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Gravitational waves from the coalescence of two black holes carry the signature of the strong field dynamics
of binary black holes. In this work we have used numerical relativity simulations and post-Newtonian theory to
investigate this dynamics. Post-Newtonian theory is a low-velocity expansion that assumes the companion bodies
to be point-particles, while numerical relativity treats black holes as extended objects with horizons and fully
captures their dynamics. There is a priori no reason for the waveforms computed using these disparate methods
to agree with each other, especially at late times when the black holes move close to the speed of light. We find,
remarkably, that the leading order amplitudes in post-Newtonian theory agree well with the full general relativity
solution for a large set of spherical harmonic modes, even in the most dynamical part of the binary evolution,
with only some modes showing distinctly different behavior than that found by numerical relativity simulations.
In particular, modes with spherical harmonic indices ` = m as well as ` = 2,m = 1 are least modified from their
dominant post-Newtonian behavior. Understanding the nature of these modes in terms of the post-Newtonian
description will aid in formulating better models of the emitted waveforms in the strong field regime of the
dynamics.

I. INTRODUCTION AND MOTIVATION

The Laser Interferometer Gravitational-Wave Observatory
(LIGO) at two sites in the USA (Hanford, WA and Livingston,
LA) and the Virgo detector in Pisa, Italy, have opened a new
era in multi-messenger astronomy and fundamental physics
via the discovery of binary black hole [1–5] and binary neutron
star [6] mergers. These discoveries have, for the first time,
enabled tests of dynamical gravity in the strongly dissipative
regime of the theory [3, 5, 7, 8], i.e. the period derivative of the
binary Ṗ changes very rapidly during the time of observation
(see Refs. [9–12]). This is in contrast to the Hulse-Taylor bi-
nary [13] where the change in period Ṗ is essentially constant.

Radio measurements of the rate at which the orbital period
decays in a binary neutron star allowed spectacular confirma-
tion of the quadrupole formula [14–17]. However, radio binary
pulsars probe the weak field sector of the two-body dynam-
ics1, wherein the dimensionless gravitational potential φ of
one of the bodies on the other is φ � 1, or, equivalently, the
speed v obeys v/c ∼

√
φ � 1. In contrast, gravitational wave

observations of the merger make it possible to test general
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1 We note that the self-gravity of the neutron stars, which must be taken

into account in the measurement of the various binary parameters, are
large. Indeed, the compactness of neutron stars given by the dimensionless
quantity C ≡ GMNS/c2RNS, where MNS is the mass of the neutron star and
RNS its radius, is about C ∼ 0.2. In this sense, the observations do probe the
strong field regime of general relativity; however, the two-body dynamics is
governed by weak fields.

relativity when φ ∼ 0.5 (the largest it ever gets) and the system
is strongly dissipative. Consequently, LIGO, Virgo, and other
future ground-based gravitational wave detectors (KAGRA
and LIGO-India) can test the validity of general relativity in
an entirely new regime of the theory.

A. Modeling binary black hole dynamics

The dynamics of a binary black hole consists of three phases:
inspiral, merger, and ringdown. Inspiral refers to the early
phase of the binary evolution when the effect of radiation re-
action on the orbital motion is small. The slow-motion, weak-
field dynamics of this phase, when the two black holes are far
apart, is well-modeled by post-Newtonian (PN) theory (see
Ref. [18] for a review) where all the observables are expressed
as a power series in v/c. The strong field dynamics close to the
merger and the dynamics of the highly deformed remnant black
hole can only be modeled using numerical relativity, where
one solves Einstein’s equation for the two-body problem using
numerical techniques (see Ref. [19] for a review). The ring-
down phase of the dynamics occurs when the remnant black
hole has become less deformed and can be well-approximated
as a perturbation of a Kerr black hole and modeled using black
hole perturbation theory (see Ref. [20] for a review).

The waveform emitted by an inspiralling compact binary
predominantly consists of the quadrupole mode. It was pointed
out that controlling the evolution of the orbital phase of the
dominant mode was far more important [21] for the detection
problem than controlling the correction to its amplitude or the
inclusion of higher order modes that contain wave frequencies
other than twice the orbital frequency of the quadrupole mode.
In this so-called restricted post-Newtonian approximation one
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neglects the correction to the amplitude of the waveform aris-
ing from higher order multipoles. However, higher modes are
critical for an unbiased estimation of both the intrinsic parame-
ters of a binary (e.g. companion masses and spins) but also the
orientation of the binary relative to a detector and its position
on the sky [22–26]. Waveforms based on this new information
could be useful to test general relativity in the high-curvature
regime of the theory, which is one of the principal goals of
gravitational wave astronomy.

Understanding the structure of the multipole modes and their
dependence on the intrinsic parameters of the binary will be
critical in building more refined waveform models and using
gravitational wave observations to test predictions of general
relativity in dynamical spacetimes.

B. Imprints of progenitors on the black hole ringdown
spectrum: Past studies

Previous studies [27, 28] found that the properties of the
progenitor system such as the symmetric mass ratio η =

m1m2/(m1 + m2)2 (where m1,2 denote the binary component
masses) or mass ratio-weighted combinations of component
spins (referred to as “effective spin” parameter) leave their
unique imprints on various ringdown modes of the remnant
black hole. More specifically, Ref. [27] had found that for
mergers of nonspinning black holes, the amplitudes of the four
strongest modes, (2,2), (2,1), (3,3), (4,4), continue to depend
on mass ratio even 15M after the luminosity of the (2,2) mode
peaks. In a follow-up work, Ref. [28] further investigated bi-
naries whose component spins are aligned with the orbital
angular momentum. The authors found that the relative ampli-
tude of the (2,1) mode 10M after the peak luminosity could
be captured by a fitting formula with two variables: η and an
effective spin parameter.

