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Abstract 

Given the important conceptual connections between cause and coincidence as well as the extensive 

prior research on causality asking, “how causal is this?”, the present research proposes and evaluated 

a psychological construction of coincidentality as the answer to the question, “how coincidental is 

this?” Four experiments measured the judgment properties of a reasonably large set of real 

coincidences from an initial diary study. These judgements included coincidentality and an array of 

other judgments about event uncertainty, hypothesis belief and surprise as predictors of 

coincidentality consistent with and supporting our prior definition of coincidence (Johansen & 

Osman, 2015): “coincidences are surprising pattern repetitions that are observed to be unlikely by 

chance but are nonetheless ascribed to chance since the search for causal mechanisms has not 

produced anything more plausible than mere chance.” In particular, we evaluated formal models 

based on judgements of uncertainty, belief and surprise as predictors to develop a model of 

coincidentality. Ultimately, we argue that coincidentality is a marker for causal suspicion/discovery 

in terms of a flag that a new, unknown causal mechanism may be operating. 

Keywords: coincidence judgment; causal reasoning; causal discovery 
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Coincidence Judgment in Causal Reasoning: How Coincidental Is This? 

1. Introduction 

“That’s just a coincidence!” Coincidences are a common part of daily life and have attracted 

a considerable body of psychological research (e.g. Beitman, 2009; Crandall, Backstrom, Cosley, 

Suri, Huttenlocher, & Kleinberg, 2010; Diaconis & Mosteller, 1989, 2006; Falk & MacGregor, 1983; 

Falk, 1989; Griffiths & Tenenbaum, 2007; Watt, 1991). However, a substantial part of this research 

(see the review in Johansen and Osman, 2015) connects coincidental experiences with various kinds 

of irrationality (Blackmore, 1992; Blackmore & Troscianko, 1985; Hanley, 1984, 1992; Matthews & 

Stones, 1989; Mock & Weisberg, 1992)  ties them to paranormal beliefs (Blackmore, 1984; Bressan, 

2002; Brugger, Regard, Landis & Grave, 1995; Glicksohn, 1990; Houran & Lange, 1996; Tobacyk, 

1995; Tobacyk & Milford, 1983) and other well-established biases, such as in probability judgments 

(Falk & MacGregor, 1983; Falk, 1989). The dominant emphasis in prior research on coincidences is 

closely aligned with the many demonstrations that human judgement and decision making are 

nonoptimal relative to objective normative standards.  

The perspective taken in the present research is an alternative that disagrees with the bias’s 

literature, not in terms of content, but rather in emphasis (though see the notable exceptions of 

Dessalles, 2008, and especially Griffiths & Tenenbaum, 2007). The emphasis here is on using human 

judgments about real coincidences as a way of evaluating the psychological mechanisms underlying 

causal reasoning, learning and discovery from the perspective that these mechanisms are 

substantively rational and adaptive. By combining the key family resemblance-properties in prior 

definitions of coincidence (including Coleman & Beitman, 2009; Diaconis & Mosteller, 1989; 

Griffiths & Tenenbaum, 2007; Henry, 1993; Mill, 1843), we proposed a new definition for the 

psychological concept of coincidence which provides the evaluative purpose of the present research: 

“coincidences are surprising pattern [co-occurrence/”co-inCIDence”] repetitions that are observed to 
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be unlikely by chance but are nonetheless ascribed to chance since the search for causal mechanisms 

has not produced anything more plausible than mere chance” (Johansen & Osman, 2015, p. 34). 

 According to this definition, coincidences are improbable and surprising, but these are not 

simply synonyms for coincidence. Coincidences tend to be improbable events, but improbable events 

aren’t necessarily coincidences (Griffiths & Tenenbaum, 2007). For example, rolling a die six times 

and getting 464255 might be just as improbable as 666666 but not nearly as surprising (Maguire, 

Moser, Maguire & Keane, 2019) or as coincidental (Johansen & Osman, 2015). Similarly, 

coincidences are usually surprising (Falk, 1989; Falk & MacGregor, 1983; Johansen & Osman, 

2015) but events that are surprising (e.g. an unexpected firecracker or birthday party) are not 

necessarily coincidences (Johansen & Osman, 2015). So in the context of coincidences, surprise and 

improbability are in relation to co-occurrence/co-incidence patterns that capture attention and 

demand to be explained.    

Contextualized by this definition, and in contrast to the typical view of coincidences as 

indicators of biased cognition, there are two overarching mistakes/biases that can occur when 

reasoning about new causal mechanisms, caricatured as believers and skeptics (alternatively as 

“sheep” and “goats”, Bressan, 2002; Brugger, Landis & Regard, 1990; Matthews & Blackmore, 

1995). The first, believer-mistake, is to infer the existence of a causal mechanism when it does not 

actually exist. The second, skeptic-mistake, is to infer the nonexistence of a causal mechanism which 

actually does exist. Further, both perspectives are potentially biases that trade off risk in the context 

of given data: a believer runs the risk of applying inaccurate causal mechanisms, and a skeptic runs 

the risk of failing to apply a causal mechanism to situations where it does actually apply. From a 

somewhat different perspective, the danger for both is reaching a categorical conclusion, 

“coincidence!” or “cause!”, too quickly. Both tend to be biased to accept the explanation in hand 

when they should probably consider other explanations.  

The believer and skeptic biases invoke a third caricature of the curious enquirer; starting with 
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the same perception as believers and skeptics of a surprising co-occurrence/co-incidence and its 

apparent improbability by chance, the curious enquirer, because of greater consideration of possible 

mechanisms, is slower to make a coincidence versus cause attribution and does so more tentatively. 

In highlighting an alternative perspective from skeptic and believer, the emphasis here is not that 

coincidences indicate biased cognition but rather the opposite. This alternative, enquirer perspective 

exposes a way of thinking about coincidences as a part of the cognitive processing that happens 

before additional evidence that will ultimately adjudicate which causal mechanisms do and don’t 

exist. As such, we propose that coincidences are an integral, unavoidable and useful part of rational 

causal learning and reasoning (Griffiths & Tenenbaum, 2007; Johansen & Osman, 2015), in 

particular as a flag to the curious enquirer that new causal knowledge might be available and further 

evaluation may be warranted. So coincidence judgment, especially in answer to “how coincidental is 

this?”, represents an under-evaluated psychological approach to understanding the adaptive cognitive 

mechanisms for causal reasoning.  

Despite the integral conceptual connections between coincidence and cause and the extensive 

literature on causality judgment, which asks “how causal is this?”, there has been relatively little 

evaluation of coincidence judgment, especially the question “how coincidental is this?”, and even 

less emphasizing the adaptive rather biased aspects of such judgments. More specifically, there are 

many well-formalized mathematical models of causal-learning and reasoning (Cheng, 1997; Jenkins 

& Ward, 1965; Navarro & Kemp, 2017; Pacer, 2016; Pearl, 2000; Spirtes, Glymour, & Scheines, 

2000; Rescorla & Wagner, 1972, Tauber Navarro, Perfors & Steyvers, 2017), but there have been 

very few formal models that have been specifically developed to predict coincidence judgment. The 

most important prior model is what we term “the Bayesian ratio model of coincidence strength”1 

(Griffiths & Tenenbaum, 2007). This model positions coincidences in the Bayesian conceptual 

 

1
 . This is our name rather than theirs for the “Bayesian model[s]” they argued for, but we ultimately propose a model 

that also has Bayesian probabilities and so need a terminological distinction. 
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framework as applied to causal reasoning (see also Griffiths, 2017; Tauber, Navarro, Perfors & 

Steyvers, 2017). It has several of the same key components but also some fundamental differences to 

the model we develop below, so it is important to summarize this model in detail. But the common 

emphasis of both is on coincidences as a part of the adaptive mechanisms for causal reasoning. 

1.1 Bayesian Conceptualization of Coincidences 

The Bayesian ratio model of coincidence strength is directly implied by and was developed to 

support Griffiths and Tenenbaum’s definition of coincidence as “an event that provides support for 

an alternative to a currently favored causal theory, but not necessarily enough support to accept that 

alternative in light of its low prior probability” (2007, p. 180). For example, a “thought-contact 

coincidence”, thinking of contacting someone but they contact you first, does provide genuine 

evidence for a paranormal hypothesis of a telepathic connection. Nevertheless, most people quickly 

dismiss this evidence as insufficient because prior belief summarizes so much evidence against this 

hypothesis, that is, because the prior probability for this hypothesis is extremely small. We evaluated 

this definition and our proposed definition starting in Experiment 1 with the ratio model. In 

particular, our empirical evaluation was in terms of predicting coincidentality judgments (how 

coincidental is this?) from judgments of other concepts implicated in these definitions. 

The Bayesian ratio model and the various belief and uncertainty judgments in our 

experiments are specified in relation to the general Bayesian perspective on causal hypotheses as 

formalized in relation to Bayes’ famous theorem, Equation 1. The emphasis here is not on Bayes’ 

theorem as a mathematical tool (for reversing conditional probabilities), or even as a normative 

probability standard per se but rather as psychological theory with mappings to some of the key 

components in causal reasoning: People have prior beliefs about the world before events happen, and 

they update those beliefs after experiencing those events (Lewandowsky, Griffiths and Kalish, 2009). 

Formally, the belief that a hypothesis, H, is true after the occurrence of events/data, d, maps to the 

conditional probability of the hypothesis being true given that the data has occurred, p(H|d), equation 
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1 left side. And this equates to the prior belief in the hypothesis before the events/data, as the 

probability p(H), multiplied by the current evidence as the conditional probability of the data 

occurring under the (counterfactual) assumption that the hypothesis is definitely true, p(d|H), divided 

by the overall probability of the data, p(d). So the theorem is being used as a psychological theory for 

relating beliefs, expectations and evidence as mapped to probabilities. 

Equation 1. Bayes’ theorem. p(H|d) =
p(d|H)∙p(H)

p(d)
 

Even more importantly, Griffiths and Tenenbaum (2007) proposed a construct called 

“coincidence strength” in relation to evaluating potential coincidences and formalized it as the 

support for and evidence of one causal mechanism as compared to the support and evidence for 

another. (Note that this is about the degree of belief in the existence of a causal mechanism as 

distinct from the concept of causal strength (e.g. Cheng 1997) which is about the strength of the 

connection between cause and effect not the existence of that connection per se.) In the present 

context, it is most useful to consider the alternative “causal” mechanism as chance co-occurrence in 

the absence of a connecting mechanism. This Bayesian belief updating approach (see also Gill, 2014; 

Pearl, 1982; Pearl, 2014) starts with prior relative beliefs about the hypotheses and uses the current 

evidence, the data likelihoods, to generate updated, posterior beliefs in the hypotheses. Here degree 

of belief is an estimated probability of a hypothesis being true, and data likelihood is the estimated 

probability of data co-occurrence if a given hypothesis is definitely true. Thus coincidence strength is 

the relative extent to which one mechanism is supported over the other after the co-incidence has 

occurred. 

Across multiple psychological judgment experiments using manipulated coincidences 

together with many computationally derived probabilities, Griffiths and Tenenbaum (2007) showed 

that coincidence strength is related to the relative posterior hypothesis support as a ratio. It is also 

related to the data likelihood ratio, the probability of the data in the context of the two hypotheses, 

detailed below. 
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Because the results from our experiments will show that coincidence strength is an important 

predictor of judged coincidentality, we describe Griffiths and Tenenbaum’s (2007) ratio model of 

coincidence strength, Equation 2, in detail. Coincidence strength is proportional to the relative 

support, log odds form of Bayes’ Theorem in relation to the evaluation of and belief in causal and 

chance hypotheses. The emphasis in Griffiths and Tenenbaum (2007) was on evaluating two specific 

hypotheses, but the emphasis here is on contrasting causal and chance hypotheses overall. In detail, 

Equation 2 says that the judged coincidence strength, Cs, of a co-incidence is related to the relative 

extent of the posterior belief in and support for the causal hypothesis, p(Ca|d), versus for the chance 

hypothesis, p(Ch|d), expressed as the logarithm of their ratio, log [
p(Ca|d)

p(Ch|d)
]. The probabilities in this 

odds ratio form both derive directly from Bayes’ theorem, Equation 1, and the log odds form has the 

important property of making the posterior log odds the sum of the log data likelihood odds plus the 

prior belief odds. This leads to an extremely useful Bayes’ space conceptualization of coincidence 

strength, Figure 1 (and see Figure 2 in Griffiths & Tenenbaum, 2007). 

