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Abstract. As we strive to decarbonise our historic built environment, a balance must be struck 

between technical, aesthetic, philosophical and economic concerns. Compromises must be 

made and opportunities seized. At the same time, evaluation allows us to assess decisions 

previously made and reflect on their outcomes. This paper presents the evaluation of the 

refurbishment of The Old Mayor’s Parlour, Church Street, Hereford, a historic timber-framed 

building now used as a gallery and exhibition space. The conservation work undertaken was 

not specifically envisioned as an energy retrofit, however the necessary replacement of failing 

concrete block infill, the legacy of a 1970s renovation, allowed improvements to be made to 

the thermal performance of the external envelope. Environmental monitoring and digital 

simulation have been used to assess the impact of these interventions. In situ U-value 

measurements show the success of the replacement infill panels and associated internal lining, 

although digital energy simulations suggest a limited improvement to the building’s overall 

energy efficiency. At the same time thermography suggests a potential threat of increased 

condensation risk to the uninsulated ornate 17th century plaster ceiling. The results of this 

paper show the risk of unintended consequences and the challenges faced by sustainable 

building conservation. 

1.  Introduction 

The retrofit of our existing building stock has been identified as a key factor in achieving international 

goals for mitigating climate change [1]. This has been reflected in policy by both the EU [2] and the 

UK governments [3]. Although in the UK historic buildings and those of a traditional construction are 

not required to comply with fully comply with the energy efficiency requirements of the building 

regulations [4, 5], they must still aim to “improve energy efficiency as far as is reasonably practicable” 

[6]. At the same time, building owners and occupants wish to improve the thermal comfort of their 

properties and reduce heating bills. As such, both the extent and detail of any retrofit remains at the 

discretion of the building owner. Whilst it is hoped that they will seek advice from qualified 

professionals, the lack of knowledge in the construction industry with regard to energy retrofit in 

general [7], and especially related to historic and traditional buildings [8], combined with a reduction 

in historic environment specialist within local authorities [9], means that too often they do not. By 

undertaking the evaluation of those buildings where retrofits have been undertaken, we can assess 

their success and apply those lessons learnt to future projects. Research into the energy retrofit of 

historic buildings in the UK has to date focused on solid masonry construction [10-12], with little 

research covering the 68,000 timber-framed buildings that form an integral part of the UK and 
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specifically England’s cultural identity[13]. This paper therefore begins to explore this previously 

under-researched area with the evaluation of one such building. 

 

2.  Case Study  

2.1.  Introduction.  

The Old Mayor’s Parlour (OMP), 24 Church Street, Hereford is a gallery space owned by the Church 

Street Charitable Trust, together with the adjacent property, 25 Church Street (Figure 1). This building 

was selected as a case study as part of a larger research project [13] due to the use of a replacement 

infill panel detail suggested by Historic England in their “Practical Building Conservation” series [14] 

a popular reference source for conservation professionals. 

 

 
Figure 1. Nos.24 and 25 Church Street, 

Hereford. Source: (Author’s own, 2016)  

           
  Figure 2. Detail of plaster ceiling, Old Mayor’s 

Parlour. Source: (Author’s own, 2016) 
 

The building is divided into three separate entities; The OMP on the first floor of 24 Church Street 

(the right-hand gable in Figure 1), accessed via a staircase within 23 Church Street; “Rocket” café on 

the ground floor of no.24; and “Layers” women’s clothes store at no.25, with a sales area on the 

ground floor and storage and office on the first. The interconnecting door between the OMP and the 

Layers’ storage area was locked shut at all times and was sealed during pressure testing. 

