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ABSTRACT 

Loss-of-function (LOF) mutations in ANGPTL3, an inhibitor of lipoprotein lipase (LPL), 

cause a drastic reduction of serum lipoproteins and protect against the development of 

atherosclerotic cardiovascular disease. Therefore, ANGPTL3 is a promising therapy target. 

We characterized the impacts of ANGPTL3 depletion on the immortalized human 

hepatocyte (IHH) transcriptome, lipidome and human plasma lipoprotein lipidome. The 

transcriptome of ANGPTL3 knock-down (KD) cells showed altered expression of several 

pathways related to lipid metabolism. Accordingly, ANGPTL3 depleted IHH displayed 

changes in cellular overall fatty acid (FA) composition and in the lipid species composition 

of several lipid classes, characterized by abundant n-6 and n-3 polyunsaturated FAs 

(PUFAs). This PUFA increase coincided with an elevation of lipid mediators, among which 

there were species relevant for resolution of inflammation, protection from lipotoxic and 

hypoxia-induced ER stress, hepatic steatosis and insulin resistance or for the recovery 

from cardiovascular events. Cholesterol esters were markedly reduced in ANGPTL3 KD 

IHH, coinciding with suppression of the SOAT1 mRNA and protein. ANGPTL3 LOF caused 

alterations in plasma lipoprotein FA and lipid species composition. All lipoprotein fractions 

of the ANGPTL3 LOF subjects displayed a marked drop of 18:2n-6, while several highly 

unsaturated triacylglycerol (TAG) species were enriched. The present work reveals distinct 

impacts of ANGPTL3 depletion on the hepatocellular lipidome, transcriptome and lipid 

mediators, as well as on the lipidome of lipoproteins isolated from plasma of ANGPTL3-

deficient human subjects. It is important to consider these lipidomics and transcriptomics 

findings when targeting ANGPTL3 for therapy and translating it to the human context. 

 

Keywords:  Angiopoietin like 3, lipoprotein lipase, lipidomics, lipid metabolism, cholesterol 

ester, polyunsaturated fatty acid 
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1 Introduction 

Cardiovascular diseases (CVD) are one of the leading causes of death worldwide [1]. 

Dyslipidemia, mainly elevated low-density-lipoprotein (LDL) cholesterol and triglyceride 

rich lipoproteins (TRLs), is the major risk factor for the development of CVD. Statins and 

ezetimibe, which reduce LDL-cholesterol, are used as the most common standard 

therapeutics for CVD treatment [2]. However due to a high level of residual CVD risk 

refractory to these therapies, efforts have been made to identify novel targets and 

treatment modalities for CVD [3]. Angiopoietin like protein 3 (ANGPTL3) is one of the main 

targets in this line of research. Among the ANGPTL family of proteins ANGPTL3, 4 and 8, 

play crucial roles in lipoprotein metabolism. They are potent inhibitors of LPL, which 

hydrolyzes triglyceride rich lipoproteins (TRLs) [4;5]. Loss of function (LOF) mutations of 

the ANGPTL3 gene were initially found in human subjects with extremely low serum 

triglycerides [6] and were later found to confer protection from coronary artery disease [7]. 

The ANGPTL3 LOF variant carriers exhibit hypolipidemia and high insulin sensitivity [8;9]. 

They have low levels of all major plasma lipoprotein classes (VLDL, LDL and HDL) [8;9]. 

Accordingly, this disorder was designated as a familial combined hypolipidemia (FHBL2; 

OMIM #605019) [6;8]. Moreover, plasma free fatty acid (free FA) level is reduced in the 

ANGPTL3 LOF carriers [9]. ANGPTL3 LOF variant carriers are not known to exhibit any 

adverse health effects and they seem to display an increased life expectancy [10;11]. 

ANGPTL3 deficient subjects have been reported to lack significant coronary 

atherosclerotic plaques and also heterozygous ANGPTL3 LOF variant carriers display 35-

40% attenuated risk of CAD compared with the general population [7;12]. ANGPTL3 has 

therefore emerged as a potential therapeutic target for cardiovascular disorders. A human 

monoclonal antibody against ANGPTL3, REGN1500, was shown to lower plasma lipids in 

monkeys [13]. In addition, human subjects as well as mice treated with the anti-ANGPTL3 
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antibody Evinacumab exhibited hypolipidemia [12]. Similar results were obtained in both 

humans and mice when ANGPTL3 was silenced using an antisense-oligonucleotide 

approach [14].  

ANGPTL3 is a protein secreted by hepatocytes [15], and insulin downregulates its 

expression in liver and plasma [16]. Of note, ANGPTL3 acts as an inhibitor of both LPL 

and endothelial lipase (EL) [17;18]. Inactivation or suppression of ANGPTL3 reduces 

plasma lipids by enhancing LPL activity, reducing hepatic VLDL-triglyceride secretion and 

enhancing LDL/VLDL uptake by the liver [19;20]. The enhancement of EL activity upon 

ANGPTL3 inhibition may explain the reduction of HDL observed in ANGPTL3 LOF carriers 

[18]. ANGPTL3 was also reported to induce adipocyte lipolysis [21], which provides a 

putative explanation for the reduction of FAs in the plasma of the LOF carriers [9].  

 

Even though the functions of ANGPTL3 in the circulation are relatively well characterized, 

many mechanistic questions regarding the molecular consequences of ANGPTL3 LOF 

and protection against CVD remain unanswered. Although recent metabolic signature of 

lipoprotein classes from ANGPTL3 deficient subjects based on NMR [22] introduced some 

novel observations, the detailed lipid composition of the plasma lipoproteins of these 

subjects and how it may be linked to CVD protection are unclear. Likewise, the intracellular 

role of ANGPTL3 as a regulator of the hepatic lipid composition and function have not 

been studied in detail. To aid in understanding the molecular mechanisms exerted by 

ANGPTL3 deficiency, we addressed the alterations of hepatocellular and plasma lipid 

molecular species profiles caused by ANGPTL3 LOF. 
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2 Material and Methods 

  

2.1 Cell culture and generation of immortalized human hepatocytes (IHHs) with 

ANGPTL3 stably knocked down  

IHHs immortalized by SV40 large T-Antigen (IHH, ATCC® PTA-5565TM) were cultured in 

Williams E medium (Gibco by Life Technologies, 22551-022) with added 10%(v/v) fetal 

bovine serum (FBS), 0.2 mg/ml glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. 

