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1 Preliminaries

This paper is divided into six sections. This section is devoted to stating few results
that will be used in the remainder of the paper. We also set the notations to be
used and derive few simple results that will come in handy in our treatment. In
Section 2, we charecterize numbers 5k + 2, which are primes with k being an odd
natural number. In Section 3, we prove more general results than given in Section
2. In Section 4, we define the period of a Fibonacci sequence modulo some number
and derive many properties of this concept. In Section 5, we devote to the study of
a class of generalized Fibonacci numbers and derive some interesting results related
to them. Finally, in Section 6, we define some generalized Fibonacci polynomial
sequences and we obtain some results related to them.

We begin with the following famous results without proof except for some related
properties.

Lemma 1.1 (Euclid). Ifab =0 (mod p) with a,b two integers and p a prime, then
either pla or p|b.

Remark 1.2. In particular, if ged(a,b) = 1, p divides only one of the numbers a, b.

Property 1.3. Let a,b two positive integers, m,n two integers such that (|m|,|n|) =
1 and p a natural number. Then

ma =nb (mod p)
if and only if there exists ¢ € Z such that
a=nc (mod p)

and
b=mc (mod p).

Proof. Let a,b two positive integers, m,n two integers such that (|m|,|n|) =1 and
p a natural number.
If there exists an integer ¢ such that a = nc (mod p) and b = me (mod p), then
ma = mnc (mod p) and nb = mnc (mod p). So, we have ma = nb (mod p).
Conversely, if ma = nb (mod p) with (|m],|n|) = 1, then from Bezout’s identity,
there exist three integers u, v, k such that

um-—+on=1
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and
ma — nb = kp.

So, we have
ukpm + vkpn = ma — nb

and
m(a — ukp) = n(b+ vkp).

Since |m/|, |n| are relatively prime, from Lemma 1.1, it implies that there exist two
integers ¢, d such that
a — ukp = nc,

and
b+ vkp = md.

It results that mnc = mnd and so ¢ = d. Therefore, we obtain
a=nc+ukp=mnc (mod p),

and
b= mc—vkp=mc (mod p).

O

Remark 1.4. Using the notations given in the proof of Property 1.3, we can see
that if there exists an integer ¢ such that a = nc (mod p) and b = me (mod p) with
(Iml,|n]) =1 and p a natural number, then we have

ub+va = (um +ovn)c=c¢ (mod p)

Moreover, denoting by g the ged of a and b, if a = gn and b = gm, then ub+ va =
(um +vn)g = g, then g = ¢ (mod p).

Theorem 1.5 (Fermat’s Little Theorem). If p is a prime and n € N relatively
prime to p, then n?~1 =1 (mod p).

Theorem 1.6. If 22 = 1 (mod p) with p a prime, then either x = 1 (mod p) or
z=p—1 (mod p).

Proof. If x> =1 (mod p) with p a prime, then we have
22 —1=0 (mod p)

(z—1)(z+1)=0 (mod p)

x—1=0 (modp) or z+1=0 (mod p). It is equivalent to say that x = 1
(mod p)orz=—-1=p—1 (mod p). O
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Definition 1.7. Let p be an odd prime and ged(a,p) = 1. If the congruence 2* = a

(mod p) has a solution, then a is said to be a quadratic residue of p. Otherwise, a
is called a quadratic nonresidue of p.

Theorem 1.8 (Euler). Let p be an odd prime and ged(a,p) = 1. Then a is a
quadratic nonresidue of p if and only if T =1 (mod p).

Definition 1.9. Let p be an odd prime and let ged(a,p) = 1. The Legendre symbol
(a/p) is defined to be equal to 1 if a is a quadratic residue of p and is equal to —1
is a is a quadratic non residue of p.

Property 1.10. Let p an odd prime and a and b be integers which are relatively
prime to p. Then the Legendre symbol has the following properties:

1. If a =b (mod p), then (a/p) = (b/p).
2. (a/p) = a?=D/2 (mod p)
3. (ab/p) = (a/p)(b/p)
Remark 1.11. Taking a = b in (3) of Property 1.10, we have

(a®/p) = (a/p)* = 1.

Lemma 1.12 (Gauss). Let p be an odd prime and let gcd(a,p) = 1. If n denotes
the number of integers in the set S = {a,?a,3a, ceey (”2;1) a}, whose remainders
upon division by p exceed p/2, then

(a/p) = (=1)".
Corollary 1.13. If p is an odd prime, then

1 4if p=1 (mod38) or

B =7 (mod 8),
(2/]9)—{1 if p=3 (mod8) or §E5

(mod 8).

Theorem 1.14 (Gauss’ Quadratic Reciprocity Law). If p and q are distinct odd

primes, then
1 g—1

(p/a)(a/p) = (-1)= "= .

Corollary 1.15. Ifp and q are distinct odd primes, then

_ (¢/p) if p=1 (mod4) or g=1 (mod4),
(p/Q)_{—(q/p) if p=q=3 (mod4).

Throughout this paper, we assume k € N, unless otherwise stated.
From (1) of Property 1.10, Theorem 1.14, Corollary 1.13 and Corollary 1.15, we
deduce the following result.
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Theorem 1.16.
(5/5k +2) = —1.

Proof. Clearly (5/5k +2) = (5k 4+ 2/5) since 5 =1 (mod 4).
Again (5k +2/5) = (2/5) since 5k +2 =2 (mod 5).
Also it is a well known fact that (2/5) = —1 since 5 =5 (mod 8). O

For proofs of the above theorems the reader is suggested to see [2] or [6].
Let p a prime number such that p = 5k + 2 with k an odd positive integer.
From Property 1.10 and Theorem 1.16 we have

(5%)2 =1 (mod 5k +2).

From Theorem 1.6, we have either

5k+1
2

=—-1 (mod 5k +2)

or
5k41

572 =5k+1 (mod 5k + 2).

Moreover, we can observe that
52k+1)=1 (mod 5k +2).

Theorem 1.17.
5k+1

572 =5k+1 (mod 5k + 2)

where 5k + 2 is a prime.

The proof of Theorem 1.17 follows very easily from Theorems 1.8, 1.16 and
Property 1.10.

Theorem 1.18. Let r be an integer in the set {1,2,3,4}. Then, we have

_ 1 if r=1 or r=4,
(5/5k+7‘)—{_1 if r=2 or r=3.

Proof. We have (5/5k + 1) = (5k +r/5) since 5 =1 (mod 4).
Moreover, (5k +r/5) = (r/5) since 5k + r = r (mod 5).
Or, we have
If r =1, then using Theorem 1.14, (r/5) = 1.
If r = 2, then using Corollary 1.13, (r/5) = —1.
If r = 3, then using Theorem 1.14, (r/5) = —1.
If r = 4, then since (4/5) = (22/5) = 1 (see also Remark 1.11), (r/5) = 1.
O
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Theorem 1.19. Let r be an integer in the set {1,2,3,4}. Then, if 5k + 1 is a
prime, we have

b=l 1 (modbk+r) if r=1 or r=4,
-1 (mod 5k +7r) if r=2 or r=3.

The proof of Theorem 1.19 follows very easily from Theorems 1.8, 1.18 and
Property 1.10.

We fix the notation [[1,n]] = {1,2,...,n} throughout the rest of the paper. We
now have the following properties.

Remark 1.20. Let 5k +r with r € [[1,4]] be a prime number. Then

= 0 (mod2) if r=1 or r=3,
11 (mod2) if r=2 or r=4,

or equivalently
kE=r+1 (mod?2).

Property 1.21.
5k +1
20+1

with 1 € [[0, 3£ ]]] and 5k + 2 is a prime.

>E5k’+1 (mod 5k + 2),

Proof. Notice that for [ = 0 the property is obviously true.
We also have
5k +1\  (5k+1)5k(5k —1)...(5k — 2] +1)
20+1 (20 +1)!

5k=—-2 (mod 5k + 2),
5k —1=-3 (mod 5k + 2),

Sk—20+1=—(2+1) (mod 5k+2).
Multiplying these congruences we get
5k(bk —1)...(bk—20+1)=(21+1)! (mod 5k + 2).
Therefore

21+ 1)|(‘Z’;:> _ (5k+1)(20+1)! (mod 5k +2).

Since (21 4+ 1)! and 5k + 2 are relatively prime, we obtain

<5k+1

2[+1> =5k+1 (mod 5k +2).
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We have now the following generalization.

Property 1.22.
<5k +r—1

241 )E—]_ (mod 5k + r),

with 1 € [[0, [22=2]] and 5k + r is a prime such that r € [[1,4]] and k =r +1
(mod 2).

The proof of Property 1.22 is very similar to the proof of Property 1.21

Property 1.23.

5k
(2[ N 1) =5k —20=-2(l+1) (mod 5k+2)

with 1 € [[0, %2 ]]] and 5k + 2 is a prime.

Proof. Notice that for [ = 0 the property is obviously true.
We have

5k \ _ 5k(5k—1)...(5k — 20+ 1)(5k — 21)
(2l + 1) N (20 +1)! '

5k =—-2 (mod 5k + 2),
5k —1=-3 (mod 5k + 2),

Bk—2+1=—(2+1) (mod 5k+2).
Multiplying these congruences we get
S5k(bk —1)...(bk—2+1)=(214+1)! (mod 5k + 2).
Therfore
(2l+ 1) <2l5—|]f 1) = (20 + DI(5k —2l) (mod 5k + 2).
Since (21 + 1)! and 5k + 2 are relatively prime, we obtain

<5k+1

2z+1> =5k—2=5k+2-2—-2l=-2(1+1) (mod 5k+2).

We can generalize the above as follows.
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Property 1.24.

<5k+r—2

941 ) =-2(141) (mod 5k +r),

with 1 € [[0, [2247=2|]) and 5k + r is a prime such that r € [[1,4]] and k =r +1
(mod 2)

The proof of Property 1.24 is very similar to the proof of Property 1.23.
In the memainder of this section we derive or state a few results involving
the Fibonacci numbers. The Fibonacci sequence (F,) is defined by Fy = 0, Fy =

1, Fhyo=F, + F,y1 for n > 0.
From the definition of the Fibonacci sequences we can establish the formula for

the nth Fibonacci number,

" = (1 =)

FTL: \/5 I

where ¢ = 1+T\/g is the golden ratio.
From binomial theorem, we have for a # 0 and n € N,

L25*)

(a+b)" —(a—b)" = Zn: (Z) a" (- (-)F) =2 (217;'; 1) gD 2L

k=0 =0

So

Thus

We get from (1.1)

Thus we have,
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Theorem 1.25.

) L5+ "
— l
Fn = g5 Z <2l+1)5'
=0
k
Frio=1+)Y F.

i=1

Property 1.26.

Theorem 1.27.
Frp=FFg+ F 1 Fy

with k € N and | > 2.
The proofs of the above two results can be found in [6].
Property 1.28. Let m be a positive integer which is greater than 2. Then, we have
Fypmq2 = 4F3m 1 + F3pm—4.
The above can be generalized to the following.

Property 1.29. Let m be a positive integer which is greater than 2. Then, we have

m

Fspqo = 4ZF3i—1~

=2

The above three results can be proved in a straighforward way using the recur-
rence relation of Fibonacci numbers.
We now state below a few congruence satisfied by the Fibonacci numbers.

Property 1.30. F,, =0 (mod 2) if and only if n =0 (mod 3).

Corollary 1.31. If p = 5k + 2 is a prime which is strictly greater than 5 (k € N
and k odd), then F,, = Fsp49 is an odd number.

In order to prove this assertion, it suffices to remark that p is not divisible by
3.

Property 1.32.
F5,=0 (mod 5)

with k € N.

Property 1.33.
F,>n

withn € N and n > 5.

The proofs of the above results follows from the principle of mathematical in-
duction and Theorem 1.27 and Proposition 1.26. For brevity, we omit them here.
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2 Congruences of Fibonacci numbers modulo a
prime

In this section, we give some new congruence relations involving Fibonacci numbers
modulo a prime. The study in this section and some parts of the subsequent sections
are motivated by some similar results obtained by Bicknell-Johnson in [1] and by
Hoggatt and Bicknell-Johnson in [5].

Let p = 5k + 2 be a prime number with k& a non-zero positive integer which is
odd. Notice that in this case, bk + 1 is an even number and so

5k+1| 5k+1
2 o2

We now have the following properties.

Property 2.1.
F5k+2 = 5k —+ 1 (mod 5]9 =+ 2)

with k € N and k odd such that 5k + 2 is prime.

This result is also stated in [5], but we give a different proof of the result below.

Proof. From Theorems 1.17 and 1.25 we have
Skt

2[5k +2 :
AR O Z<5 N )51_ "7 =5k+1 (mod 5k +2)

where we used the fact that (522“112) is divisible by 5k + 2 for [ = 0,1,..., 2E=L,

From Fermat’s Little Theorem, we have
258+ =1 (mod 5k + 2).
We get Fsrio =5k + 1 (mod 5k + 2). O

Property 2.2.
Fs5p41 =1 (mod 5k + 2)

with k € N and k odd such that 5k + 2 is prime.

Proof. From Theorem 1.25 and Property 1.21 we have

5] skt
2k g = 5! = (5k + 1 5 d 5k + 2).
k+1 ;<2l+1> (5k + )Z (mo +2)

We have
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We get from the above
9k +2p = (5k + 1) {51%“1 - 1} (mod 5k + 2).

Since k is an odd positive integer, there exists a positive integer m such that k =
2m + 1. It follows that

5k

— | =5 2.

{ 5 J m +

Notice that 5k + 2 = 10m + 7 is prime, implies that & # 5 and k& # 11 or
equivalently m # 2 and m # 5. Other restrictions on k and m can be given.
From Theorem 1.17 we have

573 = 10m +6 (mod 10m + 7).

. Bk (341
We can rewrite IL;OJ 5l=52—"-1

1 as
%5l - 55m+3 -1
=0 4

Moreover, we have
(5% +1) {5“’%J+1 - 1} = (10m +6) {5"™+3 — 1},
Or,
(10m+6) {55 — 1} = 5> H3 {55m+3 _ 11 = 51940 _10m —6 (mod 10m+7).

We have
(10m + 6) {5°"3 — 1} =5'9"%6 1 1 (mod 10m + 7).

From Fermat’s Little Theorem, we have 519"%6 =1 (mod 10m + 7). Therefore
(10m +6) {5°"*3 —1} =2 (mod 10m +7),

or equivalently
(5k + 1) {5%“1 - 1} =2 (mod 5k +2).

It follows that
258 2R 1 =2 (mod 5k + 2).

Since 2 and 5k + 2 are relatively prime, so
25k+1F5]€+1 =1 (mOd 5k + 2)
From Fermat’s Little Theorem, we have 2°**1 =1 (mod 5k + 2). Therefore

Fs;11 =1 (mod 5k +2).
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Property 2.3.
F5, =5k  (mod 5k + 2)

with k € N and k odd such that 5k + 2 is prime.
Proof. From Theorem 1.25 and Property 1.23 we have

5k—1 5k—1
2 5k 2
Sk—1p  _ 1 . 1
R (21+ 1)5 = Y (5k —20)5' (mod 5k + 2).
=0 =0
Also )
-y 535" — (2k+1)
> (5k —21)5" = : ,

1=0
where we have used the fact that for z # 1 and n € N we have

zn:lxl ~ (n+ (-t — " 4
1=0 (2 —1)2 .

So

5k

kg — 5 (3 % 525 (2k + 1)) (mod 5k + 2).

Moreover since k = 2m + 1, we have

S5k—1

3x5 2 —(2k+1)=3x5""2_ (4m +3).

Since 553 = 10m + 6 (mod 10m + 7), we have
3 x 5°™F3 = 30m 4 18 = 40m + 25 (mod 10m + 7).

Consequently
3x 52 =8m +5 (mod 10m +7),

which implies
3x 52 _ (4m +3)=4m+2 (mod 10m +7),

or equivalently for £ =2m + 1

S5k—1

3x572 —(2k+1)=2k (mod 5k + 2),

252 Fg =2 x 5k (mod 5k + 2).

Since 2 and 5k + 2 are relatively prime, so
25K Fy. =5k (mod 5k + 2).
From Fermat’s Little Theorem, we have 2°%*1 = 1 (mod 5k + 2). Therefore
Fs, =5k (mod 5k + 2).
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Property 2.4. Let 5k + 2 be a prime with k odd and let m be a positive integer
which is greater than 2. Then, we have

m—1
F3m =2 (Sm_l + ng_l_ing_1> (mod 5k + 2)

i=1
Proof. We prove the result by induction.

We know that Fs =8. Or, 2(3+ F) =2(3+1)=2x4=38. So
F6=F3X2=2(3+F2)E2(3+F2) (mod 5k’+2)

m—1
Let us assume that Fy, =2 ( 3™~1+ Y 3™~ 1=1Fy; | (mod 5k+2) with m > 2.

=1
For m a positive integer, we have by Theorem 1.27

F3(my1) = Famys = F3F3pmi1 + FoFsp = 2F3 41 + F3p
=2(F3 + F3pm—1) + F3p = 2F3—1 + 3F5,.

From the assumption above, we get

m—1

FB(m+1) =2F3,-1+2 <3m + Z?)m_ingl) (mod 5k + 2)
=1

=2 <3m + Zsming1> (mod 5k + 2).
=1

Thus the proof is complete by induction.

O

Theorem 2.5. Let 5k + 2 be a prime with k an odd integer and let m be a positive
integer which is greater than 2. Then

m—1
Fsi = 5k <3m1 + Z:smling_l) (mod 5k + 2)

i=1
and

F5mk:+1 = F3—1 (HlOd 5k + 2)

Proof. We prove the theorem by induction.
We have, using Theorem 1.27

Fiox = Fspqsk = FspFsppr + Fsi—1Fsp = Fsp(Fspq1 + For—1)-
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Using Properties 2.1, 2.2 and 2.3 we can see that
Fior = 20k (mod 5k + 2).
Also
1 .
5k (3 + 2312F3i_1> =5k(3+ F5) = 20k = 20k (mod 5k + 2).
i=1
So

1
Fior = Fsxox = 5k (3 + 23“1731-_1) (mod 5k + 2).
i=1

Moreover, we have from Theorem 1.27, Property 2.2 and Property 2.3,

F10k+1 = F5k+5k+1 = F52k+1 + F52k =1+ 25]€2 (mod 5k + 2)

We have
(5k +2)% = 25k? + 20k +4 = 25k* + 10k =0 (mod 5k + 2).
So
25k% = —10k = 2(5k +2) — 10k =4 (mod 5k + 2).
Therefore

F10k+1 EF5 =5 (HlOd 5k+2),

or equivalently
Fsxopt1 = F3xo-1 =5 (mod 5k + 2).

Let us assume that

m—1

Fspi = 5k <3m—1 + Z:s?’l—l—iFg“) (mod 5k + 2)

i=1

and
Fsmk+1 = Fsm—1  (mod 5k + 2).