While the fitting function for the (2,2) mode in Ref. [27]
was based on physical intuition gained from PN theory, the
ansatz for the other modes were based on fits to the numerical
data. Similarly, [28] uses a functional form for the (2,1) mode
inspired by PN theory including not only symmetric mass ratio,
but also spin dependencies. Achieving a good fit required an
effective spin combination that was slightly different from the
one found in PN approximation [29]. These results pointed
to the interesting possibility of inferring the properties of the
progenitor black holes just from the late ringdown signal.

Following a different approach [30], London et al. studied
the η-dependence of the higher modes of the post-merger ampli-
tudes. Their study is based on fitting the amplitudes of higher
modes from numerical relativity simulations to high-order poly-
nomials in the symmetric mass ratio. Such fits are useful in
building analytical models of the post-merger waveforms. In-
deed, in a more recent study [31], London et al. developed a
new phenomenological waveform model that includes higher
modes.

C. Present work

In the present work we use a combination of numerical rel-
ativity simulations and PN theory to study the evolution of
different modes of gravitational waves as a function of time,
mass ratio and mode-dependent “effective spin” parameters
(see Eq. 3.9). The phase evolution of each mode, being a mul-
tiple of the orbital phase, is essentially the same for all modes
and has been amply treated in the literature; we, therefore,
restrict our study entirely to the mode amplitudes. The two
gravitational wave polarisations h+ and h× from an inspiralling
binary are, in principle, composed of infinitely many modes as
exemplified by the relation [32]

h+ − i h× =

∞∑
`=2

∑̀
m=−`

h`m −2Y`m(θ, φ) , (1.1)

where −2Y`m are the −2 spin-weighted spherical harmonics,
(θ, φ) define the direction of propagation of the wave, and
h`m are the spherical harmonic wave modes. Although the
quadrupole (`,m) = (2, 2) is the dominant mode, higher order
modes can have comparable, albeit smaller, amplitudes relative
to the quadrupole when the component masses are very differ-
ent or the compact objects have significant spin. In the inspiral
regime, using a cocktail of approximation schemes, PN theory
provides an effective framework to relate the radiative mul-
tipoles observed at infinity to the source multipoles [18, 33],
thereby expressing the observed gravitational waveform in
terms of the multipole moments of the source.

Kelly and Baker [34] investigated the effects of mode mixing
between the spherical harmonics, used in numerical relativity
and PN theory, and spheroidal harmonics. The latter capture
the axial symmetry of the Kerr spacetime and hence are a
more suitable basis to describe perturbations of the Kerr metric
during the ringdown. In particular, they showed that the (3, 2)
spherical harmonic mode has significant contributions from
different spheroidal harmonic modes, which is referred to as
mode mixing. A spheroidal harmonic decomposition renders
the modes to fall off more smoothly as a function of time,
thus allowing a more simplified modeling of the waveform.
While this is true, we provide an alternative interpretation of
mode mixing as arising due to the failure of the point particle
description of PN theory close to the formation of a common
horizon.

This formation marks a rather intriguing transition in the
binary black hole dynamics: from the perturbative dynamics of
the two black holes to the perturbative dynamics of the remnant
black hole via this highly non-perturbative merger. This transi-
tion is captured in the full general relativity solution, provided
by numerical relativity simulations that by design track the
dynamics of black hole horizons. Hence, given the availability
of numerical relativity catalogs for binary black hole merg-
ers, it is interesting to ask how the information about the two
black holes, encoded in PN expressions, propagates from the
inspiral to the merger and ringdown phases and whether with
just observing the latter two, one can infer the properties of
the binary components. Here, extending the works of [27, 28],
we compare several spherical harmonic mode amplitudes from
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SXS numerical simulations [35] with the leading terms in the
corresponding PN expressions; allowing for one free parameter
in the nonspinning case and two free parameters in the spinning
case. Our aim is to search for those modes that are fitted very
well by the aforementioned PN-based fits, and hence retain
information about the progenitor system.

We find that the most dominant mode amplitudes hardly
change their dependence on the symmetric mass ratio, given
from PN theory, throughout the evolution of the binary. Further,
we find that the signature of the strong field regime is encoded
in a small number of modes that are sub-dominant, with their
amplitude being less than 10% of that of the quadrupole.

The paper is organized as follows: Section II describes the
SXS numerical simulations we employ for the study. The fit-
ting model we use, based on PN expressions for leading order
spherical harmonic modes of the waveform, is explained in
Sec. III. Our results on the PN signatures in the spherical har-
monic modes of numerical relativity are described in Sec. IV
and the implications of these results for modelling waveforms
from binary black holes are discussed in Sec. V. Appendix A
provides an alternative representation of some rmesults in Sec-
tion IV. Some of the technical details of the simulations are
elaborated in appendix B.

II. NUMERICAL SIMULATIONS

This study utilizes publicly available binary black hole grav-
itational waveforms from the SXS collaboration [35]. The
concrete simulations used are listed in Appendix B. Specifi-
cally, Table III lists the 43 non-spinning simulations that were
used, while Table IV lists the 121 aligned-spin simulations.
The simulations were originally presented as follows:

• The first SXS waveform catalog [36] (1 ≤ SXS id ≤
174).

• Simulations for developing techniques for very high
black hole spins [37, 38] (175 ≤ SXS id ≤ 178).

• Simulations for a waveform surrogate model for non-
spinning binary black hole systems [39] 180 ≤ SXS id
≤ 201).

• Binary black hole simulations at mass-ratio 7 with partic-
ularly many inspiral cycles [40] (202 ≤ SXS id ≤ 207).

• A study of aligned spin binary black hole systems [41,
42] (209 ≤ SXS id ≤ 304).

