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Abstract 

In this research, the Poisson’s ratio of three different types of almost isotropic interpenetrating 

composites are designed to be either positive, or negative, or zero. As they are strengthened by 

a self-connected fibre-network and do not contain any pore in their structure, they all are stiffer 

than the conventional particle composites. In addition, structural hierarchy is also demonstrated 

to be able to significantly enhance the auxetic behaviour for the three types of interpenetrating 

composites.  Thus, these composites could be used not only as functional materials, but also as 

structural materials in engineering applications. 

Keywords: Auxetic behaviour; negative Poisson’s ratio; interpenetrating composite; 

Structural hierarchy. 
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1. Introduction 

The classical theory of elasticity [1,2] shows that the Poisson’s ratio of an isotropic material 

could be in the range of −1 < ν < 0.5. However, most non-porous natural and engineered 

isotropic materials exhibit a positive Poisson’s ratio ranging between 0 and 0.5.  Although a 

few single crystal materials, e.g., pyrite [1] and cadmium [3], are found to exhibit a negative 

Poisson’s ratio, they are not isotropic. Isotropic material with a negative Poisson’s ratio had 

been veiled in secrecy for many years until 1987 when an auxetic cellular/porous material was 

produced and tested under compression by Lakes, showing a Poisson’s ratio around -0.6 to -

0.7 [4]. After that, auxetic behaviour has also been found in different structures. In contrast to 

the general cognition that negative Poisson’s ratio is rare in crystalline solids, 69% of cubic 

elemental metals exhibit auxetic behaviour when stretched along the [1 1 0] direction [5]. 

Several idealized zeolites and molecular structures are found to possess a negative Poisson’s 

ratio, and have been explained by their geometry and deformation mechanisms [6, 7]. Silicon 

dioxide (SiO2) in the α-cristobalite structure exhibits a negative Poisson’s ratio averaging 

around -0.16 [8]. Negative Poisson’s ratio behaviour is also found in the deformation 

experiments of natural layered ceramic [9], single- or multi-layered graphene [10], 2D 

puckered structure of PdSe2 monolayer [11], and nanolayered graphene/Cu composites [12]. 

Very large Poisson’s ratio (from -5 to -11) has been observed in the thorough-thickness 

direction in highly porous fibre networks made of 316L fibres [13]. However, all the 

aforementioned materials are either cellular/porous or highly anisotropic materials. 

Poisson's ratio has attracted more and more attention in recent years. With the advance in 

materials syntheses, experimental measurements and computational simulations, it has been 

recognised that Poisson’s ratio is related to the densification, connectivity, ductility and the 

toughness of solid materials [14]. It has also been found that the elastic properties of a 

composite material can be largely affected, thus tuned by the Poisson ratios of the constituent 

materials [15–17]. Cellular materials are often used as filler in sandwich structures. Compared 
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to the conventional foam fillers, auxetic materials with a negative Poisson’s ratio can enhance 

the stiffness [15,16], indentation resistance [18,19], crashworthiness, energy absorption 

performance [20–22], and fracture toughness [23] of sandwich structures.  

The research of negative Poisson’s ratio materials was initially supported by NASA/Boeing for 

aviation and aerospace applications [24,25]. Further investigation into the auxetic behaviour 

proves that many features of negative Poisson’s ratio materials are desirable in aerospace 

industry [26,27].  Conventional honeycombs [28,29] and open-cell foams [30], which have a 

positive Poisson’s ratio under small deformation, can also exhibit a negative Poisson’s ratio 

(i.e., auxetic behaviour) under large strain compression due to the cell junction/vertex rotation. 

Most fabricated materials with a negative Poisson’s ratio are porous in macro or micro scale, 

with relatively low stiffness, which may limit their applications to low load-bearing structures. 