Then, we have
Fstminyk = Fsmkrsk = FspFsmir1 + Fsp—1F5mk-
Using Property 2.3 and Fsi—1 = 3 (mod 5k + 2), from the assumptions above, we

have

m—1

Fs(m+1)k = 5kFapm_1 + 3 X 5k <3m1 + Zamling_1> (mod 5k + 2).

i=1
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It gives

FS(erl)k =5k <3m + Z?)m_ing_l) (mod 5k + 2).

i=1
Moreover, we have
Fs(mynk+1 = Fsmr+5k+1 = Fskt1Fsmit1 + FsieFsmk-

Using Properties 2.2 and 2.3 and the assumptions above, and since 25k% = 4
(mod 5k + 2), we have

m—1
Fi(mikr1 = Fam1 + 25k> (3’”‘1 + 23*”—1'—1173“) (mod 5k + 2)
=1
m—1 )
= F3p1+4 (3““ + ZsmHng_1> (mod 5k + 2)
=1

= F3m-1 + 2F3, (mod 5k + 2).
Or,
Fym1 +2F3 = F3m_1 + F3m + F3 = Famq1 + F3 = Faqa.
Therefore

Fstmi)k+1 = F3my2  (mod 5k + 2),

or equivalently
Fs(minks1 = F3(my1)—1  (mod 5k + 2).

This completes the proof. O

Corollary 2.6. Let 5k + 2 be a prime with k an odd integer and m be a positive
integer which is greater than 2. Then

m—1
F5mk+2 = F3m—1 + 5k <3m1 + Z3m1iF31'_1) (HlOd 5k + 2),
i=1

m—1

Fsis = 2F3_1 + 5k (3’"—1 + Z:&m—l—iFg“) (mod 5k + 2),

i=1
and

m—1

F5mk+4 = 3F3m—1 + 10k <3m1 + Z3m1iF3i_1> (HlOd 5k + 2)

i=1
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Theorem 2.7. Let 5k+2 be a prime with k an odd positive integer, m be a positive
integer which is greater than 2 and r € N. Then

m—1
Fr(shar) = Frr Fam—1 + 5kFpr 1 <3m—1 + Z3m—1—iF3i1> (mod 5k + 2).
=1

Proof. For m,r two non-zero positive integers, we have by Theorem 1.27

Fm(5k+7") = F5mk+mr == Fm,rFSmk+1 + Fmr—1F5m,k-

From Theorem 2.5, we have for m > 2 and r € N

m—1
Fr(shir) = Frr Fam—1 + 5kFpr 1 (3’”—1 + Z3m—1—iF3i1> (mod 5k + 2).
=1

O
Remark 2.8. In particular, if r = 3, we know that
Fm(5k:+3) =0 (mOd 5k + 2)

This congruence can be deduced from Property 2.4 and Theorem 2.7. Indeed,
using Theorem 2.7, we have

m—1

Fro(sk+3) = FamFam_1 + 5kF3m_1 (3’”‘1 + 237"—1—1’1?3“) (mod 5k + 2)

i=1

i=1

m—1
= Fam Fam—1 + 5kF3m—1 <3M1 + Z3m1iF3i—1>

m—1

— (5k +2)F3m_1 (3’”‘1 + 23’"—1—1’1?3”) (mod 5k + 2)
i=1
m—1

= B3 F3m—1 — 2F3m 1 <3m1 + Z3m1iF3i—1> (mod 5k + 2).

i=1
Using Property 2.4 we get
Fm(5k+3) = F3mF3m—1 — Fgm_1F3m =0 (mod 5k + 2)

Corollary 2.9. Let 5k + 2 be a prime with k an odd positive integer and m,r € N.
Then

Fm(5k+r) =ForF3m_1 — Fror_1F3m, (mod 5k + 2)



Some Properties of Fibonacci Numbers 17

Lemma 2.10. Let 5k + 2 be a prime with k an odd positive integer and r € N.
Then

Fspvr =F, —2F,. 4 (mod 5k + 2)

Proof. We prove this lemma by induction. For r = 1, we have F5gq, = Fspy1 =1
(InOd 5k + 2) and FT — 2Fr_1 = Fl — 2F0 = F1 =1 (HlOd 5k + 2)
Let us assume that Fsiys = Fs —2Fs_1 (mod 5k+2) for s € [[2,r]] with r > 2.
Using the assumption, we have for r > 2
Fsjyry1 = Fspgr + Fspgr—1 (mod 5k + 2)

= Fr — 2Fr,1 + F»,‘,l — 2F»,‘,2 (mod 5k + 2)

=F.+F_1— 2(Fr_1 + FT_Q) (HlOd 5k + 2)

= F.11 — 2F, (mod 5k + 2).

Thus the lemma is proved. O

We can prove Lemma 2.10 as a consequence of Corollary 2.9 by taking m = 1.

Corollary 2.11. Let 5k + 2 be a prime with k an odd positive integer, let m be a
positive integer and r € N. Then

Fm(5k+r) = FmTFSm—i-l - Fmr+1F3m (HlOd 5k + 2)
The above corollary can be deduced from Corollary 2.9.

Lemma 2.12. Let 5k + 2 be a prime with k an odd positive integer and let m be a
positive integer. Then

F5'rnk-+F3mEO (mOd 5](3"‘2)

Proof. For m = 0, we have F5,,; + F5,, = 2Fy =0 =0 (mod 5k + 2).
For m = 1, we have Fs,,; + F5,, = F5r + F5 =5k +2 =0 (mod 5k + 2).
So, it remains to prove that for m > 2, we have Fsx + F3, = 0 (mod 5k + 2).
From Theorem 2.5, we have

m—1

F5mk =5k <3m—1 + Z?)m_l_ing_l) (mod 5k + 2)

=1

m—1
=5k (3’”1 + Z3m1iF3i—1>
i—1

m—1

— (5k +2) <3m—1 + Z3m—1—1’F3i_1> (mod 5k + 2)

=1
m—1 )
=_2 (3’“1 + Zsm“F&_l) (mod 5k + 2).
i=1

From Property 2.4, we have Fyx = —F3,, (mod 5k + 2). O
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We can prove Corollary 2.11 as a consequence of Lemma 2.12.

Remark 2.13. We can observe that

Fix (sk+r) = Fokgr

and
FiyrF3xi41 — Fixrq1 351 = BBy — Fryp 1 F3 = 3F, — 2F, .

By Properties 2.1, 2.2 and 2.3 we have
r=1: Fspqpp = F5p41 =1 (mod 5k + 2)
3F, —2F.4,1 =3F1 —2F, =1=1 (mod 5k +2)
r=2: Fsryr = F5pp0=5k+1 (mod 5k + 2)
3F, —2F,41 =3F, —2F3;=—-1=5k+1 (mod 5k +2)
r=3: Fspir = F5p13 =0 (mod 5k + 2)
3F, —2F,;1 =3F; —2F;,=0=0 (mod 5k +2)
r=4: Fsiyp = F5p44 =5k +1  (mod 5k + 2)
3F, —2F,.41 =3F, —2F; =—-1=5k+1 (mod 5k +2)

So, we have
Fsprr =3F, —2F,y; (mod 5k 4 2)

or equivalently
Fiyshery = FixrF3x141 — Fixrg1F3x1 (mod 5k +2)
with v € [[1,4]].
Thus we have the following.

Property 2.14. Let 5k + 2 be a prime with k an odd positive integer, let m be a
positive integer and r € N. Then

F5k+7« = SFT — 2Fr+1 (mod 5k + 2)

Proof. We have
F5k+0 = F5k = 5k (HlOd 5k + 2)

and
3Fy —2F, = —2=5k (mod 5k + 2).

So, Fs = 3Fy — 2F) (mod 5k + 2).
Moreover, we know that

F5k+1 ESFl—ZFQEl (mod 5k‘—|—2)
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Let us assume that
Fsprs =3F, —2F41  (mod 5k + 2)

for s € [[1,7]]. We have for r € N,

F5k+r+1 = F5k+7' + F5k+r—1 =3k — 2Fr+1 +3F._1 — 2F. (mOd 5k + 2)
E3(FT+FT,1) —Q(Fr+1 +Fr) (mod 5]€+2)
= 3Fr+1 — 2Fr+2 (mod 5k + 2)

Thus the proof is complete by induction. O

Property 2.15. Let 5k + 2 be a prime with k odd and let m be a positive integer
which is greater than 2. Then, we have

m—1
Famp1 =3"+2) 3"'7'Fy;  (mod 5k +2).
=1

Proof. We prove the result by induction.

m—1
We have for m = 2, Fs11 = F3xo11 = Fr = 13 and 3™ + ZZSm_l_ing =
i=1
32+2F3=9+4+2x2=9+4=13. So, Fy = 3% + 2F; = 13 (mod 5k + 2).
Let us assume that for m > 2 the result holds. Using this assumption, we have
for m > 2

F3tmiy+1 = Fsmra = FuF3mi1 + F3F3, = 3F3m41 + 2F3,
m—1
=342 3" TRy + 28y, (mod 5k +2)

i=1
=37 +2% 3" 'Fy; (mod 5k +2).
i=1
Thus the induction hypothesis holds. O

Corollary 2.16. Let 5k + 2 be a prime with k odd and let m be a positive integer
which is greater than 2. Then, we have

m—1

Famio =3"+2 <3m1 + Zsm”ngH) (mod 5k + 2).

i=1

Proof. It stems from the recurrence relation of the Fibonacci sequence which implies
that Fsnyo = Fsp + F3pq1 and Fsgqy = Fsg + Fsp—1 and Properties 2.4 and
2.15. O
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3 Some further congruences of Fibonacci numbers
modulo a prime

In this section we state and prove some more results of the type that were proved
in the previous section. These results generalizes some of the results in the previous
section and in [1] and [5].

Let p = 5k + r with r € [[1,4]] be a prime number with k& a non-zero positive
integer such that k = r +1 (mod 2). Notice that 5k +r £ 1 is an even number and
SO

Sk+rx1| bk+r+£l
2 - 2 ’

We have the following properties.
Property 3.1.
F5k+r555k+27r71 E{ 1 (mod 5k +1r) zf r=1 or r=4,
-1 (mod 5k +7r) if r=2 or r=3,
with r € [[1,4]) k € N and k =7+ 1 (mod 2) such that 5k + r is prime.

This result is also stated in [5], here we give a different proof below.

Proof. From Theorems 1.17 and 1.25 we have

Sktr—1
2 5k +r Sktr—1
S5k+r—1 F, _ A
2 5k+r — l_EO <2l+1>5 =5 2 (l od 5k3+7"),

where we used the fact that (52];;"{) is divisible by bk +r for [ = 0,1, ..., 5k++—3

From Theorem 1.5, we have

25k+r=1 =1 (mod 5k + 7).

Sk+r—1

We get Fspyr =5 2 (mod 5k + 7). The rest of the theorem stems from
Theorem 1.19. O

Corollary 3.2. Let p be a prime number which is not equal to 5. Then, we have

sz{ 1 (modp) if p=1 (mod5) or

p=4 (mod 5),
p—1 (modp) if p=2 (modb) or p=3

(mod 5).

Proof. We can notice that F» =1 =1 (mod 2) and 2 = 2 (mod 5). Moreover, we
can notice that F3 = 2 =2 (mod 3) and 3 = 3 (mod 5). So, Corollary 3.2 is true
for p =2,3.

We can observe that the result of Corollary 3.2 doesn’t work for p = 5 since
Fs=5=0 (mod 5).
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The Euclid division of a prime number p > 5 by 5 allows to write p like 5k + r
with 0 <r < 5and k =r+1 (mod 2). Then, applying Property 3.1, we verify that
the result of Corollary 3.2 is also true for p > 5.

It completes the proof of this corollary. O

Property 3.3.

I _J 0 (mod5k+r) if r=1 or r=4,
SRAT=1 =1 (modbk+7) if r=2 or r=3

with r € [[1,4]] k € N and k = r + 1 (mod 2) such that 5k + r is prime.

Some parts of this result is stated in [1] in a different form. We give an alternate
proof of the result below.

Proof. From Theorem 1.25 and Property 1.22 we have

S5k+r—2 S5k4+r—2
=5 (=5

2 5k+r—1
2T 1 =4 Z < 25+i1 )5l_4(5k+7’1) Z 5' (mod 5k + 7).
=0 =0

It comes that
9kt = (Bk 4 — 1) (5L5“+’2J+1 - 1) (mod 5k + r).
From Theorem 1.5, we have
25K+ = 2 (mod 5k + 7).

So, since 5k +r — 1 is even and since 2 and 5k + r are relatively prime when 5k + r
prime, we obtain

5k+r—1

5 (5[4‘%?72‘]‘*‘1 — 1) (mod 5k + r).

Fsppr1 =

. . =4 —
Since 5k + 7 — 1 is even and so &=L

{5k+r—2J+1: {5k+r—1_1J+1:5k+7‘—1+{_1J+1

is an integer, we can notice that

2 2 2 2 2
5k+r—1 1 Sk+r—1 1 S5k+r—1
= - 1| =" - =t -
2 +{ QJ 2 +{2J 2

where we used the property that |[n+ x| =n+ |z| for all n € N and for all z € R.
It follows that

S5k+r—1

(31) F5k+r71 = D)

(55]##%1 - 1) (mod 5k + 7).
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The case 7 = 2 was done above. We found (see Property 2.2) and we can verify
from the congruence above that

F5k+1 =1 (mod 5k + 2)

5k+r—1

From Theorem 1.19, if r = 1, we have 5~ 2 — = 5% =1 (mod 5k + 1). So, using
(3.1), we deduce that

F5,. =0 (mod 5k +1).

From Theorem 1.19, if r = 3, we have 57— = 55

So, using (3.1), we deduce that

—1=5k+2 (mod 5k+3).

Fspro=—(5k+2)=1 (mod 5k + 3).

Sk+r—1 5k+3

From Theorem 1.19, if r =4, we have 5= 2~ =572 =1 (mod 5k+4). So, using
(3.1), we deduce that

F5k+3 =0 (InOd 5k + 4)

The following two results are easy consequences of Properties 3.1 and 3.3.
Property 3.4.

P _ 1 (modbk+r) if r=1 or r=4,
ShHr=2=11 -2 (mod5k+7) if r=2 or r=3,

withr € [[1,4]) ke N and k =7+ 1 (mod 2) such that 5k + r is prime.
Property 3.5.

F _ [ 1 (modBk+r) if r=1 or r=4,
SRATHL =0 (mod 5k +7) if r=2 or r=3,

withr € [[1,4]] k € N and k=7 + 1 (mod 2) such that 5k + r is prime.
The following is a consequence of Properties 3.1 and 3.5.
Property 3.6.

- _ [ 2 (mod5k+r) if r=1 or r=4,
SEr+2 =1 _1 (mod 5k+r) if r=2 or r=3,

withr € [[1,4]] k € N and k=r+ 1 (mod 2) such that 5k + r is prime.

Some of the stated properties above are given in [1] and [5] also, but the methods
used here are different.
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4 Periods of the Fibonacci sequence modulo a pos-
itive integer

Notice that F; = F =1 (mod m) with m an integer which is greater than 2.

Definition 4.1. The Fibonacci sequence (F),) is periodic modulo a positive integer
m which is greater than 2 (m > 2), if there exists at least a non-zero integer £,
such that

Fite, = Foyp, =1 (mod m).

The number L., is called a period of the Fibonacci sequence (F,) modulo m.

Remark 4.2. For m > 2 we have l,,, > 2. Indeed, {,, cannot be equal to 1 since
F3=2.

From Theorem 1.27 we have
Foro, =Fp Fs+Fy, _1Fy=2F, +Fp, 1 (modm).
Since Fy, + Fy, —1 = Fi44,,, we get
Fore, =2F,, +F;,, 1 =Fy, + Fiie,, = Fp, + Foye,, (mod m).
Therefore we have the following.

Property 4.3.
F,, =0 (mod m).

m

Moreover, from Theorem 1.27 we have
FlJrfm = FngQ + F[m,1F1 = Fgm + Fgm,l = Fzm,1 (mod m)
Since Fi4¢, =1 (mod m), we obtain the following.

Property 4.4.
Fy,—1 =1 (modm).

Besides, using the recurrence relation of the Fibonacci sequence, from Property
4.3 we get

Fy, o+ Fp, 1 =F, =0 (modm).

m

Using Property 4.4 we obtain

Property 4.5.
Fy,_o=m—1 (modm).
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Remark 4.6. From Theorem 1.27 we have for m > 2
F2m = Fm+m = FmFm—i-l + Fm—lFm = Fm(F7n+1 + Fm—1)7
and

Fomi1 = Funi1yem = FnFgo + Fro1Frga
=Fp(Fo + Frg1) + Frnm1 (Fr—1 + Fi)
= F(2F + Fro1) + Fre1(Fm1 + Fyy)
=2F2 +2F, Fp 1+ Fy  =F2+F2,,.

From this we get
Fomya = Fopny1 + Fomp = F2 + Fzﬂrl + Fo(Fng1 + Frn—1),
Fomys = FsFopy1 + FoFomy = 2(Fa + Fr ) + Fon(Frugr + Frn),
and
F2m+4 = F2m+3 + F2m+2 = 3(F3¢ + Fv?z—i—l) + 2Fm(Fm+1 + Fm—l)-

Theorem 4.7. A period of the Fibonacci sequence modulo 5k + 2 with 5k + 2 a
prime and k odd is given by

lspiz = 2(5k + 3).

Proof. Using the recurrence relation of the Fibonacci sequence, and from Properties
2.1, 2.2 and 2.3 we have

Fsii3 = Fsp40+ Fsp1 =5k+2=0 (mod 5k + 2)
Taking m = 5k + 2 prime (k odd) in the formulas of Fo,43 and Fby,14, we have

Fioksr = 2(F2y 10 + F2is) + Fspro(Fsits + Frptn)
=2(5k+ 1) +5k+1 (mod 5k + 2)
= 50k? + 20k + 2 + 5k + 1 = 10k(5k +2) + (5k +2) +1 (mod 5k + 2)
=1+ (10k+1)(5k+2)=1 (mod 5k + 2),

and

Fiopss = 3(Foypo + Fluys) + 2F510(Fseys + Frpan)
=305k +1)> +2(5k +1) (mod 5k + 2)
= 75k% + 30k + 3+ 10k +2 (mod 5k + 2)
= 15k(5k +2) +2(5k +2) +1 (mod 5k + 2)
=1+ (15k+2)(5k+2) =1 (mod 5k + 2).
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Thus
F10k+7 = F10k+8 =1 (mod 5k + 2),

or equivalently
Fiioirts) = Foyores) =1 (mod 5k +2).

We deduce that a period of the Fibonacci sequence modulo 5k + 2 with 5k + 2 a
prime is {5512 = 2(5k + 3). O

We can generalize the above result as follows.

Theorem 4.8. A period of the Fibonacci sequence modulo 5k + r with 5k + r a
prime such that r = 2,3 and k =r+ 1 (mod 2) is given by

Uspir = 205k + 7+ 1).

Proof. Using the formula for Fy,, given in Remark 4.6, taking m = 5k +r + 1, we
have

Fyiitr+1) = Fsktrt1(Fskqr + Fspqri2)-

From Properties 3.1, 3.5 and 3.6, we obtain

o _ [ 3 (modbk+r) if r=1 or r=4
20k4r+) = 0 (mod Sk +7) if r=2 or r=3.

