
Dimension Reduction for

Exponential Family Data with
Applications to Text Data

Luke Smallman

2019

Submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

School of Mathematics
Ysgol Mathemateg

iii

Summary

In this manuscript, we will address the problem of dimension reduction for data mod-

elled by an exponential family distribution, with a particular focus on text data modelled

by a Poisson-count model. We are motivated to develop new methods for such data by

links between principal component analysis and the Gaussian log-likelihood, which sug-

gests both a simple way to extend PCA to the exponential family (of which the Gaussian

distribution is a member), and the unsuitability of PCA when the data is appropriately

modelled by a distribution which is not well-approximated by the Gaussian distribution.

We will present three novel methods for exponential family dimension reduction.

The first is “Poisson Inverse Regression”, a supervised method from the family of inverse

regression methods. We will demonstrate that this method provides a sufficient dimen-

sion reduction. That is, the transformed data is statistically sufficient with respect to the

response.

The second is Sparse Generalised Principal Component Analysis, which extends the

method of Generalised Principal Component Analysis put forward by Landgraf and Lee

(2015b). This method is unsupervised, as is motivated by a modification of the PCA

objective function to accommodate other exponential family distributions. We demon-

strate that this method performs as-well or better than other state-of-the-art methods.

This work has been published as Smallman, Artemiou, et al. (2018).

The third is Sparse Simple Exponential/Poisson Principal Component Analysis. This

method extends Simple Exponential Principal Component Analysis, put forward by Li

and Tao (2013), enforcing sparsity in the equivalent of the loadings matrix. This method

is also unsupervised, and we demonstrate its state-of-the-art performance. This work

was done jointly with William Underwood from Oxford University, and is published in

Smallman, Underwood, et al. (2019).

Finally, we present a new framework for analysing and synthesising dimension re-

duction methods, which we call “Quasi-Likelihood PCA”. This is based on tensor esti-

mating equations, which we also present as a new development. We apply this method

to analyse several methods in the literature.

v

This would not have been possible without the love and support of so many. In particular,

my deepest thanks to Scott – you have been there from the beginning, have put up with so

much, and have never once doubted me.

Thank you to my parents; without your help and support I would never have been in a

position to begin this, let alone finish it.

Thank you to Lynn, Glenni and Mizzy, your friendship has been invaluable.

Finally, but by no means least, thank you to Andreas – you’ve been a wonderful mentor

and friend throughout this process.

“Begin at the beginning,” the King said gravely, “and go
on till you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

vii

Acknowledgements

I would like to acknowledge deep gratitude to Cardiff and Vale University Health Board

and Cardiff University School of Mathematics for providing funding for this project.

The work of Chapter 5 was done jointly with William Underwood from Oxford University

as part of a 4 week undergraduate summer project. I would like to thank William for

his collaboration and enthusiasm; it was a pleasure working with him.

ix

Contents

Contents ix

List of Figures xiii

List of Tables xv

1 Intro 1

1.1 Dimension Reduction . 1

1.1.1 Sufficient Dimension Reduction . 2

1.1.2 Sliced Inverse Regression . 3

1.1.3 Principal Component Analysis . 3

1.2 Text Data . 5

1.3 Sparsity . 7

1.4 Exponential Families . 7

1.5 Related Work . 9

1.5.1 Distributional Dimension Reduction 9

1.5.1.1 Probablistic PCA . 9

1.5.1.2 Bayesian PCA . 10

1.5.1.3 Collins et al. 2002 . 11

1.5.1.4 Bayesian Exponential PCA 12

1.5.1.5 Simple Exponential Principal Component Analysis 13

1.5.1.6 Generalised Principal Component Analysis 14

1.5.1.7 Sparse Probabilistic Principal Component Analysis 14

1.5.1.8 Sparse Exponential Family Principal Component Analysis 14

1.5.1.9 Multinomial Inverse Regression 15

1.5.1.10 Latent Dirichlet Allocation 16

1.5.2 Non-Distributional Dimension Reduction 17

1.5.2.1 Sparse Principal Component Analysis 17

1.5.2.2 Joint Sparse Principal Component Analysis 18

x Contents

1.5.2.3 Robust Principal Component Analysis 18

1.5.2.4 Sparse Principal Component Analysis by Rotation and

Truncation . 19

1.5.2.5 Non-negative Matrix Factorisation 20

1.6 Conclusion . 20

2 Poisson Inverse Regression 21

2.1 Introduction . 21

2.2 Poisson Inverse Regression . 21

2.3 Estimation . 24

2.4 Evaluation . 27

2.5 Conclusion . 30

3 Healthcare Data 33

4 Sparse Generalised Principal Component Analysis 35

4.1 Introduction . 35

4.1.1 Text Data . 35

4.2 GPCA . 36

4.2.1 GPCA Definition . 36

4.3 SGPCA Definition . 37

4.3.1 Penalisation . 37

4.3.1.1 SCAD Penalty . 38

4.3.1.2 L1 Penalty . 40

4.3.1.3 Total Penalty Function . 40

4.3.1.4 Definition of SGPCA . 40

4.3.2 Estimation . 40

4.4 Synthetic Data Examples . 45

4.4.1 “Classless” Data Exploration . 45

4.4.2 Classed Synthetic Data Exploration 46

4.4.3 Robustness Against Noise . 49

4.5 Dependence on Tolerance . 51

4.6 Healthcare Data . 51

4.7 Discussion . 52

5 Sparse Simple Exponential Family Principal Component Analysis 55

5.1 SePCA . 55

5.2 Sparse Simple Exponential Principal Component Analysis 56

Contents xi

5.3 Estimation . 57

5.4 Synthetic Data Studies . 59

5.4.1 Order Determination . 61

5.4.2 Synthetic Data with Classes . 61

5.5 Healthcare Data . 65

5.6 Discussion . 67

6 Quasi-Likelihood Principal Component Analysis 69

6.1 Introduction . 69

6.2 Tensor Estimating Equations . 70

6.2.1 Vector Parameter Estimating Equations 70

6.2.2 Tensor Preliminaries . 71

6.2.3 Vector Estimating Equations as Tensors 73

6.2.4 Tensor Estimating Equations . 75

6.2.5 Asymptotic Consistency . 77

6.3 Categorising Generalisations of PCA . 80

6.3.1 Generalised PCA . 80

6.3.2 Collins et al. 80

6.3.3 Simple Exponential PCA . 81

6.4 Comparisons . 81

6.5 Asymptotic Consistency . 82

6.6 Conclusions . 83

7 Conclusions 85

Bibliography 87

xiii

List of Figures

1.1 PCA direction and projections for two-dimensional data 4

1.2 Plate diagram for Bayesian PCA . 11

1.3 Plate diagram for Bayesian Exponential Family PCA 13

1.4 Plate diagram for Latent Dirichlet Allocation . 17

2.1 Plot of two directions recovered by POIR from the we8there data. 28

2.2 Plot of three directions recovered by POIR from the we8there data. 29

2.3 Scatterplot of the one MNIR direction recovered from the we8there data

against the rating, and density of that direction separated by rating. 30

4.1 SCAD Penalty . 39

4.2 SCAD Penalty for different λ . 39

4.3 Behaviour of all SGPCA variants as tolerance is varied. 52

4.4 Plots of pairs of the first three principal components for the healthcare dataset

obtained from SGPCA, GPCA and PCA. Red “+” symbols denote the “dis-

charge” class; black dots represent the “follow-up” class. 53

5.1 Plate diagram for SePCA . 56

5.2 Two directions from each algorithm for X2C, with one class shown with red

squares, the other with black triangles. 65

5.3 Two directions from each algorithm for X3C . 66

5.4 The resulting principal components from applying SPPCA, SSPPCA, GPCA

and SGPCA to the healthcare data. The “discharge” class is plotted as red

squares, the “follow-up” class is shown as black triangles. 67

xv

List of Tables

1.1 Univariate EF distributions . 8

1.2 SPPCA prior-penalty equivalences . 15

4.1 Synthetic Loading 1 . 47

4.2 Synthetic Loading 2 . 48

4.3 Classed Synthetic Loadings . 49

4.4 Investigations of the performance of all three SGPCA variants across varying

levels of noise. 50

5.1 Loadings for X1D . 62

5.2 Two loadings from X2D . 63

5.3 Percentage of correct identification of d for SPPCA and SSPPCA 63

5.4 Average (Euclidean) silhouettes . 65

5.5 Average silhouettes first the healthcare data. 68

1

Chapter 1

Introduction

With the explosion of “big data”, methods for dimension reduction have become in-

creasingly important; recently, there has been considerable research into different ways

to perform dimension reduction for a wide variety of types of data. Text data is one of

those types of data – it is plentiful, its analysis is frequently very impactful, and it has

certain statistical peculiarities. In particular, text data is not Gaussian nor even symmet-

rically distributed which negatively impacts the performance of many of the standard

methods for dimension reduction. In this work, we will develop a Poisson-model-based

method for text dimension reduction in Chapter 2, sparse extensions of two exponen-

tial family methods of dimension reduction in Chapter 4 and Chapter 5, and finally a

framework for constructing, comparing and deriving asymptotic results for a class of

estimators known as tensor estimating equations in Chapter 6 which we use to analyse

several exponential family dimension reduction methods.

In this chapter, we will begin by introducing the fundamental notions of dimension

reduction in Section 1.1 and text data in Section 1.2. We then motivate the desire to

include a notion of sparsity in our dimension reduction techniques in Section 1.3. For

our focus on text data, we will be working extensively with the exponential family of

distributions, which we introduce in Section 1.4. Finally, we examine related work in

the literature in Section 1.5. The methods in this section will be divided into those with

distributional assumptions in Section 1.5.1 and those without in Section 1.5.2.

1.1 Dimension Reduction

Dimension reduction methods can broadly be divided into supervised and unsupervised

methods; i.e. those which take into account the values of some “response” variable, and

those which do not. For the former, we will take as our canonical example the method

of sliced inverse regression (SIR), which is within the family of “sufficient dimension

reduction” techniques. For the latter, we will use Principal Component Analysis (PCA).

2 Chapter 1. Intro

Before exploring the details of SIR, we will take a detour into the general idea of

sufficient dimension reduction, as this will provide context both for SIR and for the

method of Poisson Inverse Regression (PoIR) in Chapter 2.

1.1.1 Sufficient Dimension Reduction

The family of sufficient dimension reduction methods is a family of supervised dimension

reduction techniques with the explicit aim of finding a projection of the original data

into a lower-dimensional space such that the projected data is statistically sufficient.

Formally, we give the definition:

Definition 1.1.1. Let γ : X → Z , where X is the domain of a random vector X and

Z is the domain of the random vector γ (X) satisfying |X |< |Z |. Then γ is a sufficient

dimension reduction mapping with respect to a random variable Y if

Y⊥⊥X | γ(X)
There is a strong advantage to this family in the application of predictive influence;

by preserving all information that the observed data has about the response with our

dimension reduction, we are able to perform the same quality of predictive influence

with the lower-dimensional data.

Given this definition, it can be seen that such transformations are not unique; if γ is

a sufficient dimension reduction, then so is aγ, for any a ∈ R
{0}. In the more restricted set of linear sufficient dimension reductions (which are

projection matrices), we can define the notion of a “dimension reduction subspace”. This

encapsulates all full-rank linear transformations of the dimension reduction, bringing us

closer to identifiability.

Definition 1.1.2. A “dimension reduction subspace” is the columnspace of a sufficient

linear dimension reduction matrix.

A less obvious problem still remains; a suitably “small” sufficient dimension reduc-

tion can be made larger by adding superfluous components. This leads us to question if

there is a “smallest” sufficient dimension reduction. This is addressed by the concept of

a “central dimension reduction subspace”, defined below.

Definition 1.1.3. The “central dimension reduction subspace” is the intersection of all

dimension reduction subspaces.

If the central subspace exists, then it is a dimension reduction subspace with the

minimal needed dimension. To see this, note that if a lower dimensional dimension

1.1. Dimension Reduction 3

reduction subspace exists, then it is necessarily included in the intersection forming the

central dimension reduction subspace, thus the central space cannot be of larger di-

mension. The dimension of the central subspace is often referred to as the “structural”

dimension, as the central subspace is the minimal needed structure for the data (with

respect to the response). Estimating this central subspace is the goal of a number of

dimension reduction methods, notably Sliced Inverse Regression (Li 1991) which pop-

ularised the idea of sufficient dimension reduction and which we will now explore.

1.1.2 Sliced Inverse Regression

Sliced inverse regression Li (1991) begins with the assumption that the relationship

between the predictors X and the response Y has the form

Y= f (β1X, . . . ,βkX,ϵ) (1.1)

where ϵ represents noise. They also the additional restriction that

E (βX | β1X, . . . ,βkX) = c0 + c1βX+ . . .+ ckβkX (1.2)

for all β ∈ Rp with c0, . . . , ck real constants. This assumption is often referred to in

the literature as the “linear conditional expectation” condition; it was shown in Eaton

(1986) that this is condition is satisfied if and only if X has an elliptically symmetric

distribution. The central result of sliced inverse regression is then the following theorem.

Theorem 1.1.1. Under (1.1) and (1.2), the centred inverse regression curve E (X | Y)−
E (X) lies within the central dimension reduction subspace.

Remark. A brief history note: the notion of dimension reduction subspaces and the cen-

tral dimension reduction subspace was developed after the publication of sliced inverse

regression. As such, Theorem 1.1.1 is stated differently in its original published form.

Remark. The word “sliced” in sliced inverse regression refers to part of the estimation

procedure, in which the response Y is sliced into H bands and the sample mean of the

observed predictors (after standardisation) is calculated within each slice. These sample

conditional means are then formed into a covariance matrix, weighted by the proportion

of observations in each slice. Finally, the directions β1, . . . ,βk are then estimated from

the eigenvectors with the largest eigenvalues.

1.1.3 Principal Component Analysis

PCA was first formulated in Pearson (1901) and (perhaps more importantly) reformu-

lated in Hotelling (1933). It is often formulated in terms of finding a successive series

4 Chapter 1. Intro

of orthogonal directions which maximise variance in turn – the first direction is in the

direction of greatest variance, the second direction in the direction of greatest variance

which is orthogonal to the first, and so on. However, there is an equivalent definition

which is more suited to our purposes. Formally, we define the PCA loadings matrix U

(and the associated mean vector µ) by

U,µ := argmin
U∈Rp×k ,UTU=I,µ∈Rp

n∑
i=1

xi −µ−UUT (xi −µ)
2

2 (1.3)

where xi ∈ Rp for i = 1, . . . , n are our observed data. This form was considered by Pear-

son for the optimal projection of the p-dimensional data into a k dimensional subspace

under squared error loss. In this formulation, the optimal choice for µ is x̄ (the sample

mean), and for U the first k eigenvectors of the sample covariance matrix ordered de-

scending by eigenvalue. Later, we will relate this form to the deviance of a particular

Gaussian model for the data, and use that connection to extend PCA to all exponential

family distributions. For now, we show in Figure 1.1 the result of applying PCA to some

two-dimensional data (shown as black points). The line shows the first direction found

by PCA, and the red points on the line are the projections of the data onto the line.

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−5

0

5

−4 0 4
X1

X
2

Figure 1.1: PCA direction and projections for two-dimensional data

It is worth noting that (1.3) is not the “typical” definition. The more usual definition

is as the directions of maximal variance, which can be derived from the variance of the

1.2. Text Data 5

standardised data. To be precise, we can define the first principal component by the

weight vector w1 such that

w1 = argmax
‖w‖=1

n∑
i=1

(w · zi)
2 = argmax

‖w‖=1
wTZTZw (1.4)

where Z is the matrix with each row an observation zT
i and each veczi is defined by

zi = xi− 1
n

∑n
i=1 xi . It can then be shown that the maximal value is the largest eigenvalue

of ZTZ which is obtained at the corresponding eigenvector.

The kth component is then defined as the first principal component of the matrix

Ẑk = Z−
k−1∑
i=1

Zwiw
T
i

and it can be further shown that this is precisely the kth eigenvector of ZTZ when sorted

by decreasing eigenvalue.

Remark. It is worth noting that the usual computational method for calculating the

principal components is via singular value decomposition of Z, as this avoids the need to

calculate ZTZ which can be computationally expensive when the number of observations

and/or dimension of them is high.

Remark. It is also important to note that the principal components are not generally

unique. Trivially, one can note that if w is a principal component, then −w could replace

it.

In general, dimension reduction methods are transformations from a high-dimensional

feature space to a lower-dimensional feature space. We require an important restriction,

however: these transformations must have some form of data-driven optimality. In the

case of PCA, this is the minimised squared reconstruction error (or the maximised suc-

cessive variances). Here, the reconstruction error means the L2 distance between the

original data and the reconstruction from the lower dimensional approximation. Our

hope is that given data and a dimension reduction method with some appropriate mea-

sure of optimality, we can find a lower-dimensional representation of the data which is

suitable for further statistical analysis or methodology which would have been infeasible

or unsatisfactory with the original data.

1.2 Text Data

The majority of this work (specifically Chapters 2, 4 and 4) will be motivated and demon-

strated using text data, under a Poisson counts model. For edification, we will now intro-

6 Chapter 1. Intro

duce some key information about text data and how it can be studied from a statistical

perspective.

We will use, as is standard in the literature and especially in practice, the vector

space model” of text data, where documents are represented by vectors in Nd . Each

element of the vector corresponds to a stem, with the value being the number of times

that stem appears in the document. A stem is effectively a word reduced down to an

immutable part which does not change under conjugation, pluralisation, etc. Before

vector representation, documents undergo the process of stemming, where each word

is reduced to the appropriate stem. For example, the words “go”, “going” and “gone”

would typically all be reduced to the stem “go”. This helps reduce the size of the vectors

significantly, whilst preserving (by and large) meaning. Documents also typically have

“stopwords” removed before stemming. Stopwords usually include “and”, “the’, etc.

These words usually do not convey any of the sentiment or meaning of the document.

As a consequence of removing such stopwords, the remaining stems typically have

quite low frequencies of occurrence. This is a key point to note for this work; with a

sufficiently large λ, the Po (λ) distribution is well-approximated by a normal distribution

with mean and variance both equal to λ. This approximation performs much more

poorly with small λ, which is our experience of the typical case with text data after

stemming and stopword removal. Empirically, we have found that infrequent but highly

informative words can have λ < 1, necessitating an alternative treatment to the normal

approximation.

This poor approximation by the normal distribution is precisely why we, and other

authors, have devoted time to studying extensions of PCA which are derived from an

assumption of alternative exponential-family distributions. It is our expectation that

when a normal approximation is inappropriate, so too is the standard PCA which, while

not imposing any formal distributional assumptions, is deeply connected to the normal

distribution’s log-likelihood.

It is worth noting that instead of stems of individual words, it is also possible to

consider stems of n words, called n-grams. However, the same ideas for modelling these

apply, it is merely a matter of which one chooses to be the base unit of meaning. It is also

possible to work without stemming under the premise that stemming could throw away

important information which ought to be preserved. The main danger of not stemming

is possible diffusing the importance that would be assigned to one stem across multiple

words to the extent that they appear unimportant, whilst the stem would be important.

This representation of text data does not lend itself to modelling by continuous dis-

tributions, so we will need to develop techniques for dimension reduction which are

appropriate for it. In particular, PCA (for reasons which will be discussed later) is gen-

1.3. Sparsity 7

erally unsuitable.

1.3 Sparsity

We will now address the main motivation of Chapters 4 and 5, the notion of sparse

loadings. Consider the example of PCA – each new variable is a linear combination of

the original variables. In general, the coefficients of those linear combinations will be

almost entirely non-zero. Our assumption is that this is typically not necessary, but is

an artefact of overfitting to the observed data, and that reducing the number of non-

zero coefficients can be used to improve the generalisation performance of PCA on new

data. In fact, this is the premise of Zou, Hastie, and Tibshirani (2006) which proposes

a method for Sparse Principal Component Analysis (SPCA).

To elaborate, our assumption that sparsity will improve generalisation performance

arises from the complications of working with finite sample sizes. Typically we work

with estimators which are unbiased, but in the finite sample case we should expect

that they will be influenced by the peculiarities of the observed data. Imposing sparsity

constraints is an attempt to counteract these finite sample peculiarities by requiring

a simple structure to our estimands unless there is sufficient evidence in the data to

outweigh the preference for sparsity.

There is an additional benefit to sparse loadings, beyond that of improved perfor-

mance; sparse loadings are generally more interpretable. In a typical setup, having

thousands of non-zero components makes it difficult to interpret how the original vari-

ables are being used in the new (dimension reduced) variables. Reducing the number

of non-zero components means fewer original variables are involved in the construction

of each new one; this can make it possible to give a subject-specific explanation for what

the new variables represent.

Generally, sparse loadings can be achieved by adding a penalty to the optimisation

procedure. Popular choices are the L1 and Smoothly Clipped Absolute Deviation (SCAD)

penalties which penalise the total magnitude of the components in slightly different

ways and the L0 penalty which penalises the number of non-zero components. We will

revisit the first two of these penalties in Chapter 4, and the latter in Chapter 5.

1.4 Exponential Families

Much of the following work will be centred around the exponential family of distribu-

tions. This family of distributions encompasses the Gaussian and Poisson distributions

amongst others; given our interest in applying dimension reduction to text data (which

8 Chapter 1. Intro

we model with the Poisson) and the link between classical PCA and the Gaussian distri-

bution, the exponential family seems a sensible choice.