When high stiffness/weight ratio, high strength and energy absorption are all demanded, solid 

composite materials may be a good choice. Compared to the conventional particle reinforced 

and unidirectional fibre reinforced composites [31–34], interpenetrating phase composites 

(IPCs) reinforced by a self-connected network rather than by separated particles or fibres, have 

been demonstrated to have much better mechanical and physical properties  [16, 17, 35–38] 

than those of their conventional counterparts. When a self-connected auxetic lattice structure 

or fibre-network is embedded as reinforcement in a matrix with a low positive Poisson’s ratio, 

the composite would have the potential to exhibit auxetic behaviour. It has already been 

experimentally demonstrated that composite plates reinforced by an auxetic fibre-network 

exhibits a negative Poisson’s ratio in the thickness direction [39].  Composites reinforced by a 

re-entrant hexagonal honeycomb are also found to exhibit strong in-plane auxetic behaviour 

[40]. Available publications on composites with auxetic behaviour are very limited and the 

properties are in general anisotropic. In this paper, we study the mechanical behaviour of solid 

interpenetrating composites reinforced by three different types of auxetic fibre-networks with 

cubic symmetry. The concavity of the fibre-networks is considered as a key factor affecting 
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the auxetic behaviour of the constructed composites. The effects of the volume fraction, elastic 

properties and concavity of the fibres, and the structural hierarchy on the elastic properties of 

the interpenetrating auxetic composites are investigated by computational simulation.  

  

2. Geometric structures and computational methods 

2.1 Geometric structures 

Re-entrant foams are the most common auxetic cellular-network materials, examples include 

2D re-entrant honeycombs [18,40], 3D re-entrant foams [4], double-arrowhead re-entrant 

structure [41], star-shaped structure [42]. In this paper, we study the elastic properties of 

interpenetrating composites which are reinforced by three different types of regular re-entrant 

fibre-networks. As all the three types of interpenetrating composites are periodic and have 

cubic symmetry, we use representative volume elements (RVEs) to study their elastic 

properties.  The RVE of the type I re-entrant fibre-network, as shown in Fig. 1 (a), has 12 self-

connected chevron struts in its 6 rectangular diagonal planes, each of which contains two 

chevron struts.  The RVE of the type II re-entrant fibre-network is shown in Fig. 1 (b), which 

consists of 6 self-connected inward crosses. The RVE of the type III re-entrant fibre-network 

is shown in Fig. 1(c), which is similar to structure in [42].    
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Fig. 1. The geometric structures of the three different types of self-connected reinforcement auxetic 

fibre-networks: (a) Type I, (b) Type II, (c) Type III. 

 

2.2 Model parameters 

One of the most important parameters for a two-phase interpenetrating composite is the fibre 

volume fraction.  For the three different types of re-entrant fibre-networks, all the fibres are 

assumed to have the same uniform circular cross-section.  The fibre volume fraction 𝑉𝑓 can be 

controlled by varying the fibre diameter or the fibre direction angle   shown in Fig. 2.  

Because of the natural limit of the fibre-network geometric structures, the fibre volume fraction 

𝑉𝑓 considered in this paper is limited in the range from 4% to 32% for type I and II composites, 

and from 2.5% to 20% for type III composites. For the three types of interpenetrating 

composites, their negative Poisson’s ratio and other elastic properties (e.g., Young’s modulus) 

significantly depend on the chevron or the re-entrant angle 𝛼. In order to explore how the fibre 

angle affects the elastic properties of the three types of interpenetrating composites, the 

following three sets of angles given in table 1 are used in simulations.   

(b) 

 
(a) 

 

(c) 
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Fig. 2.  Fibre direction angle α in the three different types of reinforcement fibre-networks. (a) the 

chevron angle 𝛼  measured in the main diagonal plane of the type-I RVE; (b) and (c) the re-entrant 

angle α  measured in the RVE main diagonal plane of the type I and II composites. 

 

Table 1.  Fibre angle α of the three different types of reinforcement fibre-networks. 