Using the formula for Fb,, 1 given in Remark 4.6, taking m = 5k + r + 1, we have

2 2
F2(5k+r+l)+l = F5k+r+1 + F5k+r+2'
From Properties 3.1 and 3.5, we obtain

m _J 5 (modbk+r) if r=1 or r=4,
20ktr+D+H = 1 (mod Sk+1) if r=2 or r=3.

Using the recurrence relation of the Fibonacci sequence, we have Fhs5pqpi1)42 =
Foskart1) T Fosktrt1)41- SO

I _J 8 (modbk+r) if r=1 or r=4,
20kr+D+2 =1 1 (mod Sk+71) if r=2 or r=3.

Therefore, when 5k + r is prime such that r = 2,3 and k =r 4+ 1 (mod 2), we have
Fysi4rt1) = 0 (mod 5k + 1) and Fospqri1)+1 = Foshtrs1)+2 = 1 (mod 5k + 7).
It results that if 5k + r is prime such that » = 2,3 and £ = r + 1 (mod 2), then
2(5k +r+ 1) is a period of the Fibonacci sequence modulo 5k + 7. O

Theorem 4.9. A period of the Fibonacci sequence modulo 5k + r with 5k + 7 a
prime such that r = 1,4 and k =r 4+ 1 (mod 2) is given by

Coorr = 2(5k +7 — 1).
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Proof. Using the formula for F3,, given in Remark 4.6, taking m = 5k +r — 1, we
have

Fyiitr—1) = Fskrr—1(Fskyr + Fspgr—2).

From Properties 3.1, 3.3 and 3.4, we obtain

r _J 0 (mod5k+r) if r=1 or r=4,
20k+r=1) = -3 (mod 5k+7) if r=2 or r=S3.

Using the formula for Fb,, 41 given in Remark 4.6, taking m = 5k + r — 1, we have

Foysiyr—1)41 = Flrr1 + Fopr
From Properties 3.1 and 3.3, we obtain

P _J 1 (mod5k+r) if r=1 or r=4,
205k+r—1+1 = 9 (mod bk +r) if r=2 or r=3.

Using the recurrence relation of the Fibonacci sequence, we have Fyispyr_1)12 =
Fyskr—1) + Foskqr—1)41- S0

7 _J 1 (mod5k+r) if r=1 or r=4,
20ktr=042 = _1 (mod 5k+r) if r=2 or r=3.

Therefore, when 5k + r is prime such that r = 1,4 and k =r 4+ 1 (mod 2), we have
F2(5k+7'—1) =0 (HlOd 5k + T’) and F2(5k+7'—1)+1 = F2(5k+7'—1)+2 =1 (HlOd 5k + T’).
It results that if 5k + r is prime such that » = 1,4 and £ = r + 1 (mod 2), then
2(5k +r — 1) is a period of the Fibonacci sequence modulo 5k + 7. O

Corollary 4.10. A period of the Fibonacci sequence modulo 5k + r with 5k + r a
prime such that r =1,2,3,4 and k =r + 1 (mod 2) is given by

10k if r=1,
lspyr =< 2(5k+3) if r=2 or r=4,
25k +4) if r=3,

or more compactly
lsprr =10k +3(1+ (=1)") +2(r — 1)(1 — (=1)").
Corollary 4.10 follows from Theorems 4.8 and 4.9.

Corollary 4.11. A period of the Fibonacci sequence modulo p with p a prime which
s not equal to 5 is given by
0 _{ 2p—1) if p=1 (mod5) or (mod 5),
b=

p=4
p=3 (mod5).

2p+1) if p=2 (mod5) or
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Proof. The Euclid division of p by 5 is written p = bk 4+ r with 0 < r < 5 and
k=741 (mod 2). Then, applying Corollary 4.10, it gives:

r=1 p=>5k+1 by ="lspp1 =10k =2p—2=2(p—1)

r=2 p=5k+2 ly =Lsp10 =10k+6=2p+2=2(p+1)
r=3 p=>5k+3 by =Ulspy3 =10k +8=2p+2=2(p+1)
r=4 p=5k+4 L =lya=10k+6=2p—2=2p—1).

Property 4.12. A period of the Fibonacci sequence modulo 5 is 20.

Proof. From Property 1.32, we know that Fs; =0 (mod 5) with k& € N. Using the
recurrence relation of the Fibonacci sequence, we have Fsi11 = Fsr12 (mod 5). So,
it is relevant to search a period as an integer multiple of 5. Trying the first non-zero
values of k, it gives:

k=1 F5k+1 = F6 =3 (HlOd 5) F5k+2 = F7 =3 (I’IlOd 5)
k=2 F5k+1 = F11 =4 (mod 5) F5k+2 = F12 =4 (I’IlOd 5)
k=3 F5k+1 = F16 =2 (mod 5) F5k+2 = F17 =2 (mod 5)
k=4 Fsp41=Fo1 =1 (mod 5) Fspp2 = Fn =1 (mod 5).

Property 4.13. Let k be a positive integer. Then, we have

Fst11 = Fsgp2 =1 (mod 5) if k=0 (mod4),
F5k+1 = F5]€+2 =3 (mod 5) Zf k=1 (mod 4),
Fsi11 = Fspyo =4 (mod 5) if k=2 (mod4),
Fsp11 = Fspro =2 (mod 5) if k=3 (mod4)

Proof. Since F5;, = 0 (mod 5), using the recurrence relation of the Fibonacci se-
quence, we have Fsrio = Frpy1 + Fsi = Fsr41 (mod 5).

If k=0 (mod 4) and k& > 0, then there exists a positive integer m such that
k = 4m. So, if k = 0 (mod 4) and k > 0, since 20 is a period of the Fibonacci
sequence modulo 5 (see Property 4.12), then we have Fsr11 = Fogme1 = F1 = 1
(mod 5).

If k=1 (mod 4) and k > 0, then there exists a positive integer m such that
k = 4m + 1. Using Theorem 1.27, it comes that

F5i41 = Faom+6 = FeFaom+1 + F5Fo0m-
So, if k =1 (mod 4) and k > 0, since Fg = 8 =3 (mod 5), F5 =5 =0 (mod 5)

and since 20 is a period of the Fibonacci sequence modulo 5 (see Property 4.12),
then we have Fs;11 = FgF) =3 (mod 5).
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If £k =2 (mod 4) and k > 0, then there exists a positive integer m such that
k = 4m + 2. Using Theorem 1.27, it comes that

Fspv1 = Fogma11 = F11Fs0m+1 + FioFaom.-

So, if k =2 (mod 4) and k > 0, since Fi; = 89 =4 (mod 5), F1p =55=0 (mod 5)
and since 20 is a period of the Fibonacci sequence modulo 5 (see Property 4.12),
then we have Fs;1 = F11F) =4 (mod 5).

If K =3 (mod 4) and k > 0, then there exists a positive integer m such that
k = 4m + 3. Using Theorem 1.27, it comes that

F5k+1 = F20m+16 = F16F20m+1 + F15F20m'

So, if & = 3 (mod 4) and k& > 0, since Fig = 987 = 2 (mod 5), Fi5 = 610 = 0
(mod 5) and since 20 is a period of the Fibonacci sequence modulo 5 (see Property
4.12), we have

F5k+1 = FlGFl =2 (mod 5)

Property 4.14. Let k be a positive integer. Then, we have

Fsky3 =2 (mod 5) Fsr4a =3 (mod 5) if k=0 (mod 4),
Fski3 =1 (mod 5) Fspia= (mod 5) if k=1 (mod 4),
Fsiy3 =3 (mod 5) Fsprqa =2 (mod 5) if k=2 (mod 4),
F5k+3 =4 (mOd 5) F5k-+4 =1 (mOd 5) Zf k=3 (I'IlOd 4)

Property 4.14 stems from the recurrence relation of the Fibonacci sequence and
Property 4.13.

Corollary 4.15. The minimal period of the Fibonacci sequence modulo 5 is 20.
Corollary 4.15 stems from Euclid division, Properties 4.12, 4.13 and 4.14.

Property 4.16. Let 5k + 1 be a prime with k a non-zero even positive integer.
Then, we have (m € N)
Fsmi =0 (mod 5k + 1),

and
Fspkt1 =1 (mod 5k + 1).

Proof. Let prove the property by induction on the integer m.
We have Fp =0=0 (mod 5k + 1) and F; =1=1 (mod 5k + 1).
Moreover, from Properties 3.1 and 3.3, we can notice that

F5, =0 (mod 5k +1)

and
Fsr41 =1 (mod 5k +1).
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Let assume that for a positive integer m, we have
Fsmr =0 (mod 5k + 1)

and
Fsmp+1 =1 (mod 5k + 1).

Then, using the assumption, Theorem 1.27 and Properties 3.1 and 3.3, we have
Fsm+k = Fsmrtsk = FsmrFsiy1 + Fsme—1F5, =0 (mod 5k + 1)
and
Fsims1yk+1 = Fsmrt145k = Fsmir1Fspr1 + FsmiFsi, =1 (mod 5k + 1).
This completes the proof by induction on the integer m. O

Property 4.17. A period of the Fibonacci sequence modulo 5k + 1 with 5k + 1
prime is 5k.

This is a direct consequence of Property 4.16.

Property 4.18. A period of the Fibonacci sequence modulo 5k + 4 with 5k + 4
prime and k a non-zero odd positive integer is bk + 3.

Proof. From Properties 3.1, 3.3 and 3.5, we have

Fsp43 =0 (mod 5k + 4),

and
F5k+4 = F5k+5 =1 (mod 5k +4)
So
F1+5k+3 = F2+5k+3 =1 (mod 5k + 4)
It results that 5k + 3 is a period of the Fibonacci sequence modulo 5k + 4. O

Corollary 4.19. A period of the Fibonacci sequence modulo p with p a prime which
s not equal to 5 is given by

{ p—1 if p=1 (mod5) or
L, =

p=4 (mod 5),
2(p+1) if p=2 (mod5) or p=3

(mod 5).
Corollary 4.19 stems from Corollary 4.11 and Properties 4.17 and 4.18.

Property 4.20. Let 5k + 1 be a prime with k a non-zero even positive integer.
Then, for all m € [[0, 5]]

(4.1) Fsjm = (—1)™T'F,,  (mod 5k +1).
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Proof. We prove this result by induction on the integer m.
From Properties 3.3 and 3.4, we have

F5, =0 (mod 5k + 1),

and
F5k_1 =1 (rnod 5k + 1)

So, we verify that (4.1) is true when m = 0 and m = 1. Notice that (4.1) is verified
when m = 5k since Fy = 0 = F5; (mod 5k + 1).

Let us assume for an integer m € [0,5k — 1], we have Fsp_; = (—1)"F1F;
(mod 5k + 1) with ¢ = 0,1,...,m. Then, using the recurrence relation of the
Fibonacci sequence, we have (0 < m < 5k — 1),

Fsj—m—1 = Frj—my1 — Fsjem = (=1)"Fpmq — (=1)™ ' F,,  (mod 5k + 1)
= (1) (Fpp1 4+ Fy) = (=1)™Fpyy (mod 5k + 1)
=(-1)""?F,11 (mod 5k + 1)

since (—1)? = 1. It achieves the proof of Property 4.20 by induction on the integer
m. O

Remark 4.21. Property 4.20 implies that we can limit ourself to the integer interval
1, %] (knowing that the case m = 0 is a trivial case) in order to search or to rule
out a value for a possible period of the Fibonacci sequence modulo 5k + 1 with
5k + 1 prime (such that k is a non-zero even positive integer) which is less than
5k. Notice that 5k is not in general the minimal period of the Fibonacci sequence
modulo 5k + 1 with 5k + 1 prime (such that k is a non-zero even positive integer).
Indeed, for instance, if 5k +1 = 101 (and so for k = 20), then it can be shown by
calculating the residue of F,, with m € [1,50] modulo 5k+1 = 101, that the minimal
period is % = 50. Notice that in some cases as for instance k = 56,84, the number
k is the minimal period of the Fibonacci sequence modulo 5k + 1 with 5k + 1 prime.

Theorem 4.22. Let 5k + 1 be a prime with k a non-zero even positive integer. If
k=0 (mod 4), then Fs. =0 (mod 5k + 1).

Proof. If k is a non-zero positive integer such that £k = 0 (mod 4), then the integer

5—; is a non-zero even positive integer. Using Property 4.20 and taking m = %,

have

we

2

Fsi E—F%k (mod 5k+1),

and
2F5 =0 (mod 5k + 1).

Since 2 and 5k + 1 with 5k + 1 prime are relatively prime, we get
Fs. =0 (mod 5k + 1)

2
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Remark 4.23. We can observe that
F5k_1:F5k+1—F5kEl—5I€E3EF4 (mod 5k’+2),
Fsj._o = F5;, — F51,_1 =5k — 3 =5k — Fy (mod 5/€+2),

i Fs—3 = Fs—1 — Fsp_20 =6 —5k=8=Fs (mod 5k + 2),
Fsp—g = Fsi—o — Fsp_3 =5k — 11 =5k — (Fy + Fg) (mod 5k + 2).
Using induction we can show the following two properties.
Property 4.24. Let 5k 4 2 be a prime with k odd. Then, we have
Fsr_2141) = Fo42) (mod 5k +2)
with | a positive integer such that | < |3E=1].
Property 4.25. Let 5k + 2 be a prime with k odd. Then, we have

-1
F5k_21 = bk — ZF2(i+2) (mOd 5k + 2)
i=0
with | > 1 such that | < L%’“J
Remark 4.26. We can notice that
Fspva = Fspys + Fspo = Fopqpa = 5k +1 (IIlOd 5k + 2),

Fspys = Fsppa + Fsrp3 = Fsppa =5k + 1 (mod 5k + 2),

and
F5k+6 = F5k+5 + F5k+4 =10k + 2 =5k (HlOd 5k + 2)

And for 1 > 1 we have
Fspysi4o = FypoFspq1 + Faip1 Fsp = Faiq2 + 5kF341  (mod 5k + 2)
= Fgl + (5k + 1)F31+1 = F3l — F31+1 + (5]{7 + 2)F3l+1 (mod 5k + 2)
= Fgl — F31+1 = —Fgl,1 (Il’lOd 5k + 2)
Furthermore, we have for 1 > 1
Fspqsi41 = Fyip1 Fspp1 + F31Fs = Fyq1 + 5kF3; (mod 5k + 2)
=Fy1 + (5k + 1)F31 =F3_1—F5+ (5k‘ + Q)Fgl (mod 5k + 2)
= F3l—1 — Fgl = 7F31_2 (mod 5k + 2)
Besides, we have forl > 1
Fspqar = F3Fspq + Fy—1Fsp, = F3y + 5kF3 -1 (mod 5k + 2)
= I35+ (5]€ + I)Fgl_l =F5_9—F3_.1+ (5]{3 + 2)F31_1 (HlOd 5k + 2)
=F3_o— Fy_1 = —Fy_3 (mod 5k +2).
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We can state the following property, the proof of which follows from the above
remark and by using induction.

Property 4.27. Fspyp = —F,_3 (mod 5k + 2).

Theorem 4.28. Let bk + 2 be a prime with k an odd positive number and let n a
positive integer. Then, we have

Proof. The proof of the theorem will be done by induction. We have Fy = 0
(mod 5k + 2). Moreover, we know that

Fsr43 =0 (mod 5k + 2).
Let us assume that
(4.2) Fosk+3) =0 (mod 5k + 2).
We have
Flnryk+3) = Faik+3)+5k+3 = Fort3Fniht3)+1 + Fort2En(sk+3)-
Since Fsr43 =0 (mod 5k + 2), using (4.2), we deduce that

F(n+1)(5k+3) =0 (mod 5k + 2)

The following follows very easily from the above theorem.
Corollary 4.29. If 5k + 3|m, then F,,, =0 (mod 5k + 2).

Property 4.30. Let 5k + 2 be a prime with k an odd positive integer. Then, for
all m € [[0, 5k]]

(4.3) Fste = (=)™ E 3 (mod 5k + 2).

Proof. Let us prove Property 4.30 by induction on the integer m.
From Properties 3.1 and 3.3, we have

F5k+2 =-1 (mod 5k + 2),

and
F5k+1 =1 (InOd 5k + 2)

Using the recurrence relation of the Fibonacci sequence, it comes that

Fs5; = —2 (mod 5k + 2),
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and
Fs5;—1 =3 (mod 5k +2).

So, we verify (4.3) is true when m =0 and m = 1.

Notice that (4.3) is verified when m = 5k since Fy = 0 = 0 (mod 5k + 2) and
Fs143 =0 (mod bk + 2).

Let assume for an integer m € [[0,5k — 1]], we have Fy,_; = (—1)"T1F 3
(mod 5k + 2) with ¢ = 0,1,...,m. Then, using the recurrence relation of the
Fibonacci sequence, we have (0 < m < 5k — 1)

Frjmm—1 = Fsj—mi1 — Fspem = (=1)"Fppo — (1) Fis (mod 5k + 2)
= (-1)"(Fpy2 + Fuys) = (-1)™"?F,,.4 (mod 5k + 2)
= (-1)""?F,,14 (mod 5k + 2)

since (—1)2 = 1. It achieves the proof of Property 4.30 by induction on the integer
m. O

Notice that Property 4.30 is also true for m = —2, —1.

Remark 4.31. In general, the number 2(5k + 3) is not the minimal period of
the Fibonacci sequence modulo 5k + 2 with 5k + 2 prime such that k an odd
positive integer. Indeed, if k = 0 (mod 3), then in some cases as for instance
k=9,21,69,111,135,195,219, it can be verified that the numbers 2(5]§+3) and 4(5I;+3)
are periods of the Fibonacci sequence modulo 5k + 2 with 5k + 2 prime.

Theorem 4.32. Let 5k + 2 be a prime number with k an odd positive number. If
k=3 (mod 4), then F# =0 (mod 5k + 2).

Proof. Since 5k 4+ 2 with k£ an odd positive number, is prime, the numbers 5k £+ 3
are non-zero even positive integers. So, the numbers 5k£3 are non-zero positive
integers. Moreover, if k& = 3 (mod 4), then 55 — 3 = 12 = 0 (mod 4). So, the
integer % is even.

5k—3
2

Using Property 4.30 and taking m = , we have

FME—FL;'& (mod 5k+2),

2

or,

Finally,
Faes =0 (mod 5k + 2),

since 2 and 5k + 2 with 5k + 2 prime are relatively prime. O
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Theorem 4.33. Let 5k + 2 be a prime number with k an odd positive integer. If

k = 0 (mod 3) and if the number 205k43) s g period of the Fibonacci sequence

modulo 5k + 2, then the congruence ’
Fsky3 =0 (mod 5k + 2)
is equivalent to the congruence
FM% =0 (mod 5k + 2)
which is equivalent to the congruence
FM =0 (mod 5k + 2).
Moreover, if k=0 (mod 3) and if

FL;S =0 (mod 5k + 2),

the number is a period of the Fibonacci sequence modulo 5k + 2 if and only

if

2(5k+3)
3

Fse = -1 (mod 5k + 2).

