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Abstract
The LIGO Scientific Collaboration and the Virgo Collaboration have 
cataloged eleven confidently detected gravitational-wave events during the 
first two observing runs of the advanced detector era. All eleven events were 
consistent with being from well-modeled mergers between compact stellar-
mass objects: black holes or neutron stars. The data around the time of each 
of these events have been made publicly available through the gravitational-
wave open science center. The entirety of the gravitational-wave strain data 
from the first and second observing runs have also now been made publicly 
available. There is considerable interest among the broad scientific community 
in understanding the data and methods used in the analyses. In this paper, we 
provide an overview of the detector noise properties and the data analysis 
techniques used to detect gravitational-wave signals and infer the source 
properties. We describe some of the checks that are performed to validate 
the analyses and results from the observations of gravitational-wave events. 
We also address concerns that have been raised about various properties of 
LIGO–Virgo detector noise and the correctness of our analyses as applied to 
the resulting data.

Keywords: gravitational waves, data analysis, gravitational wave detectors

(Some figures may appear in colour only in the online journal)

1. Introduction

Gravitational-wave observations have become an important new means to learn about the 
Universe. The LIGO Scientific Collaboration and the Virgo Collaboration (LVC) have pub-
lished a series of discoveries beginning with the first detected event, GW150914 [1], a binary 
black hole merger. Within a span of two years, that event was followed by nine other binary 
black hole detections (GW151012 [2, 3], GW151226 [4], GW170104 [5], GW170608 [6], 
GW170729, GW170809, GW170814 [7], GW170818 and GW170823), and one binary neu-
tron star merger, GW170817 [8]. Details about all of these confidently-detected gravitational-
wave events have been published in a catalog, GWTC-1 [3].

The global gravitational-wave detector network currently consists of two Advanced LIGO 
detectors in the U.S. [9] in Hanford, Washington and Livingston, Louisiana; the Advanced 

177 Deceased, February 2018.
178 Deceased, November 2017.
179 Deceased, July 2018.

B P Abbott et alClass. Quantum Grav. 37 (2020) 055002

mailto:lvc.publications@ligo.org
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/ab685e&domain=pdf&date_stamp=2020-02-06


13

Virgo detector in Cascina, Italy [10]; and the GEO 600 detector in Germany [11]. In the 
coming years this network will grow through the addition of the Japanese detector, KAGRA 
[12–14], and a third Advanced LIGO detector to be located in India [15]. The first observing 
run (O1) of Advanced LIGO took place from September 12, 2015 until January 19, 2016. The 
second observing run (O2) for the Advanced LIGO detectors began on November 30, 2016, 
and lasted until August 25, 2017. The Advanced Virgo detector formally commenced observa-
tions in O2 on August 1, 2017, enabling the first three-detector observations of gravitational 
waves [3]. A third LIGO–Virgo observing run, O3, began on April 1, 2019, with all three 
detectors operating with their best sensitivity to date.

Consistency between multiple detectors helps greatly to suppress instrumental back-
grounds and to allow coherent analysis of gravitational-wave signals. All of the event detec-
tions published to date have involved both of the Advanced LIGO detectors, while GW170814 
and GW170818 were triple-detections sensed by Virgo as well. Data from Virgo were also 
used in the parameter estimation analysis and sky localization determination for GW170729, 
GW170809, and GW170817. The Virgo data were especially critical in helping to find the 
source of GW170817 [16]. This binary neutron star merger represented a remarkable debut 
for multi-messenger astronomy with gravitational waves, as it was closely followed by a short 
gamma-ray burst, GRB 170817A [17, 18], and the relatively precise localization obtained 
from the gravitational-wave data enabled the identification and thorough multi-wavelength 
study of kilonova and afterglow emission from an optical counterpart, SSS17a / AT 2017gfo 
[16, 19].

As summarized in [3], the LVC detections were made using two independent matched-
filter analyses to search for compact binary coalescences in O2 [20, 21], as well as an unmod-
eled search for short-duration transient signals or bursts [22]. Thus, detection methods that 
were developed by the LVC and tested using simulated signals added to mock data, or to 
previous sets of real data where any possible signals were overwhelmed by noise, have now 
been demonstrated to be effective for astrophysical gravitational-wave signals. Testing and 
validation of LVC analyses was achieved using both (simulated) signal injections performed 
within the analysis, i.e. in software, and signal injections made in hardware by moving the 
detectors’ test masses.

The growth of the number of observed gravitational-wave events has stimulated intense 
interest in the astrophysical implications of the detected sources, as well as interest in the 
gravitational-wave data. Currently, the LVC releases data through the Gravitational-Wave 
Open Science Center (GWOSC) [23, 24]. LIGO data releases are described in the LIGO Data 
Management Plan [25], an agreement between the LIGO Laboratory and the US National 
Science Foundation. The LVC policy for releasing gravitational-wave triggers and event can-
didates is presented in [26, 27]. For detections of compact binary mergers, about one hour 
(4096 s) of calibrated strain data around the event time are released at the time of publication. 
These data are available for all published detections in O1 and O2 [28].

Currently the bulk data from the initial LIGO Science Runs since 2005  are available 
on GWOSC [24], as are the Advanced LIGO data from the O1 observing run [29] and the 
Advanced LIGO and Advanced Virgo data from the O2 observing run [30]. Timing for release 
of data in future observing runs is described in the Data Management Plan [25]; for instance, 
the bulk data from the first 6 months of the O3 run will be released in April 2021. GWOSC 
is continually updating and releasing data products that address the needs and interests of the 
broader scientific community. Many of the analysis software packages used by the collabora-
tion are publicly available as open source code; a list of these is available on the GWOSC 
web site [24]. Also, a number of intermediate data products are released through the LIGO 
Document Control Center, typically linked with LVC papers; e.g. see [31].
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Figure 1. A simplified schematic summarizing the main steps in LIGO–Virgo data 
processing, from the output of the data to the results reported in a catalog of transient 
events.

With the public release of the LIGO and Virgo data, groups outside these collaborations 
are analyzing the released data. Most of these analyses are producing results consistent with 
the LVC’s [32–39], and some additional significant event candidates have been reported [40, 
41]. The noise properties of the LIGO data and the correctness of the LVC data analysis 
for GW150914 have also been questioned [42, 43], although successive gravitational wave 
detections have strengthened confidence in our detection and parameter estimation methods 
[3]. Motivated by the widespread interest in analyzing LIGO and Virgo data, in this paper we 
provide an overview of the properties of the LIGO–Virgo data and its noise components. We 
also describe the essential features of data analysis procedures that have been used by LIGO 
and Virgo teams to detect and measure the properties of the cataloged gravitational-wave 
sources [3], as summarized in figure 1. The analysis of LIGO and Virgo data in searching for 
gravitational-wave signals is complex, as is the correct treatment of the statistical properties 
of noise. The LVC encourages the broader scientific community to access and analyze its 
data, and will always be open to discussions about the methods it uses to arrive at its conclu-
sions. The codes used to analyze LIGO–Virgo data are public. The special purpose codes 
used to generate many of the figures in this paper are also available [44]. In addition, the LVC 
has made available a Jupyter notebook to illustrate methods used to produce key figures and 
results in a simplified implementation [45]. Finally, many of the software packages used by 
the LVC to process the LIGO–Virgo data, search for events and characterize observed signals 
can be found at the GWOSC site [46].

The paper is organized as follows. In section 2 we describe the properties of the LIGO–
Virgo data, while in section 3 we discuss the noise that affects those data. Section 4 describes 
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the basic data processing steps used to properly Fourier transform the data and estimate the 
power spectrum. Section 5 describes wavelet based time-frequency methods that can be used 
to assess possible deviations from stationary detector noise. Section 6 addresses detector and 
calibration issues for LIGO and Virgo. Section 7 describes the noise model used to define the 
likelihood function used in parameter estimation studies. Section 8 gives a description of the 
means by which the LVC searches for gravitational-wave signals, while section 9 presents the 
means by which the LVC infers the detected waveforms and estimates the physical parameters 
for the system that emitted the gravitational waves. To illustrate these concepts, section 10 
provides a simplified description of how the publicly released data surrounding GW150914 
can be used to find a best fit waveform model and to study the correlation properties of the 
residuals. We also address claims made in [42, 43] concerning correlations in detector noise, 
residuals, and the estimation of GW150914’s source properties. In addressing these claims, 
the LVC notes that it is beneficial for gravitational-wave science that groups external to our 
collaboration can introduce new ideas and techniques. Finally, in section 11 we provide a 
summary assessment of LIGO and Virgo data properties as well as LVC data analysis findings 
and validation.

2. Properties of LIGO–Virgo data

The Advanced LIGO [9] and Advanced Virgo [10] second-generation gravitational-wave 
detectors are large-scale enhanced Michelson interferometers. The detectors are sensitive to 
space time strain induced by passing gravitational waves, as well as equivalent terrestrial force 
and displacement noises, each causing the lengths of the arms to vary over time. Differences in 
relative arm length generate power variations in the enhanced Michelson’s output, captured by 
photodiodes. The signal from these photodiodes serve as both the gravitational-wave readout 
and an error signal for controlling the relative arm length below roughly 100 Hz.

The Advanced LIGO gravitational-wave detectors are identical in design, with 4 km long 
arms. Advanced Virgo has a similar design, with 3 km long arms. Fabry–Perot cavities are 
used in the arms of the detectors to increase the interaction time with a gravitational wave, and 
power recycling is used to increase the effective laser power. Signal recycling has been added 
in the Advanced LIGO detectors to shape their frequency response [9]. Advanced Virgo has 
not yet implemented signal recycling, but will in the future [10].

A calibration procedure is applied to the interferometer photodiode output of each detector 
(see section 6.1) to produce gravitational-wave strain data as a time series, sampled at 16384 
Hz for LIGO data and 20 kHz for Virgo data. For the Advanced LIGO detectors, the calibra-
tion is valid above 10 Hz and below 5 kHz, as described in section 6.1. For Advanced Virgo 
in O2 the calibration validity range was from 10 Hz to 8 kHz [47]. The detectors also record 
hundreds of thousands of auxiliary channels, time series recorded in addition to the strain sig-
nal, that monitor the behavior of the detectors and their environment. The GWOSC provides 
distilled additional channels of data in which flags pertaining to different levels of problems 
with the data quality are implemented180. We employ continuous monitoring of the detector 
performance to characterize noise sources that could negatively impact the sensitivity of the 
searches or the source property estimation [48, 49]. Invalid data due to detector malfunction, 
calibration error, or data acquisition problems are flagged so that they can be removed from 
analyses, as described in section 6 and [50].