 Angle 1 Angle 2 Angle 3 Angle 4 

Type I 20° 30° 40°  

Type II 10° 12° 14° 20° 

Type III 12° 20° 24° 26° 

 

It is assumed that the reinforcement fibre-network and the matrix of the interpenetrating 

composites are made by two different isotropic solid materials. Their Young’s moduli and 

Poisson’s ratios are denoted as 𝐸𝑓 ,  𝐸𝑚, 𝜈𝑓 , 𝜈𝑚 , where subscript  𝑓  stands for fibre and 𝑚 

represents matrix.  For simplicity and generality, both the Young’s moduli of the fibre and the 

matrix are normalised by that of the matrix, thus the normalised Young’s modulus of the matrix 

is always 1 and the possible range of the normalised Young’s modulus of the fibre is given in 

Table 2.  The range of the Young’s moduli is from 60 to 400 GPa for most metal, alloys, 

ceramics and carbon fibres; and from 0.1 to 10 GPa for most solid polymers [43].  For example, 

low density Polyethylene has a Young’s modulus of 0.15 – 0.24 GPa [43].  In some 3D printed 

composites [44], VeroWhite (rigid photopolymer) is often used as the stiffer phase whose 

Young’s modulus is 𝐸𝑓 = 1.66GPa, and TangoPlus (a soft rubbery material) is often used as 

α α 

α 

(b) 

 
(a) 

 

(c) 
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the softer phase whose Young’s modulus is 𝐸𝑚 = 0.7456MPa.  Thus, the ratio 𝐸𝑓 𝐸𝑚⁄  in such 

composites is close to 2500.  In most polymer, rubber or metal matrix composites reinforced 

by a metal or ceramic, the ratio 𝐸𝑓 𝐸𝑚⁄   stays in the range from 2 to 1000, examples include 

ceramics/steel composites, Al/epoxy composites [45], glass/epoxy composites [46] and 

Al/Al2O3 composites [47].  In order to enhance the auxetic behaviour (i.e., a large negative 

Poisson’s ratio), a relatively high value of  𝐸𝑓 𝐸𝑚⁄  is desired. 

 

Table 2.  The range of the normalised Young’s Moduli of the fibre material. 

𝐸𝑓 𝐸𝑚⁄  2 10 50 100 500 1000 2000 

 

The elastic properties of composites can be significantly affected by the Poisson’s ratio of the 

matrix material [15-17], but are less sensitive to that of the reinforcement material (this may 

be because the volume fraction of the latter is usually much smaller).  As almost all the single-

phase solid isotropic materials have a positive Poisson’s ratio, a very small Poisson’s ratio is 

desired for the matrix material in order to enhance the auxetic behaviour of the composites.  

For the aforementioned materials as the potential reinforcement and matrix phases, the 

Poisson’s ratios of TangoPlus and VeroWhite are approximately 0.49 and 0.3 [44,48]. 

Aluminium has a Poisson’s ratios around 0.33. Their Poisson’s ratios are too large for isotropic 

auxetic IPCs to exhibit a significant negative Poisson’s ratio. Carbon matrix can have a very 

low Poisson’s ratio from approximately 0 to 0.05 [49], and the Poisson’s ratio of SiC matrix is 

around 0.14 to 0.35. In metal matrix composites, beryllium which is used as the matrix material 

in AlBeMet for aerospace and commercial applications has a very low Poisson’s ratio of 0.03 

[50].  Table 3 gives the Poisson’s ratios of the possible isotropic solid matrix and fibre materials 

discussed in this paper. 
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Table. 3.  Poisson’s ratios of the fibre and matrix materials. 

𝜐𝑓 0.35 0.25 

𝜐𝑚 0 0.1 0.2 

 

2.3 Computational method 

The representative volume element (RVE) models of the composites reinforced by the three 

different types of auxetic fibre-networks are constructed using the ANSYS software [51].  As 

each of the three types of composites is made of a large number of identical representative 

volume elements (RVEs), their elastic properties can be obtained from single RVE models.  