We define an exponential family (EF) distribution by the form of its probability den-

sity (or mass) function. Let X have an EF distribution with parameter θ (known as the

natural parameter). Then its density function f (x | θ) has the form

h(x)exp (θ · t (x)− b (θ))

The function t(x) is a sufficient statistic for the data; in many cases this will simply be the

identity function. The function b is called the log-partition function, and it normalises

the distribution to have integral 1 over the whole domain. The function h(x) is usually

referred to as a base measure. It can be shown that E (X) =∇b (θ) if t is the identity. In

fact, more generally it is true that ∇b (θ) = E (t (X)), and the higher order moments of

the sufficient statistic can also be derived from the log-partition function. We define g

as the left inverse of ∇b (that is, g(∇b(θ)) = θ) and call it the canonical link function.

This function is of central important when studying EF distributions, as it tells us how

to map between the expectation and the natural parameters. This has an obvious appli-

cation, mapping the sample mean of the sufficient statistic to an estimate of the natural

parameters.

In Table 1.1 we will now give a summary of a number of common EF distributions

along with their corresponding log-partition functions, base measures, sufficient statis-

tics and canonical link functions. In the table, we use the symbol θ to denote the natural

parameter as a function of the typical parameter(s).

Table 1.1: Usual parameter, natural parameter, sufficient statistic, log-partition, and canoni-
cal link functions for some common univariate exponential family distributions.

Distribution Parametera θ h(x) t(x) b(θ) g(θ)

Poisson λ log(λ) 1/x! x eθ log(θ)

Normalb µ µ/σ
exp
�−x2/2σ2
�

σ
p

2π
x/σ θ2/2 θ

Binomialc p log p
1−p

�
n
x

�
x n log
�
1+ eθ
�

log
� n
θ−n

�
Exponential λ −λ 1 x − log(−θ) − 1

θ

a the “usual” parameter
b with known variance σ2

c with known number of trials n

With the canonical link function, we can define the so-called saturated model; given

1.5. Related Work 9

a matrix of observations X ∈ Rn×p, the saturated model assumes that each component

x i j (for i = 1, . . . n and j = 1, . . . p) is an observation of a random variable Xi j from

some EF distribution with natural parameter θi j = gi j(x i j). Finally, we can define the

deviance, a measure of goodness of fit for models. Let ℓS (X) denote the log-likelihood

of observations X under the saturated model and let ℓA (X) denote the log-likelihood

under some alternative model within the same exponential family. Then the deviance

of that alternative model is

−2 (ℓA (X)− ℓS (X))
Remark. Although we have discussed exponential families in a fair deal of generality,

for the rest of this thesis we will work under the restriction that the sufficient statistic

function t is the identity function. Furthermore, we will usually (but not always) be

referring to univariate distributions.

1.5 Related Work

In this section, we will look at related work in the literature, beginning with meth-

ods that make assumptions about the distribution of the data in Section 1.5.1, then at

those which do not make distributional assumptions in Section 1.5.2. Of the two meth-

ods we have already considered, Sliced Inverse Regression (SIR) falls mostly into the

non-distributional category as its primary assumption is on the relationship between

the observed predictors and the response (also one could argue that the linear condi-

tional expectation assumption is distributional, due to its equivalence to the assump-

tion of an elliptically symmetric distribution); PCA also most naturally fits into the non-

distributional category as despite its close relationship with the normal log-likelihood,

it is typically motivated and derived from a non-distributional standpoint.

1.5.1 Distributional Dimension Reduction

1.5.1.1 Probabilistic Principal Component Analysis

The first distributional method we will look at is “Probabilistic Principal Component

Analysis”, proposed in Tipping and Bishop (1999). Here, the authors relate PCA to

factor analysis. They model the observed data by

X | t∼ N
�
Wt+µ,σ2I
�

(1.5)

where I is the identity matrix of appropriate dimension, t is a k dimensional latent

factor (i.e. it is unobserved) and W is a p × k dimensional matrix (corresponding to

10 Chapter 1. Intro

the dimension p of the observed variable X). This is often referred to as a Gaussian

model with isotropic noise. They also make the assumption that t ∼ N (0, I), where

dim (t)< dim (X). Marginalising, this gives that

X∼ N
�
µ,WWT +σ2I
�

(1.6)

which allows µ to be easily estimated by maximum likelihood as the sample mean of

the observed data. Using Bayes rule, the authors show that the reversed conditional

distribution is

t |X∼ N
�
M−1WT (X−µ) ,σ2M−1

�
(1.7)

where M =WTW+σ2I. It is then shown that the maximum likelihood estimator for W

can be given in explicit form as

WML = Uk

�
Λk −σ2I
�1/2

R (1.8)

where Uk is the matrix formed from the k principal eigenvectors of the sample covari-

ance of X, Λk is a diagonal matrix consisting of the corresponding eigenvalues, and R

is an arbitrary k × k orthogonal rotation matrix. In practice, the authors recommend

choosing R as the identity matrix.

To relate this to the classical PCA, note that given (1.7) we can summarise t | X by

its mean

E (t |X) =M−1WT
ML (X−µ) (1.9)

which, as σ2 → 0 (and thus M→ �WT
MLWML

�
), becomes an orthogonal projection into

latent space. This, then, is the recovery of the traditional PCA from the probabilistic

version. It is worth noting that the model proposed by Tipping and Bishop (1999) does

become singular (and thus undefined) as σ2→ 0 however.

1.5.1.2 Bayesian Principal Component Analysis

Fundamentally, Bayesian Principal Component Analysis (BPCA) (proposed by Bishop

(1999)) is an extension of Probabilistic Principal Component Analysis (PPCA) which

specifies a full Bayesian model for the latent variable model, shown in Figure 1.2. Here,

σ2, µ and α are treated as constants to be estimated for simplicity; the main difference

between BPCA and PPCA then is the distribution specified over W. This distribution is

given as

P (W | α) =
k−1∏
i=1

� αi

2π

�d/2
exp
�
−1

2
αi‖wi‖2
�

(1.10)

where W is once again a p × k dimensional matrix as in PPCA, wi is the ith column of

W and αi is the ith component of α. The motivation for this form of prior distribution is

1.5. Related Work 11

X

t

W

α

µ

σ2

n

Figure 1.2: Plate diagram for Bayesian PCA

in Automatic Relevance Determination (ARD), proposed in Mackay (1995) initially for

neural networks. It can be seen that αi controls the precision (inverse variance) of the

ith column of W, with an increasingly large value of αi indicating that the probability

mass is concentrated around the 0 vector. ARD proposes that sufficiently large values of

αi indicate that the ith column of W is irrelevant, and should thus be removed from the

model. This provides a significant advantage to BPCA, as it means in practice that one

can set an initial value of k to p − 1 (one less than the observed dimension of X) and

allow ARD to remove columns from W to determine the appropriate value of k. This

final k value is referred to by the authors as the “effective dimension”.

1.5.1.3 Collins et al. 2002

The work of Collins et al. (2002) begins with the observation that PCA is equivalent to

finding a set of vector parameters θ1, . . . ,θn which lie in a low-dimensional subspace

from some observed values x1, . . . , xn which are corrupted by Gaussian noise. Using this,

they extend the notion of PCA to the exponential family using the notion of Bregman

divergences. They do this by noting that the conditional log-likelihood of an observation

x given the natural parameter θ is

logP (x | θ) = log h(x) + xθ − b(θ) (1.11)

using the notation from Section 1.4 and assuming that the sufficient statistic t is the

identity. When maximising this log-likelihood with respect to θ , the term log h(x) is

constant, and so can be disregarded. Therefore, the primary difference between expo-

nential families is in the function b(θ). In order to relate this to Bregman divergences,

we will first define what a Bregman divergence is.

Definition 1.5.1. Let F : ∆ → R be a differentiable and strictly convex function on a

closed, convex set ∆ ⊆ R. Then for any p, q ∈ real, the Bregman divergence associated

with F is

BF (p||q) = F(p)− F(q)− f (q)(p− q) (1.12)

12 Chapter 1. Intro

where f (x) = F ′(x).

We then relate b(θ) to a “dual” Bregman divergence by the equation

F(b′(θ)) + b(θ) = b′(θ)θ (1.13)

Collins et al. (2002) note that, under some fairly general conditions, f (x) = [b′]−1(x)

which, as noted in Section 1.4 is precisely the “canonical link function”. Using this, we

can see that the log-likelihood (1.11) can be rewritten as

logP (x | θ) = log h(x) + F(x)− BF (x ||θ) (1.14)

thus maximising the likelihood with respect to θ can be achieved simply by minimis-

ing the Bregman divergence BF (x ||θ). The authors overload the Bregman divergence

notation for vectors by

BF (v||w) =
p∑

i=1

BF (vi||wi) (1.15)

for all v,w ∈ Rp, and for matrices by

BF (V||W) =
p∑

i=1

q∑
j=1

BF

�
Vi j||Wi j

�
(1.16)

for all V,W ∈ Rp×q. Finally, we define Θ = AV as the n× p matrix of natural param-

eters, such that the ith row is the vector of natural parameters associated with the ith

observation xi . Here, we have A ∈ Rn×k and V ∈ Rk×p, with k < p, and p the dimension

of the observed variables xi , i = 1, . . . , n. Then the log-likelihood can be written as

n∑
i=1

BF (xi||g(θi)) (1.17)

where θi is the ith row of Θ. One can then think of V defining a lower-dimensional

basis for the surface Q(V) =
�

g(aV)|a ∈ Rk
	
, such that this surface passes close to each

observation xi , and each row of A giving the coefficients with respect to that basis of the

closest point on Q(V) to xi . Thus, A gives us the lower dimensional “projection” of the

observed data.

1.5.1.4 Bayesian Exponential Principal Component Analysis

The method of Mohamed et al. (2009), which they call Bayesian Exponential Principal

Component Analysis (BXPCA), shares a similar approach to that of Collins et al. (2002)

but from a Bayesian perspective. In Figure 1.3 we show the plate diagram for the model.

To elaborate on the model, we have

1.5. Related Work 13

X

v

η

λ ν

µ Σ

m S α β

n k

Figure 1.3: Plate diagram for Bayesian Exponential Family PCA

• µ is drawn from a normal distribution with mean m and covariance matrix S

• Σ is a diagonal matrix with the ith diagonal element drawn from an inverse gamma

distribution parametrised by α and β

• Each of the n vectors vi (i = 1, . . . , n) are drawn from a normal distribution with

mean µ and covariance matrix Σ

• Each observation xi of the random variable X is drawn from an exponential family

distribution with natural parameter
∑k

j=1 vi jη j , where vi j is the jth element of vi

• Eachηi (i = 1, . . . , k) is drawn from the conjugate prior distribution corresponding

to the exponential family distribution of X

Having specified a full Bayesian model, the authors then propose a hybrid Monte

Carlo for estimating the model parameters. Then the matrix V, formed by the vectors

vi , i = 1, . . . n as rows, is the analogue of the data after projection by PCA.

1.5.1.5 Simple Exponential Principal Component Analysis

Remark. Chapter 5 is an extension of this method, as such a detailed technical descrip-

tion will be given there. A brief description is given here for completeness.

Simple Exponential Principal Component Analysis (SePCA), put forward in Li and

Tao (2013), uses a very similar model to that of Bishop (1999) in BPCA. The key dif-

ference is that, rather than the observed data having mean given by the product of the

latent factors, it is the natural parameter which is given by this. As such, in the Gaus-

sian case this method reproduces BPCA as a special case, while being able to model data

14 Chapter 1. Intro

from any exponential family distribution. This method is also suitable for ARD, and the

authors give details of how to apply ARD to automatically determine an appropriate

dimension for the reduced dimension data.

1.5.1.6 Generalised Principal Component Analysis

Remark. Chapter 4 is an extension of this method, as such a detailed technical descrip-

tion will be given there. A brief description is given here for completeness.

In Landgraf and Lee (2015b) (an extension of Landgraf and Lee (2015a)), the au-

thors propose an extension of PCA to the exponential family. Like Collins et al. (2002),

this begins by recognising a connection between PCA and the estimation of the param-

eters of a Gaussian distribution. Generalised Principal Component Analysis (GPCA),

however, uses a different form for the decomposition of the natural parameters in their

extension to the exponential family, and optimises by minimising the deviance from the

saturated model.

1.5.1.7 Sparse Probabilistic Principal Component Analysis

This method from Guan and Dy (2009) essentially extends PPCA (Tipping and Bishop

1999) in much the way that SPCA (detailed in Section 1.5.2.1) extended PCA. Specifi-

cally, they use the same model as in PPCA (Section 1.5.1.1), with a choice of additional

prior distributions over W.

The first proposed prior is a two-level hierarchical prior, equivalent to a Laplacian

prior; the first level is a normal prior such that Wi j |zi j ∼ N
�
0, zi j

�
, the second level is

an exponential distribution on each zi j such that zi j ∼ Exp (λ). When marginalising out

the zi j , this is equivalent to a Laplacian prior directly on W. This prior is similar to the

ARD prior, such as is used in BPCA, although this was not explored in the original paper.

The authors also propose an inverse-Gaussian prior and a Jeffrey’s prior (that is, an

uninformative prior proportional to the square root of the determinant of the Fisher in-

formation matrix). They show that these three priors are equivalent to sparsity-inducing

penalty functions; the precise equivalences are shown in Table 1.2.

1.5.1.8 Sparse Exponential Family Principal Component Analysis

In Lu et al. (2016), the authors propose the method Sparse Exponential Family Principal

Component Analysis (SEFPCA) as an ideological extension of SPCA to EF distributions.

Denoting observed data by X composed of n observations xi , i = 1, . . . , n as the rows,

they specify the form of the natural parameters for the ith observation as WTzi + µ.

1.5. Related Work 15

Prior Equivalent Penalty

Hierarchical Laplace
∑

i

∑
j λ|Wi j|

Inverse Gaussian −1
2

∑
i

∑
j

�
log
�
W2

i j +λ
�
+ log

�
K1

�p
λ
Ç

W2
i j+λ

µ

���
Jeffrey’s

∑
i

∑
j log
�
zi j

�
Table 1.2: Equivalences between priors on W and penalty functions for Sparse Proba-
bilistic PCA. Here, K1 is the modified Bessel function of the second kind with order 1
and λ is a penalty controlling the strength of the penalty function.

Here, µ specifies the “average” natural parameters which are then diverged from by the

lower-dimensional latent variable zi through W.

Under this specification, SEFPCA seeks to minimise the function∑
n

b
�
WTzn +µ
�− Trace
��

ZW+ 1µT
�
XT
�
+ P (W,µ) (1.18)

where b is the log-partition function as described in Section 1.4 which is specified by the

choice of exponential family distribution, and P (W,µ) is a penalty function to induce

sparsity. The form of this penalty function is

P (W,b) := λ0

ZW+ 1bT
2

2 +
k∑

i=1

λi |Wi| (1.19)

which, in addition to the sparsifying effect, also helps with the stability of the estimation

process when the dimension of the data is higher than the number of observations.

1.5.1.9 Multinomial Inverse Regression

Moving away from methods derived from PCA, we will now look at a method specifi-

cally designed for dimension reduction of text data. In Taddy (2013) and Taddy (2015),

Taddy introduces Multinomial Inverse Regression (MNIR), a method for supervised di-

mension reduction of text data, based around a multinomial topic model. Specifically,

the model is

• xi ∼MN
�
qi , mi

�
for i = 1, . . . , n, where xi is the ith observation

• qi j =
exp(ηi j)∑p

l=1 exp(ηi j)
is the probability of the jth term appearing in the ith observation,

j = 1, . . . , p

• ηi j = α j + ui j + vT
i ϕ j

16 Chapter 1. Intro

Here the vi are k-dimensional “response factors” which capture the dependency of the

term counts on the response Y. That is, the vi are (possibly random) functions dependent

on Y. The terms ui j can be assembled into vectors ui =
�
ui1, . . . , uip

�T
of “subject effects”.

In this way, the individual term probabilities are decomposed into a “mean”, a subject

specific effect, and the response specific effect introduced via the inverse regression

coefficients ϕ j .

In order to estimate these parameters, Taddy specifies a full Bayesian model of priors

for α = [α1, . . . ,αp]T, Φ =
�
ϕ1, . . . ,ϕp

�T
and U = [u1, . . . ,un]T. In particular, the

model specified is

• α j ∼ N (0, 1), which identifies the logistic multinomial model, removing the need

to specify a null category

• ϕ jk ∼ Lap
�
0, 1/λ jk

�
, where each Laplace distribution is independent of the others

and the λ jk are coefficient-specific precision parameters

• λ jk ∼ Gamma (s, r), where the s and r are shared hyperparameters for the shape

and rate of the gamma distribution respectively

• exp
�
ui j

�∼ Gamma (1, 1)

Importantly, Taddy shows that this model produces a sufficient dimension reduction,

where

yi ⊥⊥ xi | vi ⇒ yi ⊥⊥ xi|ΦTxi (1.20)

They also develop a bespoke optimisation algorithm for solving this problem, stating

that the typical approaches to Bayesian inference are generally too slow for application

to text data which tends to be very high dimensional.

1.5.1.10 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA), put forward by Blei et al. (2003), is a generative

probabilistic model for text, displayed graphically as a plate diagram in Figure 1.4

To elaborate, for the d th “document” (that is, for each observation), we assume a

vector θd of topic probabilities is drawn from a Dirichlet distribution with parameter

α. Each of the nd words within that document are generated by drawing a “topic”

from a multinomial distribution with topic probabilities θd , then drawing a word from

a multinomial distribution with probabilities βz . Here, βz is the zth column of matrix β

of word probabilities.

From a dimension reduction point of view, it is the posterior distribution of θd for

d = 1, . . . , D which is of interest. In particular, we can use the posterior mean for each

1.5. Related Work 17

wz

β

θα

nd

d = 1, . . . , D

Figure 1.4: Plate diagram for Latent Dirichlet Allocation

θd as a lower-dimensional representation of the document. As the number of topics

should be significantly lower than the number of words, this should achieve a significant

reduction in the dimension of the data.

1.5.2 Non-Distributional Dimension Reduction

In contrast to the methods of the previous subsection, which have distributional assump-

tions at their heart, these methods are motivated primarily from a non-distributional

perspective.

1.5.2.1 Sparse Principal Component Analysis

The idea behind SPCA, formulated by Zou, Hastie, and Tibshirani (2006), is to create

sparse PCA loadings by enforcing an elastic net (Zou and Hastie 2005) penalty on the

components of the loading matrix. To state this more precisely, the “SPCA Criterion”

they gave was to find an approximation of some data X ∈ Rn×p of the form XBAT with

A,B ∈ Rp×k which minimises

‖X−XBAT‖22 +λ
k∑

i=1

‖βi‖22 +
k∑

j=1

λ1, j‖β j‖1 (1.21)

subject to the constraint ATA = I, and where the vectors βi are the columns of B. The

loadings matrix is B, and the two summation terms are the elastic net penalty, a com-

bination of the L1 and L2 penalties which usually gives superior performance to either

of them in isolation. This penalty has been widely applied in regression analysis with

success; given the regression-like formulation of PCA in minimising squared error the

authors had good reason to suspect that it would be effective in this context.

The critical difficulty in applying SPCA is in the number of tuning parameters, with

one parameter for the L2 penalty, and k for the L1 penalty. In practice, the authors

suggest choosing λ a small, positive number for data with n > p where it mainly fulfils

18 Chapter 1. Intro

a role in helping to reduce potential collinearity problems with the data. In order to

choose the values {λ1, j , j = 1, . . . k}, the authors suggest trying a range, determining

the best choice by balancing explained variance against sparsity.

1.5.2.2 Joint Sparse Principal Component Analysis

The idea of Joint Sparse Principal Component Analysis (JSPCA) (Yi et al. 2017) is similar

in essence to SPCA in using penalisation to induce sparsity, but rather than use the

squared L2 norm, the authors use the unsquared L2 norm directly for both the penalty

and the reconstruction error. In contrast to SPCA, they also do not use L1 penalisation

on the components. To be precise, they solve the optimisation problem

argmin
A,B∈Rp×k

‖X−XBAT‖2 +λ
k∑

i=1

‖βi‖2 (1.22)

where again the vectors βi (i = 1, . . . , k) are the columns of B. The first term is the

reconstruction error. The authors’ rationale for using the non-squared L2 norm is to

provide better robustness to outliers in the data. They use a classification problem to

demonstrate this, generating a set of noise-corrupted images (with different types of

noise) and applying (amongst others) classical PCA and their JSPCA. Each observation

is then classified using a nearest-neighbours classifier. Using the classification accuracy

as the evaluation metric, the authors show the relative performances across multiple

datasets. In some of the authors’ experiments, there is good evidence that JSPCA per-

forms better than any other PCA variant on noise-corrupted data, while some of the

experiments show more mixed results.

1.5.2.3 Robust Principal Component Analysis

Though not a sparse method, we include the work of Kwak (2008) here for its similar

aim. The focus is also on a PCA variant which is robust to outliers, something which

sparse methods often achieve. In contrast to JSPCA, Robust Principal Component Anal-

ysis (RPCA) achieves this from the framework of the projection variance maximisation

formulation of PCA. In this formulation, the aim is to find the projection matrix U ∈ Rp×k

which maximises

max‖UTX‖1 (1.23)

where X is the matrix of observed data, and where we impose the additional constraint

that UTU = I. The authors contrast this to another possible choice of L1 PCA-like opti-

misation problems

min
U∈Rp×k

‖X−UUTX‖1 (1.24)

1.5. Related Work 19

which, while more robust to outliers, is not invariant to rotations. The criteria they use,

(1.23), is invariant to rotations and is robust to outliers. It can be seen as maximising

the (L1) dispersion in the feature space as opposed to the input space.

It is important to note that, while maximising the L2 dispersion in feature space and

minimising the squared L2 reconstruction error are duals to one another, and thus both

result in classical PCA, the two problems (1.23) and (1.24) are not dual problems. This

means that the calculated projections will not, in general, be equal.

