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MCSCF optimization revisited. II. Combined first- and second-order orbital
optimization for large molecules

David A. Kreplin,1, a) Peter J. Knowles,2, b) and Hans-Joachim Werner1, c)

1)Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55,D-70569 Stuttgart,
Germany

2)School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT,
United Kingdom

A new orbital optimization for the multiconfiguration self-consistent field (MCSCF) method is presented.
This method combines a second-order (SO) algorithm for the optimization of the active orbitals with the
first-order Super-CI (SCI) optimization of the remaining closed-virtual rotations and is denoted as SO-SCI
method. The SO-SCI method improves the convergence significantly as compared to the conventional SCI
method. In combination with density fitting, the intermediates from the gradient calculation can be reused to
evaluate the two-electron integrals required for the active Hessian without introducing a large computational
overhead. The orbitals and configuration interaction (CI) coefficients are optimized alternately, but the
CI-orbital coupling is accounted for by the Limited Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
quasi-Newton method. This further improves the speed of convergence. The method is applicable to large
molecules. The efficiency and robustness of the presented method is demonstrated in benchmark calculations
for 21 aromatic molecules as well as for various transition metal complexes with up to 826 electrons and 5154
basis functions.

I. INTRODUCTION

The multiconfiguration self-consistent field (MCSCF)
method1–45 plays an important role in the treatment
of strongly correlated systems, in which the wavefunc-
tion is dominated by more than one electronic con-
figuration. For example, a multiconfigurational treat-
ment is needed even at a qualitative level to describe
bond dissociation processes, excited states, or transition
metal complexes with partly filled d-shells. Higher accu-
racy calculations are possible by adding dynamical cor-
relation effects subsequently to the MCSCF calculation.
This can be achieved through multireference perturba-
tion theory (MRPT),46–53 multireference configuration
interaction (MRCI),54–62 or multireference coupled clus-
ter (MRCC).63–66

In the MCSCF method the molecular orbitals (MOs)
and the configuration interaction (CI) coefficients of
the electronic configurations are variationally optimized.
The molecular orbitals can be classified into three sub-
spaces: the inactive orbitals, which are doubly occupied
in all configurations, the active orbitals with varying oc-
cupations, and the unoccupied virtual orbitals. Excited
states can be most easily treated by a state-averaged
approach, where all states share the same set of or-
bitals and the energy average of the considered states
is optimized.5,38,67

Today, most MCSCF calculations are performed with
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a complete active space (CASSCF) approach, where the
wavefunction is expanded in all possible configuration
state functions (CSFs) within a preselected set of ac-
tive orbitals.6,68–72 In the following, CASSCF calcula-
tions with Nel electrons in Nact active orbitals are de-
noted CASSCF(Nel, Nact). However, the number of
CSFs increases factorially with the number of active or-
bitals, and the largest calculations so far included 22 elec-
trons in 22 active orbitals.73 One way of tackling the
exploding number of configuration is to divide the ac-
tive space into subsets and to add occupation restric-
tions to each subspace, as for example in the restricted
active space (RAS)9,74 or the generalized active space
(GAS)75,76 methods. In addition to this, several approx-
imate full CI (FCI) methods have recently been devel-
oped and integrated into CASSCF, as for example the
FCI quantum Monte Carlo (FCIQMC) method,77–79 the
heat-bath CI,80–82 or the density matrix renormalization
group (DMRG) methods.45,83–87 However, the approx-
imations in the CI space remove the invariance of the
MCSCF energy with respect to active-active orbital ro-
tations. This can make the orbital optimization much
more difficult, unless the active-active orbital rotations
are neglected.45

The optimization of MCSCF wavefunctions can be ex-
tremely challenging due to strong couplings between the
molecular orbitals and the CI coefficients. As a conse-
quence, many MCSCF optimization methods have been
developed in the past fifty years. An overview of the dif-
ferent approaches can be found in Ref. 88. The variety of
MCSCF methods can be separated into two categories:
first-order1–16 and second-order methods.17–45 In the lat-
ter, the energy changes and gradients decay quadratically
near the final solution. In order to achieve quadratic
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convergence it is necessary to treat the coupling between
the CI coefficients and the orbitals explicitly. Methods
which include this coupling in each iteration are denoted
“coupled” or “one-step” optimizations, while methods in
which the CI coefficients and orbitals are optimized alter-
nately are denoted “uncoupled” or “two-step” optimiza-
tions.

In second-order optimization schemes the energy is in
each macro-iteration approximated by a functional which
is accurate to second-order in the orbital rotation pa-
rameters and the changes of the CI coefficients. This
functional is iteratively minimized with respect to the
orbitals and CI coefficients (micro-iterations), yielding
near the final solution quadratic convergence of the en-
ergy in subsequent macro-iterations. Despite fast and
robust convergence, second-order methods suffer from a
serious deficiency: the construction of the exact orbital
Hessian matrix requires the computation of all 2-electron
repulsion integrals in the MO basis with up to two virtual
orbitals. This computation scales formally as O(N5),
where N is a measure for the molecular system size and
the active space is assumed to be constant. The expen-
sive integral evaluation limits the application of second-
order MCSCF methods to medium sized molecules. The
scaling can be formally reduced to O(N4) by avoiding
the explicit construction of the Hessian and using density
fitting approximations in the action of the orbital Hes-
sian on a trial vector in each micro-iteration.14 However,
numerous density fitting integral evaluations are then re-
quired in each micro-iteration, leading to a large prefac-
tor in the cost scaling. In first-order methods the orbitals
and CI coefficients are optimized alternately: for a given
set of orbitals and integrals, one first solves the CI eigen-
value equation. Subsequently the density matrices are
computed and the orbitals are optimized for fixed CI co-
efficients (two-step or uncoupled optimization). The or-
bital optimization can be done by either a second-order
method or by a more approximate approach. Most suc-
cessful is the so-called Super-CI (SCI) method, which is
based on the generalized Brillouin theorem.89,90 It dates
back to Grein and Chang1–3 and Ruedenberg et al.5 Orig-
inally, a single-excitation CI calculation was carried out
in each MCSCF iteration, and the coefficients of the sin-
gle excitations were used to update the orbitals. How-
ever, using the exact Hamiltonian in this method is even
more expensive than using the full orbital Hessian, since
it requires the same integrals as the latter and in addition
the third-order reduced density matrix. The SCI method
was strongly improved by Roos et al.6,7,9 by using a per-
turbative treatment of the single excitations, based on a
similar zeroth order Hamiltonian as used in complete ac-
tive space second-order perturbation theory (CASPT2).
Alternatively, it is also possible to use the Dyall Hamilto-
nian in the perturbative treatment.11,15 Both variants use
an approximate orbital Hessian, which can be built solely
from closed-shell and active space Fock matrices. Evalu-
ating these Fock matrices scales as O(N4), and their com-
putation can be considerably accelerated with density

fitting.91,92 The scaling can be further reduced by integral
screening techniques and/or local approximations.93,94

For the CI part one also needs the 2-electron integrals
in the active space, but these can be generated with very
little extra cost together with the active space Fock ma-
trix, if density fitting is used. Thus, the overall scaling
is formally O(N4) (with a fixed active space), and there-
fore first-order methods can be applied to much larger
molecules than second-order methods.

However, the convergence of the two-step optimiza-
tions can be problematic, since the decay of the gradient
and energy may become extremely slow if there are strong
couplings between the orbital and CI optimizations. The
convergence can be significantly improved by introduc-
ing a convergence accelerator scheme, such as the direct
inversion of the iterative subspace (DIIS) method15,86 or
a quasi-Newton (QN) approach.9,42 Nevertheless, more
than 100 iterations may be needed in unfavorable cases.