The simulations were computed with the Spectral Einstein
Code (SpEC) [43], a multi-domain pseudo-spectral code de-
signed to solve elliptic and hyperbolic partial differential
equations, in particular the Einstein equations. SpEC com-
putes initial data with the extended conformal thin sandwich
method [44, 45] utilizing quasi-equilibrium black hole excision
boundary conditions [46–48] and iterative eccentricity reduc-
tion [49] to achieve quasi-circular inspirals. SpEC evolves the
Generalized Harmonic form of Einstein’s equations [50, 51] in

first order form [52] with constraint damping [51–53] and con-
straint preserving boundary conditions [52, 54, 55]. The code
uses black hole excision [56–58], coupled with a dual-frame
approach to have the computational grid track the motion of
the black hole horizons [59]. The gravitational wave data used
in our study was extracted with Regge-Wheeler-Zerilli wave-
extraction [60–62], and corrected for time-dilation effects at
the extraction radius [63, 64] and for mode-mixing arising
from small residual motion of the center of mass [65]. More
technical details are given in the original publication presenting
the simulations [36–42].
SpEC simulations are generally run at multiple numerical

resolutions, in order to be able to assess numerical convergence
and numerical truncation error. Indeed, we have restricted the
present study only to simulations that are available at multi-
ple resolutions. The last column in Tables III and IV lists the
resolutions of each simulations that were used. For each sim-
ulation, the accuracy increases with a larger numerical value
in this column. However, because of improvements to SpEC’s
numerical algorithms in the course of time, it is not possible to
assign an absolute meaning to these resolution values. Using
the different numerial resolutions, we compute an error bar for
every numerical value extracted from the numerical relativity
data based on the difference in this value when extracted from
the numerical relativity data of different resolution.

Visual inspection of the (`,m) modes indicate that the (2, 2)
mode is well-behaved for the simulations considered here. The
leading sub-dominant modes with m ≤ 4, specifically (2,1),
(3,3), (3,2), (3,1), (4,4), (4,3), (4,2), (4,1), are also generally
well-behaved with only rare visible unphysical features, like for
instance unexpected extraneous oscillations during ringdown.
Further, the numerical errors of these modes, see Figs. 2 and 4,
indicate good numerical convergence of the considered runs.

Modes with higher frequency, (5,5), (6,6), (7,7), (8,8), un-
fortunately, appear often compromised during merger and ring-
down. The most common symptom is that these modes reach
their maximum a few M earlier than expected, and do not ex-
hibit a clear exponential decay thereafter. These symptoms
are consistent with an insufficiently fine radial grid, on which
the short-wavelength high-frequency merger waves would not
be resolved well enough as they propagate to the extraction
spheres, and are thus unphysically damped away. Moreover,
extrapolation to infinite extraction radius appears to magnify
non-physical features in these high-frequency modes, in about
half of the simulations considered. Gravitational wave ex-
trapolation is most important for the early inspiral, where the
wavelength is long [63, 66] and is less important for the merger
portion considered here. To mitigate impact on the high-m
modes –(5,5) and above–, we therefore decided in the present
study to utilize the gravitational waveforms extracted at the
largest available extraction radius.

The impact on our analysis of imperfections in the underly-
ing numerical data can be judged in two ways: First, Figs. 2,
4, and 5 show error bars for each data-point, obtained from
the difference in value from numerical simulations of different
numerical resolution. These error bars are generally small
compared to the physical effects being analysed. Second, our
analysis should produce results that are slowly and smoothly
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varying with change of the underlying binary black hole param-
eters like mass-ratio or black hole spin. In particular, simula-
tions at nearby parameter points should yield similar answers,
and indeed they do, even if the simulations come from very
different epochs. The results obtained here (e.g. in Fig. 2) vary
smoothly with parameters, with the scatter being consistent
with the error bars. As such, we believe the underlying numeri-
cal data to be reliable for our purposes, except perhaps, for the
analyses of (5, 5) through (8, 8) in the regime after the (2, 2)
mode reached peak amplitude.

III. LEADING ORDER POST-NEWTONIAN
APPROXIMATIONS OF GRAVITATIONAL WAVE MODE

AMPLITUDES

The ‘plus’ and ‘cross’ gravitational wave polarizations can
be decomposed in terms of spherical harmonics as shown in
Eq. (1.1). The complete PN expressions for various spherical
harmonic modes h`m, given the currently available accuracies
of the multipole moments, are reported in Refs. [67] and [29,
68], for nonspinning binaries moving in circular orbits and for
systems whose spins are aligned or anti-aligned with respect
to the orbital angular momentum, respectively.

As we are going to crucially exploit the leading order depen-
dencies of these modes, we list them below for convenience.
Note that in these expressions v is the PN velocity parameter
and η the symmetric mass ratio defined as η = m1m2

M2 , with
binary component masses m1,m2 and total mass M.