3

Proof. If k =0 (mod 3) and k an odd positive integer, then there exists a non-zero
positive integer m such that k = 3m. Notice that m is odd since k is odd. Since
Fs1453 =0 (mod 5k+2) with 5k+2 prime (k positive odd), we have also Fi5,,+3 =0
(mod 15m+2) with 15m + 2 prime (m positive odd). Using Theorem 1.27, we have

Fism+s = Fiom+2+5m+1 = Fsm+1F10m+3 + FsmFlom+2-
Or, from Remark 4.6, we have
Fiomt2 = Fagme1) = Fsmi1(Fsm + Fsmi2) = Fiio — Finy,
and
Fiom+s = Fogma)+1 = Fomy1 + Fomio:

We have also
2 2
F10m+1 = F57n+5m+1 = F5m+1 + F5m'

So

Fismi3 = Fsmi1 (Fopi1 + Fomi2) + FsmFsmi1 (Fsm + Fsmy2)
= Fypi1(Fopi + Fopio + F2 4 Fsn Fipio)

= Fsm11(3F5,, + 3FsmFsmy1 + 2F5,,41)

= Fsmt1(3Fsm Fsmiz + 2F5,,11)-
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So, the congruence Fi5,,+3 =0 (mod 15m + 2) with m an odd positive integer
such that 15m + 2 prime is satisfied if and only if either

Fsm+1 =0 (mod 15m + 2),

or
3F5 Fspmyo = —2F2 .1 (mod 15m + 2).

If F5;41 =0 (mod 15m + 2), then from above, we have necessarily
Fiom+2=0 (mod 15m + 2).

Using the recurrence relation of the Fibonacci sequence, it implies also that Fs,, =
Fspnt2 (mod 15m + 2). Moreover, we have

Fiomys = F2 1o = F2,  (mod 15m + 2).
Or, we have
Fismt2 = Flomt2+45m = FsmFlom+3 + Fsm—1F10m+2-

Since Fsiqo = 5k + 1 = —1 (mod 5k + 2) with 5k + 2 prime (k positive odd) and
so if £ = 3m such that m positive odd,

Fismia =—1 (mod 15m + 2)
with 15m + 2 prime (m positive odd), since
Fiomys = F2,,  (mod 15m + 2)

and
Fiom+2 =0 (mod 15m + 2),
it implies that
FsmFiomas = Fg’m =—1 (mod 15m + 2).

We get
(4.4) F2 +1=0 (mod 15m +2),
and
(Fsm + 1)(F2, — Fsm +1) =0 (mod 15m + 2).

So, either

F5,, +1=0 (mod 15m + 2)
or

F2 —Fs,+1=0 (mod 15m + 2).
If

Fspe1 =0 (mod 15m + 2)
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and if

F5,, +1=0 (mod 15m + 2)
and so

Fs5,, = -1 (mod 15m + 2),
then

F10m+3 =1 (HlOd 15m + 2),

It results that the number 10m + 2 is a period of the Fibonacci sequence modulo
15m + 2 with 15m + 2 prime and m an odd positive integer.

If
F5mi1 =0 (mod 15m + 2)
and if
F2 —Fs,+1=0 (mod 15m +2)
and so
F2 =Fs,—1 (mod 15m +2),
then since

Fiomss = F2,  (mod 15m + 2),
F10m+3 = F5m —1 (mOd 15m + 2)

Notice that in this case, we cannot have
Fs5,, = -1 (mod 15m + 2)

since 3 Z 0 (mod 15m +2) with m an odd positive integer such that 15m + 2 prime
(and so 15m + 2 > 3). Then, let assume absurdly that if

F2 — Fs,+1=0 (mod 15m + 2),

then the number 10m + 2 is a period of the Fibonacci sequence modulo 15m + 2
with 15m + 2 prime and m an odd positive integer. In such a case,

F10m+3 =1 (mod 15m + 2)

which implies that
Fs, =2 (mod 15m + 2).

Since
F2, =Fs, —1 (mod 15m +2),
it gives
4=1 (mod 15m + 2).
But, since 15m + 2 is a prime number such that m is an odd positive integer, we
have 15m + 2 > 4 and so 4 # 1 (mod 15m + 2). So, we reach to a contradiction

meaning that if
F2 —Fs5,+1=0 (mod 15m +2)
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and so if
Fs, -1 (mod 15m + 2),

the number 10m + 2 is not a period of the Fibonacci sequence modulo 15m + 2 with
15m + 2 prime and m an odd positive integer.
Moreover, if
F5+1 =0 (mod 15m + 2)

and reciprocally if the number 10m+2 is a period of the Fibonacci sequence modulo
15m + 2 with 15m + 2 prime and m an odd positive integer, then

F10m+3 =1 (IIlOd 15m + 2)

which implies that
F2 =1 (mod 15m +2).

So, either
F5,, =1 (mod 15m + 2)

or
Fs=—1 (mod 15m + 2).
Since we have (4.4), it remains only one possibility, that is to say
Fsm=-1 (mod 15m + 2).
2(5k+3)
3

= 10m+2 is a period of the Fibonacci sequence, we must have Fig,,4+3 =
F2, =1 (mod 15m + 2) in addition to the condition

Fsmi1 =0 (mod 15m + 2).

If
3FsmFsmio = —2F2, 1 (mod 15m +2),

then from Property 1.3, we can find an integer ¢ such that

Fsp Fsmio = —2¢  (mod 15m + 2),
FZ .1 =3c (mod 15m +2).

So
c= F52m+1 +F5mF5m+2 (mod 15m+2),

or equivalently (Fsmio = Fsmi1 + Fsm and Fiomy1 = F2, .1 + F2,)

c=F2 .1+ Fsmy1 Fsm + F2,  (mod 15m + 2)
= Fiom+1 + Fsmy1 Fsm (mod 15m 4 2).

So, if the number 10m+2 with m an odd positive integer is a period of the Fibonacci
sequence modulo 15m + 2 with 15m + 2 prime, we should have

Fiom+2 =0 (mod 15m + 2)
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and
F10m+1 = F10m+3 =1 (mod 15m + 2)
Since
Fioms2 = F52m+2 - FZ,
and

c= F10m+1 + F57n+1F57n (mOd 15m + 2)7

it implies that
FZ, =FZ2, ., (mod15m +2)

and
c=14 F5,F5m11  (mod 15m + 2).
So, either
F5m = F5m+2 (HlOd 15m + 2)

or

F5m = _F5m+2 (HlOd 15m + 2)
If

F5m = F5m+2 (mod 15m + 2),
then

F511 =0 (mod 15m +2)

and

c=1=0 (mod 15m + 2)
where we used the fact that
3c=F2,., (mod 15m+2)

and (3,15m+2) = 1 with 15m + 2 prime. But, 1 # 0 (mod 15m +2). So, we reach
a contradiction meaning that this case is not possible. Otherwise, if

Fy,, = —F542  (mod 156m + 2),
then using the recurrence relation of the Fibonacci sequence, we must have
Fspy1 = —2F5, (mod 15m + 2)

and so
c=1-2F2, =3F2 (mod 15m + 2)

where we used the fact that
c=F2 1+ F5pFsmye  (mod 15m + 2).

It implies that
5F2 =1 (mod 15m +2)
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and using Theorem 1.5, it gives
F2 =5""=6m+1 (mod 15m + 2)

since 519"+ =1 = 30m + 5 (mod 15m + 2) which implies that 5™ = 6m + 1
(mod 15m + 2) (reccall that 15m + 2 is prime and so (5,15m + 2) = 1). Since

F5m+1 = _2F5m (mod 15m + 2),

F2 .1 =3c (mod 15m +2)

and
c=3F2, (mod 15m + 2),

it results that
FZ . 1 =AF2, =3c=9F, (mod 15m + 2)

and so 4(6m + 1) = 9(6m + 1) (mod 15m + 2). Since 4(6m + 1) = 24m + 4 =
9m + 2 (mod 15m + 2), it implies that 45m + 7 =0 (mod 15m +2) and so 1 =0
(mod 15m + 2) which is not possible since 1 # 0 (mod 15m + 2). So, we obtain
again a contradiction meaning that this latter case is not also possible.

Therefore, when 5k + 2 = 15m + 2 is prime with £ = 3m and m an odd positive
integer, if 10m + 2 is a period of the Fibonacci sequence modulo 15m + 2 with
15m + 2 prime, then

Fi5mi3 =0 (mod 15m + 2)

if and only if
Fsmi1 =0 (mod 15m + 2).

Since
Fismis = Fspp3 =0 (mod 5k + 2)

is true when 5k 4+ 2 is prime, we deduce that

Fsers =0 (mod 5k + 2)

3

is also true when k = 0 (mod 3) and 5k + 2 prime.
Thus, if 10m + 2 is a period of the Fibonacci sequence modulo 15m + 2 with
15m + 2 prime, then we have

Fi5m+3 =0 (mod 15m + 2)
if and only if
F541 =0 (mod 15m + 2)

if and only if
5 = Fsmge (HlOd 15m + 2)

Besides,
Fspmi1 =0 (mod 15m + 2)
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implies that
F10m+2 =0 (mod 15m + 2)

Reciprocally, if
Fiom+2 =0 (mod 15m + 2),

then
FZ2, =FZ, ., (mod15m +2).
So, either
F5m = F5m,+2 (HlOd 15m + 2)
or
Fs5,, = —F5,42  (mod 15m + 2).
If
Fs,, = —F542  (mod 156m + 2),
then
F5m+1 = _2F5m (II’lOd 15m + 2)
and since

Fs5i1 =0 (mod 15m + 2),

using the fact that (2, 15m+2) = 1 with 15m +2 prime such that m an odd positive
integer (15m + 2 > 2),
F5,, =0 (mod 15m + 2).

But, then, if
Fiom42 =0 (mod 15m + 2),
we have
Fism+2 = Flom+sFsm =0 (mod 15m + 2).
Or,

F15m+2 =-1 (mod 15m + 2)

It leads to a contradiction meaning that
F5m = _F5m+2 (mod 15m + 2)

is not possible. So, if
Fiom4+2 =0 (mod 15m + 2),

there is only one possibility, that is to say
Fs,, = Fspq2  (mod 15m + 2)
which implies the congruence

F5my1 =0 (mod 15m + 2)
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and so which translates the congruence
Fl5m+2 =-1 (mod 15m + 2)

into the congruence
F3 =-1 (mod 15m +2)

which has at least one solution. So, if 10m + 2 is a period of the Fibonacci sequence
modulo 15m + 2 with 15m + 2 prime, then we have

Fism+s =0 (mod 15m + 2)

if and only if
Fspp1 =0 (mod 15m + 2)

if and only if
Fs, = Fspny2  (mod 15m + 2).

if and only if
F10m+2 =0 (mod 15m + 2)

Since 10m+2 = 2(5m+1) = w with k& = 3m and m an odd positive integer,
from above, we conclude that the number M

sequence modulo 5k + 2 if and only if

is a period of the Fibonacci

Fse = —1 (mod 5/€+2)

Kl
O

Property 4.34. Let 5k + 3 be a prime with k an even positive integer. Then, for
all m € [[0, 5k]]

(4.5) Fsjom = (=1)"F44 (mod 5k + 3).

Proof. Let us prove Property 4.34 by induction on the integer m.
From Properties 3.1 and 3.3, we have

F5k+3 =-1 (mOd 5k + 3),

and
F5k+2 =1 (IIlOd 5k + 3)

Using the recurrence relation of the Fibonacci sequence, it comes that
F5k+1 = -2 (mod 5k + 3),

Fs;, =3 (mod 5k + 3),

and
Fs;—1 = -5 (mod 5k + 3).
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So, we verify (4.5) is true when m = 0 and m = 1.

Notice that (4.5) is verified when m = 5k since Fy = 0 = 0 (mod 5k + 3) and
F5k+4 =0 (mod 5k + 3)

Let us assume for an integer m € [[0,5k — 1]], we have Frp_; = (—1)'F; 44
(mod 5k + 3) with ¢ = 0,1,...,m. Then, using the recurrence relation of the
Fibonacci sequence, we have (0 < m < 5k — 1)

Fspm—1 = Fspmmi1 — Fspom = (1) ' Fpis — (=1)"Fpyq  (mod 5k + 3)
= (D)"Y Fpis+ Frya) = (=D*(=1)™'F,,5 (mod 5k + 3)
=(-1)""F,.5 (mod 5k + 3)

since (—1)2? = 1. It achieves the proof of Property 4.34 by induction on the integer
m. O

Notice that Property 4.34 is also true for m = -3, —2, —1.

Remark 4.35. It can be noticed that for k =0, 5k + 3 = 3 is prime and it can be
verified that 2(5k +4) = 8 for k = 0 is the minimal period of the Fibonacci sequence
modulo 3. Nevertheless, in general, the number 2(5k 4+ 4) is not the minimal period
of the Fibonacci sequence modulo 5k + 3 with bk + 3 prime such that k an even
positive integer. Indeed, if k = 1 (mod 3) and k an even positive integer, then
in some cases as for instance k=22,52,70,112,1/8,244, it can be verified that the
numbers 2(51§+4) and 4(5§+4) are periods of the Fibonacci sequence modulo bk + 3

with b5k + 3 prime.

Theorem 4.36. Let 5k + 3 be a prime number with k a non-zero even positive

number. If k =2 (mod 4), then

Fsiia =0 (mod 5k + 3)

2

Proof. Since 5k 4+ 3 with k a non-zero even positive number, is prime, the numbers
5k 4+ 4 are non-zero even positive integers. So, the numbers % are non-zero
positive integers. Moreover, if k = 2 (mod 4), then 5k — 4 = 2 (mod 4). So, the
integer MT*‘L is odd.

Using Property 4.34 and taking m = 5’“7_4, it gives
Foirs = —Forea (mod 5k + 3),
or,
2Fsi0a =0 (mod 5k + 3),
and finally,

Fars =0 (mod 5k + 3),

since 2 and 5k + 3 with 5k 4 3 prime are relatively prime. O
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Theorem 4.37. Let 5k + 3 be a prime number with k an even positive integer. If

k=1 (mod 3) and if 206544 s g period of the Fibonacci sequence modulo 5k + 3,

3
the congruence
F5k+4 =0 (mod 5k + 3)

18 equivalent to the congruence

Foera =0 (mod 5k + 3)
which is equivalent to the congruence

Fw =0 (mod 5k + 3)
Moreover, if k=1 (mod 3) and if

Foeea =0 (mod 5k + 3),

2(5k+4)
3

then the number is a period of the Fibonacci sequence modulo 5k + 3 if and

only if
Faen = —1 (mod 5k + 3).

Proof. If k =1 (mod 3) and k an even positive integer, then there exists a non-zero
positive integer m such that k = 3m+ 1. Notice that m is odd since k is even. Since

Fs144 =0 (mod 5k + 3)
with 5k + 3 prime (k positive even), we have also
Fi5mi9 =0 (mod 15m + 8)
with 15m + 8 prime (m positive odd). Using Theorem 1.27, we have

Fism+9 = F36m+3) = Fasm+3)+5m+3 = Fsm+3F2(5m+3)+1 T Fsm+2F2(5m+3)
= Fsm+3F10m+7 + Fsm+2F10m+6-

Or, from Remark 4.6, we have

Fiom+6 = Fosm+3) = Fsm+3(Fsmaa + Fsma2) = Fa iy — For i,
and
Fiom+7 = Famaa)+1 = Famas + Faria-

We have also

2 2
From+5 = Fsm+to+sm+3 = Fipqs + Fopnia-
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So
Fismyo = F5m+3(F5m+3 + F5m+4) + FsmyoFsmi3(Fsmqa + Fsma2)
(F2 i+ Fopis +F2 o+ FmiaFsmya)
(3F2 1o+ 3Fs5mi2Fsmis + 2F5m+3)
= F5m+3(3F5miaFsmaa + 2F2, ).

= Fsm+3

= F5mq43

So, the congruence
F15m+9 =0 (mod 15m + 8)

with m an odd positive integer such that 15m + 8 prime is satisfied if and only if
either
F5m13 =0 (mod 15m + 8),

or
3FsmioFsmia = —2F2, .5 (mod 15m + 8).

If
Fsmi3=0 (mod 15m + 8),

then from above, we have necessarily
Fiom+6 =0 (mod 15m + 8).
Using the recurrence relation of the Fibonacci sequence, it implies also that
Fsmi2 = Fsmeqa  (mod 15m 4+ 8).
Moreover, we have
Fiomir = F2, 4 =F2, .o (mod 15m + 8).
Or we have,
Fism+s = Fiom+6+sm+2 = Fsmt2F10m+7 + Fsm+1F10m+6-

Since
F5k+3E5]€+2E—]. (mod 5]€+3)

with 5k + 3 prime (k positive even) and so if k = 3m + 1 such that m positive odd,
Fismis =—1 (mod 15m + 8)
with 15m + 8 prime (m positive odd), since

Fiom+7 = F,p  (mod 15m +8)
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and
Fiom+6 =0 (mod 15m + 8),

it implies that
Fymi2Fiomi7 = Fypyo =—1 (mod 15m + 8).

It comes that
F? .,+1=0 (mod 15m +8),

or,
(Fsm+2 + 1)(F52m+2 — Fsmi2+1)=0 (mod 15m + 8).

So, either

Fsmi2+1=0 (mod 15m + 8),
or

F52m+2 — Fsmi2+1=0 (mod 15m + 8).
If
Fs5,43=0 (mod 15m + 8)

and if

Fsmi2+1=0 (mod 15m + 8)
and so

Fsmi2=-1 (mod 15m + 8),

then

Figmi7 =1 (mod 15m + 8).

It results that the number 10m + 6 is a period of the Fibonacci sequence modulo
15m + 8 with 15m + 8 prime and m an odd positive integer.

If
Fspy3 =0 (mod 15m + 8)
and if
F52m+2 - F5m+2 +1=0 (HlOd 15m + 8)
and so
Fs2m+2 = Fsmio — 1 (mod 15m + 8),
then since

Fiomir = F2,, 1o (mod 15m + 8),
Fiom+7 = Fsma2 — 1 (mod 15m + 8).

Notice that in this case, we cannot have

Fsmia=—1 (mod 15m + 8)
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since 3 #Z 0 (mod 15m + 8) with m an odd positive integer such that 15m + 8 prime
(and so 15m + 8 > 3). Then, let us assume absurdly that if

F52m+2 — Fsmi2+1=0 (mod 15m + 8),

then the number 10m + 6 is a period of the Fibonacci sequence modulo 15m + 8
with 15m + 8 prime and m an odd positive integer. In such a case,

Fiom+7 =1 (mod 15m + 8)
which implies that
F57n+2 =2 (mOd 15m + 8)

Since
B2 0=Fspio—1 (mod 15m +8),

it gives 4 = 1 (mod 15m + 8). But, since 15m + 8 is a prime number such that m
is an odd positive integer, we have 15m + 8 > 4 and so 4 Z 1 (mod 15m + 8). So,
we reach to a contradiction meaning that if

F52m+2 — F5mi2+1=0 (mod 15m + 8)
and so if
Fypmyo # -1 (mod 15m + 8),

the number 10m + 6 is not a period of the Fibonacci sequence modulo 15m + 8 with
15m + 8 prime and m an odd positive integer.
Moreover, if
Fsmi3 =0 (mod 15m + 8)

and reciprocally if the number 10m+-6 is a period of the Fibonacci sequence modulo
15m + 8 with 15m + 8 prime and m an odd positive integer, then

Fiom+7 =1 (mod 15m + 8)

which implies that
FZ. ;=1 (mod 15m +8).