180 www.gw-openscience.org/segments
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3. Basic properties of detector noise

The data recorded by the Advanced LIGO and Advanced Virgo instruments are impacted by 
many sources of noise, including quantum sensing noise, seismic noise, suspension thermal 
noise, mirror coating thermal noise, and gravity gradient noise [9]. In addition, there are tran-
sient noise events, for example coming from anthropogenic sources, weather, equipment mal-
functions [48], as well as occasional transient noise of unknown origin [51]. There is also 
persistent elevated noise confined to certain frequencies, manifesting as very narrow peaks 
in a plot of noise versus frequency, which we refer to as spectral lines; these are typically 
caused by electrical and mechanical devices or resonances [49]. The combination of all the 
noise sources in a detector produces a time series n(t) that can be represented by a vector n, 
with components given by the discrete time samples ni = n(ti). The noise is described as a 
stochastic process with statistical properties given by the joint probability distribution p(n). 
This model can be used to define summary statistics such as the mean µ = E[n] (where E is 
defined as the expectation value) and covariance Cij = E[(ni − µ)(nj − µ)] where the expecta-
tion values are taken with respect to p(n). The mean can be estimated from the data as

µ̂ =
1
N

N∑
i=1

ni , (1)

where N = dim(n) is the number of data samples. The full covariance matrix cannot be esti-
mated from the data without making additional assumptions as we have only M  =  1 measure-
ments for each data point, rendering the sample covariance matrix formally undefined:

Ĉij =
1

M − 1
(ni − µ̂)(nj − µ̂) . (2)

Estimates of the covariance matrix can be made if noise is assumed to follow a particular 
distribution, or if the noise properties are unchanging in time. Note that in practice, analyses 
generally do not use all N samples at once, but rather use segments of contiguous data of 
various lengths from a few seconds up to hours depending on the intended application. Noise 
is referred to as Gaussian if the joint probability distribution follows a multi-variate normal 
distribution:

p(n) =
1

det(2πC)1/2 exp


−1

2

∑
ij

(ni − µ)(nj − µ)C−1
ij


 , (3)

where C−1
ij  is the inverse of the covariance matrix at i, j. The noise is referred to as  stationary 

if Cij depends only on the lag |i − j|. Stationary noise is characterized by the correlation func-
tion C(τ), where τ = |ti − tj| is the time lag. Transforming to the Fourier domain, where the 
labels i, j now refer to frequencies fi, fj , stationary noise has a diagonal covariance matrix 
Cij = δijSn( fi), which defines the power spectral density Sn(f ). The power spectral density is 
given by the Fourier transform of the correlation function C(τ). Amplitude spectral density is 
the square root of power spectral density and has units of Hz−1/2. The noise is referred to as 
white if Cij = δijσ

2 in both the frequency domain and the time domain. White noise is, how-
ever, a poor approximation to LIGO–Virgo detector noise

Understanding the noise is crucial to detecting gravitational-wave signals and inferring 
the properties of the astrophysical sources that generate them. Improper modeling of the 
noise can result in the significance of an event being incorrectly estimated, and to system-
atic biases in the parameter estimation. To guard against these unwanted outcomes, detector 
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characterization and noise modeling are significant activities within the LVC [48, 50]. While 
many textbook treatments of gravitational-wave data analysis [52–54] describe the idealized 
case of independent detectors with stationary, Gaussian noise, actual LVC analyses are careful 
to account for deviations from this ideal.

The Advanced LIGO and Advanced Virgo detector data have a rich structure in both time 
and frequency. For a given gravitational-wave source, the noise (as described by its spectral 
density) governs the measured signal-to-noise ratio (SNR). Figure 2 shows the spectral fre-
quency content of the LIGO-Livingston detector averaged over a three minute period shortly 
before the first detection of gravitational waves from a binary neutron star merger, GW170817. 
During the O1 and O2 runs, the Advanced LIGO detectors had an averaged measured noise 
amplitude of about 10−23 Hz−1/2 at 100 Hz. (The target sensitivity at 100 Hz for Advanced 
LIGO is 4 × 10−24 Hz−1/2 [9], while for Advanced Virgo it is 5 × 10−24 Hz−1/2 [10].) The 
steep shape at low frequencies is dominated by noise related to ground motion. Above roughly 
100 Hz, the Advanced LIGO detectors are currently quantum noise limited, and their noise 
curves are dominated by shot noise [9, 55]. High amplitude noise features are also present in 
the data at certain frequencies, including lines due to the AC power grid (harmonics of 60 Hz 
in the U.S. and 50 Hz in Europe), mechanical resonances of the mirror suspensions, injected 
calibration lines, and noise entering through the detector control systems. For a detailed 
account of noise sources that appear at specific frequencies in the Advanced LIGO detectors, 
see [49]. For a list of the Advanced Virgo noise lines for observing run O2, see [56].

4. Fourier domain analysis

The noise in the LIGO–Virgo detectors is, with isolated exceptions, approximately station-
ary, and therefore can be most easily characterized in the frequency domain. Stationary, 
Gaussian noise is uncorrelated between frequency bins, and the noise ñ( f ) in each bin follows 

a Gaussian distribution with random phase and amplitude S1/2
n ( f ). The first step in many 

LVC analyses is to Fourier transform the time-domain data using a fast Fourier transform 
(FFT) [57–59]. Since the FFT implicitly assumes that the stretch of data being transformed is 
periodic in time, window functions [60, 61] have to be applied to the data to suppress spectral 
leakage [61] using e.g. a Tukey (cosine-tapered) window function. Failing to window the 
data will lead to spectral leakage and spurious correlations in the phase between bins. For the 
analysis of transient data the use of Tukey windows is advantageous as signals will suffer less 
modification than, for example, Hanning or Flattop windows [61].

As an illustration, figure 3 shows a sequence of processing steps applied to a stretch of cali-
brated strain data from the LIGO-Hanford detector around the time of GW150914. The raw 
data are dominated by low-frequency noise. A Tukey window with 0.5 s transition regions was 
applied to the raw data. Next, the data were whitened by dividing the Fourier coefficients by 
an estimate of the amplitude spectral density of the noise, which ensures that the data in each 
frequency bin has equal significance by down-weighting frequencies where the noise is loud. 
The data were then inverse Fourier transformed to return to the time domain:

d(t) FFT−→ d̃( f ) Whiten−→ d̃w( f ) =
d̃( f )

S1/2
n ( f )

iFFT−→ dw(t) . (4)

The whitened samples were scaled to have unit variance in the time domain. As a final step, 
the data were bandpass filtered using a zero-phase, eighth order Butterworth filter with pass 
band [35 Hz, 350 Hz]. The bandpass enhances the visibility of features of interest in this band 
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by removing noise outside of the band—seismic and related noise at low frequencies, and 
quantum sensing noise at high frequencies. Note that such narrow bandpassing is only used 
for visualization purposes and is not employed in the LVC analyses. The gravitational-wave 
signal GW150914 is visible in the whitened and bandpassed data shown in the lower panel 
of figure 3.

While the steps above can make loud transient signals like GW150914 more easily visible 
in the strain time series, LVC’s statistical analysis pipelines typically use a different sequence 
of processing steps. LVC pipelines for detection and parameter estimation proceed by first 
high-pass filtering the data, to remove high-amplitude noise below the range of frequencies 
that will be analyzed by the pipelines which typically starts at  ∼20 Hz. The data may also be 
down-sampled, after low-pass filtering to avoid aliasing, to reduce computational costs; thus 
its frequency content will be affected by the anti-aliasing filter at high frequency, with a formal 
cutoff at the Nyquist frequency of the down-sampled data [20, 21]. The LVC parameter esti-
mation pipelines do not apply any bandpass filter to the data, but limit the likelihood integral 
calculation to begin at some lower frequency cut-off (typically also 20 Hz).

GW150914 was originally identified with high significance by a generic search for coher-
ent excess power across the detector network [1, 62], as well as by matched-filtering analyses 
[2], as described in section 8, but this loud signal is also clearly visible in the data even with 
the minimal processing described here.

Figure 2. Amplitude spectral density of the LIGO-Livingston detector data, using 10 s 
fast Fourier transforms and averaged over a three minute period starting at August 17, 
2017 12:36:00 UTC, five minutes before the merger time of GW170817 [8]. The top 
plot is a linear frequency scale, highlighting periodic features from 0 Hz to 2000 Hz. 
The bottom plot is a log scale, illustrating the features in the detector data from 8 Hz to 
the Nyquist frequency 8192 Hz.
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4.1. Methods for measuring the noise spectrum

The power spectral density of the noise Sn(f ) is not known a priori and must be estimated from 
the data. One can perform a complex FFT of the entire data stream around some time to be 
searched for signals, but that yields only two samples (real and imaginary parts) per frequency 
bin, hence the variance in the estimate of Sn(f ) in any single frequency bin is large. To over-
come this, either some form of averaging is used [63], or a fit is made to a physical model for 
the spectrum [64]. For example, Welch averaging [65] can be used to reduce the variance in 
the estimated power spectrum, but at the cost of either reducing the frequency resolution or 
requiring longer stretches of data. The spectral estimate used to whiten the data in figure 3 was 
found by applying a Welch average to 1024 s of data centered on GPS time 1126259462 (the 
nearest integer GPS time to the peak of the GW150914 signal). The data were broken up into 
overlapping 4 s long chunks, each spaced by 2 s. The data in each chunk was Tukey filtered 
and Fourier transformed. The power spectrum from all the chunks was then averaged.

Figure 3. A sequence of processing steps applied to the calibrated strain from the LIGO-
Hanford detector showing 4 s of data centered on GPS time 1126259462 (September 
14, 2015 09:50:45 UTC). First a Tukey window with 0.5 s roll-off is applied, then the 
data are whitened using an estimate of the noise spectral density. Finally the data are 
bandpassed filtered to enhance features in the passband [35 Hz, 350 Hz], revealing the 
presence of gravitational-wave signal GW150914.
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Figure 4 compares the power spectrum of the Hanford data shown in figure 3, before and 
after applying the Tukey window, to the power spectrum estimated using Welch averaging. 
The non-windowed spectrum is swamped by spectral leakage, and follows a 1/f 2 scaling. This 
scaling results from the abrupt step function at the beginning and end of the data to be Fourier 
transformed. This non-windowed data chunk arises from multiplying a longer stretch of data 
by a boxcar (or top hat) window. Thus, when it is Fourier transformed, the result is the con-
volution of the desired spectrum of the original data with the Fourier transform of the 4s-long 
boxcar window, i.e. a cardinal sine (sinc) function whose amplitude decreases as 1/f 2. Since 
the noise spectrum rises much more rapidly than 1/f 2 towards low frequencies, the entire vis-
ible frequency range is then dominated by the leakage from this low-frequency component.

When the noise spectrum varies significantly over time other spectral estimation methods 
have to be used [20, 66]. One approach used in LVC parameter estimation studies is to fit a 
parametrized spectral model to the data that has a smooth spline component and a collection 
of Lorentzian lines [64]. In section 5 we also discuss in detail the issue of stationarity and non-
stationarity of the data, and the effects this has on the data analysis.

In addition to causing spectral leakage, improper windowing of the data can result in spuri-
ous phase correlations in the Fourier transform. Figure 5 shows a scatter plot of the Fourier 
phase as a function of frequency for the same stretch of data shown in figure 4, both with and 
without the application of a window function. The un-windowed data shows a strong phase 
correlation, while the windowed data does not.

The degree to which a time series is consistent with being stationary and Gaussian noise can 
be diagnosed by looking at the distribution of its Fourier transformed frequency samples. If 
the noise is stationary and Gaussian the real and imaginary parts of the whitened noise in each 
frequency bin will be a collection of independent and identically distributed (i.i.d.) random 
variables with zero mean and unit variance: x ∼ N (0, 1). Departures from stationarity result 

Figure 4. Power spectral density for the data shown in figure 3. The spectrum for the 
non-windowed data are swamped by spectral leakage, and follow a 1/f 2 scaling. The 
Welch average was computed using a longer stretch of data.
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in correlations between samples in different Fourier bins, while departures from Gaussianity 
can be identified by comparing the distribution of samples to a unit normal distribution. Loud 
instrumental noise transients and loud gravitational-wave bursts do contribute to non-station-
ary and non-Gaussian features, but away from these transient disturbances the LIGO–Virgo 
data can be approximated as stationary and Gaussian. Figure 6 shows the whitened Fourier 
amplitudes for a quiet stretch of data from the LIGO-Livingston observatory.

5. Time-frequency analysis and stationarity

The LIGO–Virgo data exhibit two main types of non-stationary behavior. The first is slow 
and continuous adiabatic drifts in the power spectrum occurring over minutes or hours, and 
the second is short-duration noise transients, which we refer to as glitches, that are typically 
localized in time and frequency. Additional non-stationarity has been observed in the vicinity 
of spectral lines, such as those due to electromagnetic couplings to the 50/60 Hz AC power 
supply. The adiabatic drifts in the power spectrum can be defined in terms of locally stationary 
processes [67, 68]. A locally stationary process has a covariance function which is the product 
of a covariance function for a stationary process and a time-variable function.

