other electrons. 

Note that these operators are no longer operating on the wave function as is, but on 

the electron density of the system, [࢘]ߩ = |߮௜|ଶ; this is possible thanks to the 

Hohenberg-Kohn theorem which demonstrated the biunivocal relationship between 

the two quantities and therefore between [࢘]ߩ and the properties of the system. The 

Kohn-Sham (KS) equations are thus processed through a self-consistent field (SCF) 

cycle in which the mutual dependency of energy eigenvalues and electron density is 

solved iteratively making use of the variational principle. 

As a result of the terms included in the electronic Hamiltonian of the KS equations, 

the energies of all terms except for ߥ௫௖(࢘) can be calculated exactly. In other words, 

all unknown interactions are included in the ߥ௫௖(࢘) term. For this reason, DFT could 

theoretically lead to an exact solution to the Schrödinger equation if the exact ߥ௫௖(࢘) 

was known; even though this is not the case, DFT achieves the best accuracy of all 

techniques for its computational cost,105 although its precision and accuracy are 

strongly influenced by the choice of exchange and correlation functional ܧ௫௖[ߩ]. 

The exchange and correlation functional 

The simplest form of ܧ௫௖[ߩ] is called Local Density Approximation, or LDA. It was 

first introduced with the Kohn-Sham equations and it is based only on the total electron 

density and on the exact solution for the exchange and correlation potential in a 

uniform electron gas. While this is a crude approximation, the results are often useful 

for solid systems and have been employed for such systems with some success.106,107 

A more nuanced approach is obtained by including the gradient of the electron density 

in the calculation of ܧ௫௖[ߩ]. This is the approach at the basis of Generalized Gradient 

Approximation (GGA) functionals, which are currently commonly employed in 
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solid-state calculations as a consequence of their computational cost similar to LDA 

functionals but showing significantly more accurate performances. A wide variety of 

GGA potentials is now available, with PBE and its variations such as RPBE and 

PBEsol being among the most commonly used for solid state periodic systems. In this 

work we will make use of the PBE functional.108 This is a non-empirical functional, 

meaning that its functional form and the parameters used for its construction rely on 

physical constraints rather than on fitting over a given set of known systems. This 

allows for wider and more reliable applicability on a wide range of systems, rather 

than being limited to systems similar to those it was fitted to. The exchange and 

correlation functional is calculated based on the equation: 

௑஼ܧ
௉஻ா[ߩ↑, [↓ߩ = ∫ ݀ଷ(࢘)ߩݎ߳௑

௨௡௜௙[(࢘)ߩ]ܨ௑஼( ,(࢘)௦ݎ ,(࢘)ݏ  (4)     ((࢘)ߞ

where (࢘)ߞ is the spin polarization, ݎ௦(࢘) is the Wigner-Seitz radius, (࢘)ݏ is the 

reduced density gradient, and ܨ௑஼  is the enhancement factor of the unified exchange 

hole ߳௑
௨௡௜௙. 

Further along the “Jacob’s ladder” of DFT potentials105 are the hybrid potentials. 

These expressions for ܧ௫௖[ߩ] improve on GGA using explicitly calculated 

Hartree-Fock exchange from wave-function based ab initio techniques and mixes it 

with analytical functionals for exchange and correlation. This approach allows for the 

creation of functionals which are more accurate than GGA, especially when targeted 

over a specific class of materials, such as the well-known case of B3LYP for organic 

materials. The improved accuracy, however, comes at a cost: the resolution of a further 

series of Fock equations leads to a much increased computational cost. For this reason, 

hybrid functionals have not been used in this work, as they are usually considered too 

computationally demanding for reactivity studies in a periodic-DFT framework. 

2.2 plane wave basis set 
Bloch theorem  

The electronic structure of a crystalline material, especially in metals, is strongly 

influenced by the delocalization of electrons and the periodic nature of the potential 

applied on each electron by the lattice of nuclei. In order to model these effects, the 
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system is placed in a unit cell of suitable symmetry and then replicated in all directions 

in space. This forms a periodic Bravais lattice in which the atoms are replicated 

indefinitely; atomic planes in real space can be identified as points in reciprocal space, 

generating a corresponding reciprocal lattice matrix. Since the arrangement of atoms 

is periodic, the solution to the Schrödinger equation will also be periodic, hence the 

potential ܷ(࢘) applied on each electron at each point can be written as: 

࢘)ܷ + (ࡾ =  (5)     (࢘)ܷ

in which ࡾ is the lattice vector of the Bravais lattice describing the symmetry of the 

material. In order to adhere to this requirement, the functional form chosen for the 

basis set used to describe the behaviour of electrons in a periodic system can be chosen 

as a plane wave, a periodic function with period equal to that of the underlying Bravais 

lattice: 

߰௡(࢘)࢑ = ݁௜ݑ࢘࢑௡(6)       (࢘)࢑ 

where ݑ௡(࢘)࢑ = ࢘)࢑௡ݑ  +  are two quantum ࢑ is the periodic potential and ݊ and (ࡾ

numbers identifying the solution to the Schrödinger equation, specifically the band 

index and the wave vector. The two quantum numbers give rise to the traditional 

picture of the band structure of a crystalline material as a family of continuous function 

of energy ߝ௡(࢑), as ݊ identifies each function while ࢑ varies continuously over all the 

reciprocal space within the first Brillouin zone, i.e. within the reciprocal unit cell. 

Pseudopotentials and plane wave DFT 

As implied in the Bloch theorem, each ݊ and ࢑ define a single plane wave the value 

of which varies throughout the whole unit cell. Nonetheless, the variations of potential 

surrounding the atomic sphere region around each nucleus of the unit cell are generally 

more complex than those in the interstitial region, and account for a more significant 

portion of the energy. Owing to the behaviour of the core electrons, high 

computational cost and difficult convergence are faced when the Kohn-Sham 

equations are solved using a pure plane-wave basis set. In order to solve this problem, 

the so-called pseudopotential approach is used. This method is based on separating 

core and valence electrons, and substituting the nuclear potential and the potential due 

to core electrons with a suitable pseudopotential which has the same effect on valence 

electrons – i.e. which presents the same solutions to the Schrödinger equation: 
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࢑߰ܪ
௩ = ࢑ߝ

௩߰࢑
௩               (7) 

in which ߰࢑
௩ is the pseudowavefunction of the system in which only valence electrons 

are explicitly considered. While this approach limits the accuracy of the model by not 

calculating the energy and the wavefunction of core electrons, the success of this 

approach stems from the fact that the resulting potential is generally accurate and 

weak, allowing for the efficient use of a plane wave basis set to describe the resulting 

valence electrons pseudo-wavefunction. This approach has been further optimized, 

especially for first-row elements and 3d transition metals, in the projector augmented-

wave method (PAW).109,110 This methodology, which is used for all calculations in the 

present work, makes use of localized atom-centred charges, so that better convergence 

for elements showing highly localized orbitals can be achieved. 

Obtaining information on the charge density (࢘)ߩ requires the integration of the 

pseudowavefunction over all possible wave vectors. To simplify and speed up this 

calculation a grid-based approach is used, evaluating the energy at specific k-points. 

(࢘)ߩ = න|߰(࢘)࢑|ଶ݀ଷ࢑ ≈ ෍|߰(࢘)࢑|ଶ

࢑

                                       (8) 

In the resulting Kohn-Sham equations, an infinite number of wavevectors could be 

used to describe the pseudowavefunctions, but their coefficient decreases as the square 

modulus of the wavevector |࢑|ଶ is increased. To keep the calculation efficient, a 

maximum value for |࢑|ଶ is set, although generally the corresponding cut-off energy 

௖௨௧ܧ = ħమ

ଶ௠
 ଶ is quoted. Since this value is primarily element-dependent, when plane|࢑|

wave basis sets built into commercial software are used a suggested cut-off energy is 

often quoted, as it is the case for the VASP code used in the present study. It is also 

possible, however, to ensure the accuracy of the calculations by executing a 

convergence study, verifying the change in energy of a chemically significant system 

with a varying energy cut-off. 

2.3 Exploring the potential energy surface 
The Born-Oppenheimer approximation results in the decoupling of electronic and 

ionic movements so that the electronic Schrödinger equation can be more readily 
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solved. As a result, the nuclei can be moved along a potential energy surface (PES) 

correlated to the electronic energy of each atomic configuration using the laws of 

classical mechanics. In this section we will discuss how the PES can be efficiently 

explored in order to obtain accurate structures and the solution to several chemical 

problems. 

Dispersion interactions 

The PES is a classical model of the forces that act on each atom within the investigated 

system. Once the electronic energy of a specific ionic configuration is obtained from 

the ab initio DFT cycle, the PES can be further improved in order to obtain a more 

accurate description of the system. One such approach concerns multipole-induced 

long-range correlative interactions, which are inherently hard to include in DFT due 

to the local nature of the theory. Dispersion interactions have been shown to be 

relevant in many cases in periodic-DFT, especially when surface reactivity is 

involved, so it was considered necessary to include dispersion correction in all 

calculations performed for this work. Of the various strategies that have been proposed 

for the inclusion of dispersion forces in DFT calculation, the one proposed by Stefan 

Grimme and coworkers in 2010111 known as DFT-D3 has been chosen for this work. 

The DFT-D3 method is a correction applied to the energy after the SCF cycle of the 

quantum mechanical calculation has been performed, thus not affecting the shape of 

the electron density but only that of the PES. The energy of each point on the PES is 

therefore given by the equation: 

஽ி்ି஽ܧ = ௄ௌି஽ிܧ −  ௗ௜௦௣௘௥௦௜௢௡     (9)ܧ

The dispersion correction is calculated as a sum of contributions from all atom pairs 

and triples in the system within a given cutoff radius, using coefficients which depend 

on element and immediate chemical environment of each atom. This approach allows 

a consistent description of dispersion forces in a wide variety of systems while limiting 

the computational burden of the correction. 

Geometry optimization 

What has been described until now is the procedure which leads to the calculation of 

the energy of a single atomic configuration. The electronic energies of all possible 

ionic configurations give rise to the PES; this can be explored in order to find 
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chemically meaningful configurations such as the global minimum, local minima and 

saddle points, which correspond respectively to the most stable phase of a given 

atomic set, any other stable configuration of the same set and the transition states 

linking two of those.  Ab initio software packages use a variety of algorithms to locate 

local minima of the PES around the input geometry, which generally make use of the 

forces acting on the atoms, i.e. by calculating the first derivative of the energy with 

respect to all degrees of freedom. Multiple line searches are then operated iteratively, 

bringing the system progressively closer to the minimum, and each successive 

direction can be chosen through various methods. The most common optimization 

algorithms are steepest descent, conjugate gradient, and Newton-Raphson: the first 

always selects the largest energy gradient for the line search of each minimization step, 

while the latter two use more nuanced equations for the choice of direction in order to 

obtain fast convergence. The minimum is identified through the first and second 

derivative of the energy with respect to the position of the atoms: 

ܧ߲
௜ݔ߲

= 0;  
߲ଶܧ
௜ݔ߲

ଶ > 0                                                                 (10) 

The search is always operated iteratively until a position sufficiently close to a 

minimum (as specified by a convergence limit) is located. 

Frequency calculations 

The second derivative of the energy of an atomic system with respect of the position 

of its atoms is the Hessian matrix. This matrix is of paramount importance in the 

calculation of vibrational frequencies and transition state energies, as it relates to the 

response of the system to the forces applied on each atom and to its position on the 

potential energy surface. 

The Hessian matrix can be calculated using the finite differences method. In this 

approach, each atom is displaced in the three Cartesian directions and the forces are 

determined in the new position for each displacement, progressively filling the matrix. 

Once calculated, the Hessian matrix allows for the calculation of the eigenvectors and 

eigenvalues of the dynamical matrix, corresponding to the displacements and energies 

correlates to each vibrational mode. These vibrational modes are also correlated to the 

position of the system in the PES; specifically, imaginary vibrational modes are 
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correlated to the directions of the PES in which the second derivative of the energy is 

zero. As a result, their number, displacement and energy can be used to obtain 

information on whether the system is in a minimum of the PES (all vibrational modes 

are real), on a saddle point (all but one vibrational modes are real) or in another 

position, and in certain cases to help locate a transition state, as explained in the next 

section. 

Transition state search 

Other important information that can be found through the exploration of the PES is 

correlated with the energy required to transition from one minimum energy 

configuration of the investigated system to an adjacent one. According to transition 

state theory (TST), the rate of a reaction is correlated with the difference in Gibbs free 

energy between the reactants and the transition state, between which a quasi-

equilibrium state is established: 

்݇ௌ் = ಶ೅ೄషಶೝ೐ೌ೎೟ି݁ܣ

ೖಳ೅               (11) 

where ்ܧௌ  is the energy of the transition state and ܧ௥௘௔௖௧  that of the ground state of the 

reactants. The transition state itself is defined as the highest saddle point found on the 

minimum energy path of the PES connecting reactants and products. As a result, 

saddle points acquire a central role in answering several chemical questions and are 

the focus of many PES explorations. Nonetheless, locating saddle points poses several 

problems: saddle points are identified as points in the PES in which the first derivative 

of the energy is zero while its second derivative is positive in all but one direction. In 

mathematical terms, this is expressed as: 

ܧ߲
௜ݔ߲

= 0;   
߲ଶܧ
௜ݔ߲

ଶ > 0ቤ
௜ஷఛ

;   
߲ଶܧ
ఛݔ߲

ଶ < 0                                      (12) 

Geometrically, this corresponds to saddle points being minima in all but one direction, 

along which they are a maximum. Several different methods have been reported for 

finding saddle points. In this work, the nudged elastic band (NEB), climbing image 

nudged elastic band (cNEB) and dimer methods have been used. 

The elastic-band-based methods aim to identify the minimum energy path (MEP) 

between two images of the system. Along this path, the energy is stationary in all 
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directions but the one identified by the path itself; as a result, the transition state is 

simply the highest point along the MEP, i.e. the highest point along the reaction 

coordinate. In these methods, several images of the system are generated by (usually 

linear) interpolation between the PES minima corresponding to reactants and products 

of a single reaction step. Spring forces connecting each pair of subsequent images are 

generated, and the energy of all images is relaxed simultaneously taking into account 

the forces applied by these springs, which allow the images to converge towards the 

minimum energy path. The nudged elastic band (NEB) method slightly modifies this 

protocol in order to obtain a more accurate description of the MEP. At each iteration 

of the relaxation, the tangent to the reaction coordinate at each image is calculated; of 

the forces owing to the PES, only the contribution in the direction perpendicular to the 

tangent is considered; for the forces owing to the springs, instead, only the contribution 

in the direction parallel to that tangent is considered. Using this methodology the 

relaxation towards the MEP of the images is not hindered by the presence of the 

springs and the PES does not push all images towards the initial and final states of the 

reaction. Once all images are on the MEP, the saddle point can be located using the 

climbing image NEB (cNEB) method. This procedure eliminates the spring forces 

around one or more of the images of the system (generally the one with highest energy) 

once convergence to MEP is obtained, instead inverting the force parallel to the 

tangent to the MEP. This way a simple minimization of the energy of that image moves 

it to the closest saddle point on the MEP. 

A completely different approach is used by the dimer method. This method makes use 

of the harmonic approximation of TST: 

݇௛்ௌ =
௜ߎ

ଷேߥ௜
௜௡௜௧

௜ߎ
ଷேିଵߥ௜

்ௌ ݁ି(ா೅ೄିாೝ೐ೌ೎೟)/௞ಳ்                                     (13) 

In this harmonic approximation, ܰ  is the number of atoms and ߥ௜ are the normal modes 

of vibration, 3N for a minimum and 3N-1 for a saddle point. The resulting imaginary 

mode of vibration, calculated in a system close to the geometry of the transition state, 

is considered as an estimate of the reaction coordinate and followed in order to find 

the saddle point. 
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2.4 Computational details 
Ab-initio software parameters 

All calculations reported in this thesis were performed within the framework of 

periodic density functional theory using the VASP code (Vienna Ab-initio Software 

Package) version 5.4.1.112 Electrons were described using projected augmented wave 

(PAW) method109 for core shells and plane waves for valence. The Perdew-Burke-

Ernzerhof (PBE) functional108 was used to approximate exchange and correlation 

interactions in the framework of generalized gradient approximation (GGA). 

Additionally, long range interactions were modelled using the Grimme D3 dispersion 

method.111 All energies are converged within a cutoff of 520 eV and an electronic self 

consistent field (SCF) threshold of 10-5 eV. Convergence was determined using the 

tetrahedron method, implementing Blochl corrected smearing.113 All parameters were 

benchmarked in order to optimise computational time and accuracy for calculations. 