Both the fibre and matrix materials are assumed to be homogeneous and isotropic solids, and 

they both are partitioned into higher order 3D, 10-node tetrahedra (Solid187) elements. As all 

the three types of composites are periodic, periodic boundary conditions are applied to the RVE 

models in the finite element simulations [15,16].  To obtain the Young’s modulus and Poisson’s 

ratios, a small tensile strain of 0.1% is applied to the RVE models in all the simulations. 

 

3. Results  

The focus of this study is on their function side, e.g., the negative or zero Poisson’s ratios. As 

all the three types of composites have cubic symmetry in their geometric structure, they have 

only three independent elastic constants and their elastic properties are nearly isotropic, e.g., 

their Poisson’s ratios are the same in their three orthogonal symmetric planes.   
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3.1 Effects of fibre volume fraction on the Poisson’s ratio of the composites 

The Poisson’s ratios of the three different types of composites strongly depend on the fibre 

volume fraction. When the fibre angle is fixed at 𝛼 = 20° for all the three different types of 

composites (see Fig. 2), Fig. 3(a) shows the dependencies of their Poisson’s ratios on the fibre 

volume fraction while other parameters are fixed at 𝜈𝑚 = 0.1, 𝜈𝑓 = 0.25,  𝐸𝑓 𝐸𝑚⁄ = 1000; 

and Fig. 3 (b) presents the similar relationships when 𝜈𝑚 = 0, 𝜈𝑓 = 0.25, 𝐸𝑓 𝐸𝑚⁄ = 1000. 

 

Fig. 3. Effects of fibre volume fraction on the Poisson’s ratio of the composites when α = 20°.  

 (a) 𝜈𝑚 = 0.1, 𝜈𝑓 = 0.25, 𝐸𝑓 𝐸𝑚⁄ = 1000; (b) 𝜈𝑚 = 0, 𝜈𝑓 = 0.25, 𝐸𝑓 𝐸𝑚⁄ = 1000. 

 

As can be seen in Fig.3, all the three different types of composites exhibit a very strong negative 

Poisson’s ratio when the fibre volume fraction is in range from 2.5% to 30%. The focus of this 

research is on the negative Poisson’s ratio (i.e., the auxetic behaviour). Outside this fibre 

volume fraction range, the composites may not exhibit a negative Poisson’s ratio. Obviously, 

all the three different types of solid composites could be designed to have a ‘zero’ Poisson’s 

ratio.  Comparison between the results in Fig. 3(a) and Fig. 3(b) illustrates that the Poisson’s 

ratio of the matrix material can strongly affect the auxetic behaviour (i.e., the negative 

Poisson’s ratio) of the composites, the smaller the Poisson’s ratio of the matrix material, the 

larger the magnitude of the negative Poisson’s ratio of the composites.  

 

(b) 

 
(a) 
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3.2 Effects of fibre angle 𝜶 on the Poisson’s ratios of the composites 

Fig. 4 shows the effects of the fibre angle 𝛼 on the relationships between the Poisson’s ratio 

and the fibre volume fraction of the three different types of composites when all the other 

parameters are fixed at  𝜈𝑚 = 0.1, 𝜈𝑓 = 0.25, 𝑎𝑛𝑑 𝐸𝑓 𝐸𝑚⁄ = 1000.  As can be seen, the fibre 

angle can strongly affect the Poisson’s ratios of the composites. In order to achieve large 

magnitude of negative Poisson’s ratio for the composites, a suitable (or an optimal) fibre angle 

𝛼 is critical. This is consistent with the experimentally measured results in anisotropic 

composite [40] which showed that it is possible to obtain different magnitudes of negative 

Poisson’s ratios by changing the cell wall angle 𝜃 of the reinforcement re-entrant honeycomb. 