In the current paper we present a new algorithm which
combines the advantages of first-order and second-order
orbital optimization algorithms. All active orbitals are
optimized using a second-order algorithm, which signif-
icantly improves the speed and robustness of conver-
gence. This is combined with the SCI approach for the
remaining inactive-virtual orbital rotations. The nec-
essary integrals for the active space optimization can
be efficiently computed using density fitting along with
the Fock matrices without much additional cost. Fur-
thermore, we found an improved way to accelerate the
two-step optimization by using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) QN method. The algorithm
utilizes the two-loop recursion scheme of the limited
memory BFGS (L-BFGS) method,95,96 which allows the
initial Hessian to be updated in each iteration. The re-
sulting method accounts approximately for the coupling
between the CI-coefficients and the orbitals and consid-
erably accelerates the two-step optimization independent
of the orbital optimization.

The paper is structured as follows: we start with a brief
review of the first- and second-order orbital optimizations
in Sec. II, followed by the derivation of the combined first-
and second-order orbital optimizations in Sec. II C. The
L-BFGS convergence acceleration is discussed in Sec. III.
All presented methods are compared in benchmark cal-
culations in Sec. V.

II. ORBITAL OPTIMIZATIONS

We consider a normalized MCSCF wavefunction |Ψn〉
for an electronic state n

|Ψn〉 =
∑
I

|ΦI〉 cnI , 〈Ψn|Ψn〉 =
∑
I

|cnI |2 = 1, (1)

where |ΦI〉 are orthonormal N-electron expansion func-
tions, either spin-adapted configuration state functions
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(CSFs) or Slater determinants, and cnI are the corre-
sponding configuration interaction (CI) coefficients. The
CSFs are built from a set of (spatial) orbitals |r〉 ≡ |φr〉,
which are assumed to be real and orthonormal. For sim-
plicity, we will in the following omit the state index n,
and denote the initial wavefunction and energy of an it-
eration as |0〉 and E0, respectively. The treatment of
excited states using state-averaged MCSCF is discussed
in section II E.

Unless otherwise noted, the MOs are labeled in fol-
lowing manner: k, l: any occupied orbitals, i, j: doubly
occupied closed-shell orbitals, t, u, v, w: active orbitals,
a, b: unoccupied (virtual) orbitals. We will assume that
all occupied orbitals are optimized, even though freezing
core orbitals is possible. The indices p, q, r, s refer to any
orbitals.

Arbitrary changes of the molecular orbitals (subject
to the orthonormality condition) can be described by an
orthogonal transformation

|r̃〉 =
∑
s

|s〉Usr̃ (2)

with

U = exp(R) = 1 + R +
1

2!
R2 + . . . , (3)

where Rrk = −Rkr are independent orbital rotation pa-
rameters. Virtual-virtual and inactive-inactive orbital
rotations leave the energy invariant and are excluded.
For CASSCF active-active rotations are also excluded
since they can be treated by changes of the CI coeffi-
cients. Thus, the parameters Rti and Rak are sufficient
for CASSCF wavefunctions, and all others are set to zero.

In the methods described in this paper, the orbitals
and CI coefficients are optimized alternately (two-step
optimizations). The coupling between the two steps is
included approximately using QN approaches. In the fol-
lowing, we describe the orbital optimization methods for
fixed CI coefficients.

A. Second-order orbital optimization

The change of the wavefunction by the orbital trans-
formation in (3) can be expressed as

|Ψ〉 = exp(R̂) |0〉 , (4)

where the operator R̂ = −R̂† is defined as

R̂ =
∑
r>k

Rrk(Êrk − Êkr). (5)

The energy expectation value of the transformed wave-
function

E(R) = 〈Ψ| Ĥ |Ψ〉 = 〈0| exp(−R̂)Ĥ exp(R̂) |0〉 (6)

can be expanded with help of the Baker-Campbell-
Hausdorff (BCH) series

e−R̂ĤeR̂ = Ĥ + [Ĥ, R̂] +
1

2!
[[Ĥ, R̂], R̂] + . . . , (7)

yielding a series of expectation values of commutators.
By evaluating these expectation values one obtains a Tay-
lor expansion in the rotation parameters Rrk (with x be-
ing a vector containing the non-redundant parameters
Rrk):

E(R) = 〈0| Ĥ |0〉+ 〈0| [Ĥ, R̂] |0〉+
1

2!
〈0| [[Ĥ, R̂], R̂] |0〉+ . . .

=E0 + gTx +
1

2
xThx + . . . . (8)

The single commutator term yields the scalar product
of the orbital gradient with the parameters x, while the
double commutator term depends on the Hessian matrix
h. The explicit expressions for the energy, the gradient
and the Hessian are shown in the Supplementary Mate-
rial (SM). The same expressions for grk and hrk,sl can be
obtained by direct expansion of the energy up to second-
order in R and factorizing the resulting expression ap-
propriately, as described in part I of this series.42

The parameters x can be determined iteratively by
truncating the expansion (8) after the quadratic term
and minimizing in each iteration the resulting second-
order energy expression. This yields the linear Newton-
Raphson (NR) equations

g + hx = 0. (9)

However, despite quadratic convergence near the final so-
lution (for fixed CI coefficients), the radius of convergence
of the NR method is quite small. A more robust numeri-
cal framework is the augmented Hessian (AH) method.97

It is obtained by introducing a level-shift ε to the NR
equations:

g + (h− ε1)x = 0 with ε = λ2xTg. (10)

The step-length of x can be controlled by the damping
parameter λ. This equation can be transformed into an
eigenvalue problem:(

0 gT

g h/λ

)(
1/λ
x

)
= ν

(
1/λ
x

)
. (11)

The diagonalization of the AH matrix yields the update
step x and the level-shift ε = λ · ν. It can be shown that
the level-shifted Hessian is positive (semi) definite for the
calculated ε. Due to the large dimension of the Hessian,
the AH eigenvalue equation has to be solved iteratively,
for example with a P-space Davidson method.39,42 The
damping parameter λ can be automatically adjusted by
restricting the step length |x|, and in this way conver-
gence can be guaranteed. However, with poor starting
guesses convergence can be rather slow. In the following,
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we will denote the uncoupled second-order AH approach
without further approximation as UC-AH method.

It is in principle also possible to include the orbital-CI
coupling in the AH procedure, yielding a second-order
method with quadratic convergence. However this is
expensive, in particular for CASSCF calculations with
large active spaces, and not further considered here. The
better alternative is the method of Werner, Meyer and
Knowles39–41 (denoted WMK method), which includes
higher order terms and converges much faster. A review
and recent improvements of this method have been pre-
sented in part I of this series.42

B. The Super-CI optimization method

There have been many first-order orbital optimization
methods developed in the past decades.7–10,16 In this
work, we follow the derivation of the Super-CI (SCI)
method of Roos et al.7–9 because of its wide range of
successful applications and popularity. The SCI method
is based on the generalized Brillouin theorem,89,90 which
states that for optimized orbitals

grk = 2 〈0|Ĥ|rk〉 = 0. (12)

Here |rk〉 are the so-called Brillouin states (internally
contracted singly excited configurations)

|rk〉 = (Êrk − Êkr) |0〉 . (13)

For non-optimal orbitals, the matrix element 〈0|Ĥ|rk〉
corresponds to half of the orbital gradient grk.