So, either
Fsmi2 =1 (mod 15m + 8)

or
F5m+2 =-1 (mod 15m + 8)

Since we have also
F? .,=-1 (mod 15m +8)

(see above), it remains only one possibility, that is to say

Fspmi2 =—1 (mod 15m + 8).
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M = 10m + 6 is a period of the Fibonacci sequence, we must have
F10m+7 = F527n+2 =1 (InOd 15m + 8)
in addition to the condition

Fsmi3 =0 (mod 15m + 8).

If 3F5mi2F5mya = —2F52m+3 (mod 15m + 8), then from Property 1.3, we can
find an integer ¢ such that

F5m+2F5m+4 = —2c (HlOd 15m + 8),
FZ2, .3=3c (mod 15m + 8)

So
(4.6) c=F2, s+ FsmioFsmia  (mod 15m +8),
or equivalently (Fsyqa = Fsimis + Fsmio and Fiomys = F2, 15+ F2,10)

c=F2 i3+ FsmisFsmao + Fon  (mod 15m + 8)
(47) = Flom+s + Fsm+3Fsm2 (mod 15m + 8)

So, if the number 10m+6 with m an odd positive integer is a period of the Fibonacci
sequence modulo 15m + 8 with 15m + 8 prime, we should have

F10m+6 =0 (HlOd 15m + 8)
and
F10m+5 = F10m+7 =1 (mod 15m + 8)

Since
Fiom+6 = Fopia = Fomo
and from the relations Fig;m+6 =0 (mod 15m + 8) and Figmie = F52m+4 - F52m+2,

we have
F52m+2 = F52m+4 (mOd 15m + 8)

and
¢c=14 Fsmi2Fsm4s  (mod 15m + 8).
So, either
F5m+2 = F5m+4 (mod 15m + 8)
or
F57n+2 = _F5m+4 (HlOd 15m + 8)
If

Fspmi2 = Fspia  (mod 15m + 8),
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then
Fsmi3 =0 (mod 15m + 8)

and
c=1=0 (mod 15m + 8)

where we used the fact that
3c=F2,. 5 (mod 15m +8)

and (3,15m +8) = 1 with 15m + 8 prime. But, 1 # 0 (mod 15m +8). So, we reach
a contradiction meaning that this case is not possible. Otherwise, if

F5m+2 = _F5m+4 (mod 15m + 8),
then using the recurrence relation of the Fibonacci sequence, we must have
F5m+3 = *2F5m+2 (HlOd 15m + 8)

and so
c=1-2F2 ., =3F2 ., (mod 15m +8)

where we used (4.6). It implies that
5F2,.»=1 (mod 15m + 8)
and using Theorem 1.5, it gives
F2 .., =5"""0 =9m +5 (mod 15m + 8)

since
519m+T =1 = 45m + 25 (mod 15m + 8)
which implies that 51°™+6 = 9m + 5 (mod 15m + 8) (reccall that 15m + 8 is prime
and so (5,15m + 8) = 1). Since
F5m+3 = *2F5m+2 (I’l’lOd 15m + 8),

F2. .3=3c (mod 15m +8)

and
c=3F2, ., (mod 15m +8),

it results that

B2 s =AFZ ., =3c=9F2 ., (mod 15m +8)

)

and so 4(9m 4+ 5) = 9(9m + 5) (mod 15m + 8). Since 4(9m + 5) = 36m + 20 =
6m + 4 (mod 15m + 8), it implies that 75m 4+ 41 =0 (mod 15m + 8) and so 1 =0
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(mod 15m + 8) which is not possible since 1 # 0 (mod 15m + 2). So, we obtain
again a contradiction meaning that this latter case is not also possible.

Therefore, when 5k + 3 = 15m + 8 is prime with £ = 3m 4+ 1 and m an odd
positive integer, if 10m + 6 is a period of the Fibonacci sequence modulo 15m + 8
with 15m + 8 prime,

Fismi9 =0 (mod 15m + 8)

if and only if
Fspmy3 =0 (mod 15m + 8).

Since
Fismi9 = F5144 =0 (mod 5k + 3)

is true when 5k 4 3 is prime, we deduce that
Foeea =0 (mod 5k + 3)

is also true when k =1 (mod 3) and 5k + 3 prime.
Thus, if 10m + 6 is a period of the Fibonacci sequence modulo 15m + 8 with
15m + 8 prime, then we have

Fismi9 =0 (mod 15m + 8)
if and only if
F543=0 (mod 15m + 8)

if and only if
Fspio = Fsmta (HlOd 15m + 8)
Besides,
Fsi3=0 (mod 15m + 8)

implies that
Fiom+6 =0 (mod 15m + 8).

Reciprocally, if
Fiom+6 =0 (mod 15m + 8),

then
Fpys = Fopiy  (mod 15m + 8).
So, either
Fsmt2 = Fsppa  (mod 15m + 8)
or
F5m+2 = _F5m+4 (mod 15m + 8)
If

Fsmy2 = —Fsmpa (mod 15m + 8),
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then
F5m+3 = *2F5m+2 (HlOd 15m + 8)

and since
Fs5i3=0 (mod 15m + 8),

using the fact that (2, 15m+8) = 1 with 15m + 8 prime such that m an odd positive
integer (15m + 8 > 2),

Fsi2 =0 (mod 15m + 8).

But, then, if
F10m+6 =0 (mod 15m + 8),
we have
Fismis = Flom+7F5my2 =0 (mod 15m + 8).
Or,

Fismis = —1 (mod 15m + 8).
It leads to a contradiction meaning that
Fspio = —Fspa  (mod 15m + 8)

is not possible. So, if
Fiom+6 =0 (mod 15m + 8),

there is only one possibility, that is to say
Fspmio = Fsmea  (mod 15m + 8)
which implies the congruence
Fsmy3 =0 (mod 15m + 8)
and so which translates the congruence
Fismys = —1 (mod 15m + 8)

into the congruence
F?. ., =-1 (mod 15m +8)

which has at least one solution. So, if 10m + 6 is a period of the Fibonacci sequence
modulo 15m + 8 with 15m + 8 prime, then we have

F15m+9 =0 (HlOd 15m + 8)

if and only if
F5,,13=0 (mod 15m + 8)
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if and only if
F57n+2 = F57n+4 (mOd 15m + 8)
if and only if
Fiom+6 =0 (mod 15m + 8).
2(5k+4)

Since 10m + 6 = 2(5m + 3) = =25~ with &k = 3m + 1 and m an odd posi-

3
tive integer, from above, we conclude that the number % is a period of the

Fibonacci sequence modulo 5k + 3 if and only if F% = —1 (mod 5k + 3).
O

Property 4.38. Let 5k + 4 be a prime with k an odd positive integer. Then, for
all m € [[0, 5k]]

(4.8) Fsjom = (—=1)"F43 (mod 5k +4).
Proof. From Properties 3.3 and 3.4, we have
Fs43 =0 (mod 5k + 4),

and
F5k+2 =1 (mod 5k + 4)

Then, using the recurrence relation of the Fibonacci sequence, it comes that
Fs;11 = -1 (mod 5k + 4),

F5, =2 (mod 5k 4+ 4),
and

F5k_1 =-3 (mod 5k +4)

So, we verify (4.8) is true when m =0 and m = 1.

Notice that (4.8) is verified when m = 5k since Fy = 0 = 0 (mod 5k + 4) and
F5k+3 =0 (mod 5k + 4)

Let assume for an integer m € [[0,5k — 1]], we have Fsp_; = (—1)'F; 3
(mod 5k + 4) with ¢ = 0,1,...,m. Then, using the recurrence relation of the
Fibonacci sequence, we have (0 < m < 5k — 1),

Frjmm—1 = Fsj—ms1 — Fypem = (=1)" ' Fpyo — (=1)"Fpps  (mod 5k + 4)
= (-1)"" Y Fpyo+ Fnys) = (=1)" " Fa  (mod 5k + 4)
=(-1)*(-1)""'Fpa=(-1)""F,,4 (mod 5k 4 4)

since (—1)? = 1. It achieves the proof of Property 4.38 by induction on the integer
m. O

Notice that Property 4.38 is also true for m = —2, —1.
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Remark 4.39. Property 4.38 implies that we can limit ourself to the integer interval
1, L;'?’] (knowing that the case m = 0 is a trivial case) in order to search or to rule
out a value for a possible period of the Fibonacci sequence modulo 5k +4 with 5k +4
prime (such that k is an odd positive integer) which is less than 5k + 3. Notice that
5k 4 3 is not in general the minimal period of the Fibonacci sequence modulo 5k + 4
with 5k + 4 prime (such that k is an odd positive integer). Indeed, for instance, if
5k +4 =29 (and so for k =5), then it can be shown by calculating the residue of
F,, with m € [1,14] modulo 5k + 4 = 29, that the minimal period is 53 = 14.

Theorem 4.40. Let 5k + 4 be a prime number with k an odd positive number. If
k=1 (mod 4), then
F5k2+3 =0 (mod b5k + 4).

Proof. Since 5k + 4 with k an odd positive number, is prime, the numbers 5k + 3
are non-zero even positive integers. So, the numbers % are non-zero positive
integers. Moreover, if K = 1 (mod 4), then 5k — 3 = 2 (mod 4). So, the integer
5k—3 :
27> is odd.

5k—3

Using Property 4.38 and taking m = =55=, it gives

Fsiys = — # (HlOd 5k + 2),

2

or,

2Fsis =0 (mod 5k + 2),

finally,
FM% =0 (mod 5k + 2)

since 2 and 5k + 4 with 5k 4 4 prime are relatively prime. O

Theorem 4.41. Let 5k + 1 be a prime with k a non-zero positive even integer. If
k=0 (mod 3) and if % is a period of the Fibonacci sequence modulo 5k + 1, then
the congruence

F5, =0 (mod 5k +1)

is equivalent to the congruence

Fsi

3

0 (mod 5k +1)
which is equivalent to the congruence

Fioe =0 (mod 5k + ].)

Moreover, if k =0 (mod 3) and if Fa =0 (mod 5k + 1), then the number 3% is
a period of the Fibonacci sequence modulo 5k + 1 if and only if

Fsexs =1 (InOd 5k + 1).

3
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Proof. If k = 0 (mod 3) and k a non-zero positive even integer, then there exists
a non-zero positive integer m such that £k = 3m. Notice that m is even since k is
even. Since F5p =0 (mod 5k + 1) with 5k + 1 prime (k positive even), we have also
Fism =0 (mod 15m 4 1) with 15m + 1 prime (m positive even). Using Theorem
1.27, we have

Fism = Flomtsm = FsmFlom+1 + Fsm—1F1om,

Fiom—1= Fsm_145m = Fo, + F2,_1.
From Remark 4.6, we have
Fiom = Foxsm = Fsm (Fsmy1 + Fom—1) = F52m+1 - F52m_1,
F10m+1 = F2><5m+1 = F52m+1 + F52m'

So

Fism = Fsm(Fopyy + F5) + Fsme1Fsm (Fsmi1 + Fym—1)
= Fsm(Fo 1+ Fop 4 Fsm—1Fsmy1 + Fop_1)

= Fyn(3F2,_1 + 3Fsm—1Fsm + 2F2))

= F5m(3Fsm—1F5m+1 + 2F52m,)'

So, the congruence Fis,;, = 0 (mod 15m + 1) with m an even positive integer
such that 15m + 1 prime is satisfied if and only if either

Fs5,, =0 (mod 15m + 1)

or
3F5m_1Fsmy1 = —2F2, (mod 15m + 1).

If F5,, =0 (mod 15m + 1), then from above, we have necessarily
Fiom =0 (mod 15m + 1).

Using the recurrence relation of the Fibonacci sequence, it implies also that Fy,, 11 =
Fs,—1 (mod 15m + 1). Moreover, we have

F10m+1 = F52m+1 = F52m—1 (IIlOd 15m + 1)
Or, using Theorem 1.27, we have
Fismt1 = Fsmt1om+1 = From+1Fsmy1 + FromEsm.

Since Fspy1 =1 (mod 5k + 1) with 5k + 1 prime (k non-zero positive even) and so
if k = 3m such that m non-zero positive even,

F15m+1 =1 (Il’lOd 15m + 1)
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with 15m + 1 prime (m non-zero positive even), since
Fiomi1 = F2,.1  (mod 15m + 1)

and
Fiom =0 (mod 15m + 1)

it implies that

Fiomy1Fsmi1 = Fpy =1 (mod 15m + 1).

We get
(4.9) F53m+1 —1=0 (mod 15m+1)
and
(Fsm+1 — 1)(F52m+1 + Fspme1+1) =0 (mod 15m + 1).

So, either

Fsmi1—1=0 (mod 15m + 1)
or

F52m+1 + Fsmi1+1=0 (mod 15m + 1).
If
Fs5,, =0 (mod 15m + 1)

and if

Fsi1—1=0 (mod 15m + 1)
and so

Fspp1 =1 (mod 15m + 1),

then

FlOerl =1 (mod 15m + 1)

It results that the number 10m is a period of the Fibonacci sequence modulo 15m+1
with 15m + 1 prime and m a non-zero positive even integer. If

Fs5,, =0 (mod 15m + 1)

and if
F2 i+ Fsmi1+1=0 (mod 15m +1)
and so
F52m+1 =—Fsmi1—1 (mod 16m +1)
then since

Fiomy1 = FZ, 41 (mod 15m + 1)
= —Fsme1— 1 (mod 15m + 1).
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Notice that in this case, we cannot have
Fsmi1 =1 (mod 156m +1)

since 3 Z 0 (mod 15m+2) with m a non-zero positive even integer such that 15m-+1
prime (and so 15m + 1 > 3). Then, let us assume absurdly that if

FZ i1+ Fsmp1+1=0 (mod 15m +1)

then the number 10m is a period of the Fibonacci sequence modulo 15m + 1 with
15m + 1 prime and m a non-zero positive even integer. In such a case,

Fiom+1 =1 (mod 156m + 1)
which implies that
Fsm41 =—-2 (mod 15m +1).

Since
FZ 1 =—Fspi1—1 (mod 15m +1)
it gives
4=1 (mod 15m+1).
But, since 15m+1 is a prime number such that m is a non-zero positive even integer,
we have 15m +1 > 4 and so 4 # 1 (mod 15m + 1). So, we reach a contradiction

meaning that if
F52m+1 + F5m41+1=0 (mod 15m + 1)

and so if
F5m+1 ;_é 1 (mod 15m + 1)

the number 10m is not a period of the Fibonacci sequence modulo 15m + 1 with
15m + 1 prime and m a non-zero positive even integer. Moreover, if

Fs5,, =0 (mod 15m + 1)

and reciprocally if the number 10m is a period of the Fibonacci sequence modulo
15m 4 1 with 15m + 1 prime and m a non-zero positive even integer, then

F10m+1 =1 (Il’lOd 15m + 1)

which implies that
FZ2. ., =1 (mod 15m + 1).

So, either
Fsmi1 =1 (mod 156m+1)

or
F5m+1 =-1 (mod 15m + 1)
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Since we have (4.9), it remains only one possibility, that is to say

Fspi1 =1 (mod 15m+ 1)
% = 10m is a period of the Fibonacci sequence modulo 15m + 1, we must have
Fiom+1 = F2,41 =1 (mod 15m + 1) in addition to the condition

Fs5,, =0 (mod 15m + 1).

If
3F5m 1 F5mi1 = —2F2,  (mod 15m + 2)

then from Property 1.3, we can find an integer ¢ such that

Fsp1Fsmy1 = —2c (mod 15m + 1),
F2 =3¢ (mod 15m + 1),

or equivalently (Fs,41 = Fsn + Fsm—1 and Figm—1 = F2,, + F2,_,)

c=F2, + Fspn1Fs5m1  (mod 15m 4 1)
= F, + Fsm1Fsm + F2,,_,
EF10m71 +F5m,1F5m (mod 15m+1)

So, if the number 10m with m a non-zero positive even integer is a period of the
Fibonacci sequence modulo 15m + 1 with 15m + 1 prime, we should have

Fiom =0 (mod 15m + 1)

and
Fiom—1 = Fiomy1 =1 (mod 15m + 1).
Since
Fl()m = F52m+1 - FE)mel
and

Cc = FlOm—l + F5m_1F5m (HlOd 15m + 1)

it implies that
F52m+1 = F52m_1 (mod 15m + 1)

and
c=14 Fs5p—1F5, (mod 15m + 1).
So, either
F5m+1 = F5m—l (HlOd 15m + 1)
or

F5m+1 = _F5m—1 (Il’lOd 15m + 1)
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If
F5m+1 = F5m—1 (HlOd 15m + 1)
then
Fs5,, =0 (mod 15m + 1)
and

¢c=1=0 (mod 15m+1)
where we used the fact that

3c=F2, (mod 15m 4+ 1)

and (3,15m+ 1) = 1 with 15m + 1 prime. But, 1 # 0 (mod 15m + 1). So, we reach
a contradiction meaning that this case is not possible. Otherwise, if

Fs511 = —F5—1  (mod 15m + 1)
then using the recurrence relation of the Fibonacci sequence, we must have
Fsm = —2F5,—1  (mod 15m + 1)

and so
c=1-2F2 | =3F2 | (mod 15m+1)

where we used the fact that
c=F2 + Fspn1Fsmi1  (mod 15m 4+ 1).

It implies that
5F2. =1 (mod 15m + 1)

and using Theorem 1.5, it gives
F2 ,=5"""1=12m+1 (mod 15m +1)

since 5™ =1 = 60m + 5 (mod 15m + 1) which implies that 5%"~1 = 12m + 1
(mod 15m + 1) (recall that 15m + 1 is prime and so (5,15m + 1) = 1. Since

F5m = *2F5m_1 (mod 15m + 1)

F2 =3c (mod 15m +1)

and
c=3F2 , (mod 15m+1)

it results that

F2 =9F2 | =3c=4F2,_, (mod 15m + 1)
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and so 4(12m + 1) = 9(12m + 1) (mod 15m + 1). Since 4(12m + 1) = 48m +4 =
3m +1 (mod 15m + 1), it implies that 105m +8 =0 (mod 15m + 1) and so 1 =0
(mod 15m + 1) which is not possible since 1 Z 0 (mod 15m + 1)0. So, we obtain
again a contradiction meaning that this latter case is not also possible.

Therefore, when 5k + 1 = 15m + 1 is prime with £ = 3m and m a non-zero
positive even integer, if 10m is a period of the Fibonacci sequence modulo 15m + 1
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with 15m + 1 prime, then

if and only if

Since

Fi5m =0 (mod 15m + 1)
F5,, =0 (mod 15m + 1).
Fis,, = F5,. =0 (mod 5k + 1)

is true when 5k + 1 is prime, we deduce that

Fse =0

3

(mod 5k + 1)

is also true when k£ =0 (mod 3) and 5k + 1 prime.

Thus, if 10m is a period of the Fibonacci sequence modulo 15m+1 with 15m+1

prime, then we have

if and only if

if and only if

Besides,

implies that

Reciprocally, if

then

So, either

or

If

Fi5m, =0 (mod 15m + 1)

Fs5, =0 (mod 15m + 1)

F5m71 = F5m+1 (mod 15m + ].)