 

Fig. 4. Effects of the fibre angle 𝛼 on the relationships between the Poisson’s ratio and the fibre 

volume fraction of the three different types of composites.  (a) Type I; (b) Type II; (c) Type III. 

 
 

(b) 

 
(a) 

 

(c) 
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Figure 4 (a) shows clearly that the magnitude of the negative Poisson’s ratio of the type-I 

composites with  α = 30°  is much larger than those of the same type composites with α = 20° 

and 40°.  Thus, it is certain that there exists a fibre angle between  α = 20° and 40° for the 

type I composites, which enables the optimal (maximum) auxetic behaviour.  Figure 4 (b) 

illustrates that the Type II composites with a fibre angle of 
012 =  has a larger magnitude of 

negative Poisson’s ratios than the cases when 
010 = , 014  and 

020  (see Fig. 3(a)), logically, 

the maximum (optimal) auxetic behaviour of the type II must exist when the fibre angle is close 

to 012 .  Similarly, Figure 4 (c) demonstrates that the magnitude of the negative Poisson’s ratio 

of the type-I composites with  α = 24°  is much larger than those the same type composites 

with α = 20° and 26°.   For all the three different types of composites, their negative Poisson’s 

ration are resulted from their self-connected fibre-networks whose auxetic (i.e., negative 

Poisson’s ratio) behaviours have to overcome the effects of the positive Poisson’s ratio of the 

matrix material.  Thus, the different optimal fibre angles of the type II and type III composites 

depend on their geometrical structures and the interplay between their auxetic fibre-network 

and matrix materials.       

3.3 Effects of 𝑬𝒇 𝑬𝒎⁄  on the Poisson’s ratio of the composites 

When 𝛼 = 20°, 𝜈𝑚 = 0.1 and 𝜈𝑓 = 0.25, the effects of 𝐸𝑓 𝐸𝑚⁄  on the relationship between the 

Poisson’s ratio and the fibre volume fraction of the type III composites are illustrated in Fig. 5.  

As can be seen, the larger the ratio of 𝐸𝑓 𝐸𝑚⁄ , the more obvious auxetic behaviour the 

composites exhibit.  With the reduction of 𝐸𝑓 𝐸𝑚⁄ , the auxetic behaviour of the composites 

gradually disappears.  This is because the self-connected auxetic fibre-network with a larger 

value of  𝐸𝑓 𝐸𝑚⁄   can more strongly dominate the auxetic behaviour of the composites. If 

𝐸𝑓 𝐸𝑚 = 1⁄  , the Poisson’s ratio of the composites would be approximately m m f mV v V v+  and be 

independent of the geometrical structure of the fibre network, where mV  and 
fV  are the volume 

fractions of the fibre-network and the matrix, respectively.   
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Fig. 5. Effects of 𝐸𝑓 𝐸𝑚⁄  on the relationship between the Poisson’s ratio and the fibre volume fraction 

of the type III composites with  𝜈𝑚 = 0.1, 𝜈𝑓 = 0.25, and fibre angle 𝛼 = 20°. 

 
 

3.4 Effects of 𝑬𝒇 𝑬𝒎⁄  on the relationship between the Young’s modulus and the fibre 

volume fraction of the composites 

Although the focus of the study is on the auxetic behaviour (i.e., negative Poisson’s ratio) of 

the solid composites, the stiffness is a very important property to enable the desired functions 

in applications. When the fibre angle is fixed at 𝛼 = 20°, Fig. 6 shows the effects of the ratio  

𝐸𝑓 𝐸𝑚⁄  on the relationship between the Young’s modulus and the fibre volume fraction of the 

type I composites with 𝜈𝑚 = 0.1 ,  𝜈𝑓 = 0.25 . It is noted that the Young’s moduli of the 

composites have been normalised by that of the matrix material. As can be seen, the larger the 

ratio 𝐸𝑓 𝐸𝑚⁄  , the larger the Young’s modulus of the composites. 
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Fig. 6. Effects of 𝐸𝑓 𝐸𝑚⁄  on the relationship between the Young’s modulus and the fibre volume 

fraction of the type I composites with 𝜈𝑚 = 0.1,  𝜈𝑓 = 0.25. 