The SCI wavefunction |SCI〉 is defined as

|SCI〉 = (1 + R̂) |0〉 = |0〉+
∑
r>k

Rrk |rk〉 , (14)

where the coefficients Rrk are equivalent to the rotation
generators R. This expansion is equivalent to a first-
order approximation of the transformation shown in (4).
The coefficients Rrk are determined by solving the gener-
alized eigenvalue equations (summation over indices s, l
is implied)(

−ε 〈0| Ĥ |sl〉
〈rk| Ĥ |0〉 〈rk| Ĥ − E0 − ε |sl〉

)(
1
Rsl

)
= 0. (15)

Since the Brillouin states are non-orthogonal, the overlap
matrix 〈rk|sl〉 has to be included. For CASSCF wave-
functions the overlap matrix becomes diagonal if natural
active orbitals are used, i.e. if the 1-RDM is diagonal
(c.f. SM).I don’t think these are shown. David, please
add overlap to the SM.

Computing the Hamiltonian elements 〈rk|Ĥ|sl〉 ex-
actly would require three particle RDMs and the same

integrals as second-order optimization methods. In or-
der to avoid their expensive computation and to achieve
lower-order scaling, the terms 〈rk| Ĥ−E0 |sl〉 in eq. (15)

are replaced by 〈rk|Ĥeff − E(0)|sl〉,7,9 where

Ĥeff =
∑
pq

FpqÊpq, (16)

E(0) = 〈0|Ĥeff |0〉 = 2
∑
i

Fii +
∑
tu

DtuFtu. (17)

The definition of the effective Fock matrix Frs is given
in eq. (13) of the SM. Essentially, this corresponds to a
perturbational treatment of the single excitations, sim-
ilar to CASPT2. The Hylleraas functional for the SCI
first-order wavefunction reads (summation over repeated
indices implied):

ε = 2Rrk 〈rk|Ĥ|0〉+Rrk 〈rk|Ĥeff − E(0)|sl〉Rsl. (18)

Its minimization with respect to the parameters Rri leads
to a first-order approximation of the parameters Rrk and
the second-order energy ε, namely

ε = Rrk 〈rk|Ĥ|0〉 , (19)

0 = 〈rk|Ĥ|0〉+ 〈rk|Ĥeff − E(0)|sl〉Rsl. (20)

This differs from the SCI eigenvalue equation only by
the absence of the shift −ε 〈rk|sl〉 in the second term of
eq.(20). In praxis, this shift stabilizes convergence and is
therefore included in the SCI method. The SCI matrix
elements are given explicitly in the SM.

Each iteration of the SCI method starts with the com-
putation of the closed-shell Fock matrix and the inte-
grals (tu|vw), which are needed to solve the CI eigen-
value problem. In our program the default is to carry
out as many CI iterations as needed to reduce the CI
gradient by a factor of 10 (typically 3-5 iterations). Sub-
sequently, the RDMs, the active part of the Fock matrix,
as well as the gradient g are computed. Finally, the rota-
tion parameters Rrk are determined by solving the SCI
eigenvalue problem. This is formally very similar to the
AH equation and can be done iteratively by a P-space
Davidson-algorithm98 as described in Ref. 39 and 42. A
level shift parameter λ can be used to restrict the step
length, cf. eq. (11).

The Fock matrix and integrals (tu|vw) are computed
using efficient density fitting approximations (cf. SM).
The computational effort of the SCI method then scales
as O(N3

AONocc) (if the size of the active space is assumed
to be constant) and therefore allows the treatment of sig-
nificantly larger systems than with second-order meth-
ods. However, convergence acceleration as described in
Sec. III is vital for robust convergence. And even with
acceleration methods, the SCI convergence can be slow,
as shown for some examples in Sec. V.
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C. Combined first- and second-order orbital optimization

In order to improve convergence of the SCI method, we
now propose a method which combines a second-order
optimization of all orbital rotations that involve active
orbitals with a SCI like first-order optimization of the
remaining closed-virtual rotations. The Hessian of the
rotations involving active orbitals only requires the cal-
culation of the integrals J turs= (rs|tu) and Ktu

rs= (rt|su)
with two active indices t, u. The number of these inte-
grals only scales as O(N2

AO), if the active space is as-
sumed to be independent of the molecular size. Their
construction does not introduce a large computational
overhead if density fitting is used (cf. SM).

To derive the combined first- and second-order opti-
mization (in the following denoted SO-SCI method), we
define two separate transformation operators similar to
eq. (5). We refer to the rotations with active orbitals
as active rotations. The operator for this active trans-
formation is denoted Â. The remaining closed-virtual
rotations are called inactive rotations and the associated
transformation operator is Ĉ:

Â =

act∑
t

[ virt∑
a

RAatÊat +

inact∑
i

RAtiÊti

+

act∑
u(u<t)

RAtu(Êtu − Êut)
]
, (21)

Ĉ =

inact∑
i

∑
a

RCaiÊai. (22)

For CASSCF active-active rotations are excluded, and
the last term in eq. (21) disappears. Note that operators

Êka and Êit do not contribute, since their action on the
wavefunction yields zero.

We now separate the rotations of the inactive rotations
from the rotations with active orbitals:

|Ψ〉 = exp(Â) exp(Ĉ) |0〉 . (23)

Note that Â and Ĉ do not commute, and therefore eq.
(23) should be considered as an Ansatz. To stay consis-
tent with this separation, the orbital transformation in
equation (2) is defined accordingly:

U = exp(RC) exp(RA). (24)

The energy expanded with help of the BCH series then
reads:

E(RA,RC) = 〈0| Ĥ |0〉+ 〈0| [Ĥ, Ĉ] |0〉+ 〈0| [Ĥ, Â] |0〉+

+
1

2

[
〈0| [[Ĥ, Â], Â] |0〉+ 〈0| [[Ĥ, Ĉ], Ĉ] |0〉

]
+ 〈0| [[Ĥ, Â], Ĉ] |0〉+ . . . (25)

= E0 + gTx +
1

2
xThx + . . . , (26)

where x =

(
xA

xC

)
≡
(

RA

RC

)
. This yields for the gradient

grk = 2 〈0|Ĥ|rk〉 . (27)

The double commutator 〈0|[[Ĥ, Â], Â]|0〉, which involves
the Hessian block for the active rotations, can be com-
puted without approximations from the integrals J turs ,
Ktu
rs with at least 2 active indices. However, the exact

computation of the Hessian parts arising from the oper-
ator Ĉ would in addition require all integrals J ijrs, K

ij
rs

with inactive labels i, j, leading to the higher scaling of
second-order methods. To avoid this, the Hamiltonian
operator in the double commutators that contain Ĉ is
replaced by the effective SCI Hamiltonian Ĥeff , i.e.,

1

2
xThx ≈1

2
xTheffx =

1

2
〈0| [[Ĥ, Â], Â] |0〉

+
1

2
〈0| [[Ĥeff , Ĉ], Ĉ] |0〉+ 〈0| [[Ĥeff , Â], Ĉ] |0〉 . (28)

We had inconsistent notations Ĥeff or Ĥeff . I now
use the latter throughout. Also, I capitalized Hes-
sian throughout. By comparing eq. (18) and eq.
(28) one finds that the approximate Hessian elements

heffrk,sl equal those of the effective SCI Hessian hSCI
rk,sl =

2 〈rk|Ĥeff − E(0)|sl〉 for all blocks with at most one ac-
tive index, i.e.

heffai,bj =hSCIai,bj , heffai,bu = hSCIai,bu, heffai,uj = hSCIai,uj (29)

(cf. SM). This is not the case, however, for the Hessian
blocks with 2 or more active indices, even if these would
also be approximated by 〈0|[[Ĥeff , Â], Â]|0〉. Thus, in or-
der to determine the orbital rotation parameters R, we
solve an AH equation in which the exact Hessian is used
for the blocks hat,bu and hti,uj , while the approximate
SCI Hessian is used for the blocks shown in eq. (29). Fur-
thermore, the SCI overlap contributions 〈ai|bj〉 = 2δijδbj
are taken into account for the closed-virtual rotations,
since this improves convergence. The eigenvalue problem
is solved iteratively with the P-space Davidson method
(micro-iterations).39,42 Only the P-space part of the Hes-
sian is computed explicitly, while the product heffx is
computed directly from the integrals and density matri-
ces in each micro-iteration. As in the SCI method, a level
shift parameter λ is used to restrict the step length.

