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Volume and enthalpy relaxation of glasses after a sudden temperature change has been extensively
studied since Kovacs’ seminal work. One observes an asymmetric approach to equilibrium upon cooling
versus heating and, more counterintuitively, the expansion gap paradox, i.e., a dependence on the initial
temperature of the effective relaxation time even close to equilibrium when heating. Here, we show that a
distinguishable-particle lattice model can capture both the asymmetry and the paradox. We quantitatively
characterize the energetic states of the particle configurations using a physical realization of the fictive
temperature called the structural temperature, which, in the heating case, displays a strong spatial
heterogeneity. The system relaxes by nucleation and expansion of warmer mobile domains having attained
the final temperature, against cooler immobile domains maintained at the initial temperature. A small
population of these cooler regions persists close to equilibrium, thus explaining the paradox.
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Kovacs’ series of experiments [1] is fundamental to our
present understanding of aging and memory properties in
glassy materials [2–4]. In [1], the volume relaxation of
polymer glasses has been analyzed by performing rapid
temperature changes, or temperature jumps, focusing on
experimental protocols implementing one or two succes-
sive temperature shifts.
On one hand, the double jump protocol illustrates

Kovacs’ effect evidencing memory properties in glasses.
After a temperature down-jump, the polymer is annealed
for an appropriate duration so that a further up-jump to a
final temperature Tf immediately takes the volume to its
equilibrium value at Tf. Because of memory effects, the
sample, however, is not yet at equilibrium and its volume
indeed rises before dropping finally to equilibrium, i.e., the
Kovacs hump. Kovacs’ effect has been widely studied
using empirical mean-field models including the Tool-
Narayanaswamy-Moynihan [5–7] and the Kovacs-Aklonis-
Hutchinson-Ramos [8] models. A temperature jump more
precisely acts directly only on the phonon temperature. The
memory is accounted for in these theories using a fictive
temperature TFðtÞ, which describes some internal state of
the material with a dynamics generally lagging behind that
of phonons [5].
On the other hand, single-jump experiments lead to the

expansion gap paradox, also called the τeff paradox, which
is a more puzzling phenomenon [9–16]. The effective
relaxation rate τ−1eff of the polymeric system studied by

Kovacs, depends persistently on the initial temperature, and
apparently, even arbitrarily close to equilibrium. In contrast,
for many nonglassy systems, linearized dynamics applies at
long times and yields the same τeff for both up- and down-
jumps. Such a strong material memory in glasses, however,
cannot be reproduced by Tool-Narayanaswamy-Moynihan
or Kovacs-Aklonis-Hutchinson-Ramos models, and has
only been accounted for by their stochastic counterparts,
namely the stochastic version of a free-volume model [17]
and, more recently, the stochastic constitutive model [18].
The reasons for the failure of mean-field models and for the
importance of stochastic fluctuations are not well under-
stood in this case.
We reproduce Kovacs’ expansion gap for the first time

using a microscopic particle model, going beyond mean-
field descriptions. Specifically, we adopt the distinguish-
able-particle lattice model (DPLM) [19]. The phonon
temperature is modeled by the bath temperature of the
kinetic Monte Carlo simulation. We observe an expansion
gap in the system energy relaxation, analogous to enthalpy
relaxation in experiments [20]. By studying spatial profiles
of particle displacements and interactions, we provide an
intuitive resolution of the paradox.
The DPLM displays several particle dynamics features

characteristic of glasses and possesses exactly solvable
equilibrium statistics [19]. A wide range of values of the
fragility index can be obtained by varying the interaction
energy distribution of the model [21]. Kovacs effect can
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also be reproduced [22]. The DPLM is defined on a regular
square lattice with N particles. At site i a particle denoted
by the label si ¼ 1;…; N may be located. For an empty
site, i.e., occupied by a void, si ¼ 0. As a distinctive
feature, the interaction energy of nearest neighboring
particles Vijsisj is both site dependent and particle depen-
dent, as indicated by site indices ði; jÞ and particle indices
ðs1; s2Þ respectively. We write the system energy as