The stationarity of the data is evaluated as part of candidate event validation [3, 48]. 
Here we describe some simplified non-stationarity tests that can be applied to the data. Non-
stationarity can in principle be identified by looking for correlations in the Fourier amplitudes, 
but it is easier to identify and classify non-stationary behavior using time-frequency methods. 
The simplest approach is to divide the data into small chunks of time centered on time ti, and 
compute a smoothed estimate for the power spectrum for each chunk Sn( f , ti). Figure 7 shows 

Figure 5. The Fourier phases of the stretch of LIGO-Hanford data shown in figure 3. If 
no window is applied before performing the FTT, as was the case in the analysis in [42], 
spectral leakage causes the phase to be correlated. When the Tukey window is applied 
the phases appear randomly distributed, as expected for Gaussian noise. The phases 
show some clustering around the 60 Hz power line, consistent with the deterministic 
origin of this noise component.
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Bayesian power spectral density estimates [64] computed using 8 s stretches of data from the 
LIGO-Hanford instrument that are spaced at 64 s intervals. The instrument noise level was 
highly variable during this time period, showing large changes in the power spectral density in 
the band between 32 Hz and 256 Hz (note that this particular period of time for this example 
was chosen due to observed large variations in the detector’s sensitivity).

Wavelets provide a more flexible analysis framework than short-time Fourier transforms. 
Continuous wavelet transforms are commonly used in LIGO–Virgo data studies to produce 

Figure 6. The panel on the left shows a 2-d density plot of the whitened real and 
imaginary Fourier amplitude deviations using 256 s of LIGO-Livingston data centered 
on GPS time 1186741733 covering the band from 32 Hz to 512 Hz. The panel on the 
right shows a 1-d histogram of the Fourier amplitudes. The solid line is for a reference 
N (0, 1) distribution, while the dashed lines indicate the expected 3-sigma variance 
from having a finite number of samples.

Figure 7. Power spectral density (solid lines) with 90% credible intervals (shaded 
bands) for the LIGO-Hanford detector computed using 8 s stretches of data spaced 
by 64 s intervals starting at GPS time 1165067724. During this time period there was 
significant broad-band non-stationarity between 32 and 256 Hz.
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spectrograms that provide a visual indication of non-stationary behavior. Quantitative assess-
ments of non-stationarity may also be made by using discrete, orthogonal wavelet transforms. 
These can be visualized using a scalogram, showing the amplitudes of the wavelet basis func-
tions at each discrete time and frequency pixel. Figure 8 shows a scalogram of the same stretch 
of LIGO-Hanford data which were used to produce figure 7. The data were first whitened 
using an amplitude spectral density estimate taken from 256 s of data centered at GPS time 
1165067917. The whitened data were then transformed using discrete wavepackets181, built 
from Meyer wavelets [70], that were chosen to give uniform time and frequency coverage with 
tiles of size ∆t = 0.5 s and ∆f = 1 Hz. The average power at each time was then computed 
by summing the squares of the wavelet amplitudes (and dividing by a normalization constant) 
between 16 and 256 Hz. The noise level is elevated for almost a minute around the center of 
the data segment.

When this analysis is applied to stationary, Gaussian noise, the power in each time interval 
follows a chi-squared distribution with Nf  degrees of freedom, where Nf  is the number of fre-
quency pixels that are summed over. The distribution of the average power can be compared 
to this reference distribution using e.g. an Anderson–Darling test [71], to yield a quantitative 
measure of the non-stationarity. Note that while stationary noise is stationary no matter what 
time span is considered, non-stationary noise will produce different measures of departure 
depending on the averaging scale (here the width of the wavelet pixels in time) and time span 

Figure 8. Fluctuations in the whitened data for the same stretch of highly non-
stationary LIGO-Hanford data used to produce figure 7. The data were first whitened 
using an amplitude spectral density estimated from 256 s of data centered at GPS time 
1165067917, then a discrete wavelet wavepacket transform was used to produce the 
scalogram shown in the lower panel. The upper panel shows the average power as a 
function of time computed from the scalogram.

181 Note that the standard discrete wavelet transformation applies successive high and low pass filters in a particular 
order. The wavelet wave packet transform generalizes this to consider all possible combinations of filter application 
orders. A particular path through this transformation sequence defines some wavelet wave packet transformation. 
One is free to choose the decomposition path. Various criteria can be used to select an optimal or near optimal de-
composition for a particular data set. In the study presented in this paper we use a path that gives a regular spacing 
in frequency bands because this choice provides a simple generalization of a discrete Fourier transform to the more 
flexible time-frequency case. For more information on this method, see [69].
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Figure 9. A quiet stretch of whitened strain data from the LIGO-Livingston laboratory 
centered on GPS time 1186741733. The upper panel shows the transformed average 
power statistic s(t) for a variety of wavelet resolutions (plotted in different colors) 
with pixels ranging from 0.25 s to 2 s in width. The power fluctuations s(t) should 
follow a zero mean, unit variance Gaussian distribution when the noise is stationary and 
Gaussian. The lower panel shows a wavelet scalogram at 0.5 s resolution.

Figure 10. A stretch of whitened strain data from the LIGO-Livingston laboratory 
centered on GPS time 1166358283. The upper panel shows the transformed average 
power statistic s(t) for a variety of wavelet resolutions with pixels ranging from 0.25 
s to 2 s in width. The power fluctuations s(t) should follow a zero mean, unit variance 
Gaussian distribution when the noise is stationary and Gaussian. The lower panel shows 
a wavelet scalogram at 0.5 s resolution. A series of glitches causes significant non-
stationarity.
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of the data. For visualization purposes it is convenient to transform the average power p(t) to a 
new variable s(t) via the Wilson–Hilferty transformation [72], such that s(t) follows a N (0, 1) 
Gaussian distribution when the noise is stationary and Gaussian.

Applying the Anderson–Darling test to the total power yields p -values for the hypothesis 
that the data are stationary. When applied to the quiet stretch of data shown in figure 9 the test 
yields a p-value of p   =  0.74, indicating that the hypothesis that the data are stationary can-
not be rejected over this time period at this wavelet scale. Applying the same test to the data 
shown in figure 10 yields a p -value of p = 2.3 × 10−6, and we can reject the hypothesis that 
the data are stationary with high confidence. Any analysis that attempted to detect or estimate 
the parameters of a possible gravitational-wave signal occurring in this stretch of data would 
then have to take steps to mitigate, suppress or otherwise account for the departure from sta-
tionary noise.

6. Detector calibration and data quality

In this section we provide the central concepts related to the calibration of the data as well as 
an overview of the data quality checks we perform. These procedures ensure that the strain 
data used for analyses (namely, the analyses used by the LVC in publication results) and made 
public on the GWOSC is calibrated properly with known error bars, and that time periods of 
poor data quality can be avoided, as explained below.

6.1. Detector calibration

The Advanced LIGO [9, 55, 73, 74] and Advanced Virgo [10, 47, 75] detectors use feedback 
loops to keep the optical cavities on resonance. The strain calibration must thus include mod-
els and measurements of all readout electronics, as well as of electronics and transfer func-
tions of actuation hardware that act on the mirrors through multiple points in the suspension 
systems [76]. As shown in figure 11, there are three main components of the differential arm 
control loop for Advanced LIGO: the actuation function A( f ), the sensing function C( f ), and 
the digital filters applied, D( f ). All three are measured and modeled as functions of frequency.

The digital filters are known to great precision so the calibration error and uncertainty come 
from the differences between the model and measurement (including measurement error) of 
the actuation and sensing functions, A and C. To independently measure the actuation and 
sensing functions, a pair of beams from auxiliary lasers are reflected off of each test mass 
mirror, with their intensities modulated at a known frequency and amplitude to actuate with 
radiation pressure. These auxiliary laser assemblies are referred to as photon calibrators [77]. 
Once A and C are known, the true differential arm length is extracted and translated to a strain 
by dividing by the common length of the arm L (4 km for LIGO, 3 km for Virgo), per the fol-
lowing equation:

h(t) =
1
L

[
C−1 ∗ derr(t) +A ∗ dctrl(t)

]
, (5)

where C and A are time-domain filters derived from frequency-domain measurements of the 
actuation function A( f ) and the sensing function C( f ).

Note that the gravitational-wave strain can also appear in the common-mode arm length 
changes, and in changes to the lengths of all degrees of freedom in the detector. However, only 
the sensing of the differential change in the interferometer’s arm lengths is engineered to have 
low enough instrumental noise to be sensitive to the strain induced by gravitational waves. The 
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other optical lengths are controlled in order to maintain an optimal and linear response to the 
gravitational-wave strain in the differential degree of freedom.

Calibration measurements are made periodically in each observing run. In addition, to 
monitor time dependent parameters such as optical gain, cavity pole frequency and actuation 
strength drifts, several calibration lines are continously injected, at specific frequencies, by 
applying sinusoidal forces on the test mass mirrors using the photon calibrators; these lines 
will be present in the raw strain data. The calibration line frequencies are different amongst 
the detectors.

For the second observing run O2 and onwards, the calibration lines are removed from the 
calibrated h(t) strain data channel (within the calibration accuracy) [47, 78]; the calibration 
lines were not removed from the O1 data [74]. Even for O1, the presence of the calibration 
lines does not affect the search for compact binary coalescence gravitational-wave signals as 
the amplitude of data at the frequencies of the lines is suppressed via the whitening [79, 80] of 
the data when the calculation of the detection statistic is made for the data from each detector 
(see section 8). Similarly, for parameter estimation the presence of the noise spectral density 
in the likelihood (see section 9) minimizes the influence of spectral lines including calibration 
lines. Because the spectral lines are narrow, this frequency-domain weighting has a negligible 
effect on signal searches and parameter estimation and does not lead to any spurious effects 
such as generation of false candidate events or parameter biases.

Figure 11. Differential arm length control loop and calibration diagram of the LIGO 
detectors from the GW150914 companion paper on calibration [55]. The left (grey) box 
shows the realtime detector controls while the right (purple) box shows the calibration 
procedure. ∆Lfree is the unsuppressed change in differential arm length, and hence 
the desired quantity. The photodiodes (part of the sensing C) measure the residual 
differential arm length ∆Lres, which is suppressed by the feedback loop. The ‘error 
signal’ derr, equal to ∆Lres multiplied by the sensing function C, is passed through digital 
filters, D, and applied to the differential arm length actuators through the actuation 
function, A. In order to reconstruct an estimate of ∆Lfree in units of strain we model A 
and C, denoted in the purple box. x(PC)

T  denotes where in the loop we apply a force to 
the test mass mirrors, via radiation pressure (photon calibrator), in order to measure A 
and C, as functions of frequency. The output of the calibration pipeline is then a strain 
signal, h(t), that is a faithful representation of ∆Lfree/L.
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For the Advanced Virgo calibration in O2 it was necessary to account for the transfer func-
tion of the optical response of the interferometer. This requires a calibration of the longitu-
dinal actuators for the mirrors, still based on the laser wavelength as length reference using 
the so-called free swinging Michelson configuration described in [81]. In addition, the inter-
ferometer’s output power as determined by the readout electronics also requires calibration. 
Calibration measurements are made weekly in each observing run and have shown stable 
actuation strengths. To monitor the time dependent optical gain and cavity pole frequency, 
several calibration lines are continously injected, as in LIGO detectors, at specific frequencies, 
by applying sinusoidal forces on the test mass mirrors using the electro-magnetic actuators. 
By construction, the calibration lines are removed from the calibrated h(t) strain data chan-
nel (within the calibration accuracy). For Advanced Virgo in O2 the gravitational wave strain 
reconstruction removed the contributions from control signals to the test mass mirror motion. 
A photon calibrator, namely an auxiliary laser that is used to reflect photons off a mirror and 
induce momentum transfer, was used to verify the calibration and confirm the sign of the 
strain channel h(t). See [47] for more explicit details of the Advanced Virgo calibration system 
for O2.