 
 
 

4. Discussion 

Negative Poisson’s ratio has important applications and extensive research works have been 

done on the auxetic behaviour/properties of cellular/porous materials [4,6] and anisotropic 

materials [3,5,7,9,12,13].  Although cellular/porous materials [4,6] can be designed to have a 

large magnitude negative Poisson’s ratio, they are obviously much weaker and softer compared 

to their counterpart solid or composite materials without any pore.  Some single crystal 

materials [4,7,8], single- or multi-layered graphene [10],  and 2D puckered structure of PdSe2 

monolayer [11], and nanolayered graphene/Cu composites [12] also exhibit the auxetic 

behaviour, however, their properties are anisotropic. Moreover, it is very expensive and very 

difficult to produce a large bulk of such materials for practical applications.  

All the three different types of composites studied in this paper do not contain any pore and 

their elastic properties are almost isotropic. Because of their negative Poisson’s ratio behaviour, 

the unique indentation response of these auxetic composite makes them ideal materials for 

impact resistance applications [6] such as helmet and body armour [54].  As the Poisson’s ratio 

of those composites can be tuned to zero or any-value near zero, they can be used in biomedical 

applications to imitate the Poisson’s ratio of bones, tissue or joints of human body [55], or used 

to produce micro-sized robot to clean the vein in human body because they can reduce the 

lateral expansion under the thrust/drag force [6, 56]. To enable the desired auxetic function in 
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applications, the composites should have a sufficiently large stiffness.  Here we compare the 

Young’s moduli of the three different types of auxetic composites with the experimentally 

measured Young’s moduli of their conventional counterpart isotropic particle composites 

[46,52,53]. Table 4 gives the elastic properties of the constituent materials of these 

conventional particle composites.  

Table 4.  The elastic properties of the constituent materials in particle composites. 

Composites 𝐸𝑓 (MPa) 𝜈𝑓 𝐸𝑚 (MPa) 𝜈𝑚 

SiC /Al [52] 410000 0.19 74000 0.33 

Glass/Polystyrene [53] 70000 0.22 3250 0.34 

Glass /Epoxy [46] 69000 0.15 3000 0.35 

 

In order to compare the Young’s moduli of the auxetic interpenetrating composites with those 

of the conventional particle composites, the component properties 𝐸𝑓, 𝐸𝑚, 𝜈𝑓, 𝜈𝑚 and the fibre 

volume fractions of the three different types of auxetic interpenetrating composites are chosen 

to be same as those given in table 4.  Fig. 7 shows the comparison between the Young’s moduli 

of the three different types of auxetic interpenetrating composites and those of the conventional 

particle composites, where the Young’s moduli of the composites are normalised by the Voigt 

limit (i.e., 𝐸𝑓𝑉𝑓 + 𝐸𝑚𝑉𝑚 ), 𝑉𝑓  and 𝑉𝑚  are the volume fractions of the fibre (or particle in 

literature) and the matrix, respectively. The fibre angles of the three types of auxetic composites 

are chosen as  𝛼 = 20° for type I, and 𝛼 = 12° for types II and III. 
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Fig. 7. Comparison between the normalized Young’s moduli of auxetic interpenetrating composites 

and those of the conventional particle composites: (a) with the SiC/Al particle composites [52], (b) 

with the glass/polystyrene particle composites [53], and (c) with the glass /epoxy particle composite 

[46]. 

