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ABSTRACT

A new orbital optimization for the multiconfiguration self-consistent field method is presented. This method combines a second-order (SO)
algorithm for the optimization of the active orbitals with the first-order super configuration interaction (SCI) optimization of the remaining
closed-virtual rotations and is denoted as the SO–SCImethod. The SO–SCImethod significantly improves the convergence as compared to the
conventional SCI method. In combination with density fitting, the intermediates from the gradient calculation can be reused to evaluate the
two-electron integrals required for the active Hessian without introducing a large computational overhead. The orbitals and CI coefficients are
optimized alternately, but the CI-orbital coupling is accounted for by the limitedmemory Broyden–Fletcher–Goldfarb–Shanno quasi-Newton
method. This further improves the speed of convergence. The method is applicable to large molecules. The efficiency and robustness of the
presented method is demonstrated in benchmark calculations for 21 aromatic molecules as well as for various transition metal complexes
with up to 826 electrons and 5154 basis functions.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5142241., s

I. INTRODUCTION

The multiconfiguration self-consistent field (MCSCF)
method1–45 plays an important role in the treatment of strongly cor-
related systems in which the wavefunction is dominated by more
than one electronic configuration. For example, a multiconfigura-
tional treatment is needed even at a qualitative level to describe
bond dissociation processes, excited states, or transition metal com-
plexes with partly filled d-shells. Higher accuracy calculations are
possible by subsequently adding dynamical correlation effects to
the MCSCF calculation. This can be achieved through multiref-
erence perturbation theory (MRPT),46–53 multireference configu-
ration interaction (MRCI),54–62 or multireference coupled cluster
(MRCC).63–66

In the MCSCF method, the molecular orbitals (MOs) and
the configuration interaction (CI) coefficients of the electronic

configurations are variationally optimized. The molecular orbitals
can be classified into three subspaces: the inactive orbitals, which are
doubly occupied in all configurations, the active orbitals with vary-
ing occupations, and the unoccupied virtual orbitals. Excited states
can be most easily treated by a state-averaged approach, where all
states share the same set of orbitals and the energy average of the
considered states is optimized.5,38,67

Today, most MCSCF calculations are performed with a com-
plete active space (CASSCF) approach, where the wavefunction is
expanded in all possible configuration state functions (CSFs) within
a preselected set of active orbitals.6,68–72 In the following, CASSCF
calculations with Nel electrons in Nact active orbitals are denoted
as CAS(Nel, Nact). However, the number of CSFs increases facto-
rially with the number of active orbitals, and the largest calcula-
tions so far included 22 electrons in 22 active orbitals.73 One way
of tackling the exploding number of configurations is to divide
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the active space into subsets and to add occupation restrictions to
each subspace, for example, in the restricted active space (RAS)9,74

or the generalized active space (GAS)75,76 methods. In addition
to this, several approximate full CI (FCI) methods have recently
been developed and integrated into CASSCF, for example, the
FCI quantum Monte Carlo (FCIQMC) method,77–79 the heat-bath
CI,80–82 or the density matrix renormalization group (DMRG)meth-
ods.45,83–87 However, the approximations in the CI space remove
the invariance of the MCSCF energy with respect to active–
active orbital rotations. This can make the orbital optimization
much more difficult, unless the active–active orbital rotations are
neglected.45

The optimization of MCSCF wavefunctions can be extremely
challenging due to strong couplings between the molecular orbitals
and the CI coefficients. As a consequence, many MCSCF opti-
mization methods have been developed in the past fifty years. An
overview of the different approaches can be found in Ref. 88. The
variety of MCSCF methods can be separated into two categories:
first-order1–16 and second-order methods.17–45 In the latter, the
energy changes and gradients decay quadratically near the final solu-
tion. In order to achieve quadratic convergence, it is necessary to
treat the coupling between the CI coefficients and the orbitals explic-
itly. Methods that include this coupling in each iteration are denoted
as “coupled” or “one-step” optimizations, while methods in which
the CI coefficients and orbitals are optimized alternately are denoted
as “uncoupled” or “two-step” optimizations.

In second-order optimization schemes, the energy is in each
macro-iteration approximated by a functional, which is accurate to
second-order in the orbital rotation parameters and the changes
of the CI coefficients. This functional is iteratively minimized with
respect to the orbitals and CI coefficients (micro-iterations), yield-
ing near the final solution quadratic convergence of the energy in
subsequent macro-iterations. Despite fast and robust convergence,
second-ordermethods suffer from a serious deficiency: the construc-
tion of the exact orbital Hessian matrix requires the computation
of all 2-electron repulsion integrals in the MO basis with up to two
virtual orbitals. This computation scales formally as O(N5), where
N is a measure for the molecular system size and the active space
is assumed to be constant. The expensive integral evaluation lim-
its the application of second-order MCSCF methods to medium
sized molecules. The scaling can be formally reduced to O(N4) by
avoiding the explicit construction of the Hessian and using den-
sity fitting approximations in the action of the orbital Hessian on
a trial vector in each micro-iteration.14 However, numerous density
fitting integral evaluations are then required in each micro-iteration,
leading to a large prefactor in the cost scaling. In first-order meth-
ods, the orbitals and CI coefficients are optimized alternately: for a
given set of orbitals and integrals, one first solves the CI eigenvalue
equation. Subsequently, the density matrices are computed and the
orbitals are optimized for fixed CI coefficients (two-step or uncou-
pled optimization). The orbital optimization can be done by either
a second-order method or a more approximate approach. Most suc-
cessful is the so-called Super-CI (SCI) method, which is based on
the generalized Brillouin theorem.89,90 It dates back to Grein and
Chang1–3 and Ruedenberg et al.5 Originally, a single-excitation CI
calculation was carried out in each MCSCF iteration, and the coef-
ficients of the single excitations were used to update the orbitals.
However, using the exact Hamiltonian in this method is even more

expensive than using the full orbital Hessian, since it requires the
same integrals as the latter and in addition the third-order reduced
density matrix. The SCI method was strongly improved by Roos
et al.6,7,9 by using a perturbative treatment of the single excitations
based on a similar zeroth order Hamiltonian as used in complete
active space second-order perturbation theory (CASPT2). Alterna-
tively, it is also possible to use the Dyall Hamiltonian in the per-
turbative treatment.11,15 Both variants use an approximate orbital
Hessian, which can be built solely from closed-shell and active space
Fock matrices. Evaluating these Fock matrices scales as O(N4), and
their computation can be considerably accelerated with density fit-
ting.91,92 The scaling can be further reduced by integral screening
techniques and/or local approximations.93,94 For the CI part, one
also needs the 2-electron integrals in the active space, but these can
be generated with very little extra cost together with the active space
Fock matrix, if density fitting is used. Thus, the overall scaling is
formally O(N4) (with a fixed active space), and therefore first-order
methods can be applied to much larger molecules than second-order
methods.

However, the convergence of the two-step optimizations can be
problematic, since the decay of the gradient and energy may become
extremely slow if there are strong couplings between the orbital and
CI optimizations. The convergence can be significantly improved by
introducing a convergence accelerator scheme, such as the direct
inversion of the iterative subspace (DIIS) method15,86 or a quasi-
Newton (QN) approach.9,42 Nevertheless, more than 100 iterations
may be needed in unfavorable cases.