Calibrated strain data for the LIGO and Virgo detectors are created online for use in low-
latency searches. After the completion of the observing runs, final time-dependent calibrations 
were generated for each detector. The results presented in GWTC-1 [3] use the full frequency-
dependent calibration uncertainties described in [47, 82, 83]. It is important to note that the 
detector strain channel h(t) is only calibrated between 10 Hz and 5 kHz for Advanced LIGO 
and 10 Hz and 8 kHz for Advanced Virgo [47]; the channel is not a faithful representation of 
strain at lower or higher frequencies.

6.2. Data quality and terrestrial noise

As described in sections 3 and 5, calibrated LIGO and Virgo data can be both non-stationary 
and non-Gaussian at certain times and frequencies. Glitches may mimic true transient astro-
physical signals in individual detectors [48], while spectral lines such as those seen in figure 2 
can blind searches for long-duration signals at those specific frequencies [49]. In this sec-
tion we outline how we identify and characterize these noise features so that we can either 
exclude the bad data or assess the impact of remaining artifacts on searches for gravitational-
wave signals.

Figure 12 shows an example of a glitch. Glitches with power comparable to detectable sig-
nals have historically occurred on the order of once per minute, with larger glitches occurring 
less frequently. Even in their nominal state, the detectors’ data contain glitches introduced by 
behavior of the instruments or complex interactions between the instruments and their environ-
ment. Many of these glitches (but not all) can be associated with transient signals in auxil-
iary channels from various sensors which serve as ‘witnesses’ to environmental disturbances 
coupling into the interferometer. These associations allow us to identify and catalog certain 
classes of glitches. See [48] for a detailed presentation on the characterization of transient noise 
in Advanced LIGO, especially pertaining to the observation of the gravitational-wave signal 
GW150914. Descriptions of various noise sources for Advanced Virgo in O2 can be found in 
[84–87].

In searches for transient gravitational-wave signals, identified glitches and periods of poor 
data quality are flagged [50, 88, 89]. Periods of data are vetoed at various levels or categories 
depending on the severity of the problems; the GWOSC open data releases make this infor-
mation available [24]. Sections of strongly non-stationary data that would corrupt the noise 
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power spectral density estimates are removed entirely from the searches. Times when noise 
sources with known physical coupling to the gravitational-wave strain channel of the detector 
are active, and thus likely to cause glitches, are identified, and candidates at or around these 
times may be removed (vetoed) from search results. For a more detailed explanation of the 
strategy for mitigating noise sources, see section 4 of [48]. For searches for long-duration 
signals, frequency bands known to be dominated by instrument noise are omitted from the 
analysis [49]. The strategy of vetoing times of probable glitches is expected to increase con-
fidence in detection candidates that survive the application of vetoes [50, 90, 91], and may 
thus increase the number of astrophysical signals that can be confidently detected. Detection 
methods are discussed in detail in section 8.

Although the great majority of transient noise sources are of local origin and thus uncor-
related between detectors, some noise sources exist that are potentially correlated between 
detectors, such as electromagnetic pulses from lightning coupling inductively into the detec-
tors [92]. A key feature of the LIGO and Virgo experimental design is an array of physical 
environment monitors designed to detect environmental disturbances, and to have greater sen-
sitivity to those disturbances than the detector’s gravitational-wave strain channel does. The 
LIGO environmental sensor array includes seismometers, microphones, accelerometers, radio 
receivers and magnetometers to monitor ambient noise [93]182. Virgo has a similar array of 
sensors [10]183. The environmental sensors’ sensitivities are verified via a suite of noise injec-
tions performed at the beginning and end of each observing run; acoustic, magnetic, radio 
frequency, and vibrational tests are done to quantify the coupling from ambient noise to the 
gravitational-wave strain data h(t) [48]. These injections are conducted at multiple locations 
around the detector such that sensor coupling functions to h(t) via multiple potential coupling 
paths are verified and well understood.

As shown in figure 2 of [48], the external transient electromagnetic coupling of the ambient 
noise to the gravitational-wave data channel h(t) is on the order of a factor of 100 below the 
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Figure 12. Spectrogram of an example of transient noise in the advanced detectors; 
a blip glitch in LIGO-Livingston. This is a zoomed image of the blip glitch shown in 
figure 10 of [50].

182 See also http://pem.ligo.org
183 See also https://tds.virgo-gw.eu/?content=3&r=15647

B P Abbott et alClass. Quantum Grav. 37 (2020) 055002

http://pem.ligo.org
https://tds.virgo-gw.eu/﻿?﻿content﻿=﻿3﻿&﻿r﻿=﻿15647


29

current strain level, such that any electromagnetic source would have to register in one of the 
magnetometers surrounding the detector an SNR of 100 before registering in the gravitational-
wave signal channel. This is easily confirmed with the study of lightning strikes during nearby 
storms [48]. The description of the coherence between the detectors’ output strain signal h(t) 
and magnetometers about the detector for the AC power frequencies (50/60 Hz) is nontrivial 
and described in [94]. In Virgo, a detailed study of the electromagnetic coupling to the gravi-
tational-wave data channel was recently carried out [84, 85].

In addition, a potential correlated noise source in searches for a stochastic gravitational-
wave background is Schumann resonances, or low-frequency magnetic field resonances 
between the Earth’s surface and the ionosphere excited by lightning [95, 96]. These reso-
nances are also monitored with sensitive magnetometers, with the future goal of subtracting 
their effect on gravitational-wave strain data [97]. The effect of Schumann resonances on the 
measured gravitational-wave strain is below the current Advanced LIGO–Advanced Virgo 
noise floor [98].

7. Noise model and likelihood

The likelihood that the gravitational-wave strain data contains a given signal is the central 
quantity in both detection and parameter estimation of gravitational-wave events. In this sec-
tion we relate this likelihood to the model assumptions commonly made for the noise comp-
onents of gravitational-wave detector strain data. The data time series d collected from an 
interferometer can be written as the sum of the gravitational wave response of the detector, h, 
and the combination of all the noise sources in that detector n such that d = n + h. Since the 
true gravitational-wave signal in the detector h is unknown, we resort to using signal models 
denoted by h. We consider a model h to be a good description of the signal in the data if the 
residuals r = d − h are consistent with our model for the instrument noise. More quantita-
tively, the likelihood that the data d contains a possible signal h is given by the probability that 
r is a realization of the noise model. In other words, the likelihood function is the noise model. 
For Gaussian noise the likelihood can be written:

p(d|h) = 1
det(2πC)1/2 e−

1
2 χ

2(d,h) , (6)

where C is the noise correlation matrix, and

χ2(d, h) = r · C−1 · r = (dIk − hIk)C−1
(Ik)(Jm)(dJm − hJm) . (7)

The repeated indices include a sum over the network of detectors I, J and the data samples k 
and m. If the noise is uncorrelated between detectors C(Ik)(Jm) = δIJSI

km, where S is the noise 
spectral density. Moreover, if the noise is stationary—so that correlations depend on only the 
time lag between data samples—then the noise correlation matrix in each detector will be 
diagonal in the Fourier domain: SI

km = δkmSI( fk). In that case we have χ2(d, h) = (r|r) where 
(a|b) is the familiar noise-weighted inner product:

(a|b) = 2
∫ ∞

0

ã( f )b̃∗( f ) + ã∗( f )b̃( f )
Sn( f )

df . (8)

The likelihood function (6) is central to Bayesian inference [99], and with the specification of 
priors [100] for the signal and noise models, allows for the calculation of the model evidence 
[101, 102]—giving the odds that a signal is present—and posterior distributions for the model 
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parameters, θ, such as the masses and spins of a binary system [103–105]. For stationary, 
Gaussian noise that is uncorrelated between detectors, the likelihood function takes the form

p(d|θ) = exp

(
−1

2

∑
I

[
(dI − hI(θ)|dI − hI(θ)) +

∫
ln(SI

n( f )) df
])

,

 (9)
where the sum is taken over the detectors in the network and (a|b) is the noise weighted inner 
product defined in equation (8).

The likelihood function can also be used to define a frequentist detection statistic [53, 106] 
given by the likelihood ratio between a signal h being present or absent in the data. If the data 
were stationary and Gaussian this statistic would follow a known distribution and the false 
alarm rate for an event could be computed analytically. In practice the noise exhibits devia-
tions from stationarity and Gaussianity, and the methods used to detect and characterize sig-
nals have to be modified. Robust search methods have been developed that take into account 
the measured properties of the noise. These are described in section 8. The noise modeling and 
consistency checks applied to signal characterization and parameters estimation are described 
in section 9.

8. Signal detection

In this section we describe how candidate signals are identified in LIGO–Virgo data and how 
the statistical significance of each candidate is quantified by comparison with the observed 
properties of the detector noise.

8.1. Model comparison and the matched filter

The LVC searches for gravitational waves compare the null hypothesis, H0, that a given stretch 
of data contains only noise, to the signal hypothesis, H1, that the stretch of data contains both 
noise and a gravitational-wave signal184. Most searches assume that general relativity cor-
rectly describes the gravitational-wave signals. The likelihood of observing the data under the 
two hypotheses can be written in terms of equation (6) by

p(d | H0) = p0(d) and p(d | H1) = p1(d) (10)

where H0 assumes noise alone with no signal in the data, while H1 assumes a signal param-
eterized by θ, h(θ) is present in addition to the noise. For the present, we will assume that 
each detector data stream is being analyzed independently, and we discuss below how data 
from multiple detectors is combined in LVC searches. The probability of the signal hypothesis 
given the observed data, known as the posterior probability, is given by Bayes’ theorem as

p(H1 | d) =
p(H1) p1(d)

p(H0) p0(d) + p(H1) p1(d)
=

p1(d)
p0(d)

[
p1(d)
p0(d)

+
p(H0)

p(H1)

]−1

 (11)
where p(H0) and p(H1) are our prior beliefs of whether a signal is absent or present in the 
data. Regardless of these prior beliefs, the posterior probability is seen to be monotonic in the 
likelihood ratio

184 In reality all LIGO–Virgo data may contain some level of gravitational-wave signal, but a signal can only be 
detected if the null hypothesis is sufficiently disfavored relative to the signal hypothesis.
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Λ(d|θ) = p(d | H1)

p(d | H0)
=

p1(d)
p0(d)

 (12)

and so this quantity is the optimal test statistic [54]. For Gaussian noise, the log of the likeli-
hood ratio can be written in terms of the inner product of equation (8) as

log Λ(d|θ) = (d | h(θ))− 1
2
(h(θ) | h(θ)) . (13)

Only the first term of this expression involves the data; it is then observed that the posterior 
probability is a monotonic function of (d | h(θ)), a quantity known as the matched filter, 
which, therefore, is also an optimal test statistic.

8.2. Signal-to-noise ratio and template banks

In a matched-filter search for gravitational-wave signals, the signal parameters θ will not be 
known in advance. The optimal detection statistic would be obtained by marginalizing [107] 
the likelihood ratio Λ(d|θ) over all unknown parameters by integrating the likelihood ratio 
over these parameters185.