The structure of the various modes in PN theory reads as [67]

h22 = C22 v
2 e−i2ψ η

(
1 + O(v2)

)
, (3.1a)

h21 = C21 v
2 e−iψ η

(
δ v + O(v2)

)
, (3.1b)

h33 = C33 v
2 e−i3ψ η

(
δ v + O(v3)

)
, (3.1c)

h32 = C32 v
2 e−i2ψ η

(
(1 − 3 η) v2 + O(v3)

)
, (3.1d)

h31 = C31 v
2 e−iψ η

(
δ v + O(v3)

)
, (3.1e)

h44 = C44 v
2 e−i4ψ η

(
(1 − 3 η) v2 + O(v4)

)
, (3.1f)

h43 = C43 v
2 e−i3ψ η

(
δ (1 − 2 η) v3 + O(v4)

)
, (3.1g)

h42 = C42 v
2 e−i2ψ η

(
(1 − 3 η) v2 + O(v4)

)
, (3.1h)

h41 = C41 v
2 e−iψ η

(
δ (1 − 2 η) v3 + O(v4)

)
, (3.1i)

h55 = C55 v
2 e−i5ψ η

(
δ (1 − 2 η) v3 + O(v5)

)
, (3.1j)

h66 = C66 v
2 e−i6ψ η

(
(1 − 5 η + 5η2) v4 + O(v6)

)
, (3.1k)

h77 = C77 v
2 e−i7ψ η

(
δ (1 − 4 η + 3η2) v5 + O(v7)

)
, (3.1l)

h88 = C88 v
2 e−i8ψ η

(
(1 − 7η + 14η2 − 7η3) v6 + O(v7)

)
,

(3.1m)

where C`m are complex constants, v is the PN velocity parame-
ter which captures the time dependency of the wave modes, ψ
is the PN phase variable, and δ = m1−m2

m1+m2
is a mass asymmetry

parameter which can be rewritten as δ =
√

1 − 4 η for m1 > m2.

It vanishes for equal mass binaries.
Based on the structure of the expressions in Eqs. (3.1) we

introduce the leading order PN approximations which capture
the leading order η and spin dependencies for fixed v—i.e.
at a fixed time—and thus allow us to examine the numerical
relativity waveforms for PN signature or rather deviations from
it. Our goal is somewhat diffent from the usual approach in the
literature as we are aiming to study the behavior of the mode
amplitudes in terms of the intrinsic parameters of the binary
system and not as a function of time.

A. Nonspinning binaries

In order to gain insight into the behavior of the amplitudes of
the nonspinning modes, we choose the following fitting func-
tions A`m = |h`m| which capture the leading order dependencies
of the PN expressions (3.1) on the mass ratio parameters η and
δ:

A22 = α22 η , (3.2a)

Â21 = α21 δ , (3.2b)

Â33 = α33 δ , (3.2c)

Â32 = α32 (1 − 3 η) , (3.2d)

Â31 = α31 δ , (3.2e)

Â44 = α44 (1 − 3 η) , (3.2f)

Â43 = α43 δ (1 − 2 η) , (3.2g)

Â42 = α42 (1 − 3 η) , (3.2h)

Â41 = α41 δ (1 − 2 η) , (3.2i)

Â55 = α55 δ (1 − 2 η) , (3.2j)

Â66 = α66

(
1 − 5 η + 5η2

)
, (3.2k)

Â77 = α77 δ
(
1 − 4 η + 3η2

)
, (3.2l)

Â88 = α88

(
1 − 7η + 14η2 − 7η3

)
, (3.2m)

where α`m are the scaling factors that we fit for. The hatted
amplitudes Â`m = A`m/A22 have been normalized with respect
to the (2,2) mode to cancel the overall η-factor present in every
mode.

B. Aligned spin binaries

In PN theory, spin effects are sub-dominant and are not
present at leading order for any mode [29]. Current-multipole
modes which obey ` + m = odd contain spin-dependent terms
at 0.5 PN order above the leading term and thus are more
likely to exhibit spin effects [28]. We focus on the four current-
multipole modes with ` ≤ 4, (2, 1), (3, 2), (4, 3), and (4, 1). The
PN expression for the (2,1) mode to the next-to-leading order
in v is given by

h21 = C(v, ψ) η
(
δ v −

3
2

(χa + δχs) · L̂N v
2
)

+ O(v3) , (3.3)
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where C is a function of the orbital velocity v and the PN phase
variable ψ, LN is the orbital angular momentum, and

χs =
1
2

(χ1 + χ2) (3.4)

χa =
1
2

(χ1 − χ2) (3.5)

denote, respectively, the symmetric and antisymmetric spin
combinations of the initial black hole spins χ1 and χ2. Since
we assume that spins and the orbital angular momentum are
aligned, we can write instead

h21 = C(v, ψ) η
(
δ v −

3
2
χeff

21 v
2
)

+ O(v3) , (3.6)

where χeff
21 = χa+δ χs, with χa,s = χa,s·L̂N being the projection

of the symmetric/antisymmetric spin vectors along the orbital
angular momentum. This form motivates the fitting ansatz,
with non-spinning Âns

21 = δ from (3.2), which reads as

Â21 = γ21 Âns
21 + β21 χ

eff
21 . (3.7)

This can be generalized to arbitrary `m as

Â`m = γ`m Âns
`m(η) + β`m χ

eff
`m(η, χ1, χ2) , (3.8)

with different effective spin parameters for different modes
defined by the linear combination of the spin parameters in the
PN expressions for those modes. The functional forms of the
effective spin parameters for the different modes are motivated
by Eqs. (12) of Ref. [68] and are given by

χeff
21 = χa + δ χs , (3.9a)

χeff
32 = η χs , (3.9b)

χeff
43 = χeff

41 = η (χa − δ χs) . (3.9c)

Equation (3.8) has two fit parameters β`m, γ`m whereas Eqs.
(3.2) only need one. The additional parameter is aimed to
capture the extra degrees of freedom due to spins and account
for the fact that the nonspinning and spinning effects enter at
different PN orders.

IV. POST-NEWTONIAN SIGNATURE IN NUMERICAL
RELATIVITY WAVEFORM AMPLITUDES

A. Numerical wave mode amplitudes

From each of the numerical relativity simulations summa-
rized in Sec. II and detailed in Appendix B, we extract the time
series of real and imaginary components of the spherical har-
monic wave modes h`m (see Eq. (1.1)) for the 13 modes with
(`,m) ∈ {(2,2), (2,1), (3,3), (3,2), (3,1), (4,4), (4,3), (4,2), (4,1),
(5,5), (6,6), (7,7), (8,8)}. The remaining numerical modes
with ` ≥ 5,m , ` are excluded from this study due to their
relatively small amplitudes and large numerical errors. Fig. 1
shows the real and imaginary components of six of the 13 wave

modes together with their amplitude for an example SXS run:
SXS:BBH:0169, mass ratio q = 2, and non-spinning.