Convergence of the micro-iterations needed to solve the
AH equations can be improved by generating after the
initial CI of each macro-iterations natural active orbitals
by diagonalizing the active 1-RDM. This keeps the singly
excited configurations in eq. (13) orthogonal. Further-
more, block diagonalizing the Fock matrix in the inac-
tive and virtual subspaces minimizes couplings via off-
diagonal elements in the approximate SCI Hessian part.
The integrals J turs , Ktu

rs as well as the CI vector(s) are
transformed accordingly. The transformation of the CI
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vectors only depends on the unitary transformation in
the active space and can be done non-iteratively.99

Finally we note that instead of the expansion in (23)

one could also make the ansatz |Ψ〉 = exp(Ĉ) exp(Â) |0〉
(note that Â and Ĉ do not commute) or |Ψ〉 = exp(Â+

Ĉ) |0〉. In both cases, the same Super-CI Hessian block
hSCIai,bj is obtained, but the coupling blocks slightly change.
In practice we found that the convergence of the three
ansätze is nearly the same, with a slight advantage for
the approach shown in equation (23), which has therefore
been used for all calculations in this paper.

D. Using the WMK method for active-virtual orbital
rotations

Much faster and more stable convergence than with the
SO-AH method can be achieved by expanding the energy
up to second-order in the orbital changes, which are rep-
resented by the matrix T = U−1 = R+ 1

2!R
2 + . . .. The

expansion E(2)(T) is of infinite order in R, and is periodic
in individual orbital rotations, as the exact energy.39–42

Minimization of E(2)(T, c) with respect to the orbitals
and CI coefficients c yields a set of non-linear equations,
which can be solved iteratively (micro-iterations). This
so-called WMK method converges very fast, often in only
3-4 macro-iterations. It therefore minimizes the num-
ber of integral transformations, but the micro-iterations
needed to solve the non-linear equations are more expen-
sive than in the uncoupled AH method. To a large ex-
tent, this is due to the additional CI steps needed in the
micro-iterations, and the subsequent recomputation of
the density matrices and other intermediates. For large
molecules the method becomes very expensive, since it
requires all integrals with two occupied orbitals, similar
to the UC-AH method.

In the current work we have attempted to combine the
WMK method for active orbital rotations with the SO-
SCI method for the remaining orbital rotations. How-
ever, it turned out that including the inactive-active
orbital rotations in this treatment does not lead to
stable convergence, since the integrals J turs , Ktu

rs with
at least 2 active indices are not sufficient to compute
E(2)(TA) without further approximations (with TA =
RA + 1

2! (R
A)2 + . . .). It is possible, however, to opti-

mize the active-virtual orbitals along with the CI coef-
ficients using the WMK method. This corresponds to a
second-order WMK optimization with frozen inactive or-
bitals. Subsequently, the remaining orbital rotations are
optimized using the SO-SCI method, as described in sec-
tion II C. For this, the density matrices are recomputed
with the CI coefficients obtained in the initial WMK op-
timization. However, the integrals and the Fock matrix
are kept unchanged, to avoid another Fock-matrix and
integral evaluation. Various tests have shown that re-

computing the integrals has only a minor effect on the
convergence and is not worth the effort. Thus, the cou-
plings between the virtual-active and all remaining rota-
tions are neglected entirely in this approximation.

We found that this hybrid WMK-SO-SCI improves
convergence only in cases where the active-virtual orbital
rotations are particularly large, and even then the sav-
ings are small. In many cases the additional cost for the
additional CI-steps in the WMK optimization of the ac-
tive orbitals exceeds the savings by the reduction of the
number of macroiterations. The method is therefore not
used by default, and not further considered in this paper.

E. State averaged MCSCF

Excited states are best treated with state-averaged
MCSCF/CASSCF,5,38,67 since this avoids root flipping
problems in the optimization.38 In state averaged MC-
SCF, the weighted energy average of several states is
minimized

Eav =
∑
n

WnEn,
∑
n

Wn = 1, (30)

where Wn are the weights (which are mostly the same
for all states, but other choices are possible, see, e.g.,
Ref. 100). Apart from computing several CI vectors in
the CI steps, the only change in the algorithms is to use
state-averaged density matrices

Dtu =
∑
n

Wn

∑
IJ

cnI c
n
J 〈ΦI | Êtu |ΦJ〉 , (31)

Dtu,vw =
∑
n

Wn

∑
IJ

cnI c
n
J 〈ΦI |

1

2

[
Êtu,vw+Êut,vw

]
|ΦJ〉 .

(32)

Since the state-averaged MCSCF method is based on
the direct minimization of an energy functional, it is not
possible to define a SCI wavefunction for it. Neverthe-
less, the SCI and SO-SCI methods as outlined above can
straightforwardly be used, simply by replacing the state-
specific densities by the state-averaged ones.

III. L-BFGS CONVERGENCE ACCELERATION

The two-step optimization of the MCSCF wavefunc-
tion, i.e. the alternating optimization of the CI coeffi-
cients and the orbitals, yields a first-order method even if
a second-order orbital optimization method is used. The
reason for this first-order convergence is the absence of
the explicit coupling between the CI and the orbital opti-
mization. This first-order convergence can be extremely
slow, especially when approaching the minimum. In ad-
dition, a first-order orbital optimization further slows



7

down the convergence, which can lead to hundreds of
iterations and may therefore require the calculation of
hundreds of Fock matrices.

Already Malmqvist et al.9 have mentioned that a QN
approach can be used to approximately account for the
orbital-CI coupling and thus accelerate the convergence,
but details were not given. Such an approach has also
been used in part I of this series42 to speed up the micro-
iterations in a second-order optimization. In this sec-
tion we generalize this idea and show how the L-BFGS
method can be used as a general convergence accelerator.
The acceleration is based on a preconditioning of the gra-
dient and a post-processing of the step resulting from an
optimization algorithm, as proposed by Nocedal.95 The
resulting method can be easily combined with all pre-
sented orbital optimizations and can also be applied in
other electronic structure methods.

In the L-BFGS method of Nocedal95 the inverse of the
QN Hessian is iteratively constructed by the following
definition:[

hQNn+1

]−1
=
(
I− xnyT

n

ρn

) [
hQNn

]−1 (
I− ynxT

n

ρn

)
+

xnxT
n

ρn
(33)

with the BFGS vectors of iteration n+ 1:

yn = gn+1 − gn, (34)

ρn = yT
nxn. (35)

Here n+ 1 is the current iteration, and n iterations have
been carried out before. The gradient vector gn+1 is com-
puted at the beginning of the current iteration. The opti-
mization step xn+1 is calculated via the Newton-Raphson
equation:

xn+1 = −
[
hQNn+1

]−1
gn+1. (36)

An update of the BFGS Hessian hQN requires a consis-
tent pair {xn,yn} of the update vector xn and gradient
change yn. In the L-BFGS method, the set of the BFGS
pairs {xi,yi} can be limited to the last m recent vector
pairs (our default value ism=10). The iterative construc-
tion of the inverse Hessian is stopped after m recursion
steps with an initial inverse Hessian h−10 . As shown in
ref. 95, it is possible to unroll the recursive construc-

tion of the inverse L-BFGS Hessian [hQNn+1]−1 when only
its action on a vector is needed. This so called two-loop
recursion scheme is shown in Figure 1 and provides an
efficient general implementation of the L-BFGS method.
The first loop (lines 2 - 6) can be seen as a precondi-
tioning of the gradient (gn+1 → ḡ1) and the second loop
(lines 8 - 12) is a post-processing of the calculated step
(x̄1 → xn+1). The update (line 7) returns a step from
the preconditioned gradient (ḡ1 → x̄1). In the origi-
nal L-BFGS method, the initial Hessian h0 is a scaled
identity matrix, where the scaling is adjusted in each
iteration.96 However, as pointed out by Nocedal,96 the