Since the log likelihood ratio is a linear function of the signal model, its exponential—the 
likelihood ratio itself—will generally be sharply peaked about its maximum, thus the maxi-
mum value of Λ(d|θ) over unknown parameters θ is expected to be a good approximation 
to the marginalized likelihood ratio (up to a possible constant rescaling). This maximization 
procedure is equivalent to minimizing the residuals seen in the detector, which can be seen as 
follows. The log likelihood can be written as

log Λ(d|θ) = −1
2
(d − h(θ) | (d − h(θ)) +

1
2
(d | d). (14)

Now it is clear that the parameters θ̂ that maximize the log likelihood ratio are those that mini-
mize the residuals d − h(θ) in terms of the noise weighted inner product.

The parameters θ describing the strain observed in a detector include the signal amplitude 
A observed in the detector (which is inversely proportional to the distance to a gravitational-
wave source), the phase φ of the sinusoidally-varying signal observed in the detector, the 
arrival time t of the signal (usually defined by the moment when it reaches peak gravitational-
wave amplitude at the detector), and other parameters µ describing the physical parameters of 
the source such as the masses and spins of the components. We write

h(θ) = Ap(t,µ) cosφ+ Aq(t,µ) sinφ (15)

where p(t,µ) and q(t,µ) are in-phase (cosine) and quadrature-phase (sine) waveforms, nor-
malized so that (p | p) = (q | q) = 1, and which are orthogonal, (p | q) = 0.

Maximization over the amplitude and phase can be done algebraically as follows: equa-
tion (13) can be rewritten using equation (15) as

log Λ(d|θ) = Aρ(t,µ) cos(φ− ϕ)− 1
2

A2 (16)

185 The integration measure to obtain an optimal statistic is given by the probability density of gravitational-wave 
signals over the unknown parameters [108]: for example if the parameters θ include ι, the inclination of the binary 
orbit relative to the line of sight for a compact binary gravitational-wave source, the signal probability density over 
ι is uniform in cos ι [109].
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where

ϕ ≡ arctan
(d | q(t,µ))
(d | p(t,µ)) (17)

and

ρ(t,µ) ≡
√
(d | p(t,µ))2 + (d | q(t,µ))2 (18)

is the SNR time series for waveform templates with parameters µ. The log-likelihood log Λ is 
maximal for amplitude Â = ρ and phase φ̂ = ϕ with

max
A,φ

log Λ(θ) ≡ log Λ(t, Â, φ̂,µ) =
1
2
ρ2(t,µ) . (19)

Peaks in this time series correspond to times at which a signal is most likely to be present. 
Under the signal (noise) hypothesis, and in the presence of stationary and Gaussian noise with 
a known power spectrum, ρ2(tpeak,µ) follows a non-central (central) chi-squared distribution 
with two degrees of freedom.

The SNR time series can be conveniently expressed in terms of a complex time series as 
equation (8) of [66]

z(t,µ) = 4
∫ ∞

0

d̃( f )p̃∗( f ,µ)
Sn( f )

e2πiftdf (20)

as ρ = |z| and the phase ϕ = arg(z); p̃( f ,µ) is the Fourier transform of the in-phase wave-
form (see equation 15). Equation (20) is the inverse Fourier transform of

z̃( f ,µ) = 4
d̃( f )p̃∗( f ,µ)

Sn( f )
Θ( f ) (21)

where Θ( f ) is the Heaviside step function.
Parameters such as the masses and spins of the binary components (represented by µ) 

change the morphology of the gravitational wave. In order to detect signals with a wide range 
of possible masses and spins, a bank consisting of large numbers of signal templates spanning 
the parameter space is produced, and each template in the bank is used as a matched filter. 
The template bank used to initially find signals in the data is constructed with a density in 
parameter space sufficiently high that the loss in SNR between a true signal and the best-fit 
template is less than 3%. See [2, 3, 110] for more details on the template banks used for the 
O1 and O2 searches.

An important property of the SNR should be noted: in equation (20) it can be seen that the 
integrand is proportional to d̃( f )/Sn( f ), so the data are not simply being whitened (which 
would have been the case if the denominator were S1/2(f )), but in fact noisier parts of the fre-
quency spectrum (including narrow lines) are suppressed in the matched filter. Equivalently, 
the SNR integral can be seen as correlating a whitened data time series with a whitened tem-
plate. The SNR therefore provides a natural way to down-weight the frequency bands where 
the noise is large, and effectively notches out the various lines.

8.3. Rejection of noise artifacts and construction of candidate ranking statistic

While the SNR is the optimal detection statistic in the case of stationary Gaussian noise, tran-
sient instrumental artifacts make it a non-optimal statistic with real detector noise. Although 
the matched filter naturally suppresses stationary noisy features in the data, glitches can cause 

B P Abbott et alClass. Quantum Grav. 37 (2020) 055002



33

certain templates to produce high SNR values [50, 111–113]. We address this in several dif-
ferent ways:

 (i)  As explained in section 6.2, we use witness sensors to identify times when the environ ment 
or the instrument introduces frequent glitches and we veto a subset of these times found 
to impact search performance from our analysis [50]. These sensors include those that 
monitor the physical environment about the gravitational-wave detector, as well as those 
that record signals from within the internal control systems of the interferometer.

 (ii)  We implement waveform consistency tests which characterize the deviation of the data d 
from the model n + h [20, 21, 66, 114]. For signals from compact binary mergers, these 
tests are extremely powerful and allow us to reject many glitches which have not been 
identified and vetoed, though for short signals the discriminatory power of these tests is 
diminished [3, 20, 114, 115]. The exact implementation of these signal consistency tests 
vary among search pipelines, but all are based on the following principle: if the gravita-
tional-wave model waveform is subtracted from the data to produce residuals d − h, the 
residuals should be consistent with Gaussian noise if the signal hypothesis is true. These 
residuals are re-filtered with the matched filter over different time or frequency intervals 
to determine if non-noise-like features persist; evidence of such features suggest that the 
model waveform h is not a good match to the non-Gaussian feature in the data, and the 
detection ranking statistic is down-weighted accordingly. For example, the consistency 
test described in [66, 114] constructs a chi-squared test statistic by dividing the matched 
filter into n frequency bands as

χ2 =

n∑
i=1

|(d − h | p)i − (d − h | p)/n|2 + |(d − h | q)i − (d − h | q)/n|2

1/n
 (22)

  where (a | b)i is the same as the inner product in equation  (8) but with the integrand 
restricted to the frequency interval fi−1 < f < fi with f 0  =  0 and fn = ∞. Here the bands 
are chosen so that (p | p)i = (q | q)i = 1/n. If the residual d − h is Gaussian noise, χ2 
is chi-squared distributed with ν = 2n − 2 degrees of freedom; values of χ2 � ν are 
indicative of residual non-Gaussian features in the data after the model has been sub-
tracted. A re-weighted ranking statistic proposed in [20]

ρ̂ = ρ×

{
1 χ2 � ν[ 1

2 + 1
2 (χ

2/ν)3
]−1/6

χ2 > ν
 (23)

  down-weights the SNR for large values of χ2. A similar time-domain based signal con-
sistency test is described in [21] and is incorporated into a likelihood ranking statistic.

 (iii)  For all detections published to date we have required that gravitational-wave signals 
be identified via matched filtering in at least two independent detectors with consistent 
parameters. For example, the arrival times of the gravitational waves at each detector 
must differ by no more than the the maximum time-of-flight between the detectors, e.g. 
10 ms for the LIGO Hanford–LIGO Livingston pair, with an extra 5 ms added in order to 
account for uncertainty in the inferred coalescence time at each detector. This 5 ms addi-
tion to the coincidence window is also used when searching for simultaneous events for 
the LIGO Hanford–Virgo pair (27 ms light travel time), and the LIGO Livingston–Virgo 
pair (26 ms light travel time) [3]. However, having now established the existence and 
frequency of gravitational-wave signals, it may now also be possible to make detections 
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when only one detector is operating, and thus this time coincidence test is not available 
[116].

The matched-filter based searches employed by the LVC construct ranking statistics from 
the SNR and the waveform consistency test statistics [3]. In addition an astrophysical signal 
received in several detectors will have a common set of parameters µ (within limits imposed 
by limited SNR) in all detectors, and, furthermore, the amplitude, phase, and time-of-arrival 
of the signals observed in each detector will be determined by the direction of propagation 
of the wave (i.e. from where on the sky the signal originates) and the polarization state of the 
signal. Since gravitational waves have two polarizations (in general relativity), referred to as 
the plus-polarization h+ and the cross-polarization h×, the strain on detector I is determined 
by the detector’s antenna response patterns F+,I and F×,I by

hI(θ) = F+,I(α, δ,ψ, t)h+(t − τI , D, ι,µ) + F×,I(α, δ,ψ, t)h×(t − τI , D, ι,µ)
 (24)

where α and δ are the right ascension and declination of the source of the gravitational waves, 
D is the distance to the source of the waves, ι is the inclination of the orbital plane of the 
binary system (which, for circular orbits and leading order quadrupole emission, determines 
the ellipticity angle), and τI = τI(α, δ, t) is the travel time of the signal from the geocenter 
to the detector. Although a fully-coherent search for gravitational waves across a network of 
detectors is possible, we opt instead to perform searches independently in each detector and 
then demand that triggers seen in different detectors have consistent times of arrival and the 
same parameters µ since this provides a powerful glitch rejection consistency test as described 
above. However, further signal consistency requirements are also possible. For the leading-
order quadrupole emission from a circular binary, the ratios of the amplitudes seen in two 
detectors is

AI

AJ
=

√√√√√√
F2
+,I

(
1+cos2 ι

2

)2
+ F2

×,I cos
2 ι

F2
+,J

(
1+cos2 ι

2

)2
+ F2

×,J cos
2 ι

 (25)

while the difference in arrival time is tI − tJ = τI − τJ and the difference in phase is

φI − φJ = arctan

(
F×,J

F+,J

2 cos ι
1 + cos2 ι

)
− arctan

(
F×,I

F+,I

2 cos ι
1 + cos2 ι

)
. (26)

It is therefore possible to include an amplitude-phase-time consistency measure in likelihood-
based ranking statistics [20, 50, 117]; this was done for the most recent searches for gravita-
tional-wave signals in the LIGO–Virgo O1 and O2 data [3].

8.4. Background estimation and detection confidence

After the steps described above which mitigate the effects of noise transients, the probabil-
ity of remaining transients occurring simultaneously (within a time window that takes into 
account the maximal travel time of a signal, for example 10 ms for the two LIGO detectors) 
in two detectors and producing a large joint ranking statistic value becomes extremely small. 
Different searches adopt different approaches for measuring this probability as a function of 
the ranking statistic [50]. The basic method is to examine the statistical properties of the non-
simultaneous transients observed in each detector and to artificially treat them as if they did 
occur simultaneously.

B P Abbott et alClass. Quantum Grav. 37 (2020) 055002



35

The statistical significance of any candidate event observed in two or more detectors is 
quantified by its false alarm rate, which is the expected rate of events per time due to noise 
which would be assigned an equal or larger ranking statistic than the candidate. One approach 
to estimating false alarm rates is to shift one detector’s data stream in time (by a time interval 
larger than the maximum time-of-flight between detectors) and repeat the search. The result-
ing ‘time-shifted’ coincidences are then treated as a background noise sample. This is done 
numerous times with different time shifts in order to obtain a probability distribution for the 
joint detector ranking statistics. Each coincident trigger is assigned a false alarm rate given 
by the number of background triggers with an equal or larger ranking statistic, divided by 
the total time searched for time-shifted coincidences. For example, in [1] it is found that the 
frequency of transients producing more significant events than GW150914 is less than once 
every 200 000 years in both of the matched-filter searches employed by the LVC.