1.5.2.4 Sparse Principal Component Analysis by Rotation and Truncation

Proposed by Hu et al. (2016), Sparse Principal Component Analysis by Rotation and

Truncation (SPCArt) is an alternative sparse PCA method to SPCA. Unlike many of the

methods discussed so far, the authors do not propose either a probabilistic model to

estimate, or introduce a penalisation of the PCA optimality criterion.

Instead, their method derives from a matrix approximation problem. The authors

make use of the fact that Span (B) = Span (RB) for all full-rank rotation matrices R.

In particular, rotating the PCA loadings by a full-rank rotation produces an orthogonal

basis which spans the same subspace. The authors propose to solve

min
R∈Rk×k ,RTR=I

‖V1:kR‖0 (1.25)

where V1:k is the matrix of the k principal components, and the ‖ · ‖0 norm is applied to

the matrix by summing the column norms. Due to the difficulty of solving this problem,

the authors solve the approximation

min
R∈Rk×k ,P∈Rn×k

1
2
‖V1:k − PR‖2F +λ

n∑
i=1

‖Pi‖1 (1.26)

subject to ‖Pi‖2 = 1 for i = 1, . . . , n and RTR = I, where ‖ · ‖F is the Frobenius norm.

Here, the approximation to V1:k is given by PR, and in general it may not be orthogonal

(though for a sufficiently good approximation, it should be close to orthogonal).

As part of the solution process to this approximation of the original problem, thresh-

olding takes place. Although the solution properly calls for a type of soft thresholding,

the authors propose four different types (including the soft thresholding), each of which

possesses different properties. Of note is one type of thresholding, which the authors

call “truncation by sparsity” which allows direct control over the sparsification of the

result.

20 Chapter 1. Intro

1.5.2.5 Non-negative Matrix Factorisation

Like SPCArt, Nonnegative Matrix Factorisation (NMF) is a method based around matrix

approximation, rather than a PCA-like criteria to optimise. There are a number of dis-

tinct NMF algorithms (see Gillis (2014) for an overview), but they all focus on solving

the same problem. That problem is the decomposition of a non-negative matrix X into

the product of two non-negative matrices W and H, such that X ≈WH with W a n× k

matrix and H a k × p matrix. Here we expect k < p. Then H can be interpreted as a

basis matrix, with the rows of W giving the co-ordinates of each observation x forming

the rows of X with respect to the basis H.

In the context of text data, this factorisation has a pleasing interpretation; H cor-

responds to topics, with each column being counts (or frequencies) of terms appearing

within each topic. We can then interpret W as decomposing each observation into its

topics. Note that this interpretation is not strict, no conditions are enforced to make this

interpretation exact, but it is often appropriate in practice.

In the context of dimension reduction, we can use the matrix W as a lower-dimensional

representation of our observed data X.

1.6 Conclusion

In this chapter we have introduced the concepts of text data, dimension reduction, and

some of the popular related methods. In the following chapter, we will introduce a

Poisson based model for text data, and from there specify a Bayesian model which will

allow us to find a dimension reduction transformation for the data.

21

Chapter 2

Poisson Inverse Regression

2.1 Introduction

As each column in a document-term matrix consists of observed counts, a natural idea is

to model these variables as observations from a Poisson random variable. Conveniently,

in Cook (2007) we find that such a model fits into a framework of exponential family in-

verse regression, which leads to a simple dimension reduction framework. In this vein,

we will propose a simple Poisson model for text data, and from it show how it leads to

a linear dimension reduction transformation which is statistically sufficient. The details

of this will be given in Section 2.2; in Section 2.3 we will give two methods of estimating

the linear transformation. Recalling the similar method of Multinomial Inverse Regres-

sion (MNIR) from Section 1.5, we will compare the two methods in Section 2.4, before

concluding in Section 2.5

2.2 Poisson Inverse Regression

In this section, we will define the Poisson Inverse Regression (PoIR) model. We begin

by discussing a very simple multi-variate extension to a Poisson model, then add depen-

dence on the response through the natural parameter.

Recall that if λ is the mean of a Poisson distributed random variable (i.e. the usual

parameter), then its natural parameter is κ := log (λ). We then have the form

1
x!

exp (xκ− exp (κ))

for the probability mass function. We can extend this definition to vector-valued random

variables X where each component is an independent Poisson distribution with natural

parameter κi:
1∏p

i=1 x i!
exp

�
x · κ−

p∑
i=1

exp (κi)

�
(2.1)

where κi is the natural parameter for the ith component of X.

22 Chapter 2. Poisson Inverse Regression

The inverse regression model we will use assumes that is it X | Y which has a Poisson

distribution. In order to capture this relationship, we assume that the natural parameter

is a function of Y. In particular, we assume the following form

κi(y) = µi +ηT
i ν(y) (2.2)

where y is the observed value of Y. Here, ηi denotes the ith column of a matrix H

and ν(y) is some vector-valued function of y which, for the moment, we will place

no restrictions on in terms of form. This form assumes that there is a central mean

tendency to the natural parameter, captured by µ, which is shared across all values of

Y. Then the term ηT
i ν(y) captures the divergence from that central tendency. If we

briefly relate this back to the mean parameter of the Poisson distribution, then we can

see that the “divergence” from the central tendency has a multiplicative effect on the

expected count. In practice, this assumed form is difficult to check without making more

restrictive assumptions.

We now present the following theorem, which validates the use of this method of

dimension reduction.

Theorem 2.2.1. If X | Y has a Poisson distribution with natural parameter of the form

(2.2), then SH := ColSpace (H) is a dimension reduction subspace under the definition in

Def. 1.1.2.

Proof. Substituting 2.2 into the model 2.1, we obtain

1∏k
i=1 x i!

exp

�
x ·µ+ν(y)THTx−

k∑
i=1

exp
�
µi +ηT

i ν(y)
��

=

�
1∏k

i=1 x i!
exp

�
x ·µ−

k∑
i=1

exp (µi)

��
×
�

exp

�
ν(y)THTx−

k∑
i=1

exp
�
ν(y)Tηi

���
Notice that the left hand term is a function only of x and the right hand term is a func-

tion only of HTx and y . Then through the Fisher-Neyman factorisation theorem for

sufficiency we have that the distribution of X | �HTX,Y= y
�

is the same as the distri-

bution of X | HTX for all values of y . Consequently, Y⊥⊥X | HTX.

Now that we have established that we can, indeed, use this model to perform di-

mension reduction on text data, it seems prudent to name it.

2.2. Poisson Inverse Regression 23

Definition 2.2.1. Let X | Y = y ∼ Po
�
exp
�
µ+ν(y)TH
��

, where we overload the no-

tation Po (·) for a vector parameter to mean independent Poisson distributions for each

component of the random vector with mean given by the corresponding component

of the vector parameter (and where we apply the exponential component-wise). This

model is the “Poisson inverse regression” model.

In order to actually estimate this model, we will first establish a full Bayesian model

which will be used to perform the estimation. To do this, we assign prior distributions to

each of the parameters in the model. In order to encourage sparsity, we place a Laplace

prior with mean 0 and on each component of H. We use a shared rate parameter 1/h for

each of these priors. For flexibility, we place an exponential hyperprior on h with a fixed

rate parameter 1/ρh to be determined by experimentation. Our experience suggests

that estimation is not too sensitive to the choice of ρh, so we may search across a coarse

grid for the best value in respect to convergence of MCMC methods.

Similarly, we place a Laplace prior on each component of µ with mean 0 and rate

parameter 1/m. This prior is flexible enough to accommodate a wide range of values

for µ, while requiring increasingly more evidence from the observed data to deviate to

particularly high or low values. Upon m we place an exponential hyperprior with rate

parameter 1/ρm.

For each value of y , we place an independent standard normal prior on ν(y). In the

case of discrete-valued responses this is easy to accomplish; in the continuous-valued

case, we suggest slicing the response into discrete groups. This prior is quite uninforma-

tive; for a given dataset one may have a better understanding of the form this function

should take, in this case practitioners can use that function directly rather than attempt-

ing to estimate it.

Using sequential conditioning, we can split the joint probability function into a multi-

plication of several probabilities whose random variables are conditionally independent

as follows. Summarised, also, are the priors we have imposed.

P (x, y, h,H, m,µ,ν) = P (x | y, h,H, m,µ,ν)P (H | h)P (h)
× P (µ | m)P (m)P (ν | y)P (y) (2.3)

24 Chapter 2. Poisson Inverse Regression

ηi j ∼ Lap
�

0,
1
h

�
(2.4)

µi ∼ Lap
�

0,
1
m

�
(2.5)

h∼ Exp
�

1
ρh

�
(2.6)

m∼ Exp
�

1
ρm

�
(2.7)

νi | y ∼ N (0, 1) (2.8)

xi | y,µ,H,ν∼ Po
�
exp
�
µi +ηT

i ν(y)
��

(2.9)

Here we use the convention that the pdf of a Laplace distributed variable with mean

parameter µ and rate parameter b is

f (x) =
1

2b
exp
�
−|x −µ|

b

�
and the convention that the pdf of an Exponential random variable with rate parameter

b has pdf

f (x) =
1
b

exp
�
− x

b

�
Having fully specified the Bayesian model, we can then proceed to use methods from

Bayesian inference to estimate H.

2.3 Estimation

We have used two main methods to estimate the value of H. Firstly, we used maximum a

posteriori estimation, where we maximise P (µ,H,ν, m, h | X,y), where X is a matrix of

observed data and y is a vector of observed responses. Using (2.3) and Bayes’s theorem

we can compute the a posteriori probability. For simplicity, we have used an “off the

shelf” optimisation routine in R to find the maximum values. However, it would be

worth investing time in deriving a bespoke routine for calculating the MAP estimate,

as was done in Taddy (2013). Note that this can be extended to vector responses in a

straightforward manner, in which case we have a matrix of response values Y

We also made use of Markov Chain Monte Carlo methods; the aim of such methods

is to sample from a Markov chain whose equilibrium distribution is the posterior distri-

bution of interest. In our case, that means that we wish to construct a Markov chain

whose equilibrium distribution is the PoIR posterior distribution.

To be precise, a (discrete time) Markov chain is a type of stochastic process, where

the distribution of possible values at some time-point t is independent of all previously

2.3. Estimation 25

obtained values, except the value at t−1. This definition can be expanded to continuous

time, but will not be necessary here. The formal definition is as follows:

Definition 2.3.1. A discrete-time Markov chain is given by a sequence of random vari-

ables X1,X2, . . . such that

P (Xt = x |X1 = x1, . . . ,Xt−1 = xt−1) = P (Xt = x |Xt−1 = xt−1)

The equilibrium distribution is then given by limt→∞ P (Xt); that is, the limiting

unconditional probability density.

In Metropolis et al. (1953), a method was developed for constructing a Markov chain

with the desired equilibrium distribution under some restrictions; the work of Hastings

(1970) extended this to the general case. This method is known as the Metropolis-

Hastings method for its progenitors. It requires the ability to calculate a function f (x)

which is proportional to the desired density P (x); in the Bayesian setting this function

f (x) can be taken to be the un-normalised posterior distribution. This allows us to

avoid the (often difficult) task of calculating the integral required to normalise the pos-

terior. To give some intuition, at time step t with current value xt , the method works by

generating a proposed new value x′ sampled from a “proposal distribution” g(x′ | xt).

This proposal distribution is often taken to be a normal distribution with mean xt for

simplicity. We then calculate the “acceptance ratio”

A=min
�

f (x′)
f (xt)

g(x′ | xt)
g(xt | x′) , 1
�
=min
�P(x′)
P(xt)

g(x′ | xt)
g(xt | x′) , 1
�

and “accept” the proposed point with probability A. If we do not accept the proposed

point, we set xt+1 = xt . If the proposal distribution is symmetric, then the acceptance

ratio simplifies to

A=min
�

f (x′)
f (xt)

, 1
�
=min
�P(x′)
P(xt)

�
We can then see that, roughly, this criteria means that as t increases, we are more likely

to move to (or stay at) points that are more likely under the posterior likelihood.

We used a Gibbs-like version of the Metropolis-Hastings, in that we divided the sam-

pling step up into a sampling step for each of the variables conditional on those vari-

ables previously sampled. This method derives from the work of Geman and Geman

(1984); it works by sampling each individual component from the conditional distribu-

tion given the rest of the components. However, the intractability of sampling from

the actual conditional distributions required us to use the Metropolis-Hastings style

proposal-acceptance routine within each sampling sub-step. To expand on this, each

sampling step was as follows:

26 Chapter 2. Poisson Inverse Regression

1. Draw h(∗) from a normal distribution left-truncated at 0 with mean h(t). Calculate

the acceptance ratio

A :=
P
�
h(∗) | X,y,H(t), m(t),µ(t),ν(t)

�
P
�
h(t) | X,y,H(t), m(t),µ(t),ν(t)

� P �h(t) | h(∗)�
P
�
h(∗) | h(t)�

where the right-hand fraction is the ratio of probabilities from the truncated-

normal proposal distribution. With probability min (1, A) accept h(∗) as h(t+1),

otherwise let h(t+1) := h(t)

2. Draw H(∗) from an (uncorrelated) multivariate normal distribution with mean

H(t). Calculate the acceptance ratio

A :=
P
�
H(∗) | X,y, h(t+1), m(t),µ(t),ν(t)

�
P
�
H(t) | X,y, h(t+1), m(t),µ(t),ν(t)

� P �H(t) | H(∗)�
P
�
H(∗) | H(t)�

and accept with probability min (1, A)

3. Draw m(∗) from a normal distribution left-truncated at 0 with mean m(t). Calculate

acceptance ratio

A :=
P
�
m(∗) | X,y, h(t+1),H(t+1),µ(t),ν(t)

�
P
�
m(t) | X,y, h(t+1),H(t+1),µ(t),ν(t)

� P �m(t) | m(∗)�
P
�
m(∗) | m(t)�

and accept m(∗) with probability min (1, A).

4. Drawµ(∗) from an (uncorrelated) multivariate normal distribution with meanµ(t).

Calculate

A :=
P
�
µ(∗) | X,y, h(t+1),H(t+1), m(t+1),ν(t)

�
P
�
µ(t) | X,y, h(t+1),H(t+1), m(t+1),ν(t)

� P �µ(t) | µ(∗)�
P
�
µ(∗) | µ(t)�

accept µ(∗) with probability min (1, A)

5. For each value y ∈ Y , draw an ν(∗)y from an uncorrelated multivariate normal

distribution with mean ν(t)y . Calculate

A :=
P
�
ν(∗)y | X,y, h(t+1),H(t+1), m(t+1),µ(t+1)

�
P
�
νy(t) | X,y, h(t+1),H(t+1), m(t+1),µ(t+1)

� P�ν(t)y | ν(∗)y

�
P
�
ν
(∗)
y | ν(t)y

�
and accept with probability min (1, A).

2.4. Evaluation 27

In order to evaluate convergence, we use the Gelman-Rubin R̂ statistic Gelman and

Rubin (1992). This statistic requires us to carry out C Markov Chain Monte Carlo pro-

cesses all started from different, over-dispersed initial values. By overdispersed, we

mean selected from a distribution with significantly higher variance than their prior dis-

tribution. This helps to ensure exploring a larger range of the parameter space, leading

to better estimation. After discarding a set number of iterations for burn-in, we calculate

the following quantities from the n samples each chain gives us.

W =
1
C

C∑
j=1

s2
j

B =
n

C − 1

C∑
j=1

�
θ̄ j − ¯̄θ
�2

Where s j is the variance in the jth chain, θ̄ j is the sample mean from chain j and ¯̄θ is

the overall sample mean. For simplicity, we speak of a single parameter θ , but this is

extended to multiple parameters component-wise. These quantities give us estimates

of the within-chain and between-chain variances, respectively. We then calculate an

estimate of the variance of the so-called stationary distribution.

ÚVar (θ) =
�

1− 1
n

�
W +

1
n

B

Finally, we have

R̂=

√√√ÚVar (θ)
W

The usual convention is to keep drawing samples (and possibly discarding more as burn-

in samples) until the value of R̂ is approximately 1 (usually < 1.1) for every parameter.

Once we have that, we can pool our samples from each chain together and calculate

the mean of each parameter. Asymptotically, this parameter mean is convergent to the

expected value of that parameter over its true distribution.

Both the maximum a-posteriori (MAP) method and the Markov Chain Monte Carlo

(MCMC) method were effective in estimating the parameters of the PoIR model. How-

ever, given that we are not as interested in the posterior distributions as we are in the

posterior means, we will proceed to use the MAP as it is less computationally expensive.

2.4 Evaluation

The closest method to our formulated Poisson inverse regression is MNIR; in this section

we will evaluate the performance of our method using MNIR as the benchmark. To

28 Chapter 2. Poisson Inverse Regression

Cor : 0.402

1: 0.296

2: 0.301

3: 0.683

4: 0.668

5: 0.275

direction_1 direction_2

direction_1
direction_2

−30 −20 −10 0 −2 −1 0

0.0

0.1

0.2

0.3

0.4

−2

−1

0

Figure 2.1: Plot of two directions recovered by POIR from the we8there data.

do this, we will use a test dataset used in Taddy (2013) and made available in the

accompanying R package, namely the “we8there” dataset of restaurant reviews. The

data, as made available in the “textir” package, is already preprocessed which makes

it very convenient to work with. Figure 2.2 shows three directions recovered from the

data using POIR, and Figure 2.3 shows the one direction MNIR is able to recover. The

limitation of MNIR to one direction is due to us using only a one-dimensional response

(the overall rating). MNIR is, as implemented in “textir” and as focused on in Taddy

(2013), limited to recovering only as many directions as the dimension of the response

variable. The way we have specified the POIR model leaves us able to estimate however

many directions are appropriate.

We estimate the PoIR model using MAP, as we only need a point estimate. MNIR is

estimated using the “textir” package method, detailed in Taddy (2013). In Figure 2.1 we

show the results of estimating a two-dimensional PoIR model; a three-dimensional PoIR

model is shown in Figure 2.2. These two figures are in the form of “pairs” plots, showing

for each combination of two directions a scatterplot of the projected data (coloured

according to the value of the response), the correlations between the two directions on

a per-response-value level, as well as a one-dimensional density plot for each direction,

2.4. Evaluation 29

Cor : 0.113

1: 0.658

2: 0.427

3: 0.184

4: −0.257

5: 0.142

Cor : 0.146

1: 0.306

2: 0.432

3: 0.241

4: −0.0213

5: 0.116

Cor : 0.128

1: 0.246

2: 0.503

3: 0.201

4: 0.271

5: 0.112

direction_1 direction_2 direction_3

direction_1
direction_2

direction_3

−20 0 20 40 60 80 −4 −3 −2 −1 0 0.0 0.5 1.0

0.0

0.1

0.2

0.3

−4

−3

−2

−1

0

0.0

0.5

1.0

Figure 2.2: Plot of three directions recovered by POIR from the we8there data.

separated by response value. We also show the (one-dimensional) results from MNIR in

Figure 2.3 in both a scatterplot of the direction against the rating, and as a density plot

separated by the rating.

From Figure 2.1, we can see that two directions is not sufficient to distinguish the five

response classes; in particular the three lowest ratings (1, 2, and 3 stars) are particularly

difficult to distinguish from one another. It is no surprise, then, that the one-dimensional

MNIR shown in Figure 2.3 also struggles significantly to distinguish the five response

classes. On the other hand, Figure 2.2 shows the three-dimensional PoIR giving a more

reasonable separation of the data.

As can be seen from the two figures, the extra dimensions we are able to extract

using POIR give us significantly better separation of the five different response levels

which are indicated using colours on both plots. One direction only, in the case of

MNIR, leaves the different response levels largely inseparable; it would be difficult to

identify correctly any more than some of the 1-rated and some of the 5-rated responses.

30 Chapter 2. Poisson Inverse Regression

1

2

3

4

5

−1 0 1 2
direction_1

ra
tin

g

rating

1

2

3

4

5

0

1

2

−1 0 1 2
direction_1

de
ns

ity

rating

1

2

3

4

5

Figure 2.3: Scatterplot of the one MNIR direction recovered from the we8there data
against the rating, and density of that direction separated by rating.

2.5 Conclusion

We have shown in Section 2.4 that our PoIR is an effective method for text data dimen-

sion reduction. In fact, from 2.2.1, we know that it is a sufficient dimension reduction.

We have given two methods for estimation in Section 2.3, a method based on MAP, and

one based on MCMC.

There are some interesting directions for future work. Firstly, the model for text data

upon which PoIR is based is a very simple one which does not take into account potential

correlation between terms. Secondly, the estimation algorithms given are not tuned for

computational efficiency. As such, they are currently slower than the method provided in

Taddy (2013) and then further improved in Taddy (2015) for MNIR. It should be possible

to significantly decrease the computational time for the MAP estimation method by using

a customised optimisation algorithm, rather than the “out of the box” method we used in

our tests. It may, in fact, be possible to extend Taddy’s work on distributed multinomial

regression to the Poisson case, and adapt it for PoIR. For the MCMC method, there has

been considerable research into improved algorithms for MCMC which we have not

2.5. Conclusion 31

taken advantage of in this work.

33

Chapter 3

Healthcare Data

In this chapter, we will introduce a dataset which will be used as a “real data” example in

Chapter 4 and Chapter 5. This dataset was kindly provided by Cardiff and Vale University

Health Board.

This dataset was a by-product of a lexicon-based classifier built by the health board

in order to classify letters sent by consultants at a large hospital to general practitioners

and patients. Amongst other things, these letters either recommend further treatment,

or a discharge from the out-patient service, but almost all of these letters are unlabelled.