The cells were transduced with MISSIONTM shRNA (short hairpin RNA) Lentiviral Vector 

particles (TRCN0000242782, Sigma Aldrich) targeting ANGPTL3 (NM_014495.2), 

validated in Tikka et al. [23], or with a non-targeting shRNA (SHCOO2, Sigma Aldrich) 

[MOI (multiplicity of infection) 1]. Transduced cells were selected with 5 μg/ml puromycin 

and cultured further in the above medium containing puromycin.  

 

2.2 Gene expression analysis (qPCR) 

Expression of ANGPTL3 and SOAT1 genes were analyzed by quantitative polymerase 

chain reaction (qPCR). Total RNA was extracted from the ANGPTL3 KD and control IHH 

cells using PureLink® RNA Mini Kit according to the manufacturer’s protocol. cDNA 

synthesis was carried out using SuperScript® VILOTM reverse transcriptase kit (Invitrogen, 

11754050). Quantitative real time PCR was performed with gene-specific primers 

(Supplementary table 1) and LightCycler® 480 SYBR Green I Master mix (Roche, 

04707516001) using Light Cycler 480 II instrument (Roche Applied Science, Penzberg, 

Germany). β-actin and RPLP0 (Large Ribosomal Protein) were used as housekeeping 

references to which the data were normalized.  
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2.3 Western blotting 

ANGPTL3 silenced IHH hepatocytes and control cells were lysed in RIPA buffer (15 mM 

Tris-HCl, pH7.4, 1.25% sodium deoxycholate, 1% NP40, 1% SDS, 1 mM EDTA, 150 mM 

NaCl). Proteins were resolved on 12 % sodium dodecyl sulfate polyacrylamide gels and 

blotted onto PVDF membrane using BioRad transblot system. Blots were probed with anti-

ANGPTL3 (R332), an antibody developed in New Zealand White rabbits against a peptide 

EDQYKQLNQQHSQIKEIENQ of human ANGPTL3, or anti-SOAT1 (Santa Cruz sc-

69836), in Tris buffered saline containing 5% bovine serum albumin and 0.1% Tween 20. 

Enhanced chemiluminescence reagent (BioRad Clarity Max™ or Thermo Scientific, 

Waltham, MA) was used to develop and BioRad Chemidoc imaging system was used to 

capture the signals. Protein bands were normalized to the total protein content of the 

corresponding lane using Image Lab software (BioRad). 

 

2.4 Next generation RNA sequencing 

IHH cells were cultured on 6-well plates (n=4) in the conditions specified above for 48 h, 

after which they were changed into fresh growth medium without puromycin and incubated 

for 4 h. RNA was extracted from the ANGPTL3 KD and control IHH cells using RNeasy® 

Mini Kit (Qiagen, 74104) according to manufacturer’s protocol. 

NEBNext Ultra Directional RNA Library Prep Kit for Illumina was used to generate cDNA 

libraries for next generation sequencing. The mRNA was purified using magnetic beads 

and then fragmented in order to generate inserts of approximately 200 bp, and primed with 

random primers. The first strand cDNA synthesis utilized Actinomycin D, which inhibits the 

DNA polymerase activity of the reverse transcriptase increasing strand specificity. In the 

second strand cDNA synthesis dUTP labelled oligo nucleotides were incorporated to mark 
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the second strand with uracils (U). The cDNA synthesis product was purified with 

Agencourt AMPure XP beads. Next, the cDNA was end-repaired, and adapter ligated 

utilizing dA-tailing. The adaptor ligated DNA went through a bead-based size selection 

after which the final PCR enrichment took place. Each sample was given a unique index to 

enable pooling of multiple samples (multiplexing) for sequencing. During the high-fidelity 

PCR, USER (Uracil-specific Excision Reagent) enzyme cut away the uracil strand 

preserving only the first strand. In addition, the loop adaptor was cut open to enable the 

PCR. The amplified library was then purified using AMPure XP Beads. Library quality was 

assessed by Bioanalyzer (Agilent DNA High Sensitivity chip) and library quantity by Qubit 

(Invitrogen). Sequencing was performed with Illumina NextSeq system, High Output 75 

cycles kit.  

STAR 2.5.1b (PMID: 23104886) was used for aligning output sequencing data to human 

reference genome (GRCh38) and “featureCounts” program from the Subread 1.5.0 

(PMID:24227677) to count uniquely mapped fragment against genomic features defined 

by the GENCODE annotation file (Homo_sapiens.GRCh38.89.gtf). Differential gene 

expression (PMID: 25516281) was analyzed with Deseq2 1.22.1 and Benjamini–Hochberg 

method was used to control for false discovery rate. The transcripts with no counts in all 

samples were removed. Ensembl version 98 was used for gene annotation.  

Gene set enrichment analysis and gene set over-representation analysis were performed 

using the clusterProfiler R package [24]. Overrepresentation analysis was performed using 

all genes, which had an adjusted p-value < 0.05 (Benjamini–Hochberg). Network graphs 

were produced using igraph [25] and the results were visualized using Cytoscape [26]. 
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2.5 Study participants and lipoprotein isolation from human plasma 

The clinical characteristics of the study participants are summarized in Supplementary 

table 2. The study protocol was approved by the Ethical Committee of Sapienza University 

of Rome, and informed consent was obtained from all the study participants. ANGPTL3 

LOF homozygotes and controls were matched for age, sex and BMI. The participants 

selected for this study are a subpopulation of a larger cohort described in previous studies 

[22;27]; The groups have been reported to have comparable dietary intake, physical 

activity, smoking prevalence, and use of anti-inflammatory medications. 

Lipoprotein fractions (VLDL, LDL and HDL) were isolated from plasma by sequential 

density ultracentrifugation as described previously [28]. 

 

2.6 Lipidomics of IHH cells and lipoprotein fractions by ESI-MS/MS and gas 

chromatography (GC) 

For IHH lipidomics, ANGPTL3 KD and control IHH cells were first cultured on 6-well (n=6) 

plates for 48 h as mentioned above. Fresh medium without puromycin was changed into 

the wells and cells were incubated for 24 h, washed with ice-cold PBS and finally scraped 

into 1 ml of ice-cold 0.25 M sucrose. An aliquot of 100 μl was taken from each sample for 

total protein analysis using BCA assay (Thermo Fisher Scientific, 23227). The samples 

were stored in -80°C for 7 weeks before lipid extraction. 

Lipids of IHH cell samples and lipoprotein fractions were extracted according to Folch at al. 

