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Abstract

The linear stability analysis of Rivlin-Ericksen fluids of second order

is investigated for boundary layer flows, where a semi-infinite wedge is

placed symmetrically with respect to the flow direction. Second order

fluids belong to a larger family of fluids called Order fluids, which is

one of the first classes proposed to model departures from Newtonian

behaviour. Second order fluids can represent non-zero normal stress

differences, which is an essential feature of viscoelastic fluids.
The linear stability properties are studied for both signs of the

elasticity number K, which characterises the non-Newtonian response

of the fluid. Stabilisation is observed for the temporal and spatial

evolution of two-dimensional disturbances when K > 0, in terms of

increase of critical Reynolds numbers and reduction of growth rates,

whereas the flow is less stable when K < 0. By extending the analysis

to three-dimensional disturbances, we show that a positive elasticity

number K destabilises streamwise independent waves, while the opposite

happens for K < 0.
We show that, as for Newtonian fluids, the nonmodal amplification of

streamwise independent disturbances is the most dangerous mechanism

for transient energy growth which is enhanced when K > 0 and reduced

when K < 0.
A preliminary study of boundary layer flows of UCM, Oldroyd B,

Phan-Thien Tanner and Giesekus fluids is performed. Asymptotic

Suction Boundary Layer theory allows us to simplify the governing

equations and obtain analytical solutions for the UCM and Oldroyd B

models. The mean flow obtained can be used as a starting point for

a modal and nonmodal linear stability analysis, following the analysis

performed for second order models.
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Introduction

The aim of this thesis is to investigate the hydrodynamic stability

of viscoelastic fluids in boundary layers.

Viscoelastic fluids are examples of non-Newtonian fluids. The me-

chanical behaviour of many real fluids is well described by the Navier-

Stokes theory. This theory is based on the assumption of a Newtonian

constitutive equation. More specifically, the extra-stress tensor can

be expressed as a linear, isotropic function of the components of the

velocity gradient. Many common fluids, such as water and air can be

assumed to be Newtonian. However, many rheologically complex fluids

such as polymer solutions, soaps, blood, paints, shampoo, ketchup are

not well described by a Newtonian constitutive equation.These fluids

exhibit a variety of non-Newtonian behaviours that cannot be captured

using the Navier-Stokes equations.

The branch of fluid mechanics which studies the deformation and

flow of materials is known as Rheology. The emergence of rheology as

a separate field can be dated back to 1929 with the formation of the

Society of Rheology, due to an increased interest in understanding the

mechanical behaviour of industrial materials like rubber, plastics, paints

and many biological fluids like blood. Since then, several constitutive

equations have been proposed to model departures from Newtonian

behaviour. Most of them take into account the microstructure to better

represent complex responses of the materials.

In this work, we focus on viscoelastic fluids, which exhibit both

viscous and elastic properties when undergoing deformation (Phan-

Thien [59]). Viscous fluids resist forces exerted upon them through

internal friction and they instantaneously forget the shape they are

in. For these fluids, the stress is directly proportional to the rate of

1



2 INTRODUCTION

strain and satisfies the Newtonian law. Elastic solids always remember

the shape they start from and, when the stress is removed, they relax

back to their original shape. The stress experienced by the solid is

directly proportional to the strain. Viscoelastic fluids undergo a gradual

deformation and recovery when they are subjected to loading and

unloading. The stress is neither directly proportional to the strain nor

the rate of strain, the relationship is more complex.

One of the first class of material models proposed consists of fluids

of differential type (Owens and Phillips [54]). In this thesis, we consider

a subclass of differential type fluids known as the Rivlin-Ericksen fluids

of second order. In these models, only an infinitesimal part of the

history of the deformation gradient has an influence on the stress. The

extra-stress is a function of the velocity gradient and its higher time

derivatives. These materials lack a gradually fading memory and they

cannot represent the phenomenon of stress relaxation. However, they

can predict non-zero normal stress differences. The presence of non-zero

normal stress differences is an important feature of viscoelastic fluids,

which is responsible for interesting phenomena such as rod-climbing

and die swell (Boger and Walters [10]). The rod-climbing effect, also

referred to as Weissenberg effect, can occur when a rod is rotated into

a beaker containing a viscoelastic fluid. For Newtonian fluids, inertia

would dominate and the fluid would move to the edges of the container.

For viscoelastic fluids, the rotation produces a tension along the circular

streamlines and forces the fluid up the rod. The phenomenon of die-swell

can occur when a viscoelastic fluid is extruded from a capillary. For

viscoelastic fluids, the extrudate diameter tends to swell considerably

more than for Newtonian fluids. In the tube, a tension along the

streamlines associated with the normal stresses is present. At the

extrusion, the viscoelastic fluid relaxes the tension along the streamlines

by expanding radially.

The aim of the first part of this thesis is to understand the linear

stability behaviour of such fluids in boundary layers and to study how

the presence of non-zero normal stress differences affects the stability

properties. Specifically, a configuration of a flow over a semi-infinite

wedge is investigated.
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Figure 0.1. Illustration of disturbances in the boundary
layer.

The second order fluid model has been chosen for its mathematical

simplicity and the possibility of applying a boundary layer approxima-

tion similar to Newtonian fluids. Later in the thesis, we consider more

complex viscoelastic models such as the Upper-Convected Maxwell,

Oldroyd B, Phan-Thien Tanner and Giesekus models. We start investi-

gating the undisturbed flow profile as the first necessary step in order

to apply a linear stability analysis. By means of a theory known as as-

ymptotic suction boundary layer (ASBL), which assumes homogeneous

suction at the wall, we are able to considerably simplify the governing

equations and obtain analytical solutions for the Uprper-Convected

Maxwell and the Oldroyd B models. Analytical velocity profiles are not

common. To the best of our knowledge, this has not been done in the

past.

Boundary layers are thin layers near the surface of an object where

the velocity varies from zero at the wall to the full velocity at a certain

distance from the wall (see Figure 0.1). Boundary layer theory was

presented by Prandtl during the Heidelberg mathematical congress in

1904 (Anderson [3]). His related paper [62], published a year later,

showed how viscosity affects the flow at high Reynolds numbers. The

Reynolds number is a dimensionless quantity defined as Re = UL/ν,

where U and L are the characteristic velocity and length, respectively,

and ν is the kinematic viscosity of the fluid. It represents the ratio of

inertial forces to viscous forces.
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Prandtl suggested that the fluid adheres to the surface of an object

so its velocity adjacent to the wall is zero and that the viscosity be-

comes important only in a thin layer near the surface (Schlichting and

Gersten [73]). Prandtl’s work enabled the Navier-Stokes equations to

be reduced to a much simpler form.

In 1908, Blasius [9] solved the boundary layer equations for the

two-dimensional flow over a flat plate by reducing the system of partial

differential equations to a single ordinary differential equation by means

of a similarity transformation. In 1931, Falkner and Skan [28] extended

the work to include the case of the plate forming a wedge with respect

to the flow direction.

Boundary layer theory has many practical applications, such as the

calculation of the friction drag of bodies in a flow (Schlichting and

Gersten [73]), and therefore it is natural to extend it to non-Newtonian

fluids. In this thesis, we apply a boundary layer approximation to the

case of a non-Newtonian fluid of second order.

We are interested in studying how disturbances propagate in the

boundary layer region. The subject which concerns the stability and

instability of motion of fluids is known as hydrodynamic stability theory.

It began in the late 19th century with the important work of Reynolds

and Lord Rayleigh (Schmid and Henningson [77]). If the flow returns

to its original laminar state after being disturbed with a perturbation of

small or finite amplitude, the flow is said to be stable. If the disturbance

grows, the flow is said to be unstable. An unstable flow often evolves

into a state of motion called turbulence, which is characterised by

chaotic three-dimensional variations with a broad spectrum of spatial

and temporal scales.

The first step in stability analysis is to consider the disturbances to

be very small and to linearise the equations about a given base flow,

which allows one to simplify the equations considerably (Schmid and

Henningson [77]). As the disturbances grow, nonlinear effects become

important and cannot be ignored. Throughout this thesis we focus

our attention on linear stability. The linear stability equations have
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limited validity but they are important in identifying physical growth

mechanisms and the particular disturbance which grows the most.

In this work we conduct a local stability analysis where we assume a

normal mode form for the disturbances, which is equivalent to taking the

Fourier transform of the linearised equations. Following this approach,

for two-dimensional Newtonian fluids the classical Orr-Sommerfeld

equation is obtained. Later in the thesis, we present a modified Orr-

Sommerfeld equation for second order fluids.

For Newtonian fluids, an important result known as Squire’s theorem

justifies the study of two-dimensional instead of three-dimensional

disturbances (Drazin [23]). However, an equivalent Squire’s theorem for

second order fluids cannot be proven. Therefore, we extend the analysis

to the study of three-dimensional disturbances for second order fluids.

Classical linear stability analysis is based on eigenvalues. However, in

hydrodynamic stability and in many other physical situations dominated

by nonnormal systems, eigenvalues prove to be misleading and they

do not describe correctly the whole dynamics (Trefethen et al. [90]).

In nonnormal systems, such as Poiseuille, Couette and Blasius flows,

it can be seen that there can be short-time growth of energy even if

all the eigenvalues decay exponentially (Butler and Farrell [14]). This

phenomenon is known as transient growth.

For Newtonian fluids, the possibility of transient growth has been

known since the 1980s (Landahl [49]). Some work has been done

regarding the transient growth of viscoelastic fluids in channel flows

(Brandt [11]). Therefore, in this work we analyse the transient growth

of second order fluids in boundary layers.

Outline of this thesis

Chapter 1 provides a linear stability analysis of Rivlin-Ericksen fluids

of second order. First, a mean flow profile is obtained by applying

Prandtl’s boundary layer approximation to the governing equations.

This allows the PDEs to be simplified and a pseudo-similarity transfor-

mation is introduced to reduce them to an ODE. The ODE obtained
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retains a dependency on the streamwise direction. However, this prob-

lem is overcome by introducing an elasticity number, K, based on the

displacement thickness. Secondly, we derive a modified Orr-Sommerfeld

equation which governs the development of two-dimensional distur-

bances for second order fluids. This equation reduces to the Newtonian

Orr-Sommerfeld equation when the elasticity number K = 0, and has

extra-terms which account for non-Newtonian effects.

The mean flow and the Orr-Sommerfeld equations are solved numer-

ically. The results are represented in terms of neutral stability curves

and critical Reynolds numbers, taking into account both the temporal

and the spatial evolution of disturbances. Finally, the linear stability

analysis is extended to three-dimensional disturbances.

In Chapter 2, the linear stability equations are written as an initial-

value problem. This allows one to study the short-time behaviour of

disturbances and their tendency to grow transiently. We derive the

initial-value problem for second order fluids and analyse how non-zero

normal stress differences affect the transient growth. We compare the

maximum possible amplification of energy density in the Newtonian

and non-Newtonian cases and analyse which type of disturbances grows

the most. In order to confirm the transient growth results we solve the

initial-value problem by marching in time with a numerical scheme.

Chapter 3 is dedicated to the confirmation of the results obtained in

Chapter 1 using Direct Numerical Simulations (DNS). The governing

equations are written using a compact velocity-vorticity formulation,

where the number of variables in the system is reduced. We follow the

approach of Davies and Carpenter [19] and derive velocity-vorticity

equations for second order fluids. The flow is disturbed by a tempo-

rally localised forced impulse. We represent the solutions in terms

of Chebyshev polynomials and integrate the equations twice. Finally,

the discretised system of equations is solved by marching in time with

a predictor-corrector method. We present a comparison between the

temporal growth rates obtained through the simulations and the ones

given by the eigenvalue analysis described in Chapter 1.
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Chapter 4 is a preliminary study of the flow of more complex

viscoelastic fluids. We take into consideration the Upper-Convected

Maxwell, Oldroyd B, Phan-Thien Tanner and Giesekus models and

begin by expressing their constitutive equations as one single constitutive

equation which can represent them all. These models are characterised

by more complicated governing equations and the application of a

boundary layer, as for the Newtonian and second order fluids, is not

straightforward. Instead, we apply an asymptotic suction boundary

layer and obtain mean flow profiles that can be used as a starting point

for a linear stability analysis.

Chapter 5 describes the numerical methods employed throughout

this thesis. The main technique used to approximate derivatives in

the wall-normal direction is the Chebyshev collocation method. For

this purpose, we map the semi-infinite domain into a finite interval.

The type of mappings considered in this work naturally clusters the

grid points near the wall. This property is particularly suitable for

the problems studied, where more points near the wall are required to

resolve the rapid changes happening inside the boundary layer. We

perform numerical tests to determine what kind of mapping is best to

solve numerically the linear stability equations described in Chapters 1

and 2.

A literature survey is given at the beginning of each chapter and

covers the main work already done on the topic.





CHAPTER 1

Linear stability analysis of

second order fluids

In this chapter, we present a linear stability analysis performed on

fluids of second order. This kind of analysis is the starting point to

understand the stability properties of a fluid in a specific geometry.

Second order fluids belong to a larger family of fluids called Order

fluids that can be classified as fluids of differential type or Rivlin-

Ericksen fluids (Rivlin and Ericksen [70]). The constitutive equation is

a polynomial function of the Rivlin-Eriksen tensors {Ak}. The tensors

{Ak} are frame-indifferent measures of higher rates of material straining.

Since the tensor Ak has physical dimension t−k, where t is the time,

order fluids can be derived by arranging the terms in the polynomial

function as reciprocal powers of t. By terminating the expansion at first

order, we obtain the Newtonian fluid while at second order we obtain

the second order fluid.

This class of constitutive equations is one of the first proposed to

model departures from Newtonian behaviour. In such models, only

an infinitesimal part of the history of the deformation gradient has an

influence on the stress. In fact, the extra-stress tensor is a function of the

velocity gradient and its time derivatives. Therefore, while these models

are able to describe the phenomenon of creep, they cannot represent the

phenomenon of stress relaxation (Dunn and Rajagopal [26]). However,

second order models can capture non-zero normal stress differences.

As models to describe viscoelastic fluids, Order fluids are suitable to

describe slightly elastic fluids, where the fluid’s behaviour weakly departs

from the Newtonian one and flows for which the Rivlin-Ericksen tensors

vary slowly (Owens and Phillips [54]).

9
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In this chapter, we perform a linear stability analysis of a sec-

ond grade fluid past a semi-infinite wedge by solving a modified Orr-

Sommerfeld equation around a steady and parallel mean flow, which

is obtained by numerically solving a local ODE. We study the non-

Newtonian effects on stability by comparing the growth rates in the

Newtonian and non-Newtonian cases and we quantify this effect by

computing the neutral stability curves and the critical Reynolds num-

bers. We show the stabilising effect of elasticity in the second grade

model, and the destabilising effects in the second order model, for all

the geometrical configurations considered.

Section 1.1 provides an introduction to second order models and a

brief literature review. In Section 1.2, we present the governing equations

and the geometrical configuration. In Section 1.3, we derive the mean

flow by applying a boundary layer approximation and in Section 1.4

we apply a two-dimensional linear stability analysis. The results can

be found in Section 1.5. In Section 1.6, we apply energy theory to

the non-Newtonian models considered. Section 1.7 extends the linear

stability analysis to three-dimensional disturbances. In Section 1.8, we

comment briefly on the results obtained in this chapter.

1.1. Second order fluids

The Cauchy stress tensor σ in a fluid of second grade has the form

(Rivlin and Ericksen [70], Owens and Phillips [54])

σ = −pI + µA1 + α1A2 + α2A
2
1, (1.1)

where p is the pressure, µ is the dynamic viscosity, α1 and α2 (SI: Kg/m)

are the material moduli usually referred to as normal stress moduli.

The spherical stress −pI is due to the constraint of incompressibility,

while A1 and A2 are the Rivlin-Ericksen tensors of order 1 and order 2

respectively1

A1 = ∇v +∇vT , A2 =
DA1

Dt
+ (∇v)A1 + A1(∇v)T , (1.2)

1For the gradient velocity tensor ∇v we use the following definition

(∇v)i,j =
∂vj
∂xi

.
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where v denotes the velocity field and D/Dt denotes the material time

derivative.

Rivlin and Ericksen [70] proved that, if the extra-stress tensor

depends only on the velocity gradients and higher time-derivatives, then

there exists a polynomial in T = σ + pI, the deviatoric stress, and the

Rivlin-Ericksen tensors {Ak}. These are frame-indifferent measures of

higher rates of material straining. In general, the Rivlin-Ericksen tensor

Ak of order k is defined as the k-th time derivative of the Cauchy-Green

strain tensor

C = FTF,

where F is the deformation gradient tensor. It can be seen that A1 is the

rate-of-strain tensor and there exists a recurrence relation that permits

us to calculate Ak+1 as the lower-convected derivative of the previous

kinematic tensor Ak. Since the tensor Ak has physical dimension

t−k where t is the time, the second order models can be obtained by

truncating the polynomial expansion for T at second order.

The sign of the material parameters in this model has been a source

of some controversy (Dunn and Rajagopal [26]). Henceforth, we will

refer to the model with a positive material parameter α1 as the “second

grade model” and to the model with a negative α1 as the “second order

model”, in line with the literature. However, sometimes we will talk

about “second order models” to indicate both cases and this will be

clear from the context.

In this work, we consider both the cases α1 > 0 and α1 < 0. The

second grade model, for which α1 > 0, is taken into account because of

its compatibility with thermodynamics. Since the form (1.1) is properly

frame-indifferent, it can be used as an exact model. In this view, Dunn

and Fosdick [25], Fosdick and Rajagopal [29] justified some assumptions

on the coefficients of the second order constitutive equation. In order

for the fluid model to be compatible with thermodynamics, in the sense

that all motions of the fluid satisfy the Clausius-Duhem inequality and

the assumption that the specific Helmholtz free energy be a minimum

in equilibrium, it then follows that

µ ≥ 0, α1 ≥ 0 and α1 + α2 = 0. (1.3)
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A detailed discussion on these assumptions can be found in the critical

review of Dunn and Rajagopal [26].

The second order model, for which α1 < 0, is studied because it

gives the right sign for the first normal stress difference, as shown in

the next section. Moreover, in terms of linear stability, it is a consistent

approximation to a proper stress-relaxing fluid, such as the Maxwell

fluid, at small elasticity numbers and when the disturbance time scale

is large compared to the characteristic time scale of the fluid (Porteous

and Denn [61]).

1.1.1. Second order fluids in boundary layers. In theoretical

work, Rajagopal et al. [66] showed that it is possible to apply Prandtl’s

boundary layer theory to the case of a non-Newtonian fluid of second

grade. In particular, they showed that the equations of motion of a

second grade fluid can be satisfied by an irrotational flow and they

identified suitable assumptions to obtain a consistent theory. In the

case of fluids of differential type the equations of motion are an or-

der higher than the Navier-Stokes equations, and thus the no-slip and

no-penetration boundary conditions are insufficient to determine the

solution completely (Rajagopal and Kaloni [67] and Rajagopal [64]).

The same is also true for the boundary layer approximation. In order

to overcome this difficulty, in their study of an incompressible fluid of

liquid B’ near a stagnation point, Beard and Walters [6] suggested a

perturbation method. This method was also adopted by Rajagopal et

al. [65] in their analysis of the flow past a wedge of an incompressible

fluid of second grade. The perturbation method reduces the order of

the problem, but is only valid for small values of the non-Newtonian pa-

rameter. This parameter multiplies the higher order spatial derivatives

in the equation.

While studying flow near a stagnation point and flow past a wedge,

Garg and Rajagopal [31,32] suggested that it would be preferable to

use an augmented boundary condition justified by physically reasonable

assumptions. The augmented condition, based on smoothness properties

of the solution at infinity, was also adopted by Vajravelu and Roper [92]

in their study of the flow and heat transfer in a second grade fluid over
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a stretching sheet and by Vajravelu and Rollins [91] while studying

hydromagnetic flow of a second grade fluid over a stretching sheet.

Another difficulty that arises is the impossibility of finding a similar-

ity solution to the boundary layer equations as in the Newtonian case,

with the exception of stagnation flow. Garg and Rajagopal [32] showed

that a pseudo-similarity solution is possible and solved numerically the

local ODE obtained.

1.1.2. Linear stability of second order fluids. To the best of

our knowledge, little work has been done on the stability of second

grade/order fluids in boundary layers unlike the situation for channel

flows. In 1968, Chun and Schwarz [15] studied the stability of plane

Poiseuille flow of a second order fluid (α1 < 0). Their analysis yields an

Orr-Sommerfeld equation modified by adding a non-Newtonian term.

The mean flow is a parabolic profile as in the Newtonian case. They

showed that the critical Reynolds number decreases as the magnitude of

the non-Newtonian parameter increases. Later Sadeghy et al. [71] solved

the same modified Orr-Sommerfeld equation for the plane Poiseuille

flow of a second grade fluid (α1 > 0). They showed that non-Newtonian

effects in this model are stabilising. Rafiki et al. [63] studied the

hydrodynamic stability of plane Poiseuille flow of second order and

second grade fluids in the presence of a transverse magnetic field. The

combined effects of magnetic field and elasticity on the stability are

investigated. The analysis is performed by solving the modified Orr-

Sommerfeld equation using a collocation method. In agreement with

previous literature, Rafiki et al. [63] found that elasticity is stabilising

for second grade fluids (α1 > 0) and destabilising for second order fluids

(α1 < 0).

Regarding the linear stability of non-Newtonian fluids in boundary

layers, Griffiths [34] recently studied the effect of shear-thinning on

the linear stability of flow over an inclined flat plate. Shear-thinning is

shown to delay instability for the two material models considered.

Regarding the stability of viscoelastic fluids, some results were

obtained for channel flows but, to the best of our knowledge, not much
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has been done for boundary layer flows. Porteous and Denn [61] studied

the linear stability analysis of plane Poiseuille flow for the second order

and Maxwell fluids. They showed that the second order model is a

consistent approximation to the Maxwell model in the limit of small

elasticity and when the disturbance time scale is large compared to the

characteristic time scale of the fluid. The results shows a destabilisation

process due to elasticity. At high values of the elasticity number, the

stability is qualitatively different from that for Newtonian fluids because

it results from the second mode of the Orr-Sommerfeld equation.

Sureshkumar and Beris [80] used an Arnoldi-based orthogonalization

algorithm to investigate the linear stability of Poiseuille flow. The

models investigated are Upper Convected Maxwell (UCM), Oldroyd B

and Chilcott-Rallison fluids. The results show that the destabilisation

caused by elasticity for the UCM fluid is reduced when effects of solvent

viscosity and finite extensibility are taken into account. Zhang et

al. [96] showed that, when the polymer relaxation time is shorter than

the instability time scale, the Poiseuille flow of FENE-P fluids appears

to be less stable. However, in the opposite case, the strong elastic effect

stabilises the flow.

1.2. Governing equations

The field equations for an incompressible second order fluid can be

derived by substituting expression (1.1) for the Cauchy stress into the

balance of linear momentum

ρ
Dv

Dt
= ∇ · σ, (1.4)

where ρ is the density of the fluid and ∇ · σ denotes the divergence

of the stress tensor2. Since the fluid is incompressible, i.e. Dρ
Dt

= 0, we

require all possible motions be isochoric and hence for the conservation

of mass the continuity equation reduces to

∇ · v = 0. (1.5)

2The divergence of the tensor σ is defined by

(∇ · σ)j =
∂σi,j

∂xj
,

where Einstein summation convention is adopted.
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Figure 1.1. Semi-infinite wedge flow configuration (βH > 0).

The geometric configuration considered consists of a wedge of angle

βHπ which is placed symmetrically with respect to the direction of the

uniform velocity field, as shown in Figure 1.1. The x-axis is chosen to

be in the streamwise direction, the z-axis in the spanwise direction and

the y-axis in the wall-normal direction. Due to the symmetric nature

of the problem, we can restrict our analysis to the case y ≥ 0.

The angle parameter βH is known as Hartree parameter. Notice

that, if βH = 0, we recover the case of flow over a semi-infinite flat

plate, while βH = 1 corresponds to the case of a stagnation point flow.

When βH > 1 we have the flow into an acute corner, βH < 0 gives a

flow past a corner and 0 < βH < 1 is the flow past an acute wedge.

Consider the case of steady two-dimensional flow described by the

velocity field v = (u, v). After a straightforward manipulation of

equations (1.4) and (1.5), which can be found in Appendix A.1, we

obtain the following governing equations

∂u

∂x
+
∂v

∂y
= 0, (1.6a)
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u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+
µ

ρ

(
∂2u

∂x2
+
∂2u

∂y2

)
(1.6b)

+
α1

ρ

[
2
∂2

∂x2

(
u
∂u

∂x
+ v

∂u

∂y

)
+

∂2

∂y2

(
u
∂u

∂x
+ v

∂u

∂y

)
+

∂2

∂x∂y

(
u
∂v

∂x
+ v

∂v

∂y

)
+ 2

∂

∂y

(
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y

)
+

∂

∂x

((
∂v

∂x

)2

−
(
∂u

∂y

)2

− 2

(
∂u

∂x

)2

− 2
∂v

∂x

∂u

∂y

)]
,

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂p

∂y
+
µ

ρ

(
∂2v

∂x2
+
∂2v

∂y2

)
(1.6c)

+
α1

ρ

[
2
∂2

∂y2

(
u
∂v

∂x
+ v

∂v

∂y

)
+

∂2

∂x2

(
u
∂v

∂x
+ v

∂v

∂y

)
+

∂2

∂x∂y

(
u
∂u

∂x
+ v

∂u

∂y

)
+ 2

∂

∂x

(
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y

)
+

∂

∂y

((
∂u

∂y

)2

−
(
∂v

∂x

)2

− 2

(
∂v

∂y

)2

− 2
∂v

∂x

∂u

∂y

)]
.

1.2.1. Viscometric flow. The stress components can be com-

pletely determined in steady viscometric flows of isotropic simple fluids

(Phan-Thien [59]), such as the order fluids. Viscometric flows are flows

in very simple geometries that allow us to have an idea of the main non-

Newtonian characteristics. It can be seen that the constitutive equation

of an incompressible fluid of order 2 can be determined uniquely from

its viscometric functions. Here, we derive the stress for two viscometric

flows, simple shear flow and uniaxial extensional flow.

1.2.1.1. Simple shear flow. Consider a steady simple shear flow

v = (γ̇xyy, 0, 0), where γ̇xy is the constant shear-rate, as represented in

Figure 1.2. The first two Rivlin-Ericksen tensors become

A1 =

 0 γ̇xy 0

γ̇xy 0 0

0 0 0

 , A2 =

0 0 0

0 2γ̇2
xy 0

0 0 0

 .
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x

y

u = γ̇xyy

Figure 1.2. Steady simple shear flow.

Therefore, the extra-stress tensor T = pI + σ becomes

T = µ

 0 γ̇xy 0

γ̇xy 0 0

0 0 0

+ α1

0 0 0

0 2γ̇2
xy 0

0 0 0

+ α2

γ̇2
xy 0 0

0 γ̇2
xy 0

0 0 0

 .
Hence, we can write the components of the extra-stress tensor T in terms

of three functions of the rate-of-strain γ̇xy, the so-called viscometric

functions η,N1 and N2, as follows

Txy = η(γ̇xy)γ̇xy = µγ̇xy,

Txx − Tyy = N1(γ̇xy) = −2α1γ̇
2
xy,

Tyy − Tzz = N2(γ̇xy) = α1γ̇
2
xy,

Txz = Tyz = 0,

where η is called shear viscosity and N1 and N2 are, respectively, the

first and second normal stress differences.

This model predicts constant viscosity and non-zero normal stress

differences. Non-zero normal stress differences are a feature of nonlinear

models and are responsible for interesting phenomena such as rod-

climbing and die swell (Boger and Walters [10]). The main limitation

of the second grade model (α1 > 0) is that it predicts negative N1 and

positive N2, while experiments indicate that N1 should be expected

to be positive and N2 small in comparison to N1 and non-positive for
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polymeric fluids (see Owens and Phillips [54]). On the contrary, the

second order model with α1 < 0 predicts a positive first normal stress

difference as physically observed.

1.2.1.2. Extensional flow. Consider a uniaxial extensional flow v =(
ε̇x,− ε̇

2
y,− ε̇

2
z
)
, where ε̇ is the constant extensional strain-rate. The

Rivlin-Ericksen tensors of order 1 and 2 become

A1 =

2ε̇ 0 0

0 0 0

0 0 0

 , A2 =

0 0 0

0 2γ̇2
xy 0

0 0 0

 .
Therefore, the components of the stress tensor become

σxx = −p+ 2µε̇+ 4α1ε̇
2 + 4α2ε̇

2,

σyy = −p− µε̇+ α1ε̇
2 + α2ε̇

2,

σzz = −p− µε̇+ α1ε̇
2 + α2ε̇

2,

σxy = σxz = σyz = 0.

The extensional viscosity ηE is defined as

ηE =
σxx − σyy

ε̇
=
σxx − σzz

ε̇
,

and in this case, remembering that α1 + α2 = 0, it becomes

ηE = 3µ+ 3(α1 + α2)ε̇ = 3µ.

For a Newtonian fluid the Trouton ratio, which is the ratio between

the extensional viscosity ηE and the shear viscosity µ, is equal to 3 and

does not depend on shear rate γ̇xy or extension rate ε̇. The second order

models predicts a Newtonian constant extensional viscosity. However,

for a viscoelastic fluid the extensional viscosity generally depends on

the extension rate and can be very large. Trouton ratios can reach

values as high as 103 or 104. For example, dilute polymer solutions may

have high Trouton ratios because they are tension-thickening, i.e. their

extensional viscosity increases substantially with ε̇ (Phan-Thien [59],

Owens and Phillips [54]).
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1.3. Mean flow

In this section, we present the derivation of the undisturbed flow profile.

This is the necessary first step in order to perform the stability analysis.

The mean flow is obtained by applying a boundary layer approximation

as is usually done for Newtonian fluids.

Boundary layer theory was presented by Prandtl during the Third

International Congress of Mathematics held at Heidelberg, Germany

in 1904 (Schlichting and Gersten [73], Tani [81], Anderson [3]). The

related paper [62] was published in the Proceedings of the Congress

a year later and is one of the most important contributions to fluid

dynamics. This paper showed how viscosity affects the flow at high

Reynolds numbers. Prandtl theorised that the fluid adheres to the

surface of an object so its velocity adjacent to the wall is zero and

that the viscosity becomes important only in a thin layer near the

surface. This region is characterised by a transition from zero at the

wall to the full velocity at a certain distance from the wall. Outside

the boundary layer the flow was irrotational, essentially inviscid and

widely studied for centuries. In other words, boundary layer theory

deals with the asymptotic behaviour of flows at large Reynolds numbers

(Van Dyke [93]). It is also the first example of a singular perturbation

method applied to solve a partial differential equation.

Prandtl’s work enabled the aerodynamic drag to be calculated and

the Navier-Stokes equations to be reduced to a simpler form. In 1908,

Blasius [9], who was Prandtl’s student, solved the boundary layer

equations for 2D flow over a flat plate by reducing the PDEs to a single

ordinary differential equation. In 1931, Falkner and Skan [28] extended

the work to the case in which the free-stream velocity varies according

to a power law.

1.3.1. Potential flows. It is important to clarify the assumption

of an irrotational flow in the free stream. It is common to associate

irrotational flows with inviscid fluids. They are in fact two distinct

properties, the former relates to the flow and the last is a material

property. For Newtonian fluids, irrotational flows satisfy the full viscous
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and incompressible PDEs with no need to impose zero viscosity, as

remarked by Joseph [46]. Viscous effects are still present in irrotational

flows but they balance internally and they do not enter the equations

of motion. In this work, we do not deal with the viscous effects in the

outer layer and how they affect the inner layer since we consider flows

at high Reynolds numbers. We refer to Joseph [45] for further reading.

Regarding viscoelastic fluids, Joseph and Liao [47] provided a con-

dition for the extra-stress tensor for an irrotational flow to satisfy the

equations. Not many constitutive equations are compatible with irrota-

tional solutions. The flow is said to be irrotational when the vorticity

is zero, i.e.

ω = ∇× v = 0.

If the domain is simply-connected, there exists a velocity potential

φ(x, t) such that v = ∇φ. The opposite is trivially true. In this case,

the momentum equation (1.4) can be written as follows

∇
(
ρ
∂φ

∂t
+ ρ
|∇φ|2

2
+ p

)
= ∇ ·T,

where T is the extra-stress tensor. Here we ignore body forces, but the

conclusion is still valid provided that they are conservative. Therefore,

the following condition must hold

∇× (∇ ·T) = 0. (1.7)

In other words, the divergence of the deviatoric tensor T is the gradient

of a function T . The pressure can be determined by a generalised

Bernoulli equation, i.e.

p = −ρ∂φ
∂t
− ρ |∇φ|

2

2
+ T + C(t),

where C is a constant depending on time only. Condition (1.7) is

satisfied by inviscid and viscous Newtonian fluids, linear viscoelastic

fluids and for second order fluids.

1.3.2. Boundary layer approximation. Rajagopal et al. [66]

pointed out some assumptions regarding the flow in order to apply

Prandtl’s boundary layer theory to the case of a non-Newtonian fluid

of second grade. It is necessary that, not only the ratio of the inertial
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forces to the forces due to the tangential stresses be large (high Reynolds

number), as in the Newtonian case, but also the ratio of the inertial

forces to the forces due to the normal stresses should be large. This

implies the following assumptions for a second order fluid

Re � 1 and
Re

Wi
� 1,

where Re = ρUL
µ

is the Reynolds number, and Wi = α1U
µL

is the Weis-

senberg number. Here U is a characteristic velocity, that is usually

taken to be the free-stream velocity, and L is a characteristic length.

White [95] first introduced the Weissenberg number while analysing

the dimensionless groups of fluids of second grade. It quantifies the

nonlinearity of the rheological response and does not coincide, in general,

with the Deborah number (Poole [60], Dealy [22]).

Rajagopal et al. [66] suggested the possibility of having a boundary

layer with a two-deck structure. In addition to the viscous boundary

layer, they hypothesised an “elastic boundary layer” where inertia and

pressure forces balance the forces due to normal stresses. This possibility

was investigated further by Pakdemirli [55] who showed that a multiple

deck boundary layer theory is not possible for the second order model.

Therefore, here we consider the conventional viscous boundary layer

theory, where we have one inner expansion and an outer expansion

which is irrotational.

Inside the boundary layer the velocity gradient normal to the wall,

∂u/∂y, is very large and therefore viscous forces cannot be neglected.

Requiring the viscous term to be of the same order of magnitude as the

inertia and pressure forces leads to

δ

L
= O

(√
ν
)
, or equivalently

δ

L
= O

(
1√
Re

)
,

where δ denotes a typical value of the thickness of the boundary layer

and ν = µ/ρ is the kinematic viscosity. At the same time, requiring the

non-Newtonian normal stress forces to balance the inertia and therefore

the viscous forces, we obtain

δ

L
= O

(√
α1

ρ

)
, and so α1 = O (µ) .
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This is equivalent to saying that the Weissenberg number Wi needs to

be of order 1 to have a valid boundary layer theory.

The key idea of Prandtl’s order of magnitude argument is to recog-

nise that boundary layers are thin in comparison to their length of

development, hence δ/L� 1. This is true at reasonably high Reynolds

numbers. From the continuity equation (1.6a), it follows that ∂v
∂y

is of

order U/L and v is of order δU/L in the boundary layer, where U is

the chosen characteristic velocity. Thus, the component of the velocity

v in the y-direction is small compared to the velocity u in the direction

of the plate.

Applying the boundary layer approximation, as shown in Appen-

dix A.2, to the two-dimensional field equations (1.4) and (1.5), we

obtain

∂u∗
∂x∗

+
∂v∗
∂y∗

= 0,

u∗
∂u∗
∂x∗

+ v∗
∂u∗
∂y∗

= −1

ρ

∂p∗
∂x∗

+
µ

ρ

∂2u∗
∂y2
∗

+
α1

ρ

[
v∗
∂3u∗
∂y3
∗

+
∂

∂x∗

(
u∗
∂2u∗
∂y2
∗

)
+
∂u∗
∂y∗

∂2v∗
∂y2
∗

]
,

(1.8)

where starred dependent and independent variables indicate dimen-

sional variables. If the plate forms an angle βHπ/2 with respect to the

uniform velocity field as in Figure 1.1, the free-stream velocity varies

with distance to the leading edge according to potential flow theory

(Batchelor [5]) as a power law

Ue(x∗) = axm∗ ,

where a is a positive constant and the exponent m is related to the

Hartree parameter βH = 2m
m+1

.

After the following boundary layer transformation

η =
y∗
δ
, ψ∗ = δUe(x∗)f(η),

where

δ =

√
ν

a(m+ 1)
x

1−m
2∗ (1.9)
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is a measure for the displacement thickness and ψ∗ is the stream function

introduced to satisfy the continuity equation, the boundary layer equa-

tions (1.8) are transformed into the following local ordinary differential

equation for f(η)

2(m+ 1)f ′′′ + (m+ 1)ff ′′ + 2m− 2mf ′2 =

α1a

ρν
(m+ 1)xm−1

∗

[
(m+ 1) f ivf + 2(1− 3m)f ′f ′′′ + (3m− 1)(f ′′)2

]
,

(1.10)

where ′ indicates the derivative with respect to the boundary layer

variable, η. The key idea is to solve this equation numerically for fixed

values of x∗ in order to obtain a local solution. It can be easily seen that

a similarity solution is possible only for stagnation point flow, where

m = 1 (Garg and Rajagopal [31,32]) and, trivially, for Newtonian fluids.