Another similar approach is to accumulate single-detector triggers not having simultane-
ous (within the time-of-flight of gravitational waves) triggers in another detector and therefore 
likely not associated with gravitational-wave signals. The distribution of the ranking statistic 
under the background (noise only) hypothesis is then estimated by randomly drawing sin-
gle detector triggers from the inferred single detector distributions and artificially treating 
them as if they were simultaneous when constructing the ranking statistic. The significance 
of an observed ranking statistic value can then be evaluated using this background distribu-
tion [21, 117]. These two independent methods of determining the significance of observed 
gravitational-wave candidates have both yielded high significance for the gravitational waves 
that have been identified.

Terrestrial noise sources that are potentially correlated between detectors are not taken into 
account by these background estimation methods. Thus, as discussed in section 6.2 above, a 
detailed examination of physical and environmental sensors which monitor such noise sources 
and an assessment of their coupling to the measured gravitational-wave strain channel is car-
ried out in order to check the validity of a detection candidate.

The LVC also performs searches of LIGO and Virgo data without specific waveform mod-
els [22, 118]. These searches first identify periods of excess power in each detector’s data 
stream and then builds a detection statistic based on the cross-correlation between the data 
streams. The significance of a particular detection statistic value is again assessed using time 
shift analyses. In [1] it was shown that the frequency of noise transients producing more sig-
nificant events than GW150914 in such a generic transient search is once every 8400 years.

The fact that multiple searches, employing different methods, all found GW150914 to be a 
highly significant candidate bolsters our confidence that this event is not the product of coin-
cident transient noise. Furthermore, the signal is well matched by the waveform predicted by 
general relativity for the coalescence of a binary black hole system. Various tests performed 
using the first ten binary black hole mergers detected by the LVC with high confidence have 
shown no significant deviation from general relativity models [119].

8.5. Measurement of search sensitivity

A final component of a search pipeline is the determination of the sensitivity of the search to 
astrophysical populations of signals. The purpose of doing so is two-fold: first, it provides a 
metric by which a search can be tuned to optimize its detection efficiency for particular classes 
of signals; second, it provides a means for interpreting the rate of signals detected by the pipe-
line to the rate at which signals are generated by the population.
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The sensitivity of the search pipeline is normally measured via a Monte Carlo procedure 
(see, e.g. [120]) in which simulated signals drawn from a hypothetical source population (e.g. 
some distribution of binary component masses and spins, orientation angles, arrival times, 
and distance) are added to real detector noise, and the search is rerun to determine the fraction 
of signals from this population that are detected by the search pipeline. A simulated signal is 
considered to be detected if the search pipeline produces a trigger above some chosen rank-
ing statistic threshold. The result is represented as a time- and population-averaged spacetime 
sensitivity 〈VT〉 for a fixed ranking statistic threshold which corresponds to a fixed false alarm 
rate threshold (e.g. a threshold could be chosen to be one false alarm per century of observa-
tion). Alternatively, threshold-independent methods of astrophysical rate estimates can also 
be employed [121–123].

9. Inferring waveform and physical parameters

Once a candidate gravitational-wave signal is identified, and its significance is established, 
the next goal is to use the data to infer the physical parameters of the system that created the 
gravitational waves [102–105, 124–127]. The detection of gravitational waves as well as the 
inference of the physical parameters relies on knowledge of the generic shape of the signal one 
is looking for as well as the distribution of the noise. Moreover, gravitational-wave signals are 
weak, therefore uncertainties in these parameters may be large and a priori assumptions about 
the typical amplitudes and phase evolution of such signals do have a significant impact on the 
reconstructed waveform. For these reasons, inference of the physical parameters of the sys-
tem, such as masses, spins of the merging objects, is done within the framework of Bayesian 
parameter estimation. The central elements that need defining are a model M for the gravita-
tional-wave signal that allows for the prediction of the form of the signal from the values of 
the physical parameters of the system, and the so-called background or prior information I.

Given a model M that depends on a set of parameters θ, background information I, and a 
set of observations (data) d, inference is done via application of Bayes’ theorem:

p(θ|d, M, I) = p(θ|M, I)
p(d|θ, M, I)

p(d|M, I)
. (27)

The left hand side is referred to as the posterior probability density function, or simply the 
posterior for θ, while the three terms on the right hand side are the prior probability density 
function p(θ|M, I), the likelihood function p(d|θ, M I), given by equation (9) and the evidence,

p(d|M, I) =
∫

dθ p(θ|M, I) p(d|θ, M, I). (28)

Within the Bayesian parameter estimation framework, the inference is reduced to the calcul-
ation of the posterior for θ given the model M and the analysis assumptions I which uniquely 
determine the prior distribution and the likelihood function.

9.1. Waveform models

Let us focus now on the choice of signal model M. The signal model M determines the func-
tional form of h(t;θ) which is key to calculating the likelihood function. For definiteness, 
we will concentrate on parametric forms of h(t;θ), as obtained by solving Einstein’s equa-
tions. For a discussion of non-parametric signal models see [128]. Exact analytic solutions of 
Einstein’s equations are notoriously difficult to obtain; therefore data-analysis-ready models 
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are either based on perturbative solutions, e.g. the Taylor family of waveforms [129] or the 
effective-one-body waveforms [130–134], or on hybrid/phenomenological approaches such 
as the Phenom family of waveforms [135–138]. We will not discuss further the details of the 
waveform models here, but we will restrict ourselves to the two main types of waveforms 
employed in the original analysis of GW150914. For GW150914, the two models used in 
[127] were SEOBNRv2 and IMRPhenomPv2 [127, 139]. Both waveform models are full 
inspiral-merger-ringdown models that succeed in reproducing numerical waveforms, espe-
cially in the region of approximately equal mass and moderate spins magnitudes. The main 
difference between the two models lays in the treatment of the spin dynamics. SEOBNRv2 
models the dynamics of the component of the spin vectors along the direction of the orbital 
angular momentum while IMRPhenomPv2 includes also an effective treatment of the dynam-
ics of the in-plane components of the spins, and thus includes an approximate precessing 
dynamics186. Because GW150914 was nearly a face-off system (orbital angular momentum 
vector pointing away from the Earth), the LIGO instruments were not sensitive to the in-
plane spin components, hence the two waveform models are essentially equivalent. In [143], 
the LVC has empirically shown that the inferred properties of GW150914 depend relatively 
weakly on a change in the waveform model. This finding was confirmed by the analysis pre-
sented in [134] using an independent effective-one-body implementation and by [144], in 
which numerical relativity solutions were directly compared with GW150914 data.

9.2. Prior distributions

The final functions necessary for the application of Bayes’ theorem, equation (27), are the 
prior probability distributions for the parameters of interest. These are all the parameters nec-
essary to completely characterise the gravitational-wave signal emitted during a coalescence 
event. For quasi-circular orbits, these are:

 •  the component masses m1 and m2; 
 •  the spin vectors �S1 and �S2; 
 •  the polarisation angle ψ and the angle θjn between the total angular momentum �J  and the 

propagation direction of the gravitational wave n̂; 
 •  the source luminosity distance DL; 
 •  the source right ascension α and declination δ; 
 •  a reference phase ϕ0 and a reference time, typically the gravitational-wave strain peak 

time, t0.

The functional form of the prior distribution must be specified for all parameters. In some 
cases the prior distribution is determined via invariance (symmetry) properties of the param-
eter space [145]; for instance, the prior for the source position DL,α, δ in the Universe is 
chosen from the requirement that the number density of sources is uniform in the cosmologi-
cal co-moving volume in accordance with a Friedmann–Lemaître–Robertson–Walker cosmo-
logical model. Thus, the probability p(DL,α, δ|M I) ∝ dV  and for redshift z � 1 reduces to 
p(DL,α, δ|M I) ∝ D2

L| cos(δ)|. In cases where invariance arguments do not apply, we choose 
simple forms of prior distribution so that the resulting posteriors are easily interpretable. 
Similar arguments determine the prior for the spin vectors �S1,�S2 and orientation angles ψ, θjn 
to be uniform over the azimuthal angles ranging between 0 and 2π as well as uniform in the 

186 At the time of the discovery of GW150914 another precessing waveform model was available, SEOBNRv3, 
which also includes in-plane spin components [140, 141]. The original analysis, however, did not include results 
from this model, which were reported in [142].

B P Abbott et alClass. Quantum Grav. 37 (2020) 055002



38

cosine of the polar angles ranging between  −1 and 1. Regarding the spin vector magnitudes, 
several possible priors are possible, e.g. p(|�Si||M, I) ∝ |�Si|2 or p(|�Si||M, I) ∝ 1. The main 
analysis of the events in the GWTC-1 catalog employed a uniform distribution over the norm 
of the spin vectors. For the component masses m1 and m2, the chosen prior distribution is uni-
form, thus p(m1, m2|M I) ∝ 1, but limited from below so that m1, m2 > 1M�.

9.3. Calibration uncertainties

In addition to uncertainties induced by detector noise, the accuracy and precision of our source 
parameter estimates are also affected by uncertainties in the amplitude and phase response of 
the detectors. For this reason, this source of uncertainty on the data is modelled and included 
in the analysis. The calibration uncertainty model employed is based on empirical estimates 
of the error magnitudes in both amplitude and phase in specified frequency bands [47, 74, 82]. 
In particular, the model assumes the value of the errors to be distributed as a Gaussian distri-
bution with zero mean and a variance given by the empirically determined error magnitudes. 
Calibration uncertainty curves are then constructed using third order spline interpolation over 
the data frequency space. Typically, this introduces a total of O(10) additional parameters 
per detector (half for the phase uncertainty and the other half for the amplitude), which are 
sampled in concert with the physical parameters of the system. Technical details for the LVC 
calibration model can be found in [146].

9.4. Numerical methods

The total number of parameters to be inferred is thus 15 for quasi-circular orbits and generic 
spin vectors, and 11 for models where spins are forced to be aligned with the orbital angular 
momentum. To the set of physical parameters, we must add the 10 parameters per detector 
necessary to specify the calibration uncertainty model. Hence, for a typical three-detector 
analysis, we sample a grand total of 45 parameters for a quasi-circular system with generic 
spin orientations. Parameter spaces of such high dimensionality cannot be efficiently explored 
with grid-based methods. Therefore, over many years members of the LVC developed the 
LALInference stochastic sampler library [105] which implements two algorithms, a paral-
lel tempering Markov chain Monte Carlo [147] and a nested sampling [102]. The parallel tem-
pering Markov chain Monte Carlo is designed to generate samples from the multidimensional 
posterior distribution (27), while the nested sampling instead is designed to calculate the evi-
dence, equation (28) and generates samples from the posterior distribution as a by-product. 
More details are given in [105] and references therein. Other parameter estimation pipelines 
are routinely used by the LVC, such as rapidPE [148] and BILBY [149], but for the rest of the 
discussion we will focus on LALinference. However, the same considerations will apply 
to other Bayesian analysis methods.

9.5. Posterior distributions

The end products of the LALInference analyses are posterior samples for all param eters 
that characterise the gravitational-wave waveform. Of particular interest are posteriors for 
the intrinsic parameters, masses and spin vectors, which help ascertain the nature of the 
coalescing objects. For GW150914, the detector-frame masses (i.e. redshifted due to cosmo-
logical expansion) measured using the IMRPhenomPv2 waveform model were 38.5+5.6

−3.6M� 
and 32.2+3.6

−4.8M�; see table  I in [127]. The quoted numbers are an extremely concise way 
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of summarising the full posterior distribution. The output of LALInference analyses are 
samples from the full posterior distribution. In particular, a number such as 38.5+5.6

−3.6M� comes 
from the marginalisation over 14 of the 15 physical source parameters of the full posterior, as 
well as the calibration parameters, to obtain a one-dimensional posterior from which the 90% 
credible region is then calculated. Naturally, correlations between different parameters are 
invisible in a one-dimensional representation. For a clearer picture, multidimensional poste-
rior distributions help to display the information extracted from the analysis. Figure 13 shows 
the joint two-dimensional posterior distribution for the component masses m1 and m2 as an 
example. In particular, the bottom left panel shows the non-negligible correlation between the 
component masses.