Equation 2: Cs~log [
p(Ca|d)

p(Ch|d)
] = log [

p(d|Ca)

p(d|Ch)
] + log [

p(Ca)

p(Ch)
]  

Coincidence strength has a clear interpretation in Bayes’ space as shown in Figure 1, where 

the y-axis is the relative prior beliefs in the causal and chance hypotheses as the log of the ratio of 

their respective probabilities, and the x-axis is the relative likelihoods of the coincidence via the 

causal and chance hypotheses as the log ratio of these probabilities. Then each point in the space, as 

a combination of an x-axis co-ordinate and a y-axis co-ordinate, corresponds to a coincidence 

strength as per Equation 2. Events toward the bottom left hand of the space are “just coincidence”. 

They correspond to a priors ratio (on the y-axis) favoring the chance hypothesis over the causal 

hypothesis; p(Ch) > p(Ca), the ratio p(Ca) / p(Ch) is a small number less than 1, and so the log of 

p(Ca)/p(Ch) is negative. Further, the log likelihoods ratio on the x-axis only slightly favors the data 

as occurring due to the causal hypothesis over the chance; p(d|Ca) is only slightly larger than 
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p(d|Ch), p(d|Ca) / p(d|Ch) is only slightly larger than 1, so log p(d|Ca)/p(d|Ch) is only moderately 

positive. Thus the only slightly positive log likelihoods ratio isn’t sufficient to overcome the 

substantially negative log priors ratio, resulting in relatively low coincidence strength. Coincidence 

strength, then, increases diagonally from the bottom left to the top right of the space; going from the 

region of “just coincidence” to “suspicious coincidence” (separated by a small dotted line) 

corresponds to the positive log likelihoods ratio doing a better job of overcoming the negative log 

priors ratio, and a better job still for “evidence” region (to use Griffiths and Tenenbaum’s 

terminology). The dashed line through the origin from the top left to the bottom right of the space 

corresponds to a posteriors ratio of one, that is equal belief in the causal and chance hypotheses, and 

the increase in coincidence strength, from just coincidence to suspicious coincidence to evidence, 

occurs orthogonal to this negative diagonal. 

As a concrete example, consider the simple thought-contact coincidence mentioned earlier, in 

relation to the Bayes’ space in Figure 1: Prior belief in the causal hypothesis that just thinking of 

someone will cause (via telepathic communication) them to get in touch is low (for most people) and 

correspondingly prior belief in the chance hypothesis that such co-incidences are just due to chance 

is high (it just so happens that you thought of them at the same time they thought of you). Thus the 

prior relative belief ratio for the causal to chance hypothesis is a number substantially less than 1, 

p(Ca)

p(Ch)
, because belief in the causal hypothesis is substantially less than the chance hypothesis. The 

natural log of this priors ratio is then a negative number corresponding to a value on the y-axis 

toward the bottom in the figure. Now consider the data likelihoods of the thought-contact event given 

the causal and chance hypothesis respectively. These are hypothetical conditional probabilities; 

under the counterfactual assumption that the (paranormal) causal hypothesis is true, what is the 

probability that the thought-contact event occurs? The implication is that p(d|Ca) is a relatively 

large probability. (Note, though, that this probability need not be that near 1 just as a causal 

mechanism definitely existing doesn’t necessarily mean that the cause always produces the effect.) 
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Figure 1. Coincidence strength, the posteriors belief ratio for the causal and chance hypotheses, in 

Bayes’ space. The x-axis is the log of the data likelihoods ratio for the causal and chance hypotheses 

respectively. The y-axis is the log of the priors ratio of beliefs in the causal and chance hypotheses 

respectively. The blue arrow indicates increasing coincidence strength. See main text for details. 

Figure adapted partly from Figure 2 in Griffiths and Tenenbaum (2007). 

 

Correspondingly, the probability of the thought-contact event if the chance hypothesis is true can’t 

be all that high, especially for example if the friend was from childhood and not heard from in 

twenty years. So p(d|Ch) is implied to be a relatively small probability. Thus the data likelihoods odds 

ratio, 
p(d|Ca)

p(d|Ch)
, is a number substantially bigger than 1 because the data are a lot more likely via the 

causal hypothesis than the chance hypothesis. The natural log of likelihoods ratio is then a positive 
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number corresponding to a value on the x-axis toward the right in the figure. The combination of the 

small log priors ratio toward the bottom of the y-axis, log
p(Ca)

p(Ch)
, with the large log likelihoods ratio 

to the right on the x-axis with the likelihoods ratio, 
p(d|Ca)

p(d|Ch)
, puts coincidences in general 

predominantly in the bottom right quadrant of the space and with an intermediate posteriors ratio 

near 1 corresponding to a log posteriors ratio near 0, log
p(Ca|d)

p(Ch|d)
= log

p(d|Ca)
p(d|Ch)

+ log
p(Ca)

p(Ch)
 .  This 

fits neatly with Griffiths and Tenenbaum’s (2007) definition of coincidences as events which provide 

some support for an alternative, e.g. paranormal, hypothesis over some other hypothesis such as 

chance but not enough to overcome prior beliefs against the alternative hypothesis. And the larger 

the log posterior ratio, the greater the evidence for the causal mechanism and thus the greater 

coincidence strength. So again coincidence strength as relative evidence for the causal hypothesis 

over the chance increases diagonally from the bottom left to the top right of the space, Figure 1. As 

subsequent results from our experiments will show, this space provides a partial, but incomplete 

account of coincidentality, in response to the question “how coincidental is this?” We will argue 

causality and coincidentality are not equivalent constructs but rather correspond to different things.   

 Before giving an overview of our research, a real example of an actual coincidence, the solar 

eclipse coincidence, is useful to contextualize the key purposes of this research and preview a key 

conclusion: The remarkably close co-incidence of the apparent size of the moon and sun during 

certain kinds of solar eclipse in the only place in the universe where we know there is life has been 

widely noted; had either been slightly bigger/smaller, slightly closer/farther, etc., eclipse alignment 

wouldn’t be nearly as good or as surprising as it is. A common believer perspective, especially for 

advocates of various religions, is to argue that the co-incidence is too unlikely by chance (d|Ch is 

judged small) to actually be chance (Ch|d is believed small), and the lack of a standard causal 

mechanism linking good eclipses and life (Ca|d and d|Ca are small) means that a deity must have 

caused both. In reaction, a common skeptic perspective is to admit this co-incidence is fairly unlikely 
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by chance (d|Ch), but then argue as follows: the lack of a clear causal mechanism (Ca|d and d|Ca are 

small) implies this is just a chance event, i.e. a coincidence (Ch|d is relatively large because of the 

large prior belief in chance, p(Ch)). They also tend to point to the many attributes the earth has as 

providing many possible places surprising coincidences might have occurred thus increasing the 

probability of such co-incidences in at least some of these just by chance, i.e. p(Ch|d) is large even 

though d|Ch for the specific co-incidence is small.  In contrast to both of these approaches to 

interpreting this co-incidence, the emphasis here is on the curious enquirer who, like the others, notes 

the surprising improbability of the co-incidence by chance (small d|Ch) as well as by well-

established causal mechanisms (small d|Ca). However unlike the skeptics and believers, the curious 

enquirer is extremely suspicious that there might be an as yet unclear causal mechanism operating, 

but they are also actively looking for and wanting a lot more evidence, as there is currently only one 

place known to have life, the earth. And it is worth emphasizing that, in contrast to research 

comparing human/psychological judgment against a normative standard, the true/normative values 

for the key judged probabilities do not tend to be objectively known for real co-incidence situations 

involving causal suspicion. The objective truth isn’t yet clear. As such, while co-incidences occur 

objectively in the world, coincidences are perceptions associated with beliefs and judgments and so 

are psychological phenomena in peoples’ minds. 

1.2 Research Purpose and Overview 

The data-driven purpose of this research was to evaluate the basic psychological judgment 

properties of coincidences using a reasonably large sample of real, naturally occurring coincidences 

from a diary study. The rationale for this, in contrast to most prior judgment studies on coincidences, 

was to avoid using artificially fabricated or manipulated coincidences so as to evaluate the judgment 

processes involved with the conceptual richness of real events, as self-judged coincidences by the 

participants that had experienced them (Diary study). And the central judgment we asked all of our 
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participants to provide, in contrast to the large prior literature on causality, was coincidentality as the 

answer to the basic question, “how coincidental is this?” 

The theory-driven purpose of our empirical work was to support our psychological definition 

by developing a model of coincidentality based on psychological judgments for concepts implicated 

by the definition. But it is worth highlighting that we did not give participants this or any other 

definition of coincidence. Four experiments progressively evaluated the conceptual components in 

our definition of coincidence and their relations to judged coincidentality:  Experiment 1 measured 

degree belief in the truth of causal and chance hypotheses as related to the part of the definition 

“coincidences are…. ascribed to chance [p(Ch|d) is high]… search… has not produced anything 

more plausible than mere chance [p(Ca|d) is low]”.  Experiment 2 assessed event likelihood 

(probability) in the context of causal and chance hypotheses as related to the part of the definition, 

“coincidences are … unlikely by chance [d|Ch is low]”. Experiment 3 elicited judgments of event 

surprisingness, “coincidences are surprising…”, and evaluated several ways of formalizing surprise 

based on event likelihood judgments. Finally, Experiment 4 evaluates all key judgments in a within 

participants design so as to assess the relations between all the key components of the definition.2. 

Ultimately, the purpose was to support the psychological construct of coincidentality as a cognitive 

marker that new causal mechanisms might be operating and further evaluation may lead to new, 

adaptive causal knowledge. 

2. Materials Diary Study 

This study collected a sample of naturally occurring self-reported coincidences. These were 

used as materials for subsequent judgment experiments. 

 

2 These experiments also had other judgment and/or trait tasks, usually small and at the end, the results of which 

we do not report in the interests of space and focus These included a variety of clinical and personality measures and 

small judgment tasks such as judgments about contrived coincidences with known probabilities. Methodologically, the 

core judgment tasks were unlikely to have been substantively influenced by these other tasks as they were mostly 

completed after the core judgment tasks. 
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2.1 Methods 

2.2.1 Participants 

Twenty-five students from University of Surrey and University College London completed 

this experiment in exchange for partial course credit or an option to enter a £50 lottery draw. 

2.2.2 Procedure 

Each participant was asked to record any coincidences they experienced in a booklet “in as 

much detail as possible.” The diary covered a five-week period. 

2.2 Results and Discussion 

Participants recorded 102 coincidences, examples in Table 1. Five of these were eliminated 

(as potentially offensive), and the set of 97 coincidences used in subsequent experiments was edited 

only slightly to fix typographical errors/spelling mistakes.  A key aspect of these results is that, 

unlike most prior research, the participants were actively watching for coincidences rather than 

retrospectively reporting them (Bressan, 2002). 

3. Experiment 1. Coincidentality and the Likeliness of Causal/Chance Hypotheses Given the Data 

This experiment evaluated three key judgments—coincidentality, causal likeliness and 

chance likeliness--for the diary set of coincidences. These judgments were answers to the questions, 

How coincidental is this?, How likely due to chance? and How likely due to causal mechanism?, all 

Table 1. Example coincidences from the diary study 

Blond-guy coincidence 

(typically judged most 

coincidental in the set and 

marked by red circles in 

subsequent figures.) 

“In January I was in NZ. I was in a Belgian restaurant with my 

parents when we noticed an English family, particularly a blond 

guy that was my age drinking next to a bus. When I moved to 

Guildford I met the same guy again because we were going to 

the same gym.” 

 

Weekend-alarm coincidence 

(typically judged least 

coincidental, blue squares.) 

 

“At the week-end I woke up at almost exactly the same time my 

alarm goes off on a weekday.” 