Formic Acid Treated Polymeric Carbon Nitride 

The FAT-PCN polymers investigated in Chapter 3 of the present work were modelled 

as bulk oxygen-doped graphitic carbon nitride by modifying a high accuracy structure 

for g-C3N4, obtained through neutron diffraction, which was taken from the work of 

Fina et al.54 through the Inorganic Crystal Structure Database. Each unit cell is 

organized in two planar layers accounting for a total of 4 linear polymeric chains, each 

composed of 2 heptazine units, 2 linker groups and 2 terminal groups. In the g-C3N4 

(FAT-0) model, all these 16 groups contain nitrogen, in the form of -NH- for linker 

groups and -NH2 for terminal groups. In the oxygen-doped (FAT-0.1 to FAT-2.0) 

models, 4 such groups are modified to introduce oxygen, replacing the previous linker 

and terminal groups with -O- and -OH respectively. In each FAT model different 

groups are modified, in order to highlight the effect of local oxygen arrangement on 

the electronic properties of the material. These structures are compared to previous 

models for similar polymeric materials from the work on ONLH (oxygen- and 

nitrogen-linked heptazine) from Wang et al.35 All calculations were performed using 

a 5x5x5 K-points matrix in the reciprocal space with no spin polarization. 
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The formation energy for each unit cell has been calculated as the difference between 

the energy of the supercell and the energy of the compound elements divided by the 

number of atoms, via the formula:  

∆௙ܧ = ா೛೚೗೤೘೐ೝି∑ ா೔௡೔

ே
              (14) 

in which ܧ௣௢௟௬௠௘௥ is the energy of the polymer supercell; ܧ௜ and ݊௜ represent the 

energy of an atom of each element present in the polymer in its elemental state and the 

number of atoms of that element in the supercell, respectively; N is the total number 

of atoms in the supercell, 144 for g-C3N4 and 140 for all FAT models. The elemental 

states considered are graphite for C and their respective diatomic molecules in vacuum 

for H, N and O. Their energies have been calculated within suitable unit cells using 

the same parameters as described above for the polymer supercells. 

Transition metal carbides 

The surfaces of the transition metal carbides (TMCs) studied in Chapter 4 and 5 of the 

present work were simulated by 2x2x3 supercell slab models cutting the bulk along 

the (001), (011) and (111) planes, as previously reported by Quesne et al.85 Each slab 

has 6 atomic layers and 16 atoms per layer. The (001) and (011) surfaces are created 

so that they preserve bulk stoichiometry, resulting in an equal number of carbon and 

metal atoms being exposed to the vacuum. Conversely, the (111) plane is parallel to 

carbon and metal atomic layers, resulting in two possible surface terminations that 

respectively expose carbon and metal atoms to the surface. Such a protocol has been 

applied previously to TMCs and has been shown to describe accurately the electronic 

and structural properties of the (111) surfaces, as will be further discussed in Chapter 

4.85 To avoid interaction along the axis perpendicular to the surface, the lattice 

parameter was increased by 12 Å in such direction. A 5x5x1 K-points reciprocal lattice 

matrix was generated using the Monkhorst-Pack method. Spin polarization was 

allowed for the determination of the energy of all structures except for the H2 reference 

molecule. The energy of the system was minimized by keeping the cell parameters 

fixed at their bulk-optimised value and allowing relaxation of all atoms minus those 

belonging to the 2 bottom layers of the model slab, which were kept fixed. The 

minimum energy structures were found using a built-in DIIS algorithm with a 

convergence force threshold of 10-2 eV/Å. The energies of molecular H2, CO2, CO, 
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and O2 have been used as reference for adsorption energies on transition metal carbide 

slabs. These calculations have been performed using a single γ-point K-point mesh 

and the same cut off energy as all other calculations within a suitable unit cell, 

optimised as to minimise the interaction between neighbouring images. 

In Chapter 4, interaction energies between the different surfaces and hydrogen were 

compared using adsorption energy (ܧ௔ௗ௦) as calculated by: 

௔ௗ௦ܧ =
1
݊ ∗ ቂܧ௦௟௔௕ା௡ு − ቀܧ௦௟௔௕ +

݊
2 ுమቁቃܧ                                   (15) 

where ܧ௦௟௔௕ା௡ு is the energy of the hydrogenated slab, ܧ௦௟௔௕ and ܧுమ  are the energies 

of the pristine surface and isolated H2 respectively, and n is the number of hydrogen 

atoms involved in the adsorption. By normalizing by n, we consider ܧ௔ௗ௦ as the 

adsorption energy per atom instead of the total energy change in the system.  

Further analysis of the coverage state of the slabs requires a measure of the trend of 

the adsorption energy per atom with coverage, which we define through: 

(௔ି௕)ܧ∆ = ௔ௗ௦ܧ ቀߠ =
ܽ
݉

ቁ − ௔ௗ௦ܧ ൬ߠ =
ܾ
݉

൰                                (16) 

where ܽ and ܾ are the number of hydrogen atoms adsorbed on the slab, ݉ is the total 

number of available adsorption sites on the slab and ߠ is the coverage in terms of 

monolayers (ML). 

In Chapter 5, since different species are present in the model and no study of the 

coverage state of the surface is performed, the adsorption energy has been calculated 

for the whole model, from: 

௔ௗ௦௢௥௕௘ௗܧ = ௦௟௔௕ା௠௢௟ܧ − ௦௟௔௕ܧ) +  ௠௢௟)   (17)ܧ

where ܧ௠௢௟  is the energy of the isolated molecule and the ܾܽ݀݀݁ݎ݋ݏ species can be 

,ଶܱܥ ,ܱܥ ܱ, ,ܪ  or their combinations. Reaction and activation ,ܪܱܱܥ or ܱܱܥܪ

energies have also been calculated for certain steps of the catalytic reduction of CO2 

on the surface of transition metal carbides, using the following equations: 

௥ܧ = ௣௥௢ௗ௨௖௧ܧ −  ௥௘௔௖௧௔௡௧               (18)ܧ

௔ܧ = ௌ்ܧ −  ௥௘௔௖௧௔௡௧       (19)ܧ
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Where ܧ௣௥௢ௗ௨௖௧ is the energy of the final state of the reaction, ܧ௥௘௔௖௧௔௡௧ is that of its 

initial state, and ்ܧௌ is the energy of the transition state.  

2.5 Data analysis 
Bader charge analysis 

Atomic charges were calculated for specific systems through a Bader charge 

analysis.114 This approach is based on an analysis of the charge density around each 

nucleus: each atom is described by a Bader volume, containing a single charge density 

maximum and terminating with a charge density minimum in the direction normal to 

the separating surface. The Bader partitioning does not necessarily result in biunivocal 

correspondence between Bader volumes and atoms, but presents the advantage of 

being based on charge density, a quantity which is easily accessible in both 

computational and experimental chemistry, and in the former case it does not depend 

on the choice of basis set used. In this work, the implementation of Henkelman and 

co-workers115,116 has been used, which is based on a grid-based analysis of the charge 

in the unit cell. 

Density of states calculations and the work function 

The density of states (DOS) in a material is the density per unit of volume and energy 

of solutions to the Schrödinger equation, i.e. the density of energy levels available to 

electrons. This quantity is of primary importance in semiconductors, as it gives 

information on carrier density and band gap, and is calculated in the VASP code as 

the integral of the occupation number with respect to the infinitesimal energy ݀߳: 

ܰ(߳௜) = න ݊(߳)݀߳
ఢ೔

ିஶ
                                                (20)  

In Chapter 4, an analysis of the work functions of several pristine and hydrogenated 

model carbide slabs is shown. The reported work functions (ߔ) were obtained from 

the following equation: 

ߔ = ௩௔௖௨௨௠ܧ  −  ி௘௥௠௜             (21)ܧ

where ܧி௘௥௠௜  is the maximum electronic energy in the system and ܧ௩௔௖௨௨௠ is the 

average of the local (i.e. electrostatic) potential of the volume of the unit cell above 
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the surface. The resulting Φ can be linked to the theoretical half-cell electrode potential 

for the slabs, for each coverage state, according to the methodology outlined by 

Trasatti117:  

௩௦.  ேுாܧ =
௦௟௔௕ߔ

݁ − 4.5 ܸ                                               (22) 

where ߔ௦௟௔௕ is the work function of the slab, e is the electron charge and 4.5 V is an 

estimate of the absolute potential of the NHE as calculated from its work function, 

coherently with that found in the literature.118,119 

Ab initio thermodynamics  

The effect of hydrogen coverage has been further investigated by means of the ab 

initio thermodynamics formalism120,121 with the objective of elucidating the level of 

hydrogenation as a function of the chemical potential of H2 in the gas phase. The 

surface free energies (σ) of each slab model are defined as follows: 

,ܶ)ߪ ,݌ (ߠ = ߛ +
ఏܧ − ௖௟௘௔௡ܧ

ܣ
−

݊
ܣ

,ܶ)ுߤ  (23)                                 (݌

Where γ is the surface energy of the relaxed, pristine slab, ܧఏ is the energy of the slab 

with coverage state θ, ܧ௖௟௘௔௡ is the energy for the pristine slab, n is the number of H 

atoms adsorbed on the surface and ߤு is their chemical potential in the gas phase. 

Values for the chemical potential as a function of temperature and pressure were 

calculated as shown by Santos-Carballal et al.121 using standard statistical 

thermodynamics, via the formula: 

,ܶ)ߤ (݌ = 
1
2

൬ܧ௘௟ + ܧܼܲ + ,ܶ)ுమܩ∆ (଴݌ + ݇௕ܶ ∙ ݈݊
݌

 ଴൰                (24)݌

where ܧ௘௟ and ܼܲܧ are respectively the electronic and zero-point energy of the 

hydrogen molecule as derived from DFT, and ∆ܩுమ  is the difference in Gibbs free 

energy between 0 K and T at constant pressure ݌଴ =  as calculated from the ݎܾܽ 1

partition function of the molecule; the last term is the pressure dependency of the 

Gibbs free energy. 
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2.6 Computational Resources 
Calculations were performed on CPU resources provided by Cardiff University 

(Raven), Supercomputing Wales (Hawk), Materials Chemistry Consortium (Archer), 

and Barcelona Supercomputing Centre (MareNostrum IV). The computational details 

of each computing cluster are summarised in Table 2.1. 

Cluster name CPU architecture Cores/node Core frequency # of nodes 
Raven Intel Sandy Bridge 16 2.60 GHz 128
Hawk Intel Skylake 40 2.40 GHz 201

Archer Intel Ivy Bridge 24 2.70 GHz 4544 
MareNostrumIV Intel Skylake 48 3.00 GHz 3456 

 Summary of the computational resources available on each of the supercomputing 
clusters used for this project. 

Given the ample difference between clusters, the amount of computational time used 

for a single calculation varied greatly. Standard optimization calculations have usually 

been performed using two nodes on Raven and Hawk, on which the size of the 

machine strongly limits the possibility of performing highly parallel calculations; 

conversely, the same type of calculation could be performed using four to eight nodes 

on Archer and MareNostrum IV, the higher capacity of which allows for faster 

calculations. Computational times therefore varied from less than 24 hours for 

calculations on MareNostrum IV to 6/7 days for the more intense calculations 

performed on Raven, such as those investigating the stacking arrangements of oxygen-

doped carbon nitride. Standard single point calculations required significantly shorter 

computational times, usually well below 24 hours on all machines; even shorter 

computational times were needed for the investigation of partial charge density on 

oxygen-doped carbon nitride, since the calculations required for this purpose are only 

a few minutes long. More advanced calculations such as frequency and dimer method 

calculations have only been performed on Hawk, requiring two to four nodes and 24 

to 72 hours for completion. Finally, NEB and cNEB calculations require a 

significantly higher computational effort, as they have been usually performed using 

one or two nodes per image and 5 to 12 images depending on the distance, in terms of 

reaction coordinate, between reactants and products. These calculations usually 

require 6 to 15 days of computational time to converge.  
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Chapter 3:  

Photocatalysis on oxygen-doped carbon nitride 

In this chapter we explored the structure and the electronic properties of oxygen-doped 

graphitic carbon nitride following the input from experimental collaborators from 

University College London (UCL). We will first report the experimental background 

on which this work is based, highlighting the performances of oxygen-doped carbon 

nitride upon hydrogen evolution from water and the optical and electronic properties 

we wish to match computationally. Secondly, we will compare our computational 

models for the material with previous models developed for similar photocatalysts and 

for pristine graphitic carbon nitride. Finally, we will analyse the optic and electronic 

properties of our model systems, verifying whether they match experimental evidence 

and proposing a rationale for the photocatalytic activity reported by our experimental 

collaborators.  

The work presented in this chapter has previously been peer-reviewed and published 

as a joint experimental and computational paper in Wang et al. “Bandgap engineering 

of organic semiconductors for highly efficient photocatalytic water splitting”, 

Advanced Energy Materials, 8 (24), 1801084, 2018.  

3.1 Experimental evidence 
As outlined in chapter 1, band gap tuning is a well established strategy to improve the 

solar-to-chemical efficiency of a material,17,61,122 as it allows the researcher to balance 

the two contrasting requirements of solar spectrum harvesting, which is improved as 

the band gap is reduced, and chemical activity, which is more strongly driven by wide 

band gaps. Organic and polymeric materials often offer the flexibility to achieve such 

fine tuning, so wide ranging research has focused on them.122  These materials, 

however, rarely show the required stability. A polymeric material that offers both 

robustness and photoactivity is graphitic carbon nitride, which was first shown to 

catalyse H2 from water under visible light in 2008.55 Band gap tuning has been applied 

to graphitic carbon nitride by an experimental group in University College London 

(UCL) through the addition of variable amounts of formic acid in the precursor, which 
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allowed for the substitution of some amino functional groups in the polymer with 

oxygen or hydroxyl groups.123 This technique is designed to avoid the drawbacks of 

more traditional doping procedures previously implemented with g-C3N4 such as 

elemental doping and introduction of carbon quantum dots, which often led to reduced 

crystallinity and low apparent quantum yield due to charge recombination on defect 

centres.51,53,56 The structure of the material synthetized by our experimental 

collaborators in UCL and its specific structure-performance relationship are the focus 

of this chapter. 

Previous work from the same UCL group reported how modifying the synthesis of 

graphic carbon nitride by introducing a ketone group in its DCDA (dicyandiamide) 

precursor leads to a material in which some of the amino groups of the polymer’s 

heptazine units are substituted with oxygen.35 This new structure, which has been 

given the name of oxygen- and nitrogen-linked heptazine (ONLH), exhibits a band 

gap of 1.55 eV and improved charge separation over pristine carbon nitride; however, 

the procedure used does not allow for band gap tuning, as the ratio between nitrogen 

and oxygen is fixed in the polymer precursor. For this reason, a new polymerization 

procedure was developed:123 the DCDA precursor to g-C3N4 was treated with formic 

acid to form aminohydroxytriazine, which is subsequently polymerized with unreacted 

DCDA to obtain a polymer in which the oxygen content can be regulated by the ratio 

between DCDA and formic acid (FA). The material as been named, after the procedure 

used, as formic acid treated polymeric carbon nitride (FAT-PCN, or FAT for 

simplicity). The different samples prepared were identified according to the 

FA/DCDA ratio: FAT-0 corresponds to pristine g-C3N4, while the labels FAT-0.1, 

FAT-0.2, FAT-0.5, FAT-0.8, FAT-1.0, FAT-1.5 and FAT-2.0 are used for the 

oxygen-containing samples.  

The polymers were then characterized and tested for H2 evolution from water under 

visible light irradiation. Characterization of these materials was performed in terms of 

elemental analysis, morphology and band position. The low FA samples (FAT-0 to 

FAT-0.5) presented differences <0.01% in the elemental composition, highlighting 

how minimal amounts of oxygen were embedded in the framework; from FAT-0 to 

FAT-0.5 a steady albeit slow increase in the surface area from 5.5 to 6.9 m2/g is 

observed, as well as a similar decrease in the band gap from 2.74 eV to 2.66 eV, as 
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calculated from Tauc’s plot. These changes are correlated with an increase in the 

absorption coefficient of the band around 500nm in the visible spectrum and to a slight 

decrease of the conduction band minimum (CBM) of the samples. Collectively, these 

changes are attributed to a slight distortion of the framework, which results in an 

increased absorption coefficient for the n-π* excitation. Higher FA content samples, 

from FAT-0.8 to FAT-2.0, show more marked differences: oxygen content and surface 

area increase significantly in these samples, reaching respectively 2.71% and 40 m2/g 

in the latter; band gaps are significantly smaller than in the other samples, all within 

0.15 eV of each other and reaching a minimum for FAT-1.0 at 1.92 eV before 

increasing again slightly in FAT-1.5 and FAT-2.0 up to 2.05 eV. Photocatalytic 

performances were tested by loading each sample with a 3w.t.% Pt co-catalyst and 

measuring the H2 evolution over time in presence of 10% TEOA (triethanolamine) 

hole scavenger in solution and under visible light irradiation. The photocatalytic 

performances roughly follow the trend of the band gap, with high-FA samples 

showing considerably higher H2 evolution than low-FA samples, and FAT-1.0 

achieving the highest H2 evolution rate at 0.8mmol/gh with 8.6% quantum yield at 

400nm. In order to clarify the relationship between the performances reported above 

and the structural and electronic properties of the material, models of the electronic 

structure of the polymers were needed; their design and the results obtained analysing 

them are the focus of this chapter, while the experimental data used as reference for 

computational modelling is summarised in Table 3.1. 

Sample name O content
/ % 

Surface area 

/ m2g-1

Band gap 

/ eV
HER activity
/ µmol g-1 h-1 

FAT 0 0.76 5.5 2.74 44 
FAT 0.1 0.76 5.6 2.72 103 
FAT 0.2 0.76 6.7 2.69 114 
FAT 0.5 0.77 6.9 2.66 192 

FAT 0.8 0.98 9.9 2.06 456 
FAT 1.0 1.62 12.1 1.92 772 
FAT 1.5 2.67 16.4 2.01 656 

FAT 2.0 2.71 40.0 2.05 556 

Table 3.1 Summary of the chemical and optical properties of the FAT samples, reproduced from 
ref(123). 
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3.2 Modelling oxygen-doped graphitic carbon nitride 
Previous models 

Due to the absence of accurate experiments aimed at determining the periodic structure 

of DCDA-derived oxygen-doped carbon nitride, the starting point for this 

computational study has been the pristine graphitic Carbon Nitride (g-C3N4) structure. 