In the current paper, we present a new algorithm that combines
the advantages of first-order and second-order orbital optimiza-
tion algorithms. All active orbitals are optimized using a second-
order algorithm, which significantly improves the speed and robust-
ness of convergence. This is combined with the SCI approach for
the remaining inactive–virtual orbital rotations. The necessary inte-
grals for the active space optimization can be efficiently computed
using density fitting along with the Fock matrices without much
additional cost. Furthermore, we found an improved way to accel-
erate the two-step optimization by using the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) QN method. The algorithm utilizes the
two-loop recursion scheme of the limited memory BFGS (L-BFGS)
method,95,96 which allows the initial Hessian to be updated in each
iteration. The resulting method accounts approximately for the cou-
pling between the CI-coefficients and the orbitals and considerably
accelerates the two-step optimization independent of the orbital
optimization.

This paper is structured as follows: we start with a brief review
of the first- and second-order orbital optimizations in Sec. II, fol-
lowed by the derivation of the combined first- and second-order
orbital optimizations in Sec. II C. The L-BFGS convergence accel-
eration is discussed in Sec. III. All presented methods are compared
in benchmark calculations in Sec. V.

II. ORBITAL OPTIMIZATIONS

We consider a normalized MCSCF wavefunction |Ψn⟩ for an
electronic state n,

∣Ψn⟩ ≙ ∑
I

∣ΦI⟩c
n
I , ⟨Ψn∣Ψn⟩ ≙ ∑

I

∣cnI ∣
2 ≙ 1, (1)
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where |ΦI⟩ are orthonormal N-electron expansion functions, either
spin-adapted configuration state functions (CSFs) or Slater deter-
minants, and cnI are the corresponding configuration interaction
(CI) coefficients. The CSFs are built from a set of (spatial) orbitals
|r⟩ ≡ |ϕr⟩, which are assumed to be real and orthonormal. For sim-
plicity, we will, in the following, omit the state index n and denote
the initial wavefunction and energy of an iteration as |0⟩ and E0,
respectively. The treatment of excited states using state-averaged
MCSCF is discussed in Sec. II E.

Unless otherwise noted, the MOs are labeled in the following
manner: k, l: any occupied orbitals, i, j: doubly occupied closed-shell
orbitals, t, u, v, w: active orbitals, and a, b: unoccupied (virtual)
orbitals. We will assume that all occupied orbitals are optimized,
even though freezing core orbitals is possible. The indices p, q, r, s
refer to any orbitals.

Arbitrary changes of the molecular orbitals (subject to the
orthonormality condition) can be described by an orthogonal trans-
formation,

∣r̃⟩ ≙ ∑
s

∣s⟩Usr̃ , (2)

with

U ≙ exp(R) ≙ 1 + R +
1
2!
R
2 +⋯ , (3)

where Rrk = −Rkr are independent orbital rotation parameters.
Virtual–virtual and inactive–inactive orbital rotations leave the
energy invariant and are excluded. For CASSCF, active–active rota-
tions are also excluded since they can be treated by changes of the
CI coefficients. Thus, the parameters Rti and Rak are sufficient for
CASSCF wavefunctions, and all others are set to zero.

In the methods described in this paper, the orbitals and CI
coefficients are optimized alternately (two-step optimizations). The
coupling between the two steps is included approximately using QN
approaches. In the following, we describe the orbital optimization
methods for fixed CI coefficients.

A. Second-order orbital optimization

The change of the wavefunction by the orbital transformation
in (3) can be expressed as

∣Ψ⟩ ≙ exp(R̂)∣0⟩, (4)

where the operator R̂ ≙ −R̂† is defined as

R̂ ≙ ∑
r>k

Rrk(Êrk − Êkr). (5)

The energy expectation value of the transformed wavefunction

E(R) ≙ ⟨Ψ∣Ĥ∣Ψ⟩ ≙ ⟨0∣ exp(−R̂)Ĥ exp(R̂)∣0⟩ (6)

can be expanded with the help of the Baker–Campbell–Hausdorff
(BCH) series

e−R̂ĤeR̂ ≙ Ĥ + ∥Ĥ, R̂∥ + 1
2!
∥∥Ĥ, R̂∥, R̂∥ + . . . , (7)

yielding a series of expectation values of commutators. By evalu-
ating these expectation values, one obtains a Taylor expansion in
the rotation parameters Rrk (with x being a vector containing the
non-redundant parameters Rrk),

E(R) ≙ ⟨0∣Ĥ∣0⟩ + ⟨0∣∥Ĥ, R̂∥∣0⟩ + 1
2!
⟨0∣∥∥Ĥ, R̂∥, R̂∥∣0⟩ + . . .

≙ E0 + g
T
x +

1
2
x
T
hx + . . . . (8)

The single commutator term yields the scalar product of the orbital
gradient with the parameters x, while the double commutator term
depends on the Hessian matrix h. The explicit expressions for the
energy, the gradient, and the Hessian are shown in the supplemen-
tary material. The same expressions for grk and hrk ,sl can be obtained
by direct expansion of the energy up to second-order in R and
factorizing the resulting expression appropriately, as described in
Paper I.42

The parameters x can be determined iteratively by truncating
the expansion (8) after the quadratic term and minimizing, in each
iteration, the resulting second-order energy expression. This yields
the linear Newton–Raphson (NR) equations

g + hx ≙ 0. (9)

However, despite quadratic convergence near the final solution (for
fixed CI coefficients), the radius of convergence of the NRmethod is
quite small. A more robust numerical framework is the augmented
Hessian (AH) method.97 It is obtained by introducing a level-shift ϵ
to the NR equations,

g + (h − ϵ1)x ≙ 0 with ϵ ≙ λ2xTg. (10)

The step-length of x can be controlled by the damping parameter λ.
This equation can be transformed into an eigenvalue problem,

(0 gT

g h/λ)(1/λx ) ≙ ν(1/λx ). (11)

The diagonalization of the AH matrix yields the update step x and
the level-shift ϵ = λ ⋅ ν. It can be shown that the level-shifted Hes-
sian is positive (semi) definite for the calculated ϵ. Due to the large
dimension of the Hessian, the AH eigenvalue equation has to be
solved iteratively, for example, with a P-space Davidsonmethod.39,42

The damping parameter λ can be automatically adjusted by restrict-
ing the step length |x|, and in this way, convergence can be guar-
anteed. However, with poor starting guesses, convergence can be
rather slow. In the following, we will denote the uncoupled second-
order AH approach without further approximation as the UC-AH
method.

In principle, it is also possible to include the orbital–CI cou-
pling in the AH procedure, yielding a second-order method with
quadratic convergence. However, this is expensive, in particular,
for CASSCF calculations with large active spaces, and not further
considered here. The better alternative is the method of Werner,
Meyer, and Knowles39–41 (denoted as the WMK method), which
includes higher order terms and converges much faster. Review
and recent improvements of this method have been presented in
Paper I.42

B. The Super-CI optimization method

There have beenmany first-order orbital optimizationmethods
developed in the past few decades.7–10,16 In this work, we follow the
derivation of the Super-CI (SCI) method of Roos et al.7–9 because
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of its wide range of successful applications and popularity. The SCI
method is based on the generalized Brillouin theorem,89,90 which
states that for optimized orbitals

grk ≙ 2⟨0∣Ĥ∣rk⟩ ≙ 0. (12)

Here, |rk⟩ are the so-called Brillouin states (internally contracted
singly excited configurations),

∣rk⟩ ≙ (Êrk − Êkr)∣0⟩. (13)

For non-optimal orbitals, the matrix element ⟨0|Ĥ|rk⟩ corresponds
to half of the orbital gradient grk.