F5,, =0 (mod 15m + 1)

Fiom =0 (mod 15m + 1).

Fiom =0 (mod 15m + 1)
FZ,. =F2, , (mod15m+1).

F5m+1 = F5m—1 (mod 15m + 1)

Fsmi1 = —F5m—1  (mod 15m + 1).

F5m+1 = _F5m—1 (HlOd 15m + 1)
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then
F5m = *2F5m_1 (mod 15m + ].)

and since
F5,, =0 (mod 15m + 1)

using the fact that (2, 15m + 1) = 1 with 15m + 1 prime such that m is a non-zero
positive even integer (15m + 1 > 2),

F5,-1 =0 (mod 15m + 1).

But, then, if
Fip,, =0 (mod 15m + 1)
we have
Fism+1 = Fiom+1Fsmy1 =0 (mod 15m + 1).
Or,

Fismi1 =1 (mod 15m + 1).
It leads to a contradiction meaning that
Fspmi1 = —Fsm—1 (mod 16m + 1)

is not possible. So, if
Fip;, =0 (mod 15m + 1)

there is only one possibility, that is to say
Fsi1 = F5p—1 (mod 15m + 1)
which implies the congruence
F5,, =0 (mod 15m + 1)
and so which translates the congruence
Fisme1 =1 (mod 156m + 1)

into the congruence
F? . =1 (mod 15m + 1)

which has at least one solution. So, if 10m is a period of the Fibonacci sequence
modulo 15m + 1 with 15m + 1 prime, then we have

Fi5,, =0 (mod 15m + 1)

if and only if
F5,, =0 (mod 15m + 1)
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if and only if
Fsq1 = F5—1 (mod 15m + 1)

if and only if
Fip;, =0 (mod 15m + 1).

Since 10m = % with k& = 3m and m a non-zero positive even integer, from above,

we conclude that if Fsr = 0 (mod 5k + 1), then 3% is a period of the Fibonacci
sequence modulo 5k + 1 with 5k 4+ 1 prime if and only if

Fsies =1 (mod 5k + 1).

3
O

Theorem 4.42. Let 5k + 4 be a prime with k an odd positive integer. If k = 0
(mod 3) and if w 18 a period of the Fibonacci sequence modulo 5k + 4, then

the congruence
Fsr13 =0 (mod 5k +4)

is equivalent to the congruence

Fsikizs =0 (mod 5k + 4)

3

which is equivalent to the congruence

Fasrys =0 (mod 5k + 4)
3

Moreover, if k =0 (mod 3) and if Foes =0 (mod 5k+4), then the number w
is a period of the Fibonacci sequence modulo 5k + 4 if and only if

Fse =1 (mod 5k +4)

3

Proof. The proof is very similar to the proof of Theorem 4.33. O

The next theorem below is a generalization of Theorems 4.33, 4.37 and Theorem
4.41 and 4.42 given above. The number (54, with 5k+r prime such that r € [[1,4]]
and k = r + 1 (mod 2) is a period of the Fibonacci sequence modulo 5k + r. Its
expression is given in Corollary 4.10.

Theorem 4.43. Let 5k+1r be a prime such that r € [[1,4]] and k =7r+1 (mod 2).
Ifk = % (mod 3) and if 65’3“ is a period of the Fibonacci sequence modulo
5k + r, then the congruence

Feypyp, =0 (mod 5k + 1)
foktr
is equivalent to the congruence

Fey,,, =0 (mod 5k +71)
6
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which is equivalent to the congruence

Fepp, =0 (mod 5k + 7).
3

Moreover, if k = % (mod 3) and if F25k(73+7‘ = 0 (mod 5k + r), then the

L5kt
3

number is a period of the Fibonacci sequence modulo 5k + r if and only if

I _ 1 (modbk+r) if r=1 or r=4,
Skir 1=\ 1 (mod5k+7) if r=2 or r=3.

Proof. The results stated in Theorem 4.43 can be deduced from Theorems 4.33,
4.37 and Theorems 4.41 and 4.42 given above. O

5 Some results on Generalized Fibonacci numbers

In this section, we deduce some small results related to the generalized fibonacci
numbers as defined below.

Definition 5.1. Let a,b,r be three numbers. The sequence (Cy, 2(a,b,7)) is defined
by
Cno(a,b,r) =Cp_12(a,b,r) + Cp_22(a,b,r)+r, Vn>2

with
Coa(a,b,r)=b—a—r,
Cia(a,b,r) =a.
In particular, we have

Fn = 7L,2(17 170)7 Vn > 0.

Remark 5.2. This sequence can be defined from n = 1 by setting Ca2(a,b,7) =b
as in [1].

Proposition 5.3. Let a,b,r be three numbers. The sequences (Cp2(a,b,r)),
(Cn2(1,0,-1)), (F,) satisfies

Ch2(a,b,r) =aF,_o+bF,_1 —rChy12(1,0,-1), Vn >2.

Proof. Let a,b,r be three numbers. Let us prove Proposition 5.3 by induction on
the integer n > 2. We have

Coo(a,byr)=b=ax0+bx1+rx0=ax Fy+bxF, —rxCs2(1,0,—1)
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Let us assume that this proposition is true up to n > 2. Using the recurrence
relations of sequences (Cp, 2(a,b,7)), (Cn2(1,0,—1)) and (F),), we have
Cryi1,2(a,b,1) =Cy 2(a, b, 1) + Cr_i12(a,b,r) + 1
=(aFy—2 +bF,_1 —rCpt1,2(1,0,—1))
+ (aF—3 + bF_2 —1Cp2(1,0,-1)) +r
=a(Fp_2+ Fp_3) +b(Fp_1 + F_2)
—1r(Cny1,2(1,0,-1) + Cp 2(1,0,-1) — 1)
=aF,_1 + bF, —rCp422(1,0,—1).

Thus by induction, the proof is complete. O
Proposition 5.4. The sequences (Cy2(1,0,—1)) and (F,) satisfies

Cn72(1,07 —1) = Cn_gg(l,O, —1) - Fn_g, vn Z 2.

n—3
Chr2(1,0,-1) = —ZFk, Vn > 4.
k=1
From Proposition 5.3, for any numbers a,b,r, it results that

n—2

Cna(a,b,r) = aFy 5+ bF,_1+1Y Fp, ¥Yn>2
k=1

Cha(a,b,r)=aF,_o+bF,_1+r(F,—1), Vn>2.

This result can be easily verifies using mathematical induction and Theorem
1.26 and Proposition 5.4. We shall omit the details here.
The theorem below appears in any standard linear algebra textbook.

Theorem 5.5. (i) A linear recurrence sequence (uy)n>o of order 2 which satisfies
a linear recurrence relation as

Up = Q1Up—1 + Q2Up—2, vn Z 2

with a1, ag in o field K (K =R or K = C), is completely and uniquely determined
by its first terms ug and u.

(1) If (Un)n>0, (Vn)n>0 are two linear recurrence sequences of order 2 such that

up vo \ _ _

det( w v ) = ugv1 — u1vg # 0

then any linear recurrence sequence (wy)n>0 of order 2 is uniquely written as
(wn)nZO = /\(un)nzo + ,L‘(Un)nZO

with A\, pin a field K (K =R or K =C).
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Proof. The statement (i) is proved by induction.

The statement (ii) can be proved from (i) and from the Cramer’s rule for system of
linear equations. O

Definition 5.6. Let k be an integer which is greater than 2 and let ag, ..., ar_1 be
k numbers. The sequence (F, k(ao,...,ak—1)) for k> 2 is defined by

Fox(ag,...,axk—1) = Fh_1x(ao, .-, ar—1) + Fu_gpr(ao,...,ap—1), Yn >k
with
Fl‘7k(a0, e ,ak_l) =aq;, Vi€ {O, vk — 1}
The sequence (Fy i(ao,...,ax—1)) is called the k-Fibonacci sequence with initial
conditions ag, ..., QE_1.

Proposition 5.7. Let ag,a; be two numbers. The 2-Fibonacci numbers sequence
(Fh,2(ag,a1)) has general term

Fo2(a0,a1) = ap™ + (1 — )", ¥n >0

1+v5
2

where p = is the golden ratio and

_ag(p—1)+ay B
a——\/g , B =

apgp — ax

NG
In particular, we have
Fn :Fn72(071)a Ln = n,2(2a 1)

Proof. Let ag,a; be two numbers. Using the relation of recurrence of the sequence
(Fh,2(ag,a1)) and taking the Ansatz F), 2(ag,a1) = 2", we have for n > 2

zn — anl 4 Zn72.

For z # 0, it gives (n > 2) 22 — 2 — 1 = 0. The discriminant of this polynomial
equation of second degree is A = /5. So, the roots of this equation are:
1+5 _1-V5

1—op=
5 v 2

(p:

We can notice that any linear combination of ¢™, (1 — ¢)™ for n > 0 verifies the
equation 2" = 2"t + 2" 2 forn > 0. Since 0 = 0-¢" = 0- (1 — )", the
sequences which satisfy the recurrence relation of sequence (Fj, 2(ao,a1)) form a
vector subspace of the set of complex sequences. Given ag, a;, from Theorem 5.5
above, since

11
det =1-20=—V5+#0
(gj 1 w) @ #
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we deduce that there exist two numbers «, 8 such that
ang(ao, al) = Oé(pn + 5(1 - (p)n

Since
Fy2(ag,a1) =ap Fy2(ag,a1) = ar,

the coefficients «, 8 verify the matrix equation

(; 11¢)(§>=<Zf>

So:
(5)=(2 ) (o)
B) ¢ l-gp a
where
(L2h) =57 )
p 1-9p IRV A2
So:

(§)=g (™52

Proposition 5.8. Let ag,a; be two numbers. We have

ang(ao,al) = aan+1 —+ (a1 — ao)Fn, Vn 2 0

Proof. From Proposition 5.7, we have

(ao(p — 1) + a1)¢" + (aop — a1)(1 — )"

F,2(ap,a1) = 7
_a[le—1)e" +o(1— )"+ ar[p" — (1 —¢)"]
V5
Y € ) Lot 2l C Sk 2 G (il € et D
- 0{ V5 }+1{ VB }
R Ll € Skt D1 € St ) )
- 0 { \/S } + 1Fn

= —ap {‘pn —(l-9)" (ga”“ — (1 — )+l

V5
= 70’0(Fn - Fn+1) + aan
= aOFn+1 + (al - aO)Fn-

V5

)} ran,
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Proposition 5.9. Let z be a real complex number such that ¢|z| < 1. We have

z z

+oo
F n: =
D [(=rE R PR

This is a standard result and we omit the proof here.

Example 5.10. Applying Proposition 5.9 when z = 1/2, we have

=2 (1-%)(+3%)
B 1/2
(%3%) (732
B 2
2420 —p—¢?
B 2
24— (p+1)
=2
Thus
00 F,
Z2n+1 :1
n=0

Proposition 5.11. Let z be a real complex number such that p|z| < 1. Let ag and

a1 be two numbers. We have the generating function
+oo

ZFn,z(ao,al)z" = ao + (a1 —ag)z _ % + (a1 aQO)Z-

(1—92)(1 -2z +¢2) [p—

n=0

Proof. Let z be a real complex number such that ¢|z| < 1. When z = 0, we have

—+oo
<ZFn,2(a07 a1)2’n> = Fy2(ap,a1) = ao
n=0

z=0

and
< ao + (a1 — a())Z ) o
= agp.
1=p2)(I—24¢2)/),_,

So, the formula of Proposition 5.11 is true for z = 0. In the following, we assume

that z # 0. From Proposition 5.8, we know that

F,2(ag,a1) = agFpi1 + (a1 — ag)Fy, Vn > 0.



66 Alexandre Laugier and Manjil P. Saikia

So, using Proposition 5.9, we have (¢|z| < 1 and z # 0)

+oo +oo —+oo
E F,2(ap,a1)2" = ao E Fri12" 4 (a1 — ag) E F, 2"
n=0 n=0 n=0

Or (¢|z| < 1 and z # 0)

400 1 400 1 400 1 400
n __ n+1 __ n __ n
S Fuast = S R < 1 R 2 1S
n=0 n=0 n=1 n=0

where we used the fact that £y = 0.

It follows that (¢|z] < 1 and z # 0)

+oo a +oo

0
E Fo2(ap,a1)2" = <? +a — ao) E Fo2".
n=0

n=0
From Proposition 5.9, it results that (¢|z| < 1 and z # 0)

z )(1—¢dﬂ—2+wd
ap + (a1 — ag)z _
(1—pz)(1 -2+ ¢z)

Since this relation is also true for z = 0 (see above), this relation is true for
plz] < 1.

+o0o
ZFn,Z(ao»al)Zn _ <a0 + (al aO)Z
n=0

ag + (a1 — ap)z
1—2z—22

O
Example 5.12. Applying Proposition 5.11 when ag =2, a1 = 1 and z = 1/3, since
Fn2(2,1) = Ly, for alln >0, we have

—+o0

P
n=03n (1_%) (1_%+§)
3 %2
(%57) (55%)

B 15

6430 —2p — 2

B 15

6t —(p+1)
15

Therefore
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Proposition 5.13. Let z be a real complex number such that ¢|z| < 1. Let a,b,r
be three numbers. We have

2l(az +b)(1 — 2) + rz]
1—22+23

+oo
ZCmg(a,bm)z" —b—a-rtazt’
n=0

or equivalently

a(l—2)(22—1) +b(1—2)2+r(22 - 1)
1—2z+28

+oo
ZCmg(a, b,r)z" =

n=0

This result can be derived routinely using the results we have derived so far.
Although the proof is a little involved, but it follows essentially the same pattern
as the previous result. So for the sake of brevity we shall omit it here.

Example 5.14. Applying Proposition 5.13 when z = 1/2, we have

= 2b.

*2"’ Cho(a,b,r)
2n

NN

n=0

So
= Cnpa(a,b,r) b
Z on+1 -

n=0

Applying Proposition 5.18 when a = —r =1, b=0 and z = 1/3, we have

+oo
ZCn,z(LOv—l) 33 -(3) _-3+3_5_3
=3 1-2+ 5 st g 10
So,
XRCpo(1,0,-1) 1
Z gn+1 10

n=0

Proposition 5.15. Let ag,a; be two numbers. We have
Fiq12(a0,a1) = Fio(ag,a1)Fry1 + Fi—1,2(a0,a1)Fr, Yk>0, VI>1,
or equivalently
Fit12(a0,01) = Fr2(Fr2(a0,a1), Fiy1,2(ao,a1)), V>0, VI>0.

Proof. Let ag,a; be two numbers. From Proposition 5.8, we know that for k+1 > 0
we have

Fiy12(a0,a1) = aogFyti+1 + (a1 — ag) Fioqy-
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Using Theorem 1.27, we have

Fiti,2(a0,a1) = ao(Fi41Frq1 + FiFy) + (a1 — ao) (FiFieq1 + Fi—1F)
= (aoFi41 + (a1 — ao) F1) Fq1 + (aoFy + (a1 — ag)Fi—1) F.

Using Proposition 5.8, we get

Fry12(a0,01) = Fi2(ao, a1)Fri1 + Fi—1 2(a0, a1) Fi
= Fi2(F12(a0,a1), Fi41,2(ag,a1)).

O

In a similar way we can obtain the following result by using the corresponding
results dervide so far.

Proposition 5.16. Let a,b,r be three numbers. We have:
Cryi2(a,b,r) = Ci_y 2(a,b,7)Fi, +Ci2(a,b,7)Frp1 +7(Frp2—1), VE>0, VI>1,
or equivalently
Crti1,2(a,b,7) = Cri22(Ciz12(a, b, 1), Cra(a, b, r),r), YE>0, VI>1.
We now have the following more general results.
Theorem 5.17. Let ag,a; be two numbers. We have
Fy2(apFi—1,2(ag, a1) + a1 F2(ag, a1), aoFy 2(ao, a1) + a1 Fi11.2(ao, 1))
= F2(ao, a1)Frt+1,2(a0, a1) + Fi—1,2(ao, a1)Fr 2(ap, a1), YE>0, VIi>1
The proof is an easy application of Proposition 5.9 and we shall omit it here.
Theorem 5.18. Let a,b,r be three numbers. We have

Ci2(aCi—1,2(a,b,m)+bCy 2 (a, b, 1), (a+71)Ci2(a, b, 7)+b(Ciy1,2(a, b,r)—r), 7(Cit1,2(a, b, r)—r))

(5.1) =Ci2(a,b,7)Cry12(a,b,1) + Ci—12(a,b,7)Ck 2(a,b,7), VE>0, VI>1

Using Proposition 5.5 and the principle of mathematical induction the above
result can be verified. We omit the details here.

Remark 5.19. Using Proposition 5.4 and using Proposition 5.8, we can notice that
(5.2) Ch2(a,b,0) = Fp2(b—a,a), Vn>0
Indeed, we have (n >0)

Foob—a,a)=(0b—-a)Fht1+(a—b+a)F, =(b—a)Ft1+ (2a —D)F,
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Using the definition of the Fibonacci sequence, we have for n > 2

Fn,g(b—a,a) a)(Fn—i—Fn,l) —+ (2a—b)(Fn,1 +Fn,2)
a)(2Fn_1 + Fn—2) + (2CL — b)(Fn—l + Fn_g)
(b—a)+2a—-b)F, 1+ (b—a+2a—0b)F,_2=0bF, 1+ aF,_»

Fy o+bF, 1= On,2(a7 b7 0)

= (b
=
= (2

Since Fyo(b—a,a) = Cp2(a,b,0) =b—a and F1 2(b — a,a) = C1,2(a,b,0) = a,
the formula derived above for n > 2 is also true for n =0 and for n = 1.

Taking r = 0 in Theorem 5.18, it can be shown that Theorem 5.17 is a particular
case of Theorem 5.18. Indeed, since (1 >1):

aCl,Q(a, b, 0) -+ bClJrLQ(a, b, 0) - (aCl,Lg(a, b, 0) -+ bCl,Q(a, b, 0))
= G(Cl’g(a, b, 0) — 017172(04, b, 0)) + b(ClH,g(a, b, 0) — Cl,2 (a, b7 0))
and so (1> 2):
aCl’Q(CL, b, 0) + bClJrLQ(CL, b, 0) — (aCl,l,Q(a, b, 0) + bCl’Q(a, b, 0))
= aCi_22(a,b,0) +bCi_12(a,b,0)
using the relation (5.2), we have (k>0 and 1> 2):
Ci,2(aCi—1,2(a,b,0) 4+ bCj 2(a,b,0),aCi2(a, b,0) + bCiy1,2(a,b,0),0)
= Fj2(aCi_22(a,b,0) + bCj_1 2(a,b,0),aCi_12(a, b,0) + bCi 2(a,b,0))
= Fk72((b — CL)CZ,LQ(CL, b, 0) + a(Cl,m(a, b, 0) + lel,g(cu b, 0)), (b — a)Cl,g(a, b, 0)
—i—a(Cl,l,g(a, b, 0) =+ Cl,g(a, b, 0)))
So (k>0andl>1):

Ck,g(aCl,l’g (a7 b, 0) + me(a, b, 0), aCl’g (a7 b, 0) + bcl+172(a, b, 0), 0)
= Fj2((b—a)Ci_1,2(a,b,0) + aC) 2(a,b,0), (b — a)C)2(a,b,0) + aCit1 2(a, b, 0))

=Fyo((b—a)Fi_12(b—a,a)+aF2(b—a,a),(b—a)F2(b—a,a)+aFi112(b—a,a)).
Moreover, from Theorem 5.18, we have (k>0 andl>1):

Ck,g(a()l_m (a, b, 0) + me(a, b, 0), aCm (a, b, 0) + bC[+172(a, b, 0), 0)

= Cl,?(a'a b7 O)Ck+1,2 (a7 b7 O) + Cl—l,Z(a'a b7 O)Ck,Q(aa b7 O)
=F20b—a,a)Fit12(b—a,a)+ Fi_12(b—a,a)Fj2(b — a,a).