This material is synthesised from DCDA, which is condensed into heptazine planar 

units and therefore polymerised by linking these through their -NH- active sites. While 

the resulting polymer does not present a unique crystal structure, exhibiting a 

combination of 2D planes and linear chains as a result of the presence of three linking 

groups on each heptazine unit, Fina et al.54 have demonstrated that the material is 

primarily composed of linear chains organised in planes stacked in an A-B-A fashion 

which optimises π overlap, as shown by structure [1] of Figure 3.1. Previous literature 

from Wang et al.35 on ONLH showed how the structure proposed in ref(55) for g-C3N4 

could be used as a starting point for the computational modelling of oxygen-doped 

carbon nitride. In the computational section of that paper, the most stable oxygen 

doping was found to be the substitution of -NH- groups of the pristine carbon nitride 

polymer with -O-. As a result of this substitution, the calculations predicted a 

significant change in the symmetry of the unit cell caused by a distortion of the 

framework, which is no longer planar and creates a twisted structure with A-B-A 

stacking. Dr. N. Martsinovic (University of Sheffiled), who undertook the 

computational work reported in ref(55), provided us with this ONLH structure 

– shown as structure [2-a] of Figure 3.1 – which has been analysed in this work both 

as-received and after further modifications within our theoretical framework, and 

compared to a variety of structures developed specifically for the present project. This 

procedure was considered necessary because the computational work reported in 

ref(35) had been performed using a different technique – atom-centred basis set and 

B3LYP functional with dispersion correction, run periodically using the CRYSTAL09 

code – which is often regarded as “higher on the Jacob ladder” of chemical accuracy, 

potentially invalidating some of the partially contrasting results which will be 

presented here; nevertheless, the models designed specifically for this work – shown 

in section [3-a] to [3-i] of Figure 3.1 – are in similar and in certain cases better 

agreement with experimental data, effectively validating our procedure and allowing 
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a greater range of structures to be studied due to its lower computational cost. This has 

been exploited by deriving several additional models from the experimental g-C3N4 

structure from ref(54), specifically built to investigate the structure-property 

relationship arising in FAT polymers from the short-range ordering of oxygen doping. 

Original structures 

Nine additional geometries have been built in order to investigate the FAT polymers, 

using the following procedure. A model of the g-C3N4 bulk structure was obtained 

from Fina et al.54, containing four linear chains of two heptazine monomers each. The 

eight heptazine units, as shown in Figure 3.1 [1], are organized in two planes parallel 

to each other, about 3.2 Å apart and arranged with an A-B-A stacking that balances 

the interaction between the aromatic planes and the H-bonds between the chains. This 

structure contains eight -NH2 ‘terminal’ functional groups bonding the chains together 

by hydrogen bonds and eight -NH- ‘linker’ functional groups connecting two 

consecutive heptazine units in the same polymeric chain. Nine new structures, shown 

in Figure 3.1 [3-a] to [3-i], have been designed for the present work. In each of the 

nine new structures four amino groups were modified to either -OH terminal groups 

or -O- linker groups. Specifically, five structures have been modified with the latter 

and four with the former, in order to represent a wide range of potential polymer 

conformations and study the differences in their electronic properties. These structures 

provide an oxygen content of 2.86%, close to that of FAT-2.0. This choice was made 

for a few reasons. Firstly, this provides a direct comparison between our own 

structures and the non-planar ones taken from earlier work. Secondly, this approach 

followed input from our colleagues carrying out experimental work, as they were 

interested in investigating such oxygen loadings; finally, it allowed us to investigate a 

wide variety of configurations, highlighting how the short-range order influences the 

photocatalytic performances of the material. Each structure analysed in this work is 

shown in Figure 3.1.   
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[1] 

[2-a] 

[2-b] 

Figure 3.1 part 1. All structures investigated within this study are reported. The colour scheme 
is at follows: H = pink, C = brown, N = blue, O = red. The unit cell is outlined in grey. Structure [1] 
is the geometry for g-C3N4 reported in ref(54), structures [2-a] to [2-f], the ONLH models, are 
related to the previous study of oxygen-doped carbon nitride reported in ref(35). Structures [3-
a] to [3-i], the FAT models, have been developed specifically for this study.  
For structures [1], [2-a] and [2-b], reported in this page, a side view of the whole unit cell (left, 
along the a-axis) and a top view of a single atomic layer (right, along the c*-axis) are shown. Of 
interest here are: the geometry of the unit cell, which goes from orthorhombic in [1] to 
monoclinic in [2-a] and [2-b]; the structure of the polymer (left), which goes from planar in [1] 
to twisted in [2-a], and has even higher torsional angle in its fully optimized geometry [2-b]; the 
identical oxygen distribution in [2-a] and [2-b] (right), which gives rise to adjacent N-only and 
O-only chains. 
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[2-c] 

[2-d] 

[2-e] 

Figure 3.1 part 2. All structures investigated within this study are reported. The colour scheme 
is at follows: H = pink, C = brown, N = blue, O = red. The unit cell is outlined in grey. Structure [1] 
is the geometry for g-C3N4 reported in ref(54), structures [2-a] to [2-f], the ONLH models, are 
related to the previous study of oxygen-doped carbon nitride reported in ref(35). Structures [3-
a] to [3-i], the FAT models, have been developed specifically for this study.  
For structures [2-c], [2-d] and [2-e], reported in this page, a side view of the whole unit cell (left, 
along the a-axis) and a top view of a single atomic layer (right, along the c*-axis) are shown. Of 
interest here are: the geometry of the unit cell, which is monoclinic in all structures displayed 
here; the structure of the polymer (left), which goes from twisted in [2-c] to almost planar after 
full optimization in [2-d]; the identical oxygen distribution in all structures (right), which gives 
rise to adjacent N-only and O-only chains. 
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  [2-f] 

[3-a] 

[3-b] 

Figure 3.1 part 3. All structures investigated within this study are reported. The colour scheme 
is at follows: H = pink, C = brown, N = blue, O = red. The unit cell is outlined in grey. Structure [1] 
is the geometry for g-C3N4 reported in ref(54), structures [2-a] to [2-f], the ONLH models, are 
related to the previous study of oxygen-doped carbon nitride reported in ref(35). Structures [3-
a] to [3-i], the FAT models, have been developed specifically for this study.  
For structure [2-f], a side view of the whole unit cell (left, along the a-axis) and a top view of a 
single atomic layer (right, along the c*-axis) are shown. For structures [3-a] and [3-b], the top 
view (along the c*-axis) of the bottom (left) and top (right) layers is shown. The side view is 
discarded for FAT structures since their geometry is always planar. Of interest here are: the 
structure of the polymer in [2-f] (left), which goes from twisted in [2-e] (its non-optimised 
analogous, in the previous page) to almost planar; oxygen distribution in [3-a] and [3-b], which 
differ for the position of their top layer (right), but both give rise to adjacent N-only and O-only 
chains. 
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  [3-c] 

[3-d] 

[3-e] 

Figure 3.1 part 4. All structures investigated within this study are reported. The colour scheme 
is at follows: H = pink, C = brown, N = blue, O = red. The unit cell is outlined in grey. Structure [1] 
is the geometry for g-C3N4 reported in ref(54), structures [2-a] to [2-f], the ONLH models, are 
related to the previous study of oxygen-doped carbon nitride reported in ref(35). Structures [3-
a] to [3-i], the FAT models, have been developed specifically for this study.  
For structure [3-c] to [3-e], displayed in this page, the top view (along the c*-axis) of the bottom 
(left) and top (right) layers is shown. The side view is discarded for FAT structures since their 
geometry is always planar. Of interest here is the oxygen distribution in [3-c], [3-d] and [3-e]: in 
[3-c], the top layer (right) is divided in N-only and O-only chains as the models in previous pages, 
while the bottom layer (left) has one oxygen substituent per chain, resulting in 75% of O-doped 
chains; [3-d] also has 75% of O-doped chains, but does not show adjacent N-only and O-only 
chains since the bottom layer (left) has a higher oxygen content than the top layer (right); [3-e] 
has all chains doped with a single oxygen linker.  
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[3-g] 

[3-f] 

[3-h] 

Figure 3.1 part 5. All structures investigated within this study are reported. The colour scheme 
is at follows: H = pink, C = brown, N = blue, O = red. The unit cell is outlined in grey. Structure [1] 
is the geometry for g-C3N4 reported in ref(54), structures [2-a] to [2-f], the ONLH models, are 
related to the previous study of oxygen-doped carbon nitride reported in ref(35). Structures [3-
a] to [3-i], the FAT models, have been developed specifically for this study.  
For structure [3-f] to [3-h], displayed in this page, the top view (along the c*-axis) of the bottom 
(left) and top (right) layers is shown. The side view is discarded for FAT structures since their 
geometry is always planar. Of interest here is the oxygen distribution, in the form of -OH terminal 
groups, in [3-f], [3-g] and [3-h]: in [3-f] oxygen doping is in 50% of chains in both layers, giving 
rise to adjacent O-only and N-only chains; in [3-g] oxygen doping is concentrated in the top layer 
(right) of the unit cell, while the bottom layer (left) appears similar to pristine carbon nitride; in 
[3-g] all chains in the unit cell have a single -NH2 group substituted with an -OH group. 
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Structure [1] is the bulk model of g-C3N4 as taken from ref(54). This structure presents 

the material as composed of polymeric heptazine chains arranged in planar atomic 

planes kept together by hydrogen bonds between the -NH2 terminal groups of each 

heptazine unit and the aromatic nitrogen atoms of their neighbours. The orthorhombic 

unit cell encloses four polymeric chains in two atomic layers, each chain made of two 

heptazine units.  

The structures in section [2] are derived from previous computational work on ONLH. 

Structure [2-a] is the ONLH structure as taken directly from ref(35); this structure is a 

modification the g-C3N4 model above obtained by replacing -NH- linker groups with 

oxygen in half the polymeric chains of the unit cell considered. Structure [2-b] is the 

same structure after a full geometry optimization has been performed. Structures [2-c] 

is a 1x1x2 supercell of structure [2-a], created in order to check the effect of cell size 

on the geometric, energetic and electronic properties of the material; structure [2-d] is 

the resulting fully optimized geometry. Structures [2-e] and [2-f] are respectively the 

fixed and optimized geometries obtained from [2-c] by performing a 90° rotation 

around the c-axis of one layer with respect to the other. All structures display a non-

planar geometry within a monoclinic unit cell, even though the torsional angle between 

the heptazine units which gives rise to the twisted geometry varies significantly, as 

[3-i] 

Figure 3.1 part 6. All structures investigated within this study are reported. The colour scheme 
is at follows: H = pink, C = brown, N = blue, O = red. The unit cell is outlined in grey. Structure [1] 
is the geometry for g-C3N4 reported in ref(54), structures [2-a] to [2-f], the ONLH models, are 
related to the previous study of oxygen-doped carbon nitride reported in ref(35). Structures [3-
a] to [3-i], the FAT models, have been developed specifically for this study.  
For structure [3-i], displayed in this page, the top view (along the c*-axis) of the bottom (left) 
and top (right) layers is shown. The side view is discarded for FAT structures since their geometry 
is always planar. Of interest here is the oxygen distribution, in the form of -OH terminal groups: 
in [3-i] all chains in the unit cell have a single -NH2 group substituted with an -OH group. 
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shown by the side view of Figure 3.1 [2-a] to [2-f] and by Table 3.2. Most notably, the 

oxygen content is identically distributed in all ONLH structures: on each atomic layer, 

one of the two polymeric chains displays only oxygen linker groups, while the other 

only has -NH linker groups.  

Table 3.2 Summary of the structural and geometric properties of all investigated models 
 

The structures in section [3] are the planar models derived for this project on FAT 

polymers and have all been only investigated after full optimization. All FAT model 

structures have the same planar geometry of g-C3N4 and mostly differ for their oxygen 

distribution: as highlighted in Table 3.2, FAT structures [3-a] to [3-e] have been 

modified with -O- linkers replacing -NH- linkers, while [3-f] to [3-i] have -OH 

terminal group in place of -NH2 groups. The different oxygen arrangements result in 

a variable distribution of the oxygen content, which is localised on 50%, 75% or 100% 

of the polymeric chains within the unit cell, a characteristic that will later be linked 

with photocatalytic performances. 

Structures [3-a] and [3-b] present an ordered oxygen arrangement: in both cases, each 

of the two layers present one chain with only O-linker groups and one chain with only 

N-linker groups; the main difference between the two structures is the relative position 

Structure 
number 

Oxygen 
type 

O-containing 
chains 

Formation 
energy 
/ kJmol-1 

Average 
torsional 
angle 

Interlayer 
distance 
/ Å 

Source 

[1]- g-C3N4 None 0% +13.05 0.00° 3.25 Ref (77) 
[2] - ONLH       
[2-a] -O-  50% -7.56 13.75° 3.57 Ref (28) 
[2-b] -O-  50% -7.76 19.31° 3.61 

Modified 
[2-a] 

geometry 

[2-c] -O-  50% non optimized geometry 
[2-d] -O-  50% -8.34 3.62° 4.44 
[2-e] -O-  50% non optimized geometry 
[2-f] -O-  50% -8.58 2.36° 3.37 
[3] - FAT       
[3-a] -O-  50% -8.91 0.00° 3.22 

Structural 
modification 

of [1] 

[3-b] -O-  50% -9.14 0.00° 3.20 
[3-c] -O-  75% -9.09 0.00° 3.21 
[3-d] -O-  75% -9.06 0.00° 3.23 
[3-e] -O-  100% -9.12 0.00° 3.21 
[3-f] -OH  50% -10.04 0.00° 3.25 
[3-g] -OH  50% -10.50 0.00° 3.56 
[3-h] -OH  100% -10.40 0.00° 3.21 
[3-i] -OH  100% -10.18 0.00° 3.25  
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of the two layers, as in [3-a] the O-linked chains are stacking on top of each other, 

while in [3-b] they do not. Structures [3-c] and [3-d] both present O-linkers in 75% of 

the polymeric chains, being composed of one purely O-linked chain, two partially O-

linked chains and a single N-linked chain; the main difference between the two 

structures is in the oxygen distribution between the layers, as [3-d] displays O-linkers 

localised in one of the atomic layers (left in Figure 3.1 [3-d], displaying 3 O-linkers 

and 1 N-linker), while [3-c] does not. Structure [3-e] has one O-linker and one N-

linker on each polymeric chain in the unit cell, resulting in a uniform distribution. 

Structures [3-f] to [3-i] have been designed by exchanging -NH2 groups at the non-

polymerized end of each heptazine unit with -OH groups. Both structure [3-f] and 

structure [3-g] have oxygen on 50% of the polymeric chains, presenting two purely 

OH-terminated and two purely N-terminated chains. [3-f] has the OH-terminal groups 

equally distributed on each layer, while [3-g] has all OH-terminal groups on a single 

atomic layer. Structure [3-h] and structure [3-i] have -OH groups on 100% of 

polymeric chains, although in different relative positions: in structure [3-h] the 

proximity of the -OH groups of adjacent chains allows for a strong double hydrogen 

bond, while in [3-i] this is not possible.  

Oxygen-doped graphitic carbon nitride 

Formation energies, defined in Chapter 2 as the difference between the energy of each 

model system and that of its elemental constituents, have been used to compare the 16 

structures, and reported in Table 3.2. According to our calculations, in all cases the 

formation of oxygen-doped carbon nitride is favoured over the polymerization of the 

non-doped material, as the formation energy strongly decreases when oxygen is in the 

polymer. Formation energies for the planar structures are more negative than those for 

twisted structures with comparable oxygen arrangements (for example, [3-a] has a 

formation energy 1.15 KJ/mol lower than [2-b], its optimized non-planar equivalent); 

furthermore, while the relaxation of [2-a] to [2-b] leads to an increase in average 

torsional angle between the heptazine units – corresponding to a less planar structure 

– the relaxation of the structures [2-c] and [2-e] to [2-d] and [2-f] respectively leads to 

structures with close-to-zero average torsional angles and energies still higher than all 

the structures in section [3]. Meaningful energy differences are also found amongst 

FAT structures. Models in which -OH terminal groups are present show formation 



 

51 
 

energies about 1 KJ/mol lower than models with -O- linker groups, due to the stronger 

hydrogen bonds the former functional groups can form between adjacent polymeric 

chains. The energy differences between different configurations of O-linker and OH-

terminal structures, however, are sufficiently small that both oxygen types should be 

found, as confirmed experimentally.35 

The data shown above suggest that a planar geometry is more favourable for oxygen 

doped carbon nitride compared to a twisted structure. This, however, is in 

disagreement with the previous computational work on ONLH reported in ref(35), in 

which the non-planar geometry is argued to be energetically favoured over the planar 

one. This discrepancy between the present work and previous investigations probably 

arises from the different technique used: while this work has been carried on with 

plane-wave basis sets and a GGA functional, ref(35) states the work had been carried 

on with atom-centred basis sets and using an hybrid functional to approximate the 

exchange and correlation energy. As mentioned above, the results presented here are 

not disproven by the existence of such partially contradicting data: this work will show 

how the planarity of the polymeric chain has little effect on the performances of the 

material, which can conversely be put more readily in relation with other geometric 

characteristics of the models. This conclusion is further strengthened by comparison 

of the intra-layer distance of all model systems with experimental literature: XRD 

experiments highlight a 3.30 Å distance for oxygen-doped samples, in better 

agreement with our planar geometries (ranging from 3.20 Å to 3.56 Å) than with the 

non-planar structure [2-a] which shows a distance of 3.57 Å as calculated in ref(35). 