Our goal is to examine the behavior of various spherical
harmonic modes for PN signature and deviations from it around
the time of merger. We concentrate this study on the evolution
of the real amplitude

A`m =
√

Re(h`m)2 + Im(h`m)2, (4.1)

of the spherical harmonic wave modes h`m, where both A`m
and h`m are functions of time τ, as well as binary parameters
M, η, ~χ1, ~χ2. The time variable τ = t − t22

max has been shifted
such that the peak amplitude of the (2,2) mode is located at
τ = 0. In the case of non-spinning binary black holes with
quasi-circular orbits the parameter tuple θ = (M, η, ~χ1, ~χ2)
reduces to the two mass parameters, the total mass M, and the
symmetric mass ratio η. If the black holes are aligned spinning,
θ = (M, η, χ1, χ2) also contains the spin magnitudes.

B. Results for non-spinning binaries

Figure 2 contains the condensed results of our study of PN
signature in the waveform amplitudes of initially non-spinning
binary black holes around the time of merger. The individ-
ual symbols in these plots are the amplitudes of the various
gravitational wave modes extracted from the SXS simulations.
Each symbol carries an error bar, often too small to be visible,
that is derived as the difference in the extracted amplitude for
at least two different numerical resolutions. The solid lines
in Fig. 2 represent our leading order PN approximations in
Eq. (3.2) fitted to the numerical data for various wave mode
amplitudes as a function of the symmetric mass ratio. The
temporal evolution is presented via snapshots at four different
times τ/M = −100,−10, 0, 10, corresponding to the columns
in Fig. 2. The three rows group the different modes by numer-
ical strength. The first row contains the data and fits for the
four strongest modes (2,2), (2,1), (3,3), and (4,4), the second
row shows the remaining ` = m modes, and the sub-dominant
modes with ` = 3, 4 are bundled in the last row. The larger
subfigures plot relative amplitudes Â`m(τ) = A`m(τ)/A22(τ),
`m , 22, with only A22 being shown as an absolute amplitude.
The error bars correspond to twice the numerical errors σ`m
shown in the smaller subplots.

The amplitude of the (2,2) mode behaves as expected and in-
creases towards its maximum at τ = 0. Due to the suppression
of the two next strongest modes, (3,3) and (2,1), for equal mass
binaries, the (2,2) mode stays most significant in the realm
between q = 1 to q = 2 which is where all detections by the
LIGO Virgo Collaboration were made [3–5, 8]. The situation
for the other modes paints a more interesting picture for low
symmetric mass ratios η < 0.15 where their amplitudes in-
crease more quickly relative to the (2,2) mode. This tendency
shows the importance of the inclusion of higher modes for
medium to extreme mass ratio binary coalescences.

The first column in Fig. 2 shows the comparison of the lead-
ing order PN approximations to the numerical data at time
τ = −100M. The approximations work beautifully and con-
firm the expectation that PN theory describes the functional
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FIG. 1. The SXS waveform catalog provides access to many compact bianry simulations. As a representation of the catalog, we show the
numerical data of six wave modes h`m from the non-spinning run SXS:BBH:0169, with mass ratio q = 2. The figure plots the real and imaginary
parts of the wave modes and their amplitude A`m =

√
(Re(h`m))2 + (Im(h`m))2 for the (2,2), (2,1), (3,3), (3,2), (4,4), and (4,3) modes as a

function of τ = t − t22
max. The position of the peak amplitude of the (2,2) mode is highlighted with a solid, black line, while the dashed, green line

corresponds to the maximum of each mode.

dependence of the gravitational wave amplitudes on η very
well during the inspiral. The level of agreement between the
data and the fits is quantified by the correlation coefficients2

in Table I. The situation stays very similar close to merger at
τ = −10M, even though the amplitude of the (3,2) mode is
starting to show deviations from the PN inspired fitting. The
fits for the remaining modes capture the data extremely well
despite the common belief that PN theory should fail in this
regime due to the increase in the orbital velocity parameter v.

The picture becomes truly exciting at τ = 0, after a com-
mon horizon has already formed. The amplitudes of the four
dominant modes are fitted exceptionally well by the leading
order PN approximations, hence giving us an insight into how
little these amplitudes are affected by the dynamics during the
coalescence of the binary system. The PN-inspired fits to the
` = m modes in the second row of Fig. 2 are still remarkably

2 The correlation coefficient C between the data vector d and the appropriate
fit vector f , with averages d̄, f̄ , is defined as C =

(f− f̄ )·(d−d̄)
√

(f− f̄ )2(d−d̄)2
.

well captured, especially for ` = 5, 6. The amplitudes of the
modes with ` = 3, 4, m < ` exhibit a different behavior: their
numerical amplitudes deviate strongly from the PN-inspired
fitting and thus indicating that the merger process affects the
dynamics of these mode amplitudes more than the four domi-
nant modes or the modes with ` = m.