 

Thought-contact coincidence 

 

“Having been discussing the unlikelihood of bumping into a 

certain person that I have not seen for ages around campus, I 

bumped into them on several occasions later that day.”  
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on 1 to 100 judgment scales. Having both causal and chance likeliness judgments as estimates of 

belief in the posterior hypotheses for cause and chance respectively allowed direct assessment of the 

Bayesian ratio model, Equation 2. 

3.1 Methods 

3.1.1 Participants 

Thirty-three undergraduate psychology students at Cardiff University completed this 

experiment in exchange for course credit as part of a participant panel. 

3.1.2 Materials, Design and Procedure 

In overview, judgment tasks were presented as a series of worksheets in Microsoft Excel with 

instructions to work through the sheets in order. The instructions for each task were in the top left 

cell of each worksheet, and the order of the coincidences on each sheet was randomized.  

Participants completed three separate judgment tasks on the 97 diary study coincidences: 1) 

coincidentality, 2) causal likeliness and 3) chance likeliness--in counterbalanced order. The 

coincidentality rating task was to answer the question, “how coincidental is this?” for each of the 97 

coincidences on a scale from 1, not at all coincidental, to 100, extremely coincidental. The causal 

likeliness instructions were, “On a scale from 1 to 100 please specify how likely the events in each 

description are to have been causally connected where 1 is not at all likely to have been causally 

connected and 100 is extremely likely to have been causally connected.” The chance likeliness task 

instructions were, “On a scale from 1 to 100, please specify how likely the events in each description 

are to have occurred by chance where 1 is not at all likely to have occurred by chance and 100 is 

extremely likely to have occurred by chance.”  

3.1.3 Data tabulation and modeling analysis 

The handling of missing, ambiguous and repetitive responses as well as judgment scale 

reversals by a minority of participants for this and subsequent experiments is described in detail in 
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Appendix A. But to summarize: Averaged data in figures and modeling results was based on all data 

except that a small number of individual responses that were substantially outside of the judgment 

scales (1 to 100), e.g. 606, were deleted. However, combined plots of individual participant 

responses, e.g. Figure 2 bottom panels, only included participants with no scale reversals, as did 

individual participant model fits. It is worth noting that prior research, including Griffiths and 

Tenenbaum (2007), has also eliminated scale-reversed participants. However, such scale reversals 

were relatively rare here, e.g. only four participants out of 33 apparently reversed the coincidentality 

scale in this experiment. Also we report correlation, r, for judgment relations and R2 for model fits. 

3.2 Results and Discussion 

Coincidentality was negatively related to causal likeliness for both data averaged across 

participants by coincidence, r = -0.75, and all (nonreversed) individual participant judgements 

combined together, r = - 0.37. Coincidentality was positively related to chance likeliness for both 

averaged data, r = + 0.90, and combined (nonreversed) data, r = +0.58. Further, since causal and 

chance hypotheses are mutually exclusive, increased support for one conceptually corresponds to 

decreased support for the other, consistent with the observed negative relationship between causal 

and chance likeliness rates for averaged data, r = -0.77, and combined (nonreversed) data, r = -0.44. 

Thus, the causal and chance likeliness judgments are consistent with these being measures of support 

for and degree of belief in the Bayesian posterior hypotheses for cause and chance. 

Combining the causal and chance likeliness judgments together in a posteriors hypothesis 

belief ratio, Equation 2, coincidentality was inversely related to this ratio, Figure 2; it accounted for 

70% of the variance in coincidentality for averaged data, R2 = 0.70 top panel, for 25% of the variance 

of the combined (nonreversed) results, R2 = 0.25 in the bottom panels, and an average of 26% of the 

variance for individual (nonreversed) participants (R2 = 0.26, model details in Appendix B).  

Posterior ratios greater than 1 correspond to a balance of support favoring causal mechanisms over 

chance, so for example the ‘weekend-alarm’ coincidence (Table 1) had an averaged posteriors ratio 
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of slightly less than 3 (the blue square Figure 2 top panel), supporting the causal over the chance 

hypothesis. Posteriors ratios less than 1 correspond to a balance of evidence favoring chance over 

causal mechanisms, so for example the ‘blond-guy’ coincidence had a posterior ratio of less than 0.5 

thus supporting the chance hypothesis (the red circle Figure 2 top panel). Since these events were 

reported coincidences, the majority had posterior ratios less than 1. 

The results in Figure 2 show that judged coincidentality is inversely related to the posteriors 

ratio and thus inversely related to the construct of coincidence strength, equation 1. Further the trend 

line in the figure suggests this relationship is logarithmic. So the first form of the coincidentality 

model, Equation 3, is that coincidentality is related to the log of the inverted posteriors belief ratio. 

And to account for individual differences in scale use, the model has two scaling parameters; 

Co_scale, to accommodate participants who restricting their responding to a subsection of a 

judgment scale, and a centrality parameter, Co_mid, to account for participants whose sets of 

coincidentality judgments were not centered on the middle of judgment scale. 

Equation 3. C∅~Co_scale ∙ loge [
1

Cs
] +Comid

, Cs ≈
p(𝐂𝐚|𝐝)

p(𝐂𝐡|𝐝)
=

1−p(𝐂𝐡|𝐝)

p(𝐂𝐡|𝐝)
 

Taken together, these results indicate the stability of coincidentality (how coincidental is 

this?) as a psychological construction. In particular, this stability is indicated by coherence with other 

judgments, e.g. the predictiveness of coincidence strength.  These results support the component of 

our definition of coincidences as events which are “ascribed to chance [p(Ch|d) is high] since the 

search for causal mechanisms has not produced anything [p(Ca|d) is low] more plausible than chance 

[the inverted posterior ratio p(Ch|d)/p(Ca|d) is large].” However, what is apparently missing is 

support for that aspect of our definition of coincidence as “unlikely by chance....” This is implied in 

the combined (nonreversed) judgment results for coincidentality versus coincidence strength in the 

bottom panels of Figure 2: when belief in the causal hypothesis posterior is large relative to the 

chance posterior, coincidentality is constrained to be low, consistent with things that are definitely 

causally connected not being coincidences; but when the causal posterior is low, coincidentality is 



18 

 

not correspondingly constrained and can be high or low. Both the proposed definition of coincidence 

and the data in the bottom panel of Figure 2 suggest that another factor contributes to coincidentality 

when the causal posterior is not large (relative to the chance posterior). And the representation of 

coincidence strength, Equation 2, in Bayes’ space, Figure 1, makes plausible suggestions for what  

Figure 2. Average coincidentality versus the ratio of the average causal likeliness (Ca|d) to the 

average chance likeliness (Ch|d), top panel, and combined plots of all nonreversed participants’ 

judgments, bottom panels, from Experiment 1. Error bars are standard error. Note that the left bottom 

panel is a magnification of the right bottom panel for posterior ratios between 0 and 5. The trend line 

is logarithmic. Red circles are the blond-guy coincidence and blue squares are the weekend-alarm 

coincidence from Table 1. A small amount of noise jitter has been added to the data points in this and 

subsequent combined data panels to more clearly convey data density.   
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this might be in terms of the data likelihoods; the likelihood of the co-incidence under the 

 (counterfactual) assumption that the causal hypothesis is definitely true, p(d|Ca), and the likelihood 

of the coincidence given that the chance hypothesis is definitely true, p(d|Ch). As described in the 

Introduction, it is conceptually important to distinguish data likelihoods given the hypotheses, 

p(d|Ca) and p(d|Ch), from the posterior probabilities of the hypotheses given the data, p(Ca|d) and 

p(Ch|d). This was examined in Experiment 2.  

4. Experiment 2. Coincidentality and Data Likelihood Given the Causal and Chance Hypotheses 

The primary purpose of this experiment was to add judgments of data likelihood for the 

causal and chance hypotheses. Experiment 1’s likeliness judgments were about posteriors hypotheses 

beliefs, e.g. a preference for the chance hypothesis over the causal hypothesis such as for a thought-

contact coincidence that does not produce posterior belief in a paranormal causal hypothesis about 

telepathic connection. But even if posterior belief/likeliness is low, data likelihoods for paranormal 

causal hypotheses can be high for coincidences, e.g. if telepathic connections are assumed to 

definitely exist, the probability of such coincidences might be genuinely high. To emphasize, both 

Bayes’ theorem (Equation 1) and coincidence strength (Equation 2) suggest that likelinesses and 

likelihoods are different concepts. A key motivation for these judgments is to address the distinction 

in our definition of coincidence “unlikely by chance, but nonetheless ascribed to chance....” And a 

related benefit is that these measures then allow coincidentality to be evaluated in relation to the 

conceptually powerful Bayes’ space (Griffiths & Tenenbaum, 2007) in Figure 1, and to Griffiths and 

Tenenbaum’s definition of coincidence as events where there is a contrast between prior beliefs and 

present evidence. 

4.1 Methods 

4.1.1 Participants 

The forty participants were from a psychology participant panel at Cardiff University, 17 as 

part of a paid panel and 23 in exchange for partial course credit. 
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4.1.2 Materials, Design and Procedure 

As with Experiment 1, Experiment 2 measured coincidentality, causal likeliness as a measure 

of posterior belief in the causal hypothesis and chance likeliness as posterior belief in the chance 

hypothesis separately on all 97 diary study coincidences. In addition, causal data likelihood and 

chance likelihood were also separately assessed on the full set. Thus Experiment 2 contained 

judgments of both posterior hypothesis probabilities and both coincidence likelihoods given those 

hypotheses. Causal likelihood, as the probability of the data given the causal hypothesis (d|Ca), was 

measured using the following (counterfactual) instructions: “Assume you know for sure that the 

events in each description are the result of a causal mechanism connecting them. However keep in 

mind that some causally connected events are less or more likely to occur than others. On a scale 

from 1 to 100, please specify how likely the events in each description are to have occurred where 1 

is not at all likely and 100 is extremely likely to have occurred.” Similarly, chance likelihood as the 

probability of the data given the chance hypothesis (d|Ch) was assessed using similar instructions 

starting, “Assume you know for sure that the events in each description occurred solely as a result of 

chance. However keep in mind that some chance events are less or more likely to occur than others. 

On a scale from 1 to 100. . . .” As in previous experiments, the coincidences were in different 

random orders for each task and participant. 

All participants completed the coincidentality rating task. However, to keep the experiment to 

a reasonable length, only half of the participants completed each probability rating task; that is, half 

of the participations did the causal posterior task (Ca|d) and the chance likelihood task (d|Ch) while 

the other half of the participants did the chance posterior task (Ch|d) and the causal likelihood task 

(d|Ca). Thus, each participant did three separate ratings tasks on the full diary set. The first two tasks 

were coincidentality and a posterior ratings task (either Ca|d or Ch|d) with order counterbalanced 

across participants. The third rating task was always a likelihood rating task, either causal (d|Ca) or 

chance likelihood (d|Ch). 
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4.2 Results and Discussion 

Experiment 2 replicated Experiment 1 for coincidentality and the posteriors judgments again 

indicating the stability of these constructs; there was a negative relationship between coincidentality 

and the causal posterior for averaged data, r = -0.76 shown in Figure 3’s top left panel, and a positive 

relationship between coincidentality and the chance posterior, r = 0.53, top right panel. The key 

additional results were that coincidentality was negatively related to average causal likelihood, r =    

-0.85 shown in Figure 3’s bottom left panel, and, critically, that coincidentality was negatively 

related to chance likelihood, r = -0.85, bottom right panel. 

Taken together, the difference in the relationships between coincidentality and, respectively, 

the chance posteriors (Figure 3 top right panel) and the chance likelihoods (bottom right panel) 

supports our definition of coincidence as “unlikely by chance but… ascribed to chance…”, i.e. 

coincidences are “unlikely by chance” in terms of a relatively small chance likelihood, p(d|Ch), “but 

nonetheless ascribed to chance” in terms of a relatively large chance posterior, p(Ch|d), because “the 

search for causal mechanisms has not produced anything”, the causal posterior being small, “more 

plausible than mere chance”, relative to the chance posterior.  