Input: Gradient gn+1 and the last m {yi}, {xi}, and {ρi}
Output: Step xn+1 = −[hQN

n+1]−1gn+1

1: ḡm+1 = gn+1

2: for i = m,m− 1, . . . , 1 do
3: j = i+ n−m
4: αi = ρjx

T
j ḡi+1 (store αi)

5: ḡi = ḡi+1 − αiyj

6: end for
7: x̄1 = −h−1

0 ḡ1

8: for i = 1, . . . ,m do
9: j = i+ n−m

10: βi = ρjy
T
j x̄i

11: x̄i+1 = x̄i + xj(−αi − βi) (read αi)
12: end for
13: xn+1 = x̄m+1

FIG. 1. The L-BFGS two-loop recursion algorithm for calcu-
lating the action of the inverse L-BFGS Hessian.95

choice of the initial Hessian is arbitrary as long as it stays
positive definite. We use this flexibility and replace the
step calculation in line 7 by the step returned from an
AH calculation, carried out with the updated gradient
vector ḡ1. A necessary criterion for convergence is that
the underlying (approximate) Hessian is positive definite,
otherwise the BFGS Hessian will lose its positive definite
form. For example, the optimization method could be
the SCI method, where the AH procedure ensures non-
negative eigenvalues. Alternatively, either the exact or-
bital Hessian or the effective orbital Hessian defined in
section II C can be used in the AH procedure.

It is also possible to include the CI gradient- and up-
date vectors in the L-BFGS procedure. To test how well
this method works for solving a CI eigenvalue equation
we have applied it to the direct-CI method (without any
orbital optimization). In this method, the CI update is
normally computed as

g = (H− E1)c, cTc = 1, (37)

∆cI = − gI
HII − E − λ

, (38)

where HII are the diagonal elements of the Hamiltonian,
E = cTHc is the current energy, and λ a level shift for
damping. The update can be improved by using the P-
space method outlined in refs. 39 and 42. In this method
a reduced Hamiltonian, built from a predefined set of P-
space configurations and the current CI vector(s), is di-
agonalized in each iteration. The P-space includes the
dominating configurations, and the P-space Hamiltonian
is explicitly computed in this subspace. This yields the
optimum P-space coefficients cP and an improved gradi-
ent vector, which is zero in the P-space. Using this im-
proved gradient vector, the coefficient of the remaining
Q-space configurations are updated as in eq. (38). Op-
tionally, further CI iterations can be carried out, and in
each of these iterations the reduced Hamiltonian is aug-
mented by a contracted Q-space function for each opti-
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FIG. 2. Example: CASCI of the chromium dimer (r =
1.69Å), aug-cc-pVQZ basis, and full valence active space.
Orbitals are obtained from the converged CASSCF solution.
The difference to the final energy (DE) is shown for the non
accelerated direct CI method with λ = 5 (blue), the BFGS
accelerated method with λ = 5 (orange) and λ = 1 (green),
as well as the conventional P-space Davidson method (red).

mized state. The BFGS vector pair {xn,yn} is obtained
after the last diagonalization of the reduced Hamiltonian,
where consistent CI and gradient vectors are available.
The CI update from the post-BFGS method is added to
the CI vector, which is finally renormalized.

Figure 2 shows the convergence of the energy of a CAS-
CI ground state optimization of the chromium dimer
molecule using the full-valence CAS(12,12) active space
(107216 Slater determinants, D2h symmetry used). This
is a particularly difficult case since there are multiple
configurations strongly contributing to the wavefunc-
tion. We compare the direct-CI method with and with-
out L-BFGS acceleration with the P-space Davidson
method.39,98 The direct-CI method without the acceler-
ation requires a quite large damping parameter λ = 5 to
obtain convergence. The L-BFGS accelerated version for
λ = 5 is additionally shown and converges significantly
faster. Furthermore, the L-BFGS allows a lower damp-
ing parameter of λ = 1 which again improves conver-
gence. The L-BFGS accelerated direct-CI shows the very
similar convergence behavior as the variational Davidson
method. This is a surprising finding, since the Davidson
method yields the best possible variational energy in the
current space of expansion vectors. In this particular ex-
ample, the numbers of expansion vectors in the L-BFGS
and the Davidson method are kept equal.

We now describe in more detail how the L-BFGS con-
vergence acceleration is implemented into the MCSCF
two-step method. An overview of the single MCSCF it-
eration is presented in Figure 3. As we have seen in the
direct-CI example, the L-BFGS acceleration is also ca-

Calc. F c and integrals

Davidson CI optimization

add L-BFGS vectors sk and yk

L-BFGS preconditioning

orbital opt. direct-CI step

L-BFGS post-processing

FIG. 3. Flowchart of one L-BFGS accelerated MCSCF itera-
tion

pable of optimizing the CI coefficients. For this reason,
the CI coefficients and the orbital rotation generators R
are included in the L-BFGS algorithm to increase the
amount of coupling. Hence, the displacements xn and
the change in the gradient yn of the MCSCF problem
are:

xn =

(
cn+1 − cn

Rn

)
and yn =

(
gcn+1 − gcn
gon+1 − gon

)
. (39)

The CI gradient gc is obtained from the residual of the CI
optimization, and the orbital gradient is calculated with
the updated density. At this point, we have a consistent
set of the step and the gradient for the BFGS vector
pair {xn,yn}. However, particularly because of the in-
iteration optimization of CI coefficients, the curvature
condition of the BFGS method96

ρn = xT
nyn > 0, (40)

as well as the condition that the energy should decrease
sufficiently,96 are not necessarily satisfied. To maintain
the positive definite form of the BFGS Hessian, a vector
pair {xn,yn} is only added to the L-BFGS vector set
if the curvature condition is fulfilled. When the energy
increased, we discard the current set of BFGS vectors
and restart the extrapolation. Next, the orbital opti-
mization and the direct-CI update are carried out with
the preconditioned gradient. All of the orbital optimiza-
tion methods described in Sec. II can be used. Even
with the second-order UC-AH orbital optimization con-
vergence is improved by the L-BFGS acceleration, since
the orbital Hessian does not include the coupling with the
CI coefficients. The post-processed step R of the orbital
optimization is rescaled to be within a trust radius. How
large is the trust radius? This is necessary because the
BFGS method usually returns a good search direction
but sometimes overshoots the step length. The iteration
is finalized by transforming the orbitals according to eq.
(3) and orthonormalizing the updated CI vector.
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IV. STARTING GUESSES

For fast and reliable convergence of MCSCF calcula-
tions a reasonable starting guess for the orbitals is re-
quired. In particular, the initial active orbitals should
have the the qualitatively correct character in order to
avoid convergence to undesired solutions or local minima,
which often happens in cases with many nearly degener-
ate states unless a good starting guess is used. In this
work we use the “Automated Construction of Molecular
Active Spaces from Atomic Valence Orbitals” (AVAS)101

procedure to generate starting orbitals. However, instead
of using converged restricted Hartree-Fock (ROHF) or-
bitals as input for this procedure, we use orbitals ob-
tained from an atomic density guess as described in Ref.
94. In this method an approximate molecular density
matrix is constructed by superposition of atomic density
matrices, which are computed using a minimal basis of
atomic orbitals that are stored in the basis set library.
The effective occupation numbers are pre-optimized and
also stored in a library. Using this density matrix a
closed-shell Fock matrix is computed and then diagonal-
ized, yielding the initial orbitals.