Finally, the last column of Fig. 2 contains the data and fits
during the early ringdown at τ = 10M. The deviations from the
leading order PN approximations have increased, compared
to time τ = 0 which is reflected in the correlation coefficients
in Table I. The amplitude data for τ = 10M in the second
row of Fig. 2 appears to be well captured by the leading order
PN approximations, but it exhibits large numerical errors that
make a quantitative evaluation of the approximations impracti-
cal, see Table I. The dominant modes show a very intriguing
outcome. Their amplitudes seem to maintain the PN signature
from earlier times fairly well. This reproduces the earlier find-
ings [27] that found η-dependences in these amplitudes during
the ringdown. Our analysis goes beyond that and shows that
this dependence is still mostly of PN signature 10M after the
merger.
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FIG. 2. Non-spinning simulations: The PN inspired amplitude fits for 13 spherical harmonic modes (lines) with spin weight −2 are plotted
together with the numerical data (points) of simulations of the coalescence of two non-spinning black holes at four different times τ = t − t22

max.
The data has been spread over 24 subplots with columns representing different times τ/M = −100,−10, 0, 10 and rows grouping the modes by
strength, fit agreement, and numerical errors. The 12 large plots present the relative amplitudes Â`m ≡

A`m
A22

against the symmetric mass η, with
A22 as an exception, while the accompanying smaller plots show the numerical errors of the simulations which are also visible as error bars in
the main plots. The plots show that the four dominant and the ` = m modes maintain a PN-like signature throughout the studied time range,
while the ` , m modes start to deviate from this PN-like behavior and thus capture the deviations from the PN description most efficiently.

In summary, we can say that the four dominant modes with
large amplitudes and the wave modes with ` = m maintain
the PN signature of the inspiral phase exceptionally well in
their amplitudes, from the inspiral throughout the merger into
the ringdown, while the spherical harmonic wave modes with
` , m deviate from this PN-like behavior as the evolution of
the binary approaches the merger. Thus, these present interest-
ing candidates for binary black hole merger studies and strong
field tests of general relativity, with the (3,2) mode being espe-
cially intriguing as it is the strongest of these modes and hence
the most significant for future detections.

C. Results for aligned spins

Let us now discuss the aligned-spin simulations. We ex-
tract amplitudes A22 and Â`m as above for all simulations with
aligned spins. Fig. 3 plots the amplitudes of all 13 modes for
each aligned spinning SXS simulations in a distinct data point.
For a given value of η, there are generally multiple simula-
tions with different spins; these simulations lead to different
amplitudes, resulting in the vertical scatter of data-points at
each η. Most modes show a small amount of vertical scatter
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FIG. 3. Aligned spin simulations: The relative amplitudes Â`m ≡
A`m
A22

of 13 spherical harmonic modes with spin weight −2 are plotted
against the symmetric mass η, with A22 as an exception. The data was taken from 121 numerical simulations of the coalescence of two black
holes whose spins is aligned with respect to the orbital angular momentum of the binary. The amplitudes are shown at four different times,
τ
M = −100,−10, 0, 10, τ = t − t22

max. The data is presented by 12 subplots dividing the modes in three groups by strength. The vertical spread at a
fixed symmetric mass ratio indicates that the spin information cannot be captured in an one dimensional plot over the symmetric mass ratio
(compare against Fig. 2). The effective spin is the standard symmetric, mass weighted version: χeff =

m1χ1+m2χ2
M (full symbol: χeff ≥ 0, empty

symbol: χeff < 0).
The amplitudes of the (2,1) and (3,2) modes show especially large variations at a given value of η, hence pointing towards their strong dependence
on the spin properties of the system. From PN theory we would also expect any other mode with ` + m = odd to have a strong spin dependence.

whereas the (2,1) and (3,2) mode exhibit significant variation
amongst the different simulations at a given symmetric mass
ratio. This large amount of spread in the amplitudes of the
aforementioned modes is a consequence of a strong depen-
dence on the omitted two parameters, the spin magnitudes χ1
and χ2 of the component black holes.

Not only do the (2,1) and (3,2) modes show the most pro-
nounced scatter in Fig. 3, but they are also among the current-
multipole modes with ` + m = odd, which exhibit spin effects

at low PN order (cf. Sec. III B). We will therefore now inves-
tigate the spin dependence of the relevant four modes (2,1),
(3,2), (4,3), and (4,1) in more detail. The results and corre-
sponding correlation coefficients for the amplitude data and
the PN-inspired fits for the (2,1), (3,2), (4,3), and (4,1) modes
are presented in Fig. 4 and Table II, respectively. While Fig. 4
spreads the temporal evolution of the mode amplitudes for
given mass ratios q in columns, we give another representation
of the same information in Fig. 5 in Appendix A, where the
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FIG. 4. The relative amplitudes Âlm = Alm/A22 of the (2,1), (3,2), (4,3), and (4,1) modes are presented against their respective effective spin
combinations χeff

lm . The columns represent four times τ/M = −100,−10, 0, 10, and the χeff
lm are defined in Eqs. (3.9). The plotted modes with

l + m = odd, have low order effective spin contributions in PN theory due to their current-multipole nature. The PN inspired fits (lines) in Eq.
(3.8) are linear in these effective spin combinations, thus three data points (SXS data) give an indication as to whether the amplitudes behave
in a PN-like way. The figure consists of four major rows, each dedicated to one of the wave modes, and four columns, capturing the times,
with subfigures showing the relative amplitudes and in a smaller window the error of the numerical data. The restriction to the four mass ratios
q = 1, 1.5, 2, 3, 7 is due to the requirements for numerical error estimation and having three simulations with different effective spins χeff

lm per
mass ratio for the linear fits. For the available set of simulations with q = 1.5, symmetry reduces, in the case of the (3,2) mode, the three different
sets of χ1 and χ2 to two.
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Mode τ = −100M τ = −10M τ = 0M τ = 10M
(2,2) 0.999998 0.999779 0.999703 0.999798
(2,1) 0.999579 0.999854 0.999838 0.998717
(3,3) 0.999912 0.999787 0.999301 0.997751
(4,4) 0.999667 0.999299 0.998743 0.991130
(5,5) 0.999842 0.999204 0.997655 0.993545
(6,6) 0.999722 0.998421 0.994847 0.976633
(7,7) 0.999698 0.996487 0.982980 0.939223
(8,8) 0.999491 0.994833 0.965470 0.848470
(3,2) 0.999376 0.996502 0.972295 0.585903
(3,1) 0.997824 0.993977 0.981189 0.908449
(4,3) 0.999719 0.999168 0.998515 0.974125
(4,2) 0.998844 0.997680 0.995446 0.908354
(4,1) 0.984923 0.948784 0.863388 0.976998