[29]. Solvents were evaporated and the lipid extracts immediately dissolved in 

chloroform/methanol 1:2 (by vol) and right before mass spectrometry 1% NH4OH was 

added together with SPLASH® LIPIDOMIX® Mass Spec Standard (Avanti Polar Lipids, 

330707). The samples were injected into the electrospray source of a triple quadrupole 
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mass spectrometer (Agilent 6490 Triple Quad LC/MS with iFunnel Technology; Agilent 

Technologies, Santa Clara, CA) and their lipids species were identified and quantified 

using lipid class specific detection modes, as previously described [30]. Retrieved spectra 

were processed by MassHunter Workstation qualitative analysis software (Agilent 

Technologies, Inc.), and individual lipid species were quantified using the internal 

standards and LIMSA software [31]. 

An aliquot of the lipid extracts were used for determining the FA composition of total lipids 

of the samples by GC according to the principles described in Käkelä et al. [32]. The 

extracted lipids were transmethylated by heating with 1% H2SO4 in methanol under 

nitrogen atmosphere, and the formed FA methyl esters  (FAME) extracted twice with 

hexane, dried with anhydrous Na2SO4 and concentrated. The FA structures were identified 

using GCMS-QP2010 Ultra (Shimadzu Scientific Instruments, Kyoto, Japan) with mass 

selective detector (MSD) and the FA proportions quantified using Shimadzu GC-2010 Plus 

equipment with flame-ionization detector (FID). Both instruments were equipped with 

Zebron ZB-wax capillary columns (30 m, 0.25 mm ID and film thickness 0.25 μm; 

Phenomenex, Torrence CA, USA).  

 

2.7 Metabolic labeling of cholesterol ester 

Control IHH and ANGPTL3 KD cells were grown on 6-well plates to confluency. Cells were 

then incubated with [3H]acetic acid (50 μCi/well; Perkin Elmer, NET003025MC) in medium 

without puromycin for 3 h, washed with cold PBS and scraped into cold 2% NaCl. Total 

lipids were extracted according to Bligh and Dyer [33]. The lipid classes of the samples 

were separated by thin layer chromatography on silica gels and hexane/diethyl 

ether/acetic acid/H2O (65:15:1:0.25,vol/vol) as the solvent system. CE standard was run 
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along with the samples, and lipid spots were stained with iodine vapor. CE bands were 

scraped and their [3H]radioactivity was measured by liquid scintillation counting, and the 

results normalized for total cell protein. Additionally, [3H]oleic acid labeling (2.5 μCi/well; 

Perkin Elmer, NET289005MC) was carried out as described above for [3H]acetic acid.  

 

2.8 Lipid mediator analysis 

Control IHH and ANGPTL3 KD cells were cultured for 48 h on 6-well plates (n=3) in 

complete Williams E medium with puromycin after which the medium was changed to 

William’s E medium (Gibco, A1217601, no phenol red) with added 10% (v/v) FBS, 0.2 

mg/ml glutamine, 100 μg/ml streptomycin and 100 U/ml penicillin. After 24 h incubation the 

medium was changed to one containing 1 % FBS. After 1 h the plates were frozen and 

stored in -80°C before analysis. Also a control sample without cells was prepared 

simultaneously using the same conditions. 

Subsequently, two volumes of cold MeOH containing deuterium-labelled synthetic d4-

PGE2, d8-5-HETE, d4-LTB4, d5-LXA4, d5-RvD2, d5-LTC4, d5-LTD4, d5-LTE4 (500 pg each), 

d5-MaR1, d5-MaR2, d5-RvD3 (250 pg each), d5-RvE1(100 pg), and d5-17R-RvD1 (25 pg) 

were added onto the wells. Cells were lifted and transferred together with the supernatant. 

These were then stored at −20 °C for at least 45 min and then centrifuged at 2500 rpm for 

10 min. Supernatant was collected and concentrated to ~1.0 ml using a gentle stream of 

nitrogen gas (TurboVap LV system, Biotage). Solid phase extraction (SPE) was then 

performed through ExtraHera automated extraction system (Biotage) adding 9 ml of 

aqueous pH 3.5 HCl solution. The acidified samples were then loaded onto conditioned 

C18 500 mg 200-0050-B cartridges (Biotage). Samples were washed with 4.0 ml of H2O 

and 5.0 ml of hexane, and products eluted using 4.0 ml of methyl formate.  Solvent was 
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evaporated using a gentle stream of nitrogen (TurboVap LV, Biotage) and samples re-

suspended in 40 μl of MeOH:H2O (1:1, vol/vol) solution. Samples were centrifuged at 2500 

rpm for 5 min and the supernatant centrifuged again at 9900 rpm for 10 s, 4 °C [34].  

LC-MS-MS profiling was performed as described previously [34]. Following C18 SPE and 

concentration, samples were analyzed using QTrap 6500+ (ABSciex) MS system, coupled 

with a Shimadzu SIL-20AC HT auto sampler, and LC-20AD LC pumps. Agilent C18 

Poroshell column (150 mm × 4.6 mm × 2.7 μm) was used to separate lipid mediators. 

Using a constant flow rate of 0.5 ml/min, eluents gradient started at 20:80:0.01 (vol/vol/vol) 

in MeOH/H2O/acetic acid for 0.2 min that was ramped to 50:50:0.01 (vol/vol/vol) over 12 s, 

maintained for 2 min, ramped to 80:20:0.01 (vol/vol/vol) over 9 min and maintained for 3.5 

min, then ramped to 98:2:0.01 (vol/vol/vol) and maintained for 5.5 min. Mediators were 

identified by matching retention time to synthetic and authentic materials using a MRM 

developed with signature parent ion and characteristic daughter ions coupled with an 

Enhanced Product Ion (EPI) for matching mass spectra. Quantification was obtained 

through calibration curves from synthetic or authentic compounds and deuterium-labeled 

lipid mediators.  

 

2.9 Statistical analysis 

For univariate comparisons statistical differences were tested using a two-tailed Student’s 

t-test. Principal Component Analysis (PCA) (Sirius, PRS, Bergen, Norway) was applied for 

multivariate comparisons of detailed lipid profiles. PCA reveals compositional differences 

between the samples, and also shows the lipid species mainly responsible for the variation 

in the data. Data used for the PCA were arcsine transformed to improve data normality 

and biplots showing the relative positions of the samples and variables were created using 
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the first two principal components. The differences between the groups seen in the PCA 

were further quantitatively analyzed using Soft Independent Modeling of Class Analogy 

(SIMCA; Sirius) [35].  For lipid mediator statistics multivariate Partial Least Square 

Discriminant Analysis (PLS-DA) was performed by means of the software SIMCA 

(Umetrics), building a model with R2X=1, R2Y=1, and Q2=1. Variable Importance in 

Projection (VIP) score was used to highlight the most important lipid mediators 

discriminating the two groups. 