In order to better model patient pathways, the health board informatics team wanted to

have labels assigned to each; given that they have over one million such letters, it was

economically infeasible to label each of these by hand.

In order to deal with this problem, the health board developed a lexicon of just

over 40,000 procedurally generated sentences, built from exemplar phrases and words

related to either a follow-up or discharge decision. This lexicon could then be used with

a nearest-neighbour classifier to predict the label for the letters. In order to validate

this process, they had a number of letters manually labelled. This process also helped

suggest further “seeds” for the lexicon generation process.

Some example sentences with their classification are included below.

Discharge “I DID NOT FEEL THERE WAS ANY NEED FOR HIM TO BE FOLLOWED UP”

Discharge “I DID NOT FEEL THERE WAS ANY NEED FOR HIM TO BE REVIEWED”

Discharge “I DID NOT FEEL THERE WAS ANY NEED FOR HIM TO BE SEEN AGAIN”

Follow-up “I WILL SEE HER AGAIN IN CLINIC [˜CLINIC˜]”

Follow-up “I WILL SEE HER AGAIN IN [˜CLINIC˜]”

Follow-up “I WILL SEE HER IN CLINIC [˜CLINIC˜]”

34 Chapter 3. Healthcare Data

Due to the procedural generation process, which produces many very similar “doc-

uments”, we encountered difficulties applying any algorithms to the entire dataset. To

combat this (with the added benefit of making experiments quicker to run), we worked

with a subset of 300 examples from the lexicon.

The lexicon which was generated had a heavy imbalance in favour of follow-up

examples. Because the methods in this work are not designed to cope with such a heavy

imbalance as is present in the original dataset, this subset was randomly sampled to

consist of 150 “discharge” sentences and 150 “follow-up” sentences.

In order to prepare the lexicon data for analysis with the methods developed in

Chapters 4 and 5, we first stemmed the words using the R package “RTextTools”. The

stemmed documents were then converted into a document-term matrix using the same

package.

35

Chapter 4

Sparse Generalised Principal

Component Analysis

In this chapter we introduce Sparse Generalised Principal Component Analysis (SG-

PCA), a dimension reduction technique developed from the Generalised Principal Com-

ponent Analysis (GPCA) of Landgraf and Lee (2015b). We begin by a recollection of the

vector-space model of text data and an explanation of how that motivates sparsity in

Section 1.2.

We will introduce GPCA as an extension of Principal Component Analysis (PCA)

which is suitable for data from any exponential family of distribution in Section 4.2,

before defining our extension SGPCA in Section 4.3. This will involve an exploration of

methods of penalisation (Section 4.3.1) and an efficient algorithm for estimation of the

loadings matrix (Section 4.3.2).

In Sections 4.4 and 4.6 we will examine the efficacy of SGPCA in several ways. Firstly,

we will conduct synthetic data experiments using a hidden factor model in Section 4.4.1,

a two-class hidden factor model in Section 4.4.2 and a varying-noise hidden factor model

to explore robustness against noise in Section 4.4.3. Section 4.6 will comprise of the

application and analysis of SGPCA to a healthcare text dataset.

Finally, we will summarise the results of this chapter in Section 4.7.

4.1 Introduction

4.1.1 Text Data

Recalling from Section 1.2, in the vector-space model for text data we represent each

document in a corpus as a row in a data matrix X =
�
x i j

�i=n, j=p
i=1, j=1 . Each column of X

represents a term (either a word or n-gram) which appears in the corpus. Then the

element x i j is the number of times the ith document contains term j. Often, a suitable

36 Chapter 4. Sparse Generalised Principal Component Analysis

model for the data is that each term has a Poisson distribution with some mean λ j for

j = 1, . . . , p.

It is important for our future discussion to note two points. Firstly, that such data is

not Gaussian; in fact, whilst the Gaussian distribution is a reasonable approximation to

the Poisson distribution for large enough λ, it is rare in a text mining scenario for such

values of λ to occur. Secondly, across a collection of documents, we can often expect

many terms to be common to most of the documents. We are often interested in either

classifying or clustering documents, but these common terms are uninformative in these

contexts. As such, we might expect that a dimension reduction across the corpus would

not include contributions from these terms, thus motivating our belief in sparsity.

4.2 Generalised Principal Component Analysis

4.2.1 Generalised Principal Component Analysis Definition

Let us now return to the earlier definition of PCA in (1.3). In Landgraf and Lee (2015a)

and Landgraf and Lee (2015b), the authors recognised that this squared reconstruction

error is equivalent (up to a constant) to the deviance of a model where the observations

are from a Gaussian distribution with known variance and a natural parameter matrix

of the form ÒΘ= 1nµ
T +
� eΘ−1nµ

T
�
UUT (4.1)

where eΘ is the matrix of saturated natural parameters, U ∈ Rp×k, µ ∈ Rp and we

constrain UTU = I. This connection can be seen by recognising that the canonical link

function for the Gaussian distribution is merely the identity function, so the saturated

natural parameters are simply the observed values. Note that the matrix ÒΘ has rank k,

compared to eΘ which has rank p. It is precisely this low-rank approximation which can

be used as a lower-dimensional analogue to the observed data. Once optimal µ and U

have been identified, ÒΘ can be calculated.

In order to generalise this to exponential family data (binary in Landgraf and Lee

(2015a), most exponential families in Landgraf and Lee (2015b)), we seek the deviance-

optimal parameters U and µ. Here, the deviance refers to a measure of model quality,

comparing one model (within the same family) to the saturated model (the model with

natural parameters equal to the saturated natural parameters). Formally, the deviance is

defined by the log of the likelihood ratio; this is equivalent to the difference of the log-

likelihood. The deviance is non-negative, with minimum 0 achieved at the saturated

model. We now prove a lemma regarding the form of the deviance under the GPCA

model.

4.3. SGPCA Definition 37

Lemma 4.2.1. Let X ∈ Rn×p be n observations of a p-dimensional random vector X =

[X1, . . . ,Xp]T where X j has an exponential family distribution with log-partition function

b j for j = 1, . . . , p. Denote by eΘ the matrix of saturated natural parameters and let ÒΘ be

the low-rank approximation with i jth component θ̂i j . Then the deviance up to an additive

constant and multiplication by a positive factor is given by

D
�
X | ÒΘ� +×∝ n∑

i=1

p∑
j=1

�
b j

�
θ̂i j

�− x i j θ̂i j

�
(4.2)

Proof. Properly, we have

D
�
X | ÒΘ�= − 2
�
logP
�
X | ÒΘ�− logP
�
X | eΘ�� (4.3)

+×∝ − logP
�
X | ÒΘ� (4.4)

= log
n∏

i=1

p∏
j=1

�
h j(x i j)exp
�
x i j θ̂i j − b j

�
θ̂i j

���
(4.5)

= −
n∑

i=1

p∑
j=1

�
log h j

�
x i j

�
+ x i j θ̂i j − b j

�
θ̂i j

��
(4.6)

+∝
n∑

i=1

p∑
j=1

�
b j

�
θ̂i j

�− x i j θ̂i j

�
(4.7)

Remark. From this point on, when we refer to D(X | ÒΘ) we will actually refer to the

right hand side of (4.2) unless otherwise stated. From the point of view of optimisation,

the two are entirely equivalent.

Definition 4.2.1. For some observed data X ∈ Rn×p, the rank k GPCA approximation is

the pair U and µ satisfying

U,µ= argmin
U∈Rp×k ,µ∈Rp

D
�
X | 1nµ

T +
� eΘ−1nµ

T
�
UUT
�

subject to UTU = I

4.3 Sparse Generalised Principal Component Analysis

4.3.1 Penalisation

As the goal of SGPCA is to provide a method comparable to GPCA but with sparse load-

ings, the first step to defining it is to discuss penalisation in the context of penalised

optimisation. We will be placing a penalty function P(U) on the components of U, and

rather than optimising the deviance directly, we shall optimise the deviance plus the

38 Chapter 4. Sparse Generalised Principal Component Analysis

penalty function, with the aim to jointly minimise both, finding a good compromise

between sparsity and deviance-optimality. We will consider two well-used penalty func-

tions in order to construct our penalty function, the Smoothly Clipped Absolute Devia-

tion (SCAD) penalty and the L1 penalty. Both of these have well-understood properties,

and are often used in the sparsity context.

Remark. We also briefly investigated the L2 penalty due to its frequent use in sparsifying

methods (especially in conjuction with the L1 penalty in the so-called elastic net (Zou

and Hastie 2005)). Unfortunately, due to the semi-orthogonality constraint on U, the

L2 penalty on matrices (often known as the Frobenius norm) would be always equal to

k on U.

4.3.1.1 Smoothly Clipped Absolute Deviation Penalty

The SCAD penalty, due to Fan and Li (2001), is usually defined by its derivative

P ′S (θ ;λ, a) := λI (θ ≤ λ) + (aλ− θ)+
a− 1

I (θ > λ) (4.8)

where I (A) is the indicator function on the proposition A and (x)+ = max {x , 0}. An

application of integration shows that the penalty function itself is

PS(θ ;λ, a) =

λθ 0< θ ≤ λ
−θ2−2aλθ+λ2

2(a−1) λ < θ ≤ aλ
(a+1)λ2

2 aλ < θ

(4.9)

A graph of PS (|θ |) is shown in Figure 4.1. Examination either of (4.9) or Figure 4.1 will

reveal that within λ of the origin the penalty decreases towards 0 linearly, more than

aλ from the origin the penalty is a (positive) constant, and between the two regions

the penalty is a quadratic joining the two regions. With this in mind, one can under-

stand the motivation behind the penalty – to drive coefficients close to 0 down to 0,

to penalise coefficients larger than a certain threshold only a constant amount, under

the recognition that large enough coefficients are probably needed by the model, and

to transition smoothly between the two behaviours. To illustrate the way in which the

penalty changes with λ, in Figure 4.2 we show the penalty for three different values of

λ.

We will be applying the SCAD penalty to U as follows:

PS (U;λ, a) =
n∑

i=1

p∑
j=1

PS

�|Ui j|;λ, a
�

(4.10)

4.3. SGPCA Definition 39

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0.
00

0
0.

01
0

0.
02

0

θ

Figure 4.1: The (symmetrised) SCAD penalty, with λ = 0.1 and a = 3.7. In the region
[−λ,λ], the function is shown dashed; in the region (−∞,−aλ)∪ (aλ,∞) it is shown
dotted; the quadratic joining sections are shown solid.

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
04

0.
08

θ

Figure 4.2: The (symmetrised) SCAD penalty shown for λ = 0.1 (solid line), λ = 0.15
(dashed line), and λ= 0.2 (dotted line).

Note that the SCAD penalty takes two parameters, λ and a. The latter is usually

taken to be 3.7 due to an argument in the original paper, but the former must be chosen

on a case-by-case basis. We will usually take it to be a small value on the order of 10−1

or smaller.

40 Chapter 4. Sparse Generalised Principal Component Analysis

4.3.1.2 L1 Penalty

The L1 penalty on U is simply ‖U‖1 = ∑ni=1

∑p
j=1 |Ui j|. Its simplicity in comparison

with the SCAD penalty is obvious, but it does come with the disadvantage of reduced

flexibility and power. We will investigate whether this is truly a disadvantage in our

application, or whether its performance is sufficient.

4.3.1.3 Total Penalty Function

We define the total penalty function

P(U; a,λ,λS,λL) := λSPS (U; a,λ) +λL‖U‖1 (4.11)

Note that this penalty function has two additional parameters, λS and λL; these are used

both to control the relative importance of each penalty function to each other, and the

relative importance to the deviance. A linear combination of the two penalties was cho-

sen in order to make their comparison easier; in practice we would not advise using both

penalties, although we will later compare the performance of this “doubly penalised”

model against the singly penalised versions for thoroughness. SGPCA is fairly sensitive

to appropriate specification of these parameters to manage the desire for sparsity against

the need for a deviance-optimal fit. We will discuss some heuristic strategies for choos-

ing appropriate values in Sec 4.7, along with the need to develop a general data-driven

method for their selection.

4.3.1.4 Definition of SGPCA

We can now define the SGPCA approximation.

Definition 4.3.1. Let X ∈ Rn×p be a matrix of n observations of p variables and let the

jth variable have an exponential family distribution with log-partition function b j . LeteΘ ∈ Rn×p denote the matrix of saturated natural parameters. Then, letting D and P

have the definitions given in (4.2) (4.11). Then the SGPCA approximation for X is the

pair U ∈ Rp×k and µ ∈ Rp satisfying

U,µ= argmin
U∈Rp×k ,µ∈Rp

�
D
�
X | ÒΘ�+ P (U; a,λ,λS,λL)

�
4.3.2 Estimation

Now that we have defined the SGPCA approximation, it remains to discuss how to esti-

mate the optimum U and µ. Unfortunately, this is not an easy task due to the singulari-

ties of the penalty function at 0 components and the semi-orthogonality condition on U.

4.3. SGPCA Definition 41

This is further complicated by the non-convexity of the objective function. In general,

this means that finding the global minimum is not guaranteed. In practice, we have not

found this to be particularly problematic, as local minima have been sufficiently good

for our purposes.

In order to optimise the objective function, we would like to be able to use gradient-

based methods, but the singularities of the penalty function preclude doing so directly.

To avoid this problem, we will use the method of Hunter and Li (2005) to derive an

appropriate, differentiable and non-singular majoriser of the penalties. To summarise,

they showed that, for penalties of the form P (θ) = λp (|θi|) where p is non-decreasing,

convex and have limθ↓0 p′ (θ)<∞ the function

Φθ0
(θ) := λp(|θ |) +

�
θ2 − θ2

0

�
λp′ (|θ0|+)

2|θ0|
is a majoriser. That is, Φθ0

≥ λp (|θ |) for all θ with equality when θ = θ0. Note that

here p′ (|θ0|+) means the right hand limit of the function at |θ0|.
As the SCAD component function is convex, and our total SCAD penalty is merely a

weighted sum (with non-negative weights) of the component functions evaluated at the

absolute value of the components, we can apply this result to majorise the SCAD term of

our penalty function. Under the notation of Hunter and Li, the L1 penalty is also of this

form, as the corresponding p function is merely the identity function which is convex.

Thus, we can majorise our total penalty function P (U; a,λ,λS,λL) by an appropriately

calculated combination of Φθ0
functions.

Lemma 4.3.1. The function Φ(t−1) defined below is a majoriser of the total penalty func-

tion.

Φ(t−1) :=
n∑

i=1

p∑
j=1

λL

���u(t−1)
i j

���+ u2
i j −
�
u(t−1)

i j

�2
2
���u(t−1)

i j

���
 +

λS

PS

����u(t−1)
i j

��� ;λ, a
�
+

�
u2

i j −
�
u(t−1)

i j

�2�
P ′S
����u(t−1)

i j

���+;λ, a
�

2
���u(t−1)

i j

���
 (4.12)

Proof. An application of the result of Hunter and Li (2005).

However, our majoriser is not defined everywhere; it contains a singularity at all U0

with at least one component equal to 0. Fortunately, we can remove this singularity with

a perturbed version of the majoriser:

42 Chapter 4. Sparse Generalised Principal Component Analysis

Φ(t−1) :=
n∑

i=1

p∑
j=1

λL

���u(t−1)
i j

���+ u2
i j −
�
u(t−1)

i j

�2
2
����u(t−1)

i j

���+ ϵ�
 +

λS

PS

����u(t−1)
i j

��� ;λ, a
�
+

�
u2

i j −
�
u(t−1)

i j

�2�
P ′S
����u(t−1)

i j

���+;λ, a
�

2
����u(t−1)

i j

���+ ϵ�
 (4.13)

This new perturbed majoriser is not, in fact, a majoriser for our penalty function

except in the limit ϵ ↓ 0, but we will refer to it as such under this understanding. Hunter

and Li showed that such perturbed majorisers do majorise a perturbed version of the

problem, differing by a term with a multiplicative factor of ϵ. As such, we can hope that

with small enough ϵ, solving the perturbed problem will provide a good approximation

to solving the original problem.

Now we have an expression for a (perturbed) majoriser which is defined everywhere

and is differentiable, we can proceed to use gradient methods to find the optimum U

and µ. We will treat the two quantities separately, in a batched coordinate-descent

style. As optimising over µ is fairly simple, we will concentrate on how to perform

optimisation over U. We need to preserve the left semi-orthogonality condition; we

could use a Langragian method, but we prefer to use a more direct method from Wen

and Yin (2013). Given a feasible point U and the gradient at that point G, they first

define the matrix A := GUT −UGT (in notation consistent with our use) which is skew-

symmetric, that is, AT = −A. Next, they define Y(τ) by the Crank-Nicholson-like scheme

Y(τ) = U− τ2 A (U+ Y(τ)). The solution to this can be given explicitly as

Y(τ) =
�
I+ τ

2
A
�−1 �
I− τ

2
A
�

U (4.14)

Wen and Yin show that Y(τ) possesses several very important features: for all τ≥ 0 we

have that (Y(τ))T Y(τ) = UTU, it is smooth in τ, Y(0) = U, and finally Y(τ) defines a

descent path for τ≥ 0. It is important to note that, while this function does involve two

matrix inversions, an efficient algorithm for calculating them is given in Wen and Yin

(2013) which we recommend.

Now all that is needed is the appropriate gradients for the objective function which

we will denote by S.

Lemma 4.3.2. The gradient of the objective function

4.3. SGPCA Definition 43

1. with respect to Ukl is

∂ S
∂Ukl

=
n∑

i=1

p∑
j=1

��
b′j
�
µ j +
�
UUT
�
θ̃i −µ
��

j

�− x i j

�
× �δk jU

T
[l]

�
θ̃i −µ
�
+U jl

�
θ̃ik −µk

���

+

�
λL +λSP ′S
����U(t−1)

kl

���+;λ, a
��

Ukl

ϵ +
���U(t−1)

kl

��� (4.15)

2. with respect to µk is

∂ S
∂ µk

=
n∑

i=1

p∑
j=1

�
b′j
�
µ j +
�
UUT
�
θ̃i −µ
��

j

�− x i j

��
δ jk −
�
UUT
�

jk

�
(4.16)

Proof. First, we calculate the derivative of the majorised penalty with respect to the kl

element of U, i.e. ∂
∂Urs

Mϵ
P

�
U|U(t−1)
�

∂Mϵ
P

∂Ukl
=
∂

∂Ukl

n∑
i=1

p∑
j=1

�
λL

���U(t−1)
i j

���+λSPS

����U(t−1)
i j

����

+

h
U2

i j −
�
U(t−1)

i j

�2ih
λL +λSP ′S
����U(t−1)

i j

����i
2
h
ϵ +
���U(t−1)

i j

���i
�

=
n∑

i=1

p∑
j=1

 ∂∂Ukl

h
U2

i j −
�
U(t−1)

i j

�2i λL +λSP ′S
����U(t−1)

i j

����
2
h
ϵ +
���U(t−1)

i j

���i

=
2Ukl

�
λL +λSP ′S
����U(t−1)

kl

�����
2
h
ϵ +
���U(t−1)

kl

���i =
Ukl

�
λL +λSP ′S
����U(t−1)

kl

�����h
ϵ +
���U(t−1)

kl

���i
where we suppress the arguments PS for notational clarity.

Next, we calculate the gradient of the deviance function with respect to Ukl

∂ D
∂Ukl

=
∂

∂Ukl

� n∑
i=1

p∑
j=1

�
b j

�
µ j +
�
UUT
�
θ̃i −µ
	�

j

�− x i j

¦
µ j +
�
UUT
�
θ̃i −µ
	�

j

©�
=

n∑
i=1

p∑
j=1

§¦
b′j
�
µ j +
�
UUT
�
θ̃i −µ
	�

j

�− x i j

© ∂
∂Ukl

�
µ j +
�
UUT
�
θ̃i −µ
	�

j

�ª
=

n∑
i=1

p∑
j=1

§¦
b′j
�
µ j +
�
UUT
�
θ̃i −µ
	�

j

�− x i j

©§
δk jU

T
[l]

�
θ̃i −µ
�︸ ︷︷ ︸

(∗)
+U jl

�
θ̃ik −µk

�︸ ︷︷ ︸
(†)

ªª

44 Chapter 4. Sparse Generalised Principal Component Analysis

Where (∗) comes from the terms quadratic in Ukl and (†) is from the terms linear in Ukl .

Combining the two expressions, we get (4.15).

Next, we calculate the derivative of the objective function with respect to µk. First,

note that the majorised penalty does not depend on µ, so we need only calculate the

gradient of the deviance function.

∂

∂ µk

� n∑
i=1

p∑
j=1

�
b j

�
µ j +
�
UUT
�
θ̃i −µ
	�

j

�− x i j

¦
µ j +
�
UUT
�
θ̃i −µ
	�

j

©�
=

n∑
i=1

p∑
j=1

§¦
b′j
�
µ j +
�
UUT
�
θ̃i −µ
	�

j

�− x i j

© ∂
∂ µk

�
µ j +
�
UUT
�
θ̃i −µ
	�

j

�ª
=

n∑
i=1

p∑
j=1

§¦
b′j
�
µ j +
�
UUT
�
θ̃i −µ
	�

j

�− x i j

©§
δ jk − ∂

∂ µk

�
UUTµ
�

j

ªª
=

n∑
i=1

p∑
j=1

¦¦
b′j
�
µ j +
�
UUT
�
θ̃i −µ
	�

j

�− x i j

©¦
δ jk −
�
UUT
�

jk

©©

Remark. Although the gradients are given in Lemma 4.3.2, in practice we approximate

the gradients by finite differences for reasons of computational efficiency.