Having judgments of both posterior hypothesis probabilities and both coincidence likelihoods 

means that all three of the key Bayesian ratios can be specified (equation 2): the posteriors ratio of 

the causal to chance hypotheses, p(Ca|d)/p(Ch|d); the likelihoods ratio for the coincidence given the 

cause and chance hypothesis, p(d|Ca)/p(d|Ch) and the priors ratio for the causal and chance 

hypotheses, p(Ca)/p(Ch), which can be inferred via Bayes’ theorem (as the posteriors ratio divided 

by the likelihoods ratio). Having all three ratios allows coincidentality to be represented in the 

conceptual Bayes’ space (Griffiths and Tenenbaum, 2007) described in the Introduction (Figure 1) 

and shown for the present data in the central panel of Figure 4. In Figure 4 coincidentality is color 

coded in relation to the two key extreme coincidences (Table 1), the ‘blond-guy’ coincidence (the 

large red circle), and the ‘weekend-alarm’ coincidence (the large blue square). The top panel 
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explicitly shows this color coding with coincidentality, y-axis, versus the log of the coincidence 

likelihoods ratio, x-axis, and the far right panel shows coincidentality, x-axis, versus the log of the 

priors ratio, y-axis. The bottom left panel then shows color-coded coincidentality in Bayes’ space 

with the log priors ratio on the x-axis, aligned with the x-axis in the top panel, and the log likelihoods 

ratio on the y-axis, aligned with the y-axis in the far right panel. This representation supports  

Figure 3. Coincidentality versus each of the four probability judgments--the causal and chance 

posteriors and the causal and chance likelihoods--for averaged judgments from Experiment 2. Error 

bars are standard error. Trendlines are linear with percentage of variance accounted for. Red circles 

are the blond-guy coincidence and blue squares are the weekend-alarm coincidence from Table 1. 
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Griffiths and Tenenbaum’s (2007) claim and definition that coincidences tend to be events where the 

 likelihood ratio is positive, that is, data points to the right of zero on the x-axis favoring the data as 

the result of a causal hypothesis, but the priors ratio is negative, data points below zero on the y-axis 

favoring the chance hypothesis; thus most of the coincidences are in the bottom right hand quadrant,  

Figure 4. Average coincidentality color coded in Bayes’ space (Figure 1) composed of the log of the 

priors ratios of the averages, y-axis, and the log of the likelihoods ratios of the averages, the x-axis of 

the central panel, for data from Experiment 2. The top panel shows the color coding of 

coincidentality, y-axis, in relation to the log likelihoods ratio, the x-axis, red is most coincidental and 

blue is least. And the right panel shows a similar coding of coincidentality for the priors ratio. Large 

Red circles are the blond-guy coincidence, and large blue squares are the weekend-alarm coincidence 

from Table 1. 
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with only a handful of probably causal events in the top right hand quadrant, notably the weekend-

alarm coincidence (Table 1) as the most causal of the events. 

An important aspect of representing coincidentality in Bayes’ space (Figure 4) is that 

coincidentality seems to increase roughly along a negative diagonal from the top left, the weekend- 

alarm coincidence, to the bottom right, the blond-guy coincidence. A particular benefit of Bayes’ 

space is that it corresponds to a specific formalization for the concept that is explicitly missing from 

the posteriors ratio as related to coincidentality, namely surprise. Surprise features prominently in 

our definition of coincidence in terms of “surprising pattern repetitions,” and intuitively/anecdotally 

surprise is a very common property of coincidences. This Bayesian surprise, shown in an updated 

version of Bayes’ space in Figure 5, was described by Griffiths and Tenenbaum (2007, and relatedly 

by Baldi & Itti, 2010) as the extent of the conflict/disagreement between expectations (prior beliefs) 

and current events (data likelihoods). In detail, this conflict is between the likelihoods ratio and 

priors ratio in terms of the priors ratio favoring the chance hypothesis but the likelihoods ratio 

favoring the data as from the causal hypothesis. Thus, Bayesian surprise increases toward the bottom 

right hand of the space since points progressively farther toward the bottom right correspond to 

progressively more positive log likelihoods ratios on the x-axis (favoring the data as from the causal 

hypothesis) but progressively more negative values of the priors ratio on the y-axis (favoring the 

chance hypothesis). So the larger the likelihoods ratio and the smaller the priors ratio the greater 

Bayesian surprise. This suggests Bayesian surprise is based on a ratio of these two ratios, Equation 4 

right hand side, that is, the likelihoods ratio divided by the priors ratio; the larger the likelihood ratio 

in the numerator and the smaller the priors ratio in the denominator, the bigger the ratio of ratios and 

the higher Bayesian surprise. Conceptually, the reason the posteriors ratio, Equation 2, isn't a 

measure of Bayesian surprise is that a posteriors ratio of one can arise because the likelihoods and 

priors ratios are both 1 or because the priors ratio is very small and the likelihoods ratio is very large. 
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Thus, coincidence strength by itself doesn’t indicate surprise, but the extent of the conflict between 

prior beliefs and present events does, Equation 4. 

To facilitate evaluation of Bayesian surprise, the bottom left panel of Figure 6 presents an 

updated Bayes’ space where the x-axis is Bayesian surprise, the log ratio of the likelihoods ratio to 

the priors ratio, i.e. a ratio of ratios, and the y-axis is then the log of the posteriors ratio. This is not a 

new space but is rather a rotation of the original space, in Figure 4, by 45 degrees counter-clockwise. 

But now the additional smaller panels associated with each axis in the main panel on the bottom left  

Figure 5. Bayesian surprise as the extent of the disagreement between the prior belief and data 

likelihoods ratios the y and x axes respectively in the Bayes’ space from Figure 1 in the Introduction. 
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show color-coded coincidentality in relation to Bayesian surprise (top panel) and to the posterior 

ratio (right panel). Bayesian surprise accounted for R2 = 0.49 of the variance in coincidentality for 

averaged data (Figure 6 top panel), coincidence strength for R2 = 0.53 (right panel) and the 

combination of both for R2 = 0.55 (Appendix B). This updated model is in Equation 4.  

Equation 4. C∅~Co_scale ∙ loge [Su ∙
1

Cs
] +Co_mid, Cs ≈

p(𝐂𝐚|𝐝)

p(𝐂𝐡|𝐝)
, 𝐒𝐮~Bs ≈

(
𝐩(𝐝|𝐂𝐚)

𝐩(𝐝|𝐂𝐡)
)

(
p(𝐂𝐚)

p(𝐂𝐡)
)

 

Figure 6. Average coincidentality from Experiment 2 color coded in rotated Bayes’ space, with the 

log of Bayesian surprise on the x-axis and log coincidence strength on the y-axis of the central panel. 

The color coding of coincidentality, blue for low coincidentality and red for high, is shown in 

relation to log Bayesian surprise on the x-axis in the top panel and in relation to the log posteriors 

ratio on the y-axis in the right panel. Large Red circles are the blond-guy coincidence, and large blue 

squares are the weekend-alarm coincidence from Table 1. 
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In summary, Experiment 2 replicated and extended the prior experiment in terms of predicting 

coincidentality. The results support the contrast between the chance likelihood and the chance  

posterior in the definition of coincidence in terms of “unlikely by chance but nonetheless  

ascribed to chance”. Furthermore, these results replicate the (negative) relationship between 

coincidentality and coincidence strength and show that Bayesian surprise is also a good predictor of  

coincidentality. The conceptual and empirical importance of surprise for coincidences strongly 

suggested measuring judgments of surprise, Experiment 3. 

5. Experiment 3. Coincidentality and Surprise 

While not a synonym for coincidence (e.g. a sudden loud bang need not be a coincidence), 

surprise is a very typical attribute of coincidences anecdotally, in prior definitions including ours 

(e.g. Henry, 1993; Johansen & Osman, 2015) and in prior coincidence research (e.g. Falk & 

MacGregor, 1983). Surprise is an emotion associated with unexpected events and responding to such 

events with heightened awareness (expressed as widened eyes, etc.) and vigilance (Izard, 1991). And 

surprise, in terms of an unexpected event, is implicated as a basic part of associative learning in 

terms of prediction error e.g. as formalized in the Rescorla-Wagner model (Rescorla & Wagner, 

1972). Relatedly, surprise can act as an attractor/driver for attention (e.g. Baldi & Itti, 2005). Foster 

and Keane (2015; 2019) propose a metacognitive explanation-based theory of surprise where 

surprise is inversely related to the availability of plausible explanations, similar to the argument we 

make for coincidences in terms of the initial lack of mechanisms that are plausible. From their 

perspective, surprise as a continuous construct is a metacognitive marker anticipating the amount of 

effort it will take to find the right explanation and eliminate the surprise. Our view in the context of 

coincidences is more constrained in that surprise is the lack of plausible explanations as related to the 

improbability of the mechanisms in hand; sometimes coincidences that initially are very surprising 

on reflection resolve with a sudden, low effort realization of a plausible explanation. Foster and 

Keane (2015) also argue against a probability-based theory of surprise. Computational complexity 
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theory provides a related perspective (Schmidhuber, 2009) on psychological surprise as a 

metacognitive anticipation of the potential for data compressibility; in the context of the goal to 

accurately keep a record of events in reality, truly random events tend to require very long 

descriptions corresponding to data that are relatively uncompressible. In contrast, events with a good 

theoretical account are well summarized by that account, and hence the data are highly compressible 

in terms of only needing to store the account rather than all the different data points. From this 

perspective, surprise anticipates the potential for such a good account before the mechanisms 

underlying that compressibility have been fully worked out. So surprise can be seen as occurring for 

an intermediate state between completely random (uncompressible) and completely predictable (very 

compressible) data (Schmidhuber, 2009). While coincidences tend to be fairly unique events with 

relatively little immediate compressibility because the data are so limited, they do imply the potential 

for such compressibility in the future in terms of an unknown mechanism. And this is related to the 

concept of a “randomness deficiency” in data (Li & Vitányi, 2019) in terms of apparent patterns in 

the data which don’t obviously correspond to plausible known mechanisms. And the idea of 

randomness deficiency eliciting surprise (Maguire, et al. 2019) as a contrast between an apparent 

pattern and chance resonates strongly with our definition of coincidence (Johansen & Osman, 2015). 

Finally, the pervasive idea of surprise as a contrast between expectations and events arises naturally 

in the Bayesian framework. We’ve formalized this to align with Bayes’ space in Figure 5 (Griffiths 

& Tenenbaum, 2007) but related accounts have been in terms of the difference between the 

distributions of the posteriors and priors (Baldi & Itti, 2010). Overall these different perspectives on 

surprise all implicate its importance for adaptive behavior in the face of uncertain events. As such, 

co-occurrence surprise is an important property of coincidences.    

The purpose of this experiment was to evaluate judged surprise and its relationships with 

coincidentality and the various uncertainty judgements, which were used to specify several derived 

measures of surprise including Bayesian surprise. In addition, coincidences sometimes acquire 
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importance in terms of fortune, luck or fate in the context of various paranormal beliefs because of 

the personal benefit or harm attached to them (Beitman, 2009; Henry, 1993). More generally 

outcome valence in terms of benefit and harm has a pervasive role in causal reasoning (e.g. Shultz, 

1982; Shultz, Fisher, Pratt & Rulf, 1986; Fugelsang & Thompson, 2000). Experiment 3 also 

evaluated judged valence, that is how good or bad each coincidence was for the person who 

experienced it. 

5.1 Methods 

5.1.1 Participants 

Fifty participants completed this experiment in exchange for partial course credit as part of a 

psychology participant panel at Cardiff University. 

5.1.2 Materials, Design and Procedure 

As with Experiment 2, Experiment 3 included judgments for coincidentality, the causal and 

chance hypothesis posteriors, and the causal and chance likelihoods. In addition, Experiment 3 

included a rating of surprise, “Please specify how surprising the events in each description are where 

1 is not at all surprising and 100 is extremely surprising.” Also, there was a valence rating task, “On 

a scale from -100 to +100, please specify how bad or good the person who experienced the events in 

each description found them where -100 is extremely bad, 0 is neutral and +100 is extremely good.” 

All participants in Experiment 3 completed four separate judgment tasks on the diary set of 

97 coincidences. In particular, all participants did the coincidentality rating task and a separate 

surprise and valence task which asked for both surprise and valence ratings for each coincidence. 

Half of the participants did the two posteriors judgments as two separate tasks while the other half of 

the participants did the two likelihoods judgments as separate tasks. Task order was counterbalanced. 