The AVAS method determines an orthogonal trans-
formation of the input orbitals such that the overlap of
the active orbitals with a specified set of atomic orbitals
(AOs) (e.g. d-orbitals in transition metals, or pπ orbitals
in conjugated or aromatic systems) is maximized. The
target set of AOs has to be specified in the input. The
transformation does not mix occupied and virtual MOs,
but can mix closed- and open-shell orbitals. Usually, a
Hartree-Fock configuration is assumed to determine the
number of occupied orbitals.

Obviously, the AVAS the method is not fully auto-
matic, since it requires some chemical intuition to select
the target orbitals. This selection is closely related to
the intuition needed to select an active space and some-
times requires some experimentation. Note that AVAS
may generate more active orbitals than target functions
have been specified, if the latter contribute significantly
to two or more orbitals. However, for the CASSCF cal-
culations presented in this paper, the choice of the target
orbitals and active spaces was always straightforward.
We found that the AVAS starting guess works very well,
and avoids the need to carry out an ROHF calculation
before the CASSCF. This is important since for typical
MCSCF cases ROHF is often a very poor approximation
and convergence may be difficult to achieve.

In principle, the described AVAS orbital guess can also
be used in ROHF calculations. However, the number of
open-shell orbitals in the ROHF is often smaller than
the active space predicted by AVAS, and then one or
more AVAS active orbitals may be doubly occupied in
the ROHF wavefunction. In such cases the initial energy
is not invariant to the order of the active AVAS orbitals,
and we found in several calculations that the order of the

TABLE I. Results for the aromatics benchmark set.52 The
total number of MCSCF iterations and the total computation
times (in minutes) are presented. All numbers are summed
over the 21 calculations.

avdz avtz avqz
Orb. Opt Iter. Time Iter. Time Iter. Time

Without L-BFGS acceleration:

SCI 1231 28.1 1261 101.6 1274 443.2
UC-AH 173 13.4 173 78.6 176 405.0
SO-SCI 538 9.6 569 40.2 571 177.8

With L-BFGS acceleration:

SCI 435 10.5 442 35.8 447 152.9
UC-AH 139 11.9 140 70.3 140 353.0
SO-SCI 209 3.9 213 14.9 214 64.7
WMK 74 23.7 76 131.0 76 591.1

initial orbitals was not consistent with that in the final
optimized wavefunction. In such cases, AVAS may actu-
ally slow down the ROHF convergence, and in some cases
convergence to the correct energy could not be achieved
at all. Therefore, we used in all single-determinant calcu-
lations the orbitals from the atomic density guess without
AVAS rotation. We hope that a solution to this problem
can be found in future.

V. BENCHMARK CALCULATIONS

In this section we present benchmarks of CASSCF cal-
culations in order to demonstrate the convergence prop-
erties and the efficiency of our new methods for differ-
ent applications. These include calculations for 21 typi-
cal aromatic molecules and various large transition metal
complexes.

The methods have been implemented in the Molpro
software package.? ? Our default convergence criterion
for the first-order methods requires that the CI and or-
bital gradients are lower than 10−5. Additionally, the
energy change between two successive iterations must be
lower than 10−9, which is almost every time the case
when the gradient criterion is fulfilled. All calculations
were run on a single dedicated computing node with two
Xeon CPU E5-2650 v4 processors (2×12 cores, 2.20GHz).
Unless otherwise noted 15 cores (MPI processes) were
used. All times quoted are elapsed times.

A. Aromatic systems

In the first benchmark set the lowest π-π∗ excitation
energies are computed for 21 aromatic systems using SA-
CASSCF with 2 states included. The benchmarks set has
been introduced by by Menezes et al.52 and has also been
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used in part I of this series. All geometries were obtained
from Ref. 52. The active orbitals are the π orbitals
of the aromatic systems (in some cases including π or-
bitals of neighboring oxygen or nitrogen atoms), and the
benchmark set comprises active spaces between CAS(6,6)
and CAS(12,12). As in our previous calculations,42 we
slightly adjusted some of the original active spaces by re-
moving doubly occupied orbitals. The starting orbitals
were generated by the AVAS procedure,101 based on
atomic density orbital guesses as described in section IV.
We did calculations with the aug-cc-pVDZ (avdz), aug-
cc-pVTZ (avtz), and aug-cc-pVQZ (avqz) basis sets.102

Molecular symmetry was not used.

The results are presented in Table I, where the num-
bers of iterations and the computation times are summed
over all 21 calculations. We compare the SCI, SO-SCI,
and UC-AH orbital optimizations, as discussed in Sec II.
The calculations are done with and without the L-BFGS
acceleration. For comparison, the results of the second-
order method of Werner et al.39–42 (WMK-method) are
also shown.

For the molecules in this benchmark set the SO-SCI
method converges about twice as fast as the SCI method.
In terms of computation times, the savings are somewhat
smaller due to the additional integral evaluations and
Hessian constructions in the SO-SCI method. A further
reduction of the number of iterations is achieved if the
full second-order orbital optimization (UC-AH) is used.
However, in this case the computation times are 2-3 times
longer than for the SO-SCI method, which is due to the
much more expensive integral transformations. The L-
BFGS acceleration reduces the number of iterations and
timings for the SCI and SO-SCI methods by more than
a factor of 2. The acceleration is smaller for the UC-AH
method, indicating that the L-BFGS procedure compen-
sates not only for the missing orbital-CI couplings, but
also for some of the approximations in the SCI or SO-SCI
orbital optimizations. Overall, the SO-SCI method with
L-BFGS acceleration is for all basis sets most efficient.

The WMK-method implemented as described in Ref.
42 requires by far the lowest number of iterations, be-
cause of its very rapid second-order convergence. For
most molecules, only 3-4 iterations are required. Nev-
ertheless, the computation times are considerably larger
than in the first-order methods. This is due to the much
higher cost of the WMK micro-iterations, since these in-
clude the orbital-CI coupling. Furthermore, for these
rather simple cases the uncoupled first-order methods
converge relatively fast, and therefore the reduction of
the number of iterations by inclusion of the orbital-CI
coupling in the WMK method does not outweigh the ad-
ditional cost.

B. [Cu2O2]2+ Isomerization

The next example is the isomerization of the
[(NH3)3Cu]2O2+

2 complex from the bis(µ-oxo) to the µ-
µ2 : µ2 peroxo structure. In the last two decades, this
system gained attention because of the poor results of
the CASPT2 method.104–107 The CASPT2 results could
be significantly improved by increasing the active space
in a RASPT2 calculation.9 In previous calculations,42 we
found for some structures a very strong coupling between
the CI coefficients and orbitals for the CAS(16,14) active
space introduced in Ref. 106. The coupling is due to a
qualitative change of the weakly occupied 23ag and 13bg

orbitals along the isomerization pathway. This strong
coupling leads to an extremely slow convergence for the
uncoupled two-step optimization and is therefore a good
example to demonstrate the power of the L-BFGS con-
vergence acceleration. The strong coupling and the asso-
ciated convergence difficulties are removed when 2 more
virtual orbitals are added to the active space, leading to
CASSCF(16,16) calculations.