E ¼
X

hiji0
Vijsisj ; ð1Þ

where the sum
P

hiji0 is restricted to occupied nearest
neighboring sites. All possible interactions Vijkl, defined
for each lattice link ði; jÞ and particle couple ðk; lÞ, are
drawn according to the a priori probability distribution
gðVÞ. On the other hand, the interaction energies at
equilibrium, i.e., the Vijsisj , have been proven [19] to be
distributed as peqðV; TÞ ¼ gðVÞe−V=kBT=N ðTÞ, where
N ðTÞ is a normalization factor. In the following, we will
use natural units with kB ¼ 1. We take g as a uniform
distribution defined on the interval V ∈ ½V0; V1�, with V1 ¼
−V0 ¼ 0.5 [19]. Hence, peq yields a simple exponential
dependence on the interaction energy. [See Supplemental
Material (SM) [23] for details.]
We simulate the single-jump protocol [1] starting from

equilibrium configurations [19] at some initial temperatures
Ti. Then, the bath temperature T, representing the phonon
temperature, is set instantaneously at time 0 to the final
value Tf. We study the fractional deviation [1] δEðtÞ of the
system energy EðtÞ from its equilibrium value E∞ at Tf,
i.e., δEðtÞ ¼ ½EðtÞ − E∞�=jE∞j. EðtÞ and E∞ < 0 are
computed using Eq. (1) (see SM [23]). Figure 1(a) reports
δEðtÞ for a set of symmetric temperature jumps, of similar
relative magnitudes as in [1]. As shown in Fig. 1, δE from
DPLM simulations closely resembles experimental results
in [1] and correctly reproduces the up-down asymmetry of
the approach to equilibrium. At time 0 the asymmetry is
due to an equilibrium heat capacity decreasing with T (see
SM [23]). However, the much slower relaxation for the up-
jumps compared with the down-jumps, successfully repro-
duced here, is nontrivial and has been the focus of many
studies [9–16].
Let us define the effective relaxation time τeff [1] by

τ−1effðtÞ ¼ −½δEðtÞ�−1dδEðtÞ=dt, yielding a constant for an
exponentially decaying δEðtÞ. Results for τeffðtÞ against
δEðtÞ are reported in Fig. 1(b) showing very similar features
to those reported in [1]. Most importantly, we observe as in
[1] that the data for τeff have not converged to a single
limiting value independent of Ti, even close to equilibrium
at jδEj ≃ 0, creating the expansion gap paradox. The inset
reports data close to equilibrium: Down-jump data show a
clear convergence among themselves and with respect to
the up-jump data at small jumps, whereas convergence is
not observed for large up-jumps at the smallest δE studied.

To the best of our knowledge, among the constitutive
models [5–8,17,18] only the stochastic free-volume model
[17] and the stochastic constitutive model [18], accounting
for dynamic heterogeneities, can reproduce the gap. Being
able to qualitatively recover the most important experi-
mental features by means of a microscopic particle model is
clearly important for a deeper understanding of the aging
dynamics.
Compared to constitutive models, an advantage of our

approach is that it allows us to analyze the differences
between up- and down-jump dynamics from the real-space
perspective, going beyond mean-field descriptions. We
define a local particle displacement dðx⃗; tÞ and a local
particle persistence, i.e., an overlap field, q̃ðx⃗; tÞ such that
the average overlap qðtÞ, defined as q̃ðx⃗; tÞ averaged over

(a)

(b)

(c)

FIG. 1. (a) Schematic diagram for single-temperature jump
protocol for equilibrium samples at initial temperature Ti which
are then cooled (for Ti > Tf, i.e., down-jump) or heated (for
Ti < Tf , i.e., up-jump) to the final temperature Tf . (b) Data from
DPLM simulations for Tf ¼ 0.25 and different values of Ti. The
asymmetry of the approach between up- and down-jumps is
observed. (c) Results on τeff measured using data in (b). Data
close to equilibrium with jδEðtÞj ≤ 0.003 are shown in the inset.
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sites occupied at t, gives the fraction of particles still
located at their original positions at time t (see SM [23] for
details). Figure 1 in the SM [23] displays qðtÞ against t. In
Fig. 2 we report the evolution of the local displacement
dðx⃗; tÞ for selected values of q, providing a useful measure
of the progress of the relaxation. Large jump magnitudes
make qualitative features of the dynamics more clearly
observable. Figure 2 shows a much more heterogeneous
growth of dðx⃗; tÞ in the up-jump case. Well-separated
domains with highly mobile particles nucleate and invade
immobile domains. Hence, a strong spatial heterogeneity
dominates the up-jump relaxation.
In order to understand the emergence of the hetero-