In Algorithm 1 we summarise the procedure for calculating the estimated U and µ

for SGPCA. In our implementation, we find the minimising value of µ using the OPTIM

function in R (R Foundation for Statistical Computing, Vienna 2011). We find the ap-

propriate value of τ by the line search algorithm of Nocedal and Wright (1999); we

do not give explanation of this method here as the exact implementation of this aspect

of the algorithm is fairly arbitrary, any line search algorithm would be sufficient. The

algorithm of Nocedal and Wright is chosen upon the recommendation in Wen and Yin

(2013).

A naive implementation of this algorithm tends to be computationally expensive,

but with suitable care taken with evaluating the necessary functions it can be evaluated

in a reasonable time-frame. In particular, we recommend using the efficient algorithm

for the matrix inverses in Y(τ). We have also found success using an automatic differen-

tiation scheme to calculate both the objective function and its gradient simultaneously,

though we do not yet have a concrete recommendation for this.

Remark. We remark that this algorithm for estimation does not come with any guar-

antees of convergence to the global minimum. Fortunately, our experience in practice

4.4. Synthetic Data Examples 45

is that starting at the recommended initial values leads to convergence to a minimum

which is sufficiently good.

4.4 Synthetic Data Examples

We will now investigate the performance of SGPCA in three situations using synthetic

data; firstly, we will explore its performance on some synthetic data generated by a hid-

den factor model and evaluate the ability of SGPCA to identify directions corresponding

to those hidden factors, secondly we will perform a similar analysis but using data drawn

from two different hidden factor models and test the ability of SGPCA to find directions

which can differentiate the two classes of data, finally we will test the robustness of the

SGPCA loadings to noise by repeating the analysis from the first synthetic model but

with varying levels of noise.

Throughout this analysis, we will use the following distribution for noise, which we

will denote by E and observations from it by ε.

E (η) := P× (−1)B, P∼ Po (η) , B∼ Bernoulli (1/2) (4.17)

That is, it is a Poisson random variable of mean η multiplied with equal probability by

1 or −1.

We will differentiate between three types of SGPCA in this and the following section:

L1 penalised SGPCA, SCAD penalised SGPCA and the combined SGPCA. The first will

denote the case where λS = 0, the second will denote the case where λL = 0 and the

third will denote the case where both λS and λL are non-zero. This will allow us to

analyse the performance of each penalty together and in isolation.

4.4.1 “Classless” Data Exploration

The hidden factor model we will use to test the performance of SGPCA will be con-

structed around three hidden factors, V1, V2 and V3 which will be a linear combination

of the previous two. In particular,

V1 ∼ Po (25) V2 ∼ Po (30) V3 = 1V1 + 3V2

Each observations xi will be constructed by drawing v1i , v2i and v3i from V1, V2 and V3

respectively, then denoting the jth component of xi by x i j , we have

x i j = v1i+εi j , j ∈ {1, 2, 3, 4} x i j = v2i+εi j , j ∈ {5, 6, 7, 8} x i j = v3i+εi j , j ∈ {9, 10}

46 Chapter 4. Sparse Generalised Principal Component Analysis

where each εi j
i.i.d∼ E (2). We drew 100 observations, and performed L1 SGPCA with

λL = 107, SCAD SGPCA with λ = 0.1 and λS = 106, and the combined penalty SG-

PCA with λL = 106, λS = 106 and λ = 0.05. We also performed PCA, Sparse Principal

Component Analysis (SPCA), Robust Principal Component Analysis (RPCA), Nonnega-

tive Matrix Factorisation (NMF) and Latent Dirichlet Allocation (LDA). The first load-

ings/directions from all algorithms are shown in Table 4.1, and the second in Table 4.2.

Analysis of Table 4.1 shows that for each of the three SGPCA variants, the first load-

ing picks a direction corresponding primarily with the second hidden factor, and secon-

darily with the third hidden factor. Picking out both of these hidden factors together

is to be expected, as these two factors are very highly correlated. On the other hand,

GPCA’s first loading does not strongly identify a direction associated with any hidden

factor. PCA, SPCA, SPPCA and RPCA all have quite similar performance, all finding a

direction most associated with the third hidden factor, with some contribution from the

second. NMF finds a direction primarily associated with the third hidden factor, with

small contribution from the second hidden factor and slightly larger contribution from

the first hidden factor. LDA primarily identifies the third hidden factor.

Looking at the second loadings/directions in Table 4.2, we see that all three SGPCA

variants strongly identify the first hidden factor. GPCA returns a similar loading, but with

smaller coefficients for the components of the first hidden factor, and fairly large coef-

ficients (of opposite sign) for the second. It also includes contributions from the third

hidden factor. PCA returns fairly similar loadings to GPCA, with slightly larger contribu-

tions from the first hidden factor and slightly smaller from the second and third. SPCA,

SPPCA and RPCA perform very simiarly to PCA. NMF, on the other hand, produces a

loading similar in characteristics to its first loading, strongly identifying the third hid-

den factor with some contribution from the second. LDA also does not identify anything

more than its first direction, finding primarily the third hidden factor.

Of all the algorithms considered, the performance of SGPCA is the best. Its first

loading identifies the second hidden factor and the strongly correlated third hidden

factor, and the second identifies the first hidden factor. Although GPCA, PCA, SPCA

and RPCA provide similar identification in the second loading, they all include larger

contributions from the second hidden factor, somewhat reducing interpretability.

4.4.2 Classed Synthetic Data Exploration

Although SGPCA is not a supervised dimension reduction method, we believe it should

be capable of identifying directions suitable for differentiating between classes. To in-

vestigate this, we perform a similar study to that in Section 4.4.1, but drawing 100

4.4. Synthetic Data Examples 47

Data: X, tol, λS, λ, a, λL
Result: U, µ
calculate saturated natural parameters matrix eΘ;
set µ(0) equal to the column means of eΘ;

set U(0) equal to the first k eigenvalues of eΘ−1µT;
set t = 1;
while ‖U(t) −U(t−1)‖2 > tol or ‖µ(t) −µ(t−1)‖2 > tol or t = 1 do

set µ(t) to the minimiser of the objective function w.r.t. µ;
set G to the gradient of the objective function w.r.t. U;

set A= G
�
U(t−1)
�T −U(t−1)GT;

define function Y(τ) =
�
I+ τ2 A
�−1 �I− τ2 A
�
U(t−1);

set τ∗ to the value of τ which minimises the objective function along the
path of Y(τ), using µ(t) as the value of µ;

set U(t) = Y(τ∗);
set t = t + 1;

end
Algorithm 1: SGPCA Estimation Procedure

L1 SCAD Both GPCA PCA SPCA RPCA NMF LDA SPPCA

0.085 0.074 0.107 -0.283 0.045 0.000 -0.022 0.074 0.203 -0.195
0.094 0.095 0.094 -0.306 0.051 0.002 -0.024 0.074 0.178 -0.198
0.055 0.058 0.049 -0.290 0.040 0.000 -0.013 0.069 0.118 -0.191
0.045 0.052 0.032 -0.284 0.034 0.026 -0.019 0.068 0.243 -0.189
0.418 0.426 0.396 -0.336 0.193 0.132 -0.205 0.186 0.085 -0.275
0.440 0.434 0.461 -0.334 0.207 0.133 -0.212 0.194 0.180 -0.282
0.420 0.418 0.433 -0.334 0.201 0.123 -0.198 0.190 0.229 -0.279
0.445 0.447 0.441 -0.358 0.209 0.160 -0.219 0.189 0.141 -0.283
0.342 0.341 0.330 -0.311 0.641 0.668 -0.639 0.647 0.805 -0.517
0.345 0.345 0.340 -0.316 0.646 0.691 -0.645 0.645 0.307 -0.520

Table 4.1: First loading/direction for synthetic data, using L1 penalised SGPCA, SCAD
penalised SGPCA, the combined penalty SGPCA, GPCA, PCA, SPCA, RPCA, NMF, LDA
and Sparse Probabilistic Principal Component Analysis (SPPCA)

48 Chapter 4. Sparse Generalised Principal Component Analysis

L1 SCAD Both GPCA PCA SPCA RPCA NMF LDA SPPCA

0.470 0.452 0.493 -0.373 -0.458 -0.485 -0.443 0.217 0.059 0.408
0.481 0.475 0.490 -0.380 -0.466 -0.483 -0.457 0.218 0.082 0.413
0.511 0.517 0.505 -0.428 -0.496 -0.526 -0.519 0.227 0.137 0.428
0.505 0.522 0.484 -0.429 -0.493 -0.479 -0.486 0.228 0.028 0.427

-0.082 -0.084 -0.068 0.270 0.133 0.065 0.148 0.126 0.209 0.236
-0.106 -0.108 -0.094 0.299 0.175 0.111 0.164 0.123 0.133 0.259
-0.082 -0.070 -0.098 0.265 0.130 0.047 0.096 0.135 0.095 0.235
-0.077 -0.079 -0.062 0.277 0.131 0.076 0.152 0.126 0.163 0.235
0.018 0.015 -0.006 0.143 -0.017 0.000 -0.070 0.608 0.412 0.175
0.022 0.019 0.008 0.141 -0.036 0.000 -0.056 0.606 0.839 0.185

Table 4.2: Second loading/direction for synthetic data, using L1 penalised SGPCA, SCAD
penalised SGPCA, the combined penalty SGPCA, GPCA, PCA, SPCA, RPCA, NMF and LDA

observations each from two different hidden factor models. The first 100 observations

have hidden factors

V1 ∼ Po (25) V2 ∼ Po (25) V3 = 1V1 + 3V2

and the second 100 observations have hidden factors

V1 ∼ Po (25) V2 ∼ Po (35) V3 = 2V1 + 1V2

We construct all of the observations by the same method as before. We then perform the

same algorithms as before, with the addition this time of Multinomial Inverse Regression

(MNIR), using as a response the class identifier 0 for the first 100 observations and 1

for the second 100. The loadings/directions for all algorithms are given in Table 4.3.

The primary differentiating factors between the two classes of data are the second

hidden factor and the third hidden factor. As such, the strong identification of the sec-

ond hidden factor by the loading of the L1 penalised SGPCA is excellent. Interestingly,

the SCAD and combined penalty SGPCA loadings are somewhat confused, suggesting

that the L1 penalty may be preferable. The first GPCA loading assigns roughly simi-

lar coefficients to the first and second hidden factors, and slightly lower coefficients to

the third. Once again, PCA, SPCA, SPPCA and RPCA give similar loadings, concentrating

mostly on the third hidden factor with a smaller contribution of the first. NMF also gives

highest weighting to the third hidden factor, with a smaller contribution from the first

and an even smaller by the second. LDA assigns mostly small coefficients, except to one

of the components containing the third hidden factor. MNIR performs quite similarly to

GPCA, giving very similar coefficients to both the first and second hidden factors, and

smaller coefficients to the third hidden factor.

4.4. Synthetic Data Examples 49

L1 SCAD Both GPCA PCA SPCA RPCA NMF LDA MNIR SPPCA

-0.227 -0.196 -0.184 -0.193 -0.123 -0.116 -0.126 0.162 0.198 0.000 0.240
0.042 0.023 0.023 -0.225 -0.110 -0.109 -0.113 0.165 0.263 0.000 0.233

-0.119 -0.101 -0.089 -0.226 -0.127 -0.125 -0.131 0.164 0.098 0.000 0.243
-0.025 -0.030 -0.025 -0.239 -0.120 -0.119 -0.129 0.163 0.183 0.000 0.237
-0.078 -0.069 -0.062 -0.431 -0.130 -0.128 -0.134 0.196 0.245 0.447 0.243
-0.036 -0.058 -0.068 -0.437 -0.130 -0.131 -0.125 0.197 0.208 0.469 0.243
-0.066 -0.042 -0.027 -0.441 -0.129 -0.129 -0.127 0.197 0.174 0.448 0.243
-0.062 -0.053 -0.045 -0.428 -0.126 -0.123 -0.127 0.197 0.097 0.446 0.240
-0.674 -0.682 -0.684 -0.156 -0.656 -0.657 -0.650 0.605 0.307 -0.301 0.515
-0.679 -0.687 -0.691 -0.159 -0.668 -0.670 -0.670 0.610 0.782 -0.300 0.524

Table 4.3: Loadings/directions for classed synthetic data, using L1 penalised SGPCA,
SCAD penalised SGPCA, the combined penalty SGPCA, GPCA, PCA, SPCA, RPCA, NMF,
LDA and MNIR

4.4.3 Robustness Against Noise

In order to investigate how robust the loadings given by SGPCA are to noise, we will per-

form a similar synthetic data analysis to that in Section 4.4.1, but varying the parameter

of noise. That is,

V1 ∼ Po (25) V2 ∼ Po (30) V3 = 1V1 + 3V2

We then construct each observation xi by drawing v1i from V1, v2i from V2 and con-

structing v3i = 3v1i + v2i , then we have

x i j = v1i+εi j , j ∈ {1, 2, 3, 4} x i j = v2i+εi j , j ∈ {5, 6, 7, 8} x i j = v3i+εi j , j ∈ {9, 10}
where the εi j are independent observations from E (η). Then η is our noise parameter,

we will find SGPCA loadings for each η ∈ {1, 2, 3, 4}. We again drew 100 observations

and performed L1 SGPCA with λL = 107, SCAD SGPCA with λ= 0.1 and λS = 106, and

the combined penalty SGPCA with λL = 106, λS = 106 and λ = 0.05. The loadings for

the L1 penalised SGPCA are displayed in Table 4.4a, for the SCAD penalised SGPCA in

Table 4.4b, and for the combined penalty SGPCA in Table 4.4c.

An examination of Table 4.4a suggests that, for all four magnitudes of noise, the

loadings of L1 penalised SGPCA are very similar (up to sign changes), with the first load-

ing consistently identifying a direction primarily capturing the second and third hidden

factors, and the second loading capturing the first hidden factor. Table 4.4c suggests

that the combined penalty SGPCA has the same characteristics. However, Table 4.4b

suggests that the SCAD penalised SGPCA is not quite so robust; both loadings seem to

50 Chapter 4. Sparse Generalised Principal Component Analysis

η= 1 η= 2 η= 3 η= 4 η= 1 η= 2 η= 3 η= 4

Lo
ad

in
g

1

0.1267 0.0846 0.0355 -0.0182

Lo
ad

in
g

2

-0.4553 0.4699 -0.5496 -0.4738
0.1385 0.0941 0.0265 -0.0007 -0.4751 0.4809 -0.4895 -0.5268
0.1303 0.0548 0.0250 0.0473 -0.4807 0.5112 -0.4823 -0.4865
0.1582 0.0454 0.0602 -0.0237 -0.4941 0.5052 -0.4524 -0.4912
0.4128 0.4176 0.4151 -0.4448 0.1482 -0.0824 0.0629 0.0641
0.4150 0.4401 0.4358 -0.3682 0.1402 -0.1060 0.0512 0.0434
0.4012 0.4203 0.5003 -0.4802 0.1534 -0.0816 0.0637 -0.0300
0.4293 0.4452 0.3950 -0.4873 0.1601 -0.0771 0.0684 0.0329
0.3385 0.3417 0.3362 -0.3153 0.0200 0.0181 -0.0454 -0.0777
0.3468 0.3453 0.3352 -0.3098 0.0227 0.0221 -0.0606 -0.0773

(a) Two loadings of L1 penalised SGPCA under varying levels of noise on synthetic data

η= 1 η= 2 η= 3 η= 4 η= 1 η= 2 η= 3 η= 4

Lo
ad

in
g

1

0.1266 0.0744 0.0361 -0.0347

Lo
ad

in
g

2

-0.4556 0.4524 -0.5505 -0.0414
0.1388 0.0953 0.0262 -0.0237 -0.4753 0.4750 -0.4890 -0.0324
0.1304 0.0580 0.0249 0.0019 -0.4806 0.5168 -0.4826 0.0375
0.1579 0.0517 0.0599 -0.0195 -0.4939 0.5216 -0.4516 -0.0254
0.4126 0.4255 0.4152 -0.0392 0.1481 -0.0843 0.0627 -0.1338
0.4154 0.4339 0.4355 -0.0510 0.1400 -0.1084 0.0514 -0.1471
0.4015 0.4177 0.5005 -0.0430 0.1534 -0.0700 0.0637 -0.1214
0.4287 0.4470 0.3949 -0.0336 0.1601 -0.0792 0.0684 -0.1211
0.3386 0.3414 0.3362 0.8715 0.0202 0.0146 -0.0454 -0.4866
0.3468 0.3452 0.3352 -0.4808 0.0229 0.0195 -0.0606 -0.8303

(b) Two loadings of SCAD penalised SGPCA under varying levels of noise on synthetic data

η= 1 η= 2 η= 3 η= 4 η= 1 η= 2 η= 3 η= 4

Lo
ad

in
g

1

0.1267 0.1074 0.0358 -0.0177

Lo
ad

in
g

2

-0.4552 0.4933 -0.5501 -0.4747
0.1384 0.0944 0.0263 0.0004 -0.4750 0.4901 -0.4892 -0.5259
0.1303 0.0492 0.0249 0.0469 -0.4807 0.5051 -0.4824 -0.4864
0.1584 0.0318 0.0600 -0.0242 -0.4942 0.4841 -0.4520 -0.4913
0.4129 0.3959 0.4151 -0.4435 0.1483 -0.0684 0.0628 0.0643
0.4149 0.4607 0.4356 -0.3677 0.1403 -0.0936 0.0513 0.0430
0.4011 0.4333 0.5004 -0.4783 0.1533 -0.0980 0.0637 -0.0291
0.4296 0.4412 0.3949 -0.4875 0.1601 -0.0625 0.0684 0.0330
0.3384 0.3304 0.3362 -0.3177 0.0200 -0.0061 -0.0454 -0.0785
0.3467 0.3398 0.3352 -0.3124 0.0226 0.0082 -0.0606 -0.0777

(c) Two loadings of the combined penalty SGPCA under varying levels of noise on synthetic data

Table 4.4: Investigations of the performance of all three SGPCA variants across varying
levels of noise.

4.5. Dependence on Tolerance 51

vary more as η increases, with the loadings for η = 4 being very different from those

for η = 1, no longer giving near-equal weights amongst components corresponding to

the same hidden factors. This is, perhaps, not surprising, given the use of the L1 penalty

in RPCA and Joint Sparse Principal Component Analysis (JSPCA) for its robustness to

outliers (which become more probable with increasing magnitude of noise).

4.5 Dependence on Tolerance

As one might expect, the time taken to estimate SGPCA is heavily dependent on the

numerical tolerance; decreasing the tolerance by an order of magnitude has, in our ex-

perience, roughly the effect of increasing the time taken by an order of magnitude. Thus

it is important to assess how critical a small tolerance is to accurate estimation. In order

to determine this, we ran a further simulation study using the same data generation

setup as Section 4.4.1. We fitted the three SGPCA variants with the same parameters,

varying only the tolerance. We chose a range of tolerance values between 10−4 and

10−9, taking the latter as sufficiently converged to use as a reference standard.

In Figure 4.3a we graph the Euclidean distances between the loadings from the ref-

erence fit and each of the lower tolerance fits. In Figure 4.3b we graph the deviances of

each fit, normalised by the deviance of the reference fit. Both of these figures demon-

strate the same behaviour: a period of nearly identical fits followed by rapid convergence

to our reference fit. However, it is important to notice the scales on the two figures: the

largest deviation amongst all fits is less than one half of one percent from the reference

fit, and the greatest Euclidean distance is of order 10−2. Consequently, we suggest that

a practical strategy for choosing an appropriate tolerance value would be to choose the

smallest value which allows for feasible optimisation times. If this study is representa-

tive of the general situation, a good starting point would be 10−7.

4.6 Healthcare Data

As a “real-world” example, we apply GPCA, SGPCA and classical PCA to the healthcare

data, described in Chapter 3. We chose to estimate three directions with each algorithm;

experimenting with fewer directions failed to adequately separate the data with any of

the methods. The results of this are shown in Figure 5.4.

Certainly it seems that both GPCA and SGPCA provide better separation of the data

by pairs of components. The performances of GPCA and SGPCA, while producing rather

different pictures in appearance, are comparable in quality. We should be reassured that,

52 Chapter 4. Sparse Generalised Principal Component Analysis

(a) Euclidean distances between loadings from fits with different tolerance values for each of
the SGPCA variants. The first loading is shown dashed, and the second is shown solid.

−9 −8 −7 −6 −5 −4

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Combined Penalty

−9 −8 −7 −6 −5 −4

SCAD Penalty

−9 −8 −7 −6 −5 −4

L1 Penalty

Log of tolerances

D
is

ta
nc

e

(b) Deviances from each fit across a range of tolerance values, divided by the deviance from the
fit with the smallest tolerance. All three SGPCA variants are shown.

−9 −8 −7 −6 −5 −4

1.
00

00
1.

00
05

1.
00

10
1.

00
15

Combined Penalty

−9 −8 −7 −6 −5 −4

SCAD Penalty

−9 −8 −7 −6 −5 −4

L1 Penalty

Log of tolerances

D
ev

ia
nc

e

Figure 4.3: Behaviour of all SGPCA variants as tolerance is varied.

despite inducing sparse loadings, SGPCA’s performance is on-par with the current state

of the art on a real-world task.

4.7 Discussion

In this chapter, we have extended GPCA by introducing a sparsifying penalty, and shown

that we achieve as-good or superior performance in extracting appropriate principal

component loadings which prioritise the selection of informative variables in each prin-

cipal component, assigning much smaller coefficients to non- or less-informative vari-

ables.