Notice that, when α1 = 0, equation (1.10) reduces to the well-known

third order equation known as the Falkner-Skan equation (Falkner and

Skan [28]). Instead, in the non-Newtonian case the equation to solve

is of fourth order. For the stability analysis, equation (1.10) will be

transformed and the dependency on the streamwise position x∗ will be

included in the elasticity parameter, which will be defined later in this

section.

For Newtonian fluids, in the case of slightly decelerating flow, that

is, −0.091 < m < 0 (−0.199 < βH < 0), there are two solutions, one

exhibit points of inflection while the other one has a region of reversed

flow near the boundary (Schlichting and Gersten [73]). If m ≤ −0.091

(βH ≤ −0.199) separation occurs and profiles have a vanishing wall

shear stress. For zero and positive pressure gradients, where m ≥ 0, the

Falkner-Skan equation has a unique solution without a point of inflection.

In this work, we are not concerned with the existence and uniqueness

of the solution of the local ODE (1.10), since we will always consider

solutions that are small departures from the Newtonian solutions. Using

Rayleigh’s inflection point criterion (Rayleigh [68]), we can conclude

that, in the inviscid limit, the boundary layer with an adverse pressure

gradient could exhibit exponential instabilities whereas for zero and

positive pressure gradients inviscid unstable solutions do not exist. In
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this section, we also analyse the non-Newtonian effects on inflection

points since they play a crucial role in the stability.

The stability analysis is traditionally performed, for a Newtonian

fluid, by choosing a fixed streamwise position x∗ = x0, as first proposed

by Tollmien [84] in 1929. The approach consists of finding the longitu-

dinal velocity at that station, ignoring the relatively small transverse

velocity, and then solving the Orr-Sommerfeld equation for the resulting

base profile.

Following the example of Schmid and Henningson [77], we apply the

same procedure to the second grade fluid and we define a displacement

thickness δ0, at position x0, as follows

δ0 = Cδ(x0) = C

√
ν

a(m+ 1)
x

1−m
2

0 , (1.11)

where δ is defined by equation (1.9) and C is a constant given by

C =

∫ ∞
0

(1− f ′Newt(η)) dη

calculated in the Newtonian case. This choice was made in order to

easily compare non-Newtonian solutions with Newtonian solutions. The

Reynolds number based on the displacement thickness is

Re0 =
Ue(x0)δ0

ν
(1.12)

and satisfies the following important relation

x0

δ0

=
m+ 1

C2
Re0.

The Reynolds number Re0 is related to the Reynolds number Rex0

based on the downstream distance x0 by

Re0 = C

√
Rex0

m+ 1
.

Using these relations, equation (1.10) at the fixed position x0 can

be rewritten as

2(m+ 1)f ′′′ + (m+ 1)ff ′′ + 2m− 2mf ′2 =

K0C
2
[
(m+ 1)f ivf + 2(1− 3m)f ′f ′′′ + (3m− 1)(f ′′)2

]
, (1.13)
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where

K0 =
α1

ρδ2
0

(1.14)

is a non-dimensional parameter known as the elasticity number, that

can be interpreted as representing the ratio of non-Newtonian normal

stress forces to inertial forces. In fact, we can write

K0 =
Wi0

Re0

,

where Wi0 = α1Ue(x0)
µδ0

is the Weissenberg number based on the displace-

ment thickness δ0. We also notice that K0 relates to the Weissenberg

number based on the streamwise distance x0, as follows

K0 =
m+ 1

C2
Wix0 .

Equation (1.13) is solved numerically by applying a Chebyshev

collocation method, as described in Section 5.2. The base flow for

the stability analysis is non-dimensionalised by using the free-stream

velocity Ue, hence the velocity in the x-direction is

UB =
u∗

Ue(x∗)
= f ′.

The wall-normal velocity VB is

VB =
v∗

Ue(x∗)
=

1

2

1√
(m+ 1)Rex∗

[
(1−m) ηf ′ − (m+ 1)f

]
.

It is clear that this flow is nearly parallel because the transverse velocity

VB is smaller than UB by a factor of Re−1/2
x∗ , so it will be neglected in

order to perform the stability analysis. This is a valid approximation

when the Reynolds number Rex∗ = Ux∗/ν is large.

1.3.2.1. Boundary conditions. In the case of fluids of differential

type the equations of motion are an order higher than the Navier-

Stokes equations, and thus the adherence boundary conditions are

insufficient to determine the solution completely. The same is also true

for the boundary layer approximation given by equation (1.8) and the

ODE (1.10). In order to overcome this difficulty, in their study of an

incompressible fluid of second order near a stagnation point, Beard and

Walters [6] suggested a perturbation method. This method was followed
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also by Rajagopal et al. [65] in their analysis of the Falkner-Skan flow

of an incompressible fluid of second order.

The perturbation method reduces the order of the problem, but

it is valid only for small values of the parameter K0. This parameter

multiplies the higher order spatial derivatives in the equation. Garg

and Rajagopal [31, 32] suggested that it would be preferable to use

an augmented boundary condition justified by physically reasonable

assumptions. Therefore, equation (1.13) is solved by applying the usual

boundary conditions that ensure no-slip and no-penetration at the wall

and matching with the free-stream velocity at infinity

f(η) = 0, f ′(η) = 0 at η = 0,

f ′(η)→ 1 as η →∞,

augmented by the condition

f ′′(η)→ 0 as η →∞. (1.15)

Condition (1.15) is derived by imposing ∂u∗
∂y∗
→ 0 at infinity and is

equivalent to requiring that the solution approaches the free-stream

velocity smoothly far from the wall (Garg and Rajagopal [31,32]).

1.3.3. Mean flow characteristics. The effect of elasticity on the

velocity profile changes with the geometrical configuration. For the sec-

ond grade model (i.e. when K0 > 0), we can see from Figures 1.3(a),(b)

that the velocity at all points in the boundary layer is larger in the

non-Newtonian case for the flow over a flat plate (βH = 0) and the

greater variation appears at the wall. Instead, for the second order

model (i.e. when K0 < 0) the velocity at all points in the boundary

layer is smaller in the non-Newtonian case for the flow over a flat plate.

Figures 1.3(c),(d) show that for a wedge angle of π/2 there is a smaller

relative variation than for the flat plate observed in Figure 1.3(a),(b).

When K0 > 0 the non-Newtonian velocity is slightly smaller inside the

boundary layer while, when K0 < 0, the non-Newtonian velocity is

larger. In both cases the greater deviation from the Newtonian profile

happens at a distance η ≈ 2 from the wall. In Figures 1.3(e),(f) we see

that the effect of increasing |K0| for the stagnation point flow (βH = 1)

is the opposite of the flat plate case.
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Figures 1.4(a),(b) show how the inflection point (where U ′′B = 0) for

a flow past a corner (βH = −0.07,−0.14) moves towards the wall upon

increasing the non-Newtonian parameter K0. On the contrary, for the

second order model (K0 < 0), decreasing the non-Newtonian parameter

K0 moves the inflection point away from the wall. In fact, even the

flat plate profile has an inflection point for negative K0, as can be seen

from Figure 1.4(d).

Notice that, the non-Newtonian parameter K0 in these graphs has

been chosen to be large enough to be able to distinguish clearly the

non-Newtonian effects on the mean flow. However, as already mentioned

in Section 1.3.2, we need |K0| � 1 for the boundary layer theory to be

valid.

Furthermore, it is possible to quantify the different effects of elasticity

on the velocity profile by measuring displacement thickness, initial slope

and shape factor. The initial slope f ′′(0) is physically important because

it determines the local wall shear stress and thus the friction drag. The

friction drag is the force experienced by the plate opposite to the

direction of the flow and it is calculated as the integral over the surface

of the local shear stress τ at the wall, that is given by

τ(x∗)
∣∣
y∗=0

= µ
∂u∗
∂y∗

∣∣∣∣∣
y∗=0

=
µUe
δ
f ′′(η = 0).

Figure 1.5(a) shows that, for the second grade model (K > 0), increasing

the non-Newtonian parameter decreases the initial slope f ′′(0) for large

value of βH (βH = 0.5, 1, 1.2), while it increases for smaller angles

(βH = 0.25, 0,−0.07,−0.14). The opposite is true for the second order

model (K < 0), as shown in Figure 1.5(b).

The displacement thickness is a measure of the displacement action

of the viscosity and it is defined as the distance by which the surface

should be moved in an inviscid fluid stream of velocity Ue to have the

same mass flow rate of the viscous fluid. It is calculated as follows

δ∗ =

∫ ∞
0

(
1− u∗

Ue

)
dy∗ = δ1δ, (1.16)
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Figure 1.3. Velocity profile and relative variation with
respect to the Newtonian profile for increasing and de-
creasing values of the parameter K = K0C

2. (a), (b)
βH = 0 (flat plate); (c), (d) βH = 0.5 (flow past a wedge);
(e), (f) βH = 1 (stagnation flow).
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of the parameter K = K0C

2.

where

δ1 =

∫ ∞
0

(1− f ′) dη = lim
η→∞

(η − f (η)) . (1.17)

and δ = y∗/η is defined by equation (1.9). In Figures 1.5(c),(d) we plot

the constant factor δ1. For small values of the angle parameter βH ,

elasticity in the second grade model (K > 0) makes the boundary layer

thinner, while it makes the boundary layer thicker for larger values of

βH . The opposite behaviour is observed for the second order model

(K < 0).

The values at K = 0 agree with the ones found in the literature,

see for example Schlichting and Gersten [73]. For the second grade

fluid, our numerical results agree with those obtained by Garg and
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Figure 1.5. Values of the initial slope (a),(b), displace-
ment thickness (c),(d) and shape factor (e),(f) for different
angle parameters βH , increasing the non-Newtonian pa-
rameter K in (a),(c),(e) and decreasing K in (b),(d),(f).
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Rajagopal [32] for βH = 0, 0.25, 0.5, 1. Moreover, we calculated the

shape factor H, which is calculated as the ratio between displacement

thickness, given by equation (1.16), and momentum thickness as follows

H =
δ∗
θ∗
,

where θ∗ is the momentum thickness, defined by

θ∗ =

∫ ∞
0

(
u∗
Ue

(
1− u∗

Ue

))
dy∗ = δ

∫ ∞
0

(f ′ (1− f ′)) dη. (1.18)

The momentum thickness represents the distance by which a surface

would have to be displaced perpendicular from the reference plane in an

inviscid fluid to have the same total momentum. From Figures 1.5(e),(f)

we see uniform behaviour over all the values of the parameter βH , that

consists in a decrease of the shape factor for the second grade model

and an increase of the shape factor for the second order model. It is

interesting to notice that H varies more steeply for small values of βH .

In conclusion, the non-Newtonian effects in the second grade (K0 >

0) and the second order model (K0 < 0) have almost opposite effects

on the mean flow.

1.4. Two-dimensional linear stability analysis

In this section, we apply a linear stability analysis to study the non-

Newtonian effects on two-dimensional disturbances.

The full unsteady and two-dimensional governing equations derived

from equations (1.4), (1.5) and Definition (1.1) can be written as follows

∂u∗
∂x∗

+
∂v∗
∂y∗

= 0,

Du∗
Dt∗

= −1

ρ

∂p∗
∂x∗

+
µ

ρ
∆u∗ +

α1

ρ

(
∂τ ∗xx
∂x∗

+
∂τ ∗xy
∂y∗

)
,

Dv∗
Dt∗

= −1

ρ

∂p∗
∂y∗

+
µ

ρ
∆v∗ +

α1

ρ

(
∂τ ∗xy
∂x∗

+
∂τ ∗yy
∂y∗

)
,

(1.19)

where τ ∗xx, τ
∗
xy and τ ∗yy are components of τ ∗, the non-Newtonian part of

the stress tensor σ, such that we can rewrite the stress tensor σ defined
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in (4.2) as follows

σ = −p∗I +
µ

ρ
A∗1 +

α1

ρ
τ ∗,

where A∗1 = ∇u∗ +∇uT∗ is the rate-of-strain tensor. Using identities

derived in Appendix A.1, we have

τ ∗xx = 2
∂2u∗
∂t∗∂x∗

+ 2u∗
∂2u∗
∂x2
∗

+ 2v∗
∂2u∗
∂x∗∂y∗

+

(
∂v∗
∂x∗

)2

−
(
∂u∗
∂y∗

)2

,

τ ∗xy =
∂2u∗
∂t∗∂y∗

+
∂2v∗
∂t∗∂x∗

+ u∗
∂2u∗
∂x∗∂y∗

+ v∗
∂2u∗
∂y2
∗

+ u∗
∂2v∗
∂x2
∗

+ v∗
∂2v∗
∂x∗∂y∗

+ 2
∂u∗
∂x∗

∂u∗
∂y∗

+ 2
∂v∗
∂x∗

∂v∗
∂y∗

,

τ ∗yy = 2
∂2v∗
∂t∗∂y∗

+ 2v∗
∂2v∗
∂y2
∗

+ 2u∗
∂2v∗
∂x∗∂y∗

+

(
∂u∗
∂y∗

)2

−
(
∂v∗
∂x∗

)2

.

Notice that the components τ ∗xx, τ
∗
xy, τ

∗
yy of the non-Newtonian stress

tensor τ ∗ include time derivatives and several nonlinear terms.

We scale the velocities with the constant free-stream velocity Ue(x0)

and the lengths with the displacement thickness δ0 defined by equa-

tion (1.11), relative to the fixed streamwise location x0. The new

dimensionless variables are

x =
x∗
δ0

, y =
y∗
δ0

, t =
Ue(x0)t∗

δ0

,

u =
u∗

Ue(x0)
, v =

v∗
Ue(x0)

, p =
p∗

ρUe(x0)2
.

(1.20)

Hence, the non-dimensional governing equations are

∂u

∂x
+
∂v

∂y
= 0,

Du

Dt
= −∂p

∂x
+

1

Re0

∆u+K0

(
∂τxx
∂x

+
∂τxy
∂y

)
,

Dv

Dt
= −∂p

∂y
+

1

Re0

∆v +K0

(
∂τxy
∂x

+
∂τyy
∂y

)
,

where τxx, τxy and τyy are non-dimensional components of the non-

Newtonian part of the extra-stress tensor τ . In these equations Re0 =

Ue(x0)δ0/ν,K0 = α1/(ρδ
2
0) are, respectively, the Reynolds and elasticity

numbers defined as before. In order to perform a local linear stability

analysis we assume the undisturbed flow to be steady and parallel,

neglecting the transverse component of the velocity. The velocity of
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the base flow in the streamwise direction is taken to be UB(y) = f ′(η),

i.e. the solution of the ODE (1.13) resulting from the boundary layer

approximation at the fixed location x0, as shown in Section 1.3. However,

derivatives of UB require additional scaling due to the following relations

y =
y∗
δ0

, η =
y∗
δ

=⇒ η = Cy,

where η is the boundary layer variable and C is the constant

C =

∫ ∞
0

(1− f ′Newt) dη. (1.21)

Therefore,

dUB
dy

= Cf ′′(η),
d2UB
dy2

= C2f ′′′(η),
d3UB
dy3

= C3f iv(η),
d4UB
dy4

= C4f v(η).

We can now introduce the non-dimensional stream function ψ, so

that the continuity equation is satisfied identically, and decompose it

into base flow ψB and perturbation ψ̃ as follows

ψ(x, y, t) = ψB(y) + ψ̃(x, y, t),

where ψB = δ0f is the stream function relative to the parallel and

steady base flow. The pressure p is expressed in the same way, i.e.

p(x, y, t) = PB(x) + p̃(x, y, t).

Next, we assume the normal mode form for the disturbances, as follows

ψ(x, y, t) = φ(y)ei(αx−ωt), p̃(x, y, t) = p̂(y)ei(αx−ωt),

where α is the wavenumber in the x-direction and ω is the frequency of

the disturbance. In general, both α and ω can be considered complex

numbers.

When the fluid is Newtonian, the assumption of a parallel base

flow and the neglect of the nonlinear terms allow the normal mode

decomposition to be applied. This is equivalent to taking the Fourier

transform and allows the PDEs to be transformed into an ordinary

differential equation called the Orr-Sommerfeld equation. We can easily

see that this is also true for the non-Newtonian model considered in

this work. The equation obtained is the Orr-Sommerfeld equation with
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an additional term due to the non-Newtonian correction

(UB − c)(φ′′ − α2φ)− U ′′Bφ =
1

iαRe0

[
φiv − 2α2φ′′ + α4φ

]
+K0

[
(UB − c)(φiv − 2α2φ′′ + α4φ)− U iv

B φ
]
, (1.22)

where ′ represents differentiation with respect to the wall-normal coordi-

nate y and c = ω/α is the phase speed. This equation has been derived

by Chun and Schwarz [15] for the stability analysis of a Poiseuille flow

of a second order fluid (α1 < 0) and used later by Sadeghy et al. [71]

and Rafiki et al. [63]. More details can be found in Appendix A.4, where

equation (1.22) is derived as a particular case of the three-dimensional

linear stability equations. Notice that equation (1.22) is of the same

order as the Orr-Sommerfeld equation but it involves higher deriva-

tives of the base flow. The non-Newtonian terms do not increase the

order of the stability equation, unlike for the mean flow equation (1.10).

Therefore, no extra boundary condition is needed.

In order to study the temporal stability, the wavenumber α is

assumed to be real. The phase velocity c appears as the eigenvalue

in the modified Orr-Sommerfeld equation (1.22) and φ the associated

eigenfunction. For the spatial stability, we assume a real frequency ω

and equation (1.22) becomes a fifth order eigenvalue problem where α

is the eigenvalue.

The modified Orr-Sommerfeld equation is subject to the boundary

conditions

φ(y) = φ′(y) = 0, at y = 0,

φ(y), φ′(y)→ 0, as y →∞.

The first set of conditions is due to no-slip and no-penetration at the

rigid wall y = 0. The conditions at infinity emerge from assuming that

the disturbances tend to zero far from the surface of the plate.

1.5. Two-dimensional linear stability results

The modified Orr-Sommerfeld equation (1.22) is solved using a Cheby-

shev collocation method. The semi-infinite domain y ∈ [0,∞) is mapped
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Figure 1.6. Comparison between Newtonian and non-
Newtonian eigenspectrum for the temporal problem with
α∗ = 0.179, Re = 580 and (a) K = 0.03, (b) K = −0.03.
The least damped eigenvalues are those in the grey circle.

onto the finite interval ξ ∈ [−1, 1] by means of the algebraic transfor-

mation

ξ =
y − l
y + l

, (1.23)

where l is a stretching parameter. Other mappings are possible, but the

numerical tests performed, that can be found in Section 5.3, indicate

that a good choice to solve (1.22) is an algebraic mapping with l = 4.

All the numerical results are validated in the Newtonian limiting case

by comparing with results in the literature (Schmid and Henningson [77]

and Criminale, Jackson and Joslin [17]).

In Figure 1.6, the eigenvalues resulting from the linear temporal

analysis of the flow over a flat plate (βH = 0) are displayed. In

Figure 1.6(a), we compare the eigenspectrum for the second grade

model with a parameter K = K0C
2 = 0.03 with eigenvalues obtained in

the Newtonian case. The choice of Reynolds number Re = Re0/C = 580

and a wavenumber of α∗ = α/C = 0.179 (C defined in (1.21)) generates

an unstable mode (i.e. ci > 0) in the Newtonian case, known as a

Tollmien-Schlichting wave. We can see the stabilising effect of elasticity

that moves the unstable mode into the lower half plane. Thus, the

flow is temporally stable for the second grade model, for this choice

of wavenumber and Reynolds number. In Figure 1.6(b) we compare

the eigenvalues for the second order model with K = −0.03 with the
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Figure 1.7. Temporal (a) and spatial (b) growth rates
for a flat plate (βH = 0) and Re = 580. Newtonian
case and non-Newtonian case with: (a) K = ±0.01; (b)
K = 0.01,−0.05.

Newtonian eigenvalues for the same values of Reynolds number and

wavenumber. We observe that in this case, elasticity is destabilising

since it pushes the unstable eigenvalues forward into the positive half

plane. We also notice that the structure of the rest of the spectrum is

different for the two non-Newtonian models.

1.5.1. Growth rates. Considering the flat plate configuration (βH

= 0), Figure 1.7(a) shows the temporal growth rate ω∗i = ωi/C as a

function of α∗. We notice that when K = 0.01, the maximum growth

rate reduces dramatically, from ω∗i ≈ 1.8× 10−3 to about 10−3. Instead,

when K = −0.01 the maximum growth rate increases to almost 3×10−3.

In general, decreasing K extends the range of positive rates to shorter

waves.

Figure 1.7(b) shows the spatial growth rate −α∗i as a function of

frequency ω∗. Again we observe the marked stabilising effect of elasticity

in terms of growth rate reduction for the second grade model (K = 0.01).

We observe that, for the second order model (K = −0.05) the maximum

growth rate increases, but not so dramatically. Also, we notice that

for some wavenumbers α∗ the growth rate is actually smaller in the

non-Newtonian case. The non-Newtonian effects in both models move

the maximum to longer waves.
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Figure 1.8. Temporal growth rates for the flow past
a wedge and past a corner, Newtonian case and non-
Newtonian case. (a) βH = 0.5, Re = 10000, K = ±3 ×
10−4; (b) βH = 1 (stagnation flow), Re = 27000, K =
±10−4; (c) βH = 1.2, Re = 27000, K = ±10−4; (d)
βH = −0.14 (flow past a corner), Re = 300, K = ±0.05.

Figure 1.8 shows temporal growth rates in the Newtonian and non-

Newtonian cases for different values of βH . In each case we observe a

reduction of temporal growth rate of the Tollmien-Schlichting waves

due to elasticity for K > 0 and an increase of growth rate for K < 0.

Observe from Figure 1.8(d) that the growth rates are significantly larger,

of order 10−2, when there is an adverse pressure gradient (βH < 0).

Notice that we choose Reynolds numbers of different orders of

magnitude for different values of βH , since instability occurs at lower

Reynolds numbers when the angle parameter βH is small (Schmid and

Henningson [77]). The choice of K is justified by the fact that, as
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remarked in Section 1.3, we need a Weissenberg number (Wi0 = K0×
Re0) of order 1 for the non-Newtonian effects to be significant and the

boundary layer theory to hold.

1.5.2. Temporal neutral stability curves. Temporal neutral

stability curves define the region in the Re0-α plane where exponentially

growing modes exist and where they do not. The region inside the

curves represents instability while the region outside corresponds to

stability.

Notice that in order to plot neutral stability curves we need to take

into account that both Re0 and K0 depend on the location x0. If we

decide to perform the stability analysis considering a variation of the

Reynolds number as a variation of the distance x0 from the leading

edge where the local stability analysis is performed, then we need to

write K0 in terms of the Reynolds number and the base profile needs

to be computed for each value of Re0. In the flat plate case (βH = 0),

the non-Newtonian parameter based on the displacement thickness can

be rewritten as

K0(Re0) =
α1

ρδ2
0

=
α1a

2

ρν2

1

Re2
0

.

Thus, we define the fixed quantity

K̃ =
α1a

2

ρν2
,

which is independent of x0, so that K0(Re0) = K̃/Re2
0.

Figure 1.9(a) shows a comparison between the neutral stability curve

in the Newtonian case and for K̃ = ±103 for flow over a flat plate. This

clearly shows the stabilising effect of elasticity in the second grade model

(K̃ > 0) in terms of increase of the critical Reynolds number. The

non-Newtonian effects in the second order model (K̃ < 0) promotes the

onset of instabilities. For high Reynolds numbers, the non-Newtonian

neutral curves approach the Newtonian neutral curve. This behaviour

is expected, since when Re0 →∞, we have K0 → 0.

In the case of a non-zero pressure gradient (βH 6= 0), it is not possible

to isolate Re0 to vary the position x0 only through the Reynolds number
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Figure 1.9. Temporal neutral curves in the Newtonian
and non-Newtonian cases. (a) βH = 0 (flat plate), K̃ =
±103; (b) βH = 0.5, K̃ = ±104, x0 = 1; (c) βH = 1
(stagnation point), K̃ = ±2.5×104, x0 = 1; (d) βH = 1.2,
K̃ = ±5× 104, x0 = 1; (e) βH = −0.14 (inflection point),
K̃ = ±100; x0 = 1.
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since we have

K0 =
α1

ρδ2
0

=
α1a

2

ρν2

x2m
0

Re2
0

.

For this reason, we decided to plot the neutral curves in Figures 1.9(b)

-(e) by fixing the streamwise position at x0 = 1. In this case the

interpretation must be different, the Reynolds number varies through

a variation of the free-stream velocity U . Once again, when K̃ >

0, elasticity has the effect of reducing the region of two-dimensional

instability as shown in Figure 1.9 for different angle parameters. When

K̃ < 0, the instability happens at lower Reynolds numbers. Moreover,

the neutral curves in the non-Newtonian case approach the Newtonian

curves when the Reynolds number increases. It is worth noticing that,

for the flow past a corner (βH = −0.14), as the Reynolds number

increases the non-Newtonian curves overlap the Newtonian curve. This

means that the inviscid instability, which arises in the presence of

an inflectional velocity profile, does not seem to be affected by non-

Newtonian effects.

Note that for different values of βH different values of K̃ are chosen

in order to ensure that the Weissenberg number, Wi0, is of order 1 when

the Reynolds number is close to critical for the onset of instability. This

is to ensure that the boundary layer theory is valid, whilst the elasticity

effects remain significant (Rajagopal et al. [66]).

1.5.3. Spatial neutral stability curves. We define a frequency

F , as follows

F = 106 ω

Re0

.

This choice of scalings eliminates the streamwise dependency of the

frequency ω. Spatial neutral stability curves are curves in the Re0-F

plane that divide the region where there exists an exponentially growing

eigenmode and where it does not exist.

Figure 1.10 includes neutral stability curves for zero, positive and

negative pressure gradients. We can see that, as for the temporal

problem, when K̃ > 0 elasticity has the effect of reducing the region of

instability. When K̃ < 0 elasticity is destabilising and the instability

happens at lower Reynolds numbers.



1.5. TWO-DIMENSIONAL LINEAR STABILITY RESULTS 41

700 800 900 1000 1100 1200 1300 1400
20

40

60

80

100

120

140

160

Re0

F

K̃ = 0

K̃ = 250

K̃ = −250

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
0

100

200

300

400

500

600

Re0

F

K̃ = 0

K̃ = 250

K̃ = −250

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

50

100

150

200

250

300

350

400

Re0

F

K̃ = 0

K̃ = 500

K̃ = −500

(b) (c)

(a)

Figure 1.10. Spatial neutral curves in the Newtonian
and non-Newtonian cases. (a) βH = 0 (flat plate), K̃ =
±500; (b) βH = 0.04, K̃ = ±250, x0 = 1; (e) βH = −0.04
(inflection point), K̃ = ±250; x0 = 1.

1.5.4. Critical Reynolds number. The critical Reynolds num-

ber is defined as the smallest Reynolds number for which there exists an

exponentially unstable mode. We calculated the critical wavenumbers,

αcr, and Reynolds numbers, Recr, for different values of βH and the

results are displayed in Table 1.1. In order to be able to compare the

non-Newtonian effect of elasticity for different values of βH we choose,

as a measure of elasticity, the critical Weissenberg number

Wi0,cr = K0,crRe0,cr,

defined with reference to the Newtonian critical Reynolds number Re0,cr

and the critical elasticity number K0,cr = K̃/Re2
0,cr.

From Table 1.1 we deduce, for the second grade model (Wi0,cr > 0),

the stabilising effect in terms of an increase of the critical Reynolds
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non-Newtonian Newtonian non-Newtonian
Wi0,cr −1 −0.5 0 0.5 1

βH Re0,cr Re0,cr Re0,cr Re0,cr Re0,cr

−0.14 00126.68 00132.58 00138.42 00144.07 00149.48
0 00470.71 00495.70 00519.06 00540.96 00561.60
0.5 07005.78 07324.05 07617.06 07890.03 08146.65
1 11483.50 11949.02 12380.61 12784.75 13166.26
1.2 12563.43 13064.70 13529.76 13965.65 14377.28

βH αcr αcr αcr αcr αcr

−0.14 0.5115 0.5025 0.4920 0.4843 0.4774
0 0.3231 0.3130 0.3038 0.2965 0.2902
0.5 0.1776 0.1742 0.1713 0.1687 0.1664
1 0.1722 0.1692 0.1665 0.1642 0.1622
1.2 0.1720 0.1690 0.1665 0.1643 0.1622

Table 1.1. Critical Reynolds numbers and critical
wavenumbers in the Newtonian and non-Newtonian cases.

number for all values of βH considered, including the slightly negative

value of βH that represents a profile with an inflection point. The

effect is the opposite for the second order model (Wi0,cr < 0) where the

instability is anticipated for each value of the Hartree parameter βH .

Note that the magnitude of the critical Reynolds number Re0,cr

for the Newtonian case is strongly dependent upon the configuration

characterised by βH . This strong dependence is maintained for the

variation found in Re0,cr when the non-Newtonian effects are introduced

in the manner that we have described. For example, with a critical

Weissenberg number Wi0,cr = 0.5, for a flat plate (βH = 0) the increase

or decrease in critical Reynolds number is of order 10, while for the

stagnation point flow (βH = 1) it is of order 102.

The results in Table 1.1 are summarised in Figure 1.11. In Fig-

ure 1.11(a), we show the relative variation of critical Reynolds numbers

with respect to the Newtonian critical Reynolds numbers, i.e.

Re0,cr − Re0,cr,Newt

Re0,cr,Newt

,

where Re0,cr,Newt is the critical Reynolds number in the Newtonian case,

when Wi0 = 0. We can see that, for a Weissenberg number |Wi0,cr| = 0.5,
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Figure 1.11. Non-Newtonian effects on the (a) critical
Reynolds numbers; (b) critical spanwise wavenumbers.
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the relative variation is around 4%, while for a Weissenberg number

|Wi0,cr| = 1, the relative variation is around 8% for every value of the

angle parameter βH . In Figure 1.11(b), we show the relative variation

of critical spanwise wavenumbers with respect to the Newtonian critical

spanwise wavenumbers. We observe that the non-Newtonian effects

affect the flat plate configuration (βH = 0) the most.

1.6. Energy theory

In this section we apply energy theory to the non-Newtonian models

considered here. We derive an evolution equation for an appropriate

choice of disturbance energy in order to study how non-Newtonian

effects influence the the energy balance. It is well known that the

nonlinear terms of the incompressible Navier-Stokes equations conserve

energy. Therefore, in the Newtonian case, the energy balance can be

seen as a nonlinear theory, because it applies to disturbances of arbitrary

amplitude (Schmid and Henningson [77]). Nonlinear terms play a role

in the distribution and transfer of energy but not in its increase.

We showed in Appendix A.5 that nonlinear terms in the incom-

pressible two-dimensional governing equations for the second order

models (1.6) conserve energy. Therefore, in order to derive the en-

ergy equation we can start from the linearised equations and it will be

equivalent to starting from the full nonlinear equations.

In the case of a parallel main flow, the energy balance can be found

by multiplying the Orr-Sommerfeld equation by the complex conjugate

φ̄ of the stream function φ and integrating over the semi-infinite domain

in the y-direction (Drazin [23]). The same procedure is applied to

the modified Orr-Sommerfeld equation (1.22). After some algebraic

manipulation that can be found in Appendix A.6 and defining

I2
k =

∫ ∞
0

|φ(k)|2 dy for k = 0, 1, 2,

we obtain the following equation

− iαc
(
I2

1 + α2I2
0

)
=

(
− 1

Re0

+ iαcK0

)(
I2

2 + 2α2I2
1 + α4I2

0

)



1.6. ENERGY THEORY 45

− iα
∫ ∞

0

(
UB|φ′|2 +

(
U ′′B + α2UB

)
|φ|2 + U ′Bφ

′φ̄
)
dy

− iαK0

∫ ∞
0

(
U ′′Bφ

′′φ̄+ 2U ′B
(
φ′′φ̄′ + α2φ′φ̄

)
− U iv

B |φ|2
)
dy

− iαK0

∫ ∞
0

(
UB
(
|φ′′|2 + 2α2|φ′|2 + α4|φ|2

))
dy.

Taking the real part of this equation we find the following energy balance

αci = − 1

Re0E

(
I2

2 + 2α2I2
1 + α4I2

0

)
︸ ︷︷ ︸

D

− iα
2E

∫ ∞
0

(
U ′B
(
φ′φ̄− φφ̄′

))
dy︸ ︷︷ ︸

P
−iαK0

2E

∫ ∞
0

((
2α2U ′B − U ′′′B

) (
φ′φ̄− φ′φ̄

))
dy︸ ︷︷ ︸

N1

−iαK0

2E

∫ ∞
0

(
2U ′B(φ′′φ̄′ − φ′φ̄′′)

)
dy︸ ︷︷ ︸

N2

. (1.24)

where we divided every term by a total energy E, defined as follows

E = I2
1 + α2I2

0 +K0

(
I2

2 + 2α2I2
1 + α4I2

0

)
. (1.25)

Equation (1.24) is essentially what, for Newtonian fluids, is known as

the Reynolds-Orr equation. The left-hand side term, αci, represents

the temporal growth rate. On the right-hand side of the energy bal-

ance (1.24), D represents the rate of dissipation of the perturbation

due to the viscosity and is always negative, since for all perturbations

viscosity dissipates energy. The term P , also known as the production

term, represents the energy transfer from the mean flow to the pertur-

bation by means of the Reynolds stress. The remaining terms N1 and

N2 are due to non-Newtonian effects.

We can measure the proportion of energy E due to Newtonian and

non-Newtonian sources by dividing the definition (1.25) by E. We

obtain

1 =
I2

1 + α2I2
0

E︸ ︷︷ ︸
Ek

+
K0 (I2

2 + 2α2I2
1 + α4I2

0 )

E︸ ︷︷ ︸
En

, (1.26)
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where Ek represents the Newtonian fraction and En represents the non-

Newtonian fraction.

The Reynolds stress mechanism is a phenomenon of energy conver-

sion between the mean and the fluctuating flow (Butler and Farrell [14],

Pedlosky [58]). To visualise this mechanism, we express the transfer

term, P , in terms of the fluctuation velocities u and v. We can see that

energy increases due to the production term P when

−uvU ′B
is positive. Hence, energy increases when

∂ψ

∂x

∂ψ

∂y
U ′B = −

(
∂y

∂x

)
ψ

(
∂ψ

∂y

)2

U ′B

is positive over the integral in the semi-infinite domain y ∈ [0,∞),

where ψ is the stream function. When the lines of constant ψ slope in

the opposite direction of that of the mean flow,
(
∂y
∂x

)
ψ
U ′B < 0 and the

perturbation gains energy. As the perturbation is advected, it becomes

orientated in the opposite direction and the energy returns to the mean

flow.

1.6.1. Results. We now analyse the results from the energy bal-

ance (1.24). First, we consider the case of a zero pressure gradient

(βH = 0), a wavenumber and a Reynolds number that gives an unstable

mode in the Newtonian case, i.e. α∗ = α/C = 0.179,Re = Re0/C = 580.

In Figure 1.12 we can see the role of different terms in equation (1.24)

and how they change by introducing non-Newtonian effects. In agree-

ment with the results shown in the previous sections, by increasing

the non-Newtonian parameter K = K0C
2, the temporal growth rate

αci decreases. We can see from Figure 1.12 that this stabilising effect

is principally due to the production term P, the diffusion due to the

viscosity D decreases slightly while the extra terms N1 and N2 remain

very small. The opposite happens for the second order model (K < 0),

where the kinetic energy increases due to an increase of P .

In Figure 1.13 we performed the energy balance for a base flow

with an inflection point. We choose the angle parameter to be slightly



1.6. ENERGY THEORY 47

P D N1 N2

−4

−2

0

2

4

6

8

×10−3

K = −10−3

K = −5× 10−4

K = 0

K = 5× 10−4

K = 10−3

Figure 1.12. Energy balance for the flat plate (βH = 0)
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negative βH = −0.14 in order to have a point of inflection in the velocity

profile. We choose a Reynolds number and a wavenumber to have an

unstable mode in the Newtonian case. We observe that also in this

case the temporal growth rate αci decreases when the non-Newtonian

parameter K is positive and it increases when K is negative. Once

again, this is due to the change in the production term P .

In all the tests performed, we found that the magnitude of the non-

Newtonian contribution to the energy, En, is very small with respect to

the Newtonian fraction, Ek, defined by relation (1.26).

It is clear that, also for the non-Newtonian models considered, the

preferential route for instability is the transfer of energy from the

mean flow to the perturbations by means of the Reynolds stress. This

conclusion is valid for all the geometrical configurations considered. To

avoid redundancy, figures representing the energy balance for other

values of the Hartree parameter βH are not reported in this work.

A similar result was obtained by Zhang et al. [96]. They performed

an energy balance for the channel flow of FENE-P fluids and found that

the production of perturbation kinetic energy due to the work of the

Reynolds stress against the mean shear is responsible for the observed

effects on the stability.

In Figure 1.14, we represent S defined by

S = φ′iφr − φ′rφi =
1

2i

(
φ′φ̄− φ̄′φ

)
,

which is proportional to the Reynolds stress and the mean shear U ′B, in

the case of a flat plate (βH = 0). We can see how the non-Newtonian

effects influence S and U ′B. The non-Newtonian effects for the second

order model (K < 0) increase the Reynolds stress S and slightly decrease

the mean shear. Therefore, we can say that an increase of S is causing

the destabilisation process. Instead, the non-Newtonian effects for the

second grade model (K > 0) provoke a decrease in S and stabilise the

flow.
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Figure 1.14. Mean shear U ′B and S = φ′iφr − φ′rφi for
the flat plate βH = 0 with Re = 580 and α∗ = 0.179.

The physical perturbation velocities in the streamwise and spanwise

directions, respectively u and v, can be calculated as follows

u = (φ′)r,

v = (iαφ)r.

In Figure 1.15 we plot the magnitude of the perturbation velocities u

and v, normalised such that the Newtonian velocities have maximum

equal to one. We can see that for zero and positive pressure gradients

(βH ≥ 0) a negative elasticity parameter K decreases the wall-normal

perturbation velocity v and increases the streamwise velocity u. A

positive elasticity number K provokes an increase in |v| and a decrease

in |u|. We can see from Figure 1.15(d) that the opposite happens in

the case of a negative pressure gradient βH < 0.

In order to perform the energy balance, the numerical integration

has been performed following the method described in Section 5.4. We

find that the eigenfunctions of the Orr-Sommerfeld equation (1.22) are

numerically sensitive to a decrease of the elasticity parameter K for the
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Figure 1.15. Disturbance velocities for (a) βH = 0 (flat
plate), Re = 580, α∗ = 0.179; (b) βH = 0.5 (flow past a
wedge), Re = 1500, α∗ = 0.18; (c) βH = 1 (stagnation
flow), Re = 2500, α∗ = 0.18; (d) βH = −0.14 (inflectional
profile), Re = 100, α∗ = 0.15.

second order model (K < 0). Hence, the mapping parameter l in the

transformation (1.23) needs to be adjusted to better approximate the

eigenfunctions. We find that, in general, the optimal choice is l ≈ 20.

This stretching parameter is much greater than the one we used to

calculate the eigenvalues (l ≈ 4), and it clusters fewer Chebyshev points

in the boundary layer. Therefore, a stretching parameter l ≈ 20 allows

a better resolution of the eigenfunctions for y →∞.
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1.7. Three-dimensional stability analysis

A study of three-dimensional disturbances for fluids of second order is

required. For parallel Newtonian flow, Squire’s theorem justifies the

study of two-dimensional instead of three-dimensional disturbances.

Squire’s theorem states that each three-dimensional mode corresponds

to some two-dimensional mode at a lower Reynolds number. Therefore,

to determine the critical Reynolds number, it is sufficient to study

two-dimensional disturbances for Newtonian fluids.

An equivalent Squire’s theorem was proved for Oldroyd B fluids

by Bistagnino et al. [8]. Zhang et al. [96] analysed three-dimensional

modes for the channel flow of FENE-P fluids and observed that the

two-dimensional waves appear to be the first to become unstable. A

result similar to the Squire’s theorem for a fluid of second grade cannot

be proven. Therefore, an extension to the study of three-dimensional

disturbances is necessary.

The linear system governing three-dimensional disturbances has

been derived in Appendix A.4, after the application of the normal mode

form to the wall-normal velocity v and vorticity η = ∂u
∂z
− ∂w

∂x
of the

perturbation, as follows

(v, η) = (v̂(y), η̂(y)) ei(αx+βz−ωt),

where α and β are, respectively, the streamwise and spanwise wavenum-

bers and ω represents the frequency. Defining q = (v̂, η̂)T , the problem

to be solved is a linear system of the form

Lq = ωMq, (1.27)

where M and L are linear operators defined as follows

M =

[
k2 −D2 +K0 (k2 −D2)

2
0

0 1 +K0 (k2 −D2)

]
, (1.28a)

L =

[
LOS LCN
LC LSQ

]
, (1.28b)
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Figure 1.16. Contour plot for the temporal growth
rate, ωi, in the Newtonian case (K = 0) for the flat plate
(βH = 0). The red star (∗) represents maxα,β ωi. The
black line represents the neutral curve. (a) Re0 = 500;
(b) Re0 = 1000.

with

LOS = αUB
(
k2 −D2

)
+ αU ′′B +

1

iRe0

(
k2 −D2

)2

+K0

(
− αU iv

B + αk4UB − 2αk2UBD2 + αUBD4
)
,

LCN = K0

(
−βk2U ′B − βU ′′′B + βU ′BD2

)
,

LC = βU ′B −K0βU
′′′
B ,

LSQ = αUB +
1

iRe0

(
k2 −D2

)
+ αK0UB

(
k2 −D2

)
,

where D denotes the derivative with respect to y and k2 = α2 + β2.

We can see that in the Newtonian case, when K0 = 0, the equation

for v̂ does not involve the wall-normal vorticity η̂. Instead, the equation

for η̂, also known as Squire’s equation, is driven by solutions to the Orr-

Sommerfeld equation through the forcing term βU ′v̂. In the Newtonian

case, this term is responsible for an algebraic growth of energy and

is referred to as the vortex tilting term. Ellingsen and Palm [27]

first identified this mechanism by showing that inviscid channel flows

are always unstable to perturbations independent of the streamwise

coordinate.



1.7. THREE-DIMENSIONAL STABILITY ANALYSIS 53

0 0.2 0.4 0.6
0

1

2

3

4

5

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

1 2 3 4 5
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.1 0.2 0.3 0.4 0.5 0.6
-0.04

-0.03

-0.02

-0.01

0

0 0.2 0.4 0.6
0

1

2

3

4

5

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

(c)

(a)

(d)

(b)

Figure 1.17. (a),(b) Contour plots for ωi in the non-
Newtonian cases for the flat plate (βH = 0) and Re0 =
500. The red star (∗) represents maxα,β ωi. The black
line represents the neutral curve. (a) K = −0.001; (b)
K = 0.001. (c),(d) Comparison of Newtonian (-) and non-
Newtonian (- -) temporal growth rates for (c) α = 0.02;
(d) β = 0.2.

We observe that for a non-zero non-Newtonian parameter K0, the

equation for the vorticity η̂ has an additional forcing term and the

equation for the wall-normal velocity v̂ is no more homogeneous but is

related to the vorticity through some non-Newtonian terms. Therefore,

the system we are considering now is fully coupled.

1.7.1. Results. We solved the three-dimensional eigenvalue prob-

lem (1.27). The results obtained are summarised by displaying the

neutral stability curves in an α-β plane.
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Figure 1.18. (a),(b) Contour plots for ωi in the non-
Newtonian cases for the flat plate (βH = 0) and Re0 =
1000. The red star (∗) represents maxα,β ωi. The black
lines represent neutral curves. (a) K = −0.0001; (b)
K = 0.0001. (c),(d) Comparison of Newtonian (-) and
non-Newtonian (- -) temporal growth rates for (c) α =
0.02; (d) β = 0.2.

Figure 1.16 shows the contour plot of the temporal growth rate ωi

in the Newtonian case for the flat plate (βH = 0). Figure 1.16(a) shows

that the choice of a subcritical Reynolds number (Re = 500) gives a

stable flow. In Figure 1.16(b), we increase the Reynolds number to

Re = 1000 and we can see an exponential instability, for which ωi > 0,

appearing at small spanwise wavenumbers. The red star (∗) represents

the maximum growth rate reached in the α-β plane, i.e. maxα,β ωi.

We can see that, in both cases, the maximum is reached for spanwise

independent waves. This confirms the Squire’s theorem for Newtonian

fluids.
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Figure 1.19. (a),(b) Contour plots for ωi in the non-
Newtonian cases for the flow past a corner (βH = −0.14)
and Re0 = 150. The red star (∗) represents maxα,β ωi.
The black lines represent neutral curves. (a) K = −0.003;
(b) K = 0.003. (c),(d) Comparison of Newtonian (-)
and non-Newtonian (- -) temporal growth rates for (c)
α = 0.02; (d) β = 0.04.

Figures 1.17(a),(b) show the contour plots of the temporal growth

rates ωi, for the second order model (K < 0) and for the second grade

model (K > 0), respectively. We can see that, for the second grade

model, there is a region of exponential instability for small streamwise

wavenumbers and for a value of the Reynolds number (Re = 500)

that gives an stable flow in the Newtonian case. In Figure 1.17(c)

we displayed the growth rates for a fixed and small α and for a fixed

β in Figure 1.17(d). We observe how a positive elasticity number

K destabilises spanwise disturbances while it stabilises the Tollmien-

Schlichting waves. The opposite happens for a negative K, which

decreases the growth rates of mainly streamwise independent waves
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(α ≈ 0) and increases the growth rates of mainly spanwise independent

waves (β ≈ 0).

Figure 1.18 shows the results for a Reynolds number of Re = 1000.

The conclusions are the same, for the second grade model the Tollmien-

Schlichting wave is slightly stabilised while growth rates near the α = 0

axis become larger. The opposite happens for the second order model,

where K < 0.

Figure 1.19 shows growth rates for the flow past a corner with

β = −0.14. The results are very similar to that of the flat plate. We do

not report results for other values of the angle parameter βH since they

are in line with the results we discussed so far.

1.8. Concluding remarks

We applied a boundary layer theory to second order fluids in order

to determine the mean flow. As for Newtonian fluids, this approach

allowed us to simplify the governing equations. We applied a pseudo-

similarity transformation and obtained a local ODE, which was solved

numerically for the purpose of the linear stability analysis.

The modified Orr-Sommerfeld equation was solved using a Cheby-

shev collocation method. We presented the results in terms of temporal

and spatial growth rates, neutral stability curves and critical Reynolds

numbers. For all the values of the angle parameter βH , we observe a sta-

bilisation of the Tollmien-Schlichting waves for the second grade model

(K > 0) and a destabilisation for the second order model (K < 0).

Moreover, by means of an energy balance, we showed that the

stabilising effect for the second grade model is mainly due to a decrease

of the production term, which represents the transfer of energy between

the mean flow and the disturbance. For the second order model the

increase of energy occurs because of an increase of the production term.



1.8. CONCLUDING REMARKS 57

Finally, we expanded the analysis to three-dimensional disturbances.

We showed that, for K > 0, spanwise disturbances become more un-

stable. On the contrary, when K < 0 the growth rates of mainly

streamwise independent waves decrease.





CHAPTER 2

Transient growth of second order

fluids

The traditional starting point of hydrodynamic stability is an eigen-

value analysis such as the one performed in Chapter 1. Classical linear

stability analysis proceeds to diagonalise the exponential operator by

extracting the temporal behaviour of individual modes, while ignoring

the effects due to the transformation, which leads to a diagonal opera-

tor. For most wall bounded shear flows, it only gives the asymptotic

behaviour of the perturbation (t→∞) and fails to capture the short-

time characteristics (Schmid and Henningson [77]). Instabilities and

transition scenarios are observed in experiments on a shorter timescale

than those typical for Tollmien-Schlichting waves (Schmid [75]). In

fact, the time-asymptotic predictions may be irrelevant to the overall

perturbation dynamics, as this limit may never, or only under artificial

conditions, be reached. Therefore, it is necessary to describe disturbance

behaviour for all times.

The approach we consider in this chapter is called bypass transition,

because it bypasses the classical route of instability due to the presence

of an exponentially growing eigenmode. The basic idea is that there

can be short-time growth of energy even if all the eigenvalues decay

exponentially. Quoting Schmid and Henningson [77], bypass transition

can be defined as “the transition emanating from nonmodal growth

mechanism”. This scenario is related to the nonnormality of the stability

operators involved. A linear operator L is said to be normal if it

commutes with its Hermitian adjoint, i.e. if it satisfies the following

relation

LLH = LHL.

59
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Normal operators can be unitarily diagonalisable, i.e. they have

orthogonal eigenfunctions (Trefethen and Embree [89]). This is, for

example, the case for the Rayleigh-Bénard convection (a plane hori-

zontal layer of fluid heated from below) and Taylor-Couette flow (fluid

confined in a gap between rotating cylinders). However, in shear flows

such as Poiseuille, Couette and Blasius, the stability operators are

nonnormal and their eigenfunctions form a non-orthogonal set. It can

be seen that the non-orthogonal superposition of exponentially decaying

eigenfunctions can lead to transient amplification of energy, before the

modal behaviour eventually prevails (Trefethen et al. [90]).

Moreover, eigenvalue analysis provides a critical Reynolds number,

Recr, above which exponentially growing disturbances exist. Energy

stability theory gives the critical Reynolds number ReE below which

the energy of arbitrary perturbations decays in time. This critical

Reynolds number, based on energy methods, is usually determined

using the Reynolds-Orr equation (Drazin [23]). For flows dominated by

normal systems, like the Rayleigh-Bénard convection, the two critical

Reynolds numbers coincide, i.e. Recr = ReE. However, for Poiseuille

flow, eigenvalue analysis predicts a critical Reynolds number Recr ≈ 5772

while energy methods predict a critical Reynolds number as low as

ReE ≈ 49.6. The wide gap between Recr and ReE is a characteristic

of many nonnormal systems and, for Reynolds numbers in this gap,

transient growth prevails (Reddy and Henningson [69], Schmid [74]).

A result known as Squire’s theorem has led to an over-emphasis

on two-dimensional studies over three-dimensional studies. Squire’s

theorem states that every unstable three-dimensional modal disturbance

corresponds to a more unstable two-dimensional disturbance at a lower

Reynolds number. Therefore, two-dimensional disturbances are the first

to become unstable and they determine the critical Reynolds number

Recr. Bypass transition analysis reveals that the variations that mostly

exploit the transient growth of energy commonly take the form of

streamwise vortices, which are vortices aligned with the flow direction.

These structures develop into streamwise streaks, elongated regions of

high or low velocity, relative to the mean flow, by means of the so-

called lift-up effect. The lift-up mechanism for instability is the vertical
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displacement of fluid particles by means of cross-stream momentum

(Brandt [11]).

Disturbances resulting from nonmodal growth mechanisms and

elongated in the streamwise directions are a common feature of many

transition processes (Alfredsson and Matsubara [2]). For this reason,

it is natural to expand the linear stability analysis of the second order

model, performed in Chapter 1, to include bypass transition.

In Section 2.1, we provide a summary of previous work on bypass

transition for Newtonian and non-Newtonian fluids, without any claim

to completeness. In Section 2.2, we provide an example to illustrate

the dramatic effects of nonnormal operators. Section 2.3 is dedicated

to the derivation of an initial-value problem which drives the temporal

evolution of disturbances for second order fluids. In Section 2.4, we

introduce the concept of maximum possible amplification which is used

to quantify the tendency of the flow to grow transiently and we present

the results obtained for second order fluids. In Section 2.5, the definition

of optimal disturbance is given. Section 2.6 is an introduction to other

tools useful to study nonnormal operators, such as pseudospectra. In

Section 2.7, we present some time-dependent simulations performed to

verify the transient growth results obtained in the previous sections. In

Section 2.8, we comment briefly on the results obtained in this chapter.

2.1. Previous studies

The phenomenon of transient growth has been known, for Newtonian

fluids, since the late 1980s and some work has been done also for

non-Newtonian fluids. In this section we summarise the main results.

2.1.1. Newtonian fluids. In 1975, Ellingsen and Palm [27] first

identified a linear growth mechanism for inviscid, incompressible and

non-stratified channel flows. They showed that, for these flows, stream-

wise independent disturbances grow linearly with time and this growth

is usually referred to as algebraic instability. The mechanism which

leads to this kind of instability has been explained by Landahl [49] and

is referred to as the lift-up effect. The lift-up effect is the generation of
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horizontal velocity perturbations by the lifting-up of fluid elements in

the presence of the mean shear. These particles initially retain their hor-

izontal momentum, while being displaced in the wall-normal direction,

leading to the formation of streamwise velocity variations (streaks).

Early work on algebraic growth focused on degeneracies (double

eigenvalues) and exact resonances (coincidence of an Orr-Sommerfeld

mode and a Squire mode). For example, Gustavsson [37] studied the

effect of direct resonances for Poiseuille flow as a possible mechanism

for transient growth. The presence of degeneracies and resonances

introduces an algebraic growth term into the temporal development

of a disturbance. Various results on degeneracies and resonances were

obtained, but significant energy growth was not found. Resonances and

degeneracies are not necessary for transient growth, which can occur

when the linear stability operator is nonnormal.

Butler and Farrell [14] investigated the transient growth of three-

dimensional disturbances in Poiseuille, Couette and boundary layer

flows. They found a growth of energy of three orders of magnitude at

subcritical Reynolds numbers, that is for Re < Recr. Butler and Farrell

showed, using a variational method, that the optimal perturbations are

not of modal form and they resemble streamwise vortices.

Reddy and Henningson [69] considered different aspects of tran-

sient energy growth at subcritical Reynolds number for two and three-

dimensional Poiseuille and Couette flows. They analysed the conditions

for no energy growth, the dependence of the growth on the wavenumbers

and on time and the effects of degenerate eigenvalues. They showed

that the maximum transient growth is of order O(Re2) and that it

occurred at a time proportional to the Reynolds number, Re. Moreover,

Reddy and Henningson showed, by applying the Hille-Yosida theorem,

that the conditions of no growth based on the numerical range, which

will be defined in Section 2.6, are equivalent to those obtained by ap-

plying standard energy methods to the full Navier-Stokes equations,

which apply to perturbations of finite amplitude. This result has two

important implications. First, there cannot be an energy growth of

disturbances of arbitrary amplitude unless there is a linear growth
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mechanism. Secondly, subcritical transition for Poiseuille and Couette

flows can occur because the linear operator is nonnormal.

Corbett and Bottaro [16] proved, using a direct-adjoint technique,

that an adverse pressure gradient causes an increase of the resulting

growth of energy while a positive pressure gradient has the opposite

effect. The disturbance which evokes the greatest response over all time

is a streamwise oriented vortex which gives rise to a streamwise streak.

Furthermore, they showed that maximum local optima (perturbations

that maximise growth at a shorter time) gain significant amplification,

tend to be oblique and can compete in terms of energy growth with

Tollmien-Schlichting waves for supercritical Reynolds numbers, that is

for Re > Recr.

2.1.2. Experiments and DNS. The lift-up effect turns out to

be dominant at moderate and high level of external noise, whereas the

so-called Tollmien-Schlichting waves are responsible for transition in

low-noise environments (Brandt [11], Schmidt and Henningson [77]).

Direct numerical simulations demonstrated the importance of the lift-up

mechanism in the case of the laminar-turbulent transition in boundary

layers subject to high level of free-stream turbulence (Brandt, Schlatter

and Henningson [12]). Streamwise streaks induced by the lift-up effect

dominate over the two-dimensional Tollmien-Schlichting waves, even

at supercritical Reynolds numbers (Re > ReCR), and are followed by

streaks, oscillations and turbulent spots until the flow becomes fully

turbulent. Experiments extensively show the role of streaks (Afredsson

and Matsubara [2]). After the formation of streaks, the flow is in a more

complicated laminar state where nonlinear interactions intervene. The

breakdown seems to be associated with a secondary instability which

develops due to the highly spanwise inflectional profiles associated with

high and low speed regions.

2.1.3. Non-Newtonian fluids. One important motivation for

studying the stability behaviour of viscoelastic fluids, and in particular

polymer suspensions, can be found in drag reduction in turbulent regime
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(White and Godfrey Mungal [94], De Angelis et al. [20,21]). This phe-

nomenon was first observed over 70 years ago. In turbulent boundary

layers, dissolving a small quantity of long-chain flexible polymers into

solution can reduce turbulent friction by a significant amount.

Brandt [11] reviewed the main results in bypass transition for non-

Newtonian fluids. In the context of classical linear stability analysis, for

inelastic non-Newtonian fluids shear-thinning is found to be stabilising

while shear-thickening is destabilising. When viscosity variations are

ignored, plane Poiseuille flow of a shear-thinning fluid shows a slight

decrease in transient growth. When viscosity variations are included,

transient growth increases with respect to the Newtonian case. In

Couette flow, transient growth increased substantially for shear-thinning

fluids. Therefore, although shear-thinning damps the exponentially

unstable mode, it can promote nonmodal instability.

Zhang et al. [96] performed the modal and nonmodal linear analysis

of inertia-dominated channel flow of viscoelastic fluids modelled by Ol-

droyd B and FENE-P closures. The authors observed destabilisation of

both modal and nonmodal instability when the polymer relaxation time

is shorter than the instability timescale (i.e. for Weissenberg numbers

Wi . 1), whereas the flow is more stable in the opposite case. In the

subcritical regime, the nonmodal amplification of streamwise elongated

structures is still the most dangerous energy growth mechanism and is

slightly enhanced by the presence of polymers. The lift-up effect is still

the dominant instability mechanism also for viscoelastic fluids.

Hoda et al. [42] performed an input-output analysis where the

equations are transformed into a state-space representation and external

disturbances are expressed in form of body forces. The input is harmonic

in the streamwise and spanwise directions, respectively x and z, and

random in the wall-normal direction, y, and in time, t. An ensemble-

average energy density is used due to the stochastic character of the

velocity field. They found that, increasing fluid elasticity through

polymer contribution to the viscosity or the elasticity number enhances

energy amplification. Once again, the disturbances that are most
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amplified are streamwise-elongated, with elasticity acting to reduce

spanwise length scale.

Hoda et al. [43] studied the frequency responses of streamwise-

constant perturbations in channel flows of Oldroyd B fluids. An explicit

Reynolds number scaling of frequency responses shows the same Re-

dependence as in Newtonian fluids. The maximum transient growth,

which will be defined in Section 2.4, is proportional to Re2. Moreover,

they analysed the Reynolds-Orr equation (energy-evolution equation)

for streamwise-constant perturbations. As in Newtonian fluids, the

nonlinear terms do not contribute to the growth of kinetic energy.

2.1.4. Different approaches and extensions. In nonmodal anal-

ysis, two general approaches can be distinguished: the response to initial

conditions and the response to external forcing (Schmid [75], Schmid

and Brandt [76]). The first approach is adopted in hydrodynamic stabil-

ity theory and focuses on seeking the most dangerous initial condition,

i.e. the initial condition that results in the maximum amplification of

energy. The second is central to receptivity analysis. The external forc-

ing may represent free-stream turbulence, wall roughness, body forces

or even neglected nonlinear terms. Receptivity analysis focuses on the

response to external forces, in terms of disturbance growth, resonance

behaviour, and pattern selection. Nonnormal systems can have a large

amplitude response to forcing, even though the forcing frequency is

far from one of the eigenfrequencies of the system. This phenomenon

is called pseudoresonance. In this work we focus on the study of the

response to initial conditions.

Since bypass transition analysis is not based on eigenvalues, it

can apply to stability operators that are explicitly time-dependent

for which a normal mode form cannot be applied in the first place

(Schmid [74]). In this case, the problem of determining the optimal

energy growth condition is studied in a variational formulation and

iterative optimisation techniques are employed.

Spatial evolution of disturbances can also be studied by writing

the stability equations in the form of a spatial evolution problem, or
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signalling problem. The spatial framework is preferable in problems

where the disturbance is induced by a roughness element, a vibrating

ribbon or harmonic point source or response to boundary layer to

free-stream turbulence (Schmid [74]).

In this chapter, we focus on the temporal problem. The temporal

evolution of disturbances is easier to study and will give an idea on how

the non-zero normal stress differences in the second order models affect

the transient growth.

2.2. Effects of nonnormal operators

We introduce a simple example in order to illustrate the effects of nonnor-

mal operators (Schmid and Henningson [77], Schmid and Brandt [76]).

Consider the following system of equations

d

dt

[
v

η

]
=

[
− 1
M

0

ε − 2
M

][
v

η

]
,

where M are ε are positive constants. The matrix is nonnormal due

to the presence of an element outside the diagonal, ε. This system of

equations closely resembles the initial-value problem that drives the

time evolution of perturbed wall-normal velocity and vorticity, governed

by the Navier-Stokes equations. The equivalent system for second order

fluids will be derived in Section 2.3.

The solution of the system with initial conditions v(0) = v0 and

η(0) = η0 can be written as follows[
v

η

]
= v0e

−t/M
[

1

εM

]
+ (η0 − εMv0)e−2t/M

[
0

1

]
.

The eigenvalues of the matrix that governs the system of equations are

negative and this may suggest that the solutions v and η would decay

exponentially. This is clearly true for v. However, the solution for η

can be written as

η(t) = η0e
−2t/M + v0εM(e−t/M − e−2t/M).

The first term represents the initial condition η0 which decays expo-

nentially in time. The second term can be analysed for small times
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Figure 2.1. Illustration of transient growth due to de-
caying nonorthogonal eigenvectors.

t/M � 1 by expanding the exponentials in Taylor series as follows

v0εM(e−t/M − e−2t/M) = v0εt+O

(
t2

M

)
.

Therefore, the term that represents the response of η to the forcing due

to v grows algebraically at early times proportionally to the parameter

ε.

Figure 2.1 shows a geometric interpretation of the algebraic growth

due to nonorthogonal eigenvectors that decay exponentially in time

at different rates. An initial condition q represented in an orthogonal

eigenvector basis, as in Figure 2.1a, will decay in time if the eigenvectors

decay. If the initial condition q is a superposition of nonorthogonal

eigenvectors, as in Figure 2.1b, as time passes it is subject to an

increase in length before decaying in the large time limit. It is clear that

eigenvalues alone cannot fully represent the dynamics of the solutions

and a more complete study must involve eigenvectors.
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2.3. Initial-value problem

In this section the initial-value problem that drives the development

of disturbances is derived for the second order fluids. We follow, for

example, the approach of Schmid and Henningson [77]. A formulation

based on the initial-value problem enables us to study the behaviour of

general solutions, not only of single eigenmodes.

We start with the unsteady three-dimensional motion (1.4) and

continuity (1.5) equations and we proceed to linearise them about the

parallel base flow UB = UB(y). Then, we take the normal mode form

for the perturbations, as follows

(u, v, w, p) =
(
û(t, y), v̂(t, y), ŵ(t, y), p̂(t, y)

)
ei(αx+βz), (2.1)

where α and β are, respectively, the streamwise (x-direction) and span-

wise (z-direction) wavenumbers (see Figure 1.1). Unlike in Section 1.4,

we do not assume an exponential time-dependence. Some algebraic ma-

nipulation, which can be found in Appendix A.4, leads to two coupled

equations for the disturbance wall-normal velocity v̂ and wall-normal

vorticity η̂ = iβû− iαŵ, that are(
k2 −D2

)
v̂t +K0

(
k2 −D2

)2
v̂t = −iαUB

(
k2 −D2

)
v̂ (2.2a)

− iαU ′′B v̂ −
1

Re0

(
k2 −D2

)2
v̂ +K0

[
− iαUB

(
D2 − k2

)2
v̂

+ iαU iv
B v̂ + iβk2U ′B η̂ + iβU ′′′B η̂ − iβU ′BD2η̂

]
,

η̂t +K0

(
k2 −D2

)
η̂t = −iαUB η̂ − iβU ′B v̂ (2.2b)

+
1

Re0

(
D2 − k2

)
η̂ +K0

[
iαUB

(
D2 − k2

)
η̂ + iβU ′′′B v̂

]
,

where k2 = α2 + β2, the subscript t indicates the time-derivative and

D indicates the derivative with respect to y. The mean flow velocity

is denoted by UB and is derived in Section 1.3. The Reynolds number,

Re0 = Ue(x0)δ0/ν, and the elasticity number, K0 = α1

ρδ2
0
, are defined as

in Chapter 1 by equations (1.12) and (1.14). The boundary conditions

are

v̂ = Dv̂ = η̂ = 0 at y = 0 and y →∞.
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The horizontal velocities û and ŵ can be recovered from v̂ and η̂ using

the following relations

û =
i

k2
(αDv̂ − βη̂) , (2.3)

ŵ =
i

k2
(βDv̂ + αη̂) . (2.4)

It is easy to see that in the Newtonian case, when K0 = 0, equa-

tion (2.2a) involves only the wall-normal velocity v̂ and can be solved

given an initial condition. Squire’s equation (2.2b) instead, is driven

by solutions to the Orr-Sommerfeld equation through the forcing term

iβU ′B v̂. Therefore, in the Newtonian case, this term is responsible for

an algebraic growth of energy and is referred to as the vortex tilting

term.

Ellingsen and Palm [27] first identified this mechanism showing

that the streamwise velocity grows linearly with time for a disturbance

independent of the streamwise coordinate. Given any base flow in the

x-direction, U(y), the linearised momentum equation for the streamwise

velocity component u, when there is no variation in the streamwise

direction (∂/∂x = 0), becomes

∂u

∂t
= −U ′v.

The mean momentum is transported by the perturbation wall-normal

velocity, v. The Rayleigh equation, which is equation (2.2a) in the

inviscid Newtonian case (ν = 0, K0 = 0), implies that v is not a

function of time when α = 0. Therefore, the streamwise velocity

increases linearly with time. This linear growth is known as algebraic

instability.

The vortex tilting, otherwise known as lift-up effect, becomes more

clear when considering the linearised vorticity equation, which is

∂η

∂t
= −U ′∂v

∂z
,

where η = ∂w
∂x
− ∂u

∂z
is the vorticity in the y-direction. This means

that the vorticity of the mean flow −U ′, which is in the cross-stream
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direction z, is tilted into the y-direction by the strain rate ∂v
∂z

of the

perturbation, generating an increase of y vorticity.

We observe that, for a non-zero non-Newtonian parameter K0 and

a non-zero spanwise wavenumber β, equation (2.2b) has an additional

forcing term, iK0βU
′′′
B v̂. Equation (2.2a) is now related to the vor-

ticity through some non-Newtonian terms, when disturbances are not

spanwise-independent (β 6= 0). Therefore, the system we are considering

now is fully coupled.

When considering the case of streamwise independent disturbances

(α = 0) in the inviscid case (ν = 0), the vorticity equation (2.2b) reduces

to

η̂t +K0

(
β2 −D2

)
η̂t = −iβU ′B v̂ +K0iβU

′′′
B v̂.

There is no immediate interpretation of this equation as in the New-

tonian case, when K0 = 0. We cannot conclude that the wall-normal

vorticity, and consequently the streamwise velocity û, experiences a

linear growth because v̂ is not necessarily time-independent.

Defining q = (v̂, η̂)T , equations (2.2) can be written in a compact

form as follows

M∂q

∂t
= −iLq or

∂q

∂t
= L1q, (2.5)

where L1 = −iM−1L. The linear operators M, L are defined in

Section 1.7 by equations (1.28).

2.4. Optimal growth

In this section, we define the maximum possible amplification and

other quantities useful to examine the tendency of the flow to transient

growth.

2.4.1. Eigenfunction expansion. Seeking solutions of equation

(2.5) of the form

q(t, y) = q̃(y)e−iωt,
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where ω is the frequency, allows us to reduce the initial-value prob-

lem (2.5) to the following generalised eigenvalue problem

ωMq̃ = Lq̃. (2.6)

This eigenvalue problem is entirely equivalent to the problem (1.27),

introduced in Section 1.7, which governs three-dimensional disturbances.

General solutions of the initial-value problem (2.5) are assumed to

belong to the space SN spanned by a sufficient number N of eigenfunc-

tions, that is defined as follows

SN = span{q̃1, q̃2, . . . , q̃N},

where {q̃j}j are solutions of (2.6). In other words, q ∈ SN can be

expressed as

q =
N∑
j=1

kj(t)q̃j, (2.7)

where {kj}j are the coefficients of the expansion.

This allows us to express the eigenvalue problem (2.5) as N separated

ordinary differential equations for the expansion coefficients, as follows

k′j(t) = −iωjkj(t), for j = 1, . . . , N,

or in a more compact form, i.e.

k′(t) = −iΩk(t), (2.8)

where k = (k1, . . . , kN)T and Ω = diag{ω1, . . . , ωN}. This simplified

formulation (2.8) of the initial-value problem (2.5) is possible provided

that the eigenspectrum is a complete set composed of discrete eigen-

modes. For Newtonian fluids, it is known that if the domain is bounded

then the eigenspectrum is discrete, but for unbounded boundary layers

the spectrum is composed of a discrete and a continuous part.

Butler and Farrell [14] successfully employed a discretised approxi-

mation of the continuous spectrum. Although the discrete approxima-

tion differs from the exact representation, the sum of these eigenmodes

correctly describes the solutions to the initial-value problem. An al-

ternative method involves numerical integration in time of the direct

and adjoint dynamic equations, as done by Corbett and Bottaro [16],
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while studying configurations that excite an optimal growth of energy in

Falkner-Skan boundary layers. This method does not involve any modal

representation and it is computationally more complex without giving

any advantage in terms of accuracy (Schmid and Henningson [77]).

For Newtonian fluids, the completeness of the spectrum is proven

by Gustavsson [36] (see for example the review by Herron [40]). To

the best of our knowledge, the completeness of the spectrum has not

been proven yet for second order fluids or for non-Newtonian fluids in

general. We will not research this further in this thesis.

In this thesis, we discretise the continuous spectrum for the second

grade models, as done by Butler and Farrell [14]. Therefore, particular

attention is required to ensure that the results are independent of the

discretisation parameter. Numerical tests have been performed and will

be explained in detail in Section 5.5.

2.4.2. Choice of perturbation energy. In order to determine

the perturbation that grows the most in some sense, we need a way to

quantify the growth. In general, for Newtonian fluids the perturbation

energy density is used (Gustavsson [37]) and it is defined as follows

ENewt(q) =
1

k2

∫ ∞
0

qHMNewtq dy (2.9)

=
1

k2

∫ ∞
0

(
k2|v̂|2 + |Dv̂|2 + |η̂|2

)
dy,

where qH = (v̂∗, η̂∗) represents the conjugate transpose of q andMNewt

is the Newtonian part of the operator M defined by (1.28a), i.e.

MNewt =

[
k2 −D2 0

0 1

]
,

The energy ENewt is proportional to the kinetic energy of the pertur-

bation (Farrell and Butler [14]). The kinetic energy of a perturbation

confined to a single wavenumber in the x and in the z directions is

EK =
ρ

2

∫ ∞
0

∫ a

0

∫ b

0

(
ũ2 + ṽ2 + w̃2

)
dx dz dy,

where a = 2π/α and b = 2π/β are the wavelengths. The physical

velocities ũ, ṽ and w̃ can be calculated by taking the real part of the
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complex variables. For example, using the normal mode form (2.1), ũ

is given by

ũ = <
(
û(t, y)ei(αx+βz)

)
=

1

2

[
û(t, y)e−i(αx+βz) + ¯̂u(t, y)ei(αx+βz)

]
,

where ¯̂u represents the complex conjugate of û. Applying relations (2.3)

and (2.4) to eliminate û and ŵ, the kinetic energy EK becomes

EK =
ρab

4

∫ ∞
0

(
|v̂|2 +

1

k2

(
|Dv̂|2 + |η̂|2

))
dy,

which is proportional to ENewt defined by equation (2.9).

The most natural choice for the second order model is to take the

full operator M that appears on the left hand side of the system of

equations (2.5). Therefore, the energy norm is taken to be

E(q) =
1

k2

∫ ∞
0

qHMq dy (2.10)

=
1

k2

∫ ∞
0

(
v̂∗(k2 −D2)v̂ +K0v̂

∗(k2 −D2)2v̂
)
dy

+
1

k2

∫ ∞
0

(
η̂∗η̂ +K0η̂

∗(k2 −D2)η̂
)
dy

=
1

k2

∫ ∞
0

(
k2|v̂|2 + |Dv̂|2 + |η̂|2

)
dy

+
K0

k2

∫ ∞
0

(
|D2v̂|2 + k2|η̂|2 + |Dη̂|2 + k4|v̂|2 + 2k2|Dv̂|2

)
dy.

This energy norm does not have an immediate physical interpretation

as the kinetic energy norm. It will be seen later that the two choices

produce qualitatively the same results.

2.4.3. Inner product and energy norm. The scalar product

between two functions q1,q2 ∈ SN is defined as

(q1,q2)E =
1

k2

∫ ∞
0

qH2 Mq1 dy = kH2 Mk1,

where M ∈ CN×N is the matrix whose components are defined by

Mij = (qj,qi)E =
1

k2

∫ ∞
0

qHi Mqj dy.
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Since the matrix M is Hermitian (M = MH) and positive definite, it

can be factorised such that M = FHF . Thus, the inner product satisfies

(q1,q2)E = kH2 Mk1

= kH2 F
HFk1

= (Fk1, Fk2)2

= (k1,k2)E,

where (·, ·)2 is the usual l2-norm defined as follows

(u, v)2 = uHv.

Therefore, the associated norm satisfies

‖q‖E = ‖Fk‖2 = ‖k‖E for q ∈ SN .

For practical purposes the factorisation of M can be performed by

calculating a singular value decomposition (SVD) as follows

M = USV H ,

where S is a diagonal matrix with real entries and U = V because M

is Hermitian. Therefore, we can easily calculate the matrix F and its

inverse as

F = S1/2UH , F−1 = US−1/2.

For a matrix B ∈ CN×N , the energy norm is defined as follows

‖B‖E = max
k∈CNr{0}

‖Bk‖E
‖k‖E

= max
k∈CNr{0}

‖FBk‖2

‖Fk‖2

= max
k∈CNr{0}

‖FBF−1Fk‖2

‖Fk‖2

= ‖FBF−1‖2.

2.4.4. Maximum possible amplification. In order to quantify

the transient growth, we define the maximum possible amplification of
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initial energy density, as follows

G(t, α, β) = max
q0∈SNr{0}

‖q(t)‖2
E

‖q0‖2
E

= ‖eL1t‖2
E, (2.11)

where L1 is the linear operator given by (2.5). Fixing the wavenumber

vector (α, β), the function G represents the envelope of the energy

evolution of all the initial perturbations, q0, with unit energy norm. At

each moment in time, we maximise over all possible initial conditions.

In order to compute the exponential norm (2.11), we use the de-

composition (2.7) and the identities proved in Section 2.4.3. Thus, G

becomes

G(t, α, β) = max
k0∈CNr{0}

‖k(t)‖2
E

‖k0‖2
E

= ‖e−iΩt‖2
E

= ‖Fe−iΩtF−1‖2
2

= σ2
1

(
Fe−iΩtF−1

)
,

where σ1 is the principal singular value of the matrix B = Fe−iΩtF−1.

Employing the decomposition (2.7) provides an easy way to compute

the maximum possible amplification G, which can be obtained by

calculating the SVD of the matrix B.

Notice that, traditional stability analysis focuses attention only on

the eigenvalues of e−iΩt. These do not capture the whole behaviour of

G, which is determined also by the eigenvector matrix F and its inverse.

Deducing the behaviour of G from the eigenvalue matrix Ω alone is

only valid when the similarity transformation given by F does not

alter the norm, that is when V is unitary and composed by orthogonal

eigenvectors. This is the case when B is normal. If this is not the

case, B is nonnormal and short-time growth of perturbation energy

is possible even though the matrix has stable eigenvalues. For large

times, the energy amplification is governed by the least stable eigenvalue.

Therefore, we expect the behaviour of G as t→∞ to be in accordance

with the results of the eigenvalue stability analysis.
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We define the global optimal disturbance as the initial condition, q0,

that maximises the growth over time, i.e.

Gmax(α, β) = G(tmax, α, β) = max
t∈[0,∞)

G(t, α, β). (2.12)

Notice that Gmax can only be defined when all the eigenvalues are stable.

If an unstable mode exists, then G(t)→∞ as t→∞.

We can also define the largest global growth obtained for any wavenumber

vector as follows

GΓ = Gmax(αΓ, βΓ) = max
α,β

Gmax(α, β). (2.13)

The latter depends only on the base flow conditions and Reynolds

number Re.

2.4.5. Results. The results obtained have been validated by com-

paring with those found in the literature for Newtonian fluids. For this

purpose, we refer to the book by Schmid and Henningson [77] and the

work by Corbett and Bottaro [16].

Figure 2.2 shows the maximum possible amplification of initial

energy norm defined by (2.11) for fixed values of the wavenumbers

(α = 0.2, β = 0.4) and a Reynolds number Re0 = 1000. This choice

of parameters has been made to demonstrate the qualitative effect of

the non-Newtonian terms in the second order model on the maximum

possible amplification, G. For the Newtonian case, a two-dimensional

exponentially unstable mode exists for Re0 ≈ 520 and α ≈ 0.3 as

reported in Table 1.1. However, for α = 0.2, β = 0.4 and Re0 = 1000,

the flow is exponentially stable for all the non-Newtonian parameters

considered in Figure 2.2 and therefore, G decays as t→∞.

We compare the results obtained with the two choices of energy

norm discussed in Section 2.4.2. In Figure 2.2(a), we use the energy

norm defined by (2.10), while in Figure 2.2(b) we use the kinetic energy

density defined by (2.9). We can see that qualitatively the results

are the same and the two norms can be distinguished only when the

non-Newtonian parameter K differs substantially from zero. It can

be seen that for the second grade model (K > 0) an increase of the
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Figure 2.2. Maximum possible amplification G for the
flat plate βH = 0 and Re0 = 1000, α = 0.2, β = 0.4. (a)
total energy; (b) kinetic energy.
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Figure 2.3. Maximum possible amplification G for α =
0.2, β = 0.4. (a) Re0 = 1000, βH = 0.5 (flow past a
corner); (b) Re0 = 300, βH = −0.14 (flow past a wedge).



78 2. TRANSIENT GROWTH OF SECOND ORDER FLUIDS

non-Newtonian parameter K provokes an increase of the maximum

transient growth while the second order model (K < 0) has the opposite

behaviour.

Figures 2.3(a) and 2.3(b) show the maximum possible amplification

of initial energy norm for flow past a corner (βH = 0.5) and past a

wedge (βH = −0.14), respectively. This choice of parameters gives expo-

nentially stable flows for all the non-Newtonian parameters considered.

The non-Newtonian terms have the same effects as for the flat plate.

Figure 2.4 shows the contour plot of Gmax defined by (2.12) for the

flat plate (βH = 0). The black line represents the neutral stability

curve inside which an exponentially growing mode exists and where the

maximum possible amplification is not defined or can be thought of

as infinite. The Newtonian results in Figure 2.4(a) are in agreement

with the literature (Schmid and Henningson [77], Schmid [74]). The

largest global optimal growth defined by (2.13) is GΓ = 1515.6 reached

at time t = 782 for αΓ = 0, βΓ = 0.65, as calculated by Corbett and

Bottaro [16].

Figures 2.4(b),(c) show the contour plot for the second order models

with K = 10−4 and K = −10−4 respectively. These non-Newtonian

parameters have been chosen as an example to show the non-Newtonian

effects. We can see that the largest amplification of energy is still

reached for streamwise independent disturbances, as in the Newtonian

case. However, when K > 0, the amplification of energy is generally

larger and, when K < 0, the amplification of energy is smaller than in

the Newtonian case.

Figure 2.5 shows the contour plot of Gmax for the flow past a wedge

(βH = 0.5). The non-Newtonian effects on the transient growth are

qualitatively similar to the flat plate case.

Figure 2.6(a) displays the ratio of non-Newtonian Gmax to Newtonian

Gmax for a fixed spanwise wavenumber β = 0.6 and varying Weissenberg

number Wi0. We can observe the non-Newtonian terms mostly affect

streamwise independent disturbances, i.e. for α = 0. In Figure 2.6(b)

we can see that for K > 0 the global optima happen for larger times
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Figure 2.4. Contour plot of Gmax for βH = 0 (flat
plate) and Re0 = 1000. The black line indicates where
an exponentially unstable mode exists. (a) K = 0; (b)
K = 10−4; (c) K = −10−4.

than in the Newtonian case, while for K < 0 the global optima happen

for shorter times.

This result is confirmed by looking at Figure 2.7, where we plot the

quantity

G̃max(α) = Gmax(α, β̃) = max
β

Gmax(α, β), (2.14)

that represents Gmax defined by (2.12) maximised over β.

Figure 2.7(a) shows that the change in maximum transient growth

due to non-Newtonian effects happens at small streamwise wavenumbers

α. A small non-Newtonian parameter K = 0.0001 has a dramatic

impact on the largest global optima GΓ = G̃max(0), which increases

from GΓ = 1515.6 in the Newtonian case to GΓ = 2402.3. Moreover, the
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Figure 2.5. Contour plot of Gmax for βH = 0.5 and
Re0 = 500. (a) K = 0; (b) K = 10−4; (c) K = −10−4.
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imum possible amplification for the flat plate βH = 0
and Re0 = 500, β = 0.6. (a) Gmax/Gmax,Newt; (b)
tmax/tmax,Newt.
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Figure 2.7. Maximum transient growth versus the
streamwise wavenumber α for βH = 0 (flat plate) and

Re0 = 1000. (a) G̃max defined by (2.14); (b) β̃ spanwise
wavenumber at which the maximum, G̃max, is reached;
(c) tmax time at which the maximum is reached.

maximum is reached later in time (see Figure 2.7(c)), i.e. tmax increases

from the Newtonian tmax = 782 to tmax = 1522 and for shorter waves

(see Figure 2.7(b)), i.e. βΓ increases from the Newtonian βΓ = 0.65 to

βΓ = 0.68. A negative K = −0.0001 produces the opposite effects. The

largest global optima is GΓ = 1193.7 and it is reached for a shorter time

tmax = 609 and longer waves with βΓ = 0.64, when compared to the

Newtonian case.

Figure 2.8 shows the results for the flow past a wedge with βH = 0.5

and a Reynolds number Re0 = 500. We can see that the results are

qualitatively similar to the flat plate case and do not need further

comment.

In Table 2.1 we report the largest global optima GΓ defined in (2.13).

For these calculations, we choose the momentum thickness scaling,
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Figure 2.8. Maximum transient growth versus the
streamwise wavenumber α for βH = 0.5 (flow past a

wedge) and Re0 = 500. (a) G̃max defined by (2.14); (b) β̃
spanwise wavenumber; (c) tmax time at which the maxi-
mum is reached.

following Corbett and Bottaro [16]. The reason is that, when scaled

using the momentum thickness, the spanwise wavenumber at which

the largest global optima is reached is independent of the mean flow

conditions. Moreover, momentum thickness scaling accounts for the

variation in tΓ (the time in which the optimal disturbance reaches its

maximum) resulting from differences in the base flow.

The momentum thickness is defined by equation (1.18). We choose

to scale the lengths with the momentum thickness θ0 relative to the

fixed streamwise location x0 which is defined as follows

θ0 = θNewt,1δ(x0),

where δ is defined by equation (1.16) and θNewt,1 is the constant

θNewt,1 =

∫ ∞
0

(f ′Newt (1− f ′Newt)) dη,



2.4. OPTIMAL GROWTH 83

calculated in the Newtonian case. We introduce Reynolds and Weis-

senberg numbers based on θ0, as follows

Reθ =
Ue(x0)θ0

ν
, Wi θ =

α1Ue(x0)

µθ0

.

Notice that the following relations hold

Re0 = HReθ, Wi0 =
Wi θ
H

,

where H = C/θNewt,1 is the shape factor defined as the ratio between

displacement and momentum thickness, calculated in the Newtonian

case. For the flat plate case, H ≈ 2.59 as we can see from Figure 1.5 in

Section 1.3.

In Table 2.1, we represent the results obtained for Reynolds numbers

Reθ = 166 and Reθ = 385. These Reynolds numbers have been chosen to

compare the results with the ones obtained by Corbett and Bottaro [16].

Specifically, Reθ = 385 corresponds to the Reynolds number based on

the displacement thickness Re0 ≈ 1000 for the flat plate case.

For all the flows considered, the largest global optimum is reached

for streamwise-independent waves, i.e. αΓ = 0. We can see that, in the

Newtonian case, when scaled with θ0, the spanwise wavenumber for GΓ

appears to be independent of the mean flow condition characterised by

βH and βθ ≈ 1/4. Notice that, in the Newtonian case, the moment in

time at which the largest global optimum is reached is about the same

for all the positive angle parameters considered, tθ ≈ 880.

For flow past a corner (βH = −0.14), the maximum is reached at

a larger time tθ ≈ 927. We observe how, for all the angle parameters

considered the spanwise wavenumber βθ, the time tθ and the largest

possible amplification GΓ decreases when the second order model is

selected, with Wi θ < 0, and decreases when the second grade model is

selected, with Wi θ > 0. Moreover, βθ appears to change approximately

linearly with the Weissenberg number based on the momentum thickness.

A Weissenberg number Wi0 = ±0.05 produces a change in βθ of about

1% and Wi0 = ±0.1 produces a change of about 2%. This linear

dependence on the Weissenberg number manifests also on the time tθ

and on the largest transient growth GΓ.
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Reθ = 166 Reθ = 385
βH Wiθ βθ tθ GΓ βθ tθ GΓ

−0.14

−0.10 0.2390 802.03 357.49∗ 0.2347 1629.56 1674.25∗

−0.05 0.2410 856.30 380.72∗ 0.2386 1827.99 1888.35∗

−0.05 0.2432 926.30 408.82∗ 0.2432 2151.88 2202.45∗

−0.05 0.2457 1021.51 444.12∗ 0.2494 2856.03 2749.60∗

−0.10 0.2485 1165.67 491.16∗ - - -

−0.07

−0.10 0.2452 768.81 283.86∗ 0.2414 1562.67 1332.59∗

−0.05 0.2470 819.99 301.87∗ 0.2448 1750.79 1498.67∗

−0.05 0.2489 885.33 323.59∗ 0.2489 2057.06 1742.94∗

−0.05 0.2510 973.27 350.59∗ 0.2542 2693.02 2157.79∗

−0.10 0.2533 1100.95 385.74∗ - - -

0

−0.10 0.2475 758.86 247.29∗ 0.2438 1544.18 1162.12∗

−0.05 0.2491 808.67 262.74∗ 0.2470 1730.97 1307.12∗

−0.05 0.2508 872.23 281.42∗ 0.2509 2026.73 1515.60∗

−0.05 0.2528 956.55 304.52∗ 0.2557 2617.47 1862.12∗

−0.10 0.2550 1075.89 334.05∗ 0.2649 5467.14 2771.06∗

0.5

−0.10 0.2479 765.91 168.13∗ 0.2446 1568.41 792.59∗

−0.05 0.2495 812.86 178.30∗ 0.2476 1750.22 889.17∗

−0.05 0.2512 871.08 190.36∗ 0.2513 2024.78 1024.65∗

−0.05 0.2531 945.42 204.99∗ 0.2561 2520.51 1238.61∗

−0.10 0.2552 1045.30 223.25∗ 0.2650 3948.30 1688.11∗

1

−0.10 0.2471 774.23 147.29∗ 0.2436 1590.90 694.91∗

−0.05 0.2487 820.22 156.10∗ 0.2467 1769.96 778.84∗

−0.05 0.2504 876.65 166.49∗ 0.2505 2037.67 895.93∗

−0.05 0.2524 947.52 179.00∗ 0.2556 2504.65 1078.00∗

−0.10 0.2547 1041.05 194.51∗ 0.2651 3701.44 1440.19∗

1.2

−0.10 0.2469 775.71 142.60∗ 0.2434 1594.62 672.67∗

−0.05 0.2485 821.55 151.13∗ 0.2465 1773.57 753.97∗

−0.05 0.2503 877.53 161.17∗ 0.2504 2040.22 867.26∗

−0.05 0.2523 947.83 173.25∗ 0.2556 2501.90 1043.04∗

−0.10 0.2547 1039.94 188.21∗ 0.2654 3662.17 1390.06∗

Table 2.1. Largest global optima for Reθ = 166 and
Reθ = 385. The asterisk (∗) indicates where an exponen-
tially unstable mode exists and GΓ is calculated excluding
the TS wave. The missing values indicate where an expo-
nential unstable mode exists also as β → 0.
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2.5. Optimal disturbances

We can determine the initial condition that reaches the maximum

possible amplification at a given time t0 by using the singular value

decomposition (SVD) of the matrix B = Fe−it0ΩF−1. The initial

condition that reaches the global optima Gmax at t = tmax defined

by (2.12) is referred to as optimal disturbance.

Using identities proven in Section 2.4.3, the maximum possible

amplification G at a certain time t = t0 can be written as follows

G(t0, α, β) = max
‖Fk0‖2=1

‖Fk(t0)‖2
2 = σ2

1(B).

We define k0,max as the vector of coefficients of the initial perturbation

with unitary energy norm that reaches the maximum at t0. We define

kmax = e−it0Ωk0,max as the vector of coefficients at the time t0. Then,

we can write

G(t0, α, β) = (Fkmax, Fkmax)2

= (Fkmax)H Fe−it0Ωk0,max

= (Fkmax)H Fe−it0ΩF−1Fk0,max

= (Fkmax)H BFk0,max.

Therefore, defining

v1 = Fk0,max,

u1 = Fkmax/‖Fkmax‖2,

and remembering that

‖Fkmax‖2 = ‖Fe−it0ΩF−1Fk0,max‖2 = ‖Fe−it0ΩF−1‖2 = σ1(B),

we obtain the following equation

Bv1 = σ1u1. (2.15)

Equation (2.15) can be interpreted as the singular value decompo-

sition (SVD) of the matrix B, where σ1 is the largest singular value,

v1 and u1 are the principal right and left singular vectors, respectively,

corresponding to σ1. The vector v1 represents the input of the system
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from which we can easily compute the initial perturbation q0 using

the eigenmode decomposition (2.7) and u1 represents the output from

which we can compute q(t0), as follows

q0 =
N∑
j=1

(k0,max)j q̃j, k0,max = F−1v1,

q(t0) =
N∑
j=1

(kmax)j q̃j, kmax = F−1u1.

In order to solve this problem we calculate the SVD of the matrix

B, that is

BV = ΣU,

where Σ = diag{σ1, . . . , σN} is the diagonal matrix consisting of the

singular values of B in descending order, V and U are unitary matrices.

2.5.1. Results. Figure 2.9 shows a comparison between optimal

disturbances in the Newtonian and non-Newtonian cases for the stagna-

tion point flow (βH = 1) and a Reynolds number Re0 = 500. We choose

a wavenumber vector (α, β) = (0, 0.6) which is close to the global optima.

In Figures 2.9(a),(c), u has been scaled such that max(v0,Newt) = 1 and

in Figures 2.9(b),(d), u has been scaled such that max(vmax,Newt) = 1.

We see that the optimal disturbances, in the non-Newtonian cases,

have the same structure of streamwise-oriented vortices as in the Newto-

nian case. From Figures 2.9(a),(c), we observe that the initial streamwise

velocity u0 is always two orders of magnitude less than the cross-flow

components. Figures 2.9(b),(d) show the evolved state of the optimal

disturbances at t = tmax. The shape of the initial vortex is still present

although it has diffused outwards away from the wall.

At t = tmax, the streamwise velocity umax is one order of magnitude

larger than the cross-flow velocities, which indicates the presence of

streaks. From Figures 2.9(a),(b) we see that, when K > 0 the vortices

are more diffused away from the wall, whereas, when K < 0 the

vortices are closer to the wall. Figures 2.9(c),(d) shows that, for the

non-Newtonian fluid with K = −0.0001, the initial optimal streamwise

velocity is larger than in the Newtonian case and at tmax it grows
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Figure 2.9. Comparison between Newtonian and non-
Newtonian optimal disturbances for the stagnation point
flow with βH = 1,Re0 = 1000, α = 0.6, β = 0. (a) wall-
normal, v0, and spanwise, w0, initial velocities; (b) wall-
normal, vmax, and spanwise, wmax, velocities at t = tmax;
(c) streamwise, u0, initial velocities; (d) streamwise, umax,
streamwise velocity at t = tmax.

more than in the Newtonian case. The behaviour is the opposite when

K = 0.0001. This is in agreement the results obtained in the previous

sections.

In Figure 2.10 we plotted the streamwise vortices for the second

order fluid with K = −0.0001 and Re0 = 1000. The solutions plotted

are such that ‖q0‖E = 1 and ‖q(tmax)‖E = Gmax. In Figures 2.10(a)

and (c) we can see the streamwise vortices at t = 0 and at t = tmax,

respectively. From Figures 2.10(b) and (d), we can see the lift-up effect

in action, which transforms streamwise vortices into streamwise streaks.



88 2. TRANSIENT GROWTH OF SECOND ORDER FLUIDS

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

(a)

(c)

(b)

(d)

Figure 2.10. Optimal disturbance for the stagnation
point flow with βH = 1,Re0 = 500, α = 0.6, β = 0
and a non-Newtonian parameter K = −0.0001. (a),(b)
disturbance at t = 0; (c),(d) disturbance at t = tmax.

2.6. Pseudospectra, numerical range and

applications to energy growth

Another way to study nonnormal operators is through their pseudospec-

tra and numerical range (Trefethen and Embree [89]). In many applica-

tions, not only in hydrodynamic stability, eigenvalue analysis proves to

be misleading. In many physical situations, dominated by non-normal

systems, eigenvalues do not describe correctly the whole dynamics.

2.6.1. Pseudospectra. Pseudospectra are mathematical tools, in-

troduced by Trefethen [85], which extend the definition of eigenvalues.
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For the sake of brevity, we present only the definition for matrices. How-

ever, it can be extended to linear operators in Banach spaces (Trefethen

and Embree [89]).

Let A denote a matrix in CN×N . An eigenvalue z ∈ C and an

eigenvector v ∈ CN satisfy

Av = zv.

Therefore, an equivalent condition for z to be an eigenvalue is to require

zI − A to be a singular matrix. Pseudoeigenvalues are defined such

that, for an appropriate choice of norm ‖ · ‖,

‖(zI− A)−1‖

is arbitrarily large. The matrix R(z) = (zI − A)−1 is known as the

resolvent of A at z.

More precisely, the ε-pseudospectra of A are regions of the complex

plane defined for each ε ≥ 0, as follows

Λε(A) = {z ∈ C : ‖(zI− A)−1‖ ≥ ε−1}.

When z is an eigenvalue of A, the resolvent R(z) is not defined and

‖(zI − A)−1‖ is thought of as infinite, by convention. Therefore, the

ε-pseudospectra are closed nested sets containing Λ(A) = Λ0(A), which

is the spectrum of A.

Restricting our attention to the case in which ‖ · ‖ = ‖ · ‖2, if A is

normal, then

‖R(z)‖2 = ‖(zI− A)−1‖2 =
1

dist (z,Λ(A))
,

where dist(z,Λ(A)) denotes the usual distance from a point to a set

in the complex plane. Thus, Λε(A) is the union of the closed disks of

radius ε centred at the eigenvalues of A. For nonnormal matrices, the

norm of the resolvent, ‖R(z)‖2, can be much larger even if z is far from

the spectrum.

An equivalent definition is based on the connection between resolvent

norm and eigenvalue perturbation theory. The ε-pseudospectra of the
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matrix A is defined as follows

Λε(A) = {z ∈ C : z ∈ Λ(A+ E) for some E with ‖E‖ ≤ ε}.

In other words, z is a ε-eigenvalue if it is an exact eigenvalue of A

perturbed by a random matrix E with norm less than or equal to ε.

The two definitions are equivalent. Pseudospectra give approximate

information about the maximum transient growth. Roughly speaking,

the maximum transient growth Gmax depends on how far the pseu-

dospectra extend into the upper half-plane. A rigorous connection

between pseudospectra and transient growth is given by Reddy and

Henningson [69].

2.6.2. Numerical range. The energy growth rate at any time t

is defined as the numerical range. Using the discrete eigenfunction

expansion formulation (2.7), we obtain

1

E

dE

dt
=

1

‖k‖2
E

d‖k‖2
E

dt
=

1

‖k‖2
E

[(
dk

dt
, k

)
E

+

(
k,
dk

dt

)
E

]
=

1

‖k‖2
E

[(−iΩk, k)E + (k,−iΩk)E]

=
1

‖k‖2
E

[i (Ωk, k)E − i (k,Ωk)E]

=
1

‖k‖2
E

[
(k,Ωk)E − (k,Ωk)E

i

]
= 2=

(
(k,Ωk)E
(k, k)E

)
.

The numerical range determines the potential for energy growth and

it is defined as the set in the complex plane of all Rayleigh quotients

of the matrix Ω defined by equation (2.8). Therefore, the numeric al

range of Ω is given by

F(Ω) = {z ∈ C : z = (k,Ωk)E with ‖k‖E = 1}
=
{
z ∈ C : z =

(
v, FΩF−1v

)
2

with ‖v‖2 = 1
}
.

When the operator Ω is normal, the numerical range is the convex hull

of its eigenspectrum. Therefore, there is no energy growth if all the

eigenvalues lie in the lower half plane. This explains why the critical

Reynolds numbers based on energy theory and based on eigenvalue

analysis coincide for the Rayleigh-Bénard convection (Schmid [74]).
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The numerical range for nonnormal operators is larger than the convex

hull of the spectrum. Thus, it can protrude in the unstable half plane

even if the spectrum is confined in the stable half plane.

2.6.3. Numerical abscissa. To capture the short-time dynamic

we can define the numerical abscissa that is the slope of the curve G(t)

at t = 0+. Using the Taylor-series expansion of the matrix exponential

around t = 0+, i.e. e−iΩt ≈ 1− iΩt yields the following result

dG

dt

∣∣∣∣
t=0+

= max
‖k0‖E=1

d

dt
‖k‖2

E

∣∣∣∣
t=0+

= max
‖Fk0‖2=1

d

dt
‖Fe−iΩtk0‖2

2

∣∣∣∣
t=0+

= max
‖Fk0‖2=1

d

dt

(
F (1− iΩt)k0, F (1− iΩt)k0

)
2

∣∣∣∣
t=0+

= max
‖Fk0‖2=1

(
Fk0, F (−iΩ)k0

)
2

+
(
F (−iΩ)k0, Fk0

)
2

= max
‖Fk0‖2=1

(
Fk0,

(
F (−iΩ)F−1 + (F (−iΩ)F−1)H

)
Fk0

)
2

= λ1

(
− iFΩF−1 + (−iFΩF−1)H

)
.

The numerical abscissa is calculated as the maximum Rayleigh quotient

of the Hermitian matrix −iFΩF−1 + (−iFΩF−1)H that is given by its

largest eigenvalue. The maximum protrusion of the numerical range

into the unstable half plane is equivalent to the numerical abscissa and

determines the maximum energy growth at t = 0+.

2.6.4. Results. In Figure 2.11, we show the contour plot of the

logarithm of the resolvent norm, i.e.

log (‖R(z)‖E) = log (‖zI− Ω‖E) .

As an example, we choose the case of a flat plate with βH = 0, Reynolds

number Re0 = 500, wavenumbers α = 0.3, β = 0.2 and non-Newtonian

parameter K = −0.01. These parameters have been chosen to illustrate

the concept of numerical range and pseudospectra.

From Figure 2.11, we can see how the contour plot of the resolvent

norm does not consist in the union of balls centred on the eigenvalues and

this indicates that the system is nonnormal. Moreover, the numerical

range, represented by the red dashed line, reaches into the unstable
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Figure 2.11. Contour plot for the logarithm of the
resolvent norm and spectrum for the flat plate case with
βH = 0,Re0 = 500, α = 0.3, β = 0.2 and K = −0.01.
The red dashed line represents the numerical range, the
black dashed line represents the numerical range in the
Newtonian case.

half plane. This means that there exists positive energy growth rates,

despite all the eigenvalues being confined to the stable half plane.

In Figure 2.12, we compare the numerical range with the Newtonian

numerical range. We can see that, for K = −0.01 the numerical range

changes slightly with respect to the Newtonian case and extends less

into the positive half plane, while the least stable eigenvalue becomes

more unstable. For K = 0.01, the least stable eigenvalue moves away

from the positive half plane but the numerical range is larger than in

the Newtonian case.

2.7. Time-dependent simulations

In order to verify the transient growth results obtained in the previous

sections, we solved the initial-value problem (2.5) marching in time
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Figure 2.12. Numerical range for the flat plate case
with βH = 0,Re0 = 500, α = 0.3, β = 0.2. (a) Newtonian
(K = 0); (b) non-Newtonian (K = −0.01); (c) non-
Newtonian (K = 0.01). The black dashed line (- -)
represents the numerical range in the Newtonian case.

with a numerical scheme. Thus, the problem to solve numerically isM
∂q

∂t
= −iLq,

q(t = 0) = q0,

where q = (v̂, η̂)T and q0 is a given initial disturbance. The linear

operators M and L are defined by equations (1.28).

Discretisation in the wall-normal direction y is performed by applying

a mapping to the semi-infinite domain and using a Chebyshev collocation

method, as described in Section 5.1. Therefore, the semi-discretised
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system becomes M
dq

dt
= −iLq,

q(t = 0) = q0,

where q is a vector of length N , equal to the chosen number of Chebyshev

collocation points and M,L are N ×N matrices.

For the time discretisation, we choose an implicit second order

numerical scheme known as the Crank-Nicolson method. We define a

number Ñ of points in the interval of time [0, tfin], such that

tn = hn for n = 0, . . . , Ñ ,

where h = tfin/Ñ is a small discretisation parameter. The fully discre-

tised system becomes
(
M + i

h

2
L

)
qn+1 =

(
M − ih

2
L

)
qn,

q0 = q(t = 0),

where qn is the approximated solution at the time tn.

The solution of the numerical simulation at tfin = hÑ , qfin, is then

compared with the solution given by the eigenmode decomposition (2.7),

that is

qD =
N∑
j=1

kj(tfin)q̃j,

where the coefficients of the expansion kj(tfin) are the components of

the following vector

k(tfin) = e−iΩtfink0.

This solution is given by solving the system of equations (2.8) for the

coefficients of the expansion and k0 is the vector which contains the

coefficients of the expansion of the initial disturbance, q0.

2.7.1. Results. Several numerical tests have been performed. We

choose different types of initial disturbance and we observed that, in

each case, the solution of the simulation, qD, agrees with the solution

obtained with the eigenmode decomposition, qfin. In this work, we

present four tests that have been performed.
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Figure 2.13. Evolution of the optimal disturbance for
the flow past a wedge with βH = 0.5,Re0 = 500, K =
0.001, α = 0.3, β = 0.2. (a) wall-normal velocity; (b)
vorticity; (c) amplification of disturbance energy.
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Figure 2.14. Evolution of a randomly perturbed two-
dimensional optimal disturbance for the flow past a corner
with βH = −0.14,Re0 = 200, K = −10−5, α = 0.3, β =
0.1. (a) wall-normal velocity; (b) vorticity; (c) amplifica-
tion of disturbance energy.
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2.7.1.1. Test 1. The initial disturbance is chosen to be the global

optimum, defined in Section 2.5, with unit energy norm. This is the

initial configuration which maximises the growth over all time, i.e. it

reaches the maximum Gmax at a time tmax as defined by (2.12).

Figure 2.13 shows the results for the flow past a wedge with βH = 0.5,

Re0 = 500 and K = 0.001. The wavenumbers in the x- and z-directions

are chosen to be α = 0.3 and β = 0.2, respectively. From Figure 2.13(c)

we see that Gmax ≈ 40 is reached at tmax ≈ 80. The evolution of

the optimal disturbance energy norm, ‖q‖2
E, is plotted along with the

maximum possible amplification G, defined by (2.11). By definition,

the energy norm of the disturbance touches the curve G exactly at

t = tmax.

Figures 2.13(a),(b) show the initial configuration, q0, and the com-

parison at tfin = 100 between the solution given by the eigenmode

decomposition, qD, and the solution obtained by marching in time, qfin.

Figure 2.13(a) shows the wall-normal velocity v, while Figure 2.13(b)

shows the vorticity η. We see good agreement between the solutions.

2.7.1.2. Test 2. The initial disturbance is chosen to be the configu-

ration which reaches the maximum possible amplification in the interval

of time [0, 1000] which is randomly perturbed. In other words, the

initial disturbance is taken to be

q0 =
N∑
j=1

(k0)j q̃j,

where k0 is a random perturbation of the optimal solution k0,max defined

in Section 2.5.

Figure 2.14 shows the results for flow past a corner with βH = −0.14,

Re0 = 200 and K = −10−5. The wavenumbers in the x- and z-directions

are chosen to be α = 0.3 and β = 0.1, respectively. From Figure 2.14(c),

we see that G does not decay as time increases. This is due to the

presence of an exponentially unstable eigenvalue.
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Figure 2.15. Evolution of the disturbance which reaches
the maximum possible amplification at T = 100 for a
stagnation point flow with βH = 1,Re0 = 10000, K =
10−5, α = 0.1, β = 0.6. (a) wall-normal velocity; (b)
vorticity; (c) amplification of disturbance energy.
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−10−5, α = 0.1, β = 0.6. (a) wall-normal velocity; (b)
vorticity; (c) amplification of disturbance energy.
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We observe from Figures 2.14(a),(b) that the solution computed

using the Crank-Nicolson method, qfin at tfin = 100 coincides with the

solution given by the eigenmode decomposition, qD.

2.7.1.3. Test 3. In this case, we choose as initial configuration a

disturbance that reaches the maximum possible amplification of energy

at time T = 100 as defined in Section 2.5.

The test is run for the stagnation point flow with βH = 1, Re0 =

10000 and K = 10−5 and the results are reported in Figure 2.15. The

choice of wavenumbers (α = 0.1, β = 0.6) gives a very high maximum

possible amplification, as can be seen in Figure 2.15(c). By definition,

the evolution of the optimal disturbance energy norm, ‖q‖2
E, touches

the curve G exactly at T = 100. Figures 2.15(a),(b) show a good

agreement between the simulation and the solution calculated using the

decomposition.

2.7.1.4. Test 4. For this test, the eigenfunction corresponding to

the least stable eigenvalue is selected as initial perturbation.

We run the test for the flow past a flat plate with βH = 0, Re0 = 1000

and K = −10−5. The results, shown in Figure 2.16, show once again

that there is good agreement between the solutions obtained with the

two methods. Moreover, we can see from Figure 2.16(c) that the least

stable eigenmode does not experience energy growth, that is ‖q‖E ≤ 1

throughout the whole time period considered.

2.8. Concluding remarks

In this chapter, we extended the linear stability analysis to include the

bypass transition scenario. The initial-value problem, which governs

the development of disturbances, was derived for second order fluids.

We found that, for second grade fluids (K > 0) the maximum transient

growth increases, while for second order fluids (K < 0) the maximum

transient growth decreases. Streamwise independent waves still reach

the largest amplification of energy, as in the Newtonian case. Hence,

the lift-up effect is still responsible for the transient growth of energy.
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Moreover, we observed that non-Newtonian terms mostly affect

streamwise independent waves. When K > 0, the global optimum

is reached for larger times and larger spanwise wavenumbers. When

K < 0, the global optimum occurs for shorter times and smaller spanwise

wavenumbers.





CHAPTER 3

Monochromatic DNS

The aim of this chapter is to introduce the velocity-vorticity formu-

lation and to use it in order to verify the linear stability results obtained

in Chapter 1. Throughout this chapter, we refer to the contributions of

Davies and Carpenter [19], Davies [18] and Morgan [51].

The main idea of velocity-vorticity methods is to rewrite the equa-

tions in the form of a vorticity transport equation. This formulation

is remarkably simpler than the primitive-variable formulation, which

involves the velocity field v and the pressure p. The pressure does not

appear explicitly in velocity-vorticity formulations which involve only

the velocity v and the vorticity ω. For more details on the advantages

of velocity-vorticity methods we refer to Speziale [79].

The approach followed by Davies and Carpenter [19] relies on a

compact formulation where the number of variables in the system

is reduced. There are only three equations to be solved in terms

of three dependent variables, the so-called primary variables. The

novelty of their formulation is that the no-slip condition is applied in

a mathematically consistent way through integral constraints for the

primary vorticity components to be associated with the corresponding

transport equations.

The three primary variables are the two perturbation vorticity com-

ponents in the plane of the solid surface, x and z, and the perturbation

velocity in the wall-normal direction, y. These are governed by two

transport equations for the vorticity components and a Poisson equation

for the velocity. The remaining dependent variables are called secondary

variables and can be determined explicitly from the primary variables.

101
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In Section 3.1, we introduce the velocity-vorticity formulation of

the Navier-Stokes equations without going into details of the derivation.

Section 3.2 is dedicated to the derivation the velocity-vorticity formula-

tion for the second order fluids introduced in Chapter 1. In Section 3.3

we describe the numerical methods and in Section 3.4 we present the

results of the simulations.

3.1. Velocity-Vorticity Formulation of

the Navier-Stokes equations

In this section, we present an overview of the velocity-vorticity formu-

lation for Newtonian fluids. We follow the approach of Davies and

Carpenter [19] and Davies [18].

Let UB = (UB, VB,WB)T denote a general mean flow and ΩB =

∇×UB = (Ωx,Ωy,Ωz)
T the mean flow vorticity. Consider the vector

v = (u, v, w)T to be the disturbance velocity field and ω = ∇ × v =

(ωx, ωy, ωz)
T its vorticity. Henceforth, we consider all variables to be

dimensionless and the Reynolds number, Re, is defined in the usual

manner, using appropriate characteristic length and velocity.

The Navier-Stokes equations will be written in terms of the so-called

primary dependent variables, {ωx, ωz, v}. The secondary dependent

variables, which can be determined explicitly from the primary variables,

are {ωy, u, w}. Therefore, the secondary variables can be ignored for

the purposes of the numerical simulations.

The Navier-Stokes equations written in terms of the primary vari-

ables are

∂ωx
∂t

+
∂Nz

∂y
− ∂Ny

∂z
=

1

Re
∆ωx, (3.1a)

∂ωz
∂t

+
∂Ny

∂x
− ∂Nx

∂y
=

1

Re
∆ωz, (3.1b)

∆v =
∂ωz
∂x
− ∂ωx

∂z
, (3.1c)

where N = (Nx, Ny, Nz)
T is defined as

N = ΩB × v + ω ×UB + ω × v.
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Linearisation can be performed by neglecting the non-linear term, ω×v.

In order to obtain the velocity-vorticity formulation (3.1), we take the

curl of the three-dimensional Navier-Stokes equations, subtract the

equations for the base flow vorticity ΩB and consider the transport

equations for the streamwise and spanwise vorticity only, ωx and ωz.

The last equation (3.1c) for the wall-normal disturbance velocity v is

derived by taking the curl of the definition of vorticity and making use

of the continuity equation, i.e.

∇× ω = −∆u.

In this section, we omit the details of the derivation for the Newtonian

case. We will follow all the steps of the derivation for the second order

model in the next section.

Note that equations (3.1a) and (3.1b) still depend on the secondary

variables through the convective quantity N. Therefore, we define the

secondary variables in terms of the primary variables as follows

u =

∫ ∞
y

(
ωz −

∂v

∂x

)
dỹ, (3.2a)

w = −
∫ ∞
y

(
ωx +

∂v

∂z

)
dỹ, (3.2b)

ωy =

∫ ∞
y

(
∂ωx
∂x

+
∂ωz
∂z

)
dỹ. (3.2c)

The definitions of u and w are derived by integrating the definition

of vorticity with respect to y and assuming implicitly that u and w

vanish at infinity. The last definition (3.2c) is derived by integrating

the following equation

∇ · ω = 0,

assuming that ωy tends to 0 as y →∞. The vorticity is solenoidal since

the divergence of a curl is always zero.

3.1.1. Equivalence to the full Navier-Stokes equations. It

is possible to recover the full Navier-Stokes equations provided that two

further conditions for the behaviour of the perturbations at infinity are

satisfied. Further details can be found in Davies and Carpenter [19].
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The two conditions are

lim
y→∞

∂v

∂y
= 0, (3.3)

and

lim
y→∞

(
∂ωy
∂t

+
∂Nx

∂z
− ∂Nz

∂x
− 1

Re
∆ωy

)
= 0.

Assuming that v → 0 and VB tends to a constant as y → ∞, and

remembering that the secondary variables u,w, ωy are all defined so as

to vanish at infinity, the latter condition may be simplified to

lim
y→∞

[(
−VB +

1

Re

∂

∂y

)(
∂ωx
∂x

+
∂ωz
∂z

)]
= 0. (3.4)

It may seem that these two conditions need to be imposed directly

in this formulation. However, they will be automatically satisfied by

making a convenient choice of mapping.

Notice that equivalent conditions need to be derived for the non-

Newtonian case. More details are given in the next section.

3.1.2. Boundary conditions at the wall. Assuming a wall pla-

ced at y = η(x, z, t), the no-slip and no-penetration conditions at the

wall read

u(x, η, z, t) = uwall(x, z, t),

v(x, η, z, t) = vwall(x, z, t),

w(x, η, z, t) = wwall(x, z, t),

where uwall, vwall, wwall are functions determined by the wall motion. In

the presence of a rigid wall, uwall, vwall, wwall are all set to zero.

The boundary condition on v can be imposed easily on the Poisson

equation (3.1c). The boundary conditions at the wall for u and w

are imposed indirectly by deriving integral constraints for the primary

vorticity components, ωx and ωz. Rewriting the definitions (3.2a) and

(3.2b) and making use of the conditions on u and w, we obtain∫ ∞
η

ωx dy = −wwall −
∫ ∞
η

∂v

∂z
dy,∫ ∞

η

ωz dy = uwall +

∫ ∞
η

∂v

∂x
dy.
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These can be viewed as constraints on the primary vorticity compo-

nents, ωx and ωz, and can be applied on the associated transport

equations (3.1a) and (3.1b).

3.1.3. Conditions at infinity. There is no problem in applying

the condition v → 0 as y → ∞, since it can be easily associated

with the Poisson equation (3.1c). However, there is no natural way

to constrain ωx and ωy at infinity and conditions (3.3) and (3.4) are

not straightforward to implement and apply. They are replaced by the

stronger conditions that both ωx and ωz vanish at infinity.

The consistency requirements (3.3) and (3.4) are clearly met if the

y-derivatives of all the primary variables ωx, ωz and v at infinity. Making

use of an algebraic mapping from the semi-infinite domain y ∈ [0,∞)

to ξ ∈ (0, 1], it is easy to check the validity of (3.3) and (3.4). The

mapping is defined as follows

ξ =
l

l + y
, (3.5)

where l is a stretching parameter. Notice that this mapping is very

similar to the one defined by equation (1.23) in Section 1.5. The

derivative of a function f with respect to the physical variable y can be

written with respect to the transformed variable ξ as follows

∂f

∂y
= −ξ

2

l

∂f

∂ξ
.

The limit as y → ∞ in the physical domain corresponds to the limit

as ξ → 0 in the computational domain. Therefore, the derivative of

a function with respect to y goes to zero as y → ∞ if the derivative

with respect to ξ remains bounded as ξ → 0. The compatibility

conditions (3.3) and (3.4) are satisfied provided that the ξ-derivatives

of the primary variables remain bounded as ξ → 0.

3.2. Velocity-vorticity formulation for

the second order model

In this section, we derive the velocity-vorticity formulation for the

second order model (1.1) defined in Chapter 1.
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Let ṽ denote the velocity field and ω̃ its vorticity. The dimension-

less governing equations for the second order model with constitutive

equation (1.1) are

∂ṽ

∂t
+ (ṽ · ∇)ṽ = −∇p̃+∇ · τ̃ , (3.6)

∇ · ṽ = 0.

The dimensional governing equations can be found in Section 1.2. The

non-dimensional extra-stress tensor τ̃ is defined as follows

τ̃ =
1

Re
Ã1 +K(Ã2 − Ã2

1),

where Re and K are, respectively, the Reynolds and elasticity numbers

defined in the same way as in the previous chapters, i.e.

Re =
ρUL

µ
, K =

α1

ρL2
,

based on an appropriate choice of characteristic length L and velocity

U which will be specified later. The Rivlin-Ericksen tensors Ã1 and Ã2

are defined as follows

Ã1 = ∇ṽ +∇ṽT ,

Ã2 =
∂Ã1

∂t
+ (ṽ · ∇)Ã1 +∇ṽÃ1 + Ã1∇ṽT .

By taking the curl of the equation of motion in vectorial form (3.6),

we obtain a transport equation for the vorticity ω̃, i.e.

∂ω̃

∂t
+∇× Ñ =

1

Re
∆ω̃ +K∆

(
∂ω̃

∂t

)
, (3.7)

where Ñ is the convective quantity

Ñ = ω̃ × ṽ −K
[
∇ ·
(

(ṽ · ∇) Ã1

)
+∇ ·

(
∇ṽ∇ṽT −∇ṽT∇ṽ

)]
,

Notice the additional terms due to non-Newtonian effects are those

multiplied by the non-Newtonian parameter K. When K = 0 we recover

the Newtonian case.

Consider now the usual decomposition of the velocity and vorticity

fields into base flow and disturbances, as follows

ṽ = UB + v, ω̃ = ΩB + ω.
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Subtracting the transport equation for the base flow vorticity ΩB

from equation (3.7) leads to the following equation for the disturbance

vorticity ω, i.e.

∂ω

∂t
+∇×N =

1

Re
∆ω +K∆

(
∂ω

∂t

)
,

where N takes the form

N = ω ×UB + ΩB × v + ω × v

−K [∇ · ((UB · ∇) A1 + (u · ∇) AB,1 + (u · ∇) A1)]

−K
[
∇ ·
(
∇UB∇vT +∇v∇UB

T +∇v∇vT
)]

+K
[
∇ ·
(
∇UB

T∇v +∇vT∇UB +∇vT∇v
)]
,

with A1 = ∇v +∇vT and AB,1 = ∇UB +∇UT
B. Neglecting nonlinear

terms, N simplifies considerably to

N = ω ×UB + ΩB × v −K [∇ · ((UB · ∇) A1 + (u · ∇) AB,1)]

−K
[
∇ ·
(
∇UB∇vT +∇v∇UB

T −∇UB
T∇v −∇vT∇UB

)]
. (3.8)

Therefore, the velocity-vorticity formulation written in terms of the

primary variables ωx, ωz, v reads

∂ωx
∂t

+
∂Nz

∂y
− ∂Ny

∂z
=

1

Re
∆ωx +K

∂(∆ωx)

∂t
(3.9a)

∂ωz
∂t

+
∂Ny

∂x
− ∂Nx

∂y
=

1

Re
∆ωz +K

∂(∆ωz)

∂t
(3.9b)

∆v =
∂ωz
∂x
− ∂ωx

∂z
, (3.9c)

where the Poisson equation for the wall-normal velocity v is derived as

for the Newtonian case, described in Section 3.1. The convective terms

Nx, Ny, Nz involve secondary variables which are defined, as for the

Newtonian case, in terms of the primary variables only by relations (3.2).

The system of equations (3.9) is associated with the same boundary

conditions at the wall and at infinity described in Section 3.1 for the

Newtonian case.

3.2.1. Equivalence to the original formulation. The velocity-

vorticity formulation (3.9) is equivalent to the governing equations for

the second order model provided that two conditions for the behaviour
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of the disturbances far from the wall are satisfied. The first condition is

required to ensure that the incompressibility condition (∇·v = 0) holds.

By differentiating definitions (3.2a),(3.2b) for the secondary variables

u and w with respect to x and z, respectively, and then summing, we

obtain

∂u

∂x
+
∂w

∂z
=

∫ ∞
y

(
∂ωz
∂x
− ∂ωx

∂z
− ∂2v

∂x2
− ∂2v

∂z2

)
dỹ.

By applying the Poisson equation (3.9c) for v, this becomes

∂u

∂x
+
∂w

∂z
=

∫ ∞
y

(
∂2v

∂y2

)
dỹ.

Thus, the incompressibility condition is satisfied if

lim
y→∞

∂v

∂y
= 0. (3.10)

This is the same condition obtained in the Newtonian case.

The second condition is needed in order to obtain the transport

equation for the secondary component of the vorticity ωy. It is obtained

by differentiating the vorticity transport equations (3.9a),(3.9b) with

respect to x and z, respectively, summing the results and using∇·ω = 0.

We can recover the transport equation for ωy, that is

∂ωy
∂t

+
∂Nx

∂z
− ∂Nz

∂x
=

1

Re
∆ωy +K

∂(∆ωy)

∂t
,

provided that it holds in the limit as y →∞, i.e.

lim
y→∞

(
∂ωy
∂t
−K∂(∆ωy)

∂t
+
∂Nx

∂z
− ∂Nz

∂x
− 1

Re
∆ωy

)
= 0. (3.11)

For simplicity, we restrict our attention to the case of a parallel mean

flow, UB = (UB(y), 0, 0). The secondary variables {u,w, ωy} are defined

to vanish at infinity. We also assume that v → 0 as y →∞ and take

into account that U ′B → 0 as y → ∞. Therefore, condition (3.11)

simplifies to

lim
y→∞

{(
1

Re
+K

∂

∂t

)[
∂

∂y

(
∂ωx
∂x

+
∂ωz
∂z

)]
+KF

}
= 0, (3.12)

where F is defined by

F = UB

(
∂g3

∂y
+
∂2g2

∂y2

)
+ g0

(
∂g2

∂y
+
∂2g1

∂y2
+
∂3g0

∂y3

)
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+ g1

(
∂g1

∂y
+
∂2g0

∂y2

)
+
∂g0

∂y

(
g2 +

∂g1

∂y
+
∂2g0

∂y2

)
,

and the functions gj are linear combinations of derivatives of order j

with respect to x and z of the velocity field components, i.e.

gj ∈ span

({
∂jvl

∂xk∂zj−k

}
l,k

)
.

The condition (3.12) that must be satisfied in order to obtain the

transport equation for the secondary vorticity component ωy, appears

to be much more complicated than in the Newtonian case. The first

term of condition (3.12) goes to zero if the y-derivatives of ωx and ωz

tend to zero at infinity. As in the Newtonian case, this is achieved by a

convenient choice of mapping, as explained in Section 3.1. The second

term in the condition (3.12), KF , cannot easily be written in terms of

the primary variables only. However, the term KF tends to zero if all

the y-derivatives up to the 3rd of u, v, w tend to zero at infinity, i.e.

∂jvk
∂yj

→ 0 as y →∞, for j = 1, 2, 3.

Applying the mapping (3.5) from the physical domain to the computa-

tional one, as in the previous section, we have

∂f

∂y
= −ξ

2

l

∂f

∂ξ
,

∂2f

∂y2
= 2

ξ3

l2
∂f

∂ξ
+
ξ4

l2
∂2f

∂ξ2
,

∂3f

∂y3
= −6

ξ4

l3
∂f

∂ξ
− 6

ξ5

l3
∂2f

∂ξ2
− ξ6

l3
∂3f

∂ξ3
.

Therefore, it is only necessary to check that the computed ξ-derivatives

up to the third order of u, v, w remain bounded as ξ → 0.

3.2.2. Parallel mean flow. Assuming a steady and parallel mean

flow, UB becomes

UB = (UB(y), 0, 0)T ,

with vorticity

ΩB = (0, 0,−U ′B(y))
T
,

where ′ indicates the derivative with respect to the wall-normal direction

y. Notice that, for the non-Newtonian case, the mean flow profile is
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found by solving a local ODE. The derivation of the base flow is

explained extensively in Section 1.3. Therefore, UB depends also on

the streamwise position x through the non-Newtonian parameter K. In

order to simplify our analysis, we perform a “local-flow” approximation.

Similarly to what was done for the linear stability analysis in Sec-

tion 1.4, we linearise the equations around a mean flow which is taken

at a fixed dimensional streamwise location x0. The lengths are scaled

using the displacement thickness δ0 at location x0, defined by equa-

tion (1.11), and the velocities are scaled using the free-stream velocity

Ue(x0). Detailed definitions are given in Section 1.4. The Reynolds and

elasticity numbers are thus defined locally and based on the displacement

thickness by equations (1.12) and (1.14), i.e.

Re = Re0 =
ρUe(x0)δ0

µ
, K = K0 =

α1

ρδ2
0

.

By applying the parallel flow approximation, the components of the

convective quantity N, defined by (3.8), simplify to

Nx = U ′Bv +K0N̂x,

Ny = UBωz − U ′Bu+K0N̂y,

Nz = −UBωy +K0N̂z,

where N̂x, N̂y, N̂z are the non-Newtonian terms given by

N̂x =−
(

2
∂3u

∂x3
+

∂3v

∂y∂x2
+

∂3u

∂y2∂x
+

∂3w

∂z∂x2
+

∂3u

∂z2∂x

)
UB

+

(
∂2v

∂y2
− ∂2v

∂x2
+

∂2w

∂z∂y

)
U ′B −

∂u

∂x
U ′′B − vU ′′′B ,

N̂y =−
(

∂3u

∂y∂x2
+
∂3v

∂x3
+ 2

∂3v

∂y2∂x
+

∂3v

∂z2∂x
+

∂3w

∂z∂y∂x

)
UB

−
(
∂2u

∂x2
+ 2

∂2u

∂y2
+
∂2u

∂z2
+

∂2v

∂y∂x

)
U ′B −

(
2
∂u

∂y
+
∂v

∂x

)
U ′′B,

N̂z =−
(
∂3w

∂x3
+

∂3u

∂z∂x2
+

∂3w

∂y2∂x
+

∂3v

∂z∂y∂x
+ 2

∂3w

∂z2∂x

)
UB

−
(
∂2u

∂z∂y
+

∂2v

∂z∂x

)
U ′B −

∂u

∂z
U ′′B.
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Using the continuity equation (∇ ·v = 0), these terms can be simplified

as follows

N̂x =−
(
∂3u

∂x3
+

∂3u

∂y2∂x
+

∂3u

∂z2∂x

)
UB

−
(
∂2u

∂x∂y
+
∂2v

∂x2

)
U ′B −

∂u

∂x
U ′′B − vU ′′′B ,

N̂y =−
(
∂3v

∂x3
+

∂3v

∂y2∂x
+

∂3v

∂z2∂x

)
UB

−
(
∂2u

∂x2
+ 2

∂2u

∂y2
+
∂2u

∂z2
+

∂2v

∂y∂x

)
U ′B −

(
2
∂u

∂y
+
∂v

∂x

)
U ′′B,

N̂z =−
(
∂3w

∂x3
+

∂3w

∂y2∂x
+

∂3w

∂z2∂x

)
UB

−
(
∂2u

∂z∂y
+

∂2v

∂z∂x

)
U ′B −

∂u

∂z
U ′′B.

We rewrite these using the definition of disturbance vorticity ω in order

to isolate derivatives with respect to the wall-normal component y for

computational reasons, which gives

N̂x =−
(
∂3u

∂x3
+

∂3u

∂z2∂x

)
UB −

∂2v

∂x2
U ′B −

∂u

∂x
U ′′B − vU ′′′B

− ∂

∂y

((
∂2v

∂x2
− ∂ωz

∂x

)
UB

)
,

N̂y =−
(
∂3v

∂x3
+

∂3v

∂z2∂x

)
UB −

(
∂2u

∂x2
+
∂2u

∂z2

)
U ′B −

∂v

∂x
U ′′B

− ∂2

∂y2

(
∂v

∂x
UB + 2uU ′B

)
+

∂

∂y

(
∂v

∂x
U ′B + 2uU ′′B

)
,

N̂z =−
(
∂3w

∂x3
+

∂3w

∂z2∂x

)
UB +

(
∂ωx
∂x

+
∂ωz
∂z
− ∂2v

∂z∂x

)
U ′B

− ∂u

∂z
U ′′B −

∂

∂y

((
∂ωx
∂x

+
∂2v

∂x∂z

)
UB

)
.

3.2.3. Normal mode form. We assume a normal mode form for

the disturbances in a similar fashion as in Section 2.3, as follows

u(x, y, z, t) = ũ(y, t)ei(αx+βz), ω(x, y, z, t) = ω̃(y, t)ei(αx+βz),
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where α and β are the streamwise and spanwise wavenumbers. The

equations (3.9), omitting the tilde for a simpler notation, become

∂ωx
∂t

+K0

(
k2 −D2

) ∂ωx
∂t

= − 1

Re0

(
k2 −D2

)
ωx −DNz + iβNy,

(3.13a)

∂ωz
∂t

+K0

(
k2 −D2

) ∂ωz
∂t

= − 1

Re0

(
k2 −D2

)
ωz − iαNy +DNx,

(3.13b)(
k2 −D2

)
v = iβωx − iαωz, (3.13c)

where k2 = α2 + β2 and D = ∂/∂y. The vector N is decomposed into a

Newtonian, N̂0, and non-Newtonian part, N̂, i.e.

N = N̂0 +K0N̂.

The Newtonian term N̂0 has components

N̂0
x = U ′Bv,

N̂0
y = UBωz − U ′Bu,

N̂0
z = −UBωy,

(3.14)

while the non-Newtonian term N̂ has components

N̂x = N̂1
x +DN̂2

x = iαk2uUB + α2vU ′B − iαuU ′′B − vU ′′′B
+D

((
α2v + iαωz

)
UB
)
,

N̂y = N̂1
y +DN̂2

y +D2N̂3
y = iαk2vUB + k2uU ′B − iαvU ′′B

+D (iαvU ′B + 2uU ′′B)

−D2 (iαvUB + 2uU ′B) ,

N̂z = N̂1
z +DN̂2

z = iαk2wUB + (iαωx + iβωz + αβv)U ′B

− iβuU ′′B −D ((iαωx − αβv)UB) .

(3.15)

Notice that we separated terms in order to facilitate the application

of the numerical scheme, which will be explained in detail in the next

section.
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Figure 3.1. Temporal evolution of the impulse for σ = 10.

3.3. Numerical methods

In this section, we give an overview of the numerical techniques em-

ployed to solve the system of time-dependent PDEs (3.13). The flow is

disturbed by a temporally localised forced impulse of the form

η(t) = b(t)ei(αx+βz), (3.16)

where η represents the height of the wall at a given time and b represents

a time-dependent amplitude, given by

b(t) = (1− e−σt2)e−σt
2

,

and σ is the parameter which characterises the timescale of the impulse.

Figure 3.1 shows the temporal evolution of the impulse b(t) for σ = 10.

The wall is only allowed to move in the wall-normal direction.

Therefore, the boundary conditions for the disturbance velocities, after

linearisation about the undisturbed wall at y = 0, become

u(0) = −b(t)U ′B(0), v(0) = b′(t), w(0) = 0. (3.17)

The primary perturbation variables are expanded in terms of odd

Chebyshev polynomials and mapping the physical wall-normal coordi-

nate y ∈ [0,∞) to the computational coordinate ξ ∈ (0, 1] by means
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of the transformation (3.5). An even representation is chosen for the

secondary variables and the base flow profile UB. The equations are

then integrated twice with respect to ξ. We apply a predictor-corrector

method for the convective quantity N and for some other terms. The

system is then solved by marching in time with a second order two-step

scheme.

As a first step, to facilitate the application of the numerical scheme,

we can rewrite the system (3.13) as follows

∂ωx
∂t

+K0

(
k2 −D2

) ∂ωx
∂t

=
1

Re0

∂2ωx
∂y2

+ Ax +DBx +D2Cx,

∂ωz
∂t

+K0

(
k2 −D2

) ∂ωz
∂t

=
1

Re0

∂2ωz
∂y2

+ Az +DBz +D2Cz,(
k2 −D2

)
v = iβωx − iαωz,

(3.18)

where

Ax = − k2

Re0

ωx + iβ
(
N̂0
y +K0N̂

1
y

)
,

Bx = −N̂0
z −K0N̂

1
z + iβK0N̂

2
y ,

Cx = −K0N̂
2
z + iβK0N̂

3
y ,

Az = − k2

Re0

ωz − iα
(
N̂0
y +K0N̂

1
y

)
,

Bz = N̂0
x +K0N̂

1
x − iαK0N̂

2
y ,

Cz = K0N̂
2
x − iαK0N̂

3
y ,

where terms of the form N̂k
m are defined by equations (3.14) and (3.15).

Dividing the system (3.18) by ξ2, integrating twice with respect to ξ

between 0 and 1 and applying integration by parts, we obtain

∂I2ω̃x
∂t

+K0

(
k2∂I2ω̃x

∂t
− 1

l2
∂J2ω̃x
∂t

)
=

1

l2Re0

J2ω̃x (3.19a)

+ I2Ãx −
1

l
I1Bx +

1

l2
J2C̃x,

∂I2ω̃z
∂t

+K0

(
k2∂I2ω̃z

∂t
− 1

l2
∂J2ω̃z
∂t

)
=

1

l2Re0

J2ω̃z (3.19b)

+ I2Ãz −
1

l
I1Bz +

1

l2
J2C̃z,(

−k2I2 +
1

l2
J2

)
ṽ = iαI2ω̃z − iβI2ω̃x, (3.19c)
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where the tilde indicates quantities divided by ξ2. The operators

I1, I2, J2 are integral operators, defined as follows

I1f =

∫
f dξ,

I2f =

∫∫
f dξ,

J2f = ξ4f − 2

∫ (
ξ3f
)
dξ.

3.3.1. Temporal discretisation. The two ODEs (3.19a) (3.19b)

for the vorticity components ω̃x, ω̃z can be written on the form

y′(t) = f(t, y), y(t = 0) = y0.

For the purpose of this work, we consider y0 = 0. A disturbance in the

flow is induced by imposing a temporally localised forced impulse, as

described at the beginning of this section.

In order to solve this system starting from an initial condition y0,

we employ an Adams predictor-corrector scheme which is of second

order in time and consists of two steps:

(1) Predictor step: we apply the two-step Adams-Bashforth me-

thod, as follows

yPn+1 = yn +
∆t

2
[3f (tn, yn)− f (tn−1, yn−1)] ,

where yn approximates the solution y at the time tn = n∆t, ∆t

is the time discretisation parameter and yPn+1 is the predicted

solution.

(2) Corrector step: we apply the two-step Adams-Moulton method,

as follows

yn+1 = yn +
∆t

2

[
f
(
tn+1, y

P
n+1

)
+ f (tn, yn)

]
.

Notice that the Poisson equation (3.19c) can be solved directly at each

time-step, given ω̃x, ω̃z, to obtain the wall-normal velocity ṽ. More

details regarding the implementation of the numerical scheme can be

found in Section 5.6.
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3.4. Results

We validate the results of the simulations by comparing them against

the solutions obtained by solving the eigenvalue problem. We compare

the temporal growth rate, ωi, obtained from the eigenvalue analysis, as

described in Section 1.7, with the final growth rate calculated through

the simulations, when it settles to a constant value.

The temporal growth rate can be determined from the simulations

using the following formula

ωS =
i

A

∂A

∂t
,

where A is the amplitude of a computed variable. The variable chosen

for the simulations is the spanwise vorticity at the wall, ωz(0).

We chose to run the simulations for t ∈ [0, T ], where T is sufficiently

large for all the transient behaviour to pass and the growth rates to settle

to a constant value. Then, the temporal growth rate ωi is compared

with the imaginary part of

ωS(T ) ≈ lim
t→∞

ωS.

For the purpose of the simulations in this chapter we use a time dis-

cretisation parameter ∆t ≈ 0.01.

Figure 3.2(a) shows the temporal evolution of the temporal growth

rate calculated with the simulations ωS,i for the flat plate case, where

βH = 0. We can see that, for sufficiently large values of t/T , the growth

rate ωS,i settles to a constant value which coincides with the solution to

the eigenvalue problem, ωi. The error between the two computed growth

rates at t/T = 1 is O(10−5). In Figure 3.2(b), we plotted the temporal

evolution of the wall-normal vorticity at the wall, i.e. ωz(0). Since

the choice of parameters (Re0 = 500, α = 0.3, β = 0.2, K = −10−5)

gives an exponentially stable mode, after an initial oscillation caused

by the wall-normal impulse, ωz(0) tends to zero as time increases.

Figure 3.2(c) shows the temporal evolution of the wall vorticity, ωz(0),

in a logarithmic scale compared with the temporal evolution as predicted

by the eigenvalue problem.
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Figure 3.2. Numerical simulation for the flat plate case
with βH = 0,Re0 = 500, α = 0.3, β = 0.2, K = −10−5

and T = 1000. (a) Comparison between the simulated
temporal growth rates (–) and solution to the eigenvalue
problem (- -); (b) Evolution of ωz(0), the wavepacket
envelope±|ωz(0)| is also shown (- -); (c) Evolution of ωz(0)
in a logarithmic scale and its approximated evolution
given by the eigenvalue problem (- -).
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Figure 3.3. Numerical simulation for the flat plate case
with βH = 0,Re0 = 1000, α = 0.05, β = 0.5, K = 0.01
and T = 2000. (a) Comparison between the simulated
temporal growth rates (–) and solution to the eigenvalue
problem (- -); (b) Evolution of ωz(0), the wavepacket
envelope±|ωz(0)| is also shown (- -); (c) Evolution of ωz(0)
in a logarithmic scale and its approximated evolution
given by the eigenvalue problem (- -).
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Figure 3.4. Numerical simulation for the flow past a
wedge with βH = 0.5,Re0 = 1000, α = 0.05, β = 0.5, K =
0.01 and T = 1000. (a) Comparison between the simu-
lated temporal growth rates (–) and solution to the eigen-
value problem (- -); (b) Evolution of ωz(0), the wavepacket
envelope ±|ωz(0)| is also shown (- -); (c) Evolution of
ωz(0) in a logarithmic scale and its approximated evolu-
tion given by the eigenvalue problem (- -).
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Figure 3.5. Numerical simulation for the flat plate case
with βH = 1,Re0 = 1000, α = 0.05, β = 0.5, K = 0.0001
and T = 1000. (a) Comparison between the simulated
temporal growth rates (–) and solution to the eigenvalue
problem (- -); (b) Evolution of ωz(0), the wavepacket
envelope±|ωz(0)| is also shown (- -); (c) Evolution of ωz(0)
in a logarithmic scale and its approximated evolution
given by the eigenvalue problem (- -).
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In Figure 3.3 we show the results for the case of the flat plate

(βH = 0). The wavenumber vector (α, β) = (0.05, 0.5) represents

disturbances mostly directed in the spanwise direction z. We observed

in Section 1.7 that these waves can become exponentially unstable for

certain positive values of the parameter K. In order to confirm this

result, we run the simulation for Re0 = 1000 and K = 0.01. As expected,

the vorticity at the wall ωz(0), does not decay asymptotically, as shown

in Figure 3.3(b). Therefore, the simulations confirm the presence of an

exponentially unstable mode for small streamwise wavenumbers α and

positive K. Figure 3.3(a) shows that, when the growth rate given by

the simulation, ωS,i, settles to a constant, it converges to the one given

by the eigenvalue problem, ωi. The error between the two computed

growth rates at t = T is O(10−4).

In Figures 3.4 and 3.5, we show the results for the flow past a wedge,

where βH = 0.5, and for the stagnation point flow, where βH = 1. In

general, we see how the results of the simulations confirm the solutions

to the eigenvalue problem. In both cases, the error between the growth

rate given by the simulation, ωS,i, and the one given by the eigenvalue

problem, ωi, is O(10−5) for large t.

We performed several tests of this type, varying the angle parameter

βH and the non-Newtonian parameter K. We observe that the simulated

temporal growth rate agrees very well with the one calculated by solving

the eigenvalue problem as described in Section 1.7. However, we notice

an increased numerical sensitivity of the numerical scheme when the

parameter K is negative. More specifically, it was not possible to report

any result for values of K smaller than −10−5. The reason is that the

numerical scheme diverges when K is negative and larger than O(10−5)

in modulus. One possible explanation is the presence of a diffusive

term in the non-Newtonian part N̂, given by equation (3.15), which

would need to be treated implicitly. This is not straightforward to

implement since N̂ involves the mean flow profile. An attempt, without

success, to solve this problem was to repeat the corrector step a few

times to achieve convergence. However, for all the positive values of the

non-Newtonian parameter K we observed a good agreement, for large t,
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between the growth rates calculated with the DNS and the ones given

by the solution to the eigenvalue problem.



CHAPTER 4

Other viscoelastic models

In this chapter, we consider the flow of more complex viscoelastic

fluids. As mentioned in Chapter 1, the second order model is suitable to

study the effects of non-zero normal stress differences. This model pre-

dicts a constant shear viscosity and it is not used in practice. However,

the second order model has been chosen as a “toy problem” for its sim-

plicity and the possibility of applying a boundary layer approximation

similarly to Newtonian fluids.

Viscoelastic fluids can be said to lie in between viscous fluids and

elastic solids (Phan-Thien [59]). Viscous fluids resist forces exerted

upon them through internal friction and they instantaneously forget the

shape they are in. For these fluids, the stress is directly proportional

to the rate of strain (Newtonian law). Elastic solids always remember

the shape they start from and, when the stress is removed, they relax

back to their original shape. The stress experienced by the solid is

directly proportional to the strain. Instead, viscoelastic fluids remember

the shape until its molecules have the time to relax. The stress is

neither directly proportional to the strain nor the rate of strain, but

the relationship is more complicated.

In particular, polymeric fluids are characterised by the presence

of long chain molecules which are made from joining together small

molecules (Barnes et al. [4]). The polymers affect the flow by the way

they align to the motion of the fluid, they are stretched and they retract

back to their unstressed configuration. Polymeric fluids can be said to

have a memory of their previous flow history.

We can distinguish two approaches that are widely used in order to

model the behaviour of materials: one is based on continuum mechanics

and one on microstructural theories (Tanner [82], Sibley [78]). The

123
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derivation of models such as the Upper-Convected Maxwell (UCM) and

the Oldroyd B models is based on continuum mechanics. These are

examples of models of differential type that are suitable to describe only

dilute solutions of polymer molecules. The UCM and Oldroyd-B models

are the simplest nonlinear viscoelastic models and cannot represent any

shear-thinning behaviour. Moreover, they predict zero second normal

stress difference and the extensional viscosity is not bounded.

Models such as the Phan-Thien Tanner and Giesekus models can

be considered to be extensions of the Oldroyd B constitutive equation

for the polymeric stress that include additional terms so as to provide

a model with shear-thinning behaviour, bounded extensional viscosity

and a non-zero second normal stress difference.

There are broadly three approaches to deriving constitutive equa-

tions from miscrostructural theories (Barnes et al. [4]):

• Dilute solution theories: each particle interacts only with the

solvent and not with other suspended particles. The polymer

molecules are treated individually and modelled as a chain of

beads and springs or beads and rods. Both the UCM and the

Oldroyd B models can be derived in that way.

• Network theories: for concentrated solutions and melts there

are particle-particle interactions. A polymer is considered as

a network of springs linked at junction points. The Phan-

Thien Tanner model was originally derived using these network

theories.

• Reptation theories: the motion of each molecule is reduced by

the surrounding polymers, which are assumed to form a tube

around the polymer.

There is a vast and increasing number of constitutive models avail-

able. The models we focus on in this chapter were chosen because they

can represent some non-Newtonian features while remaining relatively

simple. We take into consideration four different viscoelastic models

(UCM, Oldroyd B, Phan-Thien Tanner and Giesekus models) and use

a single constitutive equation to represent them all.
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The purpose is to study the stability characteristics. We start by

considering the asymptotic suction boundary layer (ASBL) theory to

determine the mean flow. We show that, similarly to the Newtonian

case, for the UCM and the Oldroyd B models, it is possible to obtain

an analytical solution which results in an exponential profile. For the

Phan-Thien Tanner and the Giesekus models, the equations simplify

considerably and can be solved numerically.

Section 4.1 provides an overview of the main literature regarding

viscoelastic fluids in boundary layers and their stability properties.

In Section 4.2, we introduce the viscoelastic models and derive the

governing equations. In Section 4.3, the mean flow is derived by applying

an asymptotic suction boundary layer. In Section 4.4, we perform the

first steps to study the linear stability.

4.1. Literature review

In this section, we summarise some of the results obtained regarding

boundary layers of viscoelastic fluids and stability results without any

claim to completeness.

4.1.1. Boundary layers. Beard and Walters [6] considered flow of

liquid B’ (designed by Walters) near a stagnation point, using boundary

layer approximations. The Oldroyd B model is a special case of liquid

B’. For mathematical convenience, Beard and Walters restricted the

analysis to liquids with short memories (i.e. short relaxation times).

This approximation is reasonable because boundary layers are thought

to develop in viscoelastic fluids that are not highly elastic. If the flow is

regarded as a perturbation of the Newtonian viscous flow, the concept

of a boundary layer can be expected to apply. A self-similar solution is

only possible for the stagnation point flow.

Bhatnagar et al. [7] considered the flow of an Oldroyd B fluid

due to a stretching sheet in the presence of a constant free-stream

velocity. The governing equations are reduced by introducing a similarity

transformation for the velocity field and for the components of the

stress tensor. The problem is solved by applying a regular perturbation
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analysis in terms of the Weissenberg number. This solution is in

agreement with the numerical solution found by adding a physically

acceptable boundary condition.

Sajid et al. [72] derived boundary layer equations for an Oldroyd B

fluid in the region of a stagnation point over a stretching sheet. They

followed the approach described by Harris [38] for an upper-convected

Maxwell fluid and obtained a similarity solution. The equations derived

by Sajid et al. [72] differ from the ones derived by Beard and Walters [6].

The approach described by Harris [38] consists of applying the Oldroyd

derivative operator to the momentum equations and inter-exchanging

the operators of divergence and Oldroyd derivative for the extra-stress

tensor. In principle, this is not consistent.

Later, several authors utilised the same approach as Sajid et al. [72].

Hayat et al. [39] studied the stagnation flow subject to convective

boundary conditions of an Oldroyd B fluid. The boundary layer equa-

tions used are the same as Sajid et al. [72]. Abbasbandy et al. [1]

investigated the Falkner-Skan flow of MHD Oldroyd B fluid using the

same boundary layer equations as in Sajid et al. [72].

4.1.2. Flow in the far field. All the papers related to the mean

flow determination summarised in the previous section assume a poten-

tial flow at infinity. In general this is not obvious because irrotational

flow is not, in general, compatible with the non-Newtonian equations.

As remarked in Section 1.3, Joseph and Liao [47] provided a condition

for the extra-stress tensor for an irrotational flow to satisfy the equa-

tions. Not many constitutive equations are compatible with irrotational

solutions. This condition is satisfied by inviscid and viscous Newtonian

fluids, linear viscoelastic fluids and for second order fluids.

Therefore, by assuming an irrotational flow at infinity there is an

implicit assumption that elastic effects affect only the boundary layer

region.

4.1.3. Stability of viscoelastic fluids. Porteous and Denn [61]

studied the linear stability analysis of plane Poiseuille flow for the
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second order and Maxwell fluids. They showed that the second order

model, for which α1 < 0 (see Section 1.1), is a consistent approximation

to the Maxwell model in the limit of small elasticity (i.e. elasticity

number K � 1 and Weissenberg number Wi = KRe � 1) and when

the disturbance time scale is large compared to the characteristic time

scale of the fluid. The results shows a destabilisation process due to

elasticity. At high values of K the stability is qualitatively different

than that for Newtonian fluids because it results from the second mode

of the Orr-Sommerfeld equation.

Ho and Denn [41] also examined the stability of Poiseuille flow of a

Maxwell fluid focusing on providing an explanation for a phenomenon

called “melt fracture”, a low Reynolds number extrusion instability.

They showed that at low Reynolds numbers the flow is stable and at

higher Reynolds numbers elasticity has a destabilising effect. They

commented on experimental results on melt fracture in high density

polyethylene. The growth of infinitesimal disturbances cannot be the

mechanism for melt fracture.

Sureshkumar and Beris [80] used an Arnoldi-based orthogonaliza-

tion algorithm to investigate the linear stability of Poiseuille flow. The

models investigated are UCM, Oldroyd B and Chilcott-Rallison flu-

ids. The results show that the destabilisation caused by elasticity for

the UCM fluid is reduced when effects of solvent viscosity and finite

extensibility are taken into account.

Palmer and Phillips [57] studied the spectra of linear Phan-Thien

Tanner liquids for plane Poiseuille flow. The base flow was solved nu-

merically using a Chebyshev-tau method. The linear stability equations

are also discretised using Chebyshev approximations. The spectrum

includes a continuous and a discrete part. The results are validated for

the UCM and Oldroyd B models, which are special cases of the PPT

model, by comparing with results in the literature. The linear PPT

fluid is stable for the range of parameters considered.
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4.2. Governing equations

In this section we present four different constitutive equations for vis-

coelastic fluids. These are all derived using a microstructural approach,

which takes into account the polymer molecule behaviour. We derive

a single constitutive equation to represent the four models considered

and facilitate the application of the asymptotic suction boundary layer.

4.2.1. Upper-Convected Maxwell model. The Upper-Convect-

ed Maxwell (UCM) model can be derived by representing a viscoelastic

fluid by dumbbells immersed in a Newtonian solvent. This can be

represented using a mechanical model consisting of a spring and a

dashpot in series (Palmer [56], Owen and Phillips [54]). An element

composed of a spring and a dashpot in series is known as Maxwell

element. The spring obeys Hooke’s law for perfectly elastic solids and

the dashpot follows the Newtonian law for purely viscous fluids. The

UCM model is one of the most important viscoelastic models, because

more complicated models are based on modifications of this one.

For this model, the stress tensor follows the constitutive equation

given by

T + λ1

O
T = η0γ̇,

where λ1 is the relaxation time and η0 is the viscosity of the viscous

element constituting the dumbbell. The tensor γ̇ = ∇v +∇vT is the

rate of strain and
O
T represents the upper-convected derivative, which

is defined as follows
O
T =

DT

Dt
− (∇v)TT−T(∇v),

or, component-wise, as follows

O
T ij =

∂Tij
∂t

+ vk
∂Tij
∂xk
− ∂vi
∂xk

Tkj − Tik
∂vj
∂xk

.

In the UCM model, the relaxation time, λ1, is given by the ratio

of the viscosity, η0, to the spring constant, k, which is defined as the

ratio of force acting on the spring to the displacement of the spring.

The relaxation time is the time taken for the molecules to relax after
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experiencing an instantaneous stretch due to a step strain being applied

on the fluid. Notice that, when λ1 = 0, we retrieve the Newtonian

constitutive equation.

A constitutive equation must be independent of changes of reference

frame, such as its translation, rotation or acceleration. This property is

called material frame-indifference. The upper-convected derivative, also

known as co-deformational derivative, is the rate of change as observed

while deforming and translating with the fluid. This is only one of

the possible adjustments to obtain frame-indifference which give rise

to various Maxwell models. However, the UCM is preferred to the

other Maxwell models since it gives the closest match to experimental

data for N2/N1, the ratio of the second normal stress differences to

the first normal stress differences. The definitions of first and second

normal stress differences can be found in Section 1.2.1. Experimental

data broadly suggests N2/N1 to be small in magnitude and negative for

polymer melts and solutions (Tanner [82]). The UCM model predicts

positive first normal stress difference and zero second normal difference.

This constitutive equation is very popular thanks to its simplicity,

but it is not very realistic for the description of many polymers. The

UCM model predicts a viscosity which is constant in steady simple

shear flow (Figure 1.2) and equal to η0. In steady extensional flow, the

extensional viscosity is not bounded. For the definition of steady simple

shear and extensional flow, we refer to Section 1.2.1.

The UCM model may also be derived from dilute solution theory.

This is achieved by modelling the polymer molecules individually as

a linear elastic dumbbell, which consists of two beads connected by a

spring.

4.2.2. Oldroyd B model. The UCM model only considers the

polymer contribution to the stress. The Oldroyd B model comes from

the linear superposition of the UCM model stress with the Newtonian

contribution of the solvent. The constitutive equation includes an extra

term for the Newtonian part of the fluid and an extra constant, referred
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to as the retardation time. Thus, the Oldroyd B model can be seen as

an extension of the UCM model (Owen and Phillips [54]).

The Oldroyd B model was derived by Oldroyd [52] in 1950. It can

be obtained from a molecular model which consists of a suspension of

Hookean dumbbells immersed in a Newtonian solvent, the dumbbells

simulating the dynamics of polymer chains.

The equation for the stress tensor is as follows

T + λ1

O
T = η0

(
γ̇ + λ2

O
γ̇

)
,

where η0 = ηs + ηp is the total viscosity, which is the sum of the

polymeric viscosity, ηp, and the solvent viscosity, ηs. The constant λ2

is the retardation time of the solvent part of the liquid. Roughly, the

retardation time is the delay in the strain response after imposition of

a stress. The following relation between viscosities and characteristic

times holds
λ2

λ1

=
ηs

ηs + ηp
.

By separating the solvent and the polymeric contributions to the stress,

as follows

T = ηsγ̇ + τ ,

we can write an equation for the elastic stress, τ , that is

τ + λ1
O
τ = ηpγ̇.

The Oldroyd B model reduces to the UCM model when ηs = 0.

In steady simple shear flow the model predicts a quadratic first

normal stress difference, a zero second normal stress difference and a

constant viscosity. The Oldroyd B model has been found to qualitatively

describe many of the features of Boger fluids, which are dilute solutions

of polymers in highly viscous solvents (James [44]). Boger fluids are

so dilute that the variation of viscosity with shear rate can be ignored.

Moreover, they present a quadratic first normal stress difference like

the second order fluids, as seen in Section 1.2.1. However, Boger fluids

are not very common and the use of the Oldroyd B model in industry

is limited.
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Another major limitation is that the infinite extensibility of the

Hookean spring leads to an extensional viscosity which blows up at a

finite extensional rate. Various models have been proposed to overcome

this flaw by constraining the length of the dumbbell to a maximum

allowable length. One example is the Giesekus model which will be

described later in this section.

4.2.3. Phan-Thien Tanner model. The Phan-Thien Tanner (P-

TT) model was proposed by Phan-Thien and Tanner [83] in 1977.

Unlike UCM and Oldroyd B models, it is derived from a non-dilute

situation, assuming the polymer chains form a network. The PPT

model is based on the Lodge-Yamamoto network theory, which states

that the polymer liquid forms a network of molecules with temporary

junctions. The junctions are supposed to appear and disappear so that

the network configuration keeps changing. The strands connecting the

junctions are able to transmit force. More details about the derivation

of this model can be found, for example, in Tanner [82].

The stress tensor is given by the sum of the solvent and the polymeric

contributions to the stress, i.e.

T = ηsγ̇ + τ ,

where τ is the elastic stress which satisfies the following relation

τ + λ1
O
τ + ξ

λ1

2

(
γ̇τ + τ γ̇

)
+ f(τ )τ = ηpγ̇.

The PTT model is called exponential when

f(τ ) = exp

(
ε
λ1

ηp
tr(τ )

)
− 1,

and it is called linear when

f(τ ) = ε
λ1

ηp
tr(τ ).

The linear PTT model could be considered to be a linearisation of its

exponential equivalent.

The parameters in this model are the relaxation time λ1, the solvent

and the polymer viscosities, ηs and ηp, respectively. The parameters

ξ ∈ [0, 2] and ε ∈ [0, 1] are known as the extensional and shear-thinning
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parameters, respectively. They are specific to the PTT model and

determined experimentally by fitting the model to data for elongational

and shearing flows. Typical values for ξ are O(10−2) and for ε are

O(10−1) (Tanner [82]).

Notice that by choosing ξ = ε = 0, we recover the Oldroyd B model

and, when ξ = ε = ηp = 0, we recover the UCM model. PTT can be

seen as an improvement on the Oldroyd B model, since it incorporates

shear-thinning behaviour and it gives a bounded extensional viscosity.

However, it does not give a non-zero second normal stress difference.

4.2.4. Giesekus model. The Giesekus model was derived in 1982

by Giesekus [33], who introduced the idea of a non-isotropic drag on

the beads. The derivation is based on kinetic theory of dilute solutions.

The elastic part of the stress tensor is modelled by

τ + λ1
O
τ + α

λ1

ηp
τ 2 = ηpγ̇.

In this model α is the so-called mobility parameter with α ∈ [0, 1]. When

α = 0, we recover the UCM model. With this model, the second normal

stress difference is non-zero (negative) in shearing and the elongational

viscosity is bounded.

4.2.5. A single constitutive equation. We write a single con-

stitutive equation to represent all the viscoelastic models introduced

in the previous sections in order to facilitate the study. The governing

equations are ∇ · v = 0,

ρ
Dv

Dt
= −∇p+∇ · τ + ηs∆v,

(4.1)

where the elastic stress tensor τ satisfies the constitutive equation

τ + λ1
O
τ + g(τ , γ̇) = ηpγ̇. (4.2)
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The function g is defined as follows

g(τ , γ̇) = ξ
λ1

2

(
γ̇τ + τ γ̇

)
+ δLε

λ1

ηp
tr(τ )τ (4.3)

+ δE

[
exp

(
ε
λ1

ηp
tr(τ )

)
− 1

]
τ + α

λ1

ηp
τ 2,

where the additional parameters δL, δE are included to select the linear

and the exponential PTT models, respectively. The various models can

be retrieved by appropriate choices of the parameters:

• Newtonian for ηs = λ1 = ξ = ε = α = 0;

• Upper-Convected Maxwell model for ηs = ξ = ε = α = 0;

• Oldroyd B model for ξ = ε = α = 0;

• Linear PTT model for δL = 1, δE = 0, α = 0;

• Exponential PTT model for δL = 0, δE = 1, α = 0;

• Giesekus model for ξ = ε = 0.

4.3. Mean flow

In this section, we describe how we approximate the mean flow, which

is the starting point to perform a linear stability analysis.

4.3.1. Two-dimensional governing equations. The mean flow

is assumed to be two-dimensional, therefore we can write the governing

equations (4.1) as follows

∂u

∂x
+
∂v

∂y
= 0,

ρ
Du

Dt
= −∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂y

+ ηs∆u,

ρ
Dv

Dt
= −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+ ηs∆v,

(4.4)

where v = (u, v)T , x is the streamwise direction and y is the wall-normal

direction (see Figure 1.1). The equation for the elastic part of the stress

tensor (4.2), written component by component, gives

τxx + λ1

[
∂τxx
∂t

+ u
∂τxx
∂x

+ v
∂τxx
∂y
− 2

(
∂u

∂x
τxx +

∂u

∂y
τxy

)]
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+ ξλ1

[
2
∂u

∂x
τxx +

(
∂u

∂y
+
∂v

∂x

)
τxy

]
+ δLε

λ1

ηp
(τxx + τyy)τxx

+ δE

[
exp

(
ε
λ1

ηp
(τxx + τyy)

)
− 1

]
τxx + α

λ1

ηp
(τ 2
xx + τ 2

xy) = 2ηp
∂u

∂x
,

τxy + λ1

[
∂τxy
∂t

+ u
∂τxy
∂x

+ v
∂τxy
∂y
−
(
∂u

∂y
τyy +

∂v

∂x
τxx

)]
+ ξ

λ1

2

(
∂u

∂y
+
∂v

∂x

)
(τxx + τyy) + δE

[
exp

(
ε
λ1

ηp
(τxx + τyy)

)
− 1

]
τxy

+ δLε
λ1

ηp
(τxx + τyy)τxy + α

λ1

ηp
(τxxτxy + τxyτyy) = ηp

(
∂u

∂y
+
∂v

∂x

)
,

τyy + λ1

[
∂τyy
∂t

+ u
∂τyy
∂x

+ v
∂τyy
∂y
− 2

(
∂v

∂x
τxy +

∂v

∂y
τyy

)]
+ ξλ1

[
2
∂v

∂y
τyy +

(
∂u

∂y
+
∂v

∂x

)
τxy

]
+ δLε

λ1

ηp
(τxx + τyy)τyy

+ δE

[
exp

(
ε
λ1

ηp
(τxx + τyy)

)
− 1

]
τyy + α

λ1

ηp
(τ 2
xy + τ 2

yy) = 2ηp
∂v

∂y
.

These equations were derived with MAPLE [50].

4.3.2. Difficulties in applying a boundary layer approxima-

tion. Unlike Newtonian and second order fluids (Rajagopal [66]), an

irrotational flow does not satisfy the governing equations. This was

the first step in order to apply a boundary layer approximation to the

wedge flow configuration (Figure 1.1), as done in Section 1.3 for second

order fluids. The outer layer was assumed to be irrotational and the

velocity varied as a power law with the distance from the leading edge.

In Section 1.3.1, we pointed out a condition given by Joseph and

Liao [47] for a constitutive equation to be compatible with irrotational

solutions. This condition is satisfied by inviscid and viscous Newtonian

fluids, linear viscoelastic fluids and for second order fluids. However, it

is not straightforward to prove for the more complicated viscoelastic

models that we study in this chapter.

Flows of the type v = (axm, 0) do not satisfy the irrotational

governing equations. Alternatively, a linear stability analysis which
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assumes a Newtonian base flow as a starting point for a linear stability

analysis gives a zero mean polymeric stress. In this way, the only

contribution of the function g(τ , σ), which is defined by equation (4.3),

to the linear stability equations is given by the term multiplied by ξ,

because all the other terms are non-linear in τ .

For this chapter, we decided to focus our attention on the flat

plate case. The mean flow is determined by applying an asymptotic

suction boundary layer theory. For this purpose, we assume a constant

free-stream velocity.

4.3.3. Asymptotic suction boundary layers. Applying a uni-

form suction is one of the techniques used in laminar flow control, which

is a method to delay the laminar-turbulent transition. An asymptotic

suction boundary layer (ASBL) profile develops in porous boundary

layers, at some distance downstream of the leading edge, when uniform

suction is applied over a large area through the surface (Schlichting [73],

Fransson [30]). ASBL is one of the analytical solutions of the incom-

pressible Navier-Stokes equations. An interesting feature of this theory

is that an analytical solution can be easily obtained resulting in an

exponential profile. The suction has a similar effect as a favourable

pressure gradient in that it makes the Blasius profile more stable.

Another advantage of the ASBL is that it lacks the complications

associated with spatially growing boundary layer flows. The bound-

ary layer growth is counteracted by the constant homogeneous suction

and the displacement thickness is a constant. The transition to turbu-

lence for this flow has been widely studied for Newtonian fluids, both

experimentally and numerically (Fransson [30], Khapko [48]).

The assumptions that are made in order to obtain an asymptotic

suction profile are:

• steadiness, ∂
∂t

= 0;

• all variables depend only on y;

• constant suction at the wall v(0) = −V0, where V0 > 0 is the

suction rate.
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Notice that, in order to apply ASBL to the viscoelastic models consid-

ered, we also have to assume that the elastic stress tensor τ depends

only on y.

To obtain the stability characteristics, we need to derive a modified

Orr-Sommerfeld equation to take into account the effects of the cross-

flow velocity. When deriving the Orr-Sommerfeld and Squire’s equations

the assumption of parallel flow is made. This assumption may be argued

to hold for a continuous suction case where the mean wall-normal

velocity component is constant. In order to neglect the v-component

the suction rate has to be small. However, the cross-flow term can easily

be considered and the parallel flow assumption is not needed.

4.3.4. Derivation of the mean flow. With the ASBL assump-

tions already outlined and assuming that the polymeric stress depends

on the wall-normal direction y only, i.e. τ = τ (y), the continuity and

motion equations (4.4) simplify to

dv

dy
= 0,

ρv
du

dy
=
dτxy
dy

+ ηs
d2u

dy2
,

ρv
dv

dy
= −dp

dy
+
dτyy
dy

+ ηs
d2v

dy2
.

(4.5)

These are subject to the following boundary conditions

u(0) = 0, u(∞) = Ue,

v(0) = 0, v(∞) = −V0,

where Ue, V0 are positive constants. The continuity equation implies

that v must be a constant. By applying constant suction boundary

conditions at the wall, i.e. v(y = 0) = −V0, we obtain

v(y) = −V0,

where V0 is the suction rate. Thus, the equations of motion become

−ρV0
du

dy
=
dτxy
dy

+ ηs
d2u

dy2
,

0 = −dp
dy

+
dτyy
dy

.
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With the same assumptions, the equations for the polymeric stress

become

τxx−λ1

(
V0
dτxx
dy

+ 2
du

dy
τxy

)
+ ξλ1

du

dy
τxy + δLε

λ1

ηp
(τxx + τyy)τxx

+ δE

[
exp

(
ε
λ1

ηp
(τxx + τyy)

)
− 1

]
τxx + α

λ1

ηp

(
τ 2
xx + τ 2

xy

)
= 0,

τxy−λ1

(
V0
dτxy
dy

+
du

dy
τyy

)
+ ξ

λ1

2

du

dy
(τxx + τyy)

+ δLε
λ1

ηp
(τxx + τyy) τxy + δE

[
exp

(
ε
λ1

ηp
(τxx + τyy)

)
− 1

]
τxy

+ α
λ1

ηp
(τxxτxy + τxyτyy) = ηp

du

dy
,

τyy−λ1V0
dτyy
dy

+ ξλ1
du

dy
τxy + δLε

λ1

ηp
(τxx + τyy) τyy

+ δE

[
exp

(
ε
λ1

ηp
(τxx + τyy)

)
− 1

]
τyy + α

λ1

ηp

(
τ 2
xy + τ 2

yy

)
= 0.

4.3.5. Newtonian results. For Newtonian fluids, λ1 = ηp = ξ =

α = ε = 0. The ASBL equations (4.5) become

−ρV0
du

dy
= η0

d2u

dy2
,

0 = −dp
dy
.

We apply the following boundary conditions

u(0) = 0, u(∞) = Ue,

where Ue is the constant velocity in the free stream. As reported for

example by Fransson [30], the solution is of the following exponential

form

u = Ue

[
1− exp

(
−ρV0y

η0

)]
.

The displacement and momentum thickness, defined in Section 1.3 by

equations (1.16) and (1.18), are easily calculated, and are given by

δ∗ =
η0

ρV0

, θ∗ =
1

2

η0

ρV0

. (4.6)

The Newtonian displacement thickness will be used as characteristic

length for the stability analysis. Thus, the Reynolds number based on
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δ∗ becomes the ratio between the free-stream and suction velocities, i.e.

Re =
ρUeδ∗
η0

=
Ue
V0

.

4.3.6. UCM. For the Upper Convected Maxwell model, ηs = ξ =

ε = α = 0. In this case, the ASBL governing equations (4.5) become

ρV0
du

dy
+
dτxy
dy

= 0, (4.7a)

−∂p
∂y

+
dτyy
dy

= 0, (4.7b)

τxx − λ1V0
dτxx
dy
− 2λ1

du

dy
τxy = 0, (4.7c)

τxy − λ1V0
dτxy
dy
− λ1

du

dy
τyy − η0

du

dy
= 0, (4.7d)

τyy − λ1V0
∂τyy
∂y

= 0. (4.7e)

The last equation (4.7e) only involves τyy and can be easily solved,

giving

τyy = D exp

(
y

λ1V0

)
,

for some constant D. In this case D must be zero, since τyy cannot be

infinitely large as y →∞ . Hence, equations (4.7a) and (4.7d) become

a system of coupled equations, that is

ρV0
du

dy
+
dτxy
dy

= 0,

τxy − λ1V0
dτxy
dy
− η0

du

dy
= 0.

These can be solved analytically by imposing u(0) = 0 and u(∞) = Ue.

The analytical solution is

u = Ue

[
1− exp

(
ρV0y

ρV0
2λ1 − η0

)]
,

τxy = ρUeV0 exp

(
V0ρy

ρV0
2λ1 − η0

)
.

These solutions can also be written as follows

u = Ue

[
1− exp

(
y

δ∗ (K − 1)

)]
,
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τxy = ρUeV0 exp

(
y

δ∗ (K − 1)

)
,

where K = Wi
Re

and Wi is the Weissenberg number based on the dis-

placement thickness δ∗ = η0

ρV0
, which is given by

Wi =
λ1Ue
δ∗

=
ρλ1UeV0

η0

.

These solutions do not diverge as y → ∞, since we consider K < 1.

The component τxx of the elastic stress can be calculated by solving

equation (4.7c), in which we substitute the solutions for u, τxy, which

gives

τxx = 2
λ1ρ

2V 2
0 Ue

2

ρV0
2λ1 + ηp

exp

(
2ρV0y

ρV0
2λ1 − ηp

)
+ C exp

(
y

λ1V0

)
.

The constant C must be zero to have a solution bounded at infinity. It

can also be written as

τxx = 2ρUeV0
Wi

K + 1
exp

(
2y

δ∗ (K − 1)

)
.

Notice that the displacement thickness for the UCM model is easily

calculated and can be written in terms of the Newtonian displacement

thickness, δ∗, as follows

δUCM
∗ = (1−K)δ∗.

4.3.7. Oldroyd B. For Oldroyd B fluids, ξ = ε = α = 0. Hence,

the ASBL equations (4.5) become

ρV0
du

dy
+
dτxy
dy

+ ηs
d2u

dy2
= 0,

−∂p
∂y

+
dτyy
dy

= 0,

τxx − λ1V0
dτxx
dy
− 2λ1

du

dy
τxy = 0,

τxy − λ1V0
dτxy
dy
− λ1

du

dy
τyy − ηp

du

dy
= 0,

τyy − λ1V0
∂τyy
∂y

= 0.

Notice that only the equation of motion in the x-direction has changed

from the UCM model. Making the same considerations as for the
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UCM model, we deduce that τyy = 0 and we can solve analytically the

following system

ρV0
du

dy
+
dτxy
dy

+ ηs
d2u

dy2
= 0,

τxy − λ1V0
dτxy
dy
− ηp

du

dy
= 0.

The solution obtained by imposing zero velocity at the wall, i.e. u(0) = 0,

is given by

u = −C −D + C exp

(
−k1

y

δ∗

)
+D exp

(
−k2

y

δ∗

)
,

where C,D are some constants and

k1 =
K − 1 +

√
1 +K(K + 4β − 2)

2βK
,

k2 =
K − 1−

√
1 +K(K + 4β − 2)

2βK
,

where β = ηs/η0 is known as the viscosity ratio. Clearly, k2 < 0.

Therefore, we impose D = 0 in order to not have the solution tending

to infinity as y → ∞. Imposing the condition at infinity, u(∞) = Ue,

we obtain C = −Ue. The solutions for u and τxy are

u = Ue

[
1− exp

(
−k1

y

δ∗

)]
,

τxy = ρV0Uea exp

(
−k1

y

δ∗

)
,

where a is a constant defined by

a =
K + 1−

√
1 +K (K + 4β − 2)

2K
.

The equation for the elastic stress component τxx can also be solved

analytically and gives

τxx = ρV0Ueb exp

(
−2k1

y

δ∗

)
,

where b is the constant defined by

b =
Wik1

(
K + 1−

√
1 +K (K + 4β − 2)

)
2K2k1 +K

,
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or else written as

b =
Wi
(
K − 1− 2Kβ +

√
1 +K2 + (−2 + 4β)K

)
K2
(
K − 1 + β +

√
1 +K (K + 4β − 2)

) .

The displacement thickness is a constant which can be easily calculated

and written in terms of the Newtonian displacement thickness, δ∗, as

follows

δOB
∗ =

δ∗
k1

.

4.3.8. Linear PTT. For the linear PTT model, δL = 1 and δE =

α = 0. Therefore, the ASBL equations become

ρV0
du

dy
+
dτxy
dy

+ ηs
d2u

dy2
= 0,

−∂p
∂y

+
dτyy
dy

= 0.

The equations for the polymeric stress tensor become

τxx − λ1V0
dτxx
dy
− 2λ1

du

dy
τxy + ξλ1

du

dy
τxy + ε

λ1

ηp
τxx (τxx + τyy) = 0,

τxy − λ1V0
dτxy
dy
− λ1

du

dy
τyy + ξ

λ1

2

du

dy
(τxx + τyy)

+ ε
λ1

ηp
τxy (τxx + τyy)− ηp

du

dy
= 0,

τyy − λ1V0
dτyy
dy

+ ξλ1
du

dy
τxy + ε

λ1

ηp
τyy (τxx + τyy) = 0.

For this model there is no straightforward way to find an analytical

solution. We cannot conclude that τyy = 0. Therefore, these equations

will be solved numerically.

4.3.9. Exponential PTT. For the exponential PTT model, δE =

1 and δL = α = 0. Therefore, the ASBL equations become

ρV0
du

dy
+
dτxy
dy

+ ηs
d2u

dy2
= 0,

−∂p
∂y

+
dτyy
dy

= 0.
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The elastic stress components satisfy the following equations

τxx − λ1V0
dτxx
dy
− 2λ1

du

dy
τxy + ξλ1

du

dy
τxy

+

[
exp

(
ε
λ1

ηp
(τxx + τyy)

)
− 1

]
τxx = 0,

τxy − λ1V0
dτxy
dy
− λ1

du

dy
τyy + ξ

λ1

2

du

dy
(τxx + τyy)

+

[
exp

(
ε
λ1

ηp
(τxx + τyy)

)
− 1

]
τxy − ηp

du

dy
= 0,

τyy − λ1V0
dτyy
dy

+ ξλ1
du

dy
τxy +

[
exp

(
ε
λ1

ηp
(τxx + τyy)

)
− 1

]
τyy = 0.

As for the linear PTT fluids, the mean flow equations will be solved

numerically.

4.3.10. Giesekus. For the Giesekus model, ε = ξ = 0. Therefore,

the ASBL equations become

ρV0
du

dy
+
dτxy
dy

+ ηs
d2u

dy2
= 0,

−∂p
∂y

+
dτyy
dy

= 0,

The equations for the elastic stress become

τxx − λ1V0
dτxx
dy
− 2λ1

du

dy
τxy + α

λ1

ηp

(
τ 2
xx + τ 2

xy

)
= 0,

τxy − λ1V0
dτxy
dy
− λ1

du

dy
τyy + α

λ1

ηp
τxy (τxx + τyy)− ηp

du

dy
= 0,

τyy − λ1V0
dτyy
dy

+ α
λ1

ηp

(
τ 2
xy + τ 2

yy

)
= 0.

As for the PTT models, these equations will be solved numerically.

Notice that when α = 0, the Giesekus model reduces to the Oldroyd B

model and, when ηs = α = 0, it reduces to the UCM model.

4.4. Linear Stability equations

As a characteristic length, we chose the Newtonian displacement thick-

ness derived in Section 4.3.5, which is defined by equation (4.6). The

velocity vector field is non-dimensionalised using the velocity in the far
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field, Ue. The new dimensionless variables are as follows

v =
v∗
Ue
, x =

ρV0x∗
η0

, t =
ρV0Uet∗
η0

, τ =
τ ∗

ρV0Ue
, p =

p∗
ρU2

e

,

(4.8)

where starred variables indicate dimensional variables. We omitted the

asterisk ∗ in the previous sections for the sake of notational simplicity.

Thus, the equation of motion (4.1) in dimensionless form becomes∇ · v = 0
Dv

Dt
= −∇p+

1

Re
∇ · τ +

β

Re
∆v,

(4.9)

where β = ηs/η0 is the viscosity ratio and Re = Ue/V0 is the Reynolds

number. The equation (4.2) for the elastic contribution to the stress

becomes

τ + Wi
O
τ + g(τ ,γ) = (1− β) γ̇, (4.10)

where

g(τ ,γ) = ξ
Wi

2
(γ̇τ + τ γ̇) + δLε

Wi

1− β tr(τ )τ

+ δE

[
exp

(
ε

Wi

1− β tr(τ )

)
− 1

]
τ + α

Wi

1− βτ
2,

where Wi = λ1Ue/δ∗ is the Weissenberg number based on the displace-

ment thickness, δ∗.

4.4.1. Linear stability equations. In order to perform a linear

stability analysis, we decompose the velocity field, pressure and elastic

stress into mean flow and infinitesimal disturbances as follows

v(x, y, z, t) = V(y) + ṽ(x, y, z, t),

p(x, y, z, t) = P (y) + p̃(x, y, z, t),

τ (x, y, z, t) = T(y) + τ̃ (x, y, z, t).

where V = (UB(y), VB, 0)T is the mean flow velocity field, P the mean

pressure and T is the undisturbed elastic stress that reads

T(y) =

 Txx(y) Txy(y) 0

Txy(y) Tyy(y) 0

0 0 0

 .
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Figure 4.1. ASBL velocity profiles and solutions for
the elastic stress for the Newtonian, UCM, Oldroyd B
(OB), linear Phan-Thien Tanner (PTTL) and Giesekus
(G) models. (a),(b) Newtonian solution, UCM solution
with Wi = 1, K = 0.1 and Oldroyd B solution with
Wi = 1, K = 0.1, β = 0.5; (c),(d) Oldroyd B solution with
K = 0.01,Wi = 1, linear Phan-Thien Tanner solution
with K = 0.01,Wi = 1, β = 0.1, ξ = 0.05, ε = 0.5 and
Giesekus solution with K = 0.01,Wi = 1, β = 0.1, α =
0.1.

In Figure 4.1, we show the mean flow velocity profiles and the mean

elastic stress obtained applying the asymptotic suction boundary layer,

as described in the previous section. The solutions have been non-

dimensionalised according to the transformations (4.8). The parameters

have been chosen merely to give qualitatively appreciable results. In

Appendix A.7, we report the non-dimensionalised equations for the

Linear and Exponential PTT and the Giesekus models. These have been

solved numerically using the Chebyshev collocation method, described in
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Section 5.1, to approximate derivatives in the wall-normal component.

The system of equations have been solved using MATLAB routine,

fsolve.

From Figure 4.1(a), we notice that the UCM and the Oldroyd B

models make the velocity at all points in the boundary layer larger

than the Newtonian velocity. This is as expected since the displacement

thickness for the UCM and the Oldroyd B models reduces with respect

to the Newtonian case. In Figure 4.1(b), we report the components of

the elastic stress tensor, τxx and τxy, which are zero in the Newtonian

case. For the UCM and the Oldroyd B models, we have shown that

τyy = 0.

In Figure 4.1(c), we plot the velocity profiles for the Linear PTT

and the Giesekus models compared with the Oldroyd B model, which

is a special case of the former two. Notice that, for these two models

the τyy component of the polymeric stress tensor is non-zero.

We assume a normal mode form for the disturbances in the stream-

wise and spanwise directions, x and z, as follows

ṽ(x, y, z, t) = v̂(y, t)ei(kxx+kzz),

τ̃ (x, y, z, t) = τ̂ (y, t)ei(kxx+kzz),

p̃(x, y, z, t) = p̂(y, t)ei(kxx+kzz),

where kx, kz are streamwise and spanwise wavenumbers, respectively.

For the sake of brevity, we present here only the two-dimensional

governing equations for the Oldroyd B model. The linear stability

equations become

∂u

∂t
+ VBDu+ U ′Bv + ikxUBu+ ikxp

+
β

Re

(
k2 −D2

)
u− 1

Re
(ikxτxx +Dτxy) = 0,

∂v

∂t
+ VBDv + ikxUBv +Dp

+
β

Re

(
k2 −D2

)
v − 1

Re
(ikxτxy +Dτyy) = 0,
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where D indicates derivative with respect to y. The equations for the

elastic stress become

τxx − 2i (1− β) kxu+ Wi

(
∂τxx
∂t
− 2τxyU

′
B

+ V
∂τxx
∂y

+ iτxxUBkx − 2iTxxkxu+ vT ′xx − 2Txy
∂u

∂y

)
= 0,

τxy + (β − 1)
∂u

∂y
− i (1− β) kxv + Wi

(
∂τxy
∂t
− τyyU ′B − Tyy

∂u

∂y

+ VB
∂τxy
∂y
− ikxuTxy − iTxxkxv + iUBkxτxy + vT ′xy − Txy

∂v

∂y

)
= 0,

τyy + 2 (β − 1)
∂v

∂y
+ Wi

(
∂τyy
∂t
− 2Tyy

∂v

∂y

+ VB
∂τyy
∂y
− 2ikxTxyv + iUkxτyy + vT ′yy

)
= 0.

4.4.2. Conclusive comments. The natural continuation of this

work is to proceed studying the linear stability analysis of the viscoelastic

models here considered, following the approach outlined for second order

fluids in Chapters 1 and 2. Then, the results can be compared with

those available in the literature for the same models obtained for channel

flows.



CHAPTER 5

Numerical methods

In this chapter, we describe some of the numerical techniques em-

ployed to obtained the results in the previous chapters.

5.1. Chebyshev differentiation matrices

In this section, we describe briefly how we approximate the derivatives

in the wall-normal direction, y, for the purpose of finding the mean

flow and solving the stability equations introduced in Chapter 1. We

use a Chebyshev spectral collocation method and refer mostly to Tre-

fethen [86, 87]. The main idea of spectral collocation methods, also

called pseudospectral methods, is to interpolate the data globally on a

grid, then evaluate the derivative of the interpolant on the grid. Spectral

methods allow remarkably high accuracy to be reached. They typically

converge faster than algebraically for functions that are smooth.

In order to approximate the derivatives involved in the mean flow

and stability equations, we use Chebyshev differentiation matrices.

Firstly, we restrict our attention to the interval [−1, 1] and we introduce

the Chebyshev extreme points, also known as Gauss-Lobatto-Chebyshev

points, defined by

xj = cos

(
jπ

N

)
, j = 0, . . . , N. (5.1)

From a geometric point of view, Chebyshev extreme points are projec-

tions of equispaced points on the unit circle onto the interval [−1, 1],

as represented in Figure 5.1. They are closely related to the Cheby-

shev polynomials since the Chebyshev extreme points are the extrema

of the N -th Chebyshev polynomial. The latter will be introduced in

Section 5.6.

147
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Figure 5.1. Chebyshev extreme points, N = 10.

Notice that the points (5.1) are numbered in the reverse order,

starting from 1, following the convention of Trefethen’s book [87]. The

Chebyshev extrema are naturally clustered at the boundaries −1 and 1.

This property is particularly suitable for problems where more points are

required near the wall to resolve the rapid changes happening inside the

boundary layer. Moreover, spectral methods based on polynomials must

cluster at boundaries to avoid the numerically catastrophic problem of

oscillations, known as the Runge phenomenon. Various choices of grid

points are possible but they are all distributed with the density that

tends to N/
(
π
√

1− x2
)

as N → ∞. This allows a spacing between

grid points that is O(N−2) to be achieved near the boundaries −1 and

1, and O(N−1) in the interior of the domain.

Given a function v, defined on the Chebyshev extreme points (5.1),

the method can be summarised in two steps:

(1) Interpolate v by a polynomial pN(x) of degree ≤ N , such that

v(xj) = pN(xj), j = 0, . . . , N.

(2) Using the Lagrange form of the interpolation polynomial, dif-

ferentiate the interpolant at the grid points, that is

wj = p′N(xj), j = 0, . . . , N.
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Therefore, the discrete derivative of the function v is obtained by a

matrix multiplication of the form

w = Dv ≈ v′,

where v = (v0, . . . , vN ) is the vector containing the values of the function

v at the grid points (5.1), w represents the approximated derivative of

v at the grid points and D is a square matrix of order N + 1.

Formulas for the entries of the matrix D can be found in Tre-

fethen [87] and details are not discussed here. During the numerical

tests, for practical reasons, we used the MATLAB function cheb.m pro-

vided in the same book and reported in the Listing 5.1. We observe that,

unlike finite difference matrices, Chebyshev differentiation matrices are,

in general, dense. Furthermore, higher-order derivatives can be easily

approximated by calculating powers of the Chebyshev differentiation

matrix D. For example, the second derivative of the function v at the

grid points {xj}Nj=0 can be approximated by the vector z defined as

follows

z = D2v ≈ v′′.

5.2. Mean flow

In this section, we describe how we approximate the mean flow profile

for the purpose of the linear stability analysis. Consider the base flow

equation (1.13), derived in Section 1.3, which reads

2(m+ 1)f ′′′ + (m+ 1)ff ′′ + 2m
(
1− f ′2

)
=

K
[

(m+ 1) f ivf + 2(1− 3m)f ′f ′′′ + (3m− 1)(f ′′)2
]
, (5.2)

where K = K0C
2, and C is defined by (1.21). The boundary conditions

are

f(η) = f ′(η) = 0 at η = 0,

f ′(η)→ 1, f ′′(η)→ 0 as η →∞.

We define a new function z(η) = f(η)−η. The reason for this choice

will become clear later. We can write f and its derivatives in terms of
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Listing 5.1. MATLAB code for the
Chebyshev differentiation matrix.

function [D, x ] = cheb (N)

x = cos (pi ∗ ( 0 :N)/N) ’ ;
c = [ 2 ; ones (N−1, 1 ) ; 2 ] .∗ ( −1 ) . ˆ ( 0 :N) ’ ;
X = repmat (x , 1 , N+1);
dX = X − X’ ;
D = ( c ∗ ( 1 . / c ) ’ ) . / (dX+(eye (N+1)) ) ;
D = D − diag (sum(D’ ) ) ;

end

z as follows

f(η) = η + z(η),

f ′(η) = 1 + z′(η),

f ′′(η) = z′′(η), f ′′′(η) = z′′′(η), f iv(η) = ziv(η).

Equation (5.2), written in terms of the new function z, becomes

2(m+ 1)z′′′ + (m+ 1) (z + η) z′′ + 2m
(

1− (1 + z′)
2
)

=

K
[
(m+ 1)ziv (z + η) + 2(1− 3m)(1 + z′)z′′′ + (3m− 1) (z′′)

2
]
,

(5.3)

with boundary conditions

z(η) = 0, z′(η) = −1 at η = 0,

z′(η), z′′(η)→ 0 as η →∞.

In order to apply the Chebyshev collocation method described in Sec-

tion 5.1, we apply the algebraic mapping from the physical domain

η ∈ [0,∞) to the computational domain ξ ∈ [−1, 1), as follows

ξ =
η − l
η + l

,

where l is the stretching parameter. Thus, the extreme of the physical

interval η = 0 corresponds to ξ = −1, and the limit η → +∞ cor-

responds to ξ → 1. Therefore, the transformed boundary conditions
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Figure 5.2. Chebyshev collocation points mapped into
the physical domain using the algebraic mapping with
N = 25. Only points ≤ 20 are shown. (a) l =
2, |{ηn : ηn ≤ 6}| = 16 ; (b) l = 20, |{ηn : ηn ≤ 6}| = 8.

become

z(η = 0) = 0 =⇒ z(ξ = −1) = 0,

z′(η = 0) = −1 =⇒ dz

dξ

∣∣∣∣
ξ=−1

= − l
2
.

The conditions z′(∞) = 0 and z′′(∞) = 0 are automatically satisfied

thanks to the specific choice of mapping, provided that dz
dξ
, d

2z
dξ2 remain

bounded as ξ → 1. In fact, the function z has been introduced in

order to have z′ vanishing at infinity and make it possible to apply the

algebraic mapping.

Note that the constant δ1 defined by equation (1.17) in Section 1.3.3

and shown in Figure 1.5 can be now easily calculated as follows

δ1 =

∫ ∞
0

(1− f ′) dη = z(ξ = 1).

It is straightforward to transform all the η-derivatives of z in equa-

tion (5.3) and write them in terms of derivatives with respect to ξ. Then,

discretisation in the computational domain ξ ∈ [−1, 1] is performed by

means of the Chebychev collocation method described in Section 5.1.
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The discretised equations are written as a system of four first order

equations and then solved using the MATLAB routine fsolve.

In Figure 5.3, we show the residual error increasing the number of

Chebyshev points, N . Let us denote with N a vector of increasing N ,

the residual error is calculated as follows

Rj = ‖gj − gj−1‖∞,

where gj is the solution calculated with N = N(j) collocation points.

We plot the residual errors for the solution f of equation (5.2) and

its derivatives for the flat plate case (βH = 0) and a non-Newtonian

parameter K = −0.2. We can clearly see that the convergence is much

faster with a stretching parameter l = 15 than it is for l = 4. A higher

value of l clusters fewer points inside the boundary layer and resolves

better the outer layer, as can be seen in Figure 5.2.

Various numerical tests have been performed, varying the non-

Newtonian parameter, K, and the angle parameter, βH . The results

indicate that the case where K is negative is numerically more difficult.

While for K ≥ 0, the choice of l does not seem to influence the con-

vergence of the scheme, the case where K < 0 needs extra care. From

extensive numerical tests, we can conclude that a good choice for the

stretching parameter is l ≈ 15 and for the number of collocation points

is N ≈ 65. In Figure 5.4 we show the residual errors for different values

of the angle parameter, βH , and non-Newtonian parameter, K. We can

see that when N = 65 the residual error is O(10−5).

For the purpose of the stability analysis, we chose the number of

collocation points N = 65 and the stretching parameter l = 15. The

mean flow is then interpolated in order to perform the stability analysis.

Other methods have been explored for the solution of the mean flow

equation (5.2), such as the Chebfun package [24] in MATLAB. Chebfun

is an open-source package which implements the ideas described by Tre-

fethen [88]. The implementation is based on the fact that every smooth

function can be efficiently represented by a polynomial interpolation in

Chebyshev points. However, for our problem this method is found to

not converge for negative values of the non-Newtonian parameter K.
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Figure 5.3. Convergence of the numerical scheme used
to calculate the mean flow with βH = 0 and K = −0.2.
Stretching parameter: (a) l = 15; (b) l = 4.
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Figure 5.4. Convergence of the numerical scheme used
to calculate the mean flow with stretching parameter l =
15. (a) βH = −0.14, K = 0.05; (b) βH = 0.5, K = −0.05;
(c) βH = 1, K = 0.1.
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5.3. Linear stability analysis

In this section, we describe the numerical methods used to perform

the linear stability analysis described in Section 1.4 and Section 1.7.

The modified Orr-Sommerfeld equation (1.22) is an eigenvalue problem

where the solution, c, represents the phase velocity of the disturbance.

In 1971, Orszag [53] demonstrated the efficiency and accuracy of

Chebyshev spectral methods for solving linear eigenvalue problems by

solving the Orr-Sommerfeld equation for plane Poiseuille flow. Cheby-

shev spectral methods naturally cluster grid points near the boundaries.

Different approaches are possible, such as the one proposed by

Bridges and Morris [13] in which the equations are integrated. This

method will be used later for the Direct Numerical Simulations and

explained in Section 5.6. For this work, we chose the Chebyshev collo-

cation matrix approach because it is easier to formulate. Furthermore,

the integration method requires major modifications for each new mean

velocity profile.

In this section, the modified Orr-Sommerfeld equation (1.22) is

solved by approximating derivatives using the Chebyshev collocation

method described in Section 5.1. The eigenvalue problem is then solved

using the MATLAB routines eig and polyeig. We are interested in

comparing two different types of mapping from the semi-infinite domain

y ∈ [0,∞) to the computational domain ξ ∈ [−1, 1] and in finding the

optimal choice of stretching parameter.

5.3.1. Mapping the semi-infinite domain. In order to apply

the Chebyshev collocation method, the semi-infinite domain y ∈ [0,∞)

is mapped onto the finite interval ξ ∈ [−1, 1] by means of the transfor-

mation (1.23), i.e.

ξ =
y − l
y + l

, (5.4)

or

ξ = 2e−
y
l − 1. (5.5)

The mapping (5.4) is referred to as the algebraic mapping and the

mapping (5.5) is called the exponential mapping. As shown in Figure 5.2
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the Chebyshev extreme points (5.1) mapped into the physical domain

y ∈ [0,∞) through the algebraic mapping (5.4) are naturally clustered

near the origin. Moreover, an increase of the stretching parameter l

translates to fewer points inside the boundary layer. This is true also

for the exponential mapping (5.5).

The derivatives of a function φ with respect to y can be written in

terms of derivatives with respect to ξ as follows

dφ

dy
= M

dφ

dξ
,

d2φ

dy2
= MM ′dφ

dξ
+M2d

2φ

dξ2
,

d3φ

dy3
=
(
MM ′2 +M2M ′′) dφ

dξ
+ 3M2M ′d

2φ

dξ2
+M3d

3φ

dξ3
,

d4φ

dy4
=
(
MM ′3 + 4M2M ′M ′′ +M3M ′′′) dφ

dξ

+
(
7M2M ′2 + 4M3M ′′) d2φ

d2ξ
+ 6M3M ′d

3φ

d3ξ
+M4d

4φ

d4ξ
.

The metric M = M(ξ) is defined as M = dξ
dy
. For the algebraic map-

ping (5.4), M and its derivatives become

M =
1

2

(ξ − 1)2

l
, M ′ =

ξ − 1

l
, M ′′ =

1

l
, M ′′′ = 0,

while for the exponential mapping (5.5) M and its derivatives become

M = −1

l
(ξ + 1), M ′ = −1

l
, M ′′ = M ′′′ = 0.

Grosch and Orszag [35] did some comparisons between these two

different kinds of mapping and the truncation method for six different

problems, including the Orr-Sommerfeld eigenvalue problem for the

Blasius boundary layer flow and the Falkner-Skan equation. They

conclude that the algebraic mapping gives better results for the model

problems they considered.

5.3.2. Temporal and spatial eigenvalue problems. When con-

sidering the temporal stability, the modified Orr-Sommerfeld equa-

tion (1.22) needs to be solved for the phase velocity c, for a fixed and

real streamwise wavenumber α. The temporal problem can be written
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as a generalised eigenvalue problem of the form

Aφ = cBφ,

where φ is the eigenfunction and A, B are linear operators defined by

A =− U ′′B − α2UB +
iα3

Re0

+K0U
iv
B − α4K0UB

+

[
UB −

2iα

Re0

+ 2α2K0UB

]
D2

+

[
i

αRe0

−K0UB

]
D4,

B =− α2 − α4K0 +
[
1 + 2α2K0

]
D2 −K0D4,

where D represents differentiation with respect to y, and UB, U
′′
B, U

iv
B

represent the base flow and its derivatives. The derivatives with respect

to y are transformed into derivatives with respect to ξ using relations

described in Section 5.3.1. The problem is discretised by means of the

Chebyshev collocation matrices introduced in Section 5.1. Then, the

eigenvalue problem is solved using the MATLAB routine eig.

When considering the evolution of disturbances in space, the modi-

fied Orr-Sommerfeld equation (1.22) is solved for the streamwise wave-

number α, by fixing a real value for the frequency ω. Therefore, the

spatial problem can be written in the form of a polynomial eigenvalue

problem as follows(
C0 + αC1 + α2C2 + α3C3 + α4C4 + α5C5

)
φ = 0,

where

C0 = iωD2 +

[
1

Re0

− iωK0

]
D4,

C1 = iU ′′B − iK0U
iv
B − iUBD2 + iK0UBD4,

C2 = −iω +

[
− 2

Re0

+ 2iωK0

]
D2,

C3 = iUB − 2iK0UBD2,

C4 =
1

Re0

− iωK0,

C5 = iK0UB.
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Notice that this is a polynomial eigenvalue problem of order 4 in the

Newtonian case, where K0 = 0, and of order 5 in the non-Newtonian

case, where K0 6= 0. Similarly to the temporal case, this polynomial

eigenvalue problem is transformed by using one of the mappings in-

troduced in Section 5.3.1, discretised and solved using the MATLAB

routine polyeig.

5.3.3. Imposing boundary conditions. For both the temporal

and spatial problems, the eigenfunctions need to satisfy the boundary

conditions, i.e.

φ(y) = φ′(y) = 0, at y = 0,

φ(y), φ′(y)→ 0, as y →∞.

After application of the mapping, these boundary conditions mean that

φ and its y-derivative need to be zero at ξ = ±1. The condition that

φ′(y)→ 0 as y →∞ is automatically satisfied by applying any of the

two mappings, provided that dφ
dξ

remains bounded in this limit. In fact,

we have
dφ

dy
= M

dφ

dξ
,

and M → 0 as y →∞, that is when ξ → 1 for the algebraic mapping

and when ξ → −1 for the exponential mapping. Although one of

the boundary conditions is automatically satisfied thanks to the map-

ping, for simplicity, we impose the following more restrictive boundary

conditions

φ(ξ) = φ′(ξ) = 0, at ξ = ±1, (5.6)

where now the prime ′ indicates derivatives with respect to ξ. Tre-

fethen [87] provides a handy way to deal with this type of boundary

condition, briefly described below.

Let us denote by p the polynomial that approximates φ. In order to

satisfy the conditions (5.6), we introduce an auxiliary polynomial q(ξ)

such that

p(ξ) = (1− ξ2)q(ξ),
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and q(±1) = 0. Differentiating, we obtain the following relations

p′ = (1− ξ2)q′(ξ)− 2ξq(ξ),

p′′ = (1− ξ2)q′′(ξ)− 4ξq′(ξ)− 2q(ξ),

p′′′ = (1− ξ2)q′′′(ξ)− 6ξq′′(ξ)− 6q′(ξ),

piv = (1− ξ2)qiv(ξ)− 8ξq′′′(ξ)− 12ξq′′(ξ).

Note that, by construction, p now satisfies the conditions (5.6). It

is straightforward to apply these transformations to the derivatives

appearing in the stability eigenvalue problem.

5.3.4. Numerical tests. In this section, we focus on the temporal

problem. We compare the two mappings in the solution of the modified

Orr-Sommerfeld equation (1.22). In particular, we study the least stable

eigenvalue, c, which is the one with largest imaginary part. The aim

is to show that, by increasing the number of Chebyshev collocation

points, N , the least stable eigenvalue converges. Let us denote by N

the array containing different values of the number of grid points, N ,

in an increasing order. The residual errors are defined as

Rj = |cj − cj−1|,

where cj is the least damped eigenvalue calculated with N = N(j)

Chebyshev collocation points.

In Figure 5.5, we show the convergence of the numerical scheme

with the algebraic mapping (5.4). We plot the residual errors of the

imaginary part and the absolute value of the solution. We choose, as an

example, the case of a flat plate with βH = 0, Re0 = 1000, α = 0.3 and

K = −0.001. We can see from Figure 5.5, that a stretching parameter

l = 4 gives a slightly more rapid convergence than l = 20. In Figure 5.6,

we show the convergence of the numerical scheme with the exponential

mapping (5.5). We can see that the convergence with l = 2 is very slow.

A stretching parameter l = 5 works much better.

We performed various numerical tests varying all the parameters.

The results indicate that both the algebraic and the exponential map-

pings work well. The best choice of stretching parameter is l ≈ 4 for
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Figure 5.5. Convergence of the numerical scheme used
to calculate the least stable eigenmode with the algebraic
mapping for βH = 0, Re0 = 1000, α = 0.3 and K =
−0.001. Stretching parameter: (a) l = 4; (b) l = 20.

the algebraic mapping, and l ≈ 10 for the exponential mapping. For

the linear stability results in Section 1.5 and Section 1.7 we chose the

algebraic mapping with l = 4 and N = 65.

5.4. Integration

In order to perform the energy balance, described in Section 1.6, we

need a method to approximate the integrals. We follow the method

used by Trefethen [87]. Let us consider the integral of a function g,

that is

I =

∫ ∞
0

g(y) dy.
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Figure 5.6. Convergence of the numerical scheme used
to calculate the least stable eigenmode with the expo-
nential mapping for βH = 0, Re0 = 1000, α = 0.3 and
K = −0.001. Stretching parameter: (a) l = 5; (b) l = 2.

We first apply a mapping so that I becomes an integral in the compu-

tational domain [−1, 1], as follows

I =

∫ +1

−1

f(ξ) dξ, (5.7)

If the algebraic mapping (5.4) is employed

f(ξ) =
dy

dξ
g(ξ) =

4

(1− ξ)2
g(ξ),

and, if the exponential mapping (5.5) is used, then

f(ξ) = −dy
dξ
g(ξ) =

l

1 + ξ
g(ξ).
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We can rewrite the integral in (5.7) as I = u(1), where u satisfies

u′(y) = f(y), u(−1) = 0. (5.8)

We can now discretise (5.8) as explained in Section 5.1 using the Cheby-

shev discretisation matrix D. Therefore, we can approximate the

function u at the grid points as follows

Du = f ,

where the last row and column of D have been removed to impose the

boundary condition and u, f are vectors containing collocation values

of u and f , respectively. Then we can easily approximate I = u(1)

by inverting the matrix D. Let wT be the first row of D−1, then we

approximate the integral I as follows

I ≈ wT f .

5.5. Transient growth

In this section, we perform some numerical tests for the maximum

possible amplification of energy density defined in Section 2.4. The

numerical techniques are the same used for the eigenvalue problems

described in Section 5.3. The main difference is that, in order to calculate

the maximum transient growth, the whole spectrum is required.

We study how the two different kind of mappings (5.4) and (5.5)

perform in approximating the global optima, Gmax, defined by (2.12).

Given an array, N, containing increasing values of the number of grid

points, N , we define the residual error as follows

Rj = |Gmax,j −Gmax,j−1|,

where Gmax,j is the global optima obtained with N = N(j) grid points.

In Figure 5.7, we show the convergence of the numerical scheme with

the algebraic mapping (5.4). We choose, as an example, the case of a flat

plate (βH = 0) and Re0 = 1000, wavenumber vector (α, β) = (0.1, 0.6)

and K = 0.001. We plot the residual errors of the global optima

Gmax. From Figure 5.7, we deduce that a stretching parameter l = 4 is

preferable to l = 10.
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Figure 5.7. Convergence of the numerical scheme used
to calculate the global optima, Gmax, with the algebraic
mapping for βH = 0, Re0 = 1000, α = 0.1, β = 0.6 and
K = 0.001. Stretching parameter: (a) l = 4; (b) l = 10.

In Figure 5.8, we show the convergence of the scheme with the

exponential mapping (5.5). We can see that a stretching parameter

l = 5 gives a more rapid convergence than l = 20.

We performed several numerical tests varying all the parameters

involved. The results, which are not reported in this work for brevity,

suggest that the algebraic mapping works slightly better and a good

choice for the stretching parameter is l = 4.

Notice that in order to calculate Gmax, we need to find the maximum

of G over all time, defined by equation (2.11). Since, when the flow is

exponentially stable and no unstable mode exists, G decays at infinity,

it is sufficient to calculate the maximum in a interval of time which is
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Figure 5.8. Convergence of the numerical scheme used
to calculate the global optima, Gmax, with the exponential
mapping for βH = 0, Re0 = 1000, α = 0.1, β = 0.6 and
K = 0.001. Stretching parameter: (a) l = 5; (b) l = 20.

sufficiently large. Hence, the accuracy of the numerical scheme used to

calculate Gmax also depends on the time discretisation parameter ∆t,

which we have chosen to be ∆t = 0.1 for the numerical tests reported

here.

5.6. Monochromatic DNS

In this section, we describe some of the ideas underlying the monochro-

matic DNS described in Chapter 3. The numerical scheme adopted is

very similar to the one used by Morgan [51] to simulate the evolution

of disturbances on periodic modulated rotating disk boundary layers.



5.6. MONOCHROMATIC DNS 165

A pseudo-spectral method is used, in which some operations are

performed in physical space and others in Chebyshev space. We make

extensive use of the Fast Fourier Transform (FFT), exploiting the re-

lations between Chebyshev series and Fourier series. The polynomial

interpolation in Chebyshev points is equivalent to trigonometric inter-

polation in equally spaced points and hence can be carried out by the

FFT. In this thesis, we do not go into the details of the FFT and its

relation to Chebyshev series and we refer to Trefethen [87].

We use only even and odd expansions in order to facilitate the

imposition of the boundary conditions. Therefore, we only need the

Chebyshev extreme collocation points in the interval (0, 1], which are

given by

xj = cos

(
jπ

2N

)
, j = 0, . . . , N − 1.

The even representation for a function f which is symmetric about 0, is

f =
f0

2
+
∞∑
n=1

fnT2n(x), x ∈ (0, 1].

The odd representation for a function f which is anti-symmetric about

0 is given by

f =
∞∑
n=1

fnT2n−1(x), x ∈ (0, 1]. (5.9)

We use an even Chebyshev representation for the base flow, UB.

Using an odd representation would imply that the base flow decays

at ξ = 0, but UB → 1 as y → ∞. The Chebyshev coefficients of the

base flow and its derivatives can be calculated by means of the FFT

method (Trefethen [87]). We use an odd representation for the primary

variables and an even representation for the secondary variables. This

means that the condition that the primary variables decay as ξ → 0,

i.e. y → ∞, is automatically satisfied. As mentioned in Section 3.1.3

these are reasonable restrictions at infinity.

As opposed to what was done for the linear stability analysis de-

scribed in Section 5.3, we choose the integrated form of the stability

equations following for example Bridges and Morris [13]. The advantage

is that the integral operators can be expressed as n-diagonal banded



166 5. NUMERICAL METHODS

matrices and, therefore, easier to invert. This makes the integrated

form more suitable for time-dependent simulations.

To build the integration matrices, the following relation for the

integration of the Chebyshev polynomials is used

∫
Tn(x) dx =


T1(x) n = 1,
1

4
[T0(x) + T2(x)] n = 1,

Tn+1(x)

2 (n+ 1)
+

Tn−1(x)

2 (n− 1)
n ≥ 2.

(5.10)

The system of equations to solve for the primary variables {ω̃x, ω̃z, ṽ}
has been derived in Section 3.2 and are as follows

∂I2ω̃x
∂t

+K0

(
k2∂I2ω̃x

∂t
− 1

l2
∂J2ω̃x
∂t

)
=

1

l2Re0

J2ω̃x

+ I2Ãx −
1

l
I1Bx +

1

l2
J2C̃x,

∂I2ω̃z
∂t

+K0

(
k2∂I2ω̃z

∂t
− 1

l2
∂J2ω̃z
∂t

)
=

1

l2Re0

J2ω̃z

+ I2Ãz −
1

l
I1Bz +

1

l2
J2C̃z,(

−k2I2 +
1

l2
J2

)
ṽ = iαI2ω̃z − iβI2ω̃x,

(5.11)

where

Ax = − k2

Re0

ωx + iβ
(
N̂0
y +K0N̂

1
y

)
,

Bx = −N0
z −K0N̂

1
z + iβK0N̂

2
y ,

Cx = −K0N̂
2
z + iβK0N̂

3
y ,

Az = − k2

Re0

ωz − iα
(
N̂0
y +K0N̂

1
y

)
,

Bz = N0
x +K0N̂

1
x − iαK0N̂

2
y ,

Cz = K0N̂
2
x − iαK0N̂

3
y .

(5.12)

The tilde indicates quantities divided by ξ2 and the N̂k
m terms are defined

by relations (3.14) and (3.15). The integral boundary conditions to

impose on the vorticity transport equations, after application of the
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mapping, become ∫ ∞
0

ωx dy = −wwall − iβl
∫ 1

0

ṽ dξ,∫ ∞
0

ωz dy = uwall + iαl

∫ 1

0

ṽ dy.

The condition that v = vwall at y = 0 can be easily applied to the

Poisson equation.

We can now expand the primary variables {ω̃x, ω̃z, ṽ} using the

odd expansion (5.9). We run the simulation for a time interval [0, T ],

where T is sufficiently large for all the transient behaviour to pass and

the growth rates to settle to a constant value. Then, we divide the

interval [0, T ] into M = T/∆t equal subintervals, where ∆t is a step

size sufficiently small for the numerical scheme to converge. Let us

denote with ωmx , ωmz and vm the vectors which contains the Chebyshev

coefficients at the time tm = m∆t of ω̃x, ω̃z and ṽ, respectively.

Let us denote with I1, I2,J2 the matrix representations of the integral

operators I1, I2, J2, which are defined as follows

I1f =

∫
f dξ, I2f =

∫∫
f dξ, J2f = ξ4f − 2

∫ (
ξ3f
)
dξ.

We do not go into the details of the derivation of these matrices. The

main idea is to use the relation (5.10).

Equations (5.11) are solved marching in time with an Adams pre-

dictor-corrector method, which is described in Section 3.3, starting

from a zero initial disturbance. Disturbances on the flow are excited

by means of the wall-normal impulse (3.16) and through application of

appropriate boundary conditions. The steps of the numerical scheme

can be summarised as follows:

(1) Set up the initial conditions, ω0
x = ω0

z = v0 = 0.

(2) Calculate the mean flow, UB, its derivatives and their Cheby-

shev representations.

(3) Compute the inverse of the left-hand side for the predictor and

the corrector steps, which is given by

L =
I2

∆t
+
K0

∆t

(
k2I2 −

J2

l2

)
− J2

2Re0l2
.
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(4) Start the temporal march.

(5) Apply the predictor step:

LωP,m+1
x =

I2ω
m
x

∆t
+

J2ω
m
x

2Re0l2
+

1

2

[
3Rm

x −Rm−1
x

]
,

LωP,m+1
z =

I2ω
m
z

∆t
+

J2ω
m
z

2Re0l2
+

1

2

[
3Rm

z −Rm−1
z

]
,

(5.13)

where

Rm
x = I2Ã

m
x −

1

l
I1B

m
x +

1

l2
J2C̃

m
x ,

Rm
z = I2Ã

m
z −

1

l
I1B

m
z +

1

l2
J2C̃

m
z ,

where Ãmk , B
m
k , C̃

m
k are the Chebyshev representations of the

terms defined by (5.12). Notice that the viscous term is treated

using the Crank-Nicolson scheme.

Set the predicted integral boundary conditions in the first rows

of the transport equations (5.13):∫ ∞
0

ωP,m+1
x dy = −wm+1

wall − iβl
∫ 1

0

(
2vm − vm−1

)
dξ,∫ ∞

0

ωP,m+1
z dy = um+1

wall + iαl

∫ 1

0

(
2vm − vm−1

)
dξ.

(6) Solve the Poisson equation for vm+1.(
−k2I2 +

1

l2
J2

)
vm+1 = iαI2ω

P,m+1
z − iβI2ω

P,m+1
x ,

applying the boundary condition vm = vwall at ξ = 0.

(7) Apply the corrector step:

Lωm+1
x =

I2ω
m
x

∆t
+

J2ω
m
x

2Re0l2
+

1

2

[
RP,m+1
x +Rm

x

]
,

Lωm+1
z =

I2ω
m
z

∆t
+

J2ω
m
z

2Re0l2
+

1

2

[
RP,m+1
z +Rm

z

]
.

Set the corrected integral boundary conditions:∫ ∞
0

ωm+1
x dy = −wm+1

wall − iβl
∫ 1

0

vm+1 dξ,∫ ∞
0

ωm+1
z dy = um+1

wall + iαl

∫ 1

0

vm+1 dξ.

(8) Go back to (5) and repeat until tm = T .



Conclusions

The linear stability analysis of the boundary layer flow of a vis-

coelastic fluid has been investigated. The model chosen as a starting

point to study the stability behaviour of viscoelastic fluids in boundary

layers is the second order model. This model was introduced in 1955 by

Rivlin and Ericksen [70] and it belongs to a wider class of fluids called

order models. This class of constitutive equations is one of the first

proposed in order to model departures from non-Newtonian behaviour.

These models can represent non-zero normal stress differences which is

an important feature of viscoelastic fluids.

The sign of the material parameters in this model has been a source

of some controversy, as discussed by Dunn and Rajagopal [26] in their

critical review. For the purpose of this work, we considered both signs

of the material parameter α1. The reason being that the model with

a positive material parameter α1, which is referred to as second grade

model, is compatible with the laws of thermodynamics. However, the

constitutive equation with a negative material parameter α1, which is

referred to as second order model, predicts the correct sign of normal

stress differences. Moreover, Porteous and Denn [61] showed that the

second order model is a consistent approximation to the Maxwell model

in terms of linear stability. In this discussion and throughout the

whole thesis, we talk about second order models to indicate both cases

whenever it is clear from the context.

In this thesis, both classical linear stability analysis and bypass tran-

sition have been taken into consideration. The main result of classical

linear stability analysis is that the second grade model, where α1 > 0,

is stabilising with respect to the Newtonian case when considering two-

dimensional disturbances, namely disturbances which vary only in the

streamwise and wall-normal directions. Instead, the second order model,

169
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where α1 < 0, destabilises the flow with respect to the Newtonian case.

When extending the analysis to three-dimensional disturbances, which

can vary also in the spanwise direction, the non-Newtonian effects prove

to be different. For mostly streamwise independent waves the second

grade model is destabilising while the second order model is stabilising.

In the bypass transition scenario, the second grade model appears

to increase the tendency of the disturbances to grow transiently while

the second order model reduces the transient growth.

In Chapter 1, the first step to apply the linear stability analysis was

to determine the mean flow profile for second order fluids. It is possible

to apply Prandtl’s boundary layer theory to the case of a non-Newtonian

fluid of second grade (Rajagopal et al. [66]). We investigated the case

where the wall is placed symmetrically with respect to the flow direction

and forms a wedge. The geometric configuration is characterised by an

angle parameter, βH . Therefore, the free-stream velocity varies with

distance to the leading edge according to potential flow theory as a

power law.

As for Newtonian fluids, after suitable assumptions, the boundary

layer approximation allows the governing equations to be simplified. We

applied a pseudo-similarity transformation (Garg and Rajagopal [32])

and obtained a local ODE. This ODE retains the dependency on the

streamwise component and reduces to the well-known Falkner-Skan

equation for Newtonian fluids when the material parameter α1 = 0.

For the stability analysis, the equations were non-dimensionalised using

the displacement thickness and the dependency on the streamwise posi-

tion was included in the elasticity parameter K. This non-Newtonian

parameter K is proportional to the material parameter α1 and is a

dimensionless quantity representing the ratio of non-Newtonian normal

stress forces to inertial forces.

We solved the ODE numerically using a Chebyshev collocation

method combined with a mapping from the semi-infinite domain to

the computational domain. The non-Newtonian effects in the second

grade (K > 0) and the second order model (K < 0) have almost

opposite effects on the mean flow. In particular, we showed that a
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positive K has the effect of decreasing the shape factor H, which is the

ratio between displacement thickness and momentum thickness, and a

negative K provokes an increase of the shape factor with respect to the

Newtonian case. This is true for all the values of the angle parameter,

βH , considered. The results agree with the ones found in the literature

for Newtonian fluids (Schlichting [73]) and second order fluids (Garg

and Rajagopal [32]).

We solved numerically, using a Chebyshev collocation method, the

modified Orr-Sommerfeld equation which governs the evolution of two-

dimensional disturbances (Chun and Schwarz [15]). The results were

presented in terms of temporal and spatial growth rates and neutral

curves. The results indicate that, for all the values of the angle parameter

βH , the non-Newtonian terms in the second grade model stabilise the

flow with respect to the Newtonian case, while they have an opposite

effect for the second order model. This is consistent with the results

already known for Poiseuille flows (Chun and Schwarz [15], Sadeghy et

al. [71]). Moreover, we determined the critical Reynolds number, which

is the smallest Reynolds number for which there exists an exponentially

unstable mode. For the second grade model (K > 0), there is a

stabilising effect in terms of an increase of the critical Reynolds. The

effect is the opposite for the second order model (K < 0), where the

instability is enhanced. The linear stability results for the second

order model, which is the one that predicts the correct sign of the

non-zero normal stress differences, are in qualitative agreement with

those obtained by Sureshkumar and Beris [80] and Zhang [96] for the

Poiseuille flow of other viscoelastic fluids.

In Chapter 1, we performed an energy balance. It is well known

that the non-linear terms of the incompressible Navier-Stokes equations

conserve energy. Therefore, in the Newtonian case, the energy balance

can be seen as a nonlinear theory, because it applies to disturbances

of arbitrary amplitude (Schmid and Henningson [77]). We showed

that nonlinear terms in the incompressible two-dimensional governing

equations for the second order models conserve energy.
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For the second grade model (K > 0), the stabilising effect is princi-

pally due to the production term which represents the energy transfer

from the mean flow to the perturbation. The opposite happens for the

second order model (K < 0), where the kinetic energy increases due to

an increase of the production term.

It is necessary not to ignore three-dimensional disturbances. For

Newtonian fluids, Squire’s theorem justifies the study of two-dimen-

sional instead of three-dimensional disturbances. However, this result

for second order fluids cannot be proven. We showed that a positive

elasticity number K destabilises spanwise disturbances while it stabilises

the two-dimensional Tollmien-Schlichting waves. The opposite happens

for a negative K, which decreases the growth rates of mainly streamwise

independent waves and increases the growth rates of mainly spanwise

independent waves.

In Chapter 2, we extended the linear stability analysis to include

the bypass transition scenario. A feature of nonnormal systems, which

are governed by nonnormal operators, is that the eigenspectrum does

not fully describe the whole dynamics. For flows dominated by shear

forces, such as the Blasius flow, there can be transient amplification of

energy due to non-orthogonal eigenfunctions (Trefethen et al. [90]).

In order to give a complete idea of the linear stability characteristics,

the potential transient growth of energy cannot be ignored. Over the

last few decades, a lot of work has been done for Newtonian fluids. To

the best of our knowledge, the transient growth of viscoelastic fluids in

boundary layers has not been investigated in the past.

In this work, the initial-value problem that drives the development

of disturbances is derived for second order fluids following, for example,

Schmid and Henningson [77]. This formulation permits the study of the

behaviour of general solutions, not only single eigenmodes. The resulting

system of equations, unlike in the Newtonian case, is now fully coupled.

In order to quantify the tendency of the flow to transient growth, we

defined the maximum possible amplification of energy density, G, and

the global optimum, Gmax, which is the maximum amplification over

all time.
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Once again, the numerical techniques used for the results in Chap-

ter 2 rely heavily on the Chebyshev collocation method. In the New-

tonian case, our results agree with those obtained by Schmid [74] for

Blasius flow and by Corbett and Bottaro [16] for Falkner-Skan flows.

We showed that for the second grade model (K > 0) an increase of

the non-Newtonian parameter K provokes an increase of the maximum

transient growth, G, while the second order model (K < 0) has the

opposite behaviour. The results are qualitatively similar for all values

of the angle parameter, βH . The largest amplification of energy is

still reached for streamwise independent disturbances (zero streamwise

wavenumber), as in the Newtonian case.

Non-Newtonian terms mostly affect streamwise independent distur-

bances. For K > 0 the global optimum, Gmax, is reached for larger

times and for shorter waves (larger spanwise wavenumber) than in

the Newtonian case. On the contrary, for K < 0 the global optimum

is reached for shorter times and for longer waves (smaller spanwise

wavenumber).

Chapter 3 is dedicated to the verification of the linear stability

results obtained in Chapter 1 by means of Direct Numerical Simulations

(DNS). Following Davies and Carpenter [19], the disturbance equations

for second order fluids are rewritten in a compact velocity-vorticity

formulation, where the number of variables in the system is reduced.

The resulting formulation consists of three equations involving only

two vorticity components and one velocity component. We made sure

that, as for Newtonian fluids, this formulation is equivalent to the full

governing equations.

The flow is disturbed by a temporally localised forced impulse.

After the assumption of a normal mode form for the disturbances in the

streamwise and spanwise directions, the variables are expanded in terms

of Chebyshev polynomials. We employ a mapping from the physical

wall-normal coordinate to the computational coordinate and integrate

the equations twice. A comparison between the temporal growth rates

obtained with the DNS and the ones given by the eigenvalue analysis

was presented. We performed several tests of this type, varying the
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angle parameter, βH , and the non-Newtonian parameter, K. All the

results show a remarkable agreement with those obtained from the

eigenvalue analysis performed in Chapter 1.

The flow of more complex viscoelastic fluids have been considered

in Chapter 4. The second order model has been chosen as a “toy

problem” for its simplicity and the possibility of applying a boundary

layer approximation similarly to Newtonian fluids. Although this model

gives an idea of the effects of non-zero normal stress differences on the

stability of boundary layers, it is not used in practice.

As rheologically more complex viscoelastic fluids, we chose the UCM,

Oldroyd B, PTT and Giesekus models. The first step was to write a

single constitutive equation to represent them all. The application of a

boundary layer theory to these models presents some difficulties that

we pointed out in Chapter 4. We chose, as a starting point, to consider

the case of a porous boundary layer. When uniform suction is applied

over a large area through the surface an asymptotic suction boundary

layer (ASBL) develops at some distance from the leading edge. For

Newtonian fluids, the ASBL equations has an analytical solution.

We showed that, by applying a similar theory to the viscoelastic

models considered, an exponential analytical solution can be obtained

for the UCM and Oldroyd B models. For the remaining and more

complicated models, the equations simplify considerably and were solved

numerically.

The natural progression of this work is the investigation of the

linear stability properties of the UCM, Oldroyd B, PTT and Giesekus

models in boundary layers. A linear stability analysis can be carried

out starting from the mean flow profiles obtained by applying the ASBL

theory. In particular, it will be interesting to study how the different

non-Newtonian features represented by these models can affect the

modal and nonmodal linear stability.



APPENDIX A

Some algebraic manipulation

In this appendix, we derive some of the equations used throughout

this thesis.

A.1. Steady two-dimensional equations of motion

In this section, we derive the two-dimensional steady governing equa-

tions, starting from the general balance of linear momentum (1.4) and

continuity equation (1.5) and making use of the constitutive equation

for a second order model (1.1). In the steady case, the left-hand side of

the balance of linear momentum (1.4) written component-wise is(
ρ

Dv

Dt

)
1

= ρ ((v · ∇) v)1 = ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
,(

ρ
Dv

Dt

)
2

= ρ ((v · ∇) v)2 = ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
.

By substituting the expression for the stress tensor (1.1) and using the

relation α1 + α2 = 0, the right-hand side of equation (1.4) becomes

∇ · σ = −∇p+ µ∇ · A1 + α1∇ ·
(
A2 − A2

1

)
.

Since v is divergence free, we obtain

∇ · A1 = ∆v =

[
∆u

∆v

]
,

where ∆ is the Laplacian operator, and

∇ ·
(
A2 − A2

1

)
= ∇ ·

(
(v · ∇)A1 +∇v∇vT −∇vT∇v

)
. (A.1)

We have the following identities:

(v · ∇)∇vT =

[
u∂

2u
∂x2 + v ∂2u

∂x∂y
u ∂2u
∂x∂y

+ v ∂
2u
∂y2

u ∂
2v
∂x2 + v ∂2v

∂y∂x
u ∂2v
∂x∂y

+ v ∂
2v
∂y2

]
,
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(v · ∇)∇v =

[
u∂

2u
∂x2 + v ∂2u

∂x∂y
u ∂

2v
∂x2 + v ∂2v

∂x∂y

u ∂2u
∂x∂y

+ v ∂
2u
∂y2 u ∂2v

∂x∂y
+ v ∂

2v
∂y2

]
,

∇v∇vT =

[ (
∂u
∂x

)2
+
(
∂v
∂x

)2 ∂u
∂x

∂u
∂y

+ ∂v
∂x

∂v
∂y

∂u
∂x

∂u
∂y

+ ∂v
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(
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)2
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(
∂v
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)2
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,

∇vT∇v =

[ (
∂u
∂x

)2
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(
∂u
∂y

)2 ∂u
∂x

∂v
∂x

+ ∂u
∂y

∂v
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∂u
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∂v
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∂y
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(
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)2
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(
∂v
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)2

]
.

Then, the first component of equation (A.1) is

(
∇ ·
(
A2 − A2

1

))
1

=
∂

∂x

(
2u
∂2u

∂x2
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.

The second component of (A.1) is

(
∇ ·
(
A2 − A2

1
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2
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∂
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Therefore, governing equations (1.6) are obtained:

∂u

∂x
+
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= 0

u
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All the calculations in this section have been checked with MAPLE [50].

A.2. Boundary layer approximation

We derive the boundary layer equations for a second order model. We

denote L as the x-scale of variation and δ to be the characteristic

length in the y-direction. From the continuity equation (1.6a), we

deduce that the wall-normal velocity v is of order δU/L. Taking U and

L to be of order 1, we write the orders of magnitude of the various

terms underneath each equation. The momentum equation in the

x-direction (1.6b) is

u
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∂y
=− 1

ρ

∂p

∂x
+
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ρ

(
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∂x2
+
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)
(A.3)

1 1 δ2 1
1

δ2



178 A. SOME ALGEBRAIC MANIPULATION
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The momentum equation in the y-direction (1.6c) is
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Retaining the terms of order 1 from the first equation (A.3), we obtain

the following

u
∂u

∂x
+ v

∂u

∂y
=− 1

ρ

∂p

∂x
+
µ

ρ

(
∂2u

∂y2

)
+
α1

ρ

[
∂2

∂y2

(
u
∂u

∂x
+ v

∂u

∂y

)
(A.5)
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At leading order, the equation (A.4) gives

0 = −1

ρ

∂p

∂y
+
α1

ρ

∂

∂y

((
∂u

∂y

)2
)
.

Defining

p1 = p− α1

ρ

(
∂u

∂y

)2

,

we have that p1 depends only on x. We take the limit of Equation (A.5)

as y →∞, and we get

−1

ρ

∂p1

∂x
= Ue

dUe
dx

.

where Ue is the free-stream velocity.

Combining equation (A.5) with the equation for p̃, we obtain the

boundary layer approximation (1.8):
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A.3. Useful identities in 3D

In this section we derive some identities useful to derive the stability

equations for three-dimensional disturbances, which will be done in

Section A.4. The left-hand side of the balance of linear momentum

(1.4) can be written component-wise as follows(
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Substituting the expression for the stress tensor (1.1) and making

use of relation (1.3), the right-hand side of equation (1.4) becomes

∇ · σ = −∇p+ µ∇ · A1 + α1∇ ·
(
A2 − A2

1

)
.
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Since v is divergence free, the viscous term becomes

∇ · A1 = ∆v =

 ∆u

∆v

∆w

 ,
where ∆ is the Laplacian operator. The non-Newtonian term multiplied

by α1 becomes

∇ ·
(
A2 − A2

1

)
= ∇ ·

(
∂A1

∂t
+ (v · ∇)A1 +∇v∇vT −∇vT∇v

)
.

The gradient of the velocity field is a tensor that can be written as

follows

∇v =


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 ,
Therefore, we obtain the following identities:

(v · ∇)∇vT =

 u∂
2u
∂x2 + v ∂2u

∂x∂y
+ w ∂2u

∂x∂z
u ∂2u
∂x∂y

+ v ∂
2u
∂y2 + w ∂2u

∂y∂z
u ∂2u
∂x∂z

+ v ∂2u
∂y∂z

+ w ∂2u
∂z2

u ∂
2v
∂x2 + v ∂2v

∂y∂x
+ w ∂2v

∂z∂x
u ∂2v
∂x∂y

+ v ∂
2v
∂y2 + w ∂2v

∂y∂z
u ∂2v
∂x∂z

+ v ∂2v
∂y∂z

+ w ∂2v
∂z2

u∂
2w
∂x2 + v ∂2w

∂y∂x
+ w ∂2w

∂z∂x
u ∂2w
∂x∂y

+ v ∂
2w
∂y2 + w ∂2w

∂y∂z
u ∂2w
∂x∂z

+ v ∂2w
∂y∂z

+ w ∂2w
∂z2

 ,

(v · ∇)∇v =

 u∂
2u
∂x2 + v ∂2u

∂x∂y
+ w ∂2u

∂x∂z
u ∂

2v
∂x2 + v ∂2v

∂y∂x
+ w ∂2v

∂x∂z
u∂

2w
∂x2 + v ∂2w

∂y∂x
+ w ∂2w

∂z∂x

u ∂2u
∂x∂y

+ v ∂
2u
∂y2 + w ∂2u

∂z∂y
u ∂2v
∂x∂y

+ v ∂
2v
∂y2 + w ∂2v

∂y∂z
u ∂2w
∂x∂y

+ v ∂
2w
∂y2 + w ∂2w

∂z∂y

u ∂2u
∂x∂z

+ v ∂2u
∂y∂z

+ w ∂2u
∂z2 u ∂2v

∂x∂z
+ v ∂2v

∂y∂z
+ w ∂2v

∂z2 u ∂2w
∂x∂z

+ v ∂2w
∂y∂z

+ w ∂2w
∂z2

 ,

∇v∇vT =


(
∂u
∂x

)2
+
(
∂v
∂x

)2
+
(
∂w
∂x

)2 ∂u
∂x

∂u
∂y

+ ∂v
∂x

∂v
∂y

+ ∂w
∂x

∂w
∂y

∂u
∂x

∂u
∂z

+ ∂v
∂x

∂v
∂z

+ ∂w
∂x

∂w
∂z

∂u
∂x

∂u
∂y

+ ∂v
∂x

∂v
∂y

+ ∂w
∂x

∂w
∂y

(
∂u
∂y

)2

+
(
∂v
∂y

)2

+
(
∂w
∂y

)2
∂u
∂y

∂u
∂z

+ ∂v
∂z

∂v
∂y

+ ∂w
∂z

∂w
∂y

∂u
∂x

∂u
∂z

+ ∂v
∂x

∂v
∂z

+ ∂w
∂x

∂w
∂z

∂u
∂y

∂u
∂z

+ ∂v
∂z

∂v
∂y

+ ∂w
∂z

∂w
∂y

(
∂u
∂z

)2
+
(
∂v
∂z

)2
+
(
∂w
∂z

)2

 ,

∇vT∇v =


(
∂u
∂x

)2
+
(
∂u
∂y

)2

+
(
∂u
∂z

)2 ∂u
∂x

∂v
∂x

+ ∂u
∂y

∂v
∂y

+ ∂u
∂z

∂v
∂z

∂u
∂x

∂w
∂x

+ ∂u
∂y

∂w
∂y

+ ∂u
∂z

∂w
∂z

∂u
∂x

∂v
∂x

+ ∂u
∂y

∂v
∂y

+ ∂u
∂z

∂v
∂z

(
∂v
∂x

)2
+
(
∂v
∂y

)2
+
(
∂v
∂z

)2 ∂w
∂x

∂v
∂x

+ ∂w
∂y

∂v
∂y

+ ∂w
∂z

∂v
∂z

∂u
∂x

∂w
∂x

+ ∂u
∂y

∂w
∂y

+ ∂u
∂z

∂w
∂z

∂w
∂x

∂v
∂x

+ ∂w
∂y

∂v
∂y

+ ∂w
∂z

∂v
∂z

(
∂w
∂x

)2
+
(
∂w
∂y

)2
+
(
∂w
∂z

)2

 .
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A.4. Three-dimensional stability equations

In this section, we derive the three-dimensional stability equations, in

the form of an eigenvalue problem (1.27) and in the form of an initial-

value problem (2.2). The modified Orr-Sommerfeld equation (1.22) can

be obtained as a particular case.

The unsteady and three-dimensional equation of motions for a second

grade fluid derived from equations (1.4), (1.5) and Definition (1.1), after

applying the non-dimensionalisation (1.20), can be written as follows

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

Du

Dt
= −∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

,

Dv

Dt
= −∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

,

Dw

Dt
= −∂p

∂z
+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

,

(A.6)

where Tij are components of the extra-stress tensor T = σ + pI, with

σ stress tensor defined by Equation (1.1). Therefore, the normalised

extra-stress tensor T can be written as

T =
1

Re0

A1 +K0

(
A2 −A2

1

)
,

where A1 and A2 are given by definitions (1.2). Then, using identities

that can be found in Appendix A.3, we have

Txx =
2

Re0

∂u

∂x
+K0

[
2
∂2u

∂t∂x
+ 2u

∂2u

∂x2
+ 2v

∂2u

∂x∂y
+ 2w

∂2u

∂x∂z

+

(
∂v

∂x

)2

−
(
∂u

∂y

)2

+

(
∂w

∂x

)2

−
(
∂u

∂z

)2
]
,

Txy =
1

Re0

(
∂u

∂y
+
∂v

∂x

)
+K0

[
∂2u

∂t∂y
+

∂2v

∂t∂x
+ u

∂2u

∂x∂y
+ v

∂2u

∂y2

+ w
∂2u

∂y∂z
+ u

∂2v

∂x2
+ v

∂2v

∂x∂y
+ w

∂2v

∂x∂z
+
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y

+
∂w

∂x

∂w

∂y
− ∂u

∂x

∂v

∂x
− ∂u

∂y

∂v

∂y
− ∂u

∂z

∂v

∂z

]
,
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Txz =
1

Re0

(
∂w

∂x
+
∂u

∂z

)
+K0

[
∂2w

∂t∂x
+

∂2u

∂t∂z
+ u

∂2u

∂x∂z
+ v

∂2u

∂y∂z

+ w
∂2u

∂z2
+ u

∂2w

∂x2
+ v

∂2w

∂y∂x
+ w

∂2w

∂z∂x
+
∂u

∂x

∂u

∂z
+
∂v

∂x

∂v

∂z

+
∂w

∂x

∂w

∂z
− ∂u

∂x

∂w

∂x
− ∂u

∂y

∂w

∂y
− ∂u

∂z

∂w

∂z

]
,

Tyy =
2

Re0

∂v

∂y
+K0

[
2
∂2v

∂t∂y
+ 2v

∂2v

∂y2
+ 2u

∂2v

∂x∂y
+ 2w

∂2v

∂y∂z

+

(
∂u

∂y

)2

−
(
∂v

∂x

)2

+

(
∂w

∂y

)2

−
(
∂v

∂z

)2
]
,

Tyz =
1

Re0

(
∂w

∂y
+
∂v

∂z

)
+K0

[
∂2w

∂t∂y
+

∂2v

∂t∂z
+ u

∂2v

∂x∂z
+ v

∂2v

∂y∂z

+ w
∂2v

∂z2
+ u

∂2w

∂x∂y
+ v

∂2w

∂y2
+ w

∂2w

∂z∂y
+
∂u

∂y

∂u

∂z
+
∂v

∂z

∂v

∂y

+
∂w

∂z

∂w

∂y
− ∂w

∂x

∂v

∂x
− ∂w

∂y

∂v

∂y
− ∂w

∂z

∂v

∂z

]
,

Tzz =
2

Re0

∂w

∂z
+K0

[
2
∂2w

∂t∂z
+ 2u

∂2w

∂x∂z
+ 2v

∂2w

∂y∂z
+ 2w

∂2w

∂z2

+

(
∂u

∂z

)2

+

(
∂v

∂z

)2

−
(
∂w

∂x

)2

−
(
∂w

∂y

)2
]
.

We assume a parallel and steady base flow and we decompose

the velocity components and the pressure into base field and small

disturbances as follows

u = UB(y) + εũ(x, y, z, t),

v = εṽ(x, y, z, t),

w = εw̃(x, y, z, t),

p = PB(x) + εp̃(x, y, z, t),

where ε is a small positive parameter and UB, PB represent mean stream-

wise velocity and pressure, respectively. By substituting these decompo-

sitions and retaining terms of order O(ε) in the system (A.6), we obtain
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the equations for the disturbance velocities ũ, ṽ, w̃ and pressure p̃

∂ũ

∂x
+
∂ṽ

∂y
+
∂w̃

∂z
= 0,

∂ũ

∂t
+ UB

∂ũ

∂x
+ U ′B ṽ = −∂p̃

∂x
+
∂T̃xx
∂x

+
∂T̃xy
∂y

+
∂T̃xz
∂z

,

∂ṽ

∂t
+ UB

∂ṽ

∂x
= −∂p̃

∂y
+
∂T̃xy
∂x

+
∂T̃yy
∂y

+
∂T̃yz
∂z

,

∂w̃

∂t
+ UB

∂w̃

∂x
= −∂p̃

∂z
+
∂T̃xz
∂x

+
∂T̃yz
∂y

+
∂T̃zz
∂z

,

(A.7)

where

T̃xx =
2

Re0

∂ũ

∂x
+K0

(
2
∂2ũ

∂t∂x
+ 2UB

∂2ũ

∂x2
− 2U ′B

∂ũ

∂y

)
,

T̃xy =
1

Re0

(
∂ũ

∂y
+
∂ṽ

∂x

)
+K0

(
∂2ũ

∂t∂y
+

∂2ṽ

∂t∂x
+ UB

∂2ũ

∂x∂y

+ U ′′B ṽ + UB
∂2ṽ

∂x2
+ U ′B

∂ũ

∂x
− U ′B

∂ṽ

∂y

)
,

T̃xz =
1

Re0

(
∂w̃

∂x
+
∂ũ

∂z

)
+K0

(
∂2w̃

∂t∂x
+

∂2ũ

∂t∂z
+ UB

∂2ũ

∂x∂z

+ UB
∂2w̃

∂x2
− U ′B

∂

∂y

)
,

T̃yy =
2

Re0

∂ṽ

∂y
+K0

(
2
∂2ṽ

∂t∂y
+ 2UB

∂2ṽ

∂x∂y
+ 2U ′B

∂ũ

∂y

)
,

T̃yz =
1

Re0

(
∂w̃

∂y
+
∂ṽ

∂z

)
+K0

(
∂2w̃

∂t∂y
+

∂2ṽ

∂t∂z
+ UB

∂2ṽ

∂x∂z

+ UB
∂2w̃

∂x∂y
+ U ′B

∂ũ

∂z

)
,

T̃zz =
2

Re0

∂w̃

∂z
+K0

(
2
∂2w̃

∂t∂z
+ 2UB

∂2w̃

∂x∂z

)
.

Taking the normal mode form for the perturbations

(ũ, ṽ, w̃, p̃) = (û(t, y), v̂(t, y), ŵ(t, y), p̂(t, y)) ei(αx+βz),
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substituting and dividing by the exponential term, the components of

the extra-stress tensor become

T̂xx =
2

Re0

iαû+K0

(
2iαût − 2α2UBû− 2U ′BDû

)
,

T̂xy =
1

Re0

(Dû+ iαv̂) +K0

(
Dût + iαv̂t + iαUBDû

+ U ′′Bv − α2UB v̂ + iαU ′Bû− U ′BDv̂
)
,

T̂xz =
1

Re0

(iαŵ + iβû) +K0

(
iαŵt + iβût − αβUBû

− α2UBŵ − U ′BDŵ
)
,

T̂yy =
2

Re0

Dv̂ +K0 (2Dv̂t + 2iαUBDv̂ + 2U ′BDû) ,

T̂yz =
1

Re0

(Dŵ + iβv̂) +K0

(
Dŵt + iβv̂t − αβUB v̂

+ iαUBDŵ + iβU ′Bû
)
,

T̂zz =
2

Re0

iβŵ +K0 (2iβŵt − 2αβUBŵ) ,

where D denotes the derivative with respect to y and the subscript

t denotes the derivative with respect to t. Therefore, the continuity

equation in the system (A.7) becomes

iαû+Dv̂ + iβŵ = 0,

and the equations of motion in the system (A.7) become

ût + iαUBû+ U ′B v̂ = −iαp̂+
1

Re0

(
D2û− k2û

)
+K0

(
D2ût − k2ût − iαk2UBû+ iαUBD2û

+ U ′′′B v̂ − α2U ′B v̂ + iαU ′′Bû+ iαU ′BDû
)
, (A.8)

v̂t + iαUB v̂ = −Dp̂+
1

Re0

(
D2v̂ − k2v̂

)
+K0

(
D2v̂t − k2v̂t + iαU ′′B v̂ − iαk2UB v̂ − k2U ′Bû

+ iαU ′BDv̂ + iαUBD2v̂ + 2U ′′BDû+ 2U ′BD2û
)
, (A.9)



A.4. THREE-DIMENSIONAL STABILITY EQUATIONS 185

ŵt + iαUBŵ = −iβp̂+
1

Re0

(
D2ŵ − k2ŵ

)
+K0

(
D2ŵt − k2ŵt − iαk2UBŵ − αβU ′B v̂

+ iαUBD2ŵ + iβU ′′Bû+ iβU ′BDû
)
. (A.10)

We eliminate the pressure from the equations by introducing the wall-

normal vorticity η̂ = iβû− iαŵ. First, we multiply equation (A.8) by

iβ and subtract iα times equation (A.10), which yields the following

equation for η̃

η̂t +K0

(
k2 −D2

)
η̂t = − iαUB η̂ − iβU ′B v̂ +

1

Re0

(
D2 − k2

)
η̂ (A.11)

+K0

(
iαUB

(
D2 − k2

)
η̂ + iβU ′′′B v̂

)
,

where k2 = α2 + β2. Then we multiply (A.8) by iα and sum iβ times

(A.10) and we obtain

−Dv̂t − iαUBDv̂ + iαU ′B v̂ = k2p̂+
1

Re0

(
k2 −D2

)
Dv̂

+K0

( (
k2 −D2

)
Dv̂t + iαU ′′′B v̂ − iαk2U ′B v̂

+ iαk2UBDv̂ − iαUBD3v̂ − k2U ′′Bû− k2U ′BDû
)
.

Deriving the last equation with respect to y, we get

−D2v̂t − iαUBD2v̂ + iαU ′′B v̂ = k2Dp̂+
1

Re0

(
k2 −D2

)
D2v̂

+K0

( (
k2 −D2

)
D2v̂t + iαU iv

B v̂ + iαU ′′′BDv̂ − iαk2U ′′B v̂

+ iαk2UBD2v̂ − iαU ′BD3v̂ − iαUBD4v̂

− k2U ′′′B û− 2k2U ′′BDû− k2U ′BD2û
)
.

We can now sum this equation to k2 times (A.9) in order to derive the

following equation for v̂

k2v̂t + iαk2UB v̂ = D2v̂t + iαUBD2v̂ − iαU ′′B v̂ −
1

Re0

(
k2 −D2

)2
v̂

+K0

(
−
(
k2 −D2

)2
v̂t + iαU iv

B v̂ + iαU ′′′BDv̂ + 2iαk2UD2v̂

− iαU ′BD3v̂ − iαUBD4v̂ − iαk4UB v̂ + iαk2U ′BDv̂

− k4U ′Bû− k2U ′′′B û+ k2U ′BD2û
)
.
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Rearranging terms and using û = i
k2 (αDv̂ − βη̂) we obtain(

k2 −D2
)
v̂t +K0

(
k2 −D2

)2
v̂t = −iαUB

(
k2 −D2

)
v̂

− iαU ′′B v̂ −
1

Re0

(
k2 −D2

)2
v̂ +K0

(
iαU iv

B v̂ − iαk4UB v̂

+ 2iαk2UBD2v̂ − iαUBD4v̂ + iβk2U ′B η̂ + iβU ′′′B η̂ − iβU ′BD2η̂
)
.

(A.12)

Therefore, the coupled equations (A.11) and (A.12) for η̂ and v̂ will

form the initial-value problem (2.5). We now assume a normal mode

form also in time, as follows

(v̂, η̂) = (v̂1(y), η̂1(y))e−iωt,

and define q = (v̂1, η̂1)
T . Then, we can rewrite equations (A.11)

and (A.12) as an eigenvalue problem, as follows

Lq = ωMq,

where M and L are linear operators defined as follows

L =

[
LOS LCN

LC LSQ

]
,

M =

[
k2 −D2 +K0 (k2 −D2)

2
0

0 1 +K0 (k2 −D2)

]
,

where

LOS = αUB
(
k2 −D2

)
+ αU ′′B +

1

iRe0

(
k2 −D2

)2

+K0

(
− αU iv

B + αk4UB − 2αk2UBD2 + αUBD4
)
,

LCN = K0

(
−βk2U ′B − βU ′′′B + βU ′BD2

)
,

LC = βU ′B −K0βU
′′′
B ,

LSQ = αUB +
1

iRe0

(
k2 −D2

)
+ αK0UB

(
k2 −D2

)
.

Therefore, we obtained the eigenvalue problem (1.27).

For two-dimensional disturbances β = 0 and the equation for the

wall-normal velocity v̂1, when written in terms of the stream function
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φ, reduces to the modified Orr-Sommerfeld equation (1.22), which is

(UB − c)(φ′′ − α2φ)− U ′′Bφ =
1

iαRe0

{
φiv − 2α2φ′′ + α4φ

}
+K0

{
(UB − c)(φiv − 2α2φ′′ + α4φ)− U iv

B φ
}
.

These calculations have been checked with MAPLE [50].

A.5. Conservation of energy

In this section we show that nonlinear terms do not enter the evolution

equation for the perturbation energy for the second grade models,

similarly to Newtonian fluids (Drazin [23]). Therefore, nonlinear terms

conserve energy and the energy balance can be obtained from the

linearised equations. We show this for two-dimensional disturbances

and we do not make any assumption on the mean flow nor on the

domain.

Let us denote with ui and Ui the perturbation velocity and the mean

flow velocity in the xi-direction, respectively. Then, we can write the

equation of motion for a second grade model in the xi-direction using

Einstein summation convention as follows

∂ui
∂t

= −uj
∂ui
∂xj
− Uj

∂ui
∂xj
− uj

∂Ui
∂xj
− ∂p

∂xi
+

1

Re0

∂2ui
∂x2

j

+K0
∂τij
∂xj

,

where τij are the components of the following tensor

τ = A2 −A2
1.

This formulation can be straightforwardly derived from equations (1.4),

(1.5) and definition (1.1). We isolate the time derivatives in τij as follows

τij = K0
∂

∂t

(
∂2ui
∂x2

j

)
+ τ ′ij,

where τ ′ij is the part of τij that does not include any derivative with

respect to time. Multiplying each motion equation by ui and summing

on the index i we obtain

1

2

∂u2

∂t
−K0

∂

∂t

(
ui
∂2ui
∂x2

j

)
=− uiuj

∂ui
∂xj
− uiUj

∂ui
∂xj
− uiuj

∂Ui
∂xj
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− ui
∂p

∂xi
+

1

Re0

ui
∂2ui
∂x2

j

+K0ui
∂τ ′ij
∂xj

.

Using ∇ ·U = 0 and ∇ · u = 0, we can rewrite it as follows

1

2

∂u2

∂t
−K0

∂

∂t

(
∂

∂xj

(
ui
∂ui
∂xj

)
−
(
∂ui
∂xj

)2
)

=

− 1

2

∂(u2
iuj)

∂xj
− 1

2

∂(u2
iUj)

∂xj
− uiujDij −

∂(uip)

∂xi

+
1

Re0

(
∂

∂xj

(
ui
∂ui
∂xj

)
−
(
∂ui
∂xj

)2
)

+K0ui
∂τ ′ij
∂xj

, (A.13)

where Dij is the mean rate-of-strain defined as follows

Dij =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
.

We define the total energy of the perturbation contained in a volume V

as follows

E =

∫
V

1

2
u2dV +K0

∫
V

(
∂ui
∂xj

)2

dV,

and the evolution equation for the disturbance kinetic energy is obtained

by integrating equation (A.13) over the volume V . In the Newtonian

case, where K0 = 0, the energy E reduces to the kinetic energy and all

cubic terms that derive from the nonlinear terms are integrated out by

assuming the disturbance to be localised or spatially periodic and using

Gauss’ theorem.

In the non-Newtonian case, where K0 6= 0, integrating equation

(A.13) over V we obtain

∂E

∂t
=

∫
V

(
−uiujDij −

1

Re0

(
∂ui
∂xj

)2

+K0ui
∂τ ′ij
∂xj

)
dV.

We focus on two-dimensional disturbances, and we show that only the

linear terms coming from the term ui
∂τ ′ij
∂xj

will appear in the energy

evolution equation. We expand the non-Newtonian contribution to the

energy equation (A.13) as follows

ui
∂τ ′ij
∂xj

= Nl +Nnl,
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where Nl are the terms resulting from the linear terms that we do

not report here for brevity and Nnl are cubic terms resulting from the

nonlinear terms that can be written explicitly as follows

Nnl = 2u
∂2f

∂x2
+ 2v

∂2g

∂y2︸ ︷︷ ︸
A

+u
∂2f

∂y2
+ v

∂2g

∂x2︸ ︷︷ ︸
B

+ u
∂2g

∂x∂y
+ v

∂2f

∂x∂y︸ ︷︷ ︸
C

+ 2u
∂h

∂y
+ 2v

∂h

∂x︸ ︷︷ ︸
D

+ u
∂l

∂x
+ u

∂m

∂x
− v ∂l

∂y
+ v

∂m

∂y︸ ︷︷ ︸
E

,

with f, g, h, l and m are functions introduced to simplify the calculations,

defined as follows

f = u
∂u

∂x
+ v

∂u

∂y
,

g = u
∂v

∂x
+ v

∂v

∂y
,

h =
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y
,

l =

(
∂v

∂x

)2

−
(
∂u

∂y

)2

,

m = −2

(
∂u

∂x

)2

− 2
∂v

∂x

∂u

∂y
.

Using the continuity equation, A+C becomes

A+C = 2u
∂2f

∂x2
+ 2v

∂2g

∂y2
+ u

∂2g

∂x∂y
+ v

∂2f

∂x∂y

=
∂

∂x

(
u
∂f

∂x

)
+

∂

∂y

(
v
∂f

∂x

)
+

∂

∂x

(
u
∂g

∂y

)
+

∂

∂y

(
v
∂g

∂y

)
+ u

∂2f

∂x2
+ v

∂2g

∂y2︸ ︷︷ ︸
F

.
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All the terms that can be written as a divergence will be integrated out,

therefore we consider only F that can be rewritten as

F = u
∂

∂x

(
u
∂2u

∂x2
+

(
∂u

∂x

)2

+ v
∂2u

∂x∂y
+
∂v

∂x

∂u

∂y

)

+ v
∂

∂y

(
u
∂2v

∂x∂y
+

(
∂v

∂y

)2

+ v
∂2v

∂y2
+
∂v

∂x

∂u

∂y

)

= u
∂

∂x

(
u
∂2u

∂x2
+ v

∂2u

∂x∂y

)
− v ∂

∂y

(
u
∂2u

∂x2
+ v

∂2u

∂x∂y

)
+

∂

∂x

(
u

(
∂u

∂x

)2

+ u
∂v

∂x

∂u

∂y

)
+

∂

∂y

(
u

(
∂u

∂x

)2

+ u
∂v

∂x

∂u

∂y

)

=
∂

∂x

(
u

(
∂u

∂x

)2

+ u
∂v

∂x

∂u

∂y
+ u2∂

2u

∂x2
+ uv

∂2u

∂x∂y

)

+
∂

∂y

(
u

(
∂u

∂x

)2

+ u
∂v

∂x

∂u

∂y
− u2∂

2u

∂x2
− uv ∂

2u

∂x∂y

)

+ 2
∂v

∂y

(
u
∂2u

∂x2
+ v

∂2u

∂x∂y

)
︸ ︷︷ ︸

G

.

B becomes

B = u
∂

∂y

(
u
∂2u

∂x∂y
+ v

∂2u

∂y2

)
+ v

∂

∂x

(
u
∂2v

∂x2
+ v

∂2v

∂x∂y

)
=
∂

∂y

(
u2 ∂

2u

∂x∂y
+ uv

∂2u

∂y2

)
+

∂

∂x

(
uv
∂2v

∂x2
+ v2 ∂2v

∂x∂y

)
−∂u
∂y

(
u
∂2u

∂x∂y
+ v

∂2u

∂y2

)
− ∂v

∂x

(
u
∂2v

∂x2
+ v

∂2v

∂x∂y

)
︸ ︷︷ ︸

H

.

D becomes

D = 2
∂uh

∂y
+ 2

∂vh

∂x
− 2

∂u

∂y
h− 2

∂v

∂x
h

= 2
∂uh

∂y
+ 2

∂vh

∂x
−2

(
∂u

∂y

)2
∂u

∂x
− 2

(
∂v

∂x

)2
∂v

∂y︸ ︷︷ ︸
I

.
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E becomes

E =
∂um

∂x
+
∂vm

∂y
+
∂ul

∂x
− ∂vl

∂y
− l ∂u

∂x
+ l

∂v

∂y

=
∂um

∂x
+
∂vm

∂y
+
∂ul

∂x
− ∂vl

∂y
+ 2l

∂v

∂y︸ ︷︷ ︸
J

.

Now, adding all the terms that are not yet expressed as a divergence,

we obtain

G + H + I + J = 2
∂v

∂y

(
u
∂2u

∂x2
+ v

∂2u

∂x∂y

)
− ∂u

∂y

(
u
∂2u

∂x∂y
+ v

∂2u

∂y2

)
− ∂v

∂x

(
u
∂2v

∂x2
+ v

∂2v

∂x∂y

)
= u

(
2
∂v

∂y

∂2u

∂x2
− ∂u

∂y

∂2u

∂x∂y
− ∂v

∂x

∂2v

∂x2

)
+ v

(
2
∂v

∂y

∂2u

∂x∂y
− ∂u

∂y

∂2u

∂y2
− ∂v

∂x

∂2v

∂x∂y

)
= − u ∂

∂x

((
∂u

∂x

)2

+
1

2

(
∂u

∂y

)2

+
1

2

(
∂v

∂x

)2
)

− v ∂
∂y

((
∂v

∂y

)2

+
1

2

(
∂u

∂y

)2

+
1

2

(
∂v

∂x

)2
)

= − ∂

∂x

(
u

(
∂u

∂x

)2

+
1

2
u

(
∂u

∂y

)2

+
1

2
u

(
∂v

∂x

)2
)

− ∂

∂y

(
v

(
∂v

∂y

)2

+
1

2
v

(
∂u

∂y

)2

+
1

2
v

(
∂v

∂x

)2
)
.

All the nonlinear terms have been written as divergence. Using Gauss’

divergence theorem and the boundary conditions, these terms will

disappear once they are integrated over the domain.
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A.6. Energy balance

In this section, we derive an energy balance for the second order fluids.

Consider the modified Orr-Sommerfeld equation (1.22)

(UB − c)
(
φ′′ − α2φ

)
− U ′′Bφ =

1

iαRe0

{
φiv − 2α2φ′′ + α4φ

}
+K0

{
(UB − c)

(
φiv − 2α2φ′′ + α4φ

)
− U iv

B φ
}
. (A.14)

Multiplying by the complex conjugate φ̄, integrating with respect to y

and using the homogeneous boundary conditions the left hand side of

Equation (A.14) becomes∫ ∞
0

(
(UB − c)φ′′φ̄− α2 (UB − c) |φ|2 − U ′′B|φ|2

)
dy =

= c
(
I2

1 + α2I2
0

)
−
∫ ∞

0

(
U ′Bφ

′φ̄+ UB|φ′|2 +
(
U ′′B + α2UB

)
|φ|2
)
dy,

where we defined

I2
k =

∫ ∞
0

|φ(k)|2 dy for k = 0, 1, 2.

Integration of the viscous terms in Equation (A.14) gives∫ ∞
0

(
φivφ̄− 2α2φ′′φ̄+ α4|φ|2

)
dy = I2

2 + 2α2I2
1 + α4I2

0 .

The non-Newtonian terms, multiplied by K0, in Equation (A.14) become∫ ∞
0

(
(UB − c)

(
φiv − 2α2φ′′ + α4φ

)
− U iv

B φ
)
dy =

= −c
(
I2

2 + 2α2I2
1 + α4I2

0

)
+

∫ ∞
0

(
U ′′Bφ

′′φ̄+ 2U ′Bφ
′′φ̄′ + 2α2U ′Bφ

′φ̄
)
dy

+

∫ ∞
0

(
UB|φ′′|2 + 2α2UB|φ′|2 +

(
α4UB − U iv

B

)
|φ|2
)
dy.

Thus, we get

− iαRe0c
(
I2

1 + α2I2
0

)
= (−1 + iαcK0Re0)

(
I2

2 + 2α2I2
1 + α4I2

0

)
− iαRe0

∫ ∞
0

(
U ′Bφ

′φ̄+ UB|φ′|2 +
(
U ′′B + α2UB

)
|φ|2
)
dy

− iαK0Re0

∫ ∞
0

(
U ′′Bφ

′′φ̄+ 2U ′Bφ
′′φ̄′ + 2α2U ′Bφ

′φ̄+ UB|φ′′|2
)
dy



A.7. NON-DIMENSIONAL EQUATIONS FOR PTT & GIESEKUS MODELS 193

− iαK0Re0

∫ ∞
0

(
2α2UB|φ′|2 +

(
α4UB − U iv

B

)
|φ|2
)
dy.

We take the real part of this equation and use the following identities

for a complex number z = zr + izi

<(iz) = <(izr − zi) = −zi,

zi =
z − z̄

2i
= − i

2
(z − z̄).

We find

αRe0ci
(
I2

1 + α2I2
0

)
= − (1 + αciK0Re0)

(
I2

2 + 2α2I2
1 + α4I2

0

)
− iαRe0

2

∫ ∞
0

(
U ′B
(
φ′φ̄− φφ̄′

))
dy

− iαK0Re0

2

∫ ∞
0

(
U ′′B
(
φ′′φ̄− φφ̄′′

)
+ 2α2U ′B

(
φ′φ̄− φ′φ̄

))
dy

− iαK0Re0

2

∫ ∞
0

(
2U ′B

(
φ′′φ̄′ − φ′φ̄′′

))
dy.

Using integration by part, we obtain the energy balance (1.24):

αRe0ci
(
I2

1 + α2I2
0

)
+K0αRe0ci

(
I2

2 + 2α2I2
1 + α4I2

0

)
=

−
(
I2

2 + 2α2I2
1 + α4I2

2

)
− iαRe0

2

∫ ∞
0

(
U ′B
(
φ′φ̄− φφ̄′

))
dy

−iαK0Re0

2

∫ ∞
0

(
2U ′B

(
φ′′φ̄′ − φ′φ̄′′

)
+
(
2α2U ′B − U ′′′B

) (
φ′φ̄− φ′φ̄

))
dy.

A.7. Non-dimensional governing equations for the

PTT and Giesekus models

The ASBL equations for the PTT and the Giesekus models need to be

solved numerically. For the purpose of the linear stability analysis, we

non-dimensionalise the ASBL equations using the following transforma-

tions (4.8). Therefore, the equations obtained in Section 4.3.8 for the

linear PTT model become

du

dy
+
dτxy
dy

+ β
d2u

dy2
= 0

−∂p
∂y

+
1

Re

dτyy
dy

= 0
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where Re = Ue

V0
is the Reynolds number and the components of the

polymeric stress tensor are governed by

τxx −K
dτxx
dy
− 2Wi

du

dy
τxy + ξWi

du

dy
τxy + ε

Wi

1− β τxx (τxx + τyy) = 0

τxy −K
dτxy
dy
−Wi

du

dy
τyy + ξ

Wi

2

du

dy
(τxx + τyy)

+ ε
Wi

1− β τxy (τxx + τyy)− (1− β)
du

dy
= 0

τyy −K
dτyy
dy

+ ξWi
du

dy
τxy + ε

Wi

1− β τyy (τxx + τyy) = 0.

where Wi = λ1Ue

δ∗
= ρλ1UeV0

η0
is the Weissenberg number and K =

ρλ1V 2
0

η0
.

For the exponential PTT model, the motion equations do not change

from the linear case. However the elastic stress equations obtained in

Section 4.3.9 become

τxx −K
dτxx
dy
− 2Wi

du

dy
τxy + ξWi

du

dy
τxy

+

[
exp

(
ε

Wi

1− β (τxx + τyy)

)
− 1

]
τxx = 0

τxy −K
dτxy
dy
−Wi

du

dy
τyy + ξ

Wi

2

du

dy
(τxx + τyy)

+

[
exp

(
ε

Wi

1− β (τxx + τyy)

)
− 1

]
τxy − (1− β)

du

dy
= 0

τyy −K
dτyy
dy

+ ξWi
du

dy
τxy +

[
exp

(
ε

Wi

1− β (τxx + τyy)

)
− 1

]
τyy = 0.

For the Giesekus model, the equations obtained in Section 4.3.10

become

τxx −K
dτxx
dy
− 2Wi

du

dy
τxy + α

Wi

1− β
(
τ 2
xx + τ 2

xy

)
= 0

τxy −K
dτxy
dy
−Wi

du

dy
τyy + α

Wi

1− β τxy (τxx + τyy)− (1− β)
du

dy
= 0

τyy −K
dτyy
dy

+ α
Wi

1− β
(
τ 2
xy + τ 2

yy

)
= 0.
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lence). In Vorträge aus dem Gebiete der Aerodynamik und verwandter Gebiete,
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