geneous up-jump dynamics, we study the energy states of
the particle configurations by measuring the probability
distribution pðVÞ of the realized interactions Vijsisj . In
Fig. 3(a) and (b) pðVÞ is reported for different values of the
average overlap q. Figure 3(a) shows that for down-jumps
the evolution of pðVÞ occurs uniformly for the whole range
of V. Furthermore, pðVÞ can be reasonably fitted by a
single equilibrium distribution peqðV; TÞ, with T decreas-
ing monotonically with 1 − q and thus also with t. For the
up-jump data reported in Fig. 3(b), there is a remarkable
difference between the evolution of high- and low-energy
interactions: For q ¼ 0.8, at V ≳ 0.25 the distribution has
already attained the same slope in the semilog plot as the
final equilibrium one at Tf, while values of pðVÞ for

low-energy interactions V ≲ −0.25 are still very close to
those of the initial temperature Ti. Indeed, pðVÞ for a wide
range of q is very well fitted by a superposition of two
equilibrium distributions

pðVÞ ¼ qpeqðV; TiÞ þ ð1 − qÞpeqðV; TfÞ; ð2Þ

suggesting that the particle configurations in the mobile
regions, whose relative extent is 1 − q, have reached
equilibrium at the final temperature Tf while the immobile
regions, whose extent is q, have interactions distributed
according to peq at the initial temperature Ti.
The results above suggest the existence of a strong

spatial heterogeneity in the distribution of the realized
particle pair-interactions only for the up-jump case. Further,
we compute a temperature TS we call the structural
temperature. In physical terms, TS measures how well
particles are locally packed, i.e., a low temperature corre-
sponds to a better bonded and more stable configuration.
This definition can be applied to a wide range of materials
and it should not be regarded as specific to the present case.
For the DPLM, we define it as a local temperature TSðx⃗; tÞ
at position x⃗ based on the interaction V̄lðx⃗; tÞ averaged over
a square domain of linear size l centered at x⃗. Requiring
that TS coincides with the bath temperature at equilibrium,
TS is computed by solving numerically V̄lðx⃗; tÞ ¼R
dVVpeqðV; TSÞ. Note that TS is analogous to Tool’s

FIG. 2. Snapshots of structural temperature TSðx⃗; tÞ (second and third rows) and particle displacement dðx⃗; tÞ (first and fourth rows)
for down-jump from Ti ¼ 0.3125 (first and second rows) and up-jump from Ti ¼ 0.1 (third and fourth rows) to final temperature
Tf ¼ 0.25 in a system of linear size L ¼ 200 with coarse-graining length scale l ¼ 5. Different columns refer to average overlap q
corresponding to increasing time, from left to right. TSðx⃗; tÞ and dðx⃗; tÞ show homogeneous evolution for the down-jump, but strongly
heterogeneous evolution with large domains for the up-jump. For the up-jump case immobile domains coincide with low structural
temperature domains. See videos in SM [23] for full dynamics.
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fictive temperature [5], local values of which have also been
studied before [24,25].
Figure 2 shows the evolution of TSðx⃗; tÞ for l ¼ 5.

Similar to the displacement dðx⃗; tÞ, we see that the
evolution of TSðx⃗; tÞ is spatially homogeneous for the
down-jump. For the up-jump, high-TS domains with TS ≃
Tf develop in spatial correspondence with the high mobil-
ity regions. Whereas, the immobile regions maintain the
initial temperature, i.e., TS ≃ Ti. Moreover, some low-TS
immobile domains remain even at the very late stage of
relaxation at q ¼ 0.05, thus constituting a remnant of the
initial temperature acting on the dynamics, although
equilibrium is already reached almost everywhere else.
Figures 3(c) and 3(d) report the evolution of the average TS
for mobile and immobile regions as a function of 1 − q
which increases with time. For the up-jump case shown in
Fig. 3(d), TS quickly converges to Tf in the mobile

domains while it remains close to Ti in the immobile
regions. All these results are fully consistent with the good
fits to pðVÞ in Fig. 3(b) using Eq. (2). Whereas, Fig. 3(c)
shows that, in the down-jump case, TS steadily evolves in
both regions taking on relatively similar values. Hence
PðV; tÞ at each time can be described approximately by a
single peq as reported in Fig. 3(a).
The structural temperature heterogeneity observed for