Comparison of the efficacy of the three penalties we used (L1, SCAD and the com-

bined penalty) suggest that, despite the more complex nature of the SCAD penalty, the

L1 penalty has the best performance. As such, our preference is for the L1 penalty which

is significantly simpler than the SCAD penalty, and whose evaluation computationally

4.7. Discussion 53

−4 −2 0 2 4 6

−
4

−
2

0
2

Component 1

C
om

po
ne

nt
 2

−4 −2 0 2 4 6

−
4

−
2

0
2

4

Component 1

C
om

po
ne

nt
 3

−4 −2 0 2

−
4

−
2

0
2

4

Component 2

C
om

po
ne

nt
 3

(a) L1 penalty SGPCA

−12 −10 −8 −6 −4 −2 0

−
4

−
2

0
2

4
6

Component 1

C
om

po
ne

nt
 2

−12 −10 −8 −6 −4 −2 0

−
6

−
4

−
2

0
2

4

Component 1

C
om

po
ne

nt
 3

−4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4

Component 2

C
om

po
ne

nt
 3

(b) GPCA

0.0 0.5 1.0 1.5 2.0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Component 1

C
om

po
ne

nt
 2

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Component 1

C
om

po
ne

nt
 3

−0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Component 2

C
om

po
ne

nt
 3

(c) PCA

Figure 4.4: Plots of pairs of the first three principal components for the healthcare
dataset obtained from SGPCA, GPCA and PCA. Red “+” symbols denote the “discharge”
class; black dots represent the “follow-up” class.

54 Chapter 4. Sparse Generalised Principal Component Analysis

is cheaper, not requiring any conditional statements and requiring fewer multiplica-

tions and no additions. It has the further advantage of only requiring one parameter

(λL), unlike the SCAD penalty which requires λS, a and λ. As finding optimal choices

of these parameters is most easily accomplished by repeated application of the SGPCA

algorithm until one finds a suitable compromise between interpretability and predic-

tive/discriminative power, having only one parameter to find is a significant advantage.

We note that this is the method by which we chose the values of these parameters in the

applications shown.

We suggest several important topics to extend this work. Firstly, a data-driven

method for choosing these tuning parameters which does not require manual exami-

nation of the generated coefficients, thus facilitating an automated choice. Secondly,

the construction of an appropriate order determination test to choice the required value

of k. Such a test would likely be applicable also to GPCA. Thirdly, we suggest that this

method could likely be extended to a supervised method for dimension reduction, sim-

ilar to partial least squares (PLS). Finally, we suggest a more challenging problem: to

develop a kernel-based extension of GPCA and SGPCA for the extraction of non-linear

features.

55

Chapter 5

Sparse Simple Exponential Family

Principal Component Analysis

In this chapter, we will introduce an extension to Simple Exponential Principal Compo-

nent Analysis (SePCA), the work of Li and Tao (2013). As with Generalised Principal

Component Analysis (GPCA) in Chapter 4, we will propose a method which incorporates

sparsity in the (analogy to) the principal component loadings in order to improve inter-

pretability and performance. Unlike GPCA, SePCA starts with a fully specified Bayesian

model, though the two methods are ultimately similar in concept, applying to any ex-

ponential family distribution. Here, we will focus on the Poisson case for its application

to text data.

5.1 Simple Exponential Principal Component Analysis

In Li and Tao (2013), the authors specify a Bayesian model for some data X follow-

ing an exponential family (EF) distribution. A plate diagram for the model is given in

Figure 5.1. Specifically, they prescribe the model:

• Xi|W,Yi ∼ ExpFam (WYi) for i = 1, . . . , n

• Yi ∼ N (0, I) for i = 1, . . . , n

• W j|α j ∼ N
�
0,α−1

j I
�

for j = 1, . . . , k

where each Xi ∈ Rp, Yi ∈ Rk, W ∈ Rp×k. We denote by W j the jth row of W. Finally,

α := (α1, . . . ,αk) is a vector of precision hyperparameters.

Here we identify the observed value W of W with the classical loadings matrix and

the observed value Y formed of the n random vectors Yi (i = 1, . . . , n) with the classical

scores matrix. The integer k here (as previously) is the number of principal components.

It is these three parameters which we are particularly interested in. From a dimension

56 Chapter 5. Sparse Simple Exponential Family Principal Component Analysis

reduction standpoint, Y is the most important, it is this which we suggest can be used

as a lower-dimensional analogue to the observed data.

XWα Y

k n

Figure 5.1: Plate diagram for SePCA

We now draw attention to one of SePCA’s greatest advantages: using Automatic Rel-

evance Determination (ARD), introduced in Mackay (1995), SePCA is able to determine

the appropriate number of principal components k. Note that, according to the model

we have given for SePCA, if (for some j) α j →∞, then W j
p→ 0. Thus, if we have a

sufficiently large α j , then we can reasonably determine that the corresponding principal

component is not useful to the model. We will refer to the critical value for this as M ,

and remove the column of W and row of Y corresponding to any α j which exceeds this

threshold. We note that it is precisely because of the precision hyperparameters for W

that we can apply ARD.

5.2 Sparse Simple Exponential Principal Component

Analysis

In the same spirit as Sparse Generalised Principal Component Analysis (SGPCA) (Chap-

ter 4), we will impose a sparsifying penalty on the loadings in the interest of increasing

performance and interpretability. In the case of SePCA, the prior distribution for each

W j|α j roughly corresponds to an L2 penalty on its entries, so we will not consider such

a penalty. Instead, we approach the problem using the method of Frommlet and Nuel

(2016) to place an (approximate) L0 penalty on W through an iterative method. We

could consider the same penalties as in SGPCA (namely, the SCAD and L1 penalties),

and we suspect that they would be reasonable choices. Our motivation for choosing

the L0 penalty here is primarily out of curiosity; it is known to be a strongly sparsifying

penalty, and the new development of Frommlet and Nuel’s method for approximating it

allowed us to use it. Note that

‖W‖0 =
p∑

i=1

k∑
j=1

I
�
Wi j 6= 0
�

(5.1)

5.3. Estimation 57

where I (·) is the indicator function. Frommlet and Nuel use the following approxima-

tion (written in the specific case of our problem):

‖W‖0 ≈
p∑

i=1

k∑
j=1

W2
i j�

W(t−1)
i j

�2
+δ

(5.2)

where W(t−1) is the value of W from the previous interation and δ > 0 is a very small

value. The advantage to this method is the differentiability of (5.2), allowing us to use

gradient-based optimisation methods in the estimation procedure. The L0 penalty, on

the other hand, is not differentiable at 0.

Remark. In Frommlet and Nuel (2016), the authors’ method requires that each L0

penalty be approximate by multiple interations of the approximation (5.2). However,

in our method we will use only a single interation. This is due to the iterative nature of

the estimation algorithm we will develop in Section 5.3.

We will precisely define Sparse Simple Exponential Principal Component Analysis

(SSePCA) in the following section by its objective function.

Remark. Note that, like SePCA, SSePCA is also amenable to using ARD to determine the

number of principal components needed.

5.3 Estimation

In this section, we will describe jointly the process of estimating SePCA and SSePCA.

We fit both by maximum a-posteriori (MAP) estimation, with the caveat that SSePCA

is technically penalised MAP. Both methods require the specification of the exponential

family in order to write down explicitly the objective functions and gradients, so we give

them for the specific case of the Poisson distribution and will note which parts must be

adapted for other EF distributions.

We begin by deriving the objective function for SePCA, from which we can calculate

the objective function for SSePCA. We begin with the conditional probability P (X |W,Y).

58 Chapter 5. Sparse Simple Exponential Family Principal Component Analysis

As this is in the exponential family, we know the general form:

P(X|W,Y)∝ exp
n∑

i=1

�
xT

i Wyi + g(Wyi)
�

∝ exp
n∑

i=1

xT
i Wyi −

k∑
j=1

exp
��

Wyi

�
j

�

∝ exp

Trace(XTWY)−
n∑

i=1

p∑
j=1

exp
�
[WY]i j

�
where∝ indicates proportionality up to a constant multiple (with respect to X, which

is fixed during an optimisation over W and Y).

Similarly, the joint log-posterior of W,Y|X,α is, up to addition of a constant:

logP(X,Y,W,α) = logP(X|W,Y) + logP(Y) + logP(W|α) + const

Then the objective function for SePCA is

P = Trace
�
XTWY
�− n∑

i=1

p∑
j=1

exp (WY)− 1
2

Trace
�
YTY
�− 1

2
Trace
�
WTW Diag (α)
�

(5.3)

where we can ignore the constant.

It is now very simple to define the objective function for SSePCA at the t th iteration

as

Ps = P −λ
p∑

i=1

k∑
j=1

W2
i j�

W(t−1)
i j

�2
+δ

(5.4)

where the second term comes from (5.2).

We see now that SSePCA is the weighted sum of the SePCA objective function and

the approximate L0 penalty. The value of λ controls to what extent we prioritise sparsity

over explanatory power for the observed data; determining the appropriate value is a

heavily data- and context-dependent task. Our practical advice is to try a logarithmic

sequence of λ values and select the value which best balances sparsity against predic-

tive/discriminative power in your application.

5.4. Synthetic Data Studies 59

In order to optimise these two objective functions, we make use of the differentia-

bility with respect to both W and Y. The required derivatives are

∂ P
∂W

= XYT − exp (WY)YT −W Diag (α) (5.5)

∂ Ps

∂W
=
∂ P
∂W
− 2λ

W�
W(t−1)
�2
+δ

(5.6)

∂ P
∂W

=
∂ Ps

∂W
=WTX−WT exp (WY)− Y (5.7)

We can now give an algorithm for the estimation of SePCA and SSePCA in Algo-

rithm 2. This algorithm is novel, being unlike the algorithm originally given for SePCA

in Li and Tao 2013. The original algorithm used an expectation-maximisation scheme,

where we directly optimise the posterior likelihood using gradient information for effi-

ciency. We note that, like the algorithm for SGPCA, this algorithm does not have a guar-

antee of finding the global optimum. One strategy may be to initialise the algorithm at

randomly distributed points and choose the best performing solution. In practice, we

have not found this to be necessary; the (most likely local) optimum found from the

proposed initial values has been sufficiently performant.

Remark. It is worth noting that we have generally found it useful to temporarily increase

the value of M for the first ten iterations of the optimisation as this time is when we are

most likely to spuriously remove components due to a poor starting point.

5.4 Synthetic Data Studies

All investigations in this section will use the same basic model, with some small adap-

tations. We will use the two hidden factors

V1 ∼ Poisson(20) V2 ∼ Poisson(30) (5.8)

We will also use an error distribution E, constructed by drawing an observation from a

Poisson(2) distribution and multiplying by 1 or −1 with equal probability.

The first analysis will use two datasets, with “true” dimensions 1 and 2 respectively,

which we will refer to as X1D and X2D. Each consists of 100 observations of a random

vector of length 10, but the construction of that vector differs. For the component se-

lection procedure we set M = 100 except the first 10 iterations where M = 500 (as was

mentioned in Section 5.3 we do this to avoid removing components too early). Also for

the Sparse Simple Poisson Principal Component Analysis (SSPPCA) algorithm δ = 10−8.

To construct X1D, let v1i , i = 1, . . . , 100 be independently observed values of V1

and let ϵi j , i = 1, . . . , 100, j = 1, . . . , 10 be independently observed values of E. Then

60 Chapter 5. Sparse Simple Exponential Family Principal Component Analysis

the ith observation in X1D has its first two components equal to v1i plus error, and the

remaining eight components are equal to 2 ∗ v1i plus error. Formally each observation

has the form

[(v1i + ϵi1), (v1i + ϵi2), (2v1i + ϵi3), . . . , (2v1i + ϵi10)]
T

To give a bit more insight here, one should expect that a good dimension reduction in

this case will identify that we need exactly one component, which has larger coefficients

to variables 3 to p and it has smaller coefficients for variables 1 and 2.

Similarly, the ith observation in X2D has its first two components equal to an ob-

served value v1i of V1 plus independent errors, its second two components equal to an

observed value v2i of V2 plus independent errors, and its final six components equation

to v1i + 3v2i plus independent errors:

[(v1i + ϵi1), (v1i + ϵi2), (v2i + ϵi3), (v2i + ϵi4), (v1i + 3v2i + ϵi5) . . . , (v1i + 3v2i + ϵi10)]
T

To both of these datasets we applied each of Sparse Probabilistic Principal Com-

ponent Analysis (SPPCA), SSPPCA, PCA, Sparse Principal Component Analysis (SPCA),

GPCA and SGPCA. For the latter three we needed to specify the dimension; for SP-

PCA and SSPPCA the automatic relevance determination criterion successfully identified

the true dimension. The loadings for the one-dimensional data are given in Table 5.1;

SPPCA, SSPPCA, PCA and SPCA all give very similar results qualitatively, giving equal

weighting to components three through ten (corresponding to the 2v1 term) and slightly

smaller values to the first two components corresponding to the v1 term. GPCA gives

approximately equal weighting to all the terms. SGPCA, on the other hand, gives con-

siderably more sporadic loadings. This is perhaps due to the lack of sparsity of the

underlying data.

In Table 5.2 we give the two loadings for the two-dimension data. Here, the first

SPPCA loading gives roughly equal weight to the first two and last six components, cor-

responding to the v1 and v1+3v2 terms respectively, and a slightly lower loading to the

second two components (corresponding to the v2 terms). The second SPPCA loading

gives most weight to the last six components, with small weights for the second pair of

components and the lowest weights to the first pair of components. The performance

of SSPPCA is more easily interpretable; the first loading gives highest weighting to the

last six components, with smaller weight for the first four; the second loading strongly

identifies the first two components with near-zero weighting given to all other terms.

PCA’s first loading primarily identifies the v1+3v2 term, with its second primarily identi-

fying the v1 term; SPCA does similarly with sparser loadings. GPCA’s first loading gives

5.4. Synthetic Data Studies 61

approximately equal weighting to all terms (except for the very first component), with

its second primarily emphasising the v1 components. Finally, SGPCA’s first loading iden-

tifies a combination of the v1 and v1+3v2 terms, while its second fairly strong identifies

the v1 components. Of all the loadings, the most successful at identifying the hidden

factors are the second loadings of SSPPCA, PCA, SPCA, GPCA and SGPCA, with SSPPCA,

SPCA and SGPCA slightly better as the other components are driven closer to 0.

5.4.1 Order Determination

In order to investigate the accuracy of the order determination provided by ARD, we

conducted similar experiments to those in Section 5.4, varying several parameters. We

looked at p ∈ {10, 20}, p ∈ {25, 50, 100, 200}, k ∈ {1, 2, 3}. For each combination of

parameters, we constructed data by the following method and used both SPPCA and

SSPPCA to estimate k, repeating this 50 times in order to understand the average be-

haviour. When k = 1, the ith observation (i = 1, . . . , n) was given by

[(v1i + ϵi1), (v1i + ϵi2), (2v1i + ϵi3), . . . , (2v1i + ϵip)]
T

When k = 2, it was given by

[(v1i + ϵi1), (v1i + ϵi2), (v2i + ϵi3), (v2i + ϵi4), (v1i + 3v2i + ϵi5) . . . , (v1i + 3v2i + ϵip)]
T

Finally, when k = 3 it was given by

[(v1i + ϵi1), (v1i + ϵi2), (v2i + ϵi3), (v2i + ϵi4), (v3i + ϵi5), (v3i + ϵi6),

(3v1i + 2v2i + 2v3i + ϵi7) . . . , (3v1i + 2v2i + 2v3i + ϵik)]
T

For each of these, v1i , v2i and v3i denote observations from V1, V2 and V3 defined in (5.8)

respectively.

Tables 5.3a and 5.3b give the percentage of times each algorithm correctly identified

k for a given choice of n and k with p = 20. Generally, it appears that SPPCA performs

better for small n, but its performance degrades as n increases. However, our proposed

SSPPCA’s performance improves as n increases and in fact performs significantly better

by n= 200.

5.4.2 Synthetic Data with Classes

Although SPPCA and SSPPCA are not supervised methods, it is instructive to see whether,

given data arising from two or more classes, they are able to find principal components

which are able to distinguish between these classes. This gives some indication of their

62 Chapter 5. Sparse Simple Exponential Family Principal Component Analysis

Data: X, λ, M , tol
Result: W, Y, k
initialise k = p− 1;
initialise W(0) and Y(0) as the loadings and score vectors of standard Principal
Component Analysis (PCA);

initialise α(0) = (1, . . . , 1);
set t = 1;
while P changed more than tol or components removed on previous interation do

set W(t),Y(t) = argmaxW,Y P;
for j = 1 to k do

set α j = p/
W(t)

j

2
2
;

end
if α j > M for any j then /* this block is the application of ARD */

remove jth component from α;
remove jth column from W;
remove jth row from Y;
reorder components of α from smallest to largest;
reorder columns of W and rows of Y in the same order;
decrement k;

end
increment t;

end
Algorithm 2: SePCA and SSePCA Estimation Procedure.

SPPCA SSPPCA PCA SPCA GPCA SGPCA

-0.26 -0.26 0.17 0.00 0.34 0.06
-0.27 -0.27 0.17 0.00 0.33 0.42
-0.33 -0.33 0.35 0.47 0.32 -0.00
-0.33 -0.33 0.33 0.27 0.29 -0.50
-0.33 -0.33 0.34 0.35 0.30 -0.43
-0.33 -0.33 0.36 0.31 0.33 -0.06
-0.33 -0.33 0.34 0.37 0.31 -0.44
-0.33 -0.33 0.33 0.32 0.31 0.19
-0.33 -0.33 0.36 0.39 0.33 -0.01
-0.33 -0.33 0.35 0.32 0.31 -0.40

Table 5.1: Loadings for X1D

5.4. Synthetic Data Studies 63

SPPCA SSPPCA PCA SPCA GPCA SGPCA

-0.33 -0.23 0.01 0.00 -0.18 0.37
-0.31 -0.23 0.03 0.00 -0.31 0.04
-0.23 -0.26 0.12 0.00 -0.35 0.10
-0.23 -0.26 0.12 0.00 -0.35 0.06
-0.34 -0.36 0.41 0.40 -0.33 0.40
-0.34 -0.36 0.40 0.36 -0.32 0.40
-0.34 -0.36 0.40 0.42 -0.32 0.38
-0.34 -0.36 0.41 0.40 -0.33 0.37
-0.34 -0.36 0.40 0.45 -0.33 0.31
-0.34 -0.36 0.39 0.42 -0.31 0.38

(a) First loading

SPPCA SSPPCA PCA SPCA GPCA SGPCA

0.12 -0.76 0.73 -0.82 0.71 0.67
0.14 -0.64 0.64 -0.57 0.61 0.68
0.29 0.09 -0.18 0.00 -0.20 -0.10
0.28 0.08 -0.16 0.00 -0.19 -0.05
0.37 0.00 0.01 0.00 -0.09 -0.11
0.36 0.00 0.07 0.00 -0.08 -0.09
0.37 -0.00 -0.00 0.00 -0.09 -0.12
0.37 0.00 -0.02 0.00 -0.10 -0.12
0.37 0.00 -0.00 0.00 -0.09 -0.08
0.37 0.00 -0.02 0.00 -0.09 -0.15

(b) Second Loading

Table 5.2: Two loadings from X2D

d
N 1 2 3

25 94 24 18
50 82 62 26
100 62 24 26
200 24 16 14

(a) SPPCA

d
N 1 2 3

25 2 8 4
50 42 10 8

100 82 60 18
200 78 70 50

(b) SSPPCA

Table 5.3: Percentage of correct identification of d for SPPCA and SSPPCA

64 Chapter 5. Sparse Simple Exponential Family Principal Component Analysis

suitability for use as a step before applying a clustering or classification algorithm (de-

pending on whether labels are available or not). To this end, we construct two sets of

classed data; the first having observations from two classes with equal sample sizes from

both, the second having three classes with imbalanced sample sizes.

We will use again the hidden factors from (5.8) and both datasets have dimension

p = 10 and total sample size n = 100. We will denote the two-class data by X2C

and the three-class data by X3C. The first class for both datasets will have its first two

components equal to observations v2 of V2 with independent error E and the remaining

eight components equal to 3v2 with independent error. The second class for both will

have first two components equal to 2v3 with independent error and the remaining eight

components equal to v3, where the v3 are observations of V3. The third class will have all

components equal to observations from V1 with independent error. The two-class data

X2C has 50 observations from the first class and 50 from the second. The three-class

data X3C is divided between 25 observations of the first class, 25 observations of the

second class, and 50 observations of the third class.

The loadings from applying SPPCA, SSPPCA, GPCA, SGPCA, PCA and SPCA to X2C

are given in Figure 5.2. For GPCA, SGPCA, PCA and SPCA we must specify a dimension:

as both SPPCA and SSPPCA choose k = 2 we use that value. All six algorithms achieve

good separation of the two classes. Visually, it appears that SPPCA and SSPPCA (in

Figures 5.2a and 5.2b respectively) give the best clustering of the two classes. We use

the method of silhouettes put forward by Rousseeuw (1987) to confirm this, using the

Euclidean distance metric and clusters found using k-medioid clustering. The silhouette

of the ith observation is given by

b(i)− a(i)
max {a(i), b(i)}

where a(i) is the average dissimilarity of the ith observation to the other members of its

cluster and b(i) is the lowest average dissimilarity of the ith observation to any other

cluster. We can thus interpret the silhouette as a measure of how well a data point is

assigned to its cluster; the average silhouette over a dataset gives a measure for how well

clustered the data is. Average silhouette values range between −1 and 1; the closer to

1 the better the clustering. In Table 5.4 we give average silhouettes for X2C for each of

the six algorithms. Our visual intuition that SPPCA and SSPPCA give the best clustering

is confirmed. For X3C we can see that SSPPCA is actually the only algorithm that is able

to achieve separation of the 3 classes using only the first principal component. All other

methods need the second direction to achieve this separation. When we compare the

average silhouette measure in Table 5.4 we see that SSPPCA is actually behind the other

5.5. Healthcare Data 65

methods which have similar values but this may as well be due to the fact that we do

not apply the penalty for multiple iterations as was explained in Section 5.3.