5.2 Results and Discussion 
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Experiment 3 replicated the key relationships between coincidentality, the two posteriors 

hypothesis judgments and the two coincidence likelihoods judgments; consistent with Experiment 

2’s results, Figure 3, average coincidentality here was negatively related to the causal posterior, r = -

0.62, positively related to the chance posterior, r = 0.68, negatively related to the causal likelihood, r 

= -0.76, and negatively related to the chance likelihood, r = -0.69. More importantly, coincidentality 

was positively related to judged surprise, r = 0.90 for averaged data and r = 0.52 for combined 

(nonreversed) data. However, coincidentality and judged valence had no apparent relationship, r = 

0.04 for averaged data. While the valence results are somewhat puzzling, a plausible reason for the 

lack of any apparent relationship is that the valence judgments were for someone else’s rather than 

personally experienced events. Since they are not predictive of coincidentality here and not explicitly 

in our definition of coincidence, we don’t consider them further. 

Having measures of surprise and coincidence strength means that color-coded coincidentality 

can be represented in an analogue of the rotated Bayes’ space from Experiment 2’s Figure 6 as 

shown here in Figure 7. Notably, coincidentality increases toward the bottom right where surprise is 

high and the log of the posteriors belief ratio is negative, favoring the chance hypothesis. The 

combination of surprise and coincidence strength predicted coincidentality reasonably well, R2 = 

0.84 for averaged data and an average of R2 = 0.19 for individual participants (model details in 

Appendix B). In this context, surprise by itself was a better predictor of coincidentality (R2 = 0.80) 

than coincidence strength (R2 = 0.48) for averaged data and for individual (nonreversed) participants, 

average R2 = 0.18 versus 0.11 (Appendix B). However, about a quarter of the individual participants 

who did all the relevant judgments had coincidence strength as a better predictor of coincidentality 

than surprise, suggesting that both are relevant, consistent with the combined space (Figure 7). 

As anticipated in the results of Experiment 2 (Figure 6), Bayesian surprise (the log of the likelihood 

ratio divided by the priors ratio) was positively related to judged surprise in this experiment, R2 = 

0.12. The underlying reason for this relatively poor predictiveness was that the (log) likelihoods ratio 
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was only moderately (negatively) related to judged surprise, R2 = 0.11, whereas the sum of the two 

coincidence likelihood judgments was strongly (negatively) related to surprise, R2 = 0.67. And this 

suggests an alternative measure of surprise, data surprise. 

Figure 7. Coincidentality in a space composed of surprise, central panel x-axis, and the log of the 

posteriors ratio, y-axis, for averaged data from Experiment 3, color coded by coincidentality. The 

color coding of coincidentality, blue for low coincidentality and red for high, is shown in relation to 

surprise on the x-axis in the top panel and in relation to the log of coincidence strength (the posterior 

hypothesis belief ratio) on the y-axis in the right panel. 

 

Conceptually, a key aspect of surprising events is that they are unexpected/unanticipated 

from mechanisms known to the individual and, as such, improbable from these perspectives. When 

surprise was high, both coincidence likelihood judgments tended to be low. So a plausible reason 

that the sum of the likelihoods was a good (negatively related) predictor of surprise, and the their 

likelihood ratio was not, is that the two data likelihoods combine additively, after being multiplied by 

respective priors, to give an estimate of the overall probability of the data due to both known 
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hypotheses: cause, p(𝐝𝐤|𝐂𝐚) ∙ p(Ca), and chance, p(𝐝𝐤|𝐂𝐡) ∙ p(Ch), in Equation 5. (Note that this 

combined probability of the data is in the denominator of the basic form of Bayes’ theorem, Equation 

1, but gets cancelled out in the process of taking Bayesian ratios, e.g., Equation 2.) Thus, events that 

are unlikely in the context of known causal hypotheses but also unlikely by chance have an overall 

combined probability that is small, and this corresponds to surprise being large. In contrast, if the 

combined probability of the events is near one, surprise should be minimal. This suggests that 

surprise should correspond to 1 divided by the combined probability of the data, Equation 6 left side, 

as this has the desired inverse relationship. In these equations, the k subscripts indicate “known” 

mechanisms for cause and change, that is, mechanisms that are sufficiently well understand and 

applied cognitive mechanisms in the mind of the individual as to generate expectations about what 

will happen in reality. For example, the occurrence of rain in the UK winter generates no surprise 

because of the experienced derived expectation that it’s likely to rain on any given day. This 

formalization has the desired inverse relationship, but when the combined probability of the data due 

to the known hypotheses is one, 1 divided by that probability gives a minimum value of surprise as 1. 

But a more intuitive minimum value of surprise would be 0, the complete absence of surprise, so 

Equation 6 expresses surprise as 1 divided by the overall probability of the data given known causal 

and chance hypotheses minus 1. And this is equivalent to one minus the overall probability of the 

data divided by the probability of the data, as shown in the right-hand side of Equation 6. A useful 

consequence of this is that it puts surprise into an odds ratio form like the odds ratio form for 

coincidence strength (the right-hand side of Equation 3). The judgement scale responses (1 to 100) 

were converted to probabilities by dividing by 101 when calculating data surprise (rather than by 100 

so as to avoid 0’s and 1’s symmetrically). And data surprise was a good predictor of averaged 

surprise, R2 = 0.67. Data surprise can then replace Bayesian surprise in Equation 4 resulting in 

Equation 5. p(dk) = p(𝐝𝐤|𝐂𝐚) ∙ p(Ca) + p(𝐝𝐤|𝐂𝐡) ∙ p(Ch) 

Equation 6. 𝐒𝐮~
1

p(dk)
− 1 =

1−p(dk)

p(dk)
= DS 
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Equation 7; coincidentality is related to the ratio of two odds ratios, data surprise divided by 

coincidence strength. This corresponds to an updated coincidentality space, in Figure 8, with 

dimensions for data surprise and coincidence strength and coincidentality increasing toward the 

bottom right in the space. 

Equation 7. C∅~Coscale
∙ loge [

DS

Cs
] +Comid

,         DS ≈
1 - p(dk)

p(dk)
,            Cs ≈

p(𝐂𝐚|𝐝)

p(𝐂𝐡|𝐝)
=

1−p(𝐂𝐡|𝐝)

p(𝐂𝐡|𝐝)
  

Overall, surprise and coincidentality were strongly related, consistent with our definition. In 

addition, coincidentality is predicted by surprise and coincidence strength. However, data surprise is 

a better predictor of judged surprise than Bayesian surprise, thus providing more support for our  

Figure 8. Coincidentality space, central panel, composed of log coincidence strength on the y-axis 

and log data surprise on the x-axis for averaged data from Experiment 3. The color coding of 

coincidentality, blue for low coincidentality and red for high, is shown in relation to log data surprise 

on the x-axis in the top panel and in relation to the log of coincidence strength (the posterior 

hypothesis belief ratio) on the y-axis in the right panel.
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definition of coincidence than that of Griffiths and Tenenbaum (2007). To replicate and extend the 

findings from Experiment 3, Experiment 4 used the same hypothesis probability judgments but as a 

fully within-subjects design. 

6. Experiment 4. Coincidentality, Coincidence Strength and Data Surprise 

Coincidence strength (Griffiths & Tenenbaum, 2007), as the balance of support for the causal versus 

chance hypotheses, occurs in our definition as “[coincidences are] ultimately ascribed to change 

since the search for causal mechanisms has not produced anything more plausible than mere 

chance.” Similarly, surprise occurs in our definition as “surprising pattern repetitions ... unlikely by 

chance....” So the practical purpose of this experiment was to measure coincidentality, the two 

posterior and the two likelihood probabilities for the causal and chance hypotheses, as combinations 

of these are sufficient to predict both coincidence strength and surprise within participants. Further, 

having all four terms allows assessment of whether Bayesian surprise (based on Griffiths and 

Tenenbaum, 2007) or data surprise is a better predictor of coincidentality at the level of individual 

participants. Thus, we pit these two formulations of surprise against each other in this experiment. 

6.1 Methods 

6.1.1 Participants 

Twenty-two participants were recruited from a psychology participant panel at Cardiff 

University in exchange for partial course credit. 

6.1.2 Materials, Design and Procedure 

Coincidences, instructions and judgment scales for coincidentality, the causal and chance 

hypothesis posteriors, and the causal and chance likelihoods were the same as Experiment 3. The two 

posteriors were evaluated in a single, combined judgment task where participants provided the causal 

posterior judgment and then the chance posterior judgment for each coincidence in turn. 

Coincidentality and each of the two likelihoods were evaluated in fully separate judgment tasks. 
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6.2 Results and Discussion 

As in prior experiments, coincidence strength was a good predictor of coincidentality for 

averaged data, R2 = 0.59, and for individual (nonreversed) participants, R2 = 0.20 (model details in 

Appendix B). Data surprise was a substantially better predictor of coincidentality than Bayesian 

surprise for averaged data, R2 = 0.72 in Figure 9 versus R2 = 0.40, and a significantly better predictor 

for individual (nonreversed) participants--sign test M(15) = 2, p = 0.007, two-tailed (model fit details 

in Appendix B). The combination of Bayesian surprise and coincidence strength did a reasonable job 

of predicting coincidentality, R2 = 0.59 for averaged data and an average R2 =0.23 for individual 

(nonreversed) participants (Appendix B). However, coincidentality space, as the combination of data 

surprise and coincidence strength in Figure 9, did a substantially better job of predicting 

coincidentality for averaged data, R2 = 0.75, and was a significantly better predictor for individual 

(nonreversed) participants, average R2 = 0.35, sign test M(15) = 2, p = 0.007, two-tailed (model fit 

details in Appendix B). The combination of data surprise with coincidence strength is only a little bit 

better predictor than data surprise by itself, R2 = 0.72 for averaged data and R2 = 0.31 for individual 

(nonreversed) participants; however, there were individual participants for whom coincidence 

strength was a better predictor than data surprise. This along with the previous support for 

coincidence strength (Griffiths & Tenenbaum, 2007) implies that both coincidence strength and data 

surprise are important predictors of coincidentality. Further, this combination is the basis for a new, 

coincidentality space (Figures 8 and 9), the conceptual implications of which are developed below. 

7. General Discussion 

At their core, causal conclusions imply a decision between cause and coincidence, and thus both 

concepts are deeply implicated in learning, reasoning and goal directed behavior (Osman, 2014; 

Johansen & Osman, 2015). While a great deal of prior research has asked, “how causal is this?”, the 

present research has evaluated the nonredundant construct of coincidentality, “how coincidental is 

this?” (The nonequivalence of causality and coincidentality is spelled out below.) The present  
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Figure 9. Coincidentality space, central panels (e.g. bottom left panel), with color coded coincidentality (blue = low coincidentality, red = high), log data 

surprise on the x-axis and log coincidence strength on the y-axis. The color coding of coincidentality is shown versus data surprise, x-axis in the 

adjoining top left panels and versus coincidence strength, y-axis, in the adjoining bottom right panels. Left panels are averaged data and right are 

combined (nonreversed) individual participant data from Experiment 4. Combined data have a small amount of noise jitter to show data density.  

 



37 

 

 research also evaluated an array of possible predictors of coincidentality informed by components in 

our definition of coincidence and supporting that definition: “coincidences are surprising pattern [co-

occurrence] repetitions that are observed to be unlikely by chance but are nonetheless ascribed to 

chance since the search for causal mechanisms has not produced anything more plausible than mere 

chance” (Johansen & Osman, 2015, p. 34). As such, the evaluation of co-occurrence events that are 

ultimately attributed to coincidence is important for understanding causal reasoning because, we 

argue, the same mechanisms underlie both prior to the categorical decision: cause versus 

coincidence. We also argue that the continuous construct of coincidentality, when perceived as high, 

is even more important as a suspicion flag that new causal knowledge may be available. 

Four experiments measured coincidentality for a set of about a 100 naturally occurring 

coincidences that were self-reported personal experiences from an initial diary study. The 

experiments demonstrated that coincidentality is a stable psychological construct with substantial 

levels of agreement between participants and experiments in terms of correspondence with other 

psychological judgment variables. Methodologically it is worth noting that while the diary study 

prospectively collected “coincidences”, fortuitously these included some events which most people 

judge to be causal and hence not coincidences (e.g. the weekend-alarm coincidence, Table 1). 

