Alexandre Laugier, Manjil P. Saikia

A COMBINATORIAL PROOF OF A RESULT ON GENERALIZED LUCAS POLYNOMIALS

Communicated by Z. Lonc

Abstract

We give a combinatorial proof of an elementary property of generalized Lucas polynomials, inspired by [1]. These polynomials in s and t are defined by the recurrence relation $\langle n\rangle=s\langle n-1\rangle+t\langle n-2\rangle$ for $n \geq 2$. The initial values are $\langle 0\rangle=2,\langle 1\rangle=s$, respectively.

1. Introduction and motivation

In this paper, we shall focus on giving a combinatorial proof of a result on the generalized Lucas polynomials. But first we give some introductory remarks and motivation. The famous Fibonacci numbers F_{n} are defined by $F_{0}=0, F_{1}=1$ and, for $n \geq 2$,

$$
F_{n}=F_{n-1}+F_{n-2} .
$$

The Lucas numbers L_{n} are defined by the same recurrence, with the initial conditions $L_{0}=2$ and $L_{1}=1$.

One generalization of these numbers which has received much attention is the sequence of Fibonacci polynomials

$$
F_{n}(x)=x F_{n-1}(x)+F_{n-2}(x), \quad n \geq 2,
$$

with initial conditions $F_{0}(x)=0, F_{1}(x)=1$. The generalized Fibonacci polynomials depend on two variables s, t and are defined by $\{0\}_{s, t}=0$, $\{1\}_{s, t}=1$ and, for $n \geq 2$,

$$
\{n\}_{s, t}=s\{n-1\}_{s, t}+t\{n-2\}_{s, t} .
$$

Here and with other quantities depending on s and t, we will drop the

[^0]subscripts as they will be clear from context. For example, we have
$$
\{2\}=s, \quad\{3\}=s^{2}+t, \quad\{4\}=s^{3}+2 s t, \quad\{5\}=s^{4}+3 s^{2} t+t^{2}
$$

For some historical remarks and relations of these polynomials we refer the reader to [1], [2] and [3].

The main focus of our paper are the generalized Lucas polynomials defined by

$$
\langle n\rangle_{s, t}=s\langle n-1\rangle_{s, t}+t\langle n-2\rangle_{s, t}, \quad n \geq 2
$$

together with the initial conditions $\langle 0\rangle_{s, t}=2$ and $\langle 1\rangle_{s, t}=s$. The first few polynomials are

$$
\begin{array}{ll}
\langle 2\rangle_{s, t}=s^{2}+2 t, & \langle 3\rangle_{s, t}=s^{3}+3 s t, \\
\langle 4\rangle_{s, t}=s^{4}+4 s^{2} t+2 t^{2}, & \langle 5\rangle_{s, t}=s^{5}+5 s^{3} t+5 s t^{2} .
\end{array}
$$

When $s=t=1$ these reduce to the ordinary Lucas numbers.

2. Combinatorial interpretations of $\{n\}$ and $\langle n\rangle$

Fig. 1. Linear and circular tilings

In addition to the algebraic approach to our polynomials, there is a combinatorial interpretation derived from the standard interpretation of F_{n} via tiling, given in [3]. A linear tiling, T, of a row of squares is a covering of the squares with dominos (which cover two squares) and monominos (which cover one square). We let,

$$
\mathcal{L}_{n}=\{T: T \text { a linear tiling of a row of } n \text { squares }\} .
$$

The three tilings in the first row of Figure 1 are the elements of \mathcal{L}_{3}. We will also consider circular tilings where the (deformed) squares are arranged in a circle. We will use the notation \mathcal{C}_{n} for the set of circular tilings of n squares. So the set of tilings in the bottom row of Figure 1 is \mathcal{C}_{3}. For any type of nonempty tiling T, we define its weight to be

$$
\mathrm{wt} T=s^{\# \text { of monominos in } T} t^{\# \text { of dominos in } T}
$$

We give the empty tiling ϵ of zero boxes the weight wt $\epsilon=1$, if it is being considered as a linear tiling or wt $\epsilon=2$, if it is being considered as a circular tiling. The following proposition is immediate from the definitions of weight and of our generalized polynomials.
Proposition 2.1. (Sagan and Savage, [3]) For $n \geq 0$, we have

$$
\{n+1\}=\sum_{T \in \mathcal{L}_{n}} \mathrm{wt} T
$$

and

$$
\langle n\rangle=\sum_{T \in \mathcal{C}_{n}} \mathrm{wt} T .
$$

From the above discussions on the combinatorial interpretations of $\{n\}$ and $\langle n\rangle$ we get the following.
Theorem 2.2. (Sagan and Savage, [3]) For $m \geq 1$ and $n \geq 0$ we have

$$
\{m+n\}=\{m\}\{n+1\}+t\{m-1\}\{n\} .
$$

Proposition 2.3. (Sagan and Savage, [3]) For $n \geq 1$ we have

$$
\langle n\rangle=\{n+1\}+t\{n-1\} .
$$

And for $m, n \geq 0$ we have

$$
\{m+n\}=\frac{\langle m\rangle\{n\}+\{m\}\langle n\rangle}{2}
$$

For some more interesting combinatorial interpretations, we refer the reader to [1] and [3].