2.2.  History 

According to the designation description, the buildings date from the early 17
th
 century [15], however, 

other sources state that the buildings origins are 14
th
 century [16, 17]. The original description by The 

Royal Commission on Historical Monuments records the building as probably built early in the 16
th
 

century but with a stone-built cellar under the north part of the building, containing 15
th
 century 

doorways [18]. The east façade onto Church Street is timber-framed at first floor with underbuilding 

and 20
th
 century shopfronts. It is claimed that it once was used by the Custos Rotulorum, the keeper of 

the rolls, and the Vicars Choral (the men of the Cathedral Choir) [17]. Its most notable feature is the 

ornate early 17
th
 century plaster ceiling to the gallery space (  Figure 2) and a fresco of what is 

believed to be Hereford Castle [17]. The building was saved from demolition in 1969 with help from 

Ivor Bulmer and the Ancient Monuments Society and had recently been refurbished [16, 19].  

2.3.  Retrofit 

The first phase of the most recent refurbishment work consisted of internally lining the east first floor 

façade of the OMP with polyisocyanurate (PIR) insulation and wood wool boards, finished in gypsum 

plaster. During this first phase of work it was discovered that the infill to the timber-frame was very 

loose modern concrete blockwork, rendered with a cement lime render externally and gypsum plaster 

internally [19]. It was therefore decided that this would require replacement during a second phase of 

work. When this took place, the aforementioned concrete block infill was removed from the timber-
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framed east façade of both the OMP (no.24) and no. 25 and replaced with wood-fibre insulation based 

on the previously mentioned detail published by Historic England [14] (Figure 3). 

 
Figure 3. OMP replacement panel infill detail with internal lining. Source: (Project Architect, 2014)  

At the same time an internal lining to the first floor of no.25 was inserted using the same detail as 

that used for the OMP but with mineral wool insulation in the place of PIR [19]. Whilst installing the 

replacement panel infill detail, the conservation contractor found the wood fibre insulation difficult to 

use due to its friable nature and the challenge of accurately cutting a board material to fit the irregular 

timber-frame [20]. In addition to these technical issues, in the opinion of the author, the regularity of 

the finish created by the board substrate lacks the character of panels with a wattle or oak lath 

background. 

3.  Methodology 
In order to evaluate the performance of the retrofit actions, the following monitoring was undertaken; 

in situ U-value measurements, thermography, pressure testing and monitoring of internal hygrothermal 

comfort conditions. Measured data was then used to perform digital energy demand simulation. There 

follows a brief description of the methodologies employed. Where possible the relevant British and 

International standards were followed and best practice guidelines consulted in order to maximise the 

validity of the data collected.  

3.1.  In Situ U-value.  

Two infill panels on the retrofitted east facade were monitored following BS ISO 9869-1:2014 [21], 

one in the OMP and the other in the first floor office of no.25. Huxeflux HFP01 heat flow plates were 

held by pressure against the wall surface with building props and flexible plastic clips. Petroleum jelly 

and plastic film was used to ensure a continuous contact between plates and wall. The outputs from the 

plates were connected directly to an Eltek® Squirrel® data logger with the voltage recorded at 5 

minute intervals. The internal and external ambient dry bulb air temperatures (˚C) were measured with 

thermistors also wired directly back to the datalogger, with readings at the same frequency. The 

external temperature thermistor was protected from direct solar radiation by a ventilated, plastic and 

foil cover. As per the BS, only data collected one hour after the surface had passed into shade was 

utilised. The in situ U-value monitoring was undertaken between 18/02/2016 and 10/03/2016, with a 

measurement period of 21 consecutive days. 

3.1.1.  Assumptions and limitations. The panels can be classified as “quasi-homogenous” according to 

the BS’s definition [21], however overall the facade is heterogeneous with the timber-frame forming a 

thermal bridge. The BS states that heat flux sensors “shall not be installed in the vicinity of thermal 

bridges, cracks and similar sources of error” [21]. No distance is specified, however, the surrounding 

timber-frame constitutes such a source of error. This is a problem common to all timber-frame infill 

panels in general, therefore direct comparison between panels can be made, however care should be 
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taken in comparing these results with those of solid wall constructions [10, 22, 23], without timber-

frames and the associated errors. 