Across experiments, coincidentality was related to an array of judgments about event 

uncertainty, degree of belief and surprise as psychological constructs, summarized in Figure 10, that 

conceptually align with Bayesian probabilities for the truth of hypotheses given data (posteriors) and 

the probability of data given hypotheses (likelihoods) as discussed in the introduction: 

Coincidentality was negatively related to causal likeliness and positively related to chance likeliness, 

consistent with these being estimates of the posterior belief probabilities for causal and chance 

hypotheses, p(Ca|d) and p(Ch|d); in other words, given the events in the coincidence, what is the 

psychological degree of belief in the causal and chance hypotheses respectively? And this 

corresponds to the implied contrast in support for causal and chance hypotheses in the definition, 



38 

 

“ascribed to chance [p(Ch|d) is large] since the search for causal mechanisms has not produced 

anything [p(Ca|d) is small]….” Further the construct of coincidence strength (Griffiths & 

Tenenbaum, 2007)—as relative belief in the causal and chance hypotheses, the ratio of these 

posteriors beliefs, p(Ca|d)/p(Ch|d)—was negatively related to coincidentality, the higher the relative 

belief in the causal over the chance hypothesis the lower coincidentality. However, unlike the 

posterior hypothesis beliefs which had opposing relationships with coincidentality, judgments of 

coincidence likelihood given causal and chance hypotheses, p(d|Ca) and p(d|Ch), were both 

negatively related to coincidentality. So the difference in the positive relationship between 

Figure 10. Summary of key relationships found between judged coincidentality and its predictors. 

See main text for details. 

 

coincidentality and the chance posterior belief, p(Ch|d), versus the negative relationship between 

coincidentality and the chance likelihood estimate, p(d|Ch), is consistent with the definition of 
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coincidences as events that are “unlikely by chance [p(d|Ch) is small] but nonetheless ascribed to 

chance [p(Ch|d) is large]….” Furthermore, these two hypothesis beliefs and two data likelihoods can 

be used to specify all three Bayesian ratios contrasting causal and chance hypotheses (Equation 2 in 

the Introduction); the posterior belief ratio, p(Ca|d)/p(Ch|d); the data likelihoods ratio, 

p(d|Ca)/p(d|Ch), and the inferred prior belief ratio, p(Ca)/p(Ch). Moreover, this allows 

coincidentality to be represented in Griffiths & Tenenbaum’s (2007) coincidence strength space 

(Figure 1) composed of the prior beliefs and data likelihoods ratios (Experiment 2) as well as in a 

rotated coincidence strength space composed of coincidence strength, p(Ca|d)/p(Ch|d), and Bayesian 

surprise (Experiments 2, 3 and 4). Coincidentality was positively related to Bayesian surprise as the 

contrast between the data likelihoods ratio and prior beliefs ratio, that is as a ratio of these two ratios, 

[p(d|Ca)/p(d|Ch)]/[ p(Ca)/p(Ch)]. In addition, coincidentality was, consistent with the definition, 

strongly positively related to judged surprise (Experiment 3), and judged surprise was positively 

related to Bayesian surprise (Experiment 3); however, surprise was better predicted by data surprise 

than Bayesian surprise (Experiment 3) where data surprise is an odds ratio, [1 – p(dk)]/p(dk), based 

on the overall probability of the data, p(dk), in the context of the known cause and chance 

hypotheses. Finally, consistent with both surprise and relative support for the causal and chance 

hypotheses in the definition, coincidentality is well predicted by Equation 7 as conceptualized in a 

space composed of data surprise and coincidence strength (Experiments 3 and 4). Taken together, 

these predictors support our definition of coincidence and provide a way of answering the key 

question, how coincidental is this? 

Not only are data surprise and coincidence strength predictors of coincidentality, the ratio 

Ds/Cs in Equation 7, they represent two conceptual constraints on coincidentality as reflected in 

where judgment data points do and don’t tend to occur: Although averaged data obscure this 

(because they represent only central tendency), the combined data plots in Figures 2 and 9 show it; 

coincidence strength, in the bottom of the ratio, corresponds to a kind of maximum conceptual 
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boundary on coincidentality, Figure 9 far right panel, such that when coincidence strength is 

sufficiently high coincidentality must be low; put simply, co-occurrences that are clearly the result of 

a known causal connection are not coincidences. Data surprise, in the top of the ratio, corresponds to 

essentially the opposite constraint in terms of a kind of minimum bound on coincidentality such that 

when data surprise is sufficiently high, coincidentality must be at least somewhat high; i.e. surprising 

co-occurrence events are unexpected, that is not well anticipated from known causal and chance 

hypotheses and are unlikely in the context of both. This corresponds to surprising co-occurrences 

being at least somewhat coincidental because if either a causal hypothesis or chance were perceived 

to be likely true the events wouldn’t be surprising anymore; events with clear, known explanations 

don’t usually remain surprising (Foster & Keane, 2015; 2019; Maguire, et al., 2019; Schmidhuber, 

2009). Importantly, these two constraints and the corresponding ratio of data surprise divided 

coincidence strength support a broader conceptual interpretation of the answer to the question, how 

coincidental is this? 

 The final empirical form of the model, Equation 7 composed of a ratio of the odds ratios for 

data surprise and coincidence strength, has a broader conceptual implication as shown in Equation 8; 

it indicates the extent of the support for the possibility that some unknown, as yet unconsidered, 

causal mechanism was responsible for the surprising co-incidence. The basic intuition here for an 

experienced co-incidence is that if the probability of the known causal mechanism under 

consideration is sufficiently small, then that might be enough to reject that causal mechanism and 

favor chance if the probability due to chance is reasonably large, i.e. “just a chance co-occurrence”. 

This corresponds to relative posterior belief in the chance hypothesis over the known cause 

hypothesis, the posterior belief ratio being close to zero and the log ratio being negative. But what if 

the probability of the co-incidence is also extremely unlikely due to chance and the posterior chance 

hypothesis belief probability is also small? For some co-incidences of this kind, the posterior belief 

ratio could still have a value reasonably close to zero indicating that there was more support for the 
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chance hypothesis than the known cause hypothesis. However, that might not correspond to 

compelling support for the chance hypothesis if the overall probability of the data in the context of 

both known cause and chance hypotheses, p(dk) Equation 5, is sufficiently small because that starts 

to lead to the suspicion that some as yet unknown/unconsidered causal mechanism was responsible 

for the surprising co-incidence. Essentially this corresponds to extending the hypothesis space from 

hypotheses for known things—known causal mechanisms and chance, the first two terms in equation 

9—to include an unknown cause hypothesis with a probability nontrivially greater than zero, the 

third term in Equation 9. 

Equation 8. loge [
(

p(c¬k|𝐝𝐤)

(1−p(c¬k|𝐝𝐤))
)

(
p(𝐂𝐚|𝐝𝐤)

(1−p(𝐂𝐚|𝐝𝐤))
)

] ~𝐂∅~loge [
max(𝐒𝐮)

min(𝐂𝐬)
] = loge [

(
1−p(𝐝𝐤)

p(𝐝𝐤)
)

(
p(𝐂𝐚|𝐝𝐤)

p(𝐂𝐡|𝐝𝐤)
)
] = loge [

(
1−(𝐩(𝐝𝐤|𝐂𝐚)∙𝐩(𝐂𝐚)+𝐩(𝐝𝐤|𝐂𝐡)∙𝐩(𝐂𝐡))

𝐩(𝐝𝐤|𝐂𝐚)∙𝐩(𝐂𝐚)+𝐩(𝐝𝐤|𝐂𝐡)∙𝐩(𝐂𝐡)
)

(
𝐩(𝐝𝐤|𝐂𝐚)∙𝐩(𝐂𝐚)

𝐩(𝐝𝐤|𝐂𝐡)∙𝐩(𝐂𝐡)
)

] 

Equation 9. {p(𝐂𝐚|𝐝𝐤) + p(𝐂𝐡|𝐝𝐤)} + p(C¬k|𝐝𝐤) = 1 

Equation 10. p(d)   = p(𝐝𝐤|𝐂𝐚) ∙ p(Ca) + p(𝐝𝐤|𝐂𝐡) ∙ p(Ch) + p(d¬k|C¬a) ∙ p(C¬a) 

Equation 11. 1 − p(dk) = p(d¬k|C¬a) ∙ p(C¬a) 

Put another way, this implied discrepancy (as a kind of randomness deficiency, Li & Vitányi, 

2019; Maguire, et al., 2019) between the actually occurring co-incidence and the probability of that 

co-incidence in the context of the known cause and chance hypotheses is just too great for either one 

to be plausible when that probability of the data is very small. But the discrepancy can be reduced by 

the operation of an unknown causal mechanism which at least conceptually makes the observed co-

occurrence more likely. To emphasize, this is not about jumping to definite conclusions about the 

existence of some new causal mechanism, like a believer might do, or dismissing the possibility of a 

new mechanism, like a skeptic might do, but rather having sufficient suspicion to seek out more 

evidence, like a scientist would do. 

As discussed above, co-occurrence surprise corresponds to a co-incidence being substantially 

unexpected by known cause and chance. So surprise is related to the discrepancy between 1 and the 

probability of the data from known cause and chance: the higher the known probability of the data, 
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the smaller the numerator of data surprise in Equation 6, the bigger the denominator and the smaller 

the data odds ratio and the smaller the surprise.  But if the probability of the data for known 

mechanisms is small, the discrepancy between that probability and 1 in the numerator is large, the 

odds ratio is large and surprise is high. Conceptually then the 1 in the numerator of data surprise 

corresponds to the overall probability of the data occurring as a result of both known mechanisms 

(cause and chance) and unknown mechanisms, p(d) in Equation 10, being as (hypothetically) high as 

it possibly can be, i.e. one, and this corresponds to surprise being as high as it can be. However, 

there’s no reason why the probability of the data via all possible mechanisms has to be a certainty, 

one. The true overall probability of the data even with the possibility of the unknown cause operating 

might very well be less than 1. If the 1 in the numerator of data surprise is replaced by the unknown 

p(d), the overall probability of the data for both known (cause and chance) and unknown 

mechanisms, then data surprise on the right hand side of Equation 8, is equivalent to the odds ratio 

supporting the probability of an unknown cause hypothesis, p(c¬k|dk), on the left hand side. And as 

the coincidence strength ratio composed of the known causal hypothesis divided by the chance 

hypothesis is also equivalent to the odds ratio for the known cause, the model composed of data 

surprise and coincidence strength is equivalent to a conceptual model of the odds ratio for the 

unknown cause divided the odds ratio for the known cause.  

Unlike coincidence strength based on known mechanisms, this ratio of odds ratios is not an 

estimate of the probability that an unknown causal mechanism is operating but an indication of the 

maximal amount of support there might be for such a mechanism, Equation 11. The essential reason 

for this is that the overall probably of the data, p(d), is unknown because it includes the unknown 

probability of the data due to an unknown causal mechanism. But still the highest the probability of 

the data can be is one. So data surprise is an estimate of maximum suspicion, Equation 11, that is an 

indicate of what the highest estimated probability of the unknown cause hypothesis can reasonably 

be given the data, the third term in equation 9. On the other hand, coincidence strength based solely 
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on known mechanisms represents a kind of minimum suspicion that an unknown mechanism might 

be operating. So coincidentality represents, not the true probability of an unknown causal hypothesis, 

but rather a ratio of the maximum to minimum support values that a new mechanism might be 

operating and hence a good suspicion trigger to gather more evidence. It is also worth noting that this 

final conceptualization, while not identical to the definition of coincidence proposed by Griffiths and 

Tenenbaum (2007), is similar in terms of a contrast between standard and nonstandard accounts. 

In a more intuitive spatial form, coincidentality as related to causal discovery can be 

represented in a space composed of data surprise and coincidence strength, Figure 11. The left-hand 

side of the space corresponds to data surprise being low with the conclusion determined by 

coincidence strength, known causes in the top left quadrant or known chance in the bottom left 

quadrant. If coincidence strength favors cause over chance but data surprise is still high, the top 

right-hand quadrant, then it’s possible that that known causes apply, though not necessarily probable. 