3.3 Electronic properties of FAT models 
The FAT model structures shown in section [3] of Figure 3.1 have been used to 

investigate the effect of variable oxygen distribution within the unit cell on the 

electronic properties of the material. The consequences of oxygen distribution could 

then be related to the varying optic and photocatalytic performances displayed by 

experiments on the FAT samples. The results of this investigation are presented here. 
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Band gap prediction 

As noted in the first section of this chapter, FAT samples with high oxygen loading 

show substantial differences from those synthetized using smaller amounts of formic 

acid. The Density of States (DOS) calculations on [3-x] models highlight how these 

structures are appropriate models for high oxygen loading FAT polymers, as expected 

from their oxygen content. All the computational structures [3-x] have band gaps 

between 1.77 and 2.33 eV; while this is a considerable range for structures that only 

differ in the short-range ordering, it matches experimental band gaps for high-

performance FAT polymers, which are evaluated to be between 1.98 and 2.06 eV 

through Tauc’s plots. The use of multiple oxygen configurations as models for the 

FAT polymers supports the investigation of the properties arising from changing the 

material’s short-range ordering. Four of the O-linked structures match the 

experimental band gap of about 2.1 eV displayed by FAT-2.0, while the fifth, [3-e], 

shows a much higher value of 2.33 eV. Conversely, three of the four OH-terminated 

structures show band gaps larger than that, ranging between 2.24 and 2.30 eV, while 

configuration [3-f] presents the shortest band gap of all investigated configurations at 

1.77 eV. No clear reason for this variability could be proved, as the only structural 

differences between the investigated geometries lie in the quality and quantity of their 

H-bonds, which cannot be readily put in relation with such a significant change in the 

band structure of the material. Nonetheless, a correlation could be drawn between the 

band gap and the distribution of oxygen among the polymeric chains in each structure: 

when the oxygen is distributed in only 50% of the polymeric chains, resulting in a unit 

cell organized in adjacent N-only and O-only chains, the band gap is generally below 

2.1 eV. Opposite to this, all unordered structures show band gaps above 2.1 eV. The 

only exception to that is given by structure [3-g]: in its unit cell, the oxygen doping is 

concentrated on a single atomic plane, giving rise to a structure with no N-only chain 

adjacent to an O-only one on the same layer even if all oxygen is concentrated in only 

50% of the polymeric chains, and this structure exhibits a band gap of 2.3 eV. We can 

therefore suggest that the electronic structure is somehow indeed affected by the 

presence of adjacent N-only and O-only chains on a single atomic plane. 
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Table 3.3 Summary of the structural, optical and electronic properties of FAT models. 

The band gap trend, however, is not consistent with experiments when the variation in 

oxygen content is considered: experimentally, the band gap is reduced as the oxygen 

content is increased from FAT-0 to FAT-1.0 and only slightly increases again from 

FAT-1.0 to FAT-2.0, which is in opposition to our calculations both in terms of band 

structure and in terms of comparison with pristine carbon nitride. For the former, the 

presence of oxygen in the valence band edge and conduction band edge is not 

prominent, suggesting that the presence of doping should not significantly change 

either. For the latter, the DOS calculations on g-C3N4 show a band gap of only 1.01 eV, 

not only significantly underestimating the experimental band gap of ~2.7 eV, but also 

reversing its trend over oxygen doping, as this seems to expand the band gap of the 

material rather than reducing it.  

The inaccurate determination of the band structure is a well-known limitation of GGA 

functionals such as that implemented in this work, but as the use of more accurate 

techniques such as hybrid-DFT functionals and TD-DFT was considered to be too 

computationally expensive for unit cells of this size. Since experimental evidence 

clearly disproves the accuracy of band gaps calculated for carbon nitrides, no further 

investigation of the band structure was performed and the results shown in this section 

were only considered qualitatively. 

Photocatalytic performances 

Despite the unreliable accuracy of band gap calculations performed using GGA 

techniques, the disposition of oxygen within the unit cell of each FAT model could be 

related to the photocatalytic properties of the material through the exploration of the 

partial charge density of valence and conduction band edges. According to the 

Structure 
number 

Oxygen type O-containing 
chains 

N – O chain 
sequence 

Band gap 
/ eV 

Charge 
separation 

[3-a] -O- linker 50% Yes 2.13 Yes 
[3-b] -O- linker 50% Yes 2.11 Yes 
[3-c] -O- linker 75% One layer only 2.14 Partial 
[3-d] -O- linker 75% No 2.13 Partial 
[3-e] -O- linker 100% No 2.33 No 
[3-f] -OH terminal 50% Yes 1.77 Yes 
[3-g] -OH terminal 50% Between layers 2.30 No 
[3-h] -OH terminal 100% No 2.24 No 
[3-i] -OH terminal 100% No 2.27 No 
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experimental data provided in Table 3.1, the performances of FAT samples increase 

with oxygen content up to FAT-1.0 due to the gradual substitution of -NH- groups 

with oxygen in the polymer, before degrading slowly towards FAT-2.0. It was possible 

to correlate this activity trend to the interaction between of N-only chains and O-only 

chains in the FAT polymers: similarly to what is observed through the DOS 

calculations, which highlighted how adjacent N-only and O-only chains on the same 

atomic plane might reduce the band gap of the material compared to that of less 

ordered structures, the same characteristic is related to a peculiar spatial separation 

between VBE and CBE. 

By analysing the charge density of the valence and conduction band edges of each 

configuration, some examples of which are reported in Figure 3.2, four possible 

situation arise: a) when each atomic plane shows one N-only and one O-only chain, 

these will host the VBE and CBE respectively, and no overlap is found not they are 

linked by chemical bonding; b) when 75% of the chains are O-containing but some of 

those are still adjacent to N-only chains, partial overlap between VBE and CBE is 

Figure 3.2 The valence band edge (VBE) and conduction band edge (CBE) of three FAT models 
and of pristine g-C3N4. The colour scheme is at follows: H = pink, C = brown, N = blue, O = red, the 
orbitals isosurface is depicted in yellow. The figure depicts the VBE and CBE of: (a) bottom layer 
of structure [3-a], exemplifying the correlation between a highly ordered structure with adjacent 
O-only and N-only chains and the full spatial separation of the two band edges. (b) Bottom layer 
of structure [3-c], showing partial overlap between VBE and CBE; the top layer, the structure of 
which is displayed in Figure 3.1 [3-c] (right), exhibits spatial separation of CBE and VBE. (c) Top 
layer of structure [3-g], which has all oxygen doping on this layer, displaying no spatial 
separation of VBE and CBE. (d) structure [1] – g-C3N4, in which all chains are equivalent by 
symmetry, preventing any difference between their electronic properties. 
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found and the tendency to have the former on N-only and the latter in O-containing 

chains is maintained; c) if no N-only chain is adjacent to an O-containing chain, either 

because all chains are O-containing or because all oxygen is located in a single atomic 

layer, little to no spatial separation is observed, and the pattern with which VB and CB 

are localized can be irregular; d) if no oxygen is present – i.e. for pristine carbon nitride 

– the system is more symmetric and therefore VB and CB are not localized 

preferentially in any given section of the material. 

The reason for such spatial separation might be ascribed to a change in the electrostatic 

potential of the O-containing chains due to the presence of polar covalent bonds, as 

suggested in previous studies,124,125 but our modelling could not find solid evidence 

for this argument due to the complexity of the problem and the polymeric nature of 

the system. Nevertheless, this finding is in good agreement with the experiments, since 

it relates the peak in performance of FAT-1.0 to an optimization of the charge 

separation arising from the local ordering of the system: as oxygen content is increased 

from FAT-0 to FAT-1.0, adjacent N-only and O-only chains become more probable; 

the resulting short-range ordering of the material allows photoexcited electrons and 

holes to gather on O-only and N-only chains respectively, which act as traps and slow 

down charge recombination, improving the photocatalytic performances of the 

material. Conversely, if oxygen loading is further increased an excessive concentration 

of O-containing chains increases the overlap between VB and CB, as local ordering 

of the material becomes less likely, resulting in the reduction of photocatalytic 

performances observed on FAT-1.5 and FAT-2.0, which occurs even as the band gap 

is only marginally affected by the increase in oxygen loading. 

Conclusions 

It is reasonable to propose that the photocatalytic performances of FAT samples 

depend on the local distribution of oxygen as much as on its concentration within the 

g-C3N4 framework: while a reasonable amount of formic acid will benefit the 

performances of the polymer by reducing the band gap and, in some areas of the 

polymer, create a spatial separation between the VB and the CB that improves the e--h+ 

lifetime, a concentration of O-linkers that is too high would lower the probability of 

having this separation, leading to the decreased performances highlighted in FAT-1.5 

and FAT-2.0. Therefore, a peak in performance is to be expected, as a fine control 
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over the arrangement of oxygen within the framework is impossible and a more 

uniform distribution of oxygen among the chains does not significantly improve the 

charge separation with respect to pristine g-C3N4. Similar conclusions are found in 

ref(35) with a non-planar structure for the ONLH polymer, which is reported to have 

a similar structure-property relationship. This allows us to further expand our 

understanding of the performances of the material. Wang et al.35,123 reported the 

increase in performance at low FA loading as due to a distortion of the framework, 

while the much more significant activity found for higher FA loadings had to be 

related to electronic properties. Our results, which highlight a similar charge 

separation properties in the planar and non-planar models, allows us to conclude that 

this is correct: the distortion of the polymer influences only marginally the localization 

of VB and CB, and instead it is the distribution of oxygen in the framework that 

enhances charge separation in the photocatalytic material, resulting in its remarkable 

ability to evolve molecular hydrogen from water using natural light. It is finally 

possible to note how the band gap, often regarded as a key descriptor of how promising 

a material can be for photochemistry and photoelectrochemistry, is indeed only one of 

the many factors that influence a process as complex as photocatalytic water splitting; 

when, as in this case, the band gap of the material can be tuned with relative ease, it 

becomes clear how the fine detail of the chemistry of the system has a great impact on 

the performances of the photocatalyst: while an excessive amount of oxygen has only 

a marginal effect on the band gap of the material we studied, it has a major impact on 

its capacity to increase e--h+ pair lifetime and ultimately on its catalytic activity. 
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Chapter 4:  

Hydrogen adsorption on transition metal carbides 

4.1 Bulk and surface properties of TMCs 
As discussed in Chapter 1, transition metal carbides are cheap and robust catalytic 

materials that have been used for hydrogen evolution and CO2 reduction. The bulk and 

surface properties of TMCs have been extensively studied both computationally and 

experimentally, allowing us to choose four of the most promising early transition 

metal carbides for our investigation of the hydrogen evolution reaction on these 

materials and to use well-reported models with confidence in their accuracy in 

describing those systems. Previous reports126–129 have studied the bulk properties and 

surface reactivity of several late transition metal carbides with various metal-to-carbon 

ratios. In these studies, both hydrogen adsorption and CO2 reduction are reported on 

the (001) surface of these materials; CO2 has been shown to be activated by the 

adsorption on MoxC surfaces, highlighting a strong and barrierless hydrogen 

adsorption on these surfaces as well as a mechanism of CO2 reduction strongly 

dependent on the stoichiometry of the investigated surface.76,127,130 Quesne et al.85 

have instead reported a thorough computational study of all transition metal carbides 

with 1:1 metal to carbon ratio and rock-salt structure, highlighting the stability of their 

bulk structures and extending the investigation of the surface properties to the (001), 

(011) and (111) facets of each carbide. Calculation of the heat of formation of all 

carbides highlighted how TiC, VC, ZrC and NbC have the most stable bulk structure, 

a result consistent with experimental literature,72 which has confirmed the stability of 

these four carbides with this specific structure and stoichiometry. The (001) facet has 

been shown to be the most stable low-index surface by an analysis of surface free 

energies, while the (011) surface is generally the one with the lowest work function 

and the d-band centre position is less negative on carbon-terminated (111) surfaces, 

all quantities that have previously been linked to surface reactivity and that we wish 

to correlate with adsorption energy in this chapter. 

We therefore decided to investigate the four most stable carbides with rock-salt 

structure upon the surface reactivity of their four most stable facets, so that the results 
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could be compared both with previous computational investigations of the reactivity 

of other carbides and with the highlighted bulk and surface properties of the same 

materials. In this chapter, the hydrogenation of the (001), (011) and (111) surfaces of 

TiC, VC, ZrC and NbC has been investigated through an analysis of the adsorption 

energies of H2 at increasing coverage states, with the aim of obtaining useful 

information on the activity of such catalysts over the HER. 

The models used in this chapter are the same reported in ref(85), which use rock-salt 

structure for the bulk and replicate it to obtain a 2x2x3 supercell, which is then cut 

along the (001), (011) and (111) planes, the latter presenting two surface terminations. 

After a preliminary study of the kinetics of hydrogen adsorption on selected surfaces, 

the hydrogenation of all surfaces has been investigated thoroughly, analysing the 

geometry of the adsorption sites and correlating energetic trends with the electronic 

properties of the pristine surfaces. Finally, multiple coverage states of each surface 

have been studied, analysing the results in terms of ab-initio thermodynamics and 

proposing a distinctively superior performance over HER for the (001) surfaces of all 

investigated carbides.  

The work presented in this chapter has previously been peer-reviewed and published 

in the paper “Hydrogen adsorption on transition metal carbides: a DFT study” by 

Silveri et al., in Phys. Chem. Chem. Phys. 2019, 21, 5335-5343. 

4.2 Hydrogen Adsorption 
Kinetic barriers to hydrogen adsorption 

The mechanism of hydrogenation was explored on the (001) and (011) surfaces of 

TiC. Using the DFT methodology, structures and settings discussed in Chapter 2, 

molecular hydrogen was placed 3.5 Å above its (001) surface and the structure was 

allowed to relax obtaining a long-range interaction energy of ܧ௣௛௬௦ = -0.013 eV, as 

shown in Figure 4.1. The distance between the surface and the molecule was then 

progressively reduced by fixing the Z-coordinate of one hydrogen, in order to obtain 

a first approximation of the activation path to surface hydrogenation. As the distance 

is reduced the energy increases slightly, reaching a maximum about 2.6 Å above the 

surface (ܧ௣௛௬௦ = +0.01 eV, central data point for (001) in Figure 4.1) with the hydrogen 
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molecule positioned with the H–H axis roughly perpendicular to the surface. A further 

contraction of the distance between molecule and surface leads to a sharp decrease in 

energy followed by heterolytic dissociation of the H-H bond, as one hydrogen atom is 

coordinated by a Ti surface atom while the other adsorbs on a surface C atom. A final 

full relaxation of the hydrogenated slab brings the system to its adsorbed minimum 

energy state, in which each hydrogen atom is coordinated to a surface carbon atom, 

completing its dissociative adsorption on the surface. The lack of a significant energy 

barrier to hydrogen adsorption is confirmed by the systematic investigation of the 

potential energy surface using a NEB method, through which no transition state could 

be isolated.  

TiC (011) presents a similar case, also shown in Figure 4.1. A maximum in energy of 

 ௣௛௬௦ = 0.01 eV is found when H2 is constrained 4.5 Å above the surface by fixing theܧ

Z-coordinate of one of its two hydrogen atoms; as the distance is reduced further, the 

total energy of the system decreases slowly, until the molecule splits and adsorbs on 

the surface as it is placed less than 3 Å above the surface. Once again, NEB 

calculations were performed but no transition state could be isolated, leading to the 

Figure 4.1. Energetic profile of hydrogen adsorption on TiC(001) (orange) and TiC(011) (blue). 
In both cases the energetic barrier is very small, although differences between the two 
adsorptions can be found: TiC(001) highlights the presence of a shallow minimum which can be 
correlated with a physically adsorbed state, while this is completely absent in the profile of 
adsorption on TiC(011), which goes towards significantly negative energies at higher distances. 
In both cases the highest energy found is of the order 10-2 eV higher than the sum of energies of 
the reactants and no transition state could be isolated. The final points of both adsorptions have 
been removed for clarity: on the right, the non-interacting states correspond to an interaction 
energy equal to zero; on the left we find the adsorbed states of H2 on each surface, for which 
energy and C-H distance can be found in Table 4.1. 
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conclusion that the – rather limited – energy increase mentioned above is a 

consequence of the constraints forced on the systems rather than of the presence of an 

energy barrier to the dissociative adsorption of hydrogen on this surface. This result is 

consistent with literature data64,88,131 and therefore a further, lengthy exploration of the 

PES resulting from the adsorption of H2 over the (111) surfaces of TiC and over VC, 

ZrC and NbC was deemed unnecessary. 