3. Main result

The main aim of this paper is to give a combinatorial proof of the following result, inspired by [1].

Theorem 3.1. For $s, t \in \mathbb{N}$ such that

$$
\frac{1}{s+t}<\min \left\{\frac{1}{|X|}, \frac{1}{|Y|}\right\}
$$

we have for $X, Y \neq 0$

$$
\sum_{n=0}^{\infty} \frac{\langle n\rangle_{s, t}}{(s+t)^{n+1}}=\frac{s+2 t}{t(s+t-1)}
$$

Proof. We consider an infinite row of squares which extends to both directions. A random square is marked as the $0^{t h}$ place. The squares are numbered from left to right of 0 by the positive integers and from the right to left of 0 by the negative integers.

We now suppose that each square can be coloured with one of s shades of white and t shades of black. Let Z be the random variable which returns the box number at the end of the first odd-length block of boxes of the same black shade starting from the right of 0 , and let Z^{\prime} be the random variable which returns the box number at the end of the first odd-length block of boxes of the same black shade from the left of 0 . And let W be the combination of both Z and Z^{\prime}.

For any integer n, the event $W=n$ is the combination of $Z=n$ and $Z^{\prime}=-n$. Here $Z=n$ is equivalent to having box n painted with one of the shades of black among the first n squares being of even length including 0 to the right of 0 . So there are t choices for the colour of box n and $s+t-1$ choices for the colour of box $n+1$. Similarly $Z^{\prime}=-n$ is equivalent to having box $-n$ painted with one of the shades of black among the first n squares being of even length including 0 to the left of 0 . So, there are t choices for the colour of box $-n$ and $s+t-1$ choices for the colour of box $-(n+1)$.

Each colouring of the first n squares gives a tiling where each white box is replaced by a monomino and a block of $2 k$ boxes of the same shade of black is replaced by k dominoes. Also, the weight of the tiling is just the number of colourings attached to it. Thus, the number of the colourings of the first n boxes is $\langle n\rangle$ since the n boxes both to the right and left of 0 will give rise to a circular tiling in this case. Indeed, the number of the colourings of the first n boxes to the right of 0 , including the box 0 is $\{n+1\}$. Moreover, if the number of black shades boxes to the left of 0 , not including the box 0 , is even, then the number of the colourings of the first $n-1$ boxes to the left of 0 , not including the box 0 is $\{n\}$. By convention, we fix the shade of the box 0 to be white. Since there are s possible white shades for the box 0 , there are $s\{n\}$ colourings of the first n boxes to the left of 0 , including the box 0 . So, there are $\{n+1\}-s\{n\}=t\{n-1\}$ colourings of the first $n-1$ boxes to the left of 0 , not including the box 0 . This implies that the number of the colourings of the first n boxes is $\{n+1\}+t\{n-1\}=\langle n\rangle$.

Notice that if the shade of the box 0 is white, then the box 0 contributes by a factor s to the total number of circular tilings for which $W=n$ whereas if the shade of the box 0 is black, then the box 0 contributes by a factor $2 t$ to the total number of circular tilings since for each black shade, there are two possibilities (namely the two neighbours of box 0 in a circular tiling). It gives rise to a multiplicative factor $s+2 t$ in the expression of the total number of circular tilings for which $W=n$. Notice that once we count $s+2 t$ for the box 0 , the other boxes (including the box $n+1$) contributes by a multiplicative factor $s+t$ to the total number of circular tiling. Thus, the total number of circular tilings for which $W=n$ is given by $(s+2 t)(s+t)^{n+1}$.

Hence, we have

$$
P(W=n)=\frac{t(s+t-1)\langle n\rangle_{s, t}}{(s+2 t)(s+t)^{n+1}}
$$

Summing these will give us the desired result.
Acknowledgements. The second author was supported by DST INSPIRE Scholarship 422/2009 from the Department of Science and Technology, Government of India when this work was done.

References

[1] T. Amdeberhan, X. Chen, V. H. Moll, B. E. Sagan, Generalized Fibonacci polynomials and Fibonomial coefficients, Ann. Comb. 18(4) (2014), 541-562.
[2] S. Ekhad, The Sagan-Savage Lucas-Catalan polynomials have positive coefficients, preprint http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/bruce.html.
[3] B. E. Sagan, C. D. Savage, Combinatorial interpretations of binomial coefficient analogues related to Lucas sequences, Integers, A52, 10 (2010), 697-703.

```
A. Laugier
LYCÉE TRISTAN CORBIÈRE
16 RUE DE KERVÉGUEN - BP 17149-29671
MORLAIX CEDEX, FRANCE
E-mail: laugier.alexandre@orange.fr
M. P. Saikia
DIPLOMA STUDENT, MATHEMATICS GROUP
THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS
11, STRADA COSTIERA
TRIESTE, ITALY
current address
FACULTY OF MATHEMATICS
UNIVERSITY OF VIENNA
OSKAR-MORGENSTERN-PLATZ 1
1090 WIEN, AUSTRIA
E-mail: manjil@gonitsora.com
```

Received March 26, 2014.

[^0]: 2010 Mathematics Subject Classification: Primary 05A10; Secondary 11B39, 11B65.
 Key words and phrases: binomial theorem, Fibonacci number, Fibonomial coefficient, Lucas number q-analogue, Generalized Lucas Polynomials.