But if coincidence strength is low and data surprise is high, the bottom right hand quadrant, then this 

invokes the possibility that a new mechanism might be operating, and more strongly so toward the 

bottom right hand of the space. This is where great scientific discoveries exist along with very weird, 

improbable coincidences (for examples of both see Johansen & Osman, 2015). So when faced with a 

new co-incidence which of these is the right interpretation for a given context is only likely to be 

decided by subsequent evaluation and evidence. But this coincidentality ratio of ratios provides a 

quantitative estimate of the potential for a new causal mechanism and as such can be a guide for 

which merit further evaluation and which don’t. So while we are proposing a psychological theory of 

coincidences, central to this perspective is the assessment of uncertain belief and data surprise 

probabilities, and these, we argue from the Bayesian perspective, cannot be too inaccurate or 

fundamental mechanisms for co-incidence perception in causal discovery wouldn’t work. 

Despite the conventional wisdom in judgment and decision making that people are bad at 

probabilities, Bayesian perspectives have argued the opposite. Griffiths and Tenenbaum (2006) 
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showed that peoples’ judgments about a range of real phenomena are reasonably accurate and 

consistent with underlying Bayesian probabilities. Lewandowsky, Griffiths and Kalish (2009) used 

an iterated design to argue that people update their judgments in an optimal Bayesian way, even for 

impoverished data. And the close correspondence between probability estimates and Bayesian 

models has been shown in children as young 4-5 years old (e.g. Denison, Bonawitz, Gopnik, & 

Griffiths, 2013). Not surprisingly, the Bayesian optimality perspective has been critiqued as for 

example Griffiths, & Tenenbaum, (2014) argue that people trade off decision accuracy against the  

Figure 11. Causal discovery in coincidentality space composed of (log) coincidence strength, y-axis, 

and (log) data surprise, x-axis, as in Figure 9. The large gray arrow corresponds to coincidentality 

increasing toward the bottom right-hand side of the space, as per equation 7. Details in main text. 
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effort of obtaining data, so on an individual basis, judgments can seem more noisy and sub-optimal 

but globally approximate Bayesian optimality. In the present context, whether or not probability 

estimates are optimal in a Bayesian sense, we argue for a less strong conclusion for coincidences: 

people have some ability to discriminate the merely improbable from the extremely unlikely. 

Coincidence perception and causal discovery are related psychological phenomena associated with at 

least somewhat accurate assessments of improbability, particularly in the context of chance. 

Probability judgment can’t be that defective or causal reasoning would be impossible; to 

draw a causal conclusion from data, a scientist needs to be able to distinguish between extremities 

probabilities of the data being due to chance, the unlikely from the extremely unlikely; one or two 

co-occurrences may be easily attributed to chance, while 100 such co-occurrences may have such a 

vanishingly small probability by chance as to compellingly support the causal hypothesis. The ability 

to assess something as “unlikely by chance” can’t be too bad or its difficult to see how scientists 

could ever be entitled to draw causal conclusions from empirical data, at least in the absence of 

formal statistical calculations, as the chance hypothesis could never be compellingly eliminated. 

Collecting more data has to drive the implied probability of the data by chance to such a low value 

that the chance hypothesis can be discarded in favor of the causal hypothesis as an addition to causal 

knowledge or when would enough data actually be enough data? So not only is the ability to assess 

improbability-by-chance at the heart of causal search, it is at the heart of causal knowledge as well. 

As an example, one of the greatest empirical observations of all time is Fleming’s discovery 

of the antibiotic properties of penicillin mold. Fleming was a biologist who was specifically looking 

for substances that would kill disease causing bacteria; so he was very much in targeted causal search 

mode. Penicillin mold is fairly common in human environments because it grows easily on bread, 

but needless to say, bacteriologists have always gone to some lengths to keep their cultures from 

being contaminated by things other than the bacteria they want to study. The basic idea of culturing 

bacteria is that to study a particular kind of bacteria they need to be “grown” in pure form. So a 
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bacterial culture essentially consists of a support medium and chemicals that either help the bacteria 

multiply or don’t and they die off. The problem for bacteriologists is that cultures get contaminated 

by undesirable things all the time, and such contaminated cultures get discarded. The interesting 

aspect of this discovery isn’t that a culture serendipitously happened to get contaminated by 

penicillin mold (you may have some growing in your kitchen) but rather that Fleming noticed. And 

in the context of co-incidences it is worth considering what he noticed: In simplistic terms bacteria in 

cultures do two basic things, they grow (multiply) and they die. Because most bacteria are extremely 

small, a relatively young bacterial culture as seen by the naked eye includes some spatial regions 

where bacteria are clearly growing and some where they aren’t. There are two basic explanations for 

why bacteria aren’t clearly growing in a specific region: One reason is just chance. That is, when a 

culture is “seeded” with bacteria, exactly where in space growths appear has a random component to 

it resulting from the underlying random positions of individual bacteria. A known causal reason for 

why bacteria aren’t clearly growing at a particular spatial position can be that the nutrients in that 

location have already been used up or possibly never existed. Essentially what Fleming must have 

noticed was the spatial co-incidence of contaminant growth and culture death. Because of the 

random component for exactly where things grow in a culture for both the contaminant and the 

bacteria being cultured, it is mathematically possibly that the spatial co-incidence of the two 

occurred by chance.  While it is challenging to specify this probability exactly, what is clear is that it 

was fairly small. In fact, it seems incredibly implausible that Fleming even considered the possibility 

that the surprising spatial co-incidence was due to chance. Far more plausibly, he formed the 

suspicion that a new causal mechanism was operating because it was the kind of mechanism he was 

looking for. He and other scientists then went on to amass overwhelming evidence for this 

mechanism. In broader terms, peoples’ probability judgments may not be perfectly accurate, but they 

can’t be too poor. More importantly, the skeptical view that most chance events will occur given 

enough time and people misses the point (see the summary of this perspective in Johansen & Osman, 
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2015): People are sometimes capable of recognizing the extreme improbability of some co-

incidences when they see them and sometimes go on to make new causal discoveries as a result. The 

construct of coincidentality in Equation 8 provides an explicit approach to deciding when further 

evaluation is warranted, i.e. when known cause and chance mechanisms aren’t judged plausible.     

The present research has also provided partial support for Griffiths and Tenenbaum’s (2007) 

Bayesian ratio perspective as an account of coincidentality while also flagging a limitation of this 

perspective: The conceptual limitation of the Bayesian ratios perspective is that it is based on 

Bayesian odds ratios where the unknown overall probability of the data (in the denominator of the 

basic form Bayes’ theorem, Equation 1), occurs in both the numerator and the denominator 

respectively for the two hypotheses under consideration and so gets cancelled out, Equation 2. Thus, 

the Bayesian odds ratio form using the posterior hypothesis probabilities effectively treats the 

component probabilities as relative to each other rather than absolute. That is, the posterior odds 

ratio quantifies the relative extent to which one hypothesis is favored over the other, e.g. if the 

posterior causal hypothesis given the data has a probability of 0.8 and the chance hypothesis 0.1 then 

the posteriors odds ratio 0.8/0.08 = 10 says there is 10 times more support for the causal hypothesis 

than the chance hypothesis. In some respects, this emphasis on relative support makes perfect sense 

because the overall probability of the data in the denominator of Bayes’ theorem is commonly 

unknown. There’s always a chance that some unconsidered mechanism was responsible, so 

conceptually this should be included in the overall probability of the data except its value is 

unknown. This absolute uncertainty about the overall probability of the data may seem irrelevant 

when the goal is to evaluate the relative hypothesis support in terms of Bayesian posteriors ratio. But 

the reason the overall probability of the data matters is that the interpretation of a given Bayesian 

posteriors ratio, say 10, changes quite dramatically depending on this probability: If the overall 

probability of the data from known causal mechanisms and chance is high, then a posteriors ratio of 

10 provides quite compelling support for the specified causal hypothesis (as in the example above). 
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But a Bayesian posteriors ratio of 10 can also arise out of absolute posterior probabilities that are 

extremely small, e.g. 0.0000000001/0.00000000001 = 10. In this case the appropriate conclusion is 

not that this posteriors ratio of 10 provides reasonably compelling support for the specified causal 

hypothesis over the chance hypothesis, but rather than neither of the hypotheses in hand is very 

strongly supported and some as yet unknown mechanism might be in operation. That is, some 

unknown mechanism is needed to account for the occurrence of the data and thus make the overall, 

conceptually expected probability of the observed pattern more consistent with the actual events. 

 In broader terms, the present research contributes to but also highlights the need for a better 

specification of a normative conceptualization of coincidence evaluation as an intrinsic part of causal 

reasoning and discovery. Historically causal discovery, especially via the mechanisms of science, has 

been an predominantly human, psychological activity; however the rise of computer automation and 

various kinds of artificial intelligence, especially machine learning, strongly suggest these will play 

an increasing role in the scientific process in terms of both large scale data acquisition and causal 

reasoning based on that data. But it is also very plausible that the development of this automation 

will be and should be informed by the psychological evaluation of how people make causal 

discoveries (Fenton & Neil, 2012). The specification of how people normatively ought to engage in 

causal reasoning is going to be strongly informed by how they actually do causal reasoning given the 

prior success of science (Pearl, 2019). 

In conclusion, coincidences provide an important perspective on the mechanisms of causal 

reasoning and as such the concept of coincidentality is central to the mechanisms of causal learning 

operating in individuals, science and society. That is, coincidentality is a cognitive marker that new 

causal knowledge might be available. In short, coincidentality as “how coincidental is this?” is a 

cognitive analogue for an ancient map’s “here be dragons!” in regions of uncertainty; the risk averse 

shy away, but the bold learn. 
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Appendix A: data tabulation and analysis 

A.1. Handling of missing, ambiguous and repetitive responses 

Across all experiments, the tabulation of the data for presentation in the figures involved 

removing ambiguous data points, e.g. 606, that were not actually on the judgment scales (1 to 100). 

There were only a handful of off-scale data points across all the experiments with the exception that 

there were quite a few 0 responses even though technically the minimum scale value was 1. As the 

difference between a 0 versus a 1 is minute in terms of presented data in figures, these 0’s were left 

as 0’s for data in the figures for accuracy. Similarly, across experiments, participants occasionally 

failed to provide individual judgments in a given task and these missing data points were simply not 

included in the data in figures. 

The tabulated averaged data for model evaluation was identical to the averaged data 

presented in the figures. However, the tabulation of the data for evaluating models on individual 

participants handled missing and out of range values somewhat differently: 0 judgments were 

replaced with 1 judgments to keep various models from collapsing predictions to zero. Other missing 

and out of range judgments were replaced with participant-wise averages of the judgments they did 

supply in a given judgment task so as to be as theoretically neutral as possible while still allowing the 

models to be fully applied to each individual data set.  In addition, a handful of participants across 

the entire set of experiments reported made repetitive responses to most or all items in a given 

judgment task, e.g. making coincidentality judgments of 100 for all items. These participants 

judgments are presented in the figures, but these participants were not evaluated when fitting models 

to individual participants as there was no variance in the judgments for the models to account for. 

Lastly participants occasionally failed to provide any judgments in a given judgment task, e.g. 

because they ran out of time. These partial data sets are included in the figures but again the models 

were not applied to these individual participants because none of the judgments in a given task were 

present. 
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A.2. Handling of judgment scale reversals 

Scale reversals occurred for a minority of participants in all the experiments reported here. 

Correlation matrices provide a compact way of showing when participants probably reversed 

particular judgment scales. Figure A.1 shows the correlation matrices for each judgment task in 

every experiment. Each matrix shows the correlation between each individual participant to each 

other individual participant in that task as indicated by a cell in the matrix that is either black, a 

correlation between a pair of participants more negative than r = -0.1, or white indicating a 

correlation greater than r = -0.1. Thus each individual row (also each column) indicates how a given 

participant’s judgments related to all other individual participants in that task. Systematic judgment 

scale reversals flag up in terms of systematic negative correlations to other individual participants, 

that is as horizontal (and vertical) black lines. Further, scale reversed participants tended to be 

positively correlated with each other corresponding to white boxes where black horizontal and 

vertical lines intersect. As can be seen, scale reversals clearly occurred in all judgment tasks, but 

only for a relatively small minority of participants in any given task. Thus the dominant 

interpretation of each scale was used by the substantial majority of participants, and the final 

experiment, Experiment 4, had especially few apparent reversals. 