Hydrogen adsorption on TiC surfaces 

Hydrogen adsorption has been first investigated on TiC in order to identify the 

energetic and geometric characteristics of all configurations and reduce the number of 

systems in study. For the first surface studied, TiC(001), three hydrogen adsorption 

sites have been identified: on top of a Ti atom, between two Ti atoms and on top of a 

C atom. The adsorption sites are named Mon top, M2 and Con top respectively.  The first 

two sites, which coordinate surface metal atoms, are both endothermic, displaying 

Eads = +1.52 eV and Eads = +0.33 eV respectively. The Con top site, however, is 

exothermic, exhibiting an adsorption energy of Eads = -0.62 eV. In all three cases the 

surface reconstruction upon adsorption is minimal, if at all present. The two 

lowest-energy sites are shown in Figure 4.2 (a). The difference in adsorption energies 

between sites is mirrored in the Ti – H and C – H bond lengths: much longer in the 

former cases (Mon top 1.79 Å, M2 1.66 Å) compared to the latter (Con top 1.13 Å). A 

Figure 4.2 (a) Adsorption geometries for the TiC (001) surface: the M2 site (top) and the Con top 
site (bottom). (b) Adsorption geometries for the TiC (011) surface: the M2 site (top) and the Con top 
site (bottom). The colour scheme is as follows: Ti = blue, C = brown, H = pink 

a) b) 
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Bader charge analysis performed on the hydrogenated systems shows how the 

adsorbed hydrogens retain one electron each, even though the M2 site has the hydrogen 

atoms lying in the plane of the surface (0.03 Å above the plane of Ti atoms) instead of 

in an upper atomic plane as in the on top sites. Similarly, a comparison of the surfaces’ 

Densities of States (DOS) highlights that, although differences between the pristine 

and hydrogenated surfaces are present, these do no alter significantly the electronic 

structure of the slab. Figure 4.4 shows this comparison for the section of the DOS 

closer to the Fermi energy for the pristine and hydrogenated TiC(001) surface. 

(001) surface Preferred site Eads / eV C-H distance / Å Average e- / a.u. 
TiC Con top -0.623 1.128 0.936 
VC Con top -0.165 1.139 0.971 
ZrC Con top -0.740 1.336 1.007 
NbC Con top +0.055 1.124 0.972 

Table 4.1 The geometric and energetic effects of adsorption on all investigated (001) surfaces. For 
each carbide, only the most favourable adsorption site is shown. The column “Average e-” reports 
the result of the Bader charge analysis on the adsorbed hydrogens on each surface, averaged 
between the two atoms. 

On TiC(011), similar M2 and Con top adsorption sites are found, although no Mon top site 

could be found. On this surface, both sites are exothermic, with significantly negative 

adsorption energies: Eads = -0.74 eV on M2 and Eads = -1.30 eV on Con top. The more 

negative adsorption energy compared to TiC(001) adsorption sites are mirrored in 

shorter bond distances for both Con top and M2 sites. As for TiC(001), surface 

reconstruction upon adsorption is minimal on both sites, as are the electronic changes 
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Comparison of the region of the Density of States (DOS) around the Fermi energy 
for the TiC(001) surface before (in blue) and and after (in orange) adsorption of an hydrogen 
molecule. 
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investigated through DOS calculations and Bader charge analyses of the pristine and 

hydrogenated slabs. 

The two surface terminations along the (111) plane are treated separately because the 

stoichiometries of their topmost atomic layer and their stabilities are different. Both 

the metal and carbon terminated slab models show a dipole perpendicular to the 

surface arising from the presence of alternate layers of carbon and metal atoms.132 

Despite this, previous studies have shown similar trends in the electronic properties of 

the surface on both reconstructed and unreconstructed surfaces85. Moreover, 

experimental reports only show unreconstructed metal-terminated surfaces for the 

(111) plane, when it can be shown to be clean and free of impurities under vacuum.133–

136 For these reasons, only the unreconstructed metal and carbon terminations of the 

(111) plane will be considered in this study, and will be referred to as (111)-M and 

(111)-C respectively. 

(011) surface Preferred site Eads / eV C-H distance / Å Average e- / a.u. 
TiC Con top -1.399 1.115 1.031 
VC Con top -1.070 1.112 0.930 
ZrC Con top -1.355 1.061 1.119 
NbC Con top -0.884 1.114 0.891 

Table 4.2 The geometric and energetic effects of adsorption on all investigated (011) surfaces. For 
each carbide, only the most favourable adsorption site is shown. The column “Average e-” reports 
the result of the Bader charge analysis on the adsorbed hydrogens on each surface, averaged 
between the two atoms. 

On the metal terminated (111) surface, metal atoms are disposed in a hexagonal 

fashion as shown in Figure 4.3. A threefold site is available for the hydrogen atom, 

which adsorbs at the barycentre of a triangle formed by metal atoms, with no 

movement in the surface; this adsorption structure is labelled as M3 site. There are, 

however, small differences among the M3 sites: examining the ABA configuration of 

metal atoms in the TiC unit cell it can easily be seen how carbon atoms are in fact 

occupying half the octahedral sites left by the metallic framework. For this reason, a 

hydrogen positioned in a M3 site can be situated either on top of a carbon atom of the 

second atomic layer or on top of a metal atom of the third atomic layer – i.e. one of 

the octahedral sites left free by carbon atoms. However, the energy difference is 

minimal, as on TiC(111)-M both configurations involve a highly exothermic 
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adsorption with Eads = -1.99 eV.  The analysis of the Bader charges in this case shows 

how each hydrogen has gained a charge equivalent to 0.66 electrons, explanation for 

which could come from either geometric or electronic factors: the position of the 

hydrogen is very close to the surface, 0.94 Å above the plane of Ti atoms, which could 

result in the area in close vicinity of the hydrogen atoms being filled by the electrons 

of the surface; on the other hand, the electronic factor takes into account the 

electronegativity of the metal, which is lower than that of the hydrogen, exacerbating 

the electron-poor nature of the topmost metallic layer of the slab. Either way, the DOS 

calculations highlight once again a strong similarity between the electronic structure 

of the pristine surface and that of the hydrogenated slab.  

 A different picture resulted from the calculations on the TiC(111)-C surface. On this 

slab, the presence of hydrogen leads to a complete reconfiguration of the surface, with 

carbon atoms of the topmost layer reacting with each other and the adsorbing hydrogen 

molecule, ultimately demonstrating a severe instability of this termination in the 

presence of hydrogen. However, this instability is not observed on ZrC and NbC, so 

the preliminary investigation of the hydrogen adsorption was carried out on the former 

of these. On ZrC(111)-C, only one adsorption site was found, labelled Con top and 

showing Eads = -2.02 eV, reflecting the uniform adsorption pattern found on 

TiC(111)-M. The adsorption site is similar to the Con top sites found on (001) and (011) 

surfaces, with hydrogen sitting directly on top of a surface carbon atom with no 

significant surface reconstruction nor change in the DOS of the slab upon 

hydrogenation.  

 

Figure 4.3 Adsorption geometries for (a) the ZrC(111)-C surface, with hydrogen on the  Con top site; 
(b) the TiC(111)-M surface, with hydrogen on the M3 site. The colour scheme is as follows: Ti = 
blue, C = brown, H = pink 

a) b) 
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(111)-M surface Preferred site Eads / eV C-H distance / Å Average e- / a.u. 
TiC M3 -1.992 2.020 1.637 
VC M3 -1.166 1.935 1.555 
ZrC M3 -1.342 2.169 1.678 
NbC M3 -1.244 2.074 1.592 

 

(111)-C surface Preferred site Eads / eV C-H distance / Å Average e- / a.u. 
TiC - - - - 
VC - - - - 
ZrC Con top -2.014 1.099 0.875 
NbC Con top -1.691 1.101 0.828 

Table 4.3 The geometric and energetic effects of adsorption on all investigated (111)-M and (111)-
C surfaces. For each carbide, only the most favourable adsorption site is shown. The column “Average 
e-” reports the result of the Bader charge analysis on the adsorbed hydrogens on each surface, 
averaged between the two atoms. 

Identifying trends and descriptors for hydrogenation of TiC, VC, ZrC and NbC surfaces 

Throughout all four TiC surfaces investigated, a clear pattern arises: adsorption sites 

on top of a carbon atom always show significantly more negative adsorption energies 

than all other sites on the same surfaces when they are available; however, metal sites 

become more and more exothermic as the number of surface atoms that coordinate the 

adsorbing hydrogen is increased from one (Mon top site on TiC(001), significantly 

endothermic) to three (M3 site on TiC(111), more exothermic than Con top on TiC(011). 

As the investigation of hydrogen adsorption was extended to the surfaces of VC, ZrC 

and NbC, only the most favourable adsorption sites for each surface have been 

considered. 

In all cases, the results in terms of bond distances and surface reconstruction are very 

similar for each carbide. However, the energetics of the reaction can vary significantly. 

On the 3 remaining (001) surfaces, only ZrC(001) presents a strongly exothermic 

adsorption (Eads = -0.73 eV) on the Con top site, while VC(001) and NbC(001) show 

adsorption energies that are close to zero, slightly exothermic for the former and 

slightly endothermic for the latter, a unique case throughout our study. Charge 

analyses and DOS calculation show similar results to those obtained on TiC(001), so 

it was possible to conclude that on all (001) surfaces the adsorption of hydrogen has 

only marginal effects on the electronic properties of the material. Similarly, (011) 

surfaces exhibit analogous behaviour on all carbides; the adsorption energy is again 

the most significant difference between carbides, as ZrC and NbC display the most 

and least negative adsorption energies respectively and no major surface 
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reconstruction is observed upon adsorption. The adsorption on (111)-M surfaces is, as 

expected, very exothermic and again results in no major surface reconstruction. 

However, on this facet TiC shows the most exothermic adsorption. As mentioned 

before, the (111)-C surface of TiC is unstable upon hydrogen adsorption. The same is 

true for VC(111)-C, but it is possible to adsorb hydrogen on the analogous surfaces of 

ZrC and NbC. The adsorption on NbC is geometrically similar to that on ZrC but less 

exothermic, as its adsorption energy is Eads  = -1.69 eV. 

With a few, minor exceptions, a clear trend in the exothermicity of hydrogen 

adsorption can be identified, both in terms of carbides and surfaces: 

(111)-C > (111)-M ≈ (011) >> (001) 

ZrC > TiC >> VC > NbC 

This trend can be correlated with certain properties of the pristine surfaces, as 

calculated by Quesne et al.85, in order to identify descriptors capable of predicting the 

reactivity of the surface without the need of explicit calculation of adsorption energies. 

The surface energies (σ), work functions (Φ), and d-band centre positions reported in 

ref(85) can all be correlated to the hydrogen adsorption energies calculated in this 

study, giving rise to trends along the carbides and the surfaces similar to those 

highlighted above. The best correlation is found for the d-band centre position, a 

characteristic of each surface which can be taken as a good indicator of their reactivity. 

The trends over the surfaces for a single carbide and over the same face of each carbide 

show an inverse correlation with the Eads  which, despite some discrepancies, can be 

considered a good descriptor of the activity of the carbide surface considered. 
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Figure 4.5 Correlation between Eads of a single hydrogen molecule on selected surfaces (orange 
dots) and the d-band centre positions of the same surfaces (blue columns). (left) shows the values 
for (001) surfaces over the four carbides, (right) shows the values for ZrC over its four surfaces. 
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Figure 4.5 shows how, along the four surfaces of ZrC and through the four carbides 

on their (001) surfaces, a less negative d-band centre energy corresponds to a more 

exergonic hydrogen adsorption. The correlation, however, is not always linear: a close 

analysis of the data in Figure 4.5 shows how the change in d-band centre position does 

not necessarily correspond to a proportional change in Eads of H2 adsorption, even 

though the qualitative correlation stands through all the investigated materials. It was 

then possible to conclude that the d-band centre position can be used as a useful 

qualitative descriptor of the activity a surface – which is correlated to the Eads of an 

hydrogen molecule through Sabatier’s principle and its commonly used application to 

the hydrogen evolution reaction, the volcano plot – but the complex nature of the 

interaction between hydrogen and the material cannot, obviously, be completely 

described by a relationship as simple as the one highlighted here. 

4.3 High hydrogen coverage 
Adsorption energies 

The volcano plot, as mentioned in Chapter 1, is a useful way of correlating the 

adsorption energy of an hydrogen atom to the activity of a material over the hydrogen 

evolution reaction (HER).15,137 Nevertheless, the extensive use of this descriptor has 

also been met with certain criticism, in that it cannot encompass the complexity of the 

mechanism of the HER and it is sometimes overused.66 In order to avoid such 

shortcomings, in the present work the coverage state of each surface was investigated, 

so that reactions conditions closer to those found in reactors could be modelled and 

more information on the interaction between transition metal carbides and hydrogen 

could be gained. The adsorption of 2, 4, 8 and 16 hydrogen atoms has been 

investigated on all surfaces, and the results have been analysed through an ab initio 

thermodynamics formalism, in order to deduce the coverage state of each surface at 

varying temperature and pressure. 

Our approach considers chemisorption of H to define its coverage in terms of the 

monolayer (ML). In the previous section, the 16 lowest energy adsorption sites have 

been identified on each model slab: on the slab representing (001) and (011) surfaces 

these are equally divided between Con top and M2, while on those representing the two 

terminations of the (111) surfaces either 16 Con top or 16 M3 sites are present 
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alternatively. On the (001) surface termination, adsorption of 4 and 8 hydrogen atoms 

is investigated on the exposed Con top adsorption sites. On TiC(001), VC(001) and 

ZrC(001), on which the adsorption of the first hydrogen molecule is exothermic, the 

adsorption is favourable as the total energy of adsorption becomes more negative as 

the loading increases. However, each adsorption is less exothermic than the previous, 

resulting in a less negative adsorption energy per atom as more hydrogen atoms are 

adsorbed on the surface. This trend is linear on all three surfaces and the slope of the 

line becomes steeper as the adsorption becomes more exothermic for the effect of the 

material. On NbC(001), as mentioned before, the first adsorption is endothermic even 

on Con top sites, giving rise to a slightly different behaviour of the surface. The 

adsorption energy per atom highlights a generally more endothermic behaviour as the 

coverage is increased to fill the available Con top adsorption sites; however, there is a 

slight decrease when the second hydrogen molecule is adsorbed: Eads = 0.05 eV after 

the first hydrogen molecule adsorbed, Eads = 0.04 eV after the second. 

nH2 θ Site on (001) TiC VC ZrC NbC 
1 ¼ Con top -0.62 -0.17 -0.73 +0.06 
2 ½ Con top -0.52 -0.14 -0.62 +0.04 
4 1 Con top -0.35 -0.06 -0.38 +0.09 
8 2 Con top + Mon top - - +0.09 +0.31 
      

nH2 θ Site on (011) TiC VC ZrC NbC 
1 ⅛ Con top -1.40 -1.07 -1.36 -0.88 
2 ¼ Con top -1.29 -0.98 -1.35 -0.88 
4 ½ Con top -1.25 -0.94 -1.26 -0.79 
8 1 Con top + M2 -0.84 -0.64 -0.93 -0.71 

 The energetic effects of the hydrogen loading on the (001) surface (top) and (011) 
surface (bottom) of each investigated carbide, in eV. Θ is the fractional coverage of the slab 
referred to 1 ML and nH2 is the corresponding number of hydrogen atoms adsorbed on our model 
slabs in each case. 

On all four carbides, subsequent adsorption of H2 on the (001) surface is expected to 

be endothermic, as only M2 and Mon top sites are available. However, steric effects due 

to the small distance between hydrogens prevent the former sites from providing a 

stable adsorption on all surfaces. On the carbides of the 5th period, ZrC and NbC, 

hydrogen can adsorb on the more endothermic Mon top sites, which results in a total 

energy higher than that of the non-hydrogenated surface, Eads = +0.09 eV on the 
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former and Eads = +0.31 eV on the latter. However, on the carbides of the 4th period 

those sites cannot provide a stable adsorption minimum, so no adsorption is possible 

once all Con top sites on the surface are filled, corresponding to 8 hydrogen atoms in 

our model slabs. As different loadings have been considered for the adsorbate, the 

question of coverage naturally arises. Since no favourable adsorption has been found 

on non-carbon sites, we allow the chemisorption of hydrogen on Con top adsorption 

sites to define the monolayer for all surfaces, which within our model slabs translates 

to θ=1 when 8 H atoms are adsorbed on each of the four (001) surfaces that have been 

investigated. This finding is consistent with what has been highlighted for similar 

carbides in previous work,130 and will allow us to draw conclusions concerning their 

coverage state.  

The trends upon hydrogen coverage increase are similar on the (011) surfaces. As the 

loading is increased from 2 to 8 hydrogen atoms, the Con top adsorption sites are filled. 

Similarly to the (001) surfaces of TiC, ZrC and VC, adsorption on (011) surfaces 

favours high coverage states, since the total adsorption energy becomes more negative 

as the loading increases, but the driving force for each adsorption decreases, because 

the adsorption energy per atom decreases. Unlike (001) surfaces, however, the 

modulus of Eads is strongly negative for all coverage states and its reduction upon 

hydrogen coverage increase is limited and non-linear. This could be linked to the 

morphology of the surface: the surface reconstruction upon cutting the (011) plane is 

more significant than that shown by (001) surfaces in that the position of surface 

carbons shift relative to their neighbouring metals and the underlying material, 

resulting in slight differences in the chemical surrounding of each carbon. This factor 

could of course be responsible for the higher variability found in the adsorption energy 

trends, but since the difference in adsorption energies as coverage increases are very 

small – the largest difference per atom being on VC(001) as the loading is increased 

from 2 to 4 hydrogens, ΔE(4-2) = 0.1 eV – and since we will later show that the only 

coverage shown by these surfaces is full coverage regardless of temperature and 

pressure, these discrepancies have not been investigated further. Unlike the (001) 

surfaces, adsorption of 16 H atoms is exothermic, since the M2 site is exothermic. The 

decrease in adsorption energy per atom is generally more significant than between Con 

top site, as it is to be expected given the less exothermic nature of the isolated M2 site, 

but the total energy is significantly lower and therefore we define for each (011) 
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surface the monolayer as the hydrogenation state upon which all Con top and M2 sites 

are filled. Within our model slabs this corresponds to a coverage of θ = 1 ML when 16 

hydrogen atoms are adsorbed on the surface. 