The isomerization pathway is modelled by a parame-
ter F from the bis(µ-oxo) (F = 0) to the peroxo (F=100)
structure, and six values of F were considered. The coor-
dinates of the six structures were obtained from Ref. 106,
where also more details on the active space are available.
We did calculations for the 1Ag ground state in the C2h

symmetry with the aug-cc-pVTZ basis set.102 The start-
ing orbitals for the first CASSCF calculation at F = 0 are
obtained from an AVAS calculation. All further calcula-
tions are started with the final orbitals from the previous
structure for the next smaller F value. We carried out
calculations with and without the L-BFGS acceleration
for the SCI, SO-SCI, and UC-AH optimizations.

Table II shows the number of iterations along the
isomerization (F = 0 − 100) for the CASSCF(16,14)
and CASSCF(16,16) calculations. We first discuss the
CASSCF(16,14) calculations in the left part of the Table.
If the L-BFGS acceleration is switched off, extremely slow
convergence is obtained for all orbital optimization meth-
ods. Especially in the area F = 60−100, hundreds of iter-
ations are required to obtain a gradient norm lower than
10−5. This slow convergence can be clearly attributed
to the absence of the CI-orbital coupling, since the pure
second-order AH orbital optimization is converged in ev-
ery step. Also, the CI optimization in the beginning of
each macroiteration is converging quite fast, and so we
can conclude that the reason for the slow convergence is
the alternating optimization. When the L-BFGS accel-
eration is switched on, the convergence is strongly im-
proved, and convergence is obtained for all structures in
at most 20 iterations for the SO-SCI and UC-AH meth-
ods. The SCI converges slightly slower, but still with an
acceptable speed.

With the (16,16) active space (41 410 450 Slater de-
terminants) convergence is much faster and similar for
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TABLE II. Number of MCSCF iterations of the isomerization of [(NH3)3Cu]2O2+
2 from the bis(µ-oxo) to the peroxo structure103

with an active space of CAS(16,14) and CAS(16,16). The number of trial vectors σ=Hc is shown for the CAS(16,16) case in
parenthesis. Also, the total computation times summed over all six isomerization steps are presented in minutes.

CAS(16,14)
without L-BFGS with L-BFGS

F SCI SO-SCI UC-AH SCI SO-SCI UC-AH
0 52 46 26 20 16 14
20 40 42 14 17 12 11
40 54 67 27 16 14 13
60 206 179 146 23 17 15
80 411 288 289 26 20 18
100 234 184 162 22 15 14

SUM 997 806 664 124 94 85

Time: 168.9 135.7 745.1 24.1 18.3 101.7

CAS(16,16)
default with minimal CI

F SCI SO-SCI SCI SO-SCI
0 17 (102) 13 (91) 28 (46) 25 (41)
20 13 (95) 9 (67) 22 (32) 22 (32)
40 14 (87) 9 (66) 24 (33) 22 (31)
60 15 (83) 9 (61) 23 (32) 18 (27)
80 15 (75) 9 (46) 23 (26) 16 (23)
100 17 (80) 10 (48) 24 (27) 17 (24)

SUM 91 (522) 59 (379) 144 (196) 120 (178)

Time: 180.8 123.8 144.1 111.6

all values of F (right part of Table II). In this case the
SO-SCI converges much faster than SCI, and also the
number of CI steps is reduced by more than a factor
of 2 by the SO-SCI relative to SCI. For this large ac-
tive space the computational effort is dominated by the
CI steps and the density matrix evaluations, and there-
fore the number of Hamiltonian actions on trial vectors
(σ = Hc) is shown in parenthesis (the number of den-
sity matrix evaluations equals the number of iterations
and is not included in these numbers). Obviously, for
such large active spaces it is more important to mini-
mize the number of CI steps than the number of orbital
optimizations. We therefore did a second series of cal-
culations in which the initial Davidson optimization of
the CI vector in each macro-iteration was switched off
once the L-BFGS was activated. For F > 0, this hap-
pened after the second iteration, for F=0 after the third
iteration. Thus, after the first few macro-iterations, the
CI optimization was done only with the L-BFGS accel-
eration method, similar to the example in Sec. III. This
means that only one σ=Hc step and one density matrix
evaluation are necessary per macro iteration, and this is
denoted “with minimal CI” in Table II. In this case the
number of macro-iterations increases (by up to a factor
of 2 for SO-SCI), but overall the number of CI steps is
significantly reduced. As shown in Table II this reduces
the computation times by 10-20%. Another possibility to
increase the efficiency is to use graphical processing units
(GPUs), but this requires the development of algorithms
that depend on the available hardware.108

Unfortunately, it is difficult to predict how many CI
steps in each iteration are optimal for a given molecule,
but the minimal CI algorithm would certainly be advan-
tageous for very large active spaces treated by the DMRG
or FCIQMC methods.

C. Iron, Nickel and Cobalt complexes

The final benchmark calculations demonstrate the per-
formance of the SCI and SO-SCI methods for three larger
transition metal complexes. The first two complexes
FeC72N2H100 and [NiC90N20H120]2+ were obtained from
Guo et al.109 They have been previously used for bench-
marking the PNO-NEVPT2109 and PNO-CASPT252,111

methods. In both references, the preceding CASSCF
implementation has been identified as a severe bottle-
neck. The third complex is the Co2ON4C70H106 system
recently published by Roy et al.110 The structures of all
three systems are shown in Figure 4.

For the iron complex we calculated the triplet and
quintet states, while for the nickel complex the singlet
and the triplet states were optimized. All calculations
were done with the def2-tzvp and the def2-tzvpp basis
sets,112 and the geometries were obtained from Ref. 109.
We carried out single-determinant calculations (equiv-
alent to ROHF) and double d-shell calculations, i.e.
CASSCF(6,10) and CASSCF(8,10) for the iron and nickel
complexes, respectively. More information about these
choices can be found in the SM.

The results of the single-determinant calculations for
the three complexes are presented in Table III, in which
the convergence and timings of SCI, SO-CI, and ROHF
calculations are compared. The latter calculations were
done with the ROHF program in Molpro. All shown
calculations were started with the atomic density orbital
guess without AVAS. In case of the iron complex, we were
not able to converge the ROHF calculations in less than
hundred iterations. Also the SCI converged very slowly,
and nearly hundred iterations were required for the iron
and the cobalt complexes. The SO-SCI needed by far the
lowest number of iterations, and in all cases it was signifi-
cantly faster than the corresponding ROHF calculations.
The computation time per SO-SCI iteration is slightly
higher than in ROHF, since the two-electron integrals
with at least two active indices have to be computed
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FIG. 4. Structures of the transition metal complexes for the calculations in Sec. V C.

TABLE III. Number of iterations (Iter.) and computation times (in hours) of the single-determinant calculations for large
transition metal clusters.

ROHF SCI SO-SCI

Basis State Iter. Time [h] Iter. Time [h] Iter. Time [h] Energy

FeC72N2H100

def2-tzvp 3Ag a) 98 11.5 41 4.4 -4156.068 370
(2939) 5Ag a) 83 9.7 27 3.0 -4156.160 091

def2-tzvpp 3Ag a) 98 16.6 42 6.6 -4156.120 185
(3785) 5Ag a) 91 15.4 27 4.3 -4156.211 440

[NiC90N20H120]2+

def2-tzvp 3A 26 9.0 28 12.1 16 6.5 -6074.798 901
def2-tzvpp 3A 26 12.7 27 16.9 16 9.5 -6074.841 763

Co2ON4C70H106

def2-tzvp 7A 61 7.2 86 13.9 28 4.5 -5768.851 187
def2-tzvpp 7A 62 10.8 87 21.2 29 7.1 -5768.892 008

a) No convergence after 100 iterations

along with the Fock matrices. However, the difference
is not large and in the shown calculations compensated
by a better convergence of SO-SCI. We therefore recom-
mend to use the SO-SCI method for difficult open-shell
Hartree-Fock calculations.