the up-jumps can be understood in terms of a stability
argument of propagating fronts as discussed in the SM [23].
We argue that the strong spatial fluctuations are caused by a
spatial instability due to the autocatalytic nature of the
heating of glasses. In contrast, for a temperature down-
jump, the autoretarding nature of cooling leads to a stable
and thus homogeneous evolution of the structural temper-
ature, resulting in weak memory effects and converging
relaxation rates.
We further characterize the up-jump dynamics by meas-

uring the number of mobile domains Nd and their average
area hAiðtÞi (see SM [23]). Results are reported in Figs. 3(e)
and 3(f). For the down-jump case, the initial value Nd ≃
Nv ¼ 50 indicates that mobile domains are independently
generated with small energy barriers by individual voids
and rapidly coalesce, inducing the drop in Nd. For the up-
jump case, Nd starts from a smaller initial value and has a
logarithmic growth due to nucleation events with signifi-
cant energy barriers until coalescence causes their number
to decrease. Finally, we notice that the average domain
area, reported in Fig. 3(f), displays a much slower growth in
the up-jump case because of the slow domain motions
explained above.
Interestingly, the aging dynamics described in this work

shares important features with the melting of ultrastable
glasses [26] for which the front propagation corresponds to
high-TS domains nucleated at the free surface invading the
inner region originally at lower TS. Furthermore, it would
be worthwhile to generalize this present work to more
complex thermal treatments and reproduce dual relaxation
times reported previously [25,27].
The structural temperature introduced in this work is, to

the best of our knowledge, the first example of a physical
realization of Tool’s fictive temperature [5]. As an advance-
ment, it is measurable from particle simulations based on
well-defined microscopic dynamics, in contrast to the
fictive temperature which follows separate empirical evo-
lution rules [4]. Our results stress the importance of its
spatial heterogeneity in understanding the expansion gap
paradox. This naturally explains why mean-field models
with a global fictive temperature [5–8] in general have
difficulty reproducing the paradox. It also justifies the
stochastic models [17,18] in which different stochastic
realizations empirically represent local regions at different
stages of evolution. We believe that the structural temper-
ature will be of general importance in the study of non-
equilibrium behaviors of glasses. It should be of interest to

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a) and (b) Semilog plot of pðVÞ in dots, at different
overlap q, for the down- (Ti ¼ 1.0) and the up- (Ti ¼ 0.1) jumps
with common Tf ¼ 0.25. The final equilibrium distribution is
drawn in solid lines while the initial ones in dashed lines.
(a) Down-jump data superposed to single-temperature fits in
black lines. (b) Up-jump data superposed to Eq. (2). In both cases
fits show good agreement. (c) and (d) average TS for mobile and
immobile domains against 1 − q, which increases with time.
(c) (Down-jump), TS in both regions steadily decreases. (d) (Up-
jump) TS in mobile regions converges fast to Tf while being close
to Ti in immobile regions. (e) Number of mobile domains Nd
versus time. (f) Average domain area.
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measure it experimentally by means of, for example,
electron correlation microscopy [28].
In summary, Kovacs’ expansion gap paradox in energy

relaxation is reproduced based on kinetic Monte Carlo
simulations of a particle model in two dimensions. A
structural temperature is introduced to characterize the
energy states of the particle configurations. After an up-
jump of the bath temperature from Ti to Tf, a large spatial
heterogeneity is observed in both local particle displace-
ment and local structural temperature. The evolution of the
latter is characterized by the nucleation and coarsening of
Tf domains invading the original Ti domains. Relaxation
dynamics persistently depend on Ti because isolated Ti
domains survive even close to the end of the relaxation.
This leads to strong memory effects and explains the
paradox.
Kovacs’ experiments are important because exceptional

material properties often provide the deepest insights.
Overcoming the long-standing challenge of reproducing
the expansion gap using a microscopic particle model, our
results do not only provide a possible intuitive under-
standing of the paradox, but also support the validity of the
DPLM as a reliable tool for studying glassy dynamics.
Finally, the equilibrium dynamics of the DPLM has been
described theoretically [29,30]. It will be interesting to
extend the analysis to the present far from equilibrium
situations.
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