TABLE I. Correlation coefficients of the non-spinning fits to the SXS
data for spherical harmonic modes (2,2), (2,1), (3,3), (3,2), (3,1), (4,4),
(4,3), (4,2), (4,1), (5,5), (6,6), (7,7), and (8,8) at τ

M = −100,−10, 0, 10.

roles of mass ratio q and time τ are flipped. This gives a better
intuition of how each mode amplitude evolves for fixed mass
ratio throughout the merger.

The (2,1) modes appears to behave similarly to the non-
spinning case and maintain the PN signature of the inspiral
throughout the merger into the early ringdown. The leading
order PN approximations capture the numerical relativity data
exceptionally well for mass ratios q = 1, 1.5, 7. Mass ratios
q = 2, 3 show a larger scatter around the linear fit line which
appears to be a result of the larger variation of initial spin
combinations of the SXS waveforms for lower mass ratios, see
Table IV (in particular, the SXS simulations explore variations
of anti-symmetric spin χ1 − χ2 much more exhaustively for
q = 1, 2, 3). This scatter is not visible in the data for mass ratio
q = 1 due to the suppression of asymmetries for equal mass
binaries.

The results are similar for the (4,3) and (4,1) modes. Mass
ratio q = 1 is again extremely well captured by the leading
order PN approximations. While mass ratios q = 1.5, 7 appear
to be fitted well in Fig. 4, the correlation coefficients show that
the PN inspired fit performs less admirably than for the (2,1)
mode. The scatter around the approximation lines for q = 2, 3
is also much more prevalent, especially at times τ/M = 0, 10.

Our analysis of the (3,2) mode does not include mass ratio
q = 1.5: Two of the three distinct initial spin combinations
reduce to the same effective spin χeff

32 = η χs due to its symme-
try and thus make a linear fit to two points a moot exercise.
The analysis of the (3,2) mode shows that it takes a special
role amongst the four studied modes when the system includes
spins. The (3,2) mode amplitude is the only to show major
deviations from the PN signature for equal mass binary wave-
forms, q = 1, and even during the inspiral at τ = −100M.
The picture for mass ratios q = 2, 3, 7 is the same as what we
observed for the (4,3) and (4,1) modes.

In summary, the (2,1) mode seems to do as well as we saw
from the non-spinning scenario, while the three weaker modes
exhibit various different effects. All modes, even (2,1), showed
some level of scatter for mass ratios q = 2, 3 that probably is a
result of variations in the initial spin data, which did not show

up for equal mass binaries for the three modes with odd m,
(2,1), (4,3), and (4,1). Hence, it appears that the addition of
aligned spin has a stabilizing effect against deviations from a
PN signature for these modes, if the mass ratio is q = 1. The
(3,2) mode takes a distinct role as its amplitude for mass ratio
q = 1 shows deviations from the leading order PN approxima-
tion already during the inspiral. Hence, it again stands out as
the mode of interest in strong field tests of general relativity.

V. IMPLICATIONS OF THE RESULTS FOR MODELLING
WAVEFORMS FROM BINARY BLACK HOLES

In this Section we will discuss the behavior of the various
modes as a function of time and the system’s mass ratio η
and mode-dependent ‘effective spin’ (which is different for
different modes).

a. Time evolution Our study has shown that for most part
of the adiabatic evolution when ω̇/ω2 � 1, where ω is the
orbital frequency, the mass-ratio dependence of the amplitudes
of the various spherical harmonic modes are as predicted by
PN theory to lowest order. The overall multipole structure is
set in when the two black holes are well-separated; it is difficult
to deform this multipolar structure because spacetime has a
large bulk modulus. Remarkably, most ` = m mode amplitudes
continue to agree with the PN prediction well after the common
horizon has formed. This includes the dominant ` = m = 2, 3, 4
modes as well as the weaker ` = m > 4 modes (cf. Fig. 2, first
and second row). The strong field dynamics does affect the
` , m modes (except the strong (2, 1) mode), especially when
the two bodies get closer together as evidenced by the change
in the weaker ` , m modes (cf. Fig. 2, last row). Our analysis
shows that as we get close to the merger phase, say τ ∼ −10M
(this is about when the common apparent horizon forms) the
moments begin to deform from their PN behavior.

b. η-dependence Figures 2 and 4 show the behavior of
the mode amplitudes as a fucntion of symmetric mass ratio
η at different epochs and as a function of ‘effective spin’ for
different mass ratios q and epochs, respectively. For nonspin-
ning systems, the ` = m modes are in pretty good agreement
with the leading order PN behavior as a function of η (see
Eqs. 3.2). This is true both at earlier times τ ∼ 100 M when
PN equations are expected to provide a good description of the
mode amplitudes, as well as at epochs when the PN equations
are believed not to be accurate. In fact, even at the onset of
merger at τ ' −10 M and beyond τ = 0 when the black hole
begins to settle down (i.e. τ ∼ 10 M) ` = m modes show little
departure from the PN behavior.