3.2.  Pressure Testing.   

The air permeability index (m³/hr/m²) and air change rate (/hr) were measured following BS EN ISO 

9972:2015 [24]. All intentional openings in the building envelope were sealed and all doors and 

windows closed. A Minneapolis Blower Door, was used to depressurise the building, with building 

pressure and the fan pressure measured using magnehelic analogue pressure gauges. The gauges were 

zeroed prior to commencing depressurisation. Measurements were taken at regular intervals both up 

until a >50Pa pressure difference had been achieved and as pressure returned to normal.  

Pressure testing took place on 11/03/2016. Due to the compartmentalised configuration of the 

property, only the OMP, located on the first floor, was pressure tested. The Minneapolis® blower door 

was inserted in the doorway between the semi-external staircase and the gallery. The tube measuring 

external air pressure was extended down and out onto the street. It cannot be assumed that the dividing 

floor been gallery and the cafe below has been designed to act as an air barrier. Additional leakage 

through this element must therefore be considered when reviewing the results.  

3.3.  Thermography   

Given that no British Standard exists for infra-red thermography of buildings, the Building Research 

Establishment (BRE) [25] and Historic Environment Scotland’s (HES) [26] guides were consulted in 

the creation of this methodology. The BRE guide recommends a minimum temperature difference 

between inside and outside of 10°C or 5°C if the building is mechanically pressurised or depressurized 

[25]. It is recommended that this temperature difference is maintained for a 24 hour period prior to the 

commencement of the monitoring, with a variation of external temperature of >±2°C. This in reality is 

difficult to achieve. The HES guidance is less stringent, only stating that a “significant temperature 

difference” is achieved, with a recommendation of a minimum difference of 5°C [26]. The 

temperature differences achieved are stated with the results. In order to minimise the effects of direct 

solar radiation and to maximise the temperature difference, thermography was undertaken just prior to 

sunrise on 11/03/2016, at 06:00 for the external and 06:30 for the internal. A FLIR® B250 thermal 

imaging camera was used for both. Using the Minneapolis Blower Door the OMP was pressurised 

during the thermography of external surfaces, and depressurised for that of the internal surfaces.  

3.3.1.  Assumptions and limitations. Care must be taken with variations in surface emissivity, thermal 

influences from building services and genuine variations in temperature which must be expected due 

to the physics of heat flow, such as at the corner of walls, and the junction between floors and ceilings 

[25, 26]. Care must also be taken over reflective surfaces such as glazing, as measurements will be of 

the objects reflected and not the surface itself [26]. 

3.4.  Internal Hygrothermal Comfort.  

According to ISO EN 7726: 2001 [27] sensors for monitoring hygrothermal comfort should be 

mounted at 0.1m, 1.1m and 1.7m above finished floor level in the centre of the space or close to the 

typical location of the occupant(s). This is however impractical for long-term measurements within an 

occupied space, where sensors would be intrusive and subject to possible interference. Instead, the 

sensors were located in discrete locations, selected to minimise both the influence of localised 

microclimates and inadvertent disturbance by the occupants. Whilst not ideal, this methodology 

enabled monitoring to occur over a longer period of time undisturbed. For the first three week period, 

between 18/02/2016 – 10/03/2016, TinyTag Ultra 2 TGU-4500 sensors were used. Due to concerns 

from the building’s trustees over their visual intrusion during exhibitions, subsequent monitoring was 

continued with Maxim Hygrochron iButton DS1923 Sensors. With a similar accuracy but a reduced 

resolution (0.5°C and 0.6%), at less than 20mm diameter they are unobtrusive. These were left in place 

until July 2017 with the intention of obtaining at least one calendar year of measurements. 

Unfortunately, the capacity of the sensors memory was exceeded on the 03/06/2016 having recorded 
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only three months of data. Two locations within the OMP were monitored one to the east end and one 

to the west. In no. 25 Church Street a further two locations were monitored, one within the WC and 

the other in the office, both of which are located on the first floor to the east of the property.  

The measurements recorded were then used to assess the hygrothermal comfort conditions by plotting 

the results on a bioclimatic chart, as developed by Givoni [28] who defines the comfort zone between 

17°C and 27°C, with a range of relative humidity between 20% and 70%. 