 

As can be seen in Fig. 7, the Young’s moduli of all the three different types of auxetic 

interpenetrating composites are clearly larger than those of the conventional particle 

composites [46, 52, 53], and  the type I interpenetrating composites obviously have the largest 

Young’s moduli among the three different types of auxetic composites.  Thus, the three types 

of composites can be used not only as functional materials (with negative Poisson’s ratio), but 

also as structural materials (with high stiffness).  It is noted that the stiffness of auxetic 

composites is usually smaller than that of non-auxetic interpenetrating composites.  For 

example, the interpenetrating composites reinforced by a self-connected fibre network with a 

(a) (b) 

(c) 
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cubic lattice structure [16] which could have an almost isotropic Young’s modulus much larger 

than the Voight limit.  Moreover, composites [15] reinforced by a perfect regular closed-cell 

foam with identical cubic cells of a uniform wall thickness are almost isotropic, and have the 

largest Young’s modulus compared to any other type of isotropic composites.  

 

 

Fig 8. Illustration of the type-III hierarchical and self-similar composite in which the ‘matrix’ of the 

level-2 composite (a) is the level-1 composite (b). 

 

Structural hierarchy has been demonstrated to be able to significantly enhance the mechanical 

properties of composites [15,16]. Here, the three types of interpenetrating composites are 

assumed to be hierarchical and self-similar with a few levels of structural hierarchy, and the 

‘matrix’ in a higher-level composite is made of the similar lower-level composite, as illustrated 

in Fig. 8.  The Young’s modulus and Poisson’s ratio of the three types of level-1 composites, 

in which the matrix is a single-phase solid material, are already obtained as illustrated in 

Figures 3-7. To demonstrate the effects of structural hierarchy, we use the type III hierarchical 

and self-similar composites with a fixed fibre angle of 𝛼 = 20°  as example. The level-1 

composite is made of two different single-phase solids, and their elastic properties are 

𝐸𝑓 𝐸𝑚 = 1000⁄ , 𝜈𝑚 = 0.1 and 𝜈𝑓 = 0.25. For the level-2 composites, the main strengthening 

(a)  Level-2 composite (b) Level-1 Composite 
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fibre network is made of the same solid material (i.e.,  𝐸𝑓 𝐸𝑚 = 1000⁄  and 𝜈𝑓 = 0.25) and the 

‘matrix’ is made of the self-similar level-1 composite whose Young’s modulus and Poisson’s 

ratio are obtained by FEM simulation. Thus, the Poisson’s ratio of the level-2 and level-3 

hierarchical and self-similar type III composites can be obtained as shown in Fig. 9.  As can be 

seen, structural hierarchy can significantly enhance the auxetic behaviour of the composites 

and their negative Poisson’s ratio could reach a large magnitude. 

 

 

Fig. 9. The relationship between the Poisson’s ratio and the fibre volume fraction of hierarchical and 

self-similar type III composites with a fixed fibre angle of 𝛼 = 20°. 

 

5. Conclusion 

Most materials with a negative Poisson’s ratio are either cellular/porous materials or highly 

anisotropic materials.  Solid interpenetrating composites reinforced by three different types of 

auxetic fibre-networks are studied in this paper. They all could have either a positive, or a 

negative, or a zero Poisson’s ratio.  The magnitude of the Poisson’s ratio depends on the 

combination between the fibre angle 𝛼 , the structural type of the fibre-network, the fibre 

volume fraction, and the mechanical properties of the component materials: 𝐸𝑓 𝐸𝑚⁄ , 𝜈𝑓 and 𝜈𝑚. 

As the composites do not contain any pore in structure and the strengthening phase is a self-

connected network, the Young’s moduli of the three types of composites are obviously larger 
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than those of the conventional particle composites.  In addition, as all the three types of 

composites have cubic symmetry, their mechanical properties are almost isotropic. Moreover, 

structural hierarchy can significantly enhance the auxetic behaviour of the composites. 

Therefore, the three different types of auxetic interpenetrating composites could be used not 

only as functional materials, but also as structural materials in engineering applications. 
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