Therefore (k>0 and 1 > 1):

Fro((b—a)Fi_12(b—a,a) +aFj2(b—a,a),(b—a)F2(b—a,a) + aFj412(b—a,a))
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(5.3) =Fa(b—a,a)Frt12(b—a,a)+ Fi_12(b—a,a)Fg2(b—a,a)

which is equivalent to Theorem 5.17 when aq is replaced by b — a and when ay s
replaced by a. Besides, taking a =b =1 in the relation (5.3), using Theorem 1.27,
since F,2(0,1) = F,,, for alln >0, we get (1 >0):

Fro(F, Fii1) = Fry, YE>0

Definition 5.20. Let a,b,r be three numbers, let n > 0 be a natural number and
let I be a non-zero positive integer. The sequences (zp(a,b,7)), (Yni(a,b,7)) and
(zn,1(a,b, 1)) are defined by (n >0 and 1 > 1):

mn+1,l(a7 b7 T) = xn,l(a7 b7 T)lel,Z(l'n,l(a/; b> ’I"), y’n,l(aa ba T)7 Zn,l (a7 ba T))
+ yn,l (a, bv 7A)C’l,Z(xn,l (aa ba T)v yn,l (av ba T)v Zn,l (aa bv 7“))

Yn+1,1 (av ba T) = yn,l(a’ bv T)CI*LQ (xn,l(av bv T)v yn,l(av b, T)a Zn,l (aa b’ T)) + (xnyl(av ba T)
+ yn,l (CL, b7 T) + Zn7l (CL, b7 T))CLQ(IIH,Z ((1, b7 T)v yn,l (CL, ba T)? Zn,l (a7 bv T))

Tn+1,1 (a7 ba T) = Zn,l (CL, b7 T)(Cl—l,Q ('rn,l (a7 bv T)a Yn,l (CL, b7 T)a Zn,l (aa ba T’))
+ 01,2 (-/En,l(a/, b7 7/‘)7 yn,l(a‘a b7 T), Zn,l(a'a b7 T)))

and for 1 >1

zo,(a,b,7) = aCy_1 2(a,b,r) + bC 2(a,b,r)
yoi(a,b,7) =bCi_1 2(a,b,7) + (a + b+ 71)Ci2(a,b,r)
z0,1(a,b,7) = r(Ci=1 2(a,b,7) + Cy2(a,b,1))

In the following, when there is no ambiguity and when it is possible, we will ab-
breviate the notations used for terms of sequences (z,(a,b,r)), (yni(a,b,r)) and
(2n,1(a,b,7)). More precisely, if a,b,r don’t take particular values, then we will
substitute T, 1, Yn,i, Zn1 for T, 1(a,b,7), yni(a,b,7), z,,(a,b,r) respectively. Thus,
the recurrence relations which define the sequences (z,,(a,b,7)), (yni(a,b,r)) and
(2n,1(a,b, 7)) can be rewritten as (n > 0 and [ > 1):

Tnt1,0 = TngCro1,2(Tn 1, Yn,ts Zn,t) + YniCra(Tn,, Yn,ts Zn,l)
Ynt1,0 = YniCr—1,2(@n1, Yn,t, 2nt) + (@t + Yni + 20,0)Cr2(Tn,ts Yn iy Znl)
Tnt1,0 = 2n,1(Cr—1,2(Tn,1, Yn,is Znt) + Cl2(Tn,t, Yn,iy Znt))-

Proposition 5.21. Let n > 0 be a natural number and let | be a non-zero positive
integer. We have

Cr2(Tnt1.0, Ynt1,05 Znt1,1) = Cr.2(@n1, Yn i, 2n0) Crit1,2(Tn iy Yn,is Znt)
+ Cro1,2(®n 1, Ynts 2n,0) Cr,2(Tnts Ynts Znt)-
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Proof. This proposition is a direct consequence of Definition 5.1, Definition 5.20
and Theorem 5.18. O

Proposition 5.22. Let n > 0 be a natural number and let | be a non-zero positive
integer. We have (n >0 and 1 >1)

(yn,l - xn,l)(zn,lyn+l,l - yn,lZnJrl,l) = (mn,l + Zn,l)(zn,lanrl,l - xn,lzn+1,l)~
or equivalently (n >0 and 1 > 1)
Zn,l(xn,l+zn,l)xn+1,l+zn,l(xn,l _yn,l)yn+1,l - (x7L,l(x7L,l+yn,l+2n,l) _yi,l)zn—i-l,l =0.

Proof. In the following, n denotes a natural number (n > 0) and ! denotes a non-
zero positive integer (I > 1). From Definition 5.20, we have (n > 0 and [ > 1)

ZnlTn+1,l — Tp lRn+1,l = $n,zzn,lcl—1,2(96n,l7 Yn,ls Zn,l) + yn,lzn,lcl,2(xn,la Yn,l, Zn,z)

—fﬂn,lzn,lcl—l,z(xn,l’ Yn,l, Zn7l) - a?n,lzn,zcz,z(wn,h Yn,l, Zn,l)-
So

(5.4) Zn1%Tn41,0— Tt 2nt1,0 = Znt(Yni — Tnt)Cr2(Tn s Ynis Znt), ¥ >0, YI>1
Moreover, we have (n > 0 and [ > 1):
ZndYn+1,0—Yn12n+1,0 = YniZniCim1.2(Tnt, Ynis Znt) T 20,0 (Xn 1 FYn,i+2n,0)Cla(Tnis Yn.is Zn.t)
—Yn12n,1C1-1,2(Tn 1y Yn,ir Zn,l) — Yn,i2n,1C12(Tn 0, Yn ls Znl)-
So
(5:5) Zni¥n+10 = YniZnt10 = 20,0 (Tn g + 20,0)CL2(Tnt, Yn,ts 2ng) Y0 >0, VI>1
Taking (1 + 2n,1) (5.4) — (Yn,i — Tn,1) (5.5) side by side, we get
(@n,t + 20,0) (21 Zpt 10 — Tngznt1l) = (Yng = Tnt) (2n1Yn+1,0 = YntZnt1,l) =0
and so
(@nt + 200) (ZnaZnt 10 — TnaZnt 1) = Unt — Tnt) (Zni¥nt1,0 = YndZn41,0)-
It proves the first part of Proposition 5.22. The second part of Proposition 5.22
follows from its first part. Indeed, from the first part of Proposition 5.22, we have
(n>0and>1)
(Tr1+2n,1)2n,1Tn+1,0— (Tn1+20.0) T Znt1,0 = Und—Tn,0)Zn,1Yn+1,0— (Yn,i—Tn,1)Yn,1Zn+1,1
2,0 (Tn 1+ 20,0) Tt 1,0 20,0 (T = Yn 1) Yn+1,0— ((Tn,1+20,0) To i+ (Tn 0 —Ynt)Ynt) Znt1,0 = 0
20 (T 1 20,0) T 1,1 20,0 (T g =Y, Ynt 10— (T 120 18, 1T 1Y =Y ) 10 = O
Zn,l(xn,l+Zn,l>xn+1,l+2n,l(xn,l_yml)ynJrl,l_(xn,l(xn,l+Zn,l+yn,l)_y721,l)zn+l,l =0

It proves the second part of Proposition 5.22. O
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Definition 5.23. Let K be a field. Letl be a non-zero positive integer (I > 1). The
function Fy is defined on K3 by (1 > 1 and (z,y,2) € K3)

Fl(.’l?,?j,Z) = (330171,2(%%2) + yCl,2($7y7Z)aycl71,2<xayﬂz)
+(z+y+2)Cia(r,y,2), 2(Ci-12(2,y, 2) + Ca(z,y,2))).

Remark 5.24. From Definition 5.20 and from Definition 5.23, we have (n > 0
andl>1)
E(xn,l7yn,l; Zn,l) = (zn+1,l>yn+l,l> Zn+1,l)

So, from Proposition 5.21, we have

Cr2(Fi(zn i, Yniy 2n,1)) = Cra(Tn i, Ynis Zn,1) Cht1,2(@n 1, Ynds Znt)
+ Cr—1.2(%n,1, Ynits Z0,0) Ch,2 (Tt Unils Znl)-

Proposition 5.25. Let n > 0 be a natural number and let | be a non-zero positive
integer. We have (n >0 andl>1)

Tn1(1/2,1/2,-1/2) =y, 1(1/2,1/2,-1/2) =1/2
rni(1/2,1/2,-1/2) = —1/2.
In other words, (1/2,1/2,—1/2) is a fized point of the function Fy for alll > 1.

Proof. Let n > 0 be a natural number and let [ be a non-zero positive integer. Let
us prove Proposition 5.25 by induction on the integer n > 0 for all [ > 1. Using
Definition 5.1, we have

Co2(1/2,1/2,-1/2) = % - % - (-é) = %

Moreover, from Proposition 5.4, using the definition of the Fibonacci sequence,
we have (n > 2)

Fn72 anl 1 Fn72+Fn71_Fn 1 1
02(1/2,1/2,-1/2) = —Z(F,—1) = 1_1
Caa(1/2,1/2,-1/2) = =22 4+ T2 — (R, — 1) k t5=73
So

1
(5.6) Cna(1/2,1/2,-1/2) = 5, ¥n >0,

Using Definition 5.20 and using Equation (5.6), it gives (I > 1)

20(1/2,1/2,-1/2) = 1% X % +lxlo1
yO,l(1/271/23*1/2) =3 i( §1+ (1% + % 71 %) % — %’
200(1/2,1/2,-1/2) = -+ (A + 1) = -1
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Hence, we verify that Proposition 5.25 is true for n = 0 and for all [ > 1. Let us
assume that Proposition 5.25 is true up to an integer n > 0 and for all [ > 1. Using
again Definition 5.20 and using Equation (5.6), we have (n >0 and [ > 1)

wn+1,l(1/23 1/2771/2) = 1% X %+ 2 X %1: %’
Ynt1,0(1/2,1/2,-1/2) = 5 x %1+ (1% +3 B 3) 3
Zni10(1/2,1/2,-1/2) = =3 (5 +3) = —%

Thus, if Proposition 5.25 is true up to an integer n > 0, then Proposition 5.25 is
true for n + 1. Thus we have proved Proposition 1.33 by induction on the integer
n > 0 for all [ > 1. Using Remark 5.24, we get (I > 1)

Fi(1/2,1/2,-1/2) = (1/2,1/2,-1/2).

Therefore, (1/2,1/2,—1/2) is a fixed point of the function F; for all I > 1. O

The results presented in this section can be further generalized to other class of
sequences. For one such aspect, the reader can refer to [3].

6 Some results on Generalized Fibonacci polyno-
mial sequences

In this section, we introduce some generalized Fibonacci polynomial sequences and
we give some properties about these polynomial sequences.

Definition 6.1. Let k be an integer which is greater than 2 and let ag,...,ar_1 be
k numbers.
The polynomial sequence (Frg)l,z(ao, . .,ak—1;)) in one indeterminate x is de-

fined by (k> 2):
Ff:,l(ao, ce,Qp—13T) = Fél_)Lk(ao, cee,Qp—1;T) + acFT(Ll_)hk(ao, coap—13x), Vn>k

with:
Figc)(ao,...,ak_l;:c) =a;, Vie{0,...,k—1}

The k-Fibonacci numbers sequence (F (ao,...,ar—1)) with initial conditions
ag, - - ,ap_1 are obtained from this polynomial sequence by substituting x by 1 in the
sequence (Fr(llll (agy ... ak—1;2)). This polynomial sequence is called the k-Fibonacci

polynomial sequence of the first kind with initial conditions aq, ..., ak_1.

Case k = 2
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Table of the first polynomial terms of sequence (Fr(llg((), 1;2))

Ey

S|

!

U 0,1z
2,2
1)

50,1;2) =

15 (0,152) =

(1)(0,1,;10)

3512)(0,1,:5) =14z

120, 1;2) =1+ 22
( )
( )

o

e

5;12; 0,1;x
Fe5

=143z +22
0,1;2) =1+ 4z + 322

Table of the first polynomial terms of sequence (F,(le)(l, 0;x))

Fi5(1,0:7) =

F3(1,0:2) =0

F2(12)(1, 0;z) =x

Fgflz)(l, O2)=cz

F{Y(1,0;2) = 2(z + 1)
F(1,0;2) = (22 + 1)
Fé}}(l, 0;z) = x(a® + 3z 4 1)

Property 6.2. Let n be a non-zero positive integer. We have

Lnfl

(1) ~ (n—k—1\ ,
F,5(0,1;2) = Z i ",

k=0

F7§12)(1, 0;2) = :EFy(Ll,)LQ(O, 1; ).
Proof. Let prove the first part of Property 6.2 by induction on the integer n > 0.

We have o
-1 n—k—1
F(l) ]_ = 1 = n 0 = k.
b2 (0’ ,m) ( O ) kZ:O k ’

Thus, we verify that the first part of Property 6.2 is true for n = 1. Let assume
that Property 6.2 is true up to an integer n > 0. Using Definition 6.1, we have

FY,0,150) = FO0,12) + 2FY, (0, 1;2).

Using the assumption, it gives:

1 n—k—1 n—k—2
Fr(z+)1,2(0»1§x) = Z < A )zk + ( i >xk+1.
k=0
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Taking the change of label K — m = k+1 in the second sum of the right hand side of
the previous equation, after renaming m by k, we have (reccall that |z+1]| = |z]+1,

Vo € R)
L5
-1 —-k-1
FT(:,'_)IQO,l,x ( )xk—l—Z(nk_l )xk
k=1
Or

n |22 +1 if n=0 (mod2)
)=
|22 if n=1 (mod?2)

If n is odd, then [%] = [25!] and we have

L5 L5
1 n—k—1 n—k—1
FT(L_‘_)LQ(O,lgq:)zl—i—Z( i )mk—l- ( ko1 )xk.
k=1 k=1
Rearranging the different terms of this equation, it comes that (n odd)
(1) L2 n—k—1 n—k—1
Fn+1,2(0,1;x)—1+2{( 3 >+< b1 >}xk
k=1
Using the combinatorial identity
n—k—-1 n n—k—-1\ (n—k
k k—1 N k
if n is odd, then we have
5
F) 500, a) =1+ ( R >mk

k=1
Ln+1 1

_wJ(n— ) J( +1— _1>xk
_§ L ,
k=0 k=0

If n is even, then | 2] = [251] 4+ 1 and we have

Ln 1J
Fn+1201m—1+2{< >+< b1 ¥+ 2] -1 xlzd,

Using again the combinatorial identity

(5 )-8
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it gives

. — k 2 5
Foli50z) =14 ) ( . )x + ( a7 )3; 5l
k=1
Using the definition of binomial coeflicients, it can be shown that (k > 0)
n—k\ n—-k{n-k-1

k -k kE—1
2[5 if n=0 (mod?2)

2[2]+1 if n=1 (mod2)

In particular, when n is even, n = 2[%] and so n — |3 ] = [§]. Accordingly, we

have
(") - (Y
15] 5] -1
If n is even, then we have

Ln—l

F))5(0,152) =1+ Z (”;k)x’w (” InLJZJ)xLzJ

k=1 2
[3] [ 2=t

n—k\ 5 n+1l—-—k—-1\ ,
() ()
k=0 k=0

So, the first part of Property 6.2 is proved by induction on the integer n > 0.
Afterwards, let prove the second part of Property 6.2 by induction on the integer
n > 0. We have
1 1
F{5(1,0:2) = 0 = 2Fy 3 (0, 15 ).
Thus, we verify that the second part of Property 6.2 is true for n = 1. Let assume

that the second part of Property 6.2 is true up to an integer n > 0. Using Definition
6.1, we have

1 1
Fr’(L-Bl,Q(170;$) =F

n,2

(1,0;2) + xFT(Ll_)LQ(l, 0; x).

Using the assumption, it gives:
F,1,002) = 2(F)(0,152) + 2F ) ,(0,12)) = 2FY, (0,1 ).

n,2 n

So, the second part of Property 6.2 is proved by induction on the integer n > 0. [
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Property 6.3. The generating function of the polynomzials Fr(Ll% (0,1; ) is given by

+
Y
F(0,132,y) = ZFT(LIQ)(OJ»I) "
n=0

where
y 1 if =0
Yy —1:|:5{Em Zf T 7é 0
Proof. The generating function of the polynomials F,(L12) (0,1; z) is defined by

F1(0,1; 2, y) ZF(” 0,1;2)y

Since Félz) (0,1;2) = 0 and since Fl(l2 (0,1;z) =1, we have
1 1)
70, 1;2,y) ZF}LQ (0,1;2)y
ZZF7521,2(07 1;x)y™ !
n=0

+oo
=y + ZF£21,2(0’ L)yt
n=1

where in the sum over n, we performed the change of label n — m =n — 1 and we
renamed m by n. Using Definition 6.1, it gives

“+o0
?S)(O, Liz,y)=y+ Z(F,(LlQ)(O, 12) + :UF( )1 2(0,1; z))y" L.

n=1

Expanding the sum over n of the right hand side of the previous equation, it comes
that

T, 152,y) =y + ZF& (0, 1; )"+ +xZF“ 1200, 15 2)y™ L,

n=1 n=1

Or, performing again the change of label n — m = n — 1 in the second sum over n
of the right hand side of the previous equation, after renaming m by n, we have

T, 1;2,y) y—i—z F{)(0,1; ) ”‘H—i—xZFle) 0, 1; 2)y"+>

n=1

“+o0
=y + yZFrg,lz)(O, La)y" +ay?y F(0,12)y"

n=1 n=1
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Using the definition of the generating function ffél)((), 1;2,y), we have
F0,12,9) =y + 9T (0,1, y) + ay? T (0, 152, ).
Therefore

Y

1
F(0,152,y) = f——

where

7£{ 1 if =0
Y —1+TFdT
% if x#0

Property 6.4. Let ag, a1 be two integers. We have
Félz) (ap,a1;x) = aoFé’lQ)(l,O;x) + alFSQ)(O, 1;2), Yn>0,

F, 1)(a0, ay; ) = aoxF,(Ll_)LQ(O, 1;2) + alF,(L}Q)(O, 1L;2), Vn>1.

n,2

Proof. Let prove the first part of Property 6.4 by induction on the integer n > 0.
The second part of Property 6.4 follows from Property 6.2. Since Félz) (0,1;2) =0

and since FO(}Q)(l,();:c) =1, we have
Félz) (ag,a1;2) = ap = aoFé}z)(l, 0;z) + alFé,lg)(O, 1; ).