The full details of the multi-dimensional posterior distribution can be visualised in a com-
pact way by computing the posterior distribution over the waveform itself in the time domain. 
This is done simply by computing the predicted waveform over each of the posterior samples. 
Let θi be the ith posterior sample, the corresponding waveform will be h(t;θi). The waveform 
samples are the set {h(t;θi)}i=1,...,N ≡ {hi}. Each of the waveform samples hi can be whit-
ened, see section 3, and then used to compute credible intervals at every time tj  at which the 
original data were sampled. The result of this procedure is summarised in the presentation of 
figure 6 of [127]. Figure 1 in [1] is representing a different procedure; the second row in this 
figure shows a comparison between the reconstructed 90% credible region obtained by the 
procedure described above, and a numerical relativity solution that, while not corresponding 

Figure 13. One- and two-dimensional posterior distribution for the detector-frame 
masses for the GW150914 event obtained using the IMRPhenomPv2 waveform model. 
The three panels show (i) the one-dimensional marginal posterior for m1 (top panel); 
(ii) the joint two-dimensional m1 − m2 posterior (bottom left); (iii) the one-dimensional 
marginal posterior for m2 (bottom right). Posterior samples taken from [150].
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to any of the computed posterior samples, is consistent with the reconstructed 90% credible 
region.

9.6. Validation of source parameter estimates

The results from Bayesian inference are only as good as the models used in the analysis. If the 
waveforms used in the signal model or the underlying assumptions of the noise model are inac-
curate, the results will suffer from systematic bias. A multitude of tests are used to check for 
possible mis-modeling error and to quantify the impact on the analyses. As discussed  earlier in 
section 9.1 the waveform models are compared to highly accurate numerical relativity simula-
tions, and multiple waveform approximants are used in the analyses and  cross-compared. The 
difference between the results found using different waveform models provides an estimate 
of the systematic error due to the signal model. The noise model can also be checked. Other 
checks include adding simulated signals with similar parameters to the astrophysical events 
into nearby stretches of data and checking that the parameters are properly recovered by the 
parameter estimation algorithms.

Over long stretches of LIGO–Virgo data, the noise is known to be non-stationary and non-
Gaussian. The overall noise levels fluctuate, and there are frequent low-SNR glitches, and 
less frequently high-SNR glitches, see section 5. On the other hand, the gravitational-wave 
signals spend very little time in the LIGO–Virgo sensitive band—seconds or less for black 
hole binaries and minutes for neutron star binaries, and over these shorter stretches of time 
the noise is generally (but not always) well approximated as stationary and Gaussian. When a 
significant trigger is found by the search pipelines, the first thing the analysts look at are multi-
resolution time-frequency scalograms of the data surrounding the trigger (known as Q-scans). 
Q-scans are qualitative checks which require visual inspection [151, 152]. These scans reveal 
whether there are any loud glitches in the data, as was the case with the binary neutron star 
GW170817 [8]. Once the parameter estimation analyses have been run, Q-scans of the residu-
als are closely examined to see if any any unmodelled noise features might have affected the 
analyses. Figure 14 shows Q-scans of the whitened data and residuals surrounding GPS time 
1126259462. The scans of the data reveal the signal from GW150914, while the residuals after 

Figure 14. Scalograms (or Q-scans) of the whitened data and residuals in the LIGO-
Hanford and LIGO-Livingston detectors in 3 s of data surrounding the GW150914 
event. The residuals are free of glitches or correlated power. The color scale, as 
displayed by the bar on the right, corresponds to the whitened power.
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subtracting the maximum likelihood waveform from the parameter estimation studies [127] 
show no visible evidence of glitches or correlated signal power.

In addition to these qualitative checks, more rigorous quantitative checks can be applied. 
One test that is routinely applied is to reanalyze the residuals using the wavelet-based 
BayesWave algorithm [128] which is able to identify any glitches and remaining coherent 
power. Coherent power in the residuals could be evidence of departures from general relativ-
ity, or evidence of shortcomings in the template models or the noise model used for parameter 
estimation. No significant coherent power was found in the residuals for any of the detected 
events. In the case of GW150914 the lack of a coherent residual was used to place interest-
ing bounds on possible departures from general relativity [153]. In the case of the binary 
neutron star merger GW170817 [8], a loud incoherent glitch was seen to overlap the signal 
in the Livingston detector. The glitch was reconstructed and removed using the BayesWave 
algorithm. The glitch removal procedure has been shown to be safe in a study that injected 
simulated neutron star merger signals into data with similar loud glitches, followed by remov-
ing the glitches with BayesWave and accurately recovering the true signal parameters with the 
LVC parameter estimation algorithms [154].

Figure 15 shows histograms of the whitened Fourier amplitudes of the residuals in the 
LIGO-Hanford and LIGO-Livingston detectors following the removal of the maximum like-
lihood waveform for GW150914. The residuals are taken from the parameter estimation 
analysis published at the time of the discovery [127]. These residuals were used to test for 
residual coherent power, which can be framed as a test of general relativity if we assume the 
template to be a sufficiently accurate solution of the theory. Applying the Anderson–Darling 
test of normality to the residuals yields p-values of 0.15 for LIGO-Hanford and 0.11 for 
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Figure 15. Histograms and quantile-quantile plots of the whitened Fourier amplitudes 
of the residuals in the LIGO-Hanford and LIGO-Livingston detectors for 4 s of data 
surrounding GW150914. The shaded band in the upper panels indicates the expected 
3-sigma variance from having a finite number of samples. The residuals show no 
evidence of non-Gaussianity.
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LIGO-Livingston, indicating that the residuals are consistent with the Gaussian noise model 
used to define the likelihood.

Even if the residuals had failed the formal tests of stationarity and Gaussianity discussed 
here, it would not necessarily imply that the parameter estimation would be strongly biased. 
When the noise deviates from the model the analysis will suffer systematic bias. But for this 
bias to be significant it has to be large compared to the statistical spread in the posterior distri-
butions. Extensive studies using simulated signals added to real LIGO–Virgo data have shown 
that systematic errors due to deviations from the noise models are generally negligible com-
pared to the statistical uncertainties [104, 143, 154–157]. One exception is when the simulated 
signals cover or overlap the times of glitches, in which case the biases can be large [158]. 
When glitches are present, tools such as BayesWave need to be used to model and remove the 
glitches, ideally in concert with the parameter estimation.

9.7. Parameter degeneracies and credible intervals

Gravitational-wave templates exhibit a variety of parameter degeneracies whereby templates 
with different parameters can have very similar amplitude and phase evolution, and yield very 
similar likelihoods. One example of such a degeneracy is evident in the posterior distribution 
for the component masses of GW150914 shown in figure 13. The degree of similarity between 
templates with parameters λ,θ is measured by the match

M(λ,θ) =
(h(λ)|h(θ))√

(h(λ)|h(λ))(h(θ)|h(θ))
. (29)

If the true signal is described by h(λ), then the expectation value of the log likelihood for 
template h(θ), maximized over amplitude is

E[ln Λ(λ|θ)] = 1
2

M2(λ,θ) SNR2 , (30)

where SNR is the optimal signal-to-noise ratio [159]. We see that signals that have similar 
morphology, as measured by the match, yield similar likelihoods. Now suppose we hold one 
parameter, θk  fixed, then maximize the likelihood with respect to all the other parameters. Up 
to an overall constant, we have [159, 160]

ln Λ(d|θ̄k) ≡ maxj �=k ln Λ(d|θ j) � SNR2

2
FF2(θ̄k) , (31)

where FF(θ̄k) is the fitting factor, or maximized match, between waveforms with θk = θ̄k  and 
the maximum likelihood waveform. Figure 16 compares the maximum likelihood as a func-
tion of the primary detector-frame mass for GW150914 to the fitting factor. The fitting factor 
as a function of m1 was computed by maximizing the match between the overall maximum 
likelihood waveform and waveforms with fixed m1. Note that the posterior distribution for this 
event had a 90% credible interval of m1 = 38.5+5.6

−3.6M�, but templates with primary masses 
outside this interval continue to yield large fitting factors because other parameters can be 
adjusted to partly compensate the effects of the change in primary mass on the waveform. For 
example, we find a fitting factor between the maximum likelihood template for GW150914 
and a template with a primary mass of m1 = 70 M� of FF = 0.95.

The possibility of achieving high matches, or correlations, between templates with large 
primary masses and the maximum likelihood template have been cited as evidence that the 
LIGO–Virgo parameter estimation analysis for GW150914 and other systems may be flawed 
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[43]. It was further hypothesized that the credible intervals were underestimated due to the 
instrument noise not conforming to the likelihood model [43]. However, our confidence in 
the reconstructed credible regions comes from extensive simulations designed to compare the 
cumulative distributions of simulated populations against the cumulative distribution of recon-
structed credible regions. The agreement between the two, see for instance figure 10 in [105], 
demonstrates that our algorithms are properly computing the credible intervals. Moreover, as 
we have shown, the noise properties for GW150914 are compatible with the likelihood model 
used in the parameter estimation studies, further reinforcing our confidence in the method 
used to compute the credible intervals.

There is no contradiction in having templates with parameters outside the quoted credible 
regions producing large fitting factors with the best fit model, since even small template mis-
matches come with a large penalty for high signal-to-noise ratio systems such as GW150914. 
For example, the difference in log likelihood between the signal with m1 = 70 M� and the 
global maximum is ∆ lnΛ = −32, which is what we expect to see for a SNR � 25 signal 
and a template with a fitting factor of FF = 0.95. But the relative likelihood for the higher 
mass solution is e∆ lnΛ = 10−13.9, thus while templates with large primary masses can pro-
duce relatively good matches to the data, the probability that the primary mass is this high is 
vanishingly small.

10. Residuals analysis of LIGO data around GW150914

The notion of a residual—the data minus the model—plays an important role in gravitational-
wave data analysis. If the signal model matches well the true signal, then the residual should 
be consistent with a draw from the noise model p(n), the probability distribution for the noise. 

Figure 16. The likelihood (in blue) and the fitting factor (in red) as a function of 
the detector-frame primary mass m1 for GW150914. The dashed blue line shows 
the estimate of the likelihood in terms of the fitting factor from equation  (31). The 
likelihood is scaled relative to the maximum likelihood value. The maximization was 
performed over the secondary mass, spins and extrinsic parameters.
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After known sources of correlation with independent witnesses are removed, we expect the 
instrument noise in the widely separated LIGO–Virgo detectors to be fully independent, and 
therefore the residuals in each detector to be uncorrelated. In contrast, gravitational-wave 
signals will excite a coherent response across the network of detectors, and this difference in 
correlation properties is one of the ways we are able to separate signals from noise.

As noted in section  6, it is possible to have correlated transient noise due to lightning 
[92], but monitoring with magnetometers is presently adequate to rule that out as the cause 
of events like GW150914 [48]. Low-level correlated magnetic noise is more of a concern 
for the search for a stochastic gravitational-wave background [95–97, 161]. Seismic noise is 
similarly monitored. Since the LIGO detectors share the same design and similar equipment, 
the frequencies associated with synchronized clocks (GPS), electrical power (60 Hz), and 
instrument resonances are monitored and suppressed in stochastic background and continu-
ous-wave gravitational wave searches [49].

In this section we will use the data surrounding GW150914 to illustrate the discussion, but 
the same considerations apply in general, and analyses of the residuals have been reported for 
all significant events [119].