The SCI wavefunction |SCI⟩ is defined as

∣SCI⟩ ≙ (1 + R̂)∣0⟩ ≙ ∣0⟩ +∑
r>k

Rrk∣rk⟩, (14)

where the coefficients Rrk are equivalent to the rotation generators
R. This expansion is equivalent to a first-order approximation of the
transformation shown in (4). The coefficients Rrk are determined
by solving the generalized eigenvalue equations (summation over
indices s, l is implied),

( −ϵ ⟨0∣Ĥ∣sl⟩
⟨rk∣Ĥ∣0⟩ ⟨rk∣Ĥ − E0 − ϵ∣sl⟩)(

1
Rsl
) ≙ 0. (15)

Since the Brillouin states are non-orthogonal, the overlap matrix⟨rk|sl⟩ has to be included. For CASSCF wavefunctions, the overlap
matrix becomes diagonal if natural active orbitals are used, i.e., if the
1-RDM is diagonal (cf. the supplementary material).

Computing the Hamiltonian elements ⟨rk|Ĥ|sl⟩ exactly would
require three particle RDMs and the same integrals as second-order
optimization methods. In order to avoid their expensive computa-
tion and to achieve lower-order scaling, the terms ⟨rk|Ĥ − E0|sl⟩ in
Eq. (15) are replaced by ⟨rk|Ĥeff − E(0)|sl⟩,7,9 where

Ĥeff ≙∑
pq

FpqÊpq, (16)

E(0) ≙ ⟨0∣Ĥeff ∣0⟩ ≙ 2∑
i

Fii +∑
tu

DtuFtu. (17)

The definition of the effective Fock matrix Frs is given in Eq. (13) of
the supplementary material. Essentially, this corresponds to a per-
turbational treatment of the single excitations, similar to CASPT2.
The Hylleraas functional for the SCI first-order wavefunction reads
(summation over repeated indices implied)

ϵ ≙ 2Rrk⟨rk∣Ĥ∣0⟩ + Rrk⟨rk∣Ĥeff − E(0)∣sl⟩Rsl. (18)

Its minimization with respect to the parameters Rri leads to a first-
order approximation of the parameters Rrk and the second-order
energy ϵ, namely,

ϵ ≙ Rrk⟨rk∣Ĥ∣0⟩, (19)

0 ≙ ⟨rk∣Ĥ∣0⟩ + ⟨rk∣Ĥeff − E(0)∣sl⟩Rsl. (20)

This differs from the SCI eigenvalue equation only by the absence of
the shift −ϵ⟨rk|sl⟩ in the second term of Eq. (20). In praxis, this shift

stabilizes convergence and is, therefore, included in the SCI method.
The SCI matrix elements are given explicitly in the supplementary
material.

Each iteration of the SCI method starts with the computation
of the closed-shell Fock matrix and the integrals (tu|vw), which are
needed to solve the CI eigenvalue problem. In our program, the
default is to carry out as many CI iterations as needed to reduce
the CI gradient by a factor of 10 (typically 3–5 iterations). Subse-
quently, the RDMs, the active part of the Fock matrix, as well as
the gradient g are computed. Finally, the rotation parameters Rrk

are determined by solving the SCI eigenvalue problem. This is for-
mally very similar to the AH equation and can be done iteratively
by a P-space Davidson-algorithm98 as described in Refs. 39 and 42.
A level shift parameter λ can be used to restrict the step length
[cf. Eq. (11)].

The Fock matrix and integrals (tu|vw) are computed using effi-
cient density fitting approximations (cf. the supplementary mate-
rial). The computational effort of the SCI method then scales as
O(N3

AONocc) (if the size of the active space is assumed to be constant)
and therefore allows the treatment of significantly larger systems
than with second-order methods. However, convergence accelera-
tion as described in Sec. III is vital for robust convergence. Even with
acceleration methods, the SCI convergence can be slow, as shown by
some examples in Sec. V.

C. Combined first- and second-order orbital
optimization

In order to improve convergence of the SCI method, we now
propose a method which combines a second-order optimization of
all orbital rotations that involve active orbitals with a SCI like first-
order optimization of the remaining closed-virtual rotations. The
Hessian of the rotations involving active orbitals only requires the
calculation of the integrals Jturs ≙ (rs∣tu) and Ktu

rs ≙ (rt∣su) with
two active indices t, u. The number of these integrals only scales
as O(N2

AO), if the active space is assumed to be independent of the
molecular size. Their construction does not introduce a large com-
putational overhead if density fitting is used (cf. the supplementary
material).

To derive the combined first- and second-order optimization
(in the following denoted as the SO–SCI method), we define two
separate transformation operators similar to Eq. (5). We refer to the
rotations with active orbitals as active rotations. The operator for
this active transformation is denoted as Â. The remaining closed-
virtual rotations are called inactive rotations and the associated
transformation operator is Ĉ,

Â ≙
act∑
t

⎡⎢⎢⎢⎢⎣
virt∑
a

RA
atÊat +

inact∑
i

RA
ti Êti +

act∑
u(u<t)

RA
tu(Êtu − Êut)

⎤⎥⎥⎥⎥⎦
, (21)

Ĉ ≙
inact∑
i
∑
a

RC
aiÊai. (22)

For CASSCF, active–active rotations are excluded, and the last
term in Eq. (21) disappears. Note that operators Êka and Êit

do not contribute, since their action on the wavefunction yields
zero.
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We now separate the rotations of the inactive rotations from
the rotations with active orbitals,

∣Ψ⟩ ≙ exp(Â) exp(Ĉ)∣0⟩. (23)

Note that Â and Ĉ do not commute, and therefore Eq. (23) should
be considered as an Ansatz. To stay consistent with this separation,
the orbital transformation in Eq. (2) is defined accordingly,

U ≙ exp(RC) exp(RA). (24)

The energy expanded with the help of the BCH series then reads

E(RA,RC) ≙ ⟨0∣Ĥ∣0⟩ + ⟨0∣∥Ĥ, Ĉ∥∣0⟩ + ⟨0∣∥Ĥ, Â∥∣0⟩
+

1
2
[⟨0∣∥∥Ĥ, Â∥, Â∥∣0⟩ + ⟨0∣∥∥Ĥ, Ĉ∥, Ĉ∥∣0⟩]

+ ⟨0∣∥∥Ĥ, Â∥, Ĉ∥∣0⟩ + . . . (25)

≙ E0 + g
T
x +

1
2
x
T
hx +⋯, (26)

where x ≙ (xA
xC
) ≡ (RA

RC). This yields for the gradient
grk ≙ 2⟨0∣Ĥ∣rk⟩. (27)

The double commutator ⟨0|[[Ĥ, Â], Â]|0⟩, which involves the Hes-
sian block for the active rotations, can be computedwithout approxi-
mations from the integrals Jturs ,K

tu
rs with at least 2 active indices. How-

ever, the exact computation of the Hessian parts arising from the
operator Ĉ would in addition require all integrals Jijrs, K

ij
rs with inac-

tive labels i, j, leading to the higher scaling of second-order methods.
To avoid this, the Hamiltonian operator in the double commuta-
tors that contain Ĉ is replaced by the effective SCI Hamiltonian
Ĥeff , i.e.,

1
2
x
T
hx ≈

1
2
x
T
h
eff
x

≙
1
2
⟨0∣∥∥Ĥ, Â∥, Â∥∣0⟩ + 1

2
⟨0∣∥∥Ĥeff , Ĉ∥, Ĉ∥∣0⟩

+ ⟨0∣∥∥Ĥeff , Â∥, Ĉ∥∣0⟩. (28)

By comparing Eqs. (18) and (28), one finds that the approximate

Hessian elements heffrk,sl equal those of the effective SCI Hessian

hSCIrk,sl ≙ 2⟨rk∣Ĥeff −E(0)∣sl⟩ for all blocks with at most one active index,
i.e.,

heffai,bj ≙ h
SCI
ai,bj, heffai,bu ≙ h

SCI
ai,bu, heffai,uj ≙ h

SCI
ai,uj (29)

(cf. the supplementary material). This is not the case, however, for
the Hessian blocks with two or more active indices, even if these
would also be approximated by ⟨0|[[Ĥeff ,Â],Â]|0⟩. Thus, in order to
determine the orbital rotation parameters R, we solve an AH equa-
tion in which the exact Hessian is used for the blocks hat ,bu and hti ,uj,
while the approximate SCI Hessian is used for the blocks shown in
Eq. (29). Furthermore, the SCI overlap contributions ⟨ai|bj⟩ = 2δijδab
are taken into account for the closed-virtual rotations, since this
improves convergence. The eigenvalue problem is solved iteratively
with the P-space Davidson method (micro-iterations).39,42 Only the
P-space part of the Hessian is computed explicitly, while the product
heff x is computed directly from the integrals and density matrices in

each micro-iteration. As in the SCI method, a level shift parameter λ
is used to restrict the step length.

Convergence of the micro-iterations needed to solve the AH
equations can be improved by generating natural active orbitals by
diagonalizing the active 1-RDM after the initial CI of each macro-
iteration. This keeps the singly excited configurations in Eq. (13)
orthogonal. Furthermore, block diagonalizing the Fockmatrix in the
inactive and virtual subspaces minimizes couplings via off-diagonal
elements in the approximate SCI Hessian part. The integrals Jturs , K

tu
rs

and the CI vector(s) are transformed accordingly. The transforma-
tion of the CI vectors only depends on the unitary transformation in
the active space and can be done non-iteratively.99

Finally, we note that instead of the expansion in (23), one could
also make the Ansatz |Ψ⟩ = exp(Ĉ) exp(Â)|0⟩ (note that Â and Ĉ
do not commute) or |Ψ⟩ = exp(Â + Ĉ)|0⟩. In both cases, the same
Super-CI Hessian block hSCIai,bj is obtained, but the coupling blocks
slightly change. In practice, we found that the convergence of the
three Ansätze is nearly the same, with a slight advantage for the
approach shown in Eq. (23), which has therefore been used for all
calculations in this paper.

D. Using the WMK method for active–virtual orbital
rotations

Much faster andmore stable convergence than with the SO-AH
method can be achieved by expanding the energy up to second-
order in the orbital changes, which are represented by the matrix
T ≙ U − 1 ≙ R + 1

2!R
2 + ⋯. The expansion E(2)(T) is of infinite

order in R and is periodic in individual orbital rotations, as the exact
energy.39–42 Minimization of E(2)(T, c) with respect to the orbitals
and CI coefficients c yields a set of non-linear equations, which can
be solved iteratively (micro-iterations). This so-calledWMKmethod
converges very fast, often in only 3–4 macro-iterations. It therefore
minimizes the number of integral transformations, but the micro-
iterations needed to solve the non-linear equations are more expen-
sive than in the uncoupled AHmethod. To a large extent, this is due
to the additional CI steps needed in the micro-iterations, and the
subsequent recomputation of the density matrices and other inter-
mediates. For large molecules, the method becomes very expensive,
since it requires all integrals with two occupied orbitals, similar to
the UC-AH method.

In the current work, we have attempted to combine the WMK
method for active orbital rotations with the SO–SCI method for
the remaining orbital rotations. However, it turned out that includ-
ing the inactive–active orbital rotations in this treatment does not
lead to stable convergence, since the integrals Jturs , K

tu
rs with at least 2

active indices are not sufficient to compute E(2)(TA) without further
approximations [with TA ≙ RA + 1

2!(RA)2 +⋯]. It is, however, pos-
sible to optimize the active–virtual orbitals along with the CI coeffi-
cients using the WMK method. This corresponds to a second-order
WMK optimization with frozen inactive orbitals. Subsequently, the
remaining orbital rotations are optimized using the SO–SCImethod,
as described in Sec. II C. For this, the density matrices are recom-
puted with the CI coefficients obtained in the initialWMK optimiza-
tion. However, the integrals and the Fockmatrix are kept unchanged
to avoid another Fock-matrix and integral evaluation. Various tests
have shown that recomputing the integrals has only a minor effect
on the convergence and is not worth the effort. Thus, the couplings
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between the virtual–active and all remaining rotations are neglected
entirely in this approximation.

We found that this hybrid WMK–SO–SCI improves conver-
gence only in cases where the active–virtual orbital rotations are
particularly large and even then the savings are small. In many cases,
the additional cost for the additional CI-steps in theWMKoptimiza-
tion of the active orbitals exceeds the savings by the reduction of the
number of macro-iterations. The method is therefore not used by
default, and not further considered in this paper.

E. State averaged MCSCF

Excited states are best treated with state-averaged MCSCF/
CASSCF,5,38,67 since this avoids root flipping problems in the opti-
mization.38 In state averaged MCSCF, the weighted energy average
of several states is minimized,

Eav ≙∑
n

WnEn, ∑
n

Wn ≙ 1, (30)

where Wn are the weights (which are mostly the same for all states,
but other choices are possible, see, e.g., Ref. 100). Apart from com-
puting several CI vectors in the CI steps, the only change in the
algorithms is to use state-averaged density matrices,

Dtu ≙∑
n

Wn∑
IJ

cnI c
n
J ⟨ΦI ∣Êtu∣ΦJ⟩, (31)

Dtu,vw ≙∑
n

Wn∑
IJ

cnI c
n
J ⟨ΦI ∣1

2
[Êtu,vw+Êut,vw]∣ΦJ⟩. (32)

Since the state-averaged MCSCF method is based on the direct min-
imization of an energy functional, it is not possible to define a SCI
wavefunction for it. Nevertheless, the SCI and SO–SCI methods as
outlined above can straightforwardly be used, simply by replacing
the state-specific densities by the state-averaged ones.

III. L-BFGS CONVERGENCE ACCELERATION

The two-step optimization of the MCSCF wavefunction, i.e.,
the alternating optimization of the CI coefficients and the orbitals,
yields a first-order method even if a second-order orbital optimiza-
tion method is used. The reason for this first-order convergence is
the absence of the explicit coupling between the CI and the orbital
optimization. This first-order convergence can be extremely slow,
especially when approaching theminimum. In addition, a first-order
orbital optimization further slows down the convergence, which
can lead to hundreds of iterations and may therefore require the
calculation of hundreds of Fock matrices.

Already Malmqvist et al.9 mentioned that a QN approach can
be used to approximately account for the orbital–CI coupling and
thus accelerate the convergence, but details were not given. Such an
approach has also been used in Paper I42 to speed up the micro-
iterations in a second-order optimization. In this section, we gen-
eralize this idea and show how the L-BFGS method can be used as a
general convergence accelerator. The acceleration is based on a pre-
conditioning of the gradient and a post-processing of the step result-
ing from an optimization algorithm, as proposed by Nocedal.95 The
resulting method can be easily combined with all presented orbital
optimizations and can also be applied in other electronic structure
methods.

In the L-BFGS method of Nocedal,95 the inverse of the QN
Hessian is iteratively constructed by the following definition:

[hQNn+1]−1 ≙ (I − xny
T
n

ρn
)[hQNn ]−1(I − ynx

T
n

ρn
) + xnx

T
n

ρn
(33)

with the BFGS vectors of iteration n + 1,

yn ≙ gn+1 − gn, (34)

ρn ≙ y
T
nxn. (35)

Here, n + 1 is the current iteration, and n iterations have been carried
out before. The gradient vector gn+1 is computed at the beginning of
the current iteration. The optimization step xn+1 is calculated via the
Newton–Raphson equation,

xn+1 ≙ −[hQNn+1]−1gn+1. (36)

An update of the BFGS Hessian hQN requires a consistent pair
{xn, yn} of the update vector xn and gradient change yn. In the L-
BFGS method, the set of the BFGS pairs {xi, yi} can be limited to the
last m recent vector pairs (our default value is m = 10). The itera-
tive construction of the inverse Hessian is stopped afterm recursion
steps with an initial inverse Hessian h−10 . As shown in Ref. 95, it is
possible to unroll the recursive construction of the inverse L-BFGS
Hessian ∥hQNn+1∥−1 when only its action on a vector is needed. This
so-called two-loop recursion scheme is shown in Fig. 1 and pro-
vides an efficient general implementation of the L-BFGS method.
The first loop (lines 2–6) can be seen as a preconditioning of the
gradient (gn+1 → ḡ1), and the second loop (lines 8–12) is a post-
processing of the calculated step (x̄1 → xn+1). The update (line 7)
returns a step from the preconditioned gradient (ḡ1 → x̄1). In the
original L-BFGS method, the initial Hessian h0 is a scaled identity
matrix, where the scaling is adjusted in each iteration.96 However, as
pointed out by Nocedal,96 the choice of the initial Hessian is arbi-
trary as long as it stays positive definite. We use this flexibility and
replace the step calculation in line 7 by the step returned from an AH
calculation, carried out with the updated gradient vector ḡ1. A neces-
sary criterion for convergence is that the underlying (approximate)

FIG. 1. The L-BFGS two-loop recursion algorithm for calculating the action of the
inverse L-BFGS Hessian.95
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Hessian is positive definite, otherwise the BFGS Hessian will lose its
positive definite form. For example, the optimization method could
be the SCI method, where the AH procedure ensures non-negative
eigenvalues. Alternatively, either the exact orbital Hessian or the
effective orbital Hessian defined in Sec. II C can be used in the AH
procedure.

It is also possible to include the CI gradient- and update vectors
in the L-BFGS procedure. To test how well this method works for
solving a CI eigenvalue equation, we have applied it to the direct-CI
method (without any orbital optimization). In this method, the CI
update is normally computed as

g ≙ (H − E1)c, c
T
c ≙ 1, (37)

ΔcI ≙ − gI
HII − E − λ , (38)

where HII are the diagonal elements of the Hamiltonian, E = cTHc
is the current energy, and λ is a level shift for damping. The update
can be improved by using the P-space method outlined in Refs. 39
and 42. In this method, a reduced Hamiltonian, built from a pre-
defined set of P-space configurations and the current CI vector(s),
is diagonalized in each iteration. The P-space includes the dom-
inating configurations, and the P-space Hamiltonian is explicitly
computed in this subspace. This yields the optimum P-space coef-
ficients cP and an improved gradient vector, which is zero in the
P-space. Using this improved gradient vector, the coefficient of the
remaining Q-space configurations is updated as in Eq. (38). Option-
ally, further CI iterations can be carried out, and in each of these
iterations, the reduced Hamiltonian is augmented by a contracted
Q-space function for each optimized state. The BFGS vector pair
{xn, yn} is obtained after the last diagonalization of the reduced
Hamiltonian, where consistent CI and gradient vectors are available.
The CI update from the post-BFGSmethod is added to the CI vector,
which is finally renormalized.

Figure 2 shows the convergence of the energy of a CAS-CI
ground state optimization of the chromium dimer molecule using

FIG. 2. Example: CASCI of the chromium dimer (r = 1.69 Å), aug-cc-pVQZ basis,
and full valence active space. Orbitals are obtained from the converged CASSCF
solution. The difference to the final energy is shown for the non accelerated
direct CI method with λ = 5 (blue), the BFGS accelerated method with λ = 5
(orange) and λ = 1 (green), as well as the conventional P-space Davidson method
(red).

the full-valence CAS(12,12) active space (107 216 Slater determi-
nants, D2h symmetry used). This is a particularly difficult case
since there are multiple configurations strongly contributing to the
wavefunction. We compare the direct-CI method with and with-
out L-BFGS acceleration with the P-space Davidson method.39,98

The direct-CI method without the acceleration requires a quite large
damping parameter λ = 5 to obtain convergence. The L-BFGS accel-
erated version for λ = 5 is additionally shown and converges sig-
nificantly faster. Furthermore, the L-BFGS allows a lower damping
parameter of λ = 1, which again improves convergence. The L-BFGS
accelerated direct-CI shows the very similar convergence behavior as
the variational Davidson method. This is a surprising finding, since
the Davidson method yields the best possible variational energy in
the current space of expansion vectors. In this particular example,
the numbers of expansion vectors in the L-BFGS and the Davidson
method are kept equal.

We now describe in more detail how the L-BFGS convergence
acceleration is implemented into the MCSCF two-step method. An
overview of the single MCSCF iteration is presented in Fig. 3. As
we have seen in the direct-CI example, the L-BFGS acceleration is
also capable of optimizing the CI coefficients. For this reason, the CI
coefficients and the orbital rotation generators R are included in the
L-BFGS algorithm to increase the amount of coupling. Hence, the
displacements xn and the change in the gradient yn of the MCSCF
problem are

xn ≙ (cn+1 − cn
Rn

) and yn ≙ (g
c
n+1 − gcn
gon+1 − gon). (39)

The CI gradient gc is obtained from the residual of the CI optimiza-
tion, and the orbital gradient is calculated with the updated density.
At this point, we have a consistent set of the step and the gradient for
the BFGS vector pair {xn, yn}. However, particularly because of the
in-iteration optimization of CI coefficients, the curvature condition
of the BFGS method,96

FIG. 3. Flowchart of one L-BFGS accelerated MCSCF iteration.
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ρn ≙ x
T
nyn > 0, (40)

and the condition that the energy should decrease sufficiently96 are
not necessarily satisfied. To maintain the positive definite form of
the BFGS Hessian, a vector pair {xn, yn} is only added to the L-
BFGS vector set if the curvature condition is fulfilled. When the
energy is increased, we discard the current set of BFGS vectors
and restart the extrapolation. Next, the orbital optimization and the
direct-CI update are carried out with the preconditioned gradient.
All of the orbital optimization methods described in Sec. II can be
used. Even with the second-order UC-AH, orbital optimization con-
vergence is improved by the L-BFGS acceleration, since the orbital
Hessian does not include the coupling with the CI coefficients. The
post-processed step R of the orbital optimization is rescaled to be
within a trust radius of 0.5. This is necessary because the BFGS
method usually returns a good search direction but sometimes over-
shoots the step length. The iteration is finalized by transforming the
orbitals according to Eq. (3) and orthonormalizing the updated CI
vector.

IV. STARTING GUESSES

For fast and reliable convergence of MCSCF calculations, a rea-
sonable starting guess for the orbitals is required. In particular, the
initial active orbitals should have the qualitatively correct charac-
teristics in order to avoid convergence to undesired solutions or
local minima, which often happens in cases withmany nearly degen-
erate states unless a good starting guess is used. In this work, we
use the “Automated Construction of Molecular Active Spaces from
Atomic Valence Orbitals” (AVAS)101 procedure to generate starting
orbitals. However, instead of using converged restricted Hartree–
Fock (ROHF) orbitals as an input for this procedure, we use orbitals
obtained from an atomic density guess as described in Ref. 94. In this
method, an approximate molecular density matrix is constructed by
superposition of atomic density matrices, which are computed using
a minimal basis of atomic orbitals that are stored in the basis set
library. The effective occupation numbers are pre-optimized and
also stored in a library. Using this density matrix, a closed-shell
Fock matrix is computed and then diagonalized, yielding the initial
orbitals.

The AVAS method determines an orthogonal transformation
of the input orbitals such that the overlap of the active orbitals with
a specified set of atomic orbitals (AOs) (e.g., d-orbitals in transi-
tion metals or pπ orbitals in conjugated or aromatic systems) is
maximized. The target set of AOs has to be specified in the input.
The transformation does not mix occupied and virtual MOs but
can mix closed- and open-shell orbitals. Usually, a Hartree–Fock
configuration is assumed to determine the number of occupied
orbitals.

Obviously, the AVAS method is not fully automatic, since it
requires some chemical intuition to select the target orbitals. This
selection is closely related to the intuition needed to select an active
space and sometimes requires some experimentation. Note that
AVAS may generate more active orbitals than target functions that
have been specified, if the latter significantly contribute to two or
more orbitals. However, for the CASSCF calculations presented in
this paper, the choice of the target orbitals and active spaces was
always straightforward. We found that the AVAS starting guess

works very well and avoids the need to carry out an ROHF calcula-
tion before the CASSCF. This is important since for typical MCSCF
cases, ROHF is often a very poor approximation and convergence
may be difficult to achieve.

In principle, the described AVAS orbital guess can also be used
in ROHF calculations. However, the number of open-shell orbitals
in the ROHF is often smaller than the active space predicted by
AVAS, and then one or more AVAS active orbitals may be dou-
bly occupied in the ROHF wavefunction. In such cases, the initial
energy is not invariant to the order of the active AVAS orbitals, and
we found in several calculations that the order of the initial orbitals
was not consistent with that in the final optimized wavefunction. In
such cases, AVAS may actually slow down the ROHF convergence,
and in some cases, convergence to the correct energy could not be
achieved at all. Therefore, we used in all single-determinant calcu-
lations the orbitals from the atomic density guess without AVAS
rotation. We hope that a solution to this problem can be found in
the future.

V. BENCHMARK CALCULATIONS

In this section, we present benchmarks of CASSCF calculations
in order to demonstrate the convergence properties and the effi-
ciency of our new methods for different applications. These include
calculations for 21 typical aromatic molecules and various large
transition metal complexes.

The methods have been implemented in the Molpro software
package.102,103 Our default convergence criterion for the first-order
methods requires that the CI and orbital gradients are lower than
10−5. Additionally, the energy change between two successive itera-
tions must be lower than 10−9, which is almost every time the case
when the gradient criterion is fulfilled. All calculations were run on
a single dedicated computing node with two Xeon central process-
ing unit (CPU) E5-2650 v4 processors (2 × 12 cores, 2.20 GHz).
Unless otherwise noted, 15 cores [Message Passing Interface (MPI)
processes] were used. All times quoted are elapsed times.

A. Aromatic systems

In the first benchmark set, the lowest π-π∗ excitation energies
are computed for 21 aromatic systems using SA-CASSCF with 2
states included. The benchmark set has been introduced byMenezes
et al.52 and has also been used in Paper I.42 All geometries were
obtained from Ref. 52. The active orbitals are the π orbitals of the
aromatic systems (in some cases including π orbitals of neighboring
oxygen or nitrogen atoms), and the benchmark set comprises active
spaces between CAS(6,6) and CAS(12,12). As in our previous calcu-
lations,42 we slightly adjusted some of the original active spaces by
removing doubly occupied orbitals. The starting orbitals were gen-
erated by the AVAS procedure,101 based on atomic density orbital
guesses as described in Sec. IV. We did calculations with the aug-cc-
pVDZ (avdz), aug-cc-pVTZ (avtz), and aug-cc-pVQZ (avqz) basis
sets.104 Molecular symmetry was not used.

The results are presented in Table I, where the numbers of
iterations and the computation times are summed over all 21 cal-
culations. We compare the SCI, SO–SCI, and UC-AH orbital opti-
mizations, as discussed in Sec. II. The calculations are done with and
without the L-BFGS acceleration. For comparison, the results of the

J. Chem. Phys. 152, 074102 (2020); doi: 10.1063/1.5142241 152, 074102-8

Published under license by AIP Publishing



The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

TABLE I. Results for the aromatics benchmark set.52 The total number of MCSCF
iterations and the total computation times (in minutes) are presented. All numbers are
summed over the 21 calculations.

avdz avtz avqz

Orb. opt. Iter. Time Iter. Time Iter. Time

Without L-BFGS acceleration

SCI 1231 28.1 1261 101.6 1274 443.2
UC-AH 173 13.4 173 78.6 176 405.0
SO–SCI 538 9.6 569 40.2 571 177.8

With L-BFGS acceleration

SCI 435 10.5 442 35.8 447 152.9
UC-AH 139 11.9 140 70.3 140 353.0
SO–SCI 209 3.9 213 14.9 214 64.7
WMK 74 23.7 76 131.0 76 591.1

second-order method of Werner et al.39–42 (WMK-method) are also
shown.

For the molecules in this benchmark set, the SO–SCI method
converges about twice as fast as the SCI method. A further reduction
of the number of iterations is achieved if the full second-order orbital
optimization (UC-AH) is used. However, in this case, the computa-
tion times are 2–3 times longer than for the SO–SCI method, which
is due to the much more expensive integral transformations. The
L-BFGS acceleration reduces the number of iterations and timings
for the SCI and SO–SCI methods by more than a factor of 2. The
acceleration is smaller for the UC-AH method, indicating that the
L-BFGS procedure compensates not only for the missing orbital–CI
couplings but also for some of the approximations in the SCI or SO–
SCI orbital optimizations. Overall, the SO–SCImethod with L-BFGS
acceleration is for all basis sets most efficient.

The WMK-method implemented as described in Ref. 42
requires by far the lowest number of iterations, because of its very
rapid second-order convergence. For most molecules, only 3–4 iter-
ations are required. Nevertheless, the computation times are consid-
erably larger than in the first-order methods. This is due to the much
higher cost of the WMK micro-iterations, since these include the
orbital–CI coupling. Furthermore, for these rather simple cases, the
uncoupled first-order methods converge relatively fast and therefore
the reduction of the number of iterations by inclusion of the orbital–
CI coupling in the WMK method does not outweigh the additional
cost.

B. ∥Cu2O2∥2+ isomerization

The next example is the isomerization of the ∥(NH3)3Cu∥2O2+
2

complex from the bis(μ-oxo) to the μ-μ2: μ2 peroxo structure. In the
last two decades, this system gained attention because of the poor
results of the CASPT2 method.106–109 The CASPT2 results could be
significantly improved by increasing the active space in a RASPT2
calculation.9 In previous calculations,42 we found for some struc-
tures, a very strong coupling between the CI coefficients and orbitals
for the CAS(16,14) active space introduced in Ref. 108. The coupling
is due to a qualitative change of the weakly occupied 23ag and 13bg
orbitals along the isomerization pathway. This strong coupling leads
to an extremely slow convergence for the uncoupled two-step opti-
mization and is therefore a good example to demonstrate the power
of the L-BFGS convergence acceleration. The strong coupling and
the associated convergence difficulties are removedwhen 2more vir-
tual orbitals are added to the active space, leading to CASSCF(16,16)
calculations.

The isomerization pathway is modeled by a parameter F from
the bis(μ-oxo) (F = 0) to the peroxo (F = 100) structure, and six val-
ues of F were considered. The coordinates of the six structures were
obtained from Ref. 108, where more details on the active space are
also available.We did calculations for the 1Ag ground state in the C2h

symmetry with the aug-cc-pVTZ basis set.104 The starting orbitals
for the first CASSCF calculation at F = 0 are obtained from an AVAS

TABLE II. Number of MCSCF iterations of the isomerization of [(NH3)3Cu]2O2+
2 from the bis(μ-oxo) to the peroxo structure105 with an active space of CAS(16,14) and CAS(16,16).

The number of trial vectors σ = Hc is shown for the CAS(16,16) case in parentheses. The total computation times summed over all six isomerization steps are also presented in
minutes.

CAS(16,14) CAS(16,16)

Without L-BFGS With L-BFGS Default With minimal CI

F SCI SO–SCI UC-AH SCI SO–SCI UC-AH F SCI SO–SCI SCI SO–SCI

0 52 46 26 20 16 14 0 17 (102) 13 (91) 28 (46) 25 (41)
20 40 42 14 17 12 11 20 13 (95) 9 (67) 22 (32) 22 (32)
40 54 67 27 16 14 13 40 14 (87) 9 (66) 24 (33) 22 (31)
60 206 179 146 23 17 15 60 15 (83) 9 (61) 23 (32) 18 (27)
80 411 288 289 26 20 18 80 15 (75) 9 (46) 23 (26) 16 (23)
100 234 184 162 22 15 14 100 17 (80) 10 (48) 24 (27) 17 (24)

SUM 997 806 664 124 94 85 SUM 91 (522) 59 (379) 144 (196) 120 (178)

Time: 168.4 135.5 741.0 23.4 17.7 100.7 Time: 165.5 108.3 129.8 97.0
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FIG. 4. Structures of the iron, nickel,111 and cobalt112 transition metal complexes for the calculations in Sec. V C.

calculation. All further calculations are started with the final orbitals
from the previous structure for the next smaller F value. We carried
out calculations with and without the L-BFGS acceleration for the
SCI, SO–SCI, and UC-AH optimizations.

Table II shows the number of iterations along the isomerization
(F = 0–100) for the CASSCF(16,14) and CASSCF(16,16) calcula-
tions.We first discuss the CASSCF(16,14) calculations in the left part
of this table. If the L-BFGS acceleration is switched off, extremely
slow convergence is obtained for all orbital optimization methods.
Especially in the area F = 60–100, hundreds of iterations are required
to obtain a gradient norm lower than 10−5. This slow convergence
can be clearly attributed to the absence of the CI-orbital coupling,
since the pure second-order AH orbital optimization is converged
in every step. In addition, the CI optimization in the beginning of
each macroiteration is converging quite fast, and so we can con-
clude that the reason for the slow convergence is the alternating
optimization. When the L-BFGS acceleration is switched on, the
convergence is strongly improved, and convergence is obtained for
all structures in at most 20 iterations for the SO–SCI and UC-AH

methods. The SCI converges slightly slower, but still with an accept-
able speed.

With the (16,16) active space (41 410 450 Slater determinants),
convergence is much faster and similar for all values of F (right
part of Table II). In this case, the SO–SCI converges much faster
than SCI, and also the number of CI steps is reduced by a fac-
tor of 2 by the SO–SCI relative to SCI. For this large active space,
the computational effort is dominated by the CI steps and the den-
sity matrix evaluations, and therefore the number of Hamiltonian
actions on trial vectors (σ = Hc) is shown in parentheses (the num-
ber of density matrix evaluations equals the number of iterations
and is not included in these numbers). Obviously, for such large
active spaces, it is more important to minimize the number of CI
steps than the number of orbital optimizations. We therefore did
a second series of calculations in which the initial Davidson opti-
mization of the CI vector in each macro-iteration was switched off
once the L-BFGS was activated. For F > 0, this happened after the
second iteration, and for F = 0, after the third iteration. Thus, after
the first few macro-iterations, the CI optimization was done only

TABLE III. Number of iterations (Iter.) and computation times (in h) of the single-determinant calculations for large transition
metal clusters. The number of basis functions are given in parentheses.

ROHF SCI SO–SCI

Basis State Iter. Time (h) Iter. Time (h) Iter. Time (h) Energy

FeC72N2H100

def2-tzvp 3Ag
a 98 11.5 41 4.4 −4156.068 370

(2939) 5Ag
a 83 9.7 27 3.0 −4156.160 091

def2-tzvpp 3Ag
a 98 16.6 42 6.6 −4156.120 185

(3785) 5Ag
a 91 15.4 27 4.3 −4156.211 440

∥NiC90N20H120∥2+
def2-tzvp 3A 26 9.0 27 10.7 16 6.2 −6074.798 901
def2-tzvpp 3A 26 12.7 27 15.2 16 8.8 −6074.841 763

Co2ON4C70H106

def2-tzvp 7A 61 7.2 86 12.0 27 3.6 −5768.851 186
def2-tzvpp 7A 62 10.8 87 17.8 27 5.5 −5768.892 008

aNo convergence after 100 iterations.
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TABLE IV. Number of MCSCF iterations, timings (in h), and energies (in hartree) for the CASSCF calculations of the iron and nickel complexes. The number of basis functions
are given in parentheses.

FeC72N2H100–CAS(6,10) ∥NiC90N20H120∥2+–CAS(8,10)
SCI SO–SCI SCI SO–SCI

Basis State It. Time (h) It. Time (h) Energy Basis State It. Time (h) It. Time (h) Energy

def2-tzvp 3Ag 23 2.7 20 2.2 −4156.154 789 def2-tzvp 1A 22 9.8 19 8.2 −6074.846 689
(2939) 5Ag 38 4.4 32 3.5 −4156.227 647 (4175) 3A 25 11.5 17 7.4 −6074.923 467
def2-tzvpp 3Ag 25 4.2 21 3.4 −4156.206 566 def2-tzvpp 1A 22 14.2 19 12.1 −6074.890 582
(3785) 5Ag 40 6.7 34 5.6 −4156.279 034 (5154) 3A 25 16.5 17 10.9 −6074.966 405

with the L-BFGS acceleration method, similar to the example in
Sec. III. This means that only one σ =Hc step and one density matrix
evaluation are necessary per macro-iteration, and this is denoted as
“with minimal CI” in Table II. In this case, the number of macro-
iterations increases (by up to a factor of 2 for SO–SCI), but overall
the number of CI steps is significantly reduced. As shown in Table II,
this reduces the computation times by 10%–20%. Another possi-
bility to increase the efficiency is to use graphical processing units
(GPUs), but this requires the development of algorithms that depend
on the available hardware.110

Unfortunately, it is difficult to predict how many CI steps in
each iteration are optimal for a given molecule, but the minimal
CI algorithm would certainly be advantageous for very large active
spaces treated by the DMRG or FCIQMCmethods.

C. Iron, nickel, and cobalt complexes

The final benchmark calculations demonstrate the perfor-
mance of the SCI and SO–SCI methods for three larger transi-
tion metal complexes. The first two complexes FeC72N2H100 and∥NiC90N20H120∥2+ were obtained from Guo et al.111 They have been
previously used for benchmarking the PNO-NEVPT2111 and PNO-
CASPT252,113 methods. In both references, the preceding CASSCF
implementation has been identified as a severe bottleneck. The third
complex is the Co2ON4C70H106 system recently published by Roy et
al.112 The structures of all three systems are shown in Fig. 4.

For the iron complex, we calculated the triplet and quintet
states, while for the nickel complex, the singlet and the triplet states
were optimized. All calculations were done with the def2-tzvp and
def2-tzvpp basis sets,114 and the geometries were obtained from
Ref. 111. We carried out single-determinant calculations (equivalent
to ROHF) and double d-shell115 calculations, i.e., CASSCF(6,10) and
CASSCF(8,10) for the iron and nickel complexes, respectively. More
information about these choices can be found in the supplementary
material.

The results of the single-determinant calculations for the three
complexes are presented in Table III in which the convergence and
timings of SCI, SO–CI, and ROHF calculations are compared. The
latter calculations were done with the ROHF program in Molpro.
All shown calculations were started with the atomic density orbital
guess without AVAS. In the case of the iron complex, we were
not able to converge the ROHF calculations in less than 100 iter-
ations. In addition, the SCI converged very slowly, and nearly 100
iterations were required for the iron and cobalt complexes. The

SO–SCI needed by far the lowest number of iterations, and in all
cases it was significantly faster than the corresponding ROHF cal-
culations. The computation time per SO–SCI iteration is slightly
higher than in ROHF, since the two-electron integrals with at least
two active indices have to be computed along with the Fockmatrices.
However, the difference is not large and in the shown calculations
compensated by a better convergence of SO–SCI. We therefore
recommend to use the SO–SCI method for difficult open-shell
Hartree–Fock calculations.

We note that for the quintet state of the iron complex, con-
vergence could be significantly accelerated by using AVAS orbitals
(based on the atomic density guess) with projection to the 3d±1,
3d0, and 3d+2 atomic orbitals only (the 3d−2 starting orbital being
doubly occupied, and the N–Fe–N moiety on the z-axis, using C2h

symmetry). With these starting orbitals, the SO–SCI converged in
only 17 iterations, while convergence of the ROHF to the same
final energy was only achieved after 150 iterations. However, for
this starting guess, we needed to know which d-orbital is doubly
occupied in the optimized wavefunction, and this is not obvious in
general.

Table IV presents the results for the double d-shell CASSCF
calculations for the iron and nickel complexes. Again, the SO–SCI
needed the lowest computation time and the smallest number of
iterations in all calculations, even though the SCI converged rather
quickly as well.

FIG. 5. Energy convergence of the triplet calculation of the cobalt complex with
def2-tzvp and CAS(14,10). Shown is the difference to the converged energy in
Table V.
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TABLE V. Number of MCSCF iterations, timings (in h), and energies (in Hartree) for the CASSCF calculation of
Co2ON4C70H106 with CAS(14,10) and CAS(14,14). The number of basis functions are given in parentheses. These
calculations are done with 20 MPI processes.

SCI SO–SCI

Basis State Iter. Time (h) Iter. Time (h) Energy

CAS(14,10)a

def2-tzvp 1A 56 8.2 33 4.1 −5768.857 959
(3051) 3A 87 13.5 49 6.1 −5768.857 641
def2-tzvpp 1A 50 11.1 35 6.8 −5768.898 833
(3937) 3A 86 20.1 47 9.2 −5768.898 515

CAS(14,14)b

def2-tzvp 1A 40 6.3 34 5.3 −5768.941 538
(3051) 3A 40 6.3 32 4.9 −5768.940 887
def2-tzvpp 1A 39 9.2 32 8.2 −5768.982 734
(3937) 3A 40 9.4 35 8.3 −5768.982 084

aAVAS guess with projection to Fe(3d) and O(2p).
bAVAS guess with projection to Fe(3d,4d0 ,4d+2) and O(2p).

Our last test system is the Co2O complex from the recent work
of Roy et al.112 using their density functional theory (DFT) opti-
mized geometry and the def2-tzvp and def2-tzvpp basis sets.114 We
carried out single determinant calculations for the septet high-spin
state (cf. Table III) as well as CASSCF(14,10) and CASSCF(14,14)
calculations for the singlet and triplet states (cf. the supplementary
material for more information about these choices). The conver-
gence of the energy for the triplet state with the SCI and the SO–SCI
methods is shown in Fig. 5. In the first five iterations, the conver-
gence of both methods is very similar. However, the convergence
of SCI slows down considerably between iteration 10 and 55, and
87 iterations are required until convergence. The SO–SCI also slows
down after iteration 10, but not as strongly as SCI, and 49 iterations
are required to achieve convergence (cf. Table V).

With the larger CAS(14,14) active space, both the SCI and
SO–SCI methods converged in a reasonable number of iterations
(see Table V) and significantly lower energies were obtained. Even
the calculations with the larger def2-tzvpp basis set (3937 CGTOs)
required less than 10 h computation time on a single workstation.
So far, we have never seen a case where the SCI required less itera-
tions than the SO–SCI, and also the SO–SCI computation times were
always smaller than the SCI ones.

VI. CONCLUSIONS

We proposed and benchmarked a new MCSCF orbital opti-
mization method denoted as SO–SCI, which combines a second-
order (SO) optimization of the active orbitals with a first-order
Super-CI (SCI) treatment for the inactive–virtual orbital rotations.
The Hessian construction in the second-order optimization of the
active orbitals requires the two-electron integrals (rs|tu) and (rt|su)
in the MO basis with at least two active orbitals t, u, but using den-
sity fitting approximations, these can be computed at relatively low
cost along with the closed-shell Fock matrix. The method is com-
pared with the pure SCI method, which only requires Fock matrices
[apart from the all active integrals (tu|vw)], as well as with the much

more expensive second-order Augmented Hessian (AH) method,
which requires all integrals (rs|kl) and (rk|sl) (k, l: all occupied
orbitals).

In all three methods, the orbitals and CI coefficients are opti-
mized alternately. Due to the absence of a direct CI–orbital cou-
pling in the effective Hessians, this leads to first-order convergence,
which can, in some cases, be extremely slow. To solve this prob-
lem, we presented a convergence acceleration algorithm based on
the L-BFGS method of Nocedal.95 This strongly improves conver-
gence, in particular, in cases with strong orbital–CI couplings. It
also improves the convergence of the first-order orbital optimiza-
tion schemes, and it is demonstrated that with L-BFGS, the SO–SCI
method converges almost as quickly as the much more expensive
AH method. In all cases tested so far, the SO–SCI method showed
faster convergence than the SCI method and also the smallest com-
putation times of the three methods. We have, thus, presented a
framework for MCSCF optimization that is generally applicable and
is highly efficient for many different types of applications, includ-
ing cases with many closed-shell orbitals, large CI expansions, and
challenging convergence.

The new MCSCF methods were tested for 21 aromatic
molecules and 4 transition metal clusters. The largest calculations
included 5154 basis functions and 413 optimized occupied orbitals
and could still be done “overnight” on a single computer node. In all
our CASSCF calculations, the starting guesses were generated with
the AVAS procedure101 based on orbital guess from atomic densi-
ties.94 If properly used, this method provides qualitatively correct
starting orbitals and avoids the need for any precedingHartree–Fock
calculations. This is of paramount importance for typical MCSCF
applications where Hartree–Fock is expected to perform poorly.

We also demonstrated that the SO–SCI method often con-
verges much faster and more robustly than the standard ROHF
method for single-determinant optimizations. It is, therefore,
strongly recommended to use the SO–SCI method for Hartree–
Fock calculations on large open-shell transition metal clusters. We
also plan a generalization of the SO–SCI method for unrestricted
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Hartree–Fock (UHF) and unrestricted Kohn–Sham (UKS) calcula-
tions.

SUPPLEMENTARY MATERIAL

See the supplementary material for explicit equations for the
gradients and (approximate) Hessians, a description of our density
fitting implementation, and details about the choice of active spaces
for the transition metal clusters.
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