 

 

3 RESULTS AND DISCUSSION 

 

3.1 Several genetic pathways related to lipid metabolism are altered in ANGPTL3 

knock-down hepatocytes 

ANGPTL3 KD hepatocytes (IHH) were created using an shRNA lentiviral vector. An 

approximately 90% KD efficiency was observed at mRNA level when compared to control 

cells transduced with non-targeting shRNA (Figure 1A), and the KD effect was evident 

also at the protein level (Figure 1 B and C). KEGG pathway analysis of the next 

generation RNA sequencing (RNAseq) data of the ANGPTL3 KD and control IHH cells 

revealed that several pathways related to lipid metabolism are affected upon the knock-

down (Table 1). Similarly, when Reactome pathway analysis was performed using only the 

statistically significantly up/downregulated genes, all of the ten most affected pathways in 

the ANGPTL3 KD cells were related to lipid and FA metabolism (Supplementary Figure 

1). Thus we chose to study the cells further using lipidomics approaches to address 

hepatocyte lipid composition and metabolism. 
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When looking at the other pathways significantly affected in the KEGG enrichment 

analysis, two pathways related to longevity emerged and were among the 50 most altered 

pathways: Longevity regulating pathway - multiple species, and Longevity regulating 

pathway (Supplementary table 3). This is an interesting and relevant observation when 

considering that subjects homozygous for LOF variants of ANGPTL3 reach older age than 

the average population [11]. The Campodimele region, where the ANGPTL3 loss-of-

function mutations are found enriched, is known for the longevity of its residents, with the 

town's population now expected to live to an average age of 95 [10;36]. Moreover, insulin 

sensitivity is increased in the ANGPTL3 LOF subjects [9]. According to the present KEGG 

enrichment analysis, also pathways related to insulin resistance/sensitivity, signaling and 

secretion are altered in the ANGPTL3 KD cells. In a previous study by Tikka et al. [23], it 

was reported that the KD of ANGPTL3 in IHH improves glucose uptake and that during 

insulin stimulation the cells secrete TAG-poor VLDL instead of TAG-enriched large VLDL 

particles. They concluded that silencing of ANGPTL3 improves insulin sensitivity of the 

IHH and suggested a liver-specific mechanism to be involved in the insulin-sensitive 

phenotype of ANGPTL3 LOF subjects. The present RNAseq observations support this 

notion. 

 

3.2 The ANGPTL3 knock-down cells are enriched in n-3 and n-6 polyunsaturated and 

depleted in monounsaturated fatty acids 

As the first lipidomic approach we determined the total FA profile of ANGPTL3 KD and 

control IHHs by GC. The reported profile represents FAs derived from all lipid species of 

the cell and the results are presented as molar percentages (Supplementary table 4). In 

ANGPTL3 KD cells the sum of monounsaturated FAs (MUFAs) was significantly 

decreased and the sums of both n-3 and n-6 polyunsaturated fatty acids (PUFAs) were 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

 14 

increased when compared to controls (Figure 2A). However, there was no difference in 

the n-3/n-6 FA ratio or the unsaturated/saturated FA ratio between control and ANGPTL3 

KD cells. When the FA data were subjected to principal component analysis (PCA) 

(Figure 2B), the difference between control and ANGPTL3 KD cell groups reached the 

statistical significance when tested with SIMCA (p<0.05). The groups separated from each 

other in the direction of principal component 2 (PC 2), which explained 25.3% of the total 

variation. The FAs influencing PC2 the most were 20:5n-3 (eicosapentaenoic acid, EPA) 

and 20:4n-6 (arachidonic acid, AA) furthest from the origin in the upward direction, and 

relatively enriched in the ANGPTL3 KD cells, and 20:3n-9 (eicosatrienoic acid) furthest 

from the origin in the downward direction, and enriched in the controls. EPA and AA can 

be produced from essential FAs 18:3n-3 (α-linolenic acid) and 18:2n-6 (linoleic acid) via 

desaturation/elongation processes, respectively, or taken up from the culture medium. FA 

20:3n-9 is considered a marker of essential fatty acid deficiency: It is a PUFA synthesized 

from the non-essential 18:1n-9 (oleic acid) [37]. Of note, we observed in the RNAseq an 

upregulation of CD36, FABP3, FABP5 and FABP6 mRNAs in the ANGPTL3 KD cells. 

Since FABP3, -5 and -6 facilitate the cellular uptake of long chain FAs and PUFAs [38-41], 

we consider it possible that the uptake of FAs and especially PUFAs from the culture 

medium is enhanced in the ANGPTL3 KD cells. 

We next analyzed the IHH lipids at the class level (Supplementary tables 5-8) by mass 

spectrometry. There were no differences between the control and ANGPTL3 KD cells in 

the concentrations of the major phospholipid classes PC, PE and PI when normalized to 

total cellular protein (data not shown). PCA of lipid species profiles in these classes of 

lipids showed similar separation between control and ANGPTL3 KD cells largely driven by 

MUFA- (relative reduction in the KD cells) and PUFA- (enrichment in the KD cells) 

containing lipids as seen in the fatty acid profile (Supplementary Figure 2). PUFAs are 
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released from glycerophospholipids through the action of phospholipases such as 

cytosolic PLA2 (cPLA2) [42;43], two isoforms of which, PLA2G4A and PLA2G4C, are 

upregulated in our RNAseq data. Cytosolic PLA2 shows specificity for PUFAs, especially 

for 20:4n-6, 22:6n-3 (docosahexaenoic acid, DHA) and 20:5n-3 [42;43], and plays an 

important role in the initiation of cellular signaling, hydrolyzing the ester bond at the sn-2 

position of glycerophospholipids. Thereby the released PUFAs can be used for the 

synthesis of bioactive lipid mediators [44]. Phosphatidylinositol (PI) is considered a major 

source of 20:4n-6 released by cPLA2 since 20:4n-6 is the most abundant PUFA in this PL 

class, the largest PI component being the 20:4n-6-containing species 38:4 (m/z 885  

[45;46]. Indeed, in the PCA of our data PI 38:4 was the variable responsible for the largest 

part of the data variation on PC1 in the leftward direction, and the high level of PI38:4 

separated ANGPTL3 KD samples from the control cells. Similarily, the PI 38:5 (likely a 

mixture of FAs 20:4, 22:5, 20:5 in the sn-2 position) was a characteristic of the ANGPTL3 

KD cells.  