3.5.  Digital Energy Demand Simulation.  

Dynamic digital energy simulation was carried out using DesignBuilder Version 4.2.0.54. The weather 

file was created using Meteonorm version 6.1 using the time period 1996-2005. Each retrofit action 

was simulated separately, in addition to the hypothetical actions of insulating the roof and installing 

secondary glazing. In addition, scenarios combining retrofit actions were also simulated. As the OMP 

is located on the first floor between adjacent buildings, these and the ground floor were modelled as 

adiabatic volumes.  

4.  Results and Analysis 
4.1.  In situ U-Value monitoring.  

The measured U-values are presented in Table 1. When the standard deviation is considered, these are 

similar those calculated according to BS EN ISO 6946:2007. It is to be expected that the measured and 

calculated U-values are similar as, unlike measurements of historic or non-conventional constructions, 

these infill panels are of standard layers of know materials. These U-values are well within the 

standards for new thermal elements for existing buildings as defined by the Building Regulations [5].  

 

Table 1. OMP and No.25 Church Street. Measured and calculated U-values. 

 Measured U-value 

(W/m²K) 

Standard deviation 

(W/m²K) 

Calculated U-value 

(W/m²K) 

Old Mayor’s Parlour 0.11 ±0.04 0.13 

No 25 Church Street 0.11 ±0.03 0.17 

4.2.  Pressure Testing.  

Based on the readings measured
1
 the calculated air permeability index was 17.6 m

3
/h/m

2
 and air 

change rates were 22.5 /hr@50 Pa and 1.12 /hr unpressurised. As such the building does not achieve 

the 10 m
3
/h/m

2 
air permeability index required by building regulations for new-build [29] and is higher 

than the average air change rate for pre-1900 UK buildings of 12.3 ac/hr@50 Pa [30]. It is however 

similar to other historic timber-framed buildings measured by the authors [13]. The weakest areas are 

most probably the windows and the floor separating the OMP from the café below. 

4.3.  Thermography.  

The recommended temperature difference of >10°C was achieved for both the external and internal 

thermography as presented in Table 2. 

 

Table 2. Temperature difference for thermography at The Old Mayor’s Parlour, 11/03/2016 

 External Temp. (°C) Internal Temp. (°C) Temp. difference (°C) 

External Thermography 2.4 20.4 18 

Internal Thermography 0.4 22.9 22.5 

 

 
1
 (R

2
) of the best-fit line of the ln(flow) against ln(pressure difference) = 0.9781 showing a good degree of 

accuracy. 
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Figure 4 shows that the new infill panels are performing better than the surrounding timber-frame. 

The weak points of the façade are the windows and some joints between the timbers of the frame, 

especially around the first floor window. 

  
Figure 4. Thermography of east façade.  Figure 5. Internal thermography of east façade.  

 

Figure 5 shows the efficacy of the internal lining, with no noticeable cold bridging or temperature 

difference across the internal surface. The upper portion of the wall with no internal lining is however 

cooler, with marked cold spots in the recesses of the historic plasterwork. Whilst the physics of heat 

flow dictates that recesses and junctions will naturally be cooler, this image still raises concern over 

the decision not to internally line the upper portion or introduce roof insulation. The rational of 

minimising intrusion and damage to the historic fabric is understandable but potentially, over time, 

may lead to the concentration of condensation and accelerated decay. This issue is explored further 

below. 

4.4.  Hygrothermal monitoring.  

It was known that the OMP would be unoccupied and unheated during the first measurement period. It 

was however expected that the office and WC of No. 25 Church Street, both in daily use, would have 

some degree of heating. It was therefore surprising to see from the results that neither of these spaces 

were heated, with temperatures in the WC closely following those in the OMP at around 10°C. 