Higher hydrogen coverage states have also been studied on all (111)-C surfaces, 

highlighting an increased stability at higher coverage: the VC(111)-C surface is found 

to be stable when 4 hydrogen atoms are adsorbed on it and the TiC(111)-C surface is 

stable when all 16 Con top  sites are filled. On all carbides for which multiple loadings 

on the (111)-C surface were studied some decrease in Eads with increasing coverage 

can be observed, although with different characteristics from that observed on 

lower-index surfaces. On both ZrC(111)-C and NbC(111)-C, the difference between 

the adsorption energy per atom upon adsorption of 2 and 4 hydrogen atoms is 

negligible. Upon further increased loading more significant energy differences are 

found on both these facets as well as on VC(111)-C, albeit still low compared to the 

absolute value of Eads: on ZrC(111)-C, ΔEads (16-2) = 0.173 eV, which corresponds in 

an decrease in the modulus of Eads of only 0.6% per hydrogen. This characteristic, 

which is shared with NbC(011) and some of the (111)-M surfaces, is probably due to 

the distance of the adsorption sites on these surfaces, as it is more prominent on the 

carbides of the 5th period. 

nH2 θ Site on (111)-M TiC VC ZrC NbC 
1 ⅛ M3 - - -2.01 -1.69 

2 ¼ M3 - -1.68 -2.01 -1.69 

4 ½ M3 - -1.64 -1.96 -1.62 

8 1 M3 -1.93 -1.55 -1.83 -1.45 
      

nH2 θ Site on (111)-C TiC VC ZrC NbC 
1 ⅛ Con top -1.96 -1.17 -1.33 -1.24 

2 ¼ Con top -1.67 -1.14 -1.34 -1.22 

4 ½ Con top -1.44 -1.08 -1.33 -1.16 

8 1 Con top -1.36 -1.01 -1.35 -1.11 

 The energetic effects of the hydrogen loading on the (111)-M surface (top) and (111)-
C surface (bottom) of each investigated carbide, in eV. Θ is the fractional coverage of the slab 
referred to 1 ML and nH2 is the corresponding number of hydrogen atoms adsorbed on our model 
slabs in each case. 
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The (111)-M surfaces, as mentioned above, also present slowly decreasing Eads across 

most carbides. At all coverages, hydrogen adsorption happens on very exothermic M3 

adsorption sites, showing a linear trend on VC(111)-M and NbC(111)-M as the 

hydrogenation of the surface becomes slowly less exothermic with increasing 

hydrogen loadings. However, this decrease is not shown at all on ZrC(111)-M, on 

which ΔEads (16-2) = 0.015 eV, and is instead much steeper but not linear on 

TiC(111)-M, on which ΔEads (4-2) ≈ ΔEads (16-4) = 0.31 eV. While these discrepancies 

could not be fully explained, because no significant difference is found in the 

adsorption geometries and in the electronic structure of the slabs, some interesting 

trends across all carbides and surfaces can be highlighted. 

Throughout the four carbides, the increase in coverage is correlated with a decrease in 

adsorption energy per atom, which is consistent with the results found for other 

carbides by previous work130. A possible explanation for this effect might come from 

the analysis of the work function Φ, which steadily increases with coverage as 

electrons are inserted in the conduction band, as Figure 4.6 shows for the TiC(001) 

surface. The trend of the adsorption energy and the work function with θ is found on 

all carbides and surfaces, albeit as Figure 4.6 shows it is often not linear, similarly to 

what has previously been highlighted for Eads. 
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The coverage state as a function of chemical potential 

In order to elucidate the relationship between different coverage conditions on the 

same surface we computed the free energies of the hydrogenated surfaces as a function 

of the chemical potential of hydrogen, following the procedure outlined in Chapter 2. 

Figure 4.7 (a) reports the chemical potential (µ) in eV of a molecule of H2 in the gas 

phase above our model slabs as a function of temperature and pressure. This allows us 

to predict the stability of each coverage state on all investigated surfaces as a function 

of the temperature and pressure of the H2 gas phase. Even though this is an 

approximation of the thermodynamics of the system – not taking into account the free 

energy terms related to the surface – and unrelated to the reaction conditions of the 

HER – which takes place in aqueous solution, not at the interphase with an 

homogeneous hydrogen gas – it allows us to draw conclusions on the activity of each 

surface as an hydrogen evolution catalyst with a more nuanced theoretical background 

than the use of a simple volcano plot, without the additional computational effort 

required for DFT calculations of solid – liquid interphases. 

Figure 4.7 (b) shows the free energies for the four stable coverages of the TiC(001) 

surface versus the chemical potential of the hydrogen. The graph highlights how, even 

though θ = 1 ML is the most exothermic coverage, lower coverages appear to be more 

favourable at low chemical potentials, which correspond to high temperatures and low 

pressures. Similar plots can be produced for VC(001) and ZrC(001), owing to the 

similar energetic trends for the three surfaces. In stark contrast, NbC(001) only 

exhibits hydrogenation of the surface at high pressures and low temperatures, quickly 

moving from the pristine surface to the fully hydrogenated as the chemical potential 

of hydrogen is reduced. This effect is obviously a consequence of the mildly 

endothermic nature of all adsorption sites present on this surface, which keep hydrogen 

from adhering to the surface at standard condition, but hasher conditions can reverse 

this tendency.  

On all other surfaces the strongly exothermic nature of adsorption causes the highest 

coverage state to be the most favourable in most cases, as exemplified by the plots in 

Figure 4.7 (d) and (e) which report the coverage states of TiC(011) and ZrC(111)-M. 

Nonetheless, Figure 4.7 (d) shows a change in coverage state around µுమ =  −3.9 ܸ݁, 

corresponding to conditions of very high temperature or very low pressure, below 
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which the higher slope of the θ = 1 line leads θ = ½ to become the most favoured 

coverage state. The difference in slope is caused by the adsorption of hydrogen on two 

different sites, as only Con top sites are filled up until θ = ½ while less exothermic M2 

sites are filled from there to θ = 1. Nevertheless, this effect is marginal, as it only 

happens at harsh conditions on TiC and even harsher for the three other carbides – 

ΔEads (16-8) = 0.41 eV for TiC(011) is the highest of all (011) surfaces, corresponding 

to the largest increase in slope between θ = ½ and θ = 1 and therefore the least negative 

potential at which the two lines meet – so that it is possible to consider the (011) 

surfaces to be effectively fully hydrogenated at most conditions. On the contrary, (111) 

surfaces only show a single type of adsorption site, consistently displaying high 

adsorption energy. As a consequence, the free energy plots for all (111)-C and (111)-M 

surfaces all show θ = 1 as the most favourable coverage state regardless of temperature 

and pressure, as shown in Figure 4.7 (e).  

Implications for hydrogen evolution catalysis 

It is possible to correlate the catalytic activity of a material towards the hydrogen 

evolution reaction (HER) with the free energy of adsorption of hydrogen on its surface: 

the former increases when the latter approaches zero, since ΔGads = 0 corresponds to 

a balance between the adsorption and desorption of hydrogen,67 the two primary steps 

of the reaction. It is therefore possible to predict the conditions at which the reaction 

will be most efficiently catalysed by identifying the intersections between the lines 

representing two subsequent coverage states. On TiC(001) this would imply having 

the best catalytic activity at temperatures slightly higher than 300 K, at which multiple 

coverage changes happen, while on NbC(001) low temperatures or high pressures are 

needed to catalyse the reaction efficiently. The graphs for VC(001) and ZrC(001) are 

similar to that of TiC(001), but due to the less exothermic Eads values, the equilibrium 

states between different coverage states for VC(001) are closer to 298 K and 1 atm. In 

general, it is possible to predict that (001) surfaces should offer a good catalytic 

activity towards the HER reaction on all investigated materials, as several coverage 

states are in equilibrium at conditions close to standard temperature and pressure, so 

that the reaction should not require high overpotentials to be carried out. On the 

contrary, all (011) and (111) surfaces are shown to be less suitable for HER: the 

interaction between molecular hydrogen and the material is too strong for the former 

to be efficiently released and therefore the reaction would have to be driven by a 
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significant overpotential. When comparing these results to those that are obtained 

through the use of a volcano plot, it is clear how there is a qualitative agreement 

between the two, as the variability in coverage states is possible due to the mildly 

exothermic or mildly endothermic nature of the adsorption of hydrogen on the (001) 

surfaces of these carbides, which are often correlated with the high catalytic activity 

of platinum and iridium.15,67,137 The methodology presented here, however, adds a 

theoretical background to the use of the volcano plot, extending its use: surfaces such 

as TiC(011), which would be considered impractical for catalytic use due to their too 

high Eads, are here considered viable for application at reaction conditions that differ 

from standard temperature and pressure. Furthermore, the activity of the (001) 

surfaces is now correlated to their coverage states, providing further insight in the 

reaction at conditions closer to those at which the HER is carried out without the need 

for complex and expensive DFT calculations at the solid – liquid interface. 

Summary and conclusions 

Our study of hydrogen adsorption on carbide surfaces shows that the Con top is the 

preferred adsorption site in all cases, which is always exothermic except for NbC(001). 

Metal sites are less favourable on all surfaces on which they are in competition with 

Con top sites, but show a stronger interaction as the number of coordinated metals 

increases, so that M3 sites provide a strong hydrogen adsorption on (111) surfaces. On 

both carbon and metal sites, the energetic trends and adsorption properties are 

consistent across all four carbides studied. For all surfaces and coverages, reactivity 

on VC and NbC corresponds to less exothermic adsorption energies with respect to 

the same reactions over TiC and ZrC, showing a clear effect of the periodic group of 

the parent metal. The effect of the row in the periodic table is less marked, but in some 

cases the reduced lattice parameter for the carbides of the 4th row induces steric effects 

that hinder the adsorption. These trends could in some cases be related to the electronic 

characteristics of the surfaces. Across all carbides, (111)-C surfaces highlight the 

highest reactivity, but are unstable for the Group 4 carbides TiC and VC. (111)-M and 

(011) surfaces also provide very strong adsorptions, while the Eads reported for (001) 

surfaces are always close to 0 eV. The d-band centre positions have been proven to 

correlate with the activity of the material over the hydrogen adsorption for all surfaces 

and could therefore be used as descriptors. Similarly, a correlation could be found 

between the increase in coverage and a decrease in both |ΔEads| and Φ: as more 
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hydrogens are added on a surface, more electrons are added to the conduction band of 

the solid, thereby obstructing further hydrogenation of the slab and simultaneously 

lowering the energy required to extract an electron from the surface. Nonetheless, the 

total adsorption energy becomes more negative as long as exothermic adsorption sites 

are used, as the decrease in exothermicity with coverage is small compared to the total 

value of adsorption energy. As a results, an ab-initio thermodynamics analysis of the 

data collected showed how the only coverage state displayed by (011) and (111) 

surfaces is that of θ = 1, which might hinder their catalytic activity towards HER as 

the hydrogen is bound too strongly to desorb. On the contrary, the (001) surfaces of 

TiC, VC, ZrC, NbC show the most promise as hydrogen evolution reaction catalysts 

among those tested. 
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Chapter 5:  

CO2 reduction on transition metal carbides 

The choice of carbide 

The use of transition metal carbides as catalysts for CO2 activation and reduction has 

been reported both experimentally and computationally, as highlighted in Chapter 1. 

However, little computational work has been performed to understand the mechanism 

of such reactions on early transition metal carbides. For other carbides, such as MoxC, 

it has been shown how the reaction pathway and the final product of the reduction 

depend on the stoichiometry of the material and its surface structure. For this reason, 

we investigated the dissociation and hydrogenation of CO2 on several surfaces of 

early-TMCs, with the objective of identifying the most favourable pathways on each 

material and highlight the most active catalyst. However, the scope of the project did 

not allow for a simultaneous investigation of all the materials studied in the previous 

chapter for hydrogen evolution, so we turned to the literature as well as our own 

previous work in order to choose which carbides and surfaces should be investigated. 

Quesne et al.102 highlighted a correlation between the CO2 adsorption energy and its 

bond elongation once adsorbed, as well as calculating the charge transfer between 

molecule and surface upon adsorption on early-TMCs. Bond elongation and charge 

transfer data highlight an interesting activity for ZrC surfaces, which is shown to both 

bend and reduce the adsorbed molecule more than other carbides. Similarly promising 

results are also reported for TiC, which was also predicted to show easy adsorption 

and desorption of hydrogen over its (001) surface in the previous chapter of this work. 

Since both the C-O bond elongation and the charge transfer upon adsorption have 

previously been linked with the molecule activation,81 and given the role hydrogen 

coverage plays in CO2 reduction to hydrocarbons, TiC and ZrC where chosen for a 

thorough investigation of their catalytic activity over CO2 dissociation and 

hydrogenation upon their low-index surfaces. Initially, the adsorption of CO2 is 

investigated on all low-index surfaces of TiC and ZrC; secondly, the adsorption of 

CO, O, COOH and HCOO is also considered in order to obtain information on the 

reactions of dissociation and hydrogenation on those surfaces; lastly, the reaction paths 
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connecting CO2 to the reduced species are studied, identifying the corresponding 

transition states and predicting the most favourable reaction path on each surface. 

5.1 Adsorption of CO2 on TiC and ZrC surfaces  
We first investigated the adsorption of CO2 on TiC and ZrC. For each material, the 

(001), (011) and (111) surfaces were investigated. Due to the instability of the carbon-

terminated (111) surface, discussed in Chapter 4, only the metal termination of such 

plane has been considered. Several favourable adsorption sites were found on each 

surface, and their analysis constitutes the first part of this chapter. 

Adsorption energies and geometries 

CO2 was placed on the (001) surface of TiC in several positions with distinct local 

geometries, identifying three adsorption sites. In all three cases, shown in Figure 5.1 

and further described in the corresponding table, a covalent C-C bond is established 

with a surface carbon atom, bending the structure to form an O-Ĉ-O angle of θ ≈ 120°. 

The Con top (M) and Con top (C) adsorption sites both present the O-Ĉ-O molecular plane  

perpendicular to the surface, only differing by the coordination of the two oxygen 

atoms: in the former case, lower in energy, interaction with the surface is optimised 

by coordinating the two oxygen atoms with adjacent surface metal atoms; in the latter, 

the CO2 molecule is rotated by 45° around the axis perpendicular to the surface and 

points towards the adjacent surface carbon atoms. The change in oxygen coordination 

is reflected in the adsorption energy ܧ௔ௗ௦, defined in Chapter 2, which changes 

from -0.85 eV to -0.50 eV. Similar coordination between oxygen and metal is found 

in the M2C site; in this case the CO2 molecular plane has a ~60° inclination over the 

surface plane, leaning towards the coordinated surface metal atoms, and a slightly 

higher adsorption energy at -0.90 eV. Two of these adsorption sites are also found on 

ZrC, namely the Con top (M) and the M2C, exhibiting very similar bond distances, bond 

angles and adsorption angles over the surface, as reported in Table 5.1. Similarly to 

what was highlighted in Chapter 4 for molecular hydrogen, adsorption CO2 on ZrC is 

more exothermic than on TiC, with adsorption energies up to ܧ௔ௗ௦ =  −1.68 ܸ݁ on 

the Con top (M) adsorption site. 
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(001) Eads / eV dC – C / Å dC–O / Å θO-Ĉ-O Inclination Δq / a. u. 
 

Con top (C) -0.50  1.45 1.29 127° 90° +0.95
Con top (M) -0.85 1.48 1.29 128° 90° +0.89
M2C -0.90 1.49 1.30 122° 62° +0.85

 
Con top (M) -1.68 1.47 1.30 124° 90° +0.98
M2C -1.48 1.47 1.31 121° 70° +1.04

 Adsorption of CO2 on TiC(001) and ZrC(001). The table highlights, from left to right, 
the adsorption energy, distance to the nearest surface carbon atom, C-O bond distance, O-Ĉ-O 
bond angle, inclination of the molecular plane with respect to the surface plane, and variation in 
charge with respect to gas phase CO2 of the adsorbed molecule, for each adsorption site. 