However, the weaker ` , m modes are altered significantly
already at the onset of the merger (τ ∼ −10 M), especially for
comparable mass binaries (i.e. η ' 1/4). One exception to
this rule is the ` = 2, m = 1 mode. This mode is the strongest
sub-dominant mode after ` = m = 3 (see Fig. 2) and is not
easily modified by the strong field dynamics. The amplitude
of the other ` , m modes are at the level of . 8% (for highly
asymmetric systems) of the (2, 2) mode amplitude, while the
` = 2, m = 1 mode could be as large as 30% of the overall
amplitude.
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Mode q τ = −100M τ = −10M τ = 0M τ = 10M

(2,1)

1 0.999325 0.999773 0.999988 0.999619
1.5 0.999980 0.999931 0.999807 0.999291
2 0.997846 0.995953 0.991763 0.984452
3 0.997914 0.994403 0.991027 0.985538
7 0.999152 0.998667 0.999101 0.998829

(3,2)

1 0.990234 0.981084 0.968417 0.897599
2 0.980074 0.960144 0.914401 0.581929
3 0.964765 0.952854 0.938971 0.784182
7 0.993511 0.953335 0.056356 0.980378

(4,3)

1 0.998952 0.999922 0.998798 0.995412
1.5 0.999844 0.999494 0.998659 0.874023
2 0.961789 0.958457 0.960024 0.472553
3 0.844141 0.843969 0.837170 0.222383
7 0.987371 0.938732 0.759405 0.621659

(4,1)

1 0.991669 0.995539 0.985739 0.988915
1.5 0.608697 0.623753 0.916280 0.954856
2 0.684519 0.041862 0.220282 0.144261
3 0.485186 0.233015 0.002791 0.334364
7 0.926836 0.992870 0.981711 0.982951

TABLE II. Correlation coefficients of the aligned spinning fits to the
SXS data for spherical harmonic modes (2,1), (3,2), (4,3), and (4,1)
and mass ratios q = 1, 1.5, 2, 3, 7 at τ

M = −100,−10, 0, 10.

c. Spin-dependence Figures 4 and 5 present the mode
amplitudes of the four ` + m = odd modes (2,1), (3,2), (4,3),
and (4,1) as a function of their respective effective spins (see
Eq. 3.9) for different mass ratios and epochs. Again, the PN
approximation does remarkably well at capturing the behav-
ior of the numerical data for the strong (2,1) mode, for all
epochs and mass ratios. However, the three weaker modes
whose amplitudes show deviations from the PN behavior for
non-spinning systems as early as τ ∼ −10 M, agree with the
PN approximation to some extent when the system includes
aligned spins. Hence, it appears that the addition of spin to the
system has a stabilizing effect on the PN signature.

That being said, the situation is much more complicated
than for non-spinning systems as the quality of the agreement
with the PN signature depends not only on the mode and epoch,
but also the mass ratio and the sample spread of initial black
hole spins. The agreement is good for mass ratios q = 1.5, 7
for which the data shows the linear behavior in the respective
effective spin combination for all modes. Mass ratios q = 2, 3
were sampled with a much larger distribution in the initial
spins (cf. Table IV), resulting in an envelope of data points
around the linear PN approximation in χeff

`m. These envelopes
widen during later epochs and for weaker modes. The found
spread in the data hints that the relationship between initial
black hole spins and mode amplitudes during the merger and
ringdown cannot be captured in one effective spin combination.
Finally, the equal mass systems were sampled with a similarly
large spread in the intial spins, but do not show the envelope
characteristics of the higher mass ratios which is a result of the
symmetry in the system. The amplitudes of the three odd-m
modes (2,1), (4,3), and (4,1) are wonderfully captured by the
linear PN approximations at all epochs.

The major exception is presented by the (3,2) mode’s am-

plitude for equal mass systems which shows a curious, but
definite nonlinear dependence on its effective spin at all stud-
ied epochs. This behavior is curious for two reasons: The PN
signature is the strongest for the other three modes at mass
ratio q = 1 and all epochs (cf. Fig. 5, first column). Further,
it is the only case (i.e. the only mode for both the aligned
and non-spinning simulations) where the PN approximation
seems to already fail at τ = −100 M. It shows that the (3,2)
modes takes a special place amongst the ` + m = odd modes
with ` ≤ 4. This is captured by its even azimuthal number
m = 2 whereas the other three are odd m modes. Thus, the
(3,2) mode is the most interesting mode amongst all the weaker
` , m modes to study deviations from the PN signature: It is
the strongest of these modes and thus the easiest to detect, it
does not vanish for non-spinning, equal mass systems, and it is
affected by spin effects where it can capture departures from
PN theory well into the inspiral-regime.

VI. CONCLUSIONS

In this paper we have provided a comparison of the am-
plitudes of spherical harmonic modes of gravitational waves
from merging binary black holes computed using the leading
order PN approximation with those obtained from numerical
relativity simulations.

The post-Newtonian approximation is based on the point-
particle description of the two-body problem in general rel-
ativity. It is a good approximation when the two bodies are
far from each other (i.e., their distance of separation r is far
greater than the scale of the horizon Rs ∼ 2GM/c2 of the
component masses), but expected to breakdown when the two
bodies are close to coalescence r ∼ few × 2GM/c2. While the
post-Newtonian approximation is now known to a high order in
the expansion parameter v/c =

√
GM/c2r, it is not expected to

capture the strong field dynamics of the theory close to merger.
Numerical relativity simulations, on the contrary, are exact

solutions to Einstein’s equations for the two-body problem.
They capture the strong field dynamics, including the dynam-
ics of the common horizon and how that horizon approaches
the final Kerr state. While these simulations can, in principle,
resolve the full spectrum of modes emitted by the binary, in
practice finite resolution and numerical accuracy limit the num-
ber of modes that can be extracted reliably to the quadrupole,
octupole, and hexