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Abstract 

 

When cells progress to malignancy, they must overcome a final telomere-mediated 

proliferative lifespan barrier called replicative crisis. Crisis is characterized by extensive 

telomere fusion that drives widespread genomic instability, mitotic arrest, hyperactivation of 

autophagy via the cGAS–STING pathway and cell death. Recently it has become apparent that 

that the resolution of dicentric chromosomes, that arise from telomere fusions during crisis, 

can initiate a sequence of events that leads to chromothripsis, a form of extreme genomic 

catastrophe. Chromothripsis is characterized by localized genomic regions containing a few 

tens to thousands of rearrangements, and it is becoming increasing apparent that chromothripsis 

occurs widely across tumor types and has a clinical impact. Here we discuss how telomere 

dysfunction can initiate genomic complexity and the emerging mechanisms of 

chromothripsis.   
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Telomere crisis 

 

Telomeres (see glossary) were originally defined for the essential role they play in 

governing genome stability [1]. Telomeres are subjected to end-replication losses, that arise 

due to the inability of semi-conservative DNA replication to fully replicate the lagging strand, 

coupled with the functional requirement for the presence of a terminal 3′ single-stranded G-

rich over-hang generated by nucleolytic processing [2]. Consequently, in the absence of 

telomerase, telomeres in human cells gradually erode with ongoing cell division which leads 

to a well-defined decrease in telomere length [3-5] (Figure 1A). Superimposed on gradual end-

replication losses, human telomeres can suffer more substantial stochastic deletion events that 

result in single dysfunctional telomeres [4, 6-8]. Telomere erosion can continue until one or 

more telomeres in a cell [9, 10] have eroded to a length at which they lose their end-capping 

function and are recognized as a double stranded DNA break (DSB) [11]. Which elicits a 

TP53/p21 (tumor suppressor/cyclin-dependent kinase inhibitor) dependent G1/S cell cycle 

arrest [11, 12]. Importantly, the DNA damage checkpoint response is not accompanied by DSB 

repair. Instead these cells can remain in this state of replicative senescence, with unrepaired 

telomeres, persisting for many years [7, 13]. Telomere dependent replicative senescence is 

therefore considered to be a key tumour suppressive mechanism that limits cellular replicative 

capacity in long-lived species [14]. However, perturbations in the TP53 response can allow 

cells to continue to divide past the point of senescence [15, 16] where telomeres continue to 

erode, ultimately reaching a point at which single telomeres are completely denuded of 

telomere repeats [7, 17].  

The loss of telomeres during this extended replicative period is accompanied by a 

progressive increase in the frequency of telomere fusion events [17, 18]. Ultimately cells enter 

a state of replicative crisis during which extensive telomere fusion drives widespread genomic 

instability, mitotic arrest, and cell death. Furthermore, telomere crisis was recently associated 
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with the cGAS-STING (cyclin GMP-AMP synthase – Stimulator of interferon genes) 

pathway, which is involved in sensing of cytosolic DNA fragments and induction of an 

interferon inflammatory response [19].  The widespread genome instability in crisis led to a 

sequence of events that culminated in hyperactivation of autophagy via the cGAS–STING 

pathway and cell death, underlining the role of autophagy in the tumour suppressive crisis 

mechanisms [20, 21]. 

Replicative crisis occurs early in the progression to malignancy and is associated with 

increased genomic complexity [22-28]. Cancers with short telomere length profiles, consistent 

with telomere dysfunction, confer a poorer prognosis and response to treatment [29-33]. It is 

therefore important to understand the underlying mechanisms of telomere-driven genomic 

instability, with a view to providing prognostic, predictive and diagnostic clinical tools, as well 

as potential therapeutic interventions. 

 

Mutagenic consequences of telomere dysfunction 

 

Telomere fusion occurs between sister chromatids, telomeres of heterologous 

chromosomes, and non-telomeric DSBs across the genome [7, 8, 34, 35] (Figure 1B). Fusion 

is primarily mediated by both the classical and alternative non-homologous end-joining 

pathways (c-, a-NHEJ), with Ligase4 (LIG4) dependent c-NHEJ driving predominantly inter-

chromosomal fusion, and Ligase1/Ligase3 (LIG1/LIG3) dependent a-NHEJ driving fusion 

between sister-chromatids [7, 8, 35-39]. Consistent with a-NHEJ activity, microhomology is 

observed at telomere fusion junctions, and is accompanied by deletion into telomere-adjacent 

sequences, which is presumably a consequence of nucleoytic processing prior to fusion [7, 18, 

36]. The full extent of sub-telomeric deletion that accompanies telomere fusion has not been 

defined, although early reports in human cells suggest these events may be extensive [18, 40, 

41]. Studies in yeast models demonstrate telomeric resection of many 10s of kbs [42, 43], 
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which raises the possibility that  telomere fusion-associated deletions may lead to the loss of 

terminal coding sequences. 