Interestingly, it has been established that the relative FA compositions of the PI-derived 

signaling mediators phosphatidylinositol-phosphates (PIPs) reflect that of PI [47] and that 

polyunsaturated diacylglycerol (DAG) species derived from PI(4,5)P2 can activate the PKC 

α, ε, and δ isoforms [46]. This may also in part explain why the PIP signaling KEGG 

pathways are significantly affected in the present transcriptomics data (Table 1): The 

increase of PUFAs in the ANGPTL3 KD cells may through this mechanism impact PIP2 

signaling. Closer examination of the KEGG phosphatidylinositol signaling pathway 

(Supplementary Figure 3) shows that several of its genes are upregulated in the KD 

cells, but phospholipase C (PLC), a key component in the pathway, is strongly 

downregulated. This could represent an allostatic mechanism aimed at maintaining a 

balanced pathway activity.  
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3.3 Knocking down ANGPTL3 changes the lipid mediator profile of hepatocytes  

Prompted by analyses showing changes in several KEGG pathways related to FA and 

glycerophospholipid metabolism as well as the increase of PUFAs in the ANGPTL3 KD 

cells, we decided to explore the bioactive PUFA-derived lipid mediators produced by the 

cells (Supplementary table 9). The results shown represent the sum of intracellular and 

secreted lipid mediators since both the cells and the medium were analyzed as one 

sample. There was a clear trend towards an increase of lipid mediators in the ANGPTL3 

KD cells, and PLS-DA analysis separated the ANGPTL3 KD and control samples (Figure 

3A). Figure 3B displays VIP scores of the 15 most important lipid mediators affecting 

separation of the groups in the PLS-DA analysis. The mediator with the highest VIP score 

was RvD6, an important specialized pro-resolving mediator (SPM) with a suggested role in 

coronary artery disease (CAD). RvD6 was shown to be elevated in CAD patients receiving 

n-3 FA supplement and it promoted macrophage uptake of blood clots in vitro [48]. 

Maresin 2 (MaR2) and 22-OH-MaR1, which also showed high VIP scores, are SPMs 

characterized in macrophages [49] and neutrophils [50], respectively. Of note MaR1, the 

precursor to 22-OH-MaR1, protects hepatocytes from lipotoxic and hypoxia-induced ER 

stress [51] suggesting that 22-OH-MaR1 may display similar biological actions given that 

this further metabolite retains the potent biological actions of its parent SPM [50]. The 

protectin pathway products from both n-3 docosapentaenoic acid (DPA) and DHA, i.e. 

10S,17S-diHDPA and 10S,17S-diHDHA (protectin DX), were also increased in ANGPTL3 

KD cells. PDX prevents lipid-induced ER stress, thereby ameliorating hepatic steatosis 

and hepatic insulin resistance [52;53]. Another mediator with a high VIP score, 15-epi-

LXA4 is reported to down-regulate pro-inflammatory eicosanoids and potentiate the 

production of SPMs [54;55].  
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Prostaglandins (PG) PGD2, PGF2a and PGE2 all had a high VIP score in the present data. 

They are generally referred to as pro-inflammatory mediators [56], but especially PGE2 is 

also important for the lipid mediator class switching at the beginning of the resolution 

phase as it decreases the production of pro-inflammatory leukotriene B4 (LTB4) species 

[57]. The increased production of lipid mediators in the ANGPTL3 KD cells is consistent 

with the findings of Holopainen et al. [58], who concluded that elevated amounts of PUFAs 

(AA, EPA and DHA) in membrane phospholipids lead to increased production of lipid 

mediators. Increased substrate availability, PLA2 upregulation, and also the substrate 

preference of PLA2 towards PUFA- containing phospholipids [42;43] provide plausible 

explanations for the observed increase of PUFA-derived lipid mediators in the ANGPTL3 

KD cells.  

 

3.4 Cholesterol ester synthesis is reduced in ANGPTL3 KD cells 

In addition to elucidating the effects of ANGPTL3 KD on phospholipid and FA metabolism, 

we also investigated cholesterol metabolism by multiple approaches. First, we looked at 

the profile (Supplementary table 8) and total level (Figure 4A) of cholesterol esters (CEs) 

in the IHH by using ESI-MS/MS. The relative CE species profile of the ANGPLT3 KD cells 

showed similar alterations in the MUFA and PUFA-containing species as described for 

total cellular FAs and phospholipids (Figure 2; Supplementary tables 4-7). The level of 

the major CE species 18:1 was significantly (p<0.001) reduced and that of the second 

largest component, the DHA-containing CE 22:6n-3, increased by 74%. The latter finding 

appears as a class-specific change since DHA was not increased but rather decreased in 

the total IHH FA profile, driven by altered FA composition of glycerophospholipids. The 

total level of CE was significantly (p<0.001) decreased in the ANGPTL3 KD cells when 

compared to controls (Figure 4A). Consistent with this finding, the expression of SOAT1, 
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encoding ACAT1, an enzyme synthesizing CEs [59], was decreased in the KD cells both 

at the mRNA (Figure 4B) and protein (Figure 4C-D) levels. Accordingly, we next 

investigated CE synthesis and FA incorporation into CEs in the IHH by [3H]acetic acid and 

[3H]oleic acid labeling, respectively, and also analyzed the synthesized unesterified 

cholesterol in the [3H]acetic acid labeled samples. With both radioisotope precursors the 

level of labeled CEs was significantly (p<0.001) reduced in the ANGPTL3 KD cells (Figure 

4E-F), without a change in the labeling of unesterified cholesterol in cells treated with 

[3H]acetic acid (data not shown). Thus, knocking down ANGPTL3 in IHH significantly 

reduces the esterification of cholesterol. The reduction of CEs putatively mediated by 

suppression of ACAT1 function might affect the packaging of CEs to nascent VLDL and 

thereby their secretion. In agreement with these data we previously reported that there 

was a reduction of CE/apoB ratio in plasma VLDL and LDL particles derived from 

ANGPTL3 LOF homozygote carriers compared with noncarrier subjects [9;22]. Decreases 

of VLDL and LDL were observed in pigs treated with avasimibe, an inhibitor of SOAT [60]. 

Consistently, overexpression of human SOAT1 and 2 in rat hepatoma McA-RH7777 cells 

was shown to increase CE synthesis and secretion [59]. Another inhibitor of SOATs, 

pactimibe sulfate, reduced plasma total cholesterol and stabilized atherosclerotic plaques 

in apolipoprotein E-deficient mice [61].  