−0.70 −0.66 −0.62 −0.58

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

PC1

P
C

2

(a) SPPCA

−1.0 −0.9 −0.8 −0.7

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

PC1

P
C

2

(b) SSPPCA

−250 −200 −150 −100 −50

12
0

16
0

20
0

24
0

PC1

P
C

2

(c) PCA

−250 −200 −150 −100 −50

10
0

14
0

18
0

22
0

PC1

P
C

2

(d) SPCA

−350 −300 −250 −200 −150

−
10

0
−

50
0

50

PC1

P
C

2

(e) GPCA

100 150 200

−
16

0
−

14
0

−
12

0
−

10
0

−
80

PC1

P
C

2

(f) SGPCA

Figure 5.2: Two directions from each algorithm for X2C, with one class shown with red
squares, the other with black triangles.

SPPCA SSPPCA PCA SPCA GPCA SGPCA

X2C 0.94 0.95 0.75 0.75 0.75 0.67
X3C 0.86 0.86 0.78 0.79 0.78 0.78

Table 5.4: Average (Euclidean) silhouettes

5.5 Healthcare Data

We will now examine the efficacy of SPPCA and SSPPCA in reducing the dimension of

the healthcare dataset as detailed in Chapter 3.

In Figure 5.4 we show the results of applying SPPCA, SSPPCA, GPCA and SGPCA

to this dataset. Discharge data points are shown with crosses and follow up points are

66 Chapter 5. Sparse Simple Exponential Family Principal Component Analysis

0.5 0.6 0.7 0.8

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

PC1

P
C

2

(a) SPPCA

−1.0 −0.9 −0.8 −0.7 −0.6 −0.5
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

PC1

P
C

2

(b) SSPPCA

50 100 150 200 250 300 350

−
15

0
−

10
0

−
50

0

PC1

P
C

2

(c) PCA

50 100 150 200 250 300 350

−
15

0
−

10
0

−
50

PC1

P
C

2

(d) SPCA

−350 −250 −150 −50

−
10

0
−

50
0

50

PC1

P
C

2

(e) GPCA

50 100 150 200

−
40

−
20

0
20

40
60

PC1

P
C

2

(f) SGPCA

Figure 5.3: Two directions from each algorithm for X3C

shown with circles. For both SPPCA and SSPPCA we used M = 100, for the latter we

chose λ = 0.06. From Figure 5.4a we can see that SPPCA estimated k as 1; on the

other hand, from Figure 5.4b we see that SSPPCA chose k = 2. Based on this, we chose

k = 2 for GPCA and SGPCA, which require a fixed value. The difficulty inherent in

achieving good class separation as a result of the strong class imbalance is evident. Of

the four, GPCA (Figure 5.4c) is the worst, with the discharge points not particularly

tightly clustered and difficult to separate from the follow up points. SGPCA (Figure

5.4d, on the other hand, tightly clusters the discharge points. SPPCA (Figure 5.4a, also

manages to tightly cluster the discharge points. SSPPCA (Figure 5.4b) does not cluster

the discharge points particularly closely, but does achieve better visual separation than

GPCA.

In order to better quantify the clustering, we give the average (Euclidean) silhou-

ettes in Table 5.5. Based on this performance metric, SPPCA and SGPCA are the best

performers. Average silhouette is designed to measure and inform about the perfor-

mance of clustering algorithms and not the accuracy of feature extraction. The fact that

SPPCA seems to be worst may either be due to this or to the fact that we are not doing

5.6. Discussion 67

multiple iterations of the penalty.

−1.2 −1.0 −0.8 −0.6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

PC1

P
C

2

(a) SPPCA

PC1
−1.0

−0.8
−1.0 −0.8

−1.4

−1.2

−1.4 −1.2

PC20.8290

0.8295

0.8300 0.8290 0.8300

0.8280

0.8285

0.8290

0.8280 0.8290

PC3
0.0

0.5

1.0
0.0 0.5 1.0

−1.5

−1.0

−0.5

−1.5 −0.5

(b) SSPPCA

PC1
0.5

1.0

1.5 0.5 1.0 1.5

−1.0

−0.5

0.0

−1.0 0.0

PC20.0

0.5

1.0 0.0 0.5 1.0

−1.0

−0.5

0.0

−1.0 0.0

PC30.0

0.5

1.0 0.0 0.5 1.0

−1.0

−0.5

0.0

−1.0−0.5 0.0

(c) GPCA

PC1
1.0

1.5
1.0 1.5

0.0

0.5

0.0 0.5

PC20.5

1.0

1.5 0.5 1.0 1.5

−1.0

−0.5

0.0

−1.0 0.0

PC30.0

0.5

1.0 0.0 0.5 1.0

−1.0

−0.5

0.0

−1.0 −0.5 0.0

(d) SGPCA

Figure 5.4: The resulting principal components from applying SPPCA, SSPPCA, GPCA
and SGPCA to the healthcare data. The “discharge” class is plotted as red squares, the
“follow-up” class is shown as black triangles.

5.6 Discussion

In this paper we have developed a Poisson based PCA algorithm which we called SPPCA

and which was based on the SePCA (Li and Tao 2013). We use a different algorithm

68 Chapter 5. Sparse Simple Exponential Family Principal Component Analysis

SPPCA SSPPCA GPCA SGPCA PCA

0.38 0.34 0.23 0.17 0.21

Table 5.5: Average silhouettes first the healthcare data.

for inference on W and Y than SePCA. We have illustrated that by example in the spe-

cific case where the distribution is Poisson, to give SPPCA. We have also introduced an

approximate L0 sparsity penalty in this context to allow for Sparse SPPCA. In a more

general framework this can be seen as a unified way of achieving sparse or non-sparse

feature extraction from a Poisson-based PCA algorithm. At the same time this algorithm

should be straightforward to extend to other distributions in the exponential family by

modifying appropriately the formulas.

The sparse algorithm performs particularly well, both in latent dimension discovery

and in class separation for multi class Poisson data. Computation times are acceptable

for small samples (n≤ 500), but become a slightly more burdensome for larger samples.

It is worth noting that there exist multiple solutions or local maxima. This is also dealt

with simply, by evaluating multiple optima using fully specified probability model. In

practice, we have found that this has not been necessary, the maxima obtained starting

from the Gaussian PCA have performed perfectly well.

There is scope for extension of this work. First of all it is interesting to introduce

different more complex sparsity penalties, such as the L1 or SCAD penalties and com-

pare their performance. Another possible extension is the development of nonlinear

feature extraction methods as well as sparse nonlinear feature extraction method in the

generalised PCA setting for non-Gaussian data.

69

Chapter 6

Quasi-Likelihood Principal

Component Analysis

6.1 Introduction

The two Principal Component Analysis (PCA)-like methods we have concentrated on so

far share a number of similarities – both aim to optimise some criterion. In the case

of (S)GPCA this is the (penalised) deviance, and in the case of (S)SePCA it is the (pe-

nalised) posterior likelihood. As an optimisation problem of fairly simple functions, we

can express these methods as finding the zeros of the derivatives. In fact, there is a

rich theory for estimating statistical parameters from such a premise, the theory of esti-

mating equations. However, this theory has, to date, focused on solving problems with

scalar or vector parameters, whilst dimension reduction methods like we are interested

in require higher dimensional analogues. In this chapter, we will develop the theory of

estimating equations for tensor parameters. We shall do so with the additional restric-

tion of requiring that our estimating equations are themselves tensors in order to have

a pleasing invariance with respect to changes of parametrisations.

The purpose of this theory is to provide a framework for the development and under-

standing of PCA-like methods. As such, having developed a theory for tensor-parameter

estimating equations, we will then apply that theory to a range of dimension reduc-

tion methods in the literature in order to better understand the differences between

each. To illustrate this technique, we shall apply it to three important methods: Gener-

alised Principal Component Analysis (Landgraf and Lee 2015b), the method of Collins

et al. (2002), and Simple Exponential Family Principal Component Analysis (Li and Tao

2013).

It is worth noting that, by expressing these methods as estimating equations, one

can very easily write code to find the dimension reduction parameters using a standard

root-finding algorithm. In many programming languages, it is even possible to input the

70 Chapter 6. Quasi-Likelihood Principal Component Analysis

appropriate equations symbolically. While this will rarely be the most computationally

efficient method, it illustrates a very compelling feature of the estimating equations

viewpoint – newly devised methods can be tried experimentally with very little time

investment.

6.2 Tensor Estimating Equations

Before defining tensor estimating equations, we will recap the vector case, in order to

illustrate the concepts and provide motivation to the tensor extension. We will then

introduce tensors and some key properties, before showing the extension of vector esti-

mating equations to the tensor case.

6.2.1 Vector Parameter Estimating Equations

Suppose we are given a sample of data {x1, . . . ,xn} from a random variable X which

takes values inX ⊆ Rp with a family of probability distributions P := {Pθ : θ ∈ Θ} and

set of possible parameters Θ being an open subset of Rq. As a method for estimating

the “true” parameter value θ, we are interested in determining an optimal estimating

function G :X n ×Θ→ Rq whose roots give good estimates of the “true” θ.

Let G be the class of estimation functions. We require that each G has zero mean,

is square-integrable, and for which E
�
Ġ
�

:=
�
E
�
∂Gi
∂ θ j

��
and E
�
GGT
�

are non-singular.

To compare estimating functions, we will need a notion of standardisation, given in

Definition 6.2.1. This will allow us to find an optimal estimating function for parameter

estimation.

Definition 6.2.1 (Standardised Estimating Function). Given an estimating function G ∈
G , the corresponding standardised estimating function Ge is

−E �ĠT
� �
E
�
GGT
��−1

G

We now seek a notion of finite-sample optimality, which we will denote OF -optimality.

This will use an information criterion E (·), whose definition is given in Definition 6.2.2,

which is an analogue to the Fisher Information.

Definition 6.2.2 (Information Criterion). The information criterion E (G) is given by

E (G) := E
�
GeGeT�= �E �Ġ��T �E �GGT

��−1 �E �Ġ��
We are now able to give the definition of OF -optimality. It will be given in terms of

a subclassH of estimating functions, as this will usually be the case in practice.

6.2. Tensor Estimating Equations 71

Definition 6.2.3 (OF -Optimality). Let H ⊆ G . Then we call G∗ ∈ H the OF -optimal

estimating function if E (G∗)−E (G) is positive semi-definite for all G ∈ H , θ ∈ Θ and

Pθ ∈ P .

This concept is known as Loewner optimality in experimental design, its name origi-

nating from the Loewner partial ordering on positive semi-definite matrices. Should the

score function U exist, there is an alternative and equivalent definition:

Definition 6.2.4. The estimating function G∗ ∈H is OF -optimal inH if for all G ∈H ,

θ ∈ Θ and Pθ ∈ P
E
��

Ue −Ge��Ue −Ge�T�−E��Ue −Ge∗� �Ue −Ge∗�T�
is positive semi-definite.

Definition 6.2.4 can be seen as minimising the dispersion distance of Ge∗ from the

score function. For this reason, such optimal estimating functions are also known as

“quasi-score” functions, as they behave like score functions in many respects and they

are the optimal approximation to this score function (if it exists) within a given class of

functions.

Finally, we give one more equivalent criterion for OF -optimality which will be useful

in practice.

Theorem 6.2.1. The estimating function G∗ ∈H ⊆ G is OF -optimal if

E
�
Ge∗GeT�= E �GeGe∗T�= E �GeGeT� (6.1)

for all G ∈H . Equivalently, if
�
E
�
Ġ
��−1E (G)E (G∗) is a constant matrix. In the converse

direction, if G∗ ∈ H is an OF -optimal estimating function and H is convex then (6.1)

holds.

Theorem 6.2.2. If the score function u exists and u ∈H , then u is the optimal estimating

function.

6.2.2 Tensor Preliminaries

Perhaps the most familiar way to view tensors is as multi-dimensional arrays. Much as

vectors are “larger” scalars, and matrices are “larger” vectors, tensors form a natural way

to think about such objects in arbitrary dimensions. To be more precise, any tensor can

be represented as a multi-dimensional array with respect to a basis, just as any vector

can be represented by a one-dimensional array with respect to a basis in the appropriate

vector space.

72 Chapter 6. Quasi-Likelihood Principal Component Analysis

The final distinctive element of tensors is the concept of contravariance and covari-

ance. These describe the way that a given vector transforms under a change of basis.

Briefly, these are defined below.

Definition 6.2.5. A vector v with components v1, . . . , vn with respect to a basis e1, . . . ,en

is contravariant if the new components v̂1, . . . , v̂n with respect to a new basis ê1, . . . , ên

are given by

v̂ i =
n∑

j=1

�
R−1
�i

j v j

where R is the mapping such that êi =
∑n

j=1 e jR
j
i .

Definition 6.2.6. A vector w with components w1, . . . , wn with respect to a basis e1, . . . ,en

is covariant if the new components ŵ1, . . . , ŵn with respect to the new basis ê1, . . . , ên

are given by

ŵi =
n∑

j=1

w jR
j
i

with R again the mapping such that êi =
∑n

j=1 e jR
j
i .

The above definitions also introduce a piece of common notation when working

with tensors, where subscript indices are used for covariant components and superscript

indices are used for contravariant components. We will make use of this notation going

forward. A second piece of notation which is very common is that of “Einstein notation”

or the “Einstein summation convention”. Many tensor definitions and operations involve

summations, in order to reduce the notation needed, it will be taken as understood that

a repeated algebraic index such as i or j is to be summed over. For example, we can

write the following:

ŵi =
n∑

j=1

w jR
j
i = w jR

j
i

We will use this convention for the remainder of this chapter.

We are now in a position to give a formal definition for a tensor.

Definition 6.2.7. A tensor of type (p, q) has a multidimensional array associated with

respect to the basis f, denoted by T
i1,...,ip
j1,..., jq

[f] which, under the basis transformation f 7→
f ·R= �eiR

i
1, . . . ,eiR

i
n

�
transforms as

T
i′1,...,i′p
j′1,..., j′q

[f ·R] = �R−1
�i′1

i1
· �R−1
�i′p

ip
T

i1,...,ip
j1,..., jq

R j1
j′1
· R jq

j′q

6.2. Tensor Estimating Equations 73

In this definition, type (p, q) means that the tensor has p contravariant indices and

q covariant indices. We use the prime indices (e.g. i′1) to denote indices under the new

basis. From here, we will usually drop the explicit reference to the basis in the notation,

so we write (for example) T
i1,...,ip
j1,..., jq

, and will use an asterisk (∗) to denote the tensor under

a change of basis.

6.2.3 Vector Estimating Equations as Tensors

In our extension to tensor estimating equations, we will begin by considering the simple

case of a vector estimating equation, and give the following theorem showing when such

objects are tensors.

Theorem 6.2.3. If, for a given estimating equation G, there exists a scalar potential func-

tion g such that G = ∇θ g, then G obeys the tensor transformation laws over all differen-

tiable transformations of the parameters.

Proof. Denote the original parameters by θ = θ1, . . . ,θ p, and the new parameters by

ϕ= ϕ1, . . . ,ϕp. Let a : Φ→ Θmap each parameter ϕ to the corresponding θ. Then our

potential function under change of variables is g∗, defined as g∗ := g ◦a. The estimating

equation generated by g∗ is G∗ :=∇ϕ . Then we have

G∗r = Gia
i
r (6.2)

where ai
j = ∂ ai/∂ ϕ j . This is precisely the tensor transformation rule for a covector.

We must now check that standardisation of estimating equations preserves the tensor

transformation rule. First, let us write the standardisation in tensor notation. We will

denote by σi j the covariance matrix E
�
GGT
�
, and by σi j its inverse. The expectation of

the first derivative, E
�
Ġ
�

will be denoted by γi j . Then we have:

Ge r = −γirσ
i jG j (6.3)

and

Gr = −γi jσr jGe i (6.4)

Then, with τi j being the covariance matrix of E
�
G∗G∗T
�

and τi j its inverse and ςi j

the expectation of the first derivative, we also have

G∗f r = −ςirτ
i jG∗ j (6.5)

For later simplification, we first give a lemma regarding τ and ς:

74 Chapter 6. Quasi-Likelihood Principal Component Analysis

Lemma 6.2.1. τ, its inverse and ς are given by the following expressions

τi j = γikγ jlσ
kl (6.6)

τi j = γikγ jlσkl (6.7)

ςi j = γikγ jlσ
kl (6.8)

We now give a theorem for the transformation law of standardised estimating equa-

tions.

Theorem 6.2.4. Standardised estimating equations follow a tensor transformation law.

Proof. Combining (6.2) and (6.5), we obtain:

G∗f r = −ςirτ
i j
�
Gkak

j

�
= −ak

j τ
i jςirGk = c i

rGi (6.9)

where c i
r := −ai

jτ
k jςkr . Then, using (6.4), we obtain:

G∗f r = ai
jτ

k jςkrγ
lmσimGe l (6.10)

Finally, using (6.8) and (6.7), we obtain

G∗f r = ai
jγ

lkγmjσlmγknγroσ
noγpqσiqGep = ai

rσikγ
k jGe j (6.11)

Finally, we give the information criterion and optimality criterion in tensor notation:

Definition 6.2.8. Denoting, as in Theorem 6.2.4, the the covariance matrix E
�
GGT
�

by

σi j , and byσi j its inverse and E
�
Ġ
�

by γi j then the information criterion E (G), denoted

by Ei j is:

Ei j := γikγ jlσ
kl

Theorem 6.2.5. The information criterion is invariant under change of coordinates.

Proof. Using the previous notation, we have:

E (G∗)i j = ςkiτ
klςl j (6.12)

Substituting using (6.7) and (6.8), we obtain:

E (G∗)i j = γkmγinσ
mnγkoγl pσopγlqγ jrσ

qr

= γkmγ
koγinγ

koγlqγ
l pσopσ

qr

E (G∗)i j = γikγ jlσ
kl (6.13)

6.2. Tensor Estimating Equations 75

6.2.4 Tensor Estimating Equations

We are now ready to formulate the theory of tensor estimating equations. We will make

the following necessary definitions, analogues of those given for vector estimating equa-

tions in the previous section.

Definition 6.2.9. A tensor estimating equation of order (p1, . . . , pD) is a multi-index

array of functions Gi1,...,ip :X ×Θ→ R, where the indices i1, . . . , iD run from 1 through

to the corresponding element of (p1, . . . , pD). When there is no confusion, we will write

I for i1, . . . , iD, and similarly with other indices. Using this notation, we will write an

estimating equation of order (p1, . . . , pD) as GI . We require the following properties:

• There exists a potential g such that GI = ∂ g
∂ θI

• E (GI) = 0

• E �ĠIJ � := E� ∂ GI
∂ θJ

�
is non-singular, i.e. invertible.

Remark. We remark that the first condition, the existence of a potential function g is

not standard in the consideration of general estimating equations. However, general

multi-index arrays satisfying the conditions of estimating equations will fail the tensor

transformation laws. The restriction to the class of multi-index arrays generated as the

gradient of a scalar function guarantees the desired tensor properties, as we will prove.

For its importance, we will refer to this condition as the assumption of potential (AOP).

Definition 6.2.10. The variance-covariance tensor for a tensor of order (p1, . . . , pD) is

σIJ = E
�
GIGJ
�

(6.14)

Definition 6.2.11. Given an estimating equation G, the standardised estimating equa-

tion Ge is defined by:

GeR := −γIRσIJGJ (6.15)

where γIJ is the expected first derivative of GI with respect to θJ .

Definition 6.2.12. The information criterion EIJ associated with an estimating equa-

tion GI is

EIJ = γIK γJLσKL (6.16)

We are now ready to prove the tensor versions of the three theorems of Section

6.2.3. The proofs are almost identical, save for the additional complication that where

we before largely dealt with pairs of indices, we are now dealing with pairs of index

76 Chapter 6. Quasi-Likelihood Principal Component Analysis

sets. However, the choice of notation largely protects us from this additional complexity.

Firstly, we will prove that our referring to these objects as tensor estimating equations

is, in fact, justified.

Theorem 6.2.6. Tensor estimating equations are tensors.

Proof. Denote the original parameters by θI , and the new parameters by ϕI . Let

a : Φ → Θ map each parameter ϕI to the corresponding θI . Here a is a multi-

dimensional array of the same dimensions as θ . Then our potential function under

change of variables is g∗, defined as g∗ := g ◦ a. The estimating equation generated by

g∗ is G∗ :=∇ϕ g∗. Then we have

G∗R = GI aIR (6.17)

where aIJ := ∂ aI /∂ ϕJ =
�∇ϕa
�I
J . Then we have that estimating equations transform

according to the law for a covector; that is, they are tensors.

As in Section 6.2.3, we will now prove a short lemma giving some useful identities

which will be necessary to prove that standardised estimating equations also followed

a tensor transformation law.

Lemma 6.2.2. τ, its inverse and ς are given by the following expressions

τIJ = γIK γJLσKL (6.18)

τIJ = γIK γJLσKL (6.19)

ςIJ = γIK γJLσKL (6.20)

Theorem 6.2.7. Standardised tensor estimating equations are tensors.

Proof. Denoting, as before, the variance tensor of the estimating equation under a change

of coordinates (G∗I) by ςIJ and the expected first derivative by τIJ , we have:

G∗fR = −ςIRτIJG∗J (6.21)

We will also need the following expression for the inverse of standardisation.