Thus, we verify that the first part of Property 6.4 is true for n = 0. Let assume
that the first part of Property 6.4 is true up to an integer n > 0. Using Definition
6.1, we have (n > 0)

Frgu(ao,al; x) = Fr(LlQ) (ag,a1;x) + xF,Si)l’Q(ao,al;x).

Using the assumption, we have (n > 0)
Frg_)ll(ao, a; x) :aoFSZ)(l, 0;2) + alFé}Q) (0,1; )
+ (a1 5(1,0:2) + a1 FY, 5(0,152)).

Rearranging the different terms of the right hand side of the previous equation,
it gives (n > 0)

F(i_)m(ao,aum) :aO(F(lz) 1,0;x) —&—foll_)l)Q(l,O;m))

n n,

(1,
+ar(F5(0,1;2) + 2FY, 5(0,1;2)).

Using Definition 6.1, we obtain (n > 0)

Fé:-)m(ao) ay; ) = a’OFT’(L}i-)l,Q(:L 0;2) + alF’r’(L}‘r)l,z(O7 L;x).

So, the first part of Property 6.4 is proved by induction on the integer n. O
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Remark 6.5. In particular, if ag = a1 = 1, then using the recurrence relation of
the sequence (F(l)(O, 1;x)) (see Definition 6.1), we obtain:

n,2

F (1 La) = FY,00,12), Vo> o0.

n,2
Property 6.6. Let ag and ay be two numbers and let n be a positive integer. We
have (n>0)

g 4 7"(‘;1;70) if T=-;
Fy)(ao,arix) =
(eolglstn) ooy + (SEEE) (1 - el if =+ -}

In particular, we have

(1) 7T o= _%
F.50,1;z) =
p(z) 2;((;)*_901(17)) if x# 7%
12*"” if x= —%
Fy(1,0;2) = S
T (%(i) 2;((@—7801(@) ) Zf T 75 _i
where
1+ +1+4x
play = T

which verify

or

pa)(pe) —1) ==

Proof. Property 6.6 can be proved easily by induction or in the same way as Prop-
erty 5.7. O

Theorem 6.7. Let ag and a; be two numbers and let n and m be two positive
integers. If x = —i, then we have

Frg)lz)(ao, ar; x)FS}LLQ(aO, ay; )+ IF£9172(a0, az; :Z:)Féll’)Q(ao, a; x)

— (GOQD(CE) — al)2‘1-7‘7(711}“%2(07 1; "L‘) + a0(2a1 _ aO)SD(fL')"H_”.

Otherwise, we have

F{)(ao, a1: —1/4)F\)) | 5(ag,ar; —1/4) + 2 FV, y(ag, ar; —1/4)F )y (ag, ar; —1/4)
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ai(m+n—2) apar(m+n—1) (m+n)a?

2m+n+1 2m+n—l 2m+n—1

In particular, whatever x is, we have

F0,52)F ), 50, 12) + 2FY) (0, 1:2)FO5(0, 1) = FYL, 50, 152)

n,2 5
Proof. Theorem 6.7 stems from Property 6.6. O
Case k=3

Table of the first polynomial terms of sequence (FT(ng(O, 0,1;z))

FH(0,0,1;2) =0
Fflg(o 0,1;2) =0
F2(13 (0,0,1;2) =

3,13)(0 0,1;2) =
F1(0,0,1;2) =
FH0,0, ) =1+
FiH0,0,10) =1+ 22
F0,0,12) =1+ 3¢
F8(13)(0 0,1;2) =1+ 4z + 22

Property 6.8. Let n be a non-zero positive integer. For n > 2, we have (n > 2)

L1252
ok -2
F1(0,0,152) = Z(“ . >xk

k=0

and (n > 2)
F7(L}32 (07 17 O,ZC) = mFygj;)ng(O,O, 1,{13)

Moreover, for n > 1, we have

F7(l,1§(1707 07x) = CUF,(Ll,)Lg(O,O, ].,.’L')

Proof. Property 6.8 can be proved in the same way as Property 6.2. O
Property 6.9. The generating function of the polynomials Félg((), 0,1;x) is given
by

(1) ) y?
where

1—y—ay® #0.

Proof. Property 6.9 can be proved in the same way as Property 6.3. O
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Property 6.10. Let ag,aq,as be three integers. We have

F(l)(ao,al,ag;x) = aOFSg(l,O,O;I)JralFé’lg(O, 1,O;x)+a2F,(L’13),(0,0, 1;2), Vn>0.

n,3
Proof. Property 6.10 can be proved in the same way as Property 6.4. O

Theorem 6.11. Let m be an integer which is greater than 2 and let n be a non-zero
positive integer. Forn > m — 1, we have

| 2=l |
FM0,...,0,2) = > (n —(m —kl)(k - 1))xk_
k=0
Moreover, for n > 1, we have
FU (1,0,...,0) = 2F", (0,...,0,1;2)

and forn > with i € {2,...,m — 1} when m > 2, we have

FT(L}%%(O, ce ,02‘727 11‘,1, OZ‘, ey 0; m) = .’JSF(l)

n—i,m

0,...,0,1;2)

where 0; means a; = 0 with 1 € {i —2,i} and 1,1 means a;—1 =1 in

Fy(L}m(am ey Ai—2,A5-1,Q45 ... ,Qm—1; I‘)
Proof. Theorem 6.11 can be proved in the same way as Property 6.2. O

Theorem 6.12. Let m be an integer which is greater than 2. The generating
function of the polynomials Fy(Ll,)n(O, ..., 0,1;2) is given by

+00 m—
F0,...,0,1;2,9) = nZOFr(L,l,)n(O, L0, L)y = M
where
1—y—axy™ #£0.
Proof. Theorem 6.12 can be proved in the same way as Property 6.3. O
Theorem 6.13. Let m be an integer which is greater than 2 and let ag, a1, ..., am—1

be m integers. We have
Fé}g@(ao, A1y ey Qp1;T) = aOFé%(l, 0,...,0;z) + alFT(L}T)n(O, 1,0,...,0;2)

et am FY 0,...,0,1;2), Vn>0.

n,m

Proof. Theorem 6.13 can be proved in the same way as Property 6.4. O
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Definition 6.14. Let k be an integer which is greater than 2 and let ag,...,ar_1
be k numbers.
The polynomial sequence (Ff,i(ao, ..., Qk—1;)) in one indeterminate x is de-

fined by (k > 2)

F,(L,Q;Z(am cey Qp15X) = xFr(i)Lk(aO, ceQg—1;T) + Fr(i)k’k(ao, ceyap_1;x), Yn >k
with
Fz‘(,i)(%v ceyap—1;%) =a;, Yie{0,...,k—1}.
The k-Fibonacci numbers sequence (Fp p(ag,...,ak—1)) with initial conditions
ag, - .. ,ax_1 are obtained from this polynomial sequence by substituting x by 1 in the
sequence (Fr(jz(ao, ...yag—1;)). This polynomial sequence is called the k-Fibonacci
polynomial sequence of the second kind with initial conditions ag,...,ar_1.
Case k =2
Table of the first polynomial terms of sequence (F7(122)(O7 1;2))
F30,1;2) =0
F30,12) =1
FQ(’Q)(O, Liz)==
F3(12)(0, Liz)=22+1
FLQ)(O, L;2) =23 + 22 = 2(2? + 2)
Fé’Q)(O, Liz) =2+ 322 +1
Fﬁ(’2)(0, l;2) = 2 + 423 + 32

F3(1,0;2) = 1

F3(1,0,2) =

Fyy(1,0;2) =

Fé)g(l,o;l‘) =z

F(1,0:2) = 2% + 1

F(1,0:2) = 28 + 20 = a(a® + 2)
F)(1,0;2) = a* +32% + 1

Property 6.15. Let n be an integer which is greater than 2. We have (n > 2):

[252]

— k-2
Fé?z)(l,O;x) = Z <n % )x”%Q

k=0

and (n >0) . "
Fn,2 (0,1;2) = Fn+1,2(1a 0; )
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or (n>1)
F?,,(0,1;2) = F)(1,0;2).
Proof. Let us prove the first part of Property 6.15 by induction on the integer n > 2.

We have o
2—k-2
FY1,0,2)=1= 2-2k=2,
2,2 (1,0; ) ; k T
Thus, we verify that Property 6.15 is true for n = 2. Let assume that Property 6.15
is true up to an integer n > 2. Using Definition 6.14, we have (n > 1)

F,Ej_)m(LO;x) = va(l,zz)(LO? )+F( )1 2(1 0; ).

So, using the assumption, it comes that

1252] 1252]
—k—-2 n—Fk—
Fr(l2+)1,2(1,0;1'): E <n i ) no2hel E ( 3) n=2k=3,

k=0
Performing the change of label £k — m = k + 1, after renaming m by k, we have
1252) L[5+

n—k— e n—k 2
Fr(j-)l,z(laOW): Z ( k ) Zh=1 g Z < )x k=1

k=0
L252) n_l_9 L 25
In1+z< . )n2k1+2( )anl.
k=1
Or
n_1 | 252 ] if n=0 (mod?2)
l——1=
2 12=2] 41 if n=1 (mod2)

If n is even, then we have

7@

- -2 n—k—2 2
ansa—ts E ) (T

Using the combinatorial identity

SR RES

we obtain (n even)

|25 ]
(2) ’ n—2k—1
n+1 2(1 O .CL' + z

=1
L254) L2

n—k—=1\ . o5 n+l—=k—=2\ 11 o2
; >x - > (") .

k=0

3
H

=

Il
o~
=
N
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If n is odd, then we have

Ln 2

- —2 —k—2
F7(12+12(10x—x"1+2{( >+<nk—1 >}xn—2k—1
k=

Jr(n -5 - Q)anL"lel.
(25t -1

Using again the combinatorial identity

SRR NG

—k-1 n — n—1 -9 .
Fr(Li)l,Z(LO;x) ="t <n i )$n2k1+< L"L_lzJ i . >xn2L21J1.
1 2

n—k-1\ n—-k—-1/n—-k-2
k o k k-1

2252/ +1 if n=0 (mod 2)

it gives (n odd)

Or (k> 0)

and

n—1=
21251 | if n=1 (mod 2)

In particular, when n is odd, we have n—1 = QL”T*IJ and so n— L%j —1= L"T*lj
Accordingly, we have
(rl ) (el
2] -1 |25
So, if n is odd (n > 2), then we have

|252) .
—k—1 - %] - ne
,(L_Bl 5(1,0;2) =" + E ( )x"zkl + (n tnzlj )mnﬂzlJl

2

L% 1J

21y n-— _1>n2k1
2

(2452 ]

—k— n—2k—1 _ n+l—k—=2\ 11 o5 o

Z ( ; ) ) . .
k=0 k=0

So, the first part of Property 6.15 is proved by induction on the integer n > 2.
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Let us prove the second part of Property 6.15 by induction on the integer n > 0.
We have
Fy3(0,132) = 0 = F3)(1,0;).

Thus, we verify that the second part of Property 6.15 is true for n = 0. Let assume
that Property 6.15 is true up to an integer n > 0. Using Definition 6.14, we have
(n=1)

FZ1 50, 150) = 25 (0, 1i2) + B2, 5(0, 15 2),

Using the assumption, it gives (n > 0)
F2 20, 12) = 2F3, ,(1,050) + F5(1,0:).
Using again Definition 6.14, we get (n > 0)
2 2
F’r(z-‘gl,Q(O? Liz) = F75+)2,2(1a 0; ).
So, the second part of Property 6.15 is proved by induction on the integer n > 0. [

Property 6.16. The generating function of the polynomials ()22)(1,0;95) 18 given

by
@ L 2) n__l-wy
5|~2 (1,0;1‘,:1/) = ZFn,Q(LO;x)y = ﬁ
— y—y
where
—x+V22+4
vE Ty

Proof. The generating function of the polynomials F (22)( 1,0; ) is defined by:

n,

2 2
F2 (1,02, y) ZF,EZZ 1,0; )
Since Fy3(1,0;2) = 1 and since F{ 3 (1,0;2) = 0, we have

+oo
T (1,0;2,y) =1+ Y E(1,0;2)y"

n=2

Using Definition 6.14, we have

—+oo
FE(1,052,) =14 Y (@F?) ,(1,0:2) + FY, 5(1,0:2))y"
n=2

+oo —+oo
=1+ xZFfi)LQ(l, 0;z)y"™ + ZFﬁ)z)Q(l, 0;z)y"
n=2 n=2
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Z D (1,05 2)y ZFn2101‘) ntl
n=1

where we performed the change of label n — m = n — 1 and after we renamed m
by n. Moreover, we have

ZFn”le ZFH210 y" 2

where we performed the change of label n — [ = n — 2 and after we renamed [ by
n. It results that

“+o00 —+o0
FE(1,0;2,) =1+ 2y EDQ,02)y" +y*Y FH(1,0,2)y"

n=1 n=0
=1+ ay(F9(1,0;2,9) — 1) + 4255 (1,0, 2, ).

Therefore )
FP (1,0 ——
(L, 02,y) = 1— T
where
—zr+ V2244

yF# 5

Property 6.17. Let ag,a; be two integers. We have
F,(L?Q)(ao,al;x) = aoFr(fQ)(l,O;x) + alF( )(0, 1L;z), Yn>0

Frg?g(ao,al;a:) = aOF(2)(1 0;x) + alF(Jr)1 5(1,0;z), Vn >0.
Proof. Let us prove the first part of Property 6.17 by induction on the integer n > 0.

The second part of Property 6.17 follows from Property 6.15. Since Féé) (1,0;2) =1

and since Fo(,22) (0,1;2) = 0, we have

Fézz) (ag,a1;2) = ag = aoFé?z)(l, 0;2) + alFé?Q)(O, 1; 2).

Thus, we verify that the first part of Property 6.17 is true for n = 0. Let us assume
that the first part of Property 6.17 is true up to an integer n > 0. Using Definition
6.14, we have

F®

Fy(Li.)LQ(a@vafl; ) 2(a07a'1;x) +F( )1 2(0’07a11$)

n,
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Using the assumption, we have
F&)\ (a0, ar;2) =a(aoFL5(1,0;2) + ar FL 5 (0, 1; )
+ aoF( )1 5(1,0;2) + alF( )1 5(0,1; ).

Rearranging the different terms in the right hand side of the previous equation,
it gives

2
F)\ y(ao, ar;2) =ag(xF ) (1,0;2) + F2) ,(1,0;2))
+ a1 (aF, éﬁ(o,l,x>+F<2>m<o,1,m>>
Using again Definition 6.14, we get
2 ) = o F 1,0; F® (01
n+1,2(a’07a’17x) aot' 41, o(1,0;2) +ay n+l, 2(0,1;2).
So, the first part of Property 6.17 is proved by induction on the integer n > 0. [

Property 6.18. Let ag and ay be two numbers and let n be a positive integer. We
have (n > 0)

na; (g)n ! — (n—1ag (%) if x=42
F,S?g)(ao»al;m) =

() o+ () e i 5552

In particular, we have

F2)(0,1;2) =

(1-n) ()"  if =42
F5(1,0:2) =

n7

n—1_, n—1 . .
g(x) 29((;:)}1@)) if ¥ A2

where

o+ vVa?+4

which verify

We have also

9(2)* +1=g(2)(29(x) —2)  (v-g(2))* +1=—(2 - g(2))(29(2) — 2).
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Proof. Property 6.18 can be proved easily by induction or in the same way as
Property 5.7. O

Theorem 6.19. Let ag and ay be two numbers and let n and m be two positive
integers. If x # +2i, then we have

F) (a0, a1:2)F) 1 5 (a0, ars @) + FSY) o(ag, ar; ) Fley(ag, ar; )

= (a0g(x) — a1)?F{7), 20, 1;2) + ao(2a1 — agz)g(w)™*".
Otherwise, we have

F%)(ao, av; 2) )y o(ao, an;2) + Fi2y (a0, a1 2) Fl ) (ap, a3 )

T m+n+1 x\ mtn T m+n—1
= (m+n72)a(2) (5) —2(m+n—1)agay (5) +(m+n)a% (5)

In particular, whatever x is, we have
FE0,1a)Fy 5(0,130) + o F 2, (0, i) F (0, 150) = Fy, (0, 1),
Proof. Theorem 6.19 stems from Property 6.18. O

Case k=3
Table of the first polynomial terms of sequence (F. 75%(1 0,0;))

=1+2a°

=22+ a2t =2(2 +2%)

= 32% + 2° = 2%(3 + 23)

Property 6.20. Let n be an integer which is greater than 2. We have (n > 3):

Ln—S

. -2k -3
F(1,0,0) = > (” . >x"—3k—3

k=0

and (n>0)

2 2 2
Fn,?z(o’ 07 1; .23) = F7(L-‘21,3(1’ 07 0; 1‘) 75—}-)2 3(07 1’ 0; Z‘)
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Proof. Property 6.20 can be proved in the same way as Property 6.15. O
Property 6.21. The generating function of the polynomials (72?),(17 0,0;x) is given
by:
(2) S @) 1—ay
. — . n
?3 (170,0,$,y) —;Fn)3(1,0707$)y = m
where
1—ay—1y° #0.

Proof. Property 6.21 can be proved in the same way as Property 6.16. O

Property 6.22. Let ag,aq,as be three integers. We have
F) (a0, a1, a2;7) = agF\4(1,0,0;2) +a1 FL 3 (0,1, 0:2) +as F 5 (0,0, 1;z), ¥ > 0.

Theorem 6.23. Let m be an integer which is greater than 2 and let n be a non-zero
positive integer. For n > m, we have

5]

FT(LQBn( ,0,...,0;2) = Z (n_(m_kl)k_m)x”_m(k"'l).

k=0

Moreover, for n > 0, we have

Jac)

ni1m(1,0,...,0) =F? (0,...,0,1;7)

and forn >0 with i € {2,...,m — 1} when m > 2, we have
F& 0, 0i22,1,_1,0;,...,0;2) = F) (0,...,0,1;2)
where 0; means a; = 0 with 1 € {i — 2,1} and 1,1 means a;_1 =1 in
F(Q) (A0, -+ 02,051,045+ .. Q15 T).
Proof. Theorem 6.23 can be proved in the same way as Property 6.15. O

Theorem 6.24. Let m be an integer which is greater than 2. The generating
function of the polynomials Fﬁz)n(l, 0,...,0;z) is given by

1-—
F (1,0, 02,y) = ZFQ) ,O;x)y":ﬁ

where
1—axy—y™ #£0.

Proof. Theorem 6.24 can be proved in the same way as Property 6.3. O



90 Alexandre Laugier and Manjil P. Saikia

Theorem 6.25. Let m be an integer which is greater than 2 and let ag,ay, ..., Qm_1
be m integers. We have

F,(f,)n(ag, A1y ey Q13 T) = agF?) (1,0,...,0;2) + ale(L’z,)n(O, 1,0,...,0;2)

n,m
.ot a1 FP0,...,0,1;3), Yn>0.
Proof. Theorem 6.25 can be proved in the same way as Property 6.4. O

The results presented in this section can be related to other class of sequences
as in [4].
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