 

3.5 ANGPTL3 deficiency alters the fatty acid profile of lipoproteins  

Since there is no indication of liver disease in ANGPTL3 LOF carriers [11], it is for ethical 

reasons impossible to obtain liver biopsies from these subjects. We were therefore unable 

to compare the human LOF mutation carriers’ hepatic lipidome to that of the ANGPTL3 KD 

IHH. However, we analyzed in detail their plasma lipoproteins, the composition of which is 

determined by both the physiology of hepatocytes secreting VLDL and HDL and the 
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modifications mediated by plasma enzymes and lipid transfer proteins. We consequently 

studied how ANGPTL3 deficiency affects the lipid molecular species profile of lipoproteins, 

and whether any parallels can be found between the profiles of IHH subjected to 

ANGPTL3 KD and lipoproteins of subjects lacking ANGPTL3.  

FA analysis of VLDL, LDL and HDL particles isolated from the plasma of ANGPTL3 LOF 

homozygotes (n=5) and control subjects (n=10) was performed by GC using the same 

approach as for the IHH. Complete FA profiles of the lipoprotein fractions are found in 

Supplementary table 10. When inspecting individual FAs, the most prominent difference 

between the groups was a higher proportion of 18:2n-6 in lipoproteins of the control 

subjects. The effect remained statistically significant in all lipoprotein fractions. In order to 

grasp the changes occurring in all the FAs and not merely in the largest components of the 

profile, we performed a PCA of the entire data using standardized mol% values. A clear 

separation of the groups can be seen in the PCA biplot (Figure 5). PC1 explains 31.7 % of 

the total variation and separates the different fractions (VLDL on the right, LDL in the 

middle and HDL on the left), whereas PC2 explains 21.3 % of the variation and separates 

the control subjects (at the bottom) and the ANGPTL3 LOF homozygotes (at the top). The 

VLDL fractions contained relatively more MUFAs and FAs having <18-carbons, while the 

HDL fractions were enriched in 20-22-carbon PUFAs, >20-24-carbon SFAs or MUFAs 

(ANGPTL3 LOF homozygotes) and saturated dimethyl acetals derived from plasmalogens 

(controls). The right to left change (PC1) in the quality of the FAs is likely affected by the 

activity of LPL, which is higher in ANGPTL3 LOF homozygotes [9]. The efficiency of LPL-

mediated hydrolysis of ester bonds decreases with increasing chain length and 

unsaturation [62;63], and thus relatively short SFAs would be hydrolyzed first, followed by 

MUFAs, leaving the longest PUFAs to be hydrolyzed last. Importantly the FA profile of the 

different lipoprotein fractions is not influenced by the action of two lipid transfer proteins, 
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CETP and PLTP, since no significant differences in their activities were observed between 

homozygous ANGPTL3 LOF variant carriers and control subjects [27]. We think that the 

impact of diet can be ruled out, as the comparison of dietary intakes between ANGPTL3 

LOF subjects and controls did not reveal appreciable differences (data not shown). 

 

3.6 PUFA-containing TAGs are relatively increased in the lipoproteins of ANGPTL3 

LOF homozygotes 

We next analyzed the lipid components of lipoprotein particles derived from ANGPTL3 

LOF homozygotes and control subjects by ESI-MS/MS. The lipoproteins of the ANGPTL3 

LOF homozygotes have been reported to contain less TAG and CEs when compared to 

those of control subjects [9]; Our results are consistent with these findings (fold changes of 

lipids at the class level are listed in Supplementary table 11 and species profiles of each 

class in Supplementary tables 12-16). At the species level the findings in CEs and TAGs 

were, however, opposite to each other. Compared to the controls, the CEs in the 

lipoproteins of ANGPTL3 LOF homozygous subjects included larger proportions of the 

species with 16:1 and 18:1 FAs (Supplementary table 13), whereas in TAGs the relative 

levels of PUFA-containing species were elevated (Figure 6, Supplementary table 12). 

The latter result is likely due to the increased activity of LPL in ANGPTL3 LOF 

homozygotes, since long PUFAs are poor substrates for LPL [62;63], and are thus 

retained. Interestingly, Xu et al. [20] found that knocking down ANGPTL3 in HuH7 cells 

increased the cellular concentration of long-chain TAGs, so it is possible that TAGs in 

VLDL particles of ANGPTL3-deficient subjects could be somewhat enriched in PUFAs 

already as they are secreted. The cellular concentrations of TAGs in the IHH model 

employed here were unfortunately too low to be reliably profiled at species level. Thus, we 
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are unable to draw conclusions on the relationship of TAG molecular species composition 

in hepatocytes and plasma lipoproteins. 

CEs are not substrates of LPL, since LPL is a serine-histidine hydrolase and its active site 

favors especially oxyester bond on the glycerol backbone [64-66]. Thus, CEs are not 

affected by the increased activity of LPL but another, unknown mechanism must modify 

their composition in the LOF mutation carriers. One putative explanation for these CE 

species shown in lipoproteins is altered substrate specificity of LCAT.  Most of the CEs in 

human plasma lipoproteins are derived from the function of LCAT [67]. Although LCAT 

displays specificity for the sn-2 position of PC, the composition of the CEs in human 

plasma does not match that of the sn-2 acyl group [68]. We can speculate that ANGPTL3 

deficiency creates changes in FA distribution in PC molecules and therefore LCAT FA 

specificity or the positional specificity in PC [69] is altered and leads to generation of the 

CE species shown in the present study.  

 

 

3.7 ANGPTL3 deficiency changes the quality of SM and its ratio to PC 

The surface monolayer of lipoprotein particles consists mainly of PCs, sphingomyelins 

(SMs) and lysoPCs. We found intriguing changes between ANGPTL3 LOF subjects and 

controls in the species profiles of SM, PC and lysoPC in all the lipoprotein fractions 

(Figure 7A-C, Supplementary tables 14-16). SMs of the lipoproteins obtained from 

ANGPTL3 LOF homozygous subjects contained relatively more of the long SM species, 

especially 24:1 and 24:2, and less of short saturated SMs than the controls. The changes 

in lysoPCs were similar to those seen in TAGs (enrichment of PUFAs) and could be 

explained by the increased LPL-facilitated PLA1 activity shown to be able to release the 
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FA in the sn-1 position of PC[70]. The study by McLean et al. [70] also indicated that the 

longer the FA in the sn-2 position, the higher activity LPL has against the sn-1 FA, 

resulting in lysoPCs enriched in sn-2 long chain FAs. Moreover, in the lipoproteins of 

ANGPLT3 LOF homozygous subjects there was an enrichment of alkyl ether PCs 

(Supplementary table 16). Since these species are synthesized in peroxisomes [71], the 

finding could imply that the peroxisomes of the LOF subjects are more active. However, to 

our knowledge nothing has been reported on the peroxisomal function in ANGPTL3 LOF 

mutation carriers. Another plausible explanation for the increase of alkyl ether PCs in the 

LOF lipoproteins is that LPL and EL, which are subject to regulation by ANGPTL3, are only 

hydrolyzing ester and not ether bonds [64;65;72]. Thereby, the elevated phopholipase 

activity of these enzymes in LOF subjects could result in a relative enrichment of non-

substrate ether phospholipid species.  

The SM/PC ratio was increased in all lipoprotein fractions derived from ANGPTL3 LOF 

homozygous subjects when compared to controls (Figure 7A). This could result from 

several different mechanisms. We did not see changes in the SM/PC ratio in the IHH cell 

model (data not shown). However, this does not rule out the possibility that nascent VLDLs 

may be enriched in SM; Once entering general circulation these particles could be rapidly 

lipolyzed by LPL, and the extra surface SM together with some PCs could be transported 

by PLTP to HDL and LDL, therefore increasing the proportion of SM in these particles. 

Indeed, it has been shown that SM is very efficiently transferred by PLTP [73].  

The enrichment of SMs in lipoproteins obtained from ANGPTL3 LOF homozygotes is 

highly interesting in the light of the study of Ruuth et al. [74], where the saturated SM 

species and SM 16:1 were associated with LDL aggregation, which increases the risk of 

cardiovascular death. Thus, even though the SM/PC ratio is increased in the LDL of 

ANGPTL3 LOF homozygotes, the quality of SM (elevation of 24:1 and 24:2 species) in 
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these subjects could make their LDL less prone to aggregation as  compared to controls. It 

should also be noted that in HDLs an increased SM/PC ratio leads to an increased ability 

to receive cholesterol from cells, improving the cardioprotective capacity of the lipoprotein 

[75]. On the other hand, we have to consider that enrichment of HDL with SM inhibits 

cholesterol esterification, and this inhibition can be reversed by the degradation of SM, 

which demonstrates that SM is a physiological inhibitor of cholesterol esterification in 

circulation and competes with the PC acyl donor on the surface of HDL particle [76]. This 

would attenuate reverse cholesterol transport process which needs LCAT facilitated step 

of free cholesterol esterification. When interpreting the above data, one should also keep 

in mind that the absolute amounts of cholesterol and TAGs in the lipoproteins of ANGPTL3 

deficient subjects are strongly reduced, which is by itself beneficial for the cardiovascular 

health of these individuals. 

 

CONCLUSIONS 

Loss-of-function mutations in ANGPTL3, an inhibitor of lipoprotein lipase (LPL), cause a 

drastic reduction of all major serum lipoproteins and are protective against the 

development of atherosclerotic CVD. Therefore, ANGPTL3 is emerging as a therapy 

target; Clinical trials with agents targeting ANGPTL3 have already reached phase 3. 

Although ANGPTL3 is produced almost exclusively by the liver, there is no data on its 

function in determining the hepatocellular gene expression patterns and lipidome. In the 

present study we characterized the impacts of ANGPTL3 depletion on the hepatocyte 

(IHH) transcriptome and lipidome and whether there are parallels between the lipidomes of 

ANGPTL3-deficient hepatocytes and of plasma VLDL, LDL, and HDL isolated from 

homozygous ANGPTL3 LOF mutation carriers. 
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IHH depleted of ANGPTL3 displayed distinct changes in total FA composition and in the 

molecular species composition of several lipid classes, characterized by an increase in the 

mol% of n-6 and n-3 polyunsaturated FAs (PUFAs). The VLDL, LDL and HDL of the 

ANGPTL3 LOF subjects showed a significant drop of 18:2n-6, while several 

polyunsaturated TAG species were enriched, most likely due to elevated activity of LPL 

which prefers saturated and shorter chain FAs esterified to the glycerol backbone [62;63]. 

The LOF subjects’ lipoproteins displayed an increased SM/PC molar ratio and enrichment 

of 24:1 and 24:2 SM species. Since the SM/PC ratio is increased in all lipoprotein fractions 

of t LOF subjects, it cardiometabolic implications are controversial. Similar to the IHH, 

increased mol% of PUFAs was found in LysoPCs, which could result from increased PLA1 

activity of LPL [70]. 

 

Cholesterol esters were markedly reduced in the ANGPTL3 KD hepatocytes, coinciding 

with suppression of SOAT1/ACAT1. However, we did not see any change in the 

expression of SOAT2, which is the major isoform in human liver in vivo [77]. Previously, 

we have also detected a low CE/apoB100 molar ratio in the ANGPTL3 LOF homozygote 

subjects [9] as well as reduced CEs in VLDL remnants of these subjects [22]. However, 

the putative causality between the cultured hepatocyte and in vivo observations requires 

further investigation.  

 

The PUFA increase in the ANGPTL3-depleted IHH coincided with an elevation of PUFA-

derived lipid mediators. Among these there were several mediators with documented 

functions in resolution of inflammation, protection from lipotoxic and hypoxia-induced ER 

stress, hepatic steatosis and insulin resistance [52;53] or in mediating the recovery from 

cardiovascular events [48;55]. Notably, the resolution of inflammation has emerged as a 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

 25 

crucial physiological mechanism affecting atherogenesis [78-80]. Consistent with the lipid 

mediator data, altered expression of several KEGG pathways related to fatty acid 

metabolism was observed. The impact of ANGPTL3 inhibition on synthesis of the PUFA-

derived mediators deserves further investigation; when fresh plasma becomes available 

from the ANGPTL3 LOF carriers, it will be extremely interesting to study the lipid mediators 

in these subjects. 

 

To conclude, the present work reveals distinct impacts of ANGPTL3 depletion on the 

hepatocellular lipidome, transcriptome and lipid mediators, as well as on the lipidome of 

lipoproteins isolated from the plasma of ANGPTL3-deficient human subjects. This 

lipidomic/transcriptomic data is important to consider when targeting ANGPTL3 for therapy 

and translating it to the human context. 
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Table 1. Several KEGG pathways related to lipid metabolism are altered in ANGPLT3 knock-down 

hepatocytes. A total of 171 pathways were obtained in the KEGG pathway enrichment analysis, 

and a full list of pathways and statistical values is available as Supplementary table 3.  