10.1.Signal and template comparisons

As introduced above, the physical parameters of the signal θ determine the shape and ampl-
itude of the gravitational-wave signal h(t;θ). Numerical relativity simulations can be used 
to generate reference templates [24] using intrinsic parameters taken from the Bayesian 
parameter estimation studies. However, the templates still need to be projected onto the 
detectors using an appropriate set of extrinsic parameters. In a single detector the projec-
tion is equivalent to time shifting, phase shifting and rescaling the reference template: 
h̃(α, δt, δφ)( f ) = α h̃ref( f )e2πifδt+iδφ.

Figure 17 shows the reference numerical relativity template from figure 2 of the GW150914 
discovery paper [1] along with maximum likelihood projections onto each detector. A smooth 
taper has been applied to the start of the template to avoid spectral leakage when transforming 
to the Fourier domain. The data file for the template was taken from the original posting at the 
GWOSC [162] and originates from the simulation SXS:BBH:0305, calculated for a system 
with a mass ratio of q  =  0.819, spins aligned with the orbital angular momentum with dimen-
sionless magnitudes χ1 = 0.330 and χ2 = −0.440, and detector-frame total mass scaled to 
M = 74.6M�. These waveform parameters are consistent with those eventually determined for 
GW150914, within uncertainties, but do not exactly maximize the likelihood globally. Using 
the maximization procedure described in section 8 one finds that the signal arrived at the LIGO-
Livingston detector 7.08 ms before the LIGO-Hanford detector, had a larger ampl itude pro-
jected onto the antenna response pattern in LIGO-Hanford by a factor of 1.24, and had a phase 
difference of  −2.9 radians. These are, however, based on finding maximum-likelihood matches 
to the detector data individually with a fixed waveform without constraining them to be consist-
ent (for example, the relative time shift could in principle be greater than the maximum light 
travel time between the detectors), a simplified procedure compared to the simultaneous multi-
detector likelihood maximization described in section 9. When a loud signal is present in the 
data the individual and joint maximization techniques yield consistent results.

In figure 1 of the GW150914 discovery paper [1] the LIGO-Hanford data were inverted 
(corre sponding to a phase shift of ±π) and overlaid on the LIGO-Livingston data to illustrate 
the similarity of the signals in the two detectors with minimal processing of the raw data. 
In addition, the reference numerical relativity template described above was approximately 
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matched to the LIGO-Hanford and LIGO-Livingston data by adjusting the relative phase, 
amplitude and time offset. These adjusted templates for each detector were passed through 
the same bandpass and notch (band-reject) filters as the data and were then subtracted to pro-
duce the residuals plotted in the third row of figure 1 in that paper. Because those ‘Fig 1 PRL’ 
residuals were not globally optimized and were calculated from filtered data, they produce a 
somewhat different result than minimizing the residuals in the whitened and bandpassed data, 
as we will see below.

Figure 18 compares the whitened data to the whitened numerical relativity templates, max-
imized over arrival time, amplitude and phase, in the LIGO-Hanford and LIGO-Livingston 
detectors. Also shown are the residuals produced by subtracting the templates from the data. 
Prior to the publication of the GW150914 discovery paper [1], multiple tests were applied to 
the residuals to verify they were consistent with noise. The whitened residuals in each detec-
tor were found to be consistent with a Gaussian distribution: the Fourier amplitudes pass the 
Anderson–Darling test (see figure 15 in section 9), and the Fourier phases were found to be 
randomly distributed. The residuals from Bayesian parameter estimation studies [127] were 
analyzed using a wavelet reconstruction algorithm [128] that is able to detect coherent signals 
of general morphology. The degree of coherence in the GW150914 residuals was found to be 
entirely consistent with noise [153].
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Figure 17. The reference numerical relativity template provided by the GWOSC [162] 
for GW150914 is shown in the upper panel. The lower panels show the time, amplitude 
and phase shifted versions of the template that maximize the likelihood in each LIGO 
detector individually.
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10.2.Correlation analyses

A simpler, though less sensitive, test for coherence is to cross-correlate the data in the two 
detectors. The cross-correlation can be computed either in the time domain or the frequency 
domain using the whitened residuals. The correlation in the time domain is defined as:

C(τ) =

∫
H(t − τ)L(t)dt√∫
H2(t)dt

∫
L2(t)dt

,

 

(32)

where H(t) and L(t) represent the data streams from LIGO-Hanford and LIGO-Livingston 
respectively. When working with a finite data segment of duration T the data may be taken 
to be periodic: H(t) = H(t + T). The correlation measure is very sensitive to the position-
ing and duration of the time window and the bandpass filtering that is applied to the data. To 
make meaningful statements about the significance of the correlation we need to know the 

Figure 18. The upper panels show the whitened and bandpassed data in the LIGO-
Hanford and LIGO-Livingston detectors relative to GPS time 1126259462. The 
maximum likelihood whitened templates have been superimposed on the data. The 
lower panels show the residuals that are produced by subtracting the templates from 
the data.

B P Abbott et alClass. Quantum Grav. 37 (2020) 055002



47

distribution of the correlation measure for uncorrelated white noise, and these distributions 
change depending on the duration and bandpass. When applied to uncorrelated, unit variance 
Gaussian noise, the correlation coefficients follow a zero mean Gaussian distribution with a 
variance that depends on the duration and bandpass. Following [42] we apply the correlation 
analysis to four different time windows. The standard deviations for white Gaussian noise are 
σ = 0.0870 for the 0.2 s segment, σ = 0.121 for either 0.1 s segment and σ = 0.193 for the 
40 ms segment.

Figure 19 shows the correlations using the whitened data shown in figure  18 (bottom 
panel), and in addition, the bandpass/notch-filtered data used to produce the panels in figure 1 
of the GW150914 discovery paper [1] (top panel). There is a clear anti-correlation peak in the 
LIGO-Hanford—LIGO-Livingston data at a time lag of  ∼7.3 ms, which is consistent with the 
time delay inferred for the gravitational-wave signal.

In contrast, figure 20 shows the correlations in the residuals produced using the procedure 
described above. The residuals from figure 18 show no notable anti-correlation at  ∼7 ms (bot-
tom panel), while those from figure 1 of the GW150914 discovery paper [1] have a slight dip 
at this time lag (top panel), reflecting the fact that the reference waveform used for illustration 
in that paper was not the maximum likelihood waveform. For the shortest integration interval, 
the residuals from figure 1 of the GW150914 discovery paper have a  ∼3 sigma anti-correla-
tion at a time lag of  ∼7.45 ms, which while marginally consistent with noise, is evidence that 
the signal subtraction was imperfect. In contrast, the residuals produced using the amplitude/
time/phase maximized NR waveforms and whitened data show no significant excursions, and 

Figure 19. Correlations between the LIGO-Hanford and LIGO-Livingston detector 
data using the same four time intervals used in the analysis in [42]. One time interval 
covers the full 0.2 s of data shown in figure 18, and two others cover the first and last 0.1 
s of the data. In addition, a very short time interval of duration 40 ms was selected that 
covers the peak of the signal. A time lag of 7 ms is highlighted as a dotted vertical line. 
The upper panel uses the filtered data from figure 1 of the GW150914 discovery paper 
[1], while the lower panel uses the whitened data shown in figure 18.
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are fully consistent with noise. This is also the case for the residuals from the Bayesian param-
eter estimation described in section 9. Independent analyses of the GW150914 data have also 
found no significant correlations between the residuals in the Hanford and Livingston detec-
tors [32, 33].

11. Conclusions

In this article we presented a description of the properties of data from the LIGO and Virgo 
detectors, and an overview of the analysis methods used by the LVC in identifying and char-
acterizing gravitational-wave signals from the coalescence of binary black hole and binary 
neutron star systems. We have especially looked closely at the data surrounding the first detec-
tion, GW150914 [1, 3, 163]. Contrary to the claims made in [42], there are no anomalous or 
unexpected correlations to be seen in association with the observed gravitational-wave events 
[119], including GW150914 [163]. Other analyses by independent researchers have come to 
similar conclusions about the correctness of the LIGO–Virgo results [32–34, 39].

Proper handling of the LIGO and Virgo data is critical for conducting an analysis correctly. 
As an example, in this paper we have used the whitened maximum likelihood waveforms (as 
described in sections 9 and 10) for GW150914, which when subtracted from the data, produce 
residuals that are consistent with Gaussian noise, and show no correlation between differ-
ent detectors. If the template waveforms subtracted from the data are not sufficiently good 
matches to the real gravitational-wave signal, then a remainder of that signal will survive in 
the resulting residuals, which may thus exhibit nontrivial correlations.

Figure 20. Correlations between the LIGO-Hanford and LIGO-Livingston residuals 
using the same four time intervals as figure  19. The upper panel uses the residuals 
shown in figure 1 of the GW150914 discovery paper [1], while the lower panel uses 
the whitened residual time series shown in figure 18. The whitened residuals from the 
maximum likelihood signal subtraction show no significant correlations at any time lag 
for any of the time windows.
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Figure 1 of [1] was constructed to show as simply as possible that the signal is compatible 
with general relativity. It does not illustrate the full LSC-Virgo statistical data analysis. The 
figure was described in [1] as a visualization of the gravitational-wave signal at the LIGO 
detectors and a comparison to one numerical relativity waveform which is consistent with the 
gravitational-wave data. A statistical claim about the numerical relativity waveform and the 
residuals of figure 1 of [1] was not intended, although unfortunately the figure may have been 
interpreted in that way.

The LVC conducted extensive statistical studies of the GW150914 signal and of the sur-
rounding noise, which are documented in [127]. Note that a whitened time series of GW150914 
was presented in the parameter estimation companion paper for the discovery; see figure 6 of 
[127]. Those studies, as well as the simpler investigations given here, support the interpreta-
tion that the signal is well matched by a black hole merger solution of general relativity. The 
validity of this conclusion has been supported by subsequent data and analysis by the LVC 
(including studies on all binary black hole produced gravitational-wave signals detected in 
observing runs O1 and O2 [119]) as well as independent analyses.

The gravitational-wave data for Advanced LIGO and Advanced Virgo can be character-
ized as locally stationary and Gaussian, with deviations when glitches are present. The LVC 
conducts extensive data quality, detector characterization, and calibration studies in order to 
be confident of the reported detections [47, 48, 50, 74].

However, it is not necessary to assume that the data are stationary and Gaussian to search 
for, and to detect with high confidence, gravitational waves from compact binary coales-
cence. Instead, LIGO–Virgo searches for gravitational waves use various methods to estimate 
the false alarm rate directly from the data, for example, by introducing a relative time shift 
between the detectors.

Previous studies have also demonstrated that the LVC’s parameter estimation results are 
reliable [104, 143, 154–157]. The parameter estimation routines were also robust for the 
gravitational waves from the binary neutron star merger GW170817 where there was a noise 
glitch in the LIGO-Livingston data overlapping with the gravitational-wave signal [8, 154]. 
Parameter estimates obtained by researchers outside the LVC for GW170817 are comparable 
with, and support the conclusions of, the LVC analyses [35–37]; these studies were made pos-
sible by the public release of the gravitational-wave data [24].

While the examples in this paper have concentrated on the events GW150914 and 
GW170817, the conclusions presented have been demonstrated to be valid for the analysis 
of the data containing all 11 gravitational-wave events detected by LIGO and Virgo to date 
[3, 119]. As the LIGO and Virgo collaborations report more events [3, 164], independent 
analyses of the data associated with these events by the broader scientific community will be 
highly valuable and may well produce new insights. To this end, in this paper we have tried 
to provide some guidance on the nature of LIGO and Virgo detector noise and on the extrac-
tion of gravitational-wave signals. The LVC encourages the scientific community to analyze 
its data; LIGO and Virgo data will continue to be made publicly available on the GWOSC 
website [24].
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