On the two (011) surfaces, two adsorption sites have been identified, named Con top and 

M4C. As with those described earlier, both these adsorption sites coordinate the central 

carbon atom of CO2 to a surface carbon atom, bending the adsorbed molecule. The 

difference between Con top and M4C sites is in the coordination of the CO2 oxygen 

atoms and in the angle between the molecular plane and the surface. In the former 

case, the adsorption site is analogous to that of the Con top (O) site found on (001) 

surfaces, as the CO2 molecular plane is similarly found to be perpendicular to the 

surface and the C-O bonds are only slightly more elongated (ΔdC-O = +0.02 Å on both 

carbides); in the latter site, the morphology of surface allows for the oxygen atoms to 

be coordinated by 2 metal atoms each, reducing the angle between the molecule and 

the surface to 45° and elongating the C-O bonds to 1.37 Å on both carbides, as well as 

producing a slightly more negative Eads on both carbides. On all (011) adsorption sites, 

the corrugated surface allows for shorter C-C bonds (0.1 – 0.3 Å shorter than the 

respective sites on (001) surfaces) and significantly more exothermic adsorption, 

ranging from -3.4 eV on TiC(011) – Con top to -4.2 eV on ZrC(011) – M4C. Comparing 

 CO2 adsorption sites on TiC(001). From left to right: Con top (O), Con top (C) and M2C. 
The first and last adsorption sites are also found on ZrC(001). The colour scheme is as 
follows: Ti = blue, C = brown, O = red. 
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these results with those highlighted in ref(102) shows similar numbers for Eads and 

bond elongation, with the exception of ZrC(011), which present much larger 

adsorption energies than those reported in ref(102). That is due to the fact that a 

different adsorption site is investigated in that paper, similar to ZrC(011) – Con top but 

rotated by 90° around the C-C axis, reducing the interaction with the surface metal 

atoms and therefore in a less negative adsorption energy. 

(011)  Eads / eV dC – C / Å dC–O / Å θO-Ĉ-O Inclination Δq / a. u. 

Con top -3.42 1.40 1.31 127° 90° +1.00 
M4C -3.45 1.38 1.37 126° 45° +1.27 

 
Con top -4.04 1.41 1.32 124° 85° +1.05 
M4C -4.19 1.39 1.37 123° 43° +1.36 

 Adsorption of CO2 on TiC(011) and ZrC(011). The table highlights, from left to right, 
the adsorption energy, distance to the nearest surface carbon atom, C-O bond distance, O-Ĉ-O 
bond angle, inclination of the molecular plane with respect to the surface plane, and variation in 
charge with respect to gas phase CO2 of the adsorbed molecule, for each adsorption site. 

The (111) surfaces of both carbides have been investigated as a purely metal-

terminated facet, for the reasons explained above. On these surfaces, CO2 once again 

acquires a bent geometry upon adsorption, forming an acute angle between the plane 

of the surface and that of the molecule. In such a configuration each atom forming 

CO2 can sit on top of a metal atom, bridging two metal atoms or at the barycentre of a 

triangle formed by three metal atoms, resulting in a wide array of adsorption sites with 

similar characteristics and energetics. It was possible to identify four such adsorption 

sites on TiC, which are shown in Figure 5.3, and three on ZrC. On both carbides, two 

of the identified adsorption sites show the CO2 molecular plane parallel to that of the 

surface, each atom of the substrate coordinating 3 surface metal atoms, for a total of 

5; the two sites only differ by the position of CO2 with respect of the lower layers, as 

the central CO2 carbon atom can sit on top of either a metal or a carbon atom, with the 

. CO2 adsorption sites on TiC(011): Con top (left) and M4C (right). Analogous sites are 
found on ZrC(011). The colour scheme is as follows: Ti = blue, C = brown, O = red. 
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latter case corresponding to an adsorption which is more exothermic by 0.2 eV. The 

latter adsorption site, named M5M, is the most exothermic on both TiC(111) and 

ZrC(111), as highlighted in Table 5.3. On the two remaining sites, the two oxygen 

atoms of CO2 are not chemically equivalent anymore, and the one more strongly 

coordinated by the surface shows a significantly more elongated C-O bond. 

(111)  Eads / eV dC – M / Å dC–O / Å θO-Ĉ-O Inclination  Δq / a. u. 
 

M5C -2.90 1.46 1.40 114° 0° +1.76
M3 – bent -2.55 1.54 1.45* 118° 20° +1.62
M5M -3.11 1.39 1.36 117° 5° +1.77
M4C -2.93 1.50 1.46* 113° 10° +1.77

 
M5C -2.82 1.51 1.37 114° 0° +1.73
M5M -3.17 1.45 1.36 116° 20° +1.83
M4C -2.82 1.56 1.47* 113° 10° +1.79

 Adsorption of CO2 on TiC(111) and ZrC(111). The table highlights, from left to right, 
the adsorption energy, distance along the Z-axis of the carbon atom from CO2 to the plane of the 
surface, C-O bond distance, O-Ĉ-O bond angle, inclination of the molecular plane with respect to 
the surface plane, and variation in charge with respect to gas phase CO2 of the adsorbed molecule, 
for each adsorption site. In some cases, the two oxygen atoms of CO2 are not equivalent once the 
molecule is adsorbed on (111) surfaces. When this happens, the value reported for dC-O is referred 
to the most elongated bond of the two, and the number is marked with *. 

Trends of CO2 adsorption on early-TMCs surface 

All surfaces of TiC and ZrC show favourable chemical adsorption of CO2, which is 

strongly bound to a surface carbon atom on (001) and (011) surfaces, and coordinated 

to the whole surface on the (111) surface. Because of this, (001) and (011) surface 

primarily coordinate the CO2 central carbon atom, which is the closest to the surface, 

while the two (111) surfaces strongly bound the two oxygen atoms. Energetically, a 

CO2 adsorption geometries on TiC(111). From left to right: M5C, M3 – bent, M5M, and 
M4C. On ZrC(111) analogous adsorption sites, with the exception of M3 – bent, are found. It is 
easily seen from these pictures how the oxygen atoms are chemically equivalent in M5C and 
M5M, but are not in M3 – bent and M4C. The colour scheme is as follows: Ti = blue, C = brown, 
O = red. 
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trend similar to that highlighted in the previous chapter for hydrogen adsorption could 

be identified: 

|௔ௗ௦(011)ܧ| > |௔ௗ௦(111)ܧ| ≫  |௔ௗ௦(001)ܧ|

|(ܥݎܼ)௔ௗ௦ܧ| >  |(ܥ݅ܶ)௔ௗ௦ܧ|

The particularly high adsorption energies for (011) facets can be related to the specific 

morphology of these surfaces: due to their corrugation, they can both form a strong 

C – C bond with CO2 and coordinate its oxygen atoms to the surface metal atoms, 

while (001) and (111) surfaces can only efficiently do the former and the latter 

respectively. Moreover, in all investigated cases CO2 is bent, its C – O bonds elongated 

and its central carbon atom partially reduced upon adsorption, as highlighted in Tables 

5.1 to 5.3. These characteristics form trends similar to that followed by adsorption 

energies, but with a few exceptions, most notably the absence of a clear activation 

sequence between the two carbides. (001) surfaces show consistently the least CO2 

activation, bending the O-Ĉ-O bond to ~120° similarly to (011) surface but reducing 

the molecule less – the only charge differences Δq < 1 eV are found upon adsorption 

on (001) surfaces – and causing a shorter bond elongation, up to 0.12 Å. (011) surfaces 

are in line with (001) surfaces in terms of θO-Ĉ-O but show longer dC – O  and higher Δq. 

(111) surfaces, albeit not showing the highest adsorption energy, are the ones that alter 

the nature of CO2 the most upon adsorption, increasing dC-O  and reducing θO-Ĉ-O the 

most while transferring a charge of almost 2 e- to the molecule.  

These characteristics of bond elongation, geometry change and charge transfer have 

previously been linked to an activation of the molecule.81,102 Our data therefore suggest 

that the (111) surfaces of TiC and ZrC should be the most reactive upon CO2 reduction. 

To investigate this prediction we have studied the CO2 reduction on TiC and ZrC 

surfaces in terms of its dissociation to CO, hydrogenation to COOH, and 

hydrogenation to HCOO.  

5.2 CO2 reduction on TiC and ZrC 
CO, COOH and HCOO on TiC and ZrC surfaces 

Carbon monoxide, formic acid and methanol are some of the most valuable and useful 

products of CO2 reduction.12 Posada-Pérez et al.126  previously showed how surface 
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morphology and stoichiometry can drive the selectivity towards either product through 

a variety of reaction paths. On the initial step, CO2 might dissociate yielding CO and 

O on the surface of the carbide; the former can be either directly desorbed or further 

reduced to methanol, while the latter is reduced to H2O and desorbed. Alternatively, 

CO2 can be directly hydrogenated either on C or on O, yielding respectively a carboxyl 

or a formate on catalyst surface. The latter can be further hydrogenated to formic acid, 

or either intermediate might instead undergo dissociation of one C-O bond activated 

by the presence of H on either atom, and subsequent further reduction by H2 to CH3OH 

and H2O. The resulting overall reactions are therefore: 

ଶܱܥ + ଶܪ → ܱܥ +  ଶܱܪ

ଶܱܥ + ଶܪ →  ܪܱܱܥܪ

ଶܱܥ + ଶܪ 3 → ܪଷܱܪܥ +  ଶܱܪ

The first reaction is of course the reverse Water-gas shift reaction, and results in a 

product which is more economically valuable12 but more oxidised. Formic acid and 

methanol, while less valuable, can be used to generate electricity in fuel cells138,139 or 

as a building block for fuels and chemicals.12 The first step of each of these reactions 

has been investigated in both the thermodynamic and kinetic aspects, modelling the 

formation of the three first-step intermediates on each surface: 

ଶܱܥ → ܱܥ + ܱ 

ଶܱܥ + ଶܪ ½ →  ܪܱܱܥ

ଶܱܥ + ଶܪ ½ →  ܱܱܥܪ

The adsorption of each of the involved chemical species on all TiC and ZrC surfaces 

has therefore been studied, identifying the minimum energy structures shown in Figure 

5.4 and highlighting the adsorption energies reported by Table 5.4. 
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(001) -1.82 (Con top) -2.54 (M2C) -1.25 (M2C) -2.08 (Con top) 
(011) -3.22 (Con top) -4.40 (M-O-C) -1.82 (M4C) -5.35 (M4C) 
(111) -3.22 (M2) -5.76 (M3) -1.20 (M4 – vertical) -6.12 (M5 – up)

(001) -2.13 (Con top) -2.79 (M2C) -1.70 (M2C) -3.29 (Con top) 
(011) -3.91 (C-Mbridge) -4.56 (M2 - bridge) -3.74 (Con top) N/A
(111) -3.13 (M2) -5.85 (M3) -2.46 (M4 – vertical) -6.17 (M5 – up)

 Adsorption energies for CO, O, COOH and HCOO on TiC and ZrC in eV. Only the most 
favourable adsorptions sites are considered in this table. 
Adsorption of CO is generally very exothermic (-1.82 eV to -3.91 eV) on all surfaces, 

compared to the gas phase molecule. Con top sites are dominant on both (001) surfaces, 

as shown by Figure 5.4 (a), in which the molecule stands almost perpendicular to the 

plane of the catalyst, only slightly leaning towards a metal atom; on these sites, the 

C-O bond shows significant elongation (1.20 Å), as the distance between the adsorbed 

molecule and the nearest surface carbon atom also resembles that of a strong covalent 

C-C bond at 1.32 Å. (011) surfaces present the most exothermic CO adsorption on 

both carbides, similarly to the previously highlighted case of CO2; Figure 5.4 (b) show 

how the morphology of the surface drives the most favourable adsorption sites towards 

a state in which the CO molecule is covalently bound to a surface carbon atom and 

coordinated to a neighbouring metal atom, with significant bond elongation (1.27 Å 

on ZrC, where the oxygen is coordinated to two metal atoms). (111) surfaces offer 

multiple coordination patterns, resulting in low energy structures where both atoms of 

CO maximise coordination by lying almost parallel to the surface, as highlighted by 

Figure 5.4 (c). Isolated oxygen atoms are bound very strongly to all surfaces (-2.5 eV 

to -5.9 eV). On (001) surfaces adsorbed O is coordinated to one carbon and two metal 

atoms. On (011), oxygen interacts very strongly with carbon atoms, pulling them 

strongly out of the plane of the surface. On (111), O fits in the hexagonal sites 

coordinating three metal atoms, binding strongly to the surface.  

The carbonyl group formed by hydrogenation of CO2 on one of the oxygen atoms also 

presents different preferred geometries on the various surfaces. On both (001) 

surfaces, two planar structures could be identified: the first, Con top, has its molecular 

plane perpendicular to the surface and presents a slightly bent geometry which 

maximises the distance between the -OH group and the surface; the second, M2C, is 

instead bent towards the surface in order to maximise interaction between the latter 
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and the oxygen atoms. The two structures have very similar energies (ΔE < 0.05 eV), 

with the latter being more favourable and therefore being shown in Figure 5.4 (a). On 

(011), similar structures are found; however, each is favoured on a different carbide, 

with Con top being stable on ZrC while M2C is favoured on TiC. On the (111) surface 

of both carbides, the COOH group is most stable when aligned perpendicularly to the 

surface, with C=O coordinated to the surface and -OH pointing upwards. Formate 

groups formed by hydrogenation of a CO2 carbon atom are not stable on ZrC(011), 

giving spontaneous dissociation to an sp2 hybridized HCO on a Con top site with O 

coordinated to a metal, plus adsorbed oxygen. The same situation could be found on 

TiC(011), but in this case a surface formate intermediate could be isolated, shown in 

Figure 5.4 (b). On the four other surfaces HCOO presents stable configurations similar 

to those of COOH, with Con top and M5 – up respectively being the most favoured on 

(001) and (111) surfaces respectively, on both carbides. 

 

a) 

b) 

c) 

Most favourable adsorption geometries of, from left to right, CO, O, COOH and HCOO 
on a) ZrC(001), b) TiC(011), c) ZrC(111). Analogous geometries are found for all species on 
the carbide not shown in this picture, with the exception of HCOO on ZrC(011), which 
spontaneously dissociates upon adsorption. The adsorption geometries shown here are those 
with the minimum energy among those tested on each surface. The colour scheme is as 
follows: Ti = blue, Zr = green, C = brown, O = red, H = pink. 
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CO2 dissociation and hydrogenation 

The energetics of the processes described above have been compared to those of the 

gas phase and adsorbed reactants according to the three investigated reaction paths. 

Nearly all reactions are strongly exothermic compared to the combined energy of the 

pristine surface and gas phase reactants. As shown in Table 5.5, however, the energy 

of the reaction step is only negative for the dissociation reactions, while it can be 

significantly positive for the two hydrogenation pathways.  

 vs. CO2 (g) vs. CO2* vs. CO2, H2 (g) vs. CO2*, H2* vs. CO2, H2 (g) vs. CO2*, H2* 
TiC 
(001) -1.13 -0.23 -1.25 0.59 0.19 2.03 
(011) -7.05 -3.6 -3.38 1.43 -3.38 1.43 
(111) -5.70 -2.60 -2.76 1.43 -3.84 0.35 
ZrC 
(001) -1.72 -0.04 -1.70 0.95 -1.02 1.63 
(011) -5.03 -0.84 -3.73 1.71 -5.92* -0.48* 
(111) -5.67 -2.49 -2.47 1.91 -3.9 0.48 

 Reaction energies (in eV) for the dissociation to CO + O, hydrogenation to COOH and 
hydrogenation to HCOO. For each reaction two energies are reported, differing for the reference 
used: in the column on the left of each section, the energy “vs. CO2 (g)” or “vs. CO2, H2 (g)” is reported, 
which is the energy of the intermediate on the surface of the catalyst minus the energy of the gas 
phase reactants and pristine surface; in the column on the right of each section, the energy “vs. 
CO2* or “vs. CO2*, H2*” is reported, which is the energy of the intermediated on the surface of the 
catalyst minus the energy of the reactants on the same surface, also referred to as single-step 
reaction energy. The energies reported for HCOO on ZrC(011) are marked with * because they 
are referred to the formation of HCO + O, since HCOO dissociation happens spontaneously on this 
surface. 

Table 5.5 summarises the reaction energies correlated with the formation of CO, 

COOH and HCOO, reported with respect to gas phase CO2 (and ½ H2 in the case of 

hydrogenation) as well as referred to the single reaction step from adsorbed CO2. The 

dissociation reaction is the only one for which single-step energies are negative. This 

is obviously related to the high adsorption energies found for CO and O, which 

strongly bind to the surfaces of TiC and ZrC, allowing for an exothermic reaction 

energy. On the contrary, single-step reaction energies for formation of COOH and 

HCOO are generally endothermic, as a result of the relative instability of these 

intermediates. Nevertheless, the reaction energy from gas phase reactants are generally 

exothermic, with the only exception of the formation of HCOO on the TiC(001) 

surface, for which Ereact = +0.19 eV. As a result, it is possible that the adsorption of 

CO2 and H2 on the low-index surfaces of TiC and ZrC might provide the energy for 
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the formation of these intermediates on the catalysts, so their formation cannot be ruled 

out on the sole basis of single-step reaction energy. The endothermicity of CO2 

hydrogenation can also be linked with the results of hydrogen adsorption on TMCs 

presented in Chapter 4 of the present work: since hydrogenation on TiC and ZrC 

surfaces is always exothermic, energy is required for the formation of HCOO and 

COOH, as one strongly bound H atom has to be pulled from the surface. This is 

particularly true for (011) and (111) surfaces, because of their more exothermic 

adsorptions, which result in the high single-step reaction energies for COOH 

formation on these facets. HCOO formation, however, is less thermodynamically 

unfavourable on (111) surfaces, due to the very strong bond between this intermediate 

and the surface. 