We note that for the quintet state of the iron complex,
convergence could be significantly accelerated by using
AVAS orbitals (based on the atomic density guess) with
projection to the 3d±1, 3d0, and 3d+2 atomic orbitals
only (the 3d−2 starting orbital being doubly occupied,
and the N-Fe-N moiety on the z-axis, using C2h symme-
try). With these starting orbitals the SO-SCI converged
in only 17 iterations, while convergence of the ROHF
to the same final energy was only achieved after 150 it-
erations. However, for this starting guess we needed to
know which d-orbital is doubly occupied in the optimized
wavefunction, and this is not obvious in general.

Table IV presents the results for the double d-shell
CASSCF calculations for the iron and the nickel com-
plexes. Again, the SO-SCI needed the lowest computa-
tion time and the smallest number of iterations in all cal-

culations, even though the SCI converged rather quickly
as well.

Our last test system is the Co2O complex from the
recent work of Roy et al.,110 using their DFT opti-
mized geometry and the def2-tzvp and def2-tzvpp basis
sets.112 We carried out single determinant calculations
for the septet high-spin state (cf. Table III), as well as
CASSCF(14,10) and CASSCF(14,14) calculations for the
singlet and triplet states (cf. SM for more information
about these choices). The convergence of the energy for
the triplet state with the SCI and the SO-SCI methods
is shown in Fig. 5. In the first five iterations, the con-
vergence of both methods is very similar. However, the
convergence of SCI slows down considerably between it-
eration 10 and 55, and 84 iterations are required until
convergence. The SO-SCI also slows down after itera-
tion 10, but not as strongly as SCI, and 48 iterations are
required to achieve convergence (cf. Table V).

With the larger CAS(14,14) active space the SCI and
SO-SCI methods both converged in a reasonable number
of iterations (see Table V), and significantly lower ener-
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TABLE IV. Number of MCSCF iterations, timings (in hours) and energies (in Hartree) for the CASSCF calculations of the
iron and the nickel complexes.

FeC72N2H100 - CAS(6,10)

SCI SO-SCI

Basis State It. Time [h] It. Time [h] Energy

def2-tzvp 3Ag 23 2.7 20 2.2 -4156.154 789
(2939) 5Ag 38 4.4 32 3.5 -4156.227 647

def2-tzvpp 3Ag 25 4.2 21 3.4 -4156.206 566
(3785) 5Ag 40 6.7 34 5.6 -4156.279 034

[NiC90N20H120]2+ - CAS(8,10)

SCI SO-SCI

Basis State It. Time [h] It. Time [h] Energy

def2-tzvp 1A 22 9.8 19 8.2 -6074.846 689
(4175) 3A 25 11.5 17 7.4 -6074.923 467

def2-tzvpp 1A 22 14.2 19 12.1 -6074.890 582
(5154) 3A 25 16.5 17 10.9 -6074.966 405

1 10 20 30 40 50 60 70 80 90
Iterations

101

10 1

10 3

10 5

10 7

10 9

En
er

gy
 d

iff
er

en
ce

 [H
ar

tre
e]

Energy convergence of the Co2O complex
3A SCI
3A SO-SCI

FIG. 5. Energy convergence of the triplet calculation of the
cobalt complex with def2-tzvp and CAS(14,10). Shown is the
difference to the converged energy in Table V.

TABLE V. Number of MCSCF iterations, timings (in hours)
and energies (in Hartree) for the CASSCF calculation of
Co2ON4C70H106 with CAS(14,10) and CAS(14,14).

SCI SO-SCI

Basis State It. Time [h] It. Time [h] Energy

CAS(14,10)a)

def2-tzvp 1A 56 8.2 33 4.1 -5768.857 959
(3051) 3A 87 13.5 49 6.1 -5768.857 641

def2-tzvpp 1A 50 13.2 34 8.5 -5768.898 833
(3937) 3A 85 23.5 46 12.4 -5768.898 515

CAS(14,14)b)

def2-tzvp 1A 40 6.3 34 5.3 -5768.941 538
(3051) 3A 40 6.3 32 4.9 -5768.940 887

def2-tzvpp 1A 39 9.2 32 8.2 -5768.982 734
(3937) 3A 40 9.4 35 8.3 -5768.982 084

a) AVAS guess with projection to Fe(3d), O(2p)
b) AVAS guess with projection to Fe(3d,4d0,4d+2), O(2p)

gies were obtained. Even the calculations with the larger
def2-tzvpp basis set (5154 CGTOs) required less than 10
hours computation time on a single workstation.

So far, we have never seen a case where the SCI re-
quired less iterations than the SO-SCI, and also the SO-
SCI computation times were always smaller than the SCI
ones.

VI. CONCLUSIONS

We proposed and benchmarked a new MCSCF or-
bital optimization method denoted SO-SCI, which com-
bines a second-order (SO) optimization of the active or-
bitals with a first-order Super-CI (SCI) treatment for
the inactive-virtual orbital rotations. The Hessian con-
struction in the second-order optimization of the active
orbitals requires the two-electron integrals (rs|tu) and
(rt|su) in the MO basis with at least two active orbitals
t, u, but using density fitting approximations these can
be computed at relatively low cost along with the closed-
shell Fock matrix. The method is compared with the pure
SCI method which only requires Fock matrices [apart
from the all active integrals (tu|vw)], as well as with the
much more expensive second-order Augmented Hessian
(AH) method, which requires all integrals (rs|kl) and
(rk|sl) (k, l: all occupied orbitals).

In all three methods the orbitals and CI coefficients
are optimized alternately. Due to the absence of a di-
rect CI – orbital coupling in the effective Hessians, this
leads to first-order convergence, which can in some cases
be extremely slow. To solve this problem, we presented a
convergence acceleration algorithm based on the L-BFGS
method of Nocedal.95 This strongly improves conver-
gence, in particular in cases with strong orbital-CI cou-
plings. It also improves the convergence of the first-order
orbital optimization schemes, and it is demonstrated that
with L-BFGS the SO-SCI method converges almost as
quickly as the much more expensive AH method. In all
cases tested so far, the SO-SCI method showed faster
convergence than the SCI method and also the smallest
computation times of the three methods. We have thus
presented a framework for MCSCF optimization that is
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generally applicable, and is highly efficient for many dif-
ferent types of applications, including cases with many
closed-shell orbitals, large CI expansions, and challeng-
ing convergence.

The new MCSCF methods were tested for 21 aro-
matic molecules and 4 transition metal clusters. The
largest calculations included 5154 basis functions and
413 optimized occupied orbitals and could still be done
“overnight” on a single computer node. In all our
CASSCF calculations the starting guesses were generated
with the AVAS procedure101 based an orbital guess from
atomic densities.94 If properly used, this method provides
qualitatively correct starting orbitals and avoids the need
of any preceding Hartree-Fock calculations. This is of
paramount importance for typical MCSCF applications
where Hartree-Fock is expected to perform poorly.

We also demonstrated that the SO-SCI method of-
ten converges much faster and more robustly than the
standard ROHF method for single-determinant optimiza-
tions. It is therefore strongly recommended to use the
SO-SCI method for Hartree-Fock calculations on large
open-shell transition metal clusters. We also plan a
generalization of the SO-SCI method for unrestricted
Hartree-Fock (UHF) and Kohn Sham (UKS) calcula-
tions.

SUPPLEMENTARY MATERIAL

See supplementary material for explicit equations for
the gradients and (approximate) Hessians, a description
of our density fitting implementation, and details about
the choice of active spaces for the transition metal clus-
ters.
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8P. E. M. Siegbahn, J. Almlöf, A. Heiberg, and B. O. Roos, J.
Chem. Phys. 74, 2384 (1981).
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Chem. Phys. 136, 204108 (2012).
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