Figure A1. Correlation matrices with correlations between individual participants for each of the 

main judgment tasks (rows of panels) in each experiment (columns of panels). Each row (and each 

column) in a given matrix corresponds to the correlations between a given participant’s judgments in 

a task for all 97 coincidences individually to the judgments from each other participant. Black cells 

correspond to a negative correlation coefficients (r) less than or equal to (i.e. more negative than) -

0.1, and white cells to correlations bigger than this. 
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Appendix B: model procedures and model fit details 

Model free parameters were adjusted (via hill-climbing and/or simulated annealing) to 

minimize a fit function of the disparity between the model predictions and the data. This fit function 

was either sum-squared error (SSE) or weighted sum-squared error (wSSE). Note that in the main 

text the SSE fits are reported in terms of percentage of variance accounted for, R2. The weightings 

used in wSSE were 1 divided by the variance of the mean for a given coincidence, i.e. the sample 

variance of the coincidentality judgments for that coincidence divided by the number of such 

judgments, when fitting averaged data, and 1 divided the coincidence variance estimated from a 

variance model when fitting individual participant data sets.  

The variance model is needed to provide variance estimates for individual participant 

judgments that occurred outside of the range of the averaged judgments, i.e. although individual 

participants gave coincidentality judgments of 100, none of the coincidentality judgments averaged 

across participants were this extreme, so a variance model was needed to provide variance estimates 

for such judgments. The variance model was a parabola, x*(100-x) multiplied by a variance scaling 

coefficient that was fitted to the coincidence sample variances as a function the coincidence means 

for a give experiment with an added minimum variance intercept of 1. When a model made a 

prediction beyond the range of the judgment scale, it was associated with a variance estimate 

corresponding to the nearest value on the judgment scale. The variance model had the effect of 

smoothing out differences in the coincidences variance for a given range of coincidentality 

judgments as well as providing smaller variance estimates for judgments toward the ends of the 

judgment range. Overall, while we have included wSSE fits in the interests of completeness, the 

differences between SSE and wSSE fits across models and data sets were generally very small, with 

both supporting the same conclusions. 

Best fitting model parameters and fit values for all models and data sets discussed in the main 

text are in the tables below by experiment. The SSE fits are in the left columns and the wSSE fits are 
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in the right columns. Note that the percentage of variance accounted for in the wSSE fits is the 

unweighted percentage of variance. Thus the generally minute decline in percentage of variance for 

wSSE fits compared to SSE fits shows that the weighted and unweighted fits were generally very 

similar. 

Table B.1. Experiment 1 modeling results. Log inverse coincidence strength model (Equation 3) fit 

summary for averaged data, first row, and the average of individual participant fits, second row, 

based on sum-squared error (SSE), left columns, and weighted sum-squared error (wSSE), right 

columns 

 SSE fits    wSSE fits   

 % var SSE CoScale CoMid % var wSSE CoScale CoMid 

Averaged 0.698 1779 16.6 45.2 0.697 70.0 17.0 45.2 

Individual 0.264 33631 8.2 48.0 0.247 44.6 6.9 48.2 

 

Table B.2. Experiment 2 modeling results. Log inverse coincidence strength model fit summary for 

averaged data, first row, and log Bayesian surprise model, second row, based on sum-squared error 

(SSE), left columns, and weighted sum-squared error (wSSE), right columns. The third row is the 

combined log coincidence strength and Bayesian surprise model (Equation 4). 

 

 

 SSE fits    wSSE fits    

model % var SSE CsScale SuScale CoMid % var wSSE CsScale SuScale CoMid 

Ln Cs 0.530 4902 17.3  44.6 0.523 286.8 18.8  44.5 

Ln Bs 0.490 5312  11.3 40.0 0.486 330.2  12.0 39.8 

Ln[Bs/Cs] 0.545 4739 11.8 4.3 42.4 0.538 280.4 14.3 3.4 42.7 
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Table B.3. Experiment 3 model results. Log inverse coincidence strength model fit summary for 

averaged data, first row, and individual participants, second row, based on sum-squared error (SSE), 

left columns, and weighted sum-squared error (wSSE), right columns. The judged surprise model 

(Su) is in rows three and four, and an combined surprise and log inverse coincidence strength model, 

rows five and six (Equation 4). The models in the top rows are all models of coincidentality. The two 

models in the bottom rows, log Bayesian surprise and log data surprise, are models predicting judged 

surprise rather than coincidentality.  

Coincidentality SSE   fits    wSSE fits 

models   %var SSE CsScale SuScale CoMid %var wSSE CsScl SuScl CoMid 

(log 1/Cs) avg 0.477 2599 16.7  46.8 0.476 175.9 16.6  47.0 

 ind 0.109 3026 4.0  51.3 0.097 48.5 3.3  51.1 

Su avg 0.803 976  0.700 23.6 0.803 67.2  0.705 23.4 

 ind 0.183 31463  0.375 36.0 0.172 47.9  0.334 37.5 

Su+log 1/Cs avg 0.836 816 5.5 0.592 25.5 0.836 55.8 5.6 0.595 25.3 

 ind 0.187 27184 2.8 0.224 41.4 0.172 43.7 2.4 0.229 41.7 

Models of 
           

surprise            

Log Bs (avg) avg 0.119 7179  9.2 41.7 0.119 586.1  10.4 40.1 

Log Ds (avg) ind 0.671 2677  30.0 45.0 0.670 221.7  30.6 44.6 



61 

 

Table B.4. Experiment 4 modeling results. Models of coincidentality: log inverse coincidence 

strength model fit summary for averaged data, first row, and the average of individual participant 

fits, second row, based on sum-squared error (SSE), left columns, and weighted sum-squared error 

(wSSE), right columns. Log Bayesian surprise (log Bs) is in rows three and four. Log Data surprise 

(log Ds) is in rows five and six. The combined model of log Bayesian surprise and log inverse 

coincidence strength (log Bs/Cs), rows seven and eight. The combined model of log data surprise 

and log inverse coincidence strength (Equation 7), rows nine and ten. 

   SSE   fits    wSSE fits 

   %var SSE CsScale SuScale CoMid %var wSSE CsScl SuScl CoMid 

(log 1/Cs) avg 0.588 3676 15.3  42.3 0.580 149.4 17.0  41.5 

 ind 0.201 31533 5.8  49.6 0.187 57.5 4.9  50.2 

Log Bs avg 0.404 5316  17.3 36.1 0.401 238.4  18.3 35.3 

 ind 0.157 34818  3.3 49.7 0.142 61.9  3.0 49.9 

Log Ds avg 0.722 2479  26.1 43.3 0.719 109.3  27.5 43.0 

 ind 0.306 27873  10.2 48.5 0.275 53.1  8.5 48.9 

Log Bs/Cs 
avg 0.588 3672 14.7 0.95 41.8 0.579 149.4 17.2 -0.4 41.7 

 ind 0.231 30638 4.0 1.3 48.8 0.217 55.9 3.2 1.3 49.3 

Log Ds/Cs avg 0.748 2248 5.2 19.8 42.0 0.742 95.7 6.6 19.6 41.6 

 ind 0.352 25374 2.7 8.5 46.1 0.337 47.8 2.5 7.3 47.1 
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Figure Captions 

Figure 1. Coincidence strength, the posteriors belief ratio for the causal and chance hypotheses, in 

Bayes’ space. The x-axis is the log of the data likelihoods ratio for the causal and chance hypotheses 

respectively. The y-axis is the log of the priors ratio of beliefs in the causal and chance hypotheses 

respectively. The blue arrow indicates increasing coincidence strength. See main text for details. 

Figure adapted partly from Figure 2 in Griffiths and Tenenbaum (2007). 

Figure 2. Average coincidentality versus the ratio of the average causal likeliness (Ca|d) to the 

average chance likeliness (Ch|d), top panel, and combined plots of all nonreversed participants’ 

judgments, bottom panels, from Experiment 1. Error bars are standard error. Note that the left bottom 

panel is a magnification of the right bottom panel for posterior ratios between 0 and 5. The trend line 

is logarithmic. Red circles are the blond-guy coincidence and blue squares are the weekend-alarm 

coincidence from Table 1. A small amount of noise jitter has been added to the data points in this and 

subsequent combined data panels to more clearly convey data density.   

Figure 3. Coincidentality versus each of the four probability judgments--the causal and chance 

posteriors and the causal and chance likelihoods--for averaged judgments from Experiment 2. Error 

bars are standard error. Trendlines are linear with percentage of variance accounted for. Red circles 

are the blond-guy coincidence and blue squares are the weekend-alarm coincidence from Table 1. 

Figure 4. Average coincidentality color coded in Bayes’ space (Figure 1) composed of the log of the 

priors ratios of the averages, y-axis, and the log of the likelihoods ratios of the averages, the x-axis of 

the central panel, for data from Experiment 2. The top panel shows the color coding of 

coincidentality, y-axis, in relation to the log likelihoods ratio, the x-axis, red is most coincidental and 

blue is least. And the right panel shows a similar coding of coincidentality for the priors ratio. Large 

Red circles are the blond-guy coincidence, and large blue squares are the weekend-alarm coincidence 

from Table 1. 
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Figure 5. Bayesian surprise as the extent of the disagreement between the prior belief and data 

likelihoods ratios the y and x axes respectively in the Bayes’ space from Figure 1 in the Introduction. 

Figure 6. Average coincidentality from Experiment 2 color coded in rotated Bayes’ space, with the 

log of Bayesian surprise on the x-axis and log coincidence strength on the y-axis of the central panel. 

The color coding of coincidentality, blue for low coincidentality and red for high, is shown in 

relation to log Bayesian surprise on the x-axis in the top panel and in relation to the log posteriors 

ratio on the y-axis in the right panel. Large Red circles are the blond-guy coincidence, and large blue 

squares are the weekend-alarm coincidence from Table 1. 

Figure 7. Coincidentality in a space composed of surprise, central panel x-axis, and the log of the 

posteriors ratio, y-axis, for averaged data from Experiment 3, color coded by coincidentality. The 

color coding of coincidentality, blue for low coincidentality and red for high, is shown in relation to 

surprise on the x-axis in the top panel and in relation to the log of coincidence strength (the posterior 

hypothesis belief ratio) on the y-axis in the right panel. 

Figure 8. Coincidentality space, central panel, composed of log coincidence strength on the y-axis 

and log data surprise on the x-axis for averaged data from Experiment 3. The color coding of 

coincidentality, blue for low coincidentality and red for high, is shown in relation to log data surprise 

on the x-axis in the top panel and in relation to the log of coincidence strength (the posterior 

hypothesis belief ratio) on the y-axis in the right panel. 

Figure 9. Coincidentality space, central panels (e.g. bottom left panel), with color coded 

coincidentality (blue = low coincidentality, red = high), log data surprise on the x-axis and log 

coincidence strength on the y-axis. The color coding of coincidentality is shown versus data surprise, 

x-axis in the adjoining top left panels and versus coincidence strength, y-axis, in the adjoining 

bottom right panels. Left panels are averaged data and right are combined (nonreversed) individual 

participant data from Experiment 4. Combined data have a small amount of noise jitter to show data 

density.  
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Figure 10. Summary of key relationships found between judged coincidentality and its predictors. 

See main text for details. 

Figure 11. Causal discovery in coincidentality space composed of (log) coincidence strength, y-axis, 

and (log) data surprise, x-axis, as in Figure 9. The large gray arrow corresponds to coincidentality 

increasing toward the bottom right-hand side of the space, as per equation 7. Details in main text. 

Figure A1. Correlation matrices with correlations between individual participants for each of the 

main judgment tasks (rows of panels) in each experiment (columns of panels). Each row (and each 

column) in a given matrix corresponds to the correlations between a given participant’s judgments in 

a task for all 97 coincidences individually to the judgments from each other participant. Black cells 

correspond to a negative correlation coefficients (r) less than or equal to (i.e. more negative than) -

0.1, and white cells to correlations bigger than this. 

 