From the results of Table 5.5 it is also possible to preliminarily assess how the three 

competitive reactions are balanced on each surface. In absolute terms, the dissociation 

is always thermodynamically favoured, as it always shows ܧ௥ < 0 for the single-step 

process. However, if only the hydrogenation reactions are considered, a strong 

preference towards the formation of COOH is found on (001) surfaces, while on (111) 

surfaces the preference is towards the formation of HCOO, which on TiC(111) has the 

least positive single step reaction energy of all hydrogenated intermediates. On the 

two (011) surfaces, the formate is not stable, and can dissociate spontaneously to 

CHO + O. It was possible to identify a formate intermediate on TiC(011), which 

shows E௥  =  1.43 eV, the same of CO2 hydroxylation. On ZrC(011), instead, HCOO 

is so unstable on this surface that undergoes spontaneous dissociation and no 

intermediate could be found. Table 5.5 reports  E௥  =  −0.48 eV for this reaction, but 

this is referred to the formation of CHO + O. 

To evaluate the selectivity of each surface, the simple prediction of reaction energies 

is therefore not sufficient. Nudged elastic band calculations (NEB and cNEB, see 

Chapter 2.3 for more details) and the dimer method have been employed in order to 

sample the region of the potential energy surface connecting each intermediate to their 

adsorbed reactants, identifying the transition states corresponding to the reactions 

leading to CO, COOH, and HCOO on (001), (011) and (111) surfaces. From this 

investigation, two reactions have been excluded: the formation of formate on TiC(001) 

and ZrC(001) have been considered too high in energy to take place, the former 
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showing the only positive reaction energy from gas phase reactants, the latter being 

strongly unfavourable compared to COOH formation. 

5.3 Exploring the potential energy surface 
Transition state calculations 

Figure 5.5 shows the initial state, transition state, and final state of the PES linking 

adsorbed CO2 and H to COOH on TiC(001), CO2 to CO and O on ZrC(011), and  CO2 

and H to HCOO on TiC(111). Similar pictures could be drawn for all other reactions 

reported in Table 5.4, but also for the several other paths that have been investigated 

for each reaction. Each investigation is started by selecting suitable initial and final 

states: a model is created for each one so that the change between the two is minimal 

and limited to the reaction path in study. As an example, in the case of the 

hydrogenation path shown in Figure 5.5 (a) this is done by placing the CO2 molecule 

of the initial state model on the same surface carbon atom as the COOH molecule of 

the final state model, and the reducing H atom of the initial state model on a 

neighbouring adsorption site. Several combinations of the relative positions of the 

reactants between each other and with the product are then created by selecting 

different adsorption sites for each species and changing the orientation of the O – H 

bond in the final state, in order to capture the different reaction paths which might 

generate the product of interest. For most of the transition states reported here, the 

MEP was found using neighbouring adsorption sites for CO2 and H or CO and O, 

corresponding to the minimum distance between these species in their stable adsorbed 

state.  

A nudged elastic band (NEB, see Chapter 2 for more details) calculation is then 

performed between each initial state - final state couple, in order to find the minimum 

energy path (MEP) connecting the two. Once converged, the MEPs related to different 

configurations of the same reaction are compared, selecting the best ones and 

performing on these either a cNEB or a dimer calculation in order to isolate their 

transition states. The results of these calculations can then be confirmed to be the 

transition state correlated with the hydrogenation or dissociation path under 

investigation by inspecting the vibrational frequencies of the adsorbate on the surface: 

because of the characteristics of the PES around these points (more extensively 
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discussed in Chapter 2) the transition state will show a single imaginary vibrational 

frequency, which will be the result of an imaginary mode of vibration corresponding 

to the formation or cleavage of the bond in interest – in our case, the O – H bond for 

CO2 hydrogenation and the C – O bond for its dissociation. The results obtained 

through this protocol are summarised in Table 5.4.  

001 – CO +0.90 +2.13 -0.23 
011 – CO +3.45 +0.69 -3.6 
111 – CO +3.11 +0.99 -2.60 
001 – COOH +1.84 +1.58 +0.59 
011 – COOH +4.80 +2.15 +1.43 
111 – COOH +4.19 +2.15 +1.43 
001 – HCOO +1.84 N/A +2.03 
011 – HCOO +4.80 +1.39 +1.43 
111 – HCOO +4.19 +1.44 +0.35 

001 – CO +1.68 +1.86 -0.04 
011 – CO +4.19 +0.49 -0.84 
111 – CO +3.18 +1.29 -2.49 
001 – COOH +2.65 +1.48 +0.95 
011 – COOH +5.44 +1.97 +1.71 
111 – COOH  +4.38 +2.44 +1.91 
001 – HCOO +2.65 N/A +1.63 
011 – HCOO +5.44 > 3 eV -0.48* 
111 – HCOO +4.38 +1.58 +0.48 

 Activation and reaction energies of CO2 reduction over TiC and ZrC. All energies are 
referred to the adsorbed CO2 – for dissociation reactions – or CO2 + H – for hydrogenation 
reactions – and are reported in eV. The first column refers to the energy of the gas phase reactants, 
so is equivalent to the opposite of the adsorption energy; the second row is the activation energy, 
hence the energy difference between the adsorbed reactant and the transition state; the third and 
final row reports the energy of the products referred to that of the reactants. 

Activation barriers 

While the reaction energies and activation barriers for hydrogenation are high, it must 

be kept in mind that these are related to the single-step reactions in which CO2 and H 

are adsorbed; the energy of the gas phase reactants relative to their adsorbed state is 

then also reported in Table 5.4. Dissociation to CO on both (001) surfaces show mildly 

exothermic reaction energies coupled with very high barriers – over 2 eV for TiC(001). 

This highlights how, even if the (001) surface can chemisorb both reactants and 

products efficiently, CO2 is not sufficiently activated on these surfaces to obtain a 

seamless reduction. It is possible to correlate this result with the bond elongation and 
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electron transfer data: CO2 adsorbed on TiC(001) and ZrC(001) shows longer bond 

lengths, a bent geometry and a higher number of electrons than the gas phase molecule, 

all characteristics that have been correlated with CO2 activation.76 Nonetheless, this 

activation is proved to be insufficient, since on both carbides the transition state has a 

higher energy than the gas phase reactants, effectively ruling out the direct dissociation 

of CO2 on these surfaces.  

The dissociation reaction is instead favourable on (011) and (111) surfaces, as the 

more exposed metal atoms are able to more efficiently coordinate CO2 while the C-O 

bond is elongated until full dissociation. Dissociation on ZrC(011) is, of all reactions, 

that with the lowest energetic barrier (ܧ௔ = 0.49 ܸ݁ over the adsorbed reactants), 

while TiC(011) shows the most exothermic reaction energy (ܧ௥ =  −3.60 ܸ݁) but has 

a slightly higher activation barrier, ܧ௔ = 0.69 ܸ݁. This can be correlated to the higher 

metal area exposed on ZrC, which allows for a better coordination of the dissociating 

oxygen, but results in its less efficient coordination once the reaction is complete. 

However, this trend is inverted for the transition states on (111) surfaces: the longer 

cell parameters of ZrC mean that the dissociating oxygen cannot be coordinated as 

efficiently, resulting in a higher barrier than that on TiC(111). 

Conversely, the hydrogenation reaction to carboxyl is most favourable on the (001) 

surfaces of TiC and ZrC. In all cases the reaction is endothermic and the barrier is at 

least 1.5 eV over the adsorbed state of the reactants. However, this energy can be 

provided by the adsorption energies of CO2 and H2 on the surfaces of the catalysts, as 

both are significantly larger than the activation barriers. This reaction is least 

unfavorable thermodynamically on TiC(001), where it shows a ܧ௥ = +0.59 ܸ݁, while 

kinetically ZrC shows a slightly lower barrier of ܧ௔ = +1.48 ܸ݁. The hydrogenation 

on both (011) and (111) surfaces is instead significantly endothermic and shows 

barriers of 2 eV and higher, hindering the formation of COOH on these four surfaces. 

As mentioned in the previous section, the strong bond formed by hydrogen with these 

surfaces can be considered as a reason for the high hydrogenation barriers found on 

this surface.  
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Finally, the hydrogenation to formate presents an interesting case study, as the results 

vary greatly depending on the surface. On the (001) surfaces, as mentioned in the 

previous section, the reaction is so endothermic that no HCOO formation can take 

place, and no investigation of the potential energy surface has been performed. On the 

two (011) surfaces formate is not stable, and can dissociate spontaneously to 

CHO + O. It was possible to isolate an HCOO intermediate on TiC(011), for which a 

small barrier has been identified. This reaction is significantly more viable than 

hydrogenation to carboxyl despite its identical reaction energy, as ܧ௔(ܱܱܥܪ) =

1.47 ܸ݁ < (ܪܱܱܥ)௔ܧ = 2.44 ܸ݁. On ZrC(011), however, the barrier for the 

simultaneous hydrogenation and dissociation is found to be very close to the 

hydrogenated unstable intermediate HCOO in terms of geometry and electron transfer, 

resulting in a kinetic barrier ܧ௔ > 3 ܸ݁, after which the intermediate spontaneously 

dissociates. The height of this barrier rules out the possibility of hydrogenation to 

b) 

c) 

a) 

Proposed reduction mechanism of a) CO2 hydrogenation to COOH on TiC(001), b) 
CO2 dissociation to CO + O on ZrC(011), c) CO2 hydrogenation to HCOO on TiC(111). From 
left to right: initial state, in which the reactants are adsorbed on the surface of the catalyst; 
transition state, identified through the presence of one imaginary frequency related to the 
formation of the desired product; final state, in which the product is adsorbed on the surface 
of the reactant. The colour scheme is as follows: Ti = blue, Zr = green, C = brown, O = red, H 
= pink. 
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formate on the latter surface, as its significantly higher than ܧ௔ = 1.97 ܸ݁ found for 

carboxyl production. Conversely, on both (111) surfaces, the reduction to formate is 

only mildly endothermic, with ܧ௥  =  0.35 eV on TiC. This is probably due to the 

conformation of the (111) surfaces of these materials, which allow for high interaction 

of the carbon and oxygen atoms of HCOO with the metal atoms of the material, while 

minimising interaction with hydrogen. Activation barriers on the two surfaces are 

similar – ܧ௔(ܶ݅ܥ) = 1.44 ܸ݁, (ܥݎܼ)௔ܧ = 1.58 ܸ݁ – and in both cases much smaller 

than those found for COOH formation on the same surfaces and than the adsorption 

energies of CO2 and H2 on the surface, making this route potentially viable for (111) 

surfaces. 

Implications for CO2 reduction catalysis 

The study of these reaction has provided us with a thorough understanding of the 

adsorption of carbon dioxide and its reduction to CO, COOH and HCOO on the low-

index surfaces of TiC and ZrC catalysts. The catalytic properties of these materials 

have been first investigated in terms of the activation of CO2 provided upon 

adsorption. Adsorption energies, charge transfer data, bond elongations and geometry 

changes have been analysed in order to identify descriptors for the catalytic behaviour 

of each surface. TiC(001) and ZrC(001) have been shown to activate CO2 the least, 

even though a strong chemical bond with a surface carbon atom was created upon 

adsorption. (111) surfaces were shown to produce the highest C-O elongation as well 

as transferring the highest quantity of charge, but (011) surfaces can coordinate CO2 

better. 

The first step of three different CO2 reduction pathways was investigated for all six 

low-index surfaces, providing the groundwork for a further study of its recycling into 

CO, HCOOH or CH3OH. In order to do this, the adsorption of CO, O, COOH and 

HCOO was studied, obtaining the thermodynamic data for the dissociation of CO2 to 

carbon monoxide and its hydrogenation to either formate or carboxyl. The dissociation 

step was found to be exothermic on all surfaces, while the hydrogenation to either 

intermediate was found to be endothermic. Nonetheless, the high adsorption energy of 

CO2 and H2 upon the investigated surfaces could potentially provide the energy for 

these reactions, which have therefore been studied more thoroughly. The exception to 

this is the hydrogenation to HCOO on both (001) surfaces, which has a reaction energy 
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so high that no further investigation was deemed necessary to rule this reaction path 

out. 

Finally, the potential energy surface connecting CO2 with its reduced intermediates to 

carbon monoxide, formic acid and methanol was investigated. The (001) surface was 

found to be unable to catalyse dissociation reactions, as these have very high activation 

energies on both carbides. However, the hydrogenation to COOH, albeit endothermic, 

can take place on these surfaces. On the (011) surfaces the most favoured reaction path 

is that of dissociation, which highlights both the most exothermic and the most easily 

activated reactions of the 18 paths considered. HCOO is most easily formed on 

TiC(111) and ZrC(111), since their conformation helps stabilising both this 

intermediate and the transition state leading towards it, but (111) surfaces might also 

be able to catalyse dissociation reactions, albeit not as efficiently as (011) facets. 

The present study has given us a thorough understanding of the first reduction step of 

CO2 on the low-index surfaces of TiC and ZrC. This can give us indications both on 

our previous predictions of catalytic activity and on what can most effectively catalyse 

the full CO2 reduction process. On the one hand, we must observe that, even though 

the (001) surfaces of these carbides did show some promising results in terms of CO2 

activation, they failed in coordinate CO2 and H at the transition state level. This might 

lead us to reconsider the use of descriptors only considering adsorption as a viable tool 

for catalytic activity prediction. Moreover, computational studies of the activity of 

carbides have often been confined to this facet, while we have demonstrated how other 

surfaces might lead to better catalytic activity. On the other hand, this leads to the 

question of relationship between computational and experimental studies: while it is 

true that (011) surfaces are not often reported experimentally, works such as this might 

drive synthesis towards it when the material is designed as a RWGS catalyst. Finally, 

we are able to narrow down the number of pathways to be explored in a future 

computational work interested into the whole reduction process to high-value 

chemicals: the dissociation reaction and the hydrogenation to formate will be studied 

on the (011) and (111) surfaces of both carbides, the former leading to CO via the 

RWGS reaction and the latter leading to either formic acid or CH3OH; the 

hydrogenation to carboxyl path will be studied on both (001) surfaces leading to 

CH3OH through further hydrogenation followed by dissociation of one C-O bond. 
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Chapter 6: Summary and conclusions 

A thorough computational study of two classes of materials for the catalytic 

conversion of water and carbon dioxide to synthetic and sustainable fuels and 

chemicals is presented here. The structure – property relationship of oxygen-doped 

graphitic carbon nitride has been studied in order to explain its activity in 

photocatalytic water splitting and help elucidate its structure, comparing it to previous 

models as well as to experimental graphitic carbon nitride geometries. The erratic 

nature of the oxygen position in the polymer has been proved to affect the localization 

of the valence band maximum and conduction band minimum, which can in certain 

case act as electron and hole traps. This effect provided a rationale for the superior 

performances in photocatalytic water splitting of the oxygen doped material compared 

to pristine carbon nitride and for their trend with respect to the oxygen content in the 

different polymeric samples. Electrochemical hydrogen evolution was investigated on 

early transition metal carbides, following both experimental and computational proof 

of their catalytic activity. Hydrogen adsorption on the surfaces of TiC, VC, ZrC and 

NbC has been studied in its energetic trends, resulting in a clear raking sequence of 

carbides and surfaces activity. This could be correlated with the bulk and surface 

properties of those materials and provided justification for the use of certain 

parameters as qualitative descriptors of catalytic activity, such as the d-band centre 

position. Ab-initio thermodynamics was used to correlated adsorption energies with 

surface coverage states at different temperatures and pressures and to predict hydrogen 

evolution activity for each material and surface. Two of the best-performing materials, 

TiC and ZrC, were subsequently investigated in their catalytic activity over CO2 

adsorption, dissociation and hydrogenation. Adsorption is found to be strongly 

exothermic on all surfaces, driving the reaction towards CO, HCOO or COOH 

depending on the thermodynamics and kinetics of the reaction steps on each of the 

carbide surfaces. Dissociation is found to be in all cases more favourable 

thermodynamically, but the high reaction barriers limit its rates on (001) surfaces, 

driving the reaction towards hydrogenated intermediates. The (011) surfaces were 

found to be the most catalytically active, especially towards dissociation, which shows 

both the lowest reaction energy and lowest activation barrier on this surface. The three 

reactions interlink in a network of steps that leads to the reduction of CO2 to CO, 
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HCOOH, CH3OH and CH4 using molecular hydrogen as a reduction agent. This will 

be the subject of further studies in order to elucidate the mechanism of reduction of 

CO2, which will follow the most efficient reduction steps on each surface to either gas 

phase CO or gas phase CH3OH: the dissociation reaction and the hydrogenation to 

formate will be studied on the (011) and (111) surfaces of both carbides, the former 

leading to CO and H2O in the reverse WGS reaction and the latter leading to CH3OH 

via the CHO intermediate which spontaneously forms on (011),  while the 

hydrogenation to hydroxyl path will be studied on both (001) surfaces leading to 

CH3OH through further hydrogenation followed by dissociation of one C-O bond. The 

successful conclusion of this project will allow us to close the circle that society leaves 

open when using fossil carbon resources for its needs of fuels and chemicals by 

reverting practically unlimited resources such as H2O and CO2 back to usable form 

through the use of renewable energy and the physical and chemical properties of 

artificial materials. This work, while limited to a few materials and not yet complete, 

improves our understanding of the catalytic and photocatalytic activity of the materials 

we investigated, and will hopefully be part of the collective, global effort in building 

more sustainable ways of doing chemistry and storing energy. 
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