Temperatures in the office were a little higher, occasionally exceeding 15°C, probably due to heat 

rising from the shop below but fail to achieve levels of comfort. Whilst the author has encountered 

similar situations in a developing country or fuel poor households, it is perhaps unexpected in a 

commercial premises in Hereford. The results for all spaces show that comfort conditions were not 

achieved during office hours. Although this lack of heating reduced energy consumption and 

associated costs, it may create unintended consequences such as increased condensation and 

accelerated deterioration of interior finishes and building fabric. 

The second stage of monitoring 10/03/16 – 04/06/2016 showed that once in use for exhibitions, the 

temperatures in the OMP did exceed 17°C for parts of the working day (Figure 6). However, the office 

of No.25 did not begin to enter the thermal zone until the external temperatures rose in early May.  
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Figure 6. Dry-bulb air temperatures 10/03/2016 to 04/06/2016. Source: (Author’s own, 2017). 

During opening hours (09:00-17:00) over the four and a half months of monitoring, hygrothermal 

comfort was achieved 50% of the time in the east end of the OMP, 55% of the time at the west end but 

only 28% of the time in no.25. The difference between the east and west end of the OMP may be due 

to the door to the semi-external staircase being located towards the east, although the electric heater is 

also located at this end of the room. 

As noted previously, the lack of insulation to the roof raised some concern over the possible 

concentration of condensation on the cold surface of the 17
th
 century decorative plaster ceiling. This 

would most likely under conditions of high vapour pressure, coupled with a large diurnal temperature 

variation. The highest vapour pressure recorded in the OMP was 1557Pa, occurring at 15:30 on 

12/05/2016 at a dry-bulb temperature of 23°C. Tracing this vapour pressure across on the 

psychrometric chart, condensation would occur at a dew point temperature of 13.5°C. Within the 

following 24 hours, the minimum internal dry-bulb temperature was 18.6°C and the minimum external 

temperature 11.1°C. As such, it is possible that the internal surface temperature of the ceiling could 

have dropped, in places, below the dew point temperature and condensation may have occurred. 

Equally, on the day with the largest diurnal temperature oscillation, the 28/04/2016, a maximum 

vapour pressure of 913Pa was recorded at a temperature of 17°C. The internal dry-bulb temperature 

then dropped to 11.6°C with a minimum external dry-bulb temperature of 5.6°C. Given that the dew 

point temperature for the maximum vapour pressure measured (913Pa) would be 5.7°C, there again 

exists a small possibility that conditions for condensation may have occurred. In order to prove this, 

further monitoring of surface temperatures of the plaster ceiling would be required. 

4.5.  Digital Energy Demand Simulation. 

The results showed that the thermal upgrading of the walls that was undertaken led to a reduction in 

energy demand of 12%. It is interesting to note that, assuming secondary glazing would not only 

improve the thermal performance of the windows but also lead to increased airtightness, this alone 

could potentially achieve a reduction of 15%. The introduction of 200mm wood fibre insulation to the 

roof could potentially have achieved a 17% reduction alone, or 42% when combined with the walls, 

and 58% combined with walls and secondary glazing. This calls into question if the thermal upgrading 

of the walls was actually the most efficient retrofit action to undertake. However, given that this 

project was not envisioned primarily as an energy retrofit, any reduction in energy demand should be 

seen as an added benefit and must be weighed against the other complex decisions of traditional 

building conservation. 

5.  Conclusions 
The incidental thermal performance improvements achieved by the necessary replacement of failed 

20
th
 century panel infill materials have shown to be successful at the level of the building component, 

with U-values of the new panels achieving Building Regulations, however at a building scale the 
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positive impact on energy demand reduction (12%) and hygrothermal comfort levels is limited 

(achieved only an average of 53% of occupied hours). At the same time there exists the possibility that 

the work undertaken may have a negative impact through the concentration of condensation on the 

17
th
 century plastered ceiling. In order to verify if condensation is occurring, further detailed 

monitoring of surface temperatures and hygrothermal conditions is required. The results presented 

here underline the need for wherever possible a holistic approach to energy retrofit, however this must 

be balanced by the complexities of sustainable building conservation. 
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