GR = −γIJσRJGeI (6.22)

Combining (6.17) and (6.21), we obtain:

G∗fR = −ςIRτIJ �GK aKJ
�
= −aKJ τIJ ςIRGK = cIRGI (6.23)

6.2. Tensor Estimating Equations 77

where cIR := −aIJ τKJ ςKR . Then, using (6.22), we obtain:

G∗fR = aIJ τKJ ςKRγLMσIMGeL (6.24)

Finally, using (6.20) and (6.19), we obtain

G∗fR = aIJ γLK γMJσLMγKN γROσN O γPQσIQGeP = aIRσIK γKJGeJ (6.25)

which is a tensor transformation law.

Finally, we will show that, as in the vector case, the information criterion remains

an invariant under coordinate transformations. This result is fundamental to the use of

estimating equations, reassuring us that our choice of coordinate system for parameter

space does not influence the optimality of our estimating equations. As such, we are free

to choose convenient systems of coordinates, whether they simplify the formulation of

our models or of our estimating equations.

Theorem 6.2.8. The information criterion is an invariant.

Proof. As before, we have:

E (G∗)IJ = ςKIτKL ςLJ (6.26)

Using the expressions given in (6.19) and (6.20), we obtain:

E (G∗)IJ = γKMγIN σMN γKO γLPσOP γLQγJRσQR
= γKMγKO γIN γKO γLQγLPσOPσQR

E (G∗)IJ = γIK γJLσKL (6.27)

which is precisely the expression for E (G)IJ , so the information criterion remains in-

variant under change of coordinates.

6.2.5 Asymptotic Consistency

In order to establish consistency of tensor estimating equations, we will begin by us-

ing the uniform law of large numbers to establish that there is a continuous function

E (g(X ,θ)) to which the sample mean of the estimating function g(x ,θ) converges al-

most surely. First, we state the uniform law of large numbers for convenience.

Theorem 6.2.9 (Uniform Law of Large Numbers). Given

78 Chapter 6. Quasi-Likelihood Principal Component Analysis

1. Θ is compact

2. The potential function g(x ,θ) is continuous for each θ ∈ Θ for almost all x

3. g(x ,θ) is a measurable function of x for each θ

4. There is a dominating function d(x) satisfying

a) E (d(x))<∞
b) |g(x ,θ)| ≤ d(x) ∀θ ∈ Θ

then E (g(X ,θ)) is continuous in θ and

sup
θ∈Θ

����� 1T T∑
i=1

g(X i ,θ)−E (g(X ,θ))

����� a.s.→ 0

We now give a theorem using the uniform law of large numbers which establishes,

under some conditions, that tensor estimating equations are consistent. At a high level,

we establish that they are well-behaved extremum estimators, which Wald (1949) proved

are consistent.

Theorem 6.2.10. Under the following assumptions, the tensor estimating equation esti-

mate is consistent. We shall use θ0 to denote the true parameter value.

A.1 Eθ (|g(x ,θ0)|)<∞
A.2 Eθ (g(x ,θ))<∞ for all θ ∈ Θ
A.3 There exists a score function U for the underlying distribution of the data, generated

by log-likelihood function ℓ

A.4 The argument maxima of ℓ and g coincide (i.e. both are maximised at θ0)

A.5 The parameter space Θ is a compact subset of Rp1×...×pD

A.6 g(x ,θ) is continuous in θ over the parameter space for almost all values of x

A.7 g(x ,θ) is a measurable function of x for all θ ∈ Θ
Proof. We now need to establish a dominating function d(x), as required for the Uniform

Law of Large Numbers. Our candidate will be the function in A.1, i.e. we define

d(x) := Eθ (g(x ,θ0))

6.2. Tensor Estimating Equations 79

We seek to establish that

Eθ (g(X ,θ))< Eθ (g(X ,θ0)) ∀θ 6= θ0

Now, if Eθ (g(X ,θ)) = −∞ then this holds trivially, so we will consider only the case

when Eθ (g(X ,θ))> −∞. Then by A.2 we have that

Eθ (|g(X ,θ)|)<∞
Now consider the random variable m := g(X ,θ) − g(X ,θ0). We can write g = ℓ + f ,

thus we have

m(X) = ℓ(X ,θ)− ℓ(X ,θ0)− (f (X ,θ0)− f (X ,θ))

We now use the gradient theorem to write

f (X ,θ0)− f (X ,θ) =

∫
γ[θ ,θ0]

∇θ fI (X , r)drI

where γ[θ ,θ0] is any path through the parameter space Θ from θ to θ0. Now write

f = g − ℓ, so we have

f (X ,θ0)− f (X ,θ) =

∫
γ[θ ,θ0]

∇θ (g − ℓ)I (X , r)drI =
∫
γ[θ ,θ0]

(G − U)I (X , r)drI

Then we consider the expectation

E (f (X ,θ0)− f (X ,θ)) = E
�∫
γ[θ ,θ0]

(G − U)I (X , r)drI
�

=

∫
γ[θ ,θ0]
E ((G − U)(X , r))I drI

=

∫
γ[θ ,θ0]

0I drI

= 0

Thus we have that

E (m(X)) = E (ℓ(X ,θ)− ℓ(X ,θ0))

From Wald (1949), then, we have that E (m(X)) < 0, i.e. that d(X) is the dominating

function we require. Thus, by the uniform law of large numbers, we have the result

sup
θ∈Θ

����� 1T T∑
i=1

g(X i ,θ)−E (g(X ,θ))

����� a.s.→ 0

Then, as an extremum estimator, the estimating function consistently estimates its max-

imum θ0.

80 Chapter 6. Quasi-Likelihood Principal Component Analysis

6.3 Categorising Generalisations of PCA

Having developed the theory of tensor estimating equations, we will now apply it to the

methods of Landgraf and Lee (2015b), Collins et al. (2002) and Li and Tao (2013).

6.3.1 Generalised Principal Component Analysis

We now return to the Generalised Principal Component Analysis of Landgraf and Lee

(2015b), as detailed in Section 4.2.

As we have a full expression for the likelihood of U given data X which is differen-

tiable, we can construct the score function. For convenience, we write it as two separate

estimating functions.

GU =
��

X− b′
�
Θ̂
��T �

Θ̃− 1µT
�
+
�
Θ̃− 1µT
�T �

X− b′
�
Θ̂
���

U (6.28)

Gµ =
�
I−UUT
� �

X− b′
�
Θ̂
��T

1 (6.29)

where Θ̃ is the matrix of saturated natural parameters, Θ̂ is given by 1µT+UUT
�
Θ̃− 1µT
�

and b′ is the inverse of the canonical link function.

As a score function, by Theorem 6.2.2 we know that this is an optimal estimat-

ing function if we choose H to include it. However, Generalised Principal Compo-

nent Analysis (GPCA) requires that U satisfy the left semi-orthonormality constraint; as

such we must add a non-linear constraint to be enforced. We denote the constraint by

ϕ (U) := UTU and require that our solution to (6.28) and (6.29) satisfies ϕ (U) = I. For

theoretical simplicity, we can now write this as a third estimating function

Gorth. = UTU− I (6.30)

We can also think of this constraint as a change of space H on which we seek the

optimal estimating function. In this case, the estimating functions (6.28) and (6.29)

will again be optimal.

6.3.2 Collins et al.

This method, though typically formulated in terms of Bregmann distances, is ultimately

based on an exponential family distribution, so we can be confident that it will satisfy

the requirements of a tensor estimating equation. We now give the estimating functions.

GA =
�
G′ (AV)−X
�
VT (6.31)

GV = AT
�
G′ (AV)−X
�

(6.32)

6.4. Comparisons 81

From the estimating equations, we can see that, heuristically, we are attempting to

make the difference between the observed data and the lower-dimensional approxima-

tion of it equal to zero, with some appropriate waiting (the VT and AT terms respectively)

in each of GA and GV.

6.3.3 Simple Poisson Principal Component Analysis

Due to the complexity introduced by the unspecified functions involved in the general

Simple Exponential PCA of Li and Tao (2013), we will give as an example the estimating

functions of the Poisson case:

GW = XYT − exp (WY)YT −WDiag (α) (6.33)

GY =WTX−WT exp (WY)− Y (6.34)

Gα j = p− ‖w j‖2α j (6.35)

Here, the exponential function is applied component-wise, and we use the convention

of Li and Tao (2013) and Smallman, Underwood, et al. (2019) for the arrangement

of the data matrix X as n columns of observations. Note that (6.35) is derived from

the approximation of α proposed by Li and Tao, rather than the conditional posterior

likelihood.

6.4 Comparisons

In estimating equation form, it is now easy to compare how these three methods dif-

ferent. Let us start by comparing GPCA and the method of Collins et al. (2002). If we

assume µ= 0 in (6.28), then we have (with a change of sign)

GU =
�
b′
�
UUTΘ̃
�−X
�T

Θ̃U+ Θ̃T
�
b′
�
UUTΘ̃
�−X
�
U

Comparing this to (6.31) and (6.32), we then see that this estimating equation also

considers some (differently weighted) difference between the lower-dimensional repre-

sentation and the observations. The difference, then, is in the weighting and the use of

µ as a centring parameter (which requires the inclusion of another estimating equation).

To compare Simple Exponential Principal Component Analysis (SePCA) with these

methods, let us make some changes of notation. We rewrite exp (WY) as X̃, recalling

that exp maps the natural parameters WY to the expected value of the distribution, i.e.

82 Chapter 6. Quasi-Likelihood Principal Component Analysis

our best guess for X without further information. Then we have

GW = XYT − X̃YT −WDiag (α) =
�
X− X̃
�
YT −W Diag (α)

GY =WTX−WTX̃− Y =WT
�
X− X̃
�− Y

Gα j = p− ‖w j‖2α j

In this form, we can see how SePCA relates to GPCA and Collins et al. (2002); once

again we are looking at weighted differences between the estimated and observed data.

In fact, if it were not for the −W Diag (α)) and −Y terms in the first two equations, and

the existence of the third equation, this would be precisely the method of Collins et al.

(2002).

6.5 Asymptotic Consistency

None of the methods considered in this chapter have previously had any asymptotic

results published in the literature, which is a significant disadvantage to the justification

of their use.

Recall Theorem 6.2.10. Given that assumptions A.1 through A.7 hold, we can es-

tablish the asymptotic consistency of each of the three methods. It is easy to see that

all but A.4 hold for each of GPCA, SePCA and Collins et al. (2002). In general, A.4

will likely have to be assumed, as it cannot be easily verified. However, in these cases,

all three methods can be readily seen to be equivalent to maximum likelihood, so A.4

will also hold. Precise details can be found in the respective papers, but briefly: GPCA

is estimated by minimum deviance which is equivalent to maximum likelihood, SePCA

is estimated by maximum a-posteriori (MAP) which is equivalent to maximum likeli-

hood for the posterior likelihood, and Collins et al. (2002) is derived from maximum

likelihood via Bregman divergences.

For illustration, we will briefly investigate each of these assumptions for the Poisson

case of GPCA. Recall that here, the potential function is the deviance of a Poisson model.

A.1 Write the deviance as

log
�

1
x!

�
+ xθs − expθs − log (1x!)− xθ0 − expθ0

where θs is the saturated natural parameters. This simplifies to

x (θs − θ0) + expθs − expθ0

which is almost-everywhere finite for finite values of θs and θ0. Thus its absolute

value is also almost everywhere finite, and it follows that so is the expectation

6.6. Conclusions 83

thereof. Of course, this is for the one-dimensional case, but the true vector case

follows along the same lines with more complicated notation

A.2 The first term of the deviance is the log-likelihood under the saturated model,

which is finite and has finite expectation, so this assumption is equivalent to veri-

fying that

E (− log (P (x ,θ)))

is finite. In the Poisson case, this is

−E
�

log
�

1
x!

�
+ xθ − expθ
�

thus, as the expectation of an almost-everywhere finite quantity, it is also finite.

Again, this is the one-dimensional case, but the true case follows simply from this

A.3 Trivially true by assumption

A.4 As we discussed, because the minimum deviance estimator is identical to the max-

imum likelihood estimator, we can be assured that this holds

A.5 As the parameter space is simply Rp1×...×pD , this is trivially true

A.6 The deviance function is everywhere continuous in θ for all values of x (which

are restricted to vectors of non-negative integers)

A.7 Satisfied

6.6 Conclusions

In this chapter, we have seen how the framework of (tensor) estimating equations en-

ables specifications of dimension reduction methods in a way which allows both for

universal computational algorithms (via standard root-finding algorithms) and direct

comparison between methods.

In particular, we have stated three important methods of exponential family dimen-

sion reduction in estimating equation form, and used that form to see how fundamen-

tally similar these methods are. At their core, all of them are concerned by the difference

between the observed and expected data, differing primarily in how they are weighted.

This does, of course, provide a framework for exploring new dimension reduction tech-

niques by modifying the estimating equations.

We have also used the asymptotic results for tensor estimating equations to show

consistency of each of the three studied methods.

84 Chapter 6. Quasi-Likelihood Principal Component Analysis

Any important future direction for this work is the ability to incorporate sparsify-

ing penalties. This will allow almost all of the exponential family dimension reduction

methods to be analysed under the same framework. Currently, the obstacle for this is

the use of penalties which are not everywhere differentiable, such as the L1 and SCAD

penalties. This could, perhaps, be done by using differentiable approximations to these

penalties, but it is not yet clear how to treat these in the asymptotic framework.

85

Chapter 7

Conclusions

In this work, we have given three novel methods for exponential family dimension re-

duction. Firstly, we derived Poisson Inverse Regression (PoIR) in Chapter 2, which is

specialised to the Poisson distribution for its use with text data. We gave two methods

of estimation, using either maximum a-posteriori (MAP) or Markov Chain Monte Carlo

(MCMC), and demonstrated its efficacy using real text data against its closest competi-

tor, Multinomial Inverse Regression (MNIR).

We then extended the work of Landgraf and Lee (2015b) (known as Generalised

Principal Component Analysis (GPCA)) in Chapter 4, incorporating a sparsifying penalty

which improves performance and intepretability of the resulting loadings. Using both

simulation studies and a real text data example, we showed that our proposed method

performs on par or better than the current state of the art.

In Chapter 5, we extended Simple Exponential Principal Component Analysis (SePCA)

(Li and Tao 2013) in a similar fashion, applying a sparsifying penalty to the loadings

matrix. Again, we demonstrated the advantages of our new method with simulation

and real data studies. In particular, we showed that our method performed better at

estimating the underlying structural dimension of the data than the original method.

Taking a new approach, in Chapter 6 we presented a framework for tensor-valued

estimating equations. We showed several important results, including that tensor es-

timating equations are asymptotically consistent. The development of this framework

then allowed us to re-examine three important methods for exponential family dimen-

sion reduction in a new light in. We used the framework to show how essentially similar

these methods are, and precisely how they differ. We also applied the asymptotic theory

from tensor estimating equations to show that each of these methods is consistent.

87

Bibliography

Bishop, Christopher M (1999). “Bayesian pca”. In: Advances in neural information pro-

cessing systems, pp. 382–388.

Blei, David M, Andrew Y Ng, and Michael I Jordan (2003). “Latent Dirichlet Allocation”.

In: Journal of Machine Learning Research 3, pp. 993–1022. arXiv: 1111.6189v1.

Collins, Michael, S Dasgupta, and Robert E Schapire (2002). “A Generalization of Prin-

cipal Components Analysis to the Exponential Family”. In: Advances in Neural Infor-

mation Processing Systems 14, pp. 617–624.

Cook, R. Dennis (2007). “Fisher Lecture: Dimension Reduction in Regression”. In: Sta-

tistical Science 22.1, pp. 1–26. arXiv: 0708.3774.

Eaton, Morris L (1986). “A characterization of spherical distributions”. In: Journal of

Multivariate Analysis 20.2, pp. 272–276.

Fan, Jianqing and Runze Li (2001). “Variable Selection via Nonconcave Penalized Like-

lihood and its Oracle Properties”. In: Journal of the American Statistical Association

96.456, pp. 1348–1360.

Frommlet, Florian and Grégory Nuel (2016). “An adaptive ridge procedure for L0 regu-

larization”. In: PLoS ONE 11.2, pp. 1–23.

Gelman, A and D B Rubin (1992). “A Single Series from the Gibbs Sampler Provides a

False Sense of Security”. In: Bayesian Statistics 4.July, pp. 625–631.

Geman, Stuart and Donald Geman (1984). “Stochastic relaxation, Gibbs distributions,

and the Bayesian restoration of images”. In: IEEE Transactions on pattern analysis

and machine intelligence 6, pp. 721–741.

Gillis, Nicolas (2014). “The Why and How of Nonnegative Matrix Factorization”. In:

pp. 1–25. arXiv: 1401.5226.

Guan, Y and Jg Dy (2009). “Sparse probabilistic principal component analysis”. In: Pro-

ceedings of the 12th International Conference on Artificial Intelligence and Statistics,

pp. 185–192.

Hastings, W Keith (1970). “Monte Carlo sampling methods using Markov chains and

their applications”. In:

88 Bibliography

Hotelling, Harold (1933). “Analysis of a complex of statistical variables into principal

components.” In: Journal of Educational Psychology 24.6, pp. 417–441.

Hu, Zhenfang et al. (2016). “Sparse Principal Component Analysis via Rotation and

Truncation”. In: IEEE Transactions on Neural Networks and Learning Systems 27.4,

pp. 875–890. arXiv: arXiv:1403.1430v2.

Hunter, David R and Runze Li (2005). “Variable selection using MM algorithms”. In:

Annals of Statistics 33.4, pp. 1617–1642. arXiv: 0508278 [math].

Kwak, Nojun (2008). “Principal component analysis based on L1-norm maximization”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 30.9, pp. 1672–

1680.

Landgraf, Andrew J and Yoonkyung Lee (Oct. 2015a). “Dimensionality Reduction for

Binary Data through the Projection of Natural Parameters”. In: arXiv:1510.06112

[stat.ML]. arXiv: 1510.06112.

— (2015b). “Generalized Principal Component Analysis: Projection of Saturated Model

Parameters”. In: Ohio State University Statistics Department Technical Report 892.892.

Li, Jun and Dacheng Tao (2013). “Simple exponential family PCA”. In: IEEE Transactions

on Neural Networks and Learning Systems 24.3, pp. 485–497.

Li, Ker-Chau (1991). “Sliced inverse regression for dimension reduction”. In: Journal of

the American Statistical Association 86.414, pp. 316–327.

Lu, Meng, Jianhua Z. Huang, and Xiaoning Qian (Dec. 2016). “Sparse exponential family

Principal Component Analysis”. In: Pattern Recognition 60, pp. 681–691.

Mackay, David J C (1995). “Probable networks and plausible predictionsa review of prac-

tical Bayesian methods for supervised neural networks”. In: Network: Computation

in Neural Systems 6.3, pp. 469–505.

Metropolis, Nicholas et al. (1953). “Equation of state calculations by fast computing

machines”. In: The journal of chemical physics 21.6, pp. 1087–1092.

Mohamed, Shakir, Katherine Heller, and Zoubin Ghahramani (2009). “Bayesian expo-

nential family PCA”. In: Advances in Neural Information Processing Systems, pp. 1089–

1096.

Nocedal, J and S J Wright (1999). Numerical Optimization. Vol. 43. 2, pp. 164–75. arXiv:

NIHMS150003.

Pearson, Karl (1901). “On lines and planes of closest fit to systems of points in space”.

In: The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science

2.1, pp. 559–572.

R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 (2011).

“R Development Core Team”. In: R: A Language and Environment for Statistical Com-

puting 55, pp. 275–286.

Bibliography 89

Rousseeuw, Peter J. (Nov. 1987). “Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis”. In: Journal of Computational and Applied Mathematics

20, pp. 53–65. arXiv: z0024.

Smallman, Luke, Andreas Artemiou, and Jennifer Morgan (2018). “Sparse generalised

principal component analysis”. In: Pattern Recognition 83, pp. 443–455.

Smallman, Luke, William Underwood, and Andreas Artemiou (2019). “Simple Poisson

PCA: an algorithm for (sparse) feature extraction with simultaneous dimension de-

termination”. In: Computational Statistics, pp. 1–19.

Taddy, Matt (2013). “Multinomial Inverse Regression for Text Analysis”. In: Journal of

the American Statistical Association 108.503, pp. 755–770. arXiv: 1012.2098.

— (Sept. 2015). “Distributed multinomial regression”. In: The Annals of Applied Statis-

tics 9.3, pp. 1394–1414.

Tipping, Michael E. and Christopher M. Bishop (1999). “Probabilistic Principal Compo-

nent Analysis”. In: Journal of the Royal Statistical Society. Series B (Statistical Method-

ology) 61.3, pp. 611–622.

Wald, Abraham (1949). “Note on the consistency of the maximum likelihood estimate”.

In: The Annals of Mathematical Statistics 20.4, pp. 595–601.

Wen, Zaiwen and Wotao Yin (Dec. 2013). “A feasible method for optimization with

orthogonality constraints”. In: Mathematical Programming 142.1-2, pp. 397–434.

Yi, Shuangyan et al. (Jan. 2017). “Joint sparse principal component analysis”. In: Pattern

Recognition 61, pp. 524–536.

Zou, Hui and Trevor Hastie (2005). “Regularization and Variable Selection via the Elas-

tic Net”. In: Journal of the Royal Statistical Society. Series B (Methodological) 67.2,

pp. 301–320.

Zou, Hui, Trevor Hastie, and Robert Tibshirani (June 2006). “Sparse Principal Compo-

nent Analysis”. In: Journal of Computational and Graphical Statistics 15.2, pp. 265–

286. eprint: 1205.0121v2.