During cell division, the centromeres of dicentric chromosomes arising from telomere 

fusion are pulled to opposite poles at anaphase (Figure 2A). Instead of breaking, dicentric 

chromosomes give rise to persistent DNA bridges that can survive mitosis. These bridges break 

during the subsequent interphase, leaving daughter cells with broken chromosomes that have 

lost or gained DNA [44] (Figure 2B-C). Broken chromosomes can be subjected to further 

fusion events, that can initiate cycles of breakage, fusion and anaphase bridging (BFB)[1]. 

BFB cycles can be halted by ring-chromosome formation, centromeric inactivation or the 

acquisition of a telomere maintenance mechanism that seeds telomeres de novo on DSBs and 

stabilises the genome. BFB cycling is thought to generate all manner of structural diversity 

with potentially high copy number states reached after extended cycling.  

Inter-chromosomal fusions resulting in dicentric chromosomes are expected to yield 

terminal deletions or non-reciprocal translocations resulting in amplification. Fusion between 

sister-chromatids can likewise result in end deletions or produce terminal inverted repeats that 

can become amplified in sub-sequent rounds of BFB, with large copy number gains possible 

[45-49]. Thus, BFB cycles are often invoked to explain the large terminal deletions and 

inverted, amplified repeats commonly observed in cancers. 

 

Chromothripsis and genome catastrophe 

 

The potential of BFB cycling to propagate genome instability and generate genome 

complexity has long been appreciated [1]. However, over the past decade, the introduction of 

whole genome sequencing technology has allowed genomic rearrangement patterns to be 

studied at a genome-wide level with base-pair resolution. This led to a new wave of discoveries 

revealing that rearrangement patterns in cancer and some congenital disorders can be 
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astonishingly complex, presenting difficulties in trying to discriminate underlying mechanisms 

and classes of rearrangement pattern. 

In a landmark paper [50], a chronic lymphocytic leukaemia patient was documented with 

a large network of structural variants, consisting of 42 rearrangements found on the long arm 

of chromosome 4, but also 9 translocations linking chromosomes 1, 12 and 15. The breakpoints 

showed clustering on the reference genome, and conspicuous deletions were identified between 

neighbouring breaks giving an alternating copy number profile between one or two copies. 

Additionally, the authors found evidence of similar patterns in bone cancer patients, previously 

published pancreatic cancer data [51], and several cancer cell lines [50]. In one of the analysed 

cell lines (SCLC-21H), highly amplified double minute chromosomes were found with 50 – 

200 copies per cell which occurred along-side highly rearranged normal chromosomes. Double 

minute chromosomes are circularized DNA fragments that can harbor highly amplified 

oncogenes, and are common in certain forms of cancer such as glioblastoma [52].  To explain 

their findings, the authors suggested the term chromothripsis (from the Greek “thripsis”, to 

shatter) with the hypothesis that affected chromosomes undergo fragmentation or shattering, 

followed by random re-ligation into the derivative chromosomal arrangement [50]. It was 

argued that a one-off shattering event could explain the observed copy number states and the 

seemingly random end-joining patterns, although others have pointed out that a multi-step 

process, involving progressive rearrangements over time, could also plausibly generate such 

arrangements and should not be ruled out [53]. 

In a separate study of patients with congenital deficiencies, rearrangement patterns were 

found that consisted of a mixture of duplications and triplications, with complex 

microhomology and insertions at the joins [54]. The authors argued that chromosome 

shattering was insufficient to explain these features and that a replicative mechanism involving 

template switching could better accounts for the findings. Thus, the fork-stalling and template 
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switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR; 

Figure 2C) models of genome rearrangement were invoked as the possible underlying 

mechanism, and the observed  pattern was given the name chromoanasynthesis to reflect this 

etiology [54-56]. 

Building on this work, a separate group found that a high proportion of prostate cancer 

patients typically harboured chains of structural rearrangements that linked multiple 

chromosomes, with 88 % of tumours showing a chain of 5 or more rearrangements [57]. The 

authors argued that the frequency or translocations and the number of chromosomes involved 

was too high to be compatible with chromothripsis, and so the term “chromoplexy” (from the 

Greek “pleko”, to weave or braid) was coined. Chromoplexy is thought to result from 

simultaneous breaks in multiple chromosomes, and random repair gives rise to balanced chains 

or cycles of breakpoints. The terms chromothripsis, chromoanasynthesis and chromoplexy 

have also been grouped under the name of chromoanagenesis as a catch-all moniker that is 

agnostic of the underlying mechanism, although other phrases such as “genome catastrophe” 

have been used to the same effect [58]. 

Although some progress has been made in understanding these ostensibly differing 

processes, the underlying mechanisms are incompletely understood and there is yet to be a 

systematic comparison between categories. Guidelines for the inference of chromothripsis have 

been proposed which are based on quantifying patterns seen in NGS data such as the density 

of breakpoint clustering, loss of heterozygosity, randomness of fragment joining and 

fluctuations in copy number, among other properties [59]. However, especially in cancer 

samples, multiple genome catastrophe processes may occur in tandem, potentially alongside 

events such as BFB cycling, chromosomal instability and aneuploidy, making inference of 

individual processes from sequencing data challenging [54, 57-61]. Recent studies increasingly 

support the idea that there are several categories of genome catastrophe, although the 
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underlying mechanisms and end-joining pathways of these events are still being elucidated. 

Without a clearer understanding of the underlying biology, and to simplify our discussion, we 

will here use the term, chromothripsis or “genome catastrophe”, to refer to these complex 

events. 

 

Outcomes and prevalence of genome catastrophe 

 

 In contrast to the gradual accrual of mutations described by traditional Darwinian 

evolution, genome catastrophe processes are thought to occur within only a few or perhaps a 

single cell division. These large-scale events have the potential to result in massive functional 

alterations to the genome via gene dosage effects from deletions or copy number gains, or 

changes in the epigenetic and regulatory landscape. Consequently, genome catastrophe events 

may have important roles in evolutionary processes shaping the germline and somatic tissues. 

Genome catastrophe occurring in the germline or early during development can lead to 

acquired or potentially inheritable developmental and congenital conditions, and the incidence 

of such events may be more common than previously thought [62-64]. There is also the 

astonishing case of a patient with WHIM syndrome, whose condition was cured by 

chromothripsis. WHIM syndrome is a dominant combined immunodeficiency disease that is 

caused by a gain-of-function mutation in the chemokine receptor CXCR4. Chromothripsis in 

this patient occurred in a hematapoietic stem cell, resulting in deletion of the disease allele, as 

well as 163 other genes from the same chromosome. This founding cell subsequently 

repopulated the myeloid lineage, and thus cured the disease [65]. 

In somatic tissues, genome catastrophe processes can generate clonal diversity and 

heterogeneity which is the currency of tumour development, and there is a possibility that 

fragmented chromosomes arising during chromothripsis may trigger inflammatory processes 

through cGAS signalling [66]. As genome catastrophe may alter genomic structure and 
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function, most events are probably deleterious to the cell, and consequently survival from such 

an event may be associated with deficits in cell death pathways, or genome surveillance. A 

recent large-scale survey of 2658 cancers found that chromothripsis was pervasive, with 

frequencies above 50 % in certain cancer types [61]. The study also highlighted that 

chromothripsis exists on a continuum of complexity and can contribute to oncogene 

amplification and inactivation of tumour suppressors. 

Chromothripsis has been associated with poorer prognosis in several cancers including 

neuroblastoma and acute myeloid leukaemia [61, 62, 67, 68]. However, this was not apparent 

in a pan-cancer analysis following stratification of patients based on the presence or absence 

of chromothripsis [61] The association of genome catastrophe with clinical outcomes in cancer 

is likely to be nuanced and multifaceted, as these processes can potentially be both a cause and 

an effect of cancer, arising from cancer related genome instability. The size of cancer cohorts 

with whole genome sequencing data, limits the power to detect clinical associations, however 

as these datasets expand the full clinical implications of tumours exhibiting genome catastrophe 

will become apparent. 

 

Emerging mechanisms of chromothripsis and genome catastrophe 

 

Chromothripsis and micronuclei 

 

Micronuclei are extra-nuclear bodies containing large DNA fragments or whole 

chromosomes that can serve as markers of genome instability and genotoxicity [69]. In cancer, 

a commonly observed mitotic error is the occurrence of lagging chromosomes which can fail 

to segregate properly and become partitioned into micronuclei [69-71] (Figure 3). Recent 

studies have shown that micronuclei play a major role in the generation of chromothripsis and 

genome instability [70, 72-74].  
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The occurrence of chromothripsis in micronuclei has been linked to deficits in the 

micronuclear envelope. Shortages of ‘non-core’ proteins and nuclear pore complexes (NPCs) 

potentially leads to DNA breaks through aberrant DNA replication and repair [70, 75, 76]. 

Additionally, as a proportion of micronuclei replicate asynchronously with the main nuclear 

compartment, the cell may enter mitosis before micronuclear DNA has finished replicating, 

which may lead to premature chromosome compaction and DNA breakage [72, 73, 77, 78]. 

The physical isolation of chromosomes in micronuclei, combined with DNA compaction-

driven breakage, offers an attractive mechanism to explain the chromosome “shattering” 

thought to underlie chromothripsis. 

Recent studies show that fragmented chromosomes in micronuclei can sometimes be 

partitioned evenly into daughter cells, so lost fragments in one daughter cell correspond to 

gains in the other, which supports a fragmentation model of chromothripsis [72, 79]. 

Micronuclear-derived chromosomes also show defective kinetochore assembly which 

interferes with proper segregation, and can lead to the chromosome being maintained within a 

micronucleus over several generations [80, 81]. Chromosomes trapped within micronuclei may 

therefore be subject to multiple rounds of pulverisation [73, 80, 81]. Additionally, micronuclei-

associated chromosomes can sometimes undergo successful segregation, resulting in 

reincorporation and retention within the primary nuclear compartment [72, 74, 80], which may 

explain how chromothriptic chromosomes may sometimes appear as stable entities over 

multiple cell divisions, or be constitutional in nature [50, 82]. 

An interesting possibility raised recently, is that repair of fragmented chromosomes within 

micronuclei is only achieved during the following cell cycle when micronuclei DNA fragments 

are exposed to repair factors in the primary nucleus [78]. Using a model system of Y-

chromosome centromere inactivation to induce miss-segregation into micronuclei, fragmented 

micronuclear chromosomes, visible by microscopy, could only be detected after one complete 
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cell cycle, post micronuclei formation. Fragmentation appeared to coincide with re-entry into 

mitosis, suggesting that premature condensation may either precede, or directly drive 

fragmentation. The generated chromosomal fragments then persisted until the following cell 

cycle, and siRNA knockdown experiments suggested fragments were reassembled by the c-

NHEJ pathway (Figure 1C) [74, 78]. Recent studies have also inferred the activities of c-NHEJ 

repair in chromothripsis from the occurrence of blunt end joins or random levels of 

microhomology at breaks [83]. 

However, the model of chromosome-shattering in micronuclei is unlikely to account for 

all genome catastrophe patterns. Difficulties arise when trying to explain the occurrence of 

more than a few copy number states, complex repair signatures, or the observation that multiple 

chromosomes are sometimes involved in chromothriptic rearrangement networks, with 

sometimes only a handful of segments derived from minor chromosomes. A multistage process 

has been suggested, involving the inclusion of multiple chromosomes in a single micronucleus, 

potentially combined with multiple rounds of shattering and mixing of fragments to explain 

more complex rearrangement patterns [74]. 

Using irradiation models of micronuclei formation, other studies have reported that DNA 

repair factors may be identified within micronuclei, such as RAD51 (homologous 

recombination factor), or NBS1 (DSB break repair factor), BRCA1 (tumor suppressor), TP53 

and phosphorylated RPA (replication protein A) which binds single stranded DNA [74, 84-86]. 

The presence of these factors suggest DNA repair in micronuclei may be possible via 

recombination or replication based pathways such as MMBIR, which could plausibly generate 

complex join types and copy states associated with some chromothripsis events (Figure 1 C) 

[72]. There have been several reports showing complex microhomology and templated 

insertions in chromothripsis, suggesting this mechanism may occur in a subset of micronuclei-

associated chromothripsis cases [54, 58, 72].  
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Genome catastrophe and telomere dysfunction 

 

Alongside progress in understanding the role of micronuclei in chromothripsis, other 

groups have investigated the possibility that telomere dysfunction is involved. Indeed, it was 

originally suggested in the first report of chromothripsis that dysfunctional telomeres and BFB 

cycling may play a role [50]. Several early sequencing studies provided circumstantial 

evidence that this may be the case, describing the occurrence of “fold-back” inversions – 

genomic rearrangements that are thought to represent the footprint of a BFB cycle, that often 

occurred alongside complex genome rearrangements in cancers such as leukaemia, breast, 

oesophageal and pancreatic [45, 47, 50, 51, 87-89]. In acute lymphoblastic leukaemia patients 

with large-scale amplification of chromosome 21 (iAMP21 ALL), a remarkable association 

was uncovered that illustrates how dicentric chromosomes and chromothripsis can contribute 

to disease [45]. Patients born with a rare constitutional Robertsonian translocation between 

chromosome 15 and 21, that resulted in a dicentric chromosome, showed a 2,700-fold higher 

risk for developing iAMP21 ALL. Furthermore, the iAMP21 amplification appeared to result 

from a chromothripsis event. In sporadic cases of iAMP21 however, copy number profiling 

and cytogenetic analysis was used to infer that a BFB cycle was typically the initiating event, 

and this was often followed by chromothripsis to produce the derivative iAMP21 pattern. This 

study highlights how dicentric chromosomes precipitate genome instability and 

chromothripsis, resulting in large scale changes in gene dosage and selection of disease traits 

[45].     

In 2015, two studies provided experimental evidence linking telomere dysfunction to 

chromothripsis [44, 90]. Using an inducible TRF2 (Telomeric Repeat-Binding Factor 2) 

knockdown model of telomere crisis, these studies identified chromothriptic rearrangements in 

post-crisis cells. By studying copy number joining patterns, BFB cycling appeared to precede 
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chromothripsis, and a propensity of chromothripsis to occur in hyperploid cells was identified 

[90]. Long dicentric chromatin bridges were identified in dividing cells and these sometimes 

persisted beyond cytokinesis before their eventual rupture [44]. Post-crisis clones were 

screened for abnormal karyotypes and subsequent whole genome sequence analysis found a 

high incidence of chromothriptic rearrangements and the phenomenon of kataegis near 

breaksites [44]. Kataegis refers to the clustering of single nucleotide mutations that are 

produced by APOBEC (cytidine deaminase) enzymes acting on single-stranded DNA [44, 91]. 

Furthermore, the authors found evidence that TREX1 (Three Prime Repair Exonuclease 1), a 

cytoplasmic nuclease, may be responsible for dicentric bridge resolution, offering a plausible 

mechanism for the chromosome fragmentation thought to occur in chromothripsis [44, 92] 

(Figure 3B, C). TREX1 was found to localise to chromatin bridges, and knockout cells showed 

slower bridge resolution and reduced genomic complexity following escape from telomere 

crisis [44, 79, 92-94]. Interestingly, RPA-coated single stranded DNA was detected at 

chromatin bridges, and there appeared to be deficiencies in certain nuclear envelope proteins 

such as NPCs (Nuclear Pore Complexes), Lamins (components of intermediate filaments) A/C 

and B1 [44]. These observations draw similarities with the nuclear envelope defects associated 

with micronuclei, and potentially provides a mechanistic link between these processes, where 

nuclear envelope dysfunction, and perhaps rupture, triggers or is associated with complex 

genome rearrangement [44, 70]. 

Following this work, a recent study investigated the consequences of a telomere crisis on 

the structural integrity of the genome, using a model system based on the expression of DN-

hTERT and extended cell culture, to induce telomere erosion and crisis [58]. Sequencing of 

post-crisis samples again identified large scale rearrangement patterns that were characteristic 

of previously reported chromothripsis cases. Additionally, fold-back inversions were found 

near chromothriptic rearrangements further suggesting a role for telomere involvement. 
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However, contrary to expectations, genome catastrophe occurred when NHEJ pathways were 

compromised, occurring in knockout lines defective in c-NHEJ (LIG4-/-), a-NHEJ (LIG3-/-

:TP53-/-), a double a-NHEJ: c-NHEJ knockout line (LIG3-/-: LIG4-/-), and in a LIG3 

overexpressing line. 

These findings are in line with a recent study that used a TP53-deficient murine tumour 

model, where inactivation of c-NHEJ components (LIG4 or XRCC4), but also in BRCA2 mice, 

resulted in the appearance of complex genome rearrangements [95]. Analysing murine 

tumours, in addition to human glioblastoma, breast cancer and melanoma, the authors found 

an association between DNA repair deficiency and complex genome rearrangements. 

Interestingly, mutational “signature 3” was frequently identified in these mouse models, which 

was also a pattern identified in a separate study in association with chained rearrangements 

[58, 95]. Signature 3 has previously been associated with abnormal homologous 

recombination-based repair, and might result from a backup mutagenic repair pathway during 

genome catastrophe [58, 95, 96]. However, based on analysis of breakpoint microhomologies 

and insertion profiles, the authors suggested that joining of these complex events was 

performed by a-NHEJ [95]. The finding that genome catastrophe can occur in the absence of 

c-NHEJ and a-NHEJ [58] would suggest otherwise, although flexibility in which end-joining 

pathways are employed is also likely, as is the possibility that complex rearrangements might 

arise by multiple mechanisms. Together these studies indicate that genome catastrophe can 

sometimes occur in the absence of NHEJ and raise the possibility that NHEJ may even be 

protective against certain forms of genome catastrophe (Figure 2). 

Also using a TRF2  knockdown model of telomere dysfunction, as well as single telomere-

targeted double strand DNA breaks (DSB), a recent study elegantly demonstrated that telomere 

fusions can lead to a cascade of genome instability and chromothripsis [79]. Using the Look-

Seq protocol, cells with dicentric bridges were monitored by microscopy and following bridge 
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resolution, daughter cells were individually sequenced to investigate genomic rearrangements. 

Rather than TREX1 being responsible for bridge resolution, actomyosin forces appeared to be 

the main driver of chromosome breakage (Figure 3B, C). Bridge resolution was initially 

associated with simple breakage patterns, but also more complex rearrangement patterns were 

found which were indicative of replicative repair [79] (Figure 3D - F). In the following mitoses, 

the broken chromosomes were subjected to mitotic DNA replication and further chromothriptic 

events. Also, dicentric bridge formation was often associated with centromere dysfunction, 

which increased formation of micronuclei over subsequent cell divisions, further 

demonstrating how telomere dysfunction leads to progressing genome instability. Further work 

is required to clarify the apparent discrepancy between the TREX and the actomyosin force 

mediated bridge resolution mechanisms, and to establish whether these are mutually exclusive, 

or a continuum of processes by which these aberrant structures are resolved. 

  

Recombination based pathways and genome catastrophe 

 

Several observations support the concept that end-joining in genome catastrophe can occur 

via recombination-based pathways. These include the apparent independence from NHEJ in 

certain cases, complex microhomology and insertion profiles at joins, patterns of copy number 

gains, and the stitching together of short fragments that could arise from template-switching 

[54, 58, 72, 79, 97]. Recent studies have also reported “bursts” of mitotic DNA replication at 

the stubs of broken chromosome bridges or damaged telomeres, which may be the de facto 

event giving rise to some of these rearrangement signatures, potentially occurring in a 

micronuclei-independent manner [79, 94]. 

Several distinct HR pathways are recognised and can result in extensive (homologous) or 

near identical (homeologous) copying of duplex DNA at breaksites [98]. In chromothripsis, 

DSBs arising from dicentric rupture or breakage in micronuclei, may be incompatible with the 
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lowest-error HR pathways such as synthesis-depended strand annealing (SDSA). As proposed 

by several studies, these substrates may instead be processed by error-prone sub pathways such 

as BIR [54, 58, 72, 79, 97]. These pathways initially proceed through the formation of a Rad51-

ssDNA filament which performs homology searching at multiple loci [98]. A DNA strand-

invasion reaction then occurs, resulting in the formation of a D-Loop that can have a number 

of fates depending on the nature of the D-Loop and interactions with various DNA joint 

molecules [98]. Single-ended DNA that can arise from dicentric bridge rupture, can be 

processed by the BIR pathway resulting in long-range displacement DNA synthesis, only 

stopping at the telomere or merging with a replication fork [99]. BIR can be prone to template 

switching and error prone DNA synthesis, which can be common near the initial break [56, 99, 

100], and kataegis has additionally been associated with BIR [101]. Recent work has also 

described other HR pathways capable of generating complex genome rearrangements such as 

the Multi-Invasion-Induced Rearrangements (MIR) pathway, which involves invasion of 

the ssDNA end into multiple donor DNA molecules to produce simultaneous translocations 

[102]. MIR is independent of LIG4, the main NHEJ ligase, and is stimulated by the length of 

homology and physical proximity of the partners. Thus, there may be several recombination-

based pathways capable of generating the patterns of genome catastrophe. 

In a recent study, complex genome rearrangements arising during telomere crisis were 

assembled into longer contigs, which revealed a surprising level of complexity in the 

organisation of rearrangements [58]. Sometimes more than 10 rearrangements were identified 

within 1-2 kb of sequence, and often showed complex microhomology and insertion profiles, 

and higher mutation rates than background [58]. The patterns of rearrangement over the 

reference genome showed deviations from complete randomness, with a tendency for joining 

to occur within the same genomic locus, or sometimes to occur in coordination with some 

distant loci, whilst at the exclusion of others. These findings were interpreted as evidence of 
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either a multistep process, or plausibly as a signature of template switching within localised 

genomic regions, dictated by the spatial organisation of the genome [58]. Consistent with these 

findings recent reports have described rearrangement signatures referred to as “Tandem Short 

Template jumps”, or templated-insertions, which were considered to arise via a replicative 

mechanism [79, 103]. Similarly, complex patterns have been described in patient data, with 

studies highlighting that very short fragments, complex joins, and copy number gains, are 

difficult to explain by chromosome shattering alone [61, 79, 97, 100, 103, 104]. Thus, 

accumulating evidence suggests that replicative repair pathways play an important role in 

generating complex genome rearrangements. 

 

Concluding Remarks and Future Perspectives 

Recent studies employing whole genome sequencing have highlighted the central role of 

telomere dysfunction in driving genome instability and generating structural diversity. The 

extent to which telomere dysfunction underlies genome catastrophe is also becoming clearer. 

Telomere fusion is directly mutagenic, acting across the genome, and can be accompanied by 

exonucleolytic resection. The resulting dicentric chromosomes may be resolved in several 

ways leading to the large terminal deletions and inverted, amplified repeats observed in 

cancers. Importantly, dicentric chromosome formation and resolution is increasingly 

recognized as a driver of extreme genetic complexity through the process of chromothripsis. 

The underlying mechanisms by which telomere dysfunction propagates genome instability 

and leads to genome catastrophe are starting to be revealed. Future studies will fully dissect 

out the sequence of events by which just a single dysfunctional telomere can lead to such 

dramatic mutational events, and what specific repair pathways are involved (see also 

Outsanding Questions). With the increasing availability of sequencing data from a broad range 

of cancers it will be of interest to identify signatures of telomere-driven crisis and genome 
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catastrophe, and evaluate how telomere dysfunction impacts the evolving cancer genome. 

Additionally, the clinical implications of genome catastrophe need to be refined with larger 

cohort studies together with long-term clinical follow-up, to understand whether measures of 

genomic complexity at diagnosis can inform on individual patient prognosis and response to 

treatment. A further aspect will be to understand the interplay between genomic complexity 

during crisis and inflammatory signaling via the cGAS-STING pathway in vivo. 
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Glossary 

 

BFB cycle 

A breakage-fusion-bridge cycle begins when a dysfunctional telomere or uncapped 

chromosome end fuses with another genomic loci to create a dientric chromosome. Dicentric 

chromosomes can cause problems during cell division, leading to the formation of a 

chromatin bridge. Rupture of the bridge creates additional free chromosome ends which can 

undergo further cycles of fusion and bridging. 

 

Replicative Crisis 

Cellular state induced by short dysfunctional telomeres, where widespread DNA damage 

induces autophagic cell death via the cGAS/STING pathway. 

 

cGAS-STING pathway 

A component of the innate immune system for sensing cytosolic DNA fragments. Activation 

of this pathway results in the expression of inflammatory genes. 

 

Chromothripsis 

Large-scale genome rearrangement pattern affecting one or more chromosomes, 

characterized by an alternating copy number profile, and randomized end joining. 

 

Chromoanasynthesis 

Used to describe a genome rearrangement pattern with a mixture of copy number states, and 

joining involving templated insertions and short fragments. 

 

Chromoplexy 

Genome rearrangement pattern consisting of cycles of rearrangements that span multiple 

chromosomes, often showing ‘deletion bridges’ between breaks on the reference genome. 

 

FoSTeS 

Fork stalling and template switching, describes a replicative mechanism for causing complex 

structural rearrangements. 

 

Genome catastrophe 

A colloquialism used to describe the chaotic genome rearrangement patterns seen in cancer 

and some congenital disorders, which typically consist of dozens to hundreds of breakpoints 

affecting one or more chromosomes. 

 

Lagging strand 

One of two DNA strands found at the replication fork, requiring a slight delay before 

undergoing replication. Replication of the lagging strand occurs discontinuously in small 

fragments. 

 

Microhomology mediated break induced replication 

A DNA replication-based mechanism which can generate complex genome rearrangements 

via template switching. 

 

Multi-Invasion-Induced Rearrangements pathway 

A pathway involved with processing homologous-recombination by-products, where a single 

DNA end can invade multiple donors to produce complex rearrangements. 



 25 

 

Non-Homologous End Joining 

A DNA double strand break repair pathway that joins DNA ends without a requirement for 

homology. 

 

Telomere 

The structure that caps the ends of linear eukaryotic chromosomes. 

 

Telomerase 

Enzyme complex that syntheses telomere repeats at the chromosomal terminus to counteract 

the loss of terminal DNA sequences during replication.  
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Figure Legends 

 

Figure 1. Telomere dysfunction and fusion. (A) Chromosome ends are capped by specialized 

chromatin structures called telomeres, which consist of a telomere repeat array (labelled red) 

that is bound by the shelterin complex (blue), assembling into a higher order structure known 

as a t-loop. Telomeres undergo shortening from progressive end-replication losses or from 

stochastic deletion events, eventually leading to telomere dysfunction. Alternatively, telomere 

dysfunction can be experimentally induced by disrupting the shelterin complex. (B) 

Dysfunctional telomeres can be targeted by DNA repair pathways leading to telomere fusions 

with a number outcomes. (Bi) Telomere fusions that occur following DNA replication can 

result in sister-chromtid events. (Bii) Fusions with other dysfunctional telomeres result in end-

to-end joining of homologous or non-homologous chromosomes. (Biii) Dysfunctional 

telomeres can also be joined with non-telomeric loci following an additional DSB, which also 

generates an acentric chromosome fragment.   

 

Figure 2. The genomic consequences of telomere dysfunction. (A) Dysfunctional telomeres 

can fuse with other genomic loci creating dicentric chromosomes. During cell division, 

migration of the connected centromeres to opposite poles creates a chromatin bridge that can 

survive mitosis. (B) Chromatin bridges can be resolved by simple DNA breakage leading to a 

fold-back inversion which is essentially a large inverted duplication (Bi). Alternatively, 

multiple DNA breaks may be induced simultaneously giving rise to several fragments (Bii). 

The mechanism of these ‘complex’ breakages may involve the exonuclease TREX1, or be 

induced by mechanical fragmentation, or other yet to be discovered mechanisms (Bii). 

Subsequently, resolved chromosomal ends are repaired into a new structure (C). Replicative 

repair pathways such as MMBIR involve template switching and the inclusion of short 

templated insertions or duplications (Ci), whereas NHEJ pathways typically result in simpler 
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joins (Cii). The result of repair is often a series of complex genome rearrangements (D), which 

are typically analysed by whole genome sequencing.        

 

Figure 3. The emerging pathways and consequences of genome catastrophe. (A) During 

mitosis, a variety of errors and complications may arise such as the occurrence of dicentric 

chromosomes from telomere fusions, or lagging chromosomes. (B) Dicentric chromosomes 

result in the formation of a chromatin bridge which can be resolved in several ways. 

Mechanical forces from actomyosin may be sufficient to resolve the structure, resulting in 

simple DNA breakage (Bi), or leading to more extensive chromosome fragmentation (Bii). A 

competing model argues that the 3′-to-5′ exonuclease TREX1 is involved in bridge resolution, 

requiring transient nuclear envelope breakdown to mediate resolution (Biii). (D) Simple 

breakage results in the formation of a fold-back inversion or large terminal deletion, whilst 

complex breakages leave daughter cells with fragmented chromosomes (E). The broken ends 

of chromosomes or chromosomal fragments may be targeted by different DNA repair 

pathways. (E) Simple end joining of fragments by NHEJ pathways may lead to the observed 

patterns of chromothripsis (F). Alternatively, replicative repair mechanisms acting at the stubs 

of broken chromosomes, may also result in the complex genome rearrangements associated 

with chromothripsis (F). (G) Dicentric chromosomes or lagging chromosomes can be 

partitioned into micronuclei. (H) These structures exhibit various deficiencies that can lead to 

fragmentation of the entrapped chromosome, either through premature DNA compaction 

during mitosis, or defective DNA replication and repair. Broken chromosomes within 

micronuclei can have several fates including subsequent rounds of micronuclei entrapment and 

DNA breakage in granddaughter cells, or potentially reincorporation and retention within the 

primary nucleus (I). (J) Alternatively, rupture of the micronuclear envelope can lead to cGAS 

localization and the activation of autophagy and cell death.    
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