 

Ranking 
(/171) 

Pathway p value Adjusted  
p value 

1 Inositol phosphate metabolism 2.329E-25 7.196E-23 

2 Phosphatidylinositol signaling system 1.581E-23 2.442E-21 

3 Fatty acid metabolism 1.198E-22 1.234E-20 

4 Glycerophospholipid metabolism 1.172E-19 9.055E-18 

6 AMPK signaling pathway 3.653E-18 1.881E-16 

7 Biosynthesis of unsaturated fatty acids 1.133E-17 5.002E-16 

10 Phospholipase D signaling pathway 2.606E-16 8.053E-15 

13 PPAR signaling pathway 6.831E-16 1.624E-14 

14 Sphingolipid signaling pathway 1.780E-15 3.929E-14 

17 Sphingolipid metabolism 1.107E-14 2.012E-13 

19 Fatty acid elongation 2.556E-13 4.157E-12 

29 Peroxisome 1.579E-10 1.683E-09 

31 Cholesterol metabolism 4.352E-10 4.338E-09 

44 Ether lipid metabolism 2.027E-08 1.423E-07 

45 Fatty acid degradation 2.497E-08 1.715E-07 

48 Glycerolipid metabolism 8.699E-08 5.600E-07 

90 Steroid biosynthesis 1.397E-05 4.795E-05 

112 ABC transporters 3.483E-04 9.608E-04 

113 Fatty acid biosynthesis 3.866E-04 1.057E-03 

121 Arachidonic acid metabolism 1.075E-03 2.744E-03 
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Figure legends 

Figure 1. ANGPTL3 knock-down efficiency in immortalized human hepatocytes. (A) ANGPTL3 

mRNA expression of IHH cells treated with non-targeting shRNA (control) and shRNA targeting 

ANGPTL3 (shANGPTL3). The values represent mean ± SD, n=3. (B) ANGPTL3 protein levels in 

control and ANGPTL3 knock-down cells (data represent mean fold change ± SD, n=3). (C) 

Representative western blot image of ANGPTL3 expression in control and knock-down cells with 

corresponding total protein. *** p<0.001, * p<0.05.  

Figure 2. MUFAs are decreased and PUFAs increased in ANGPTL3 knock-down cells. (A) Sums 

of saturated and unsaturated fatty acids determined by gas chromatography. The values represent 

mean ± SD, n=6. ** p< 0.01, *** p<0.001. (B) PCA of individual FA species. The samples located 

furthest from the origin of the PCA biplot (marked as +) on one side contain relatively more of the 

lipid species furthest on that same side. The longer the distance between two samples on the plot 

the more their lipid profiles differ from each other. The percentages represent the proportion of the 

variation in the data each principal component axis explains. Ctrl=control cells treated with non-

targeting RNA, shANGPTL3/ShA3=cells treated with shRNA against ANGTPL3. 

Figure 3. Knocking down ANGPTL3 enhances the production of lipid mediators. (A) PLS-DA 

analysis of lipid mediator concentrations. The score plot shows clear separation between the 

control (red dots) and knock-down (shANGPTL3; green dots) samples. Coloured spherical areas 

display the 95% confidence region. (B) VIP scores of lipid mediator variables that contribute most 

to the separation in the PLS-DA model. All of these mediators are more abundant in the ANGPTL3 

knock-down (shA3) cells as indicated by the colour scale. RvD6=resolvin D6, PGD2=prostaglandin 

D2, TxB2=thromboxane B2, HDPA=hydroxydocosapentaenoic acid, MaR=maresin, LXA4=lipoxin A4, 

LTB4=leukotriene B4,  HDHA=hydroxydocosahexaenoic acid, HETE=hydroxyeicosatetraenoic acid. 

Figure 4. Cholesterol ester synthesis and SOAT1 expression are reduced in ANGPTL3 cells. (A) 

Total cholesterol esters (CE) in control and ANGPTL3 knock-down cells (data represent mean ± 

SD, n= 6). (B) SOAT1 mRNA expression in control and ANGPTL3 knock-down cells (mean ± SD, 
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n= 6) (C) representative Western blot of SOAT1 in control and ANGPTL3 knock-down cells (D) 

Quantification of protein expression of SOAT1 in ANGPTL3 knock-down and control cells (mean ± 

SD, n=4). (E) [3H]acetic acid labeled CE in control and ANGPTL3 knock-down cells (mean ± SD, 

n=12). (F) [3H]oleic acid incorporation into CE in control and ANGPTL3 knock-down cells (mean ± 

SD, n=18). *** p<0.001, ** p<0.001.  

Figure 5. ANGPTL3 LOF carriers have altered lipoprotein fatty acid profiles. PCA of the lipoprotein 

fatty acid profiles of control and ANGPTL3 LOF subjects. Lipoprotein fractions were isolated from 

the plasma of ANGPTL3 LOF homozygote and control subjects by sequential density 

ultracentrifugation and fatty acids were analyzed by gas chromatography. Sample markings: 

Group+Fraction; C=control, HZ=ANGPTL3 LOF homozygote, V=VLDL, L=LDL, H=HDL. 

DMA=dimethylacetal. 

Figure 6. PUFAs accumulate in TAGs of lipoproteins derived from ANGPTL3 LOF homozygotes. 

TAG of lipoproteins from ANGPTL3 loss-of-function and control subjects was analyzed by ESI-

MS/MS. Bar graphs are shown for VLDL (upper panel) and LDL (lower panel) fractions, but also in 

HDL the effect was clear and very similar to that seen in LDL (Supplementary table 12). The values 

represent mean ± SD, n=4-10. * p<0.05, ** p< 0.01, *** p<0.001. 

Figure 7. ANGPTL3 deficiency alters the surface lipids of lipoprotein particles. (A) SM/PC ratio of 

different lipoprotein fractions. ANGPTL3=ANGPTL3 LOF homozygote. (B) PCA of the relative 

profile of SM in LDL. C=control, HZ=ANGPTL3 LOF homozygote. All species have a sphingosine 

18:1 backbone, except SM 24:2 is likely a mixture of 18:1/24:2 and 18:2/24:1. (C) LysoPC species 

profile of LDL derived from control subjects and ANGPTL3 LOF homozygotes. The values 

represent mean ± SD, n=5-10. * p<0.05, ** p< 0.01, *** p<0.001. 
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Highlights 

 Lipid metabolism related KEGG pathways are altered in ANGPTL3 depleted 

hepatocytes 

 ANGPTL3 depletion increases the relative PUFA content of human hepatocytes 

 Production of lipid mediators is enhanced in ANGPTL3 depleted hepatocytes  

 Cholesterol ester synthesis is reduced in ANGPTL3 depleted hepatocytes 

 Lipoprotein surface and core lipid composition is altered in ANGPTL3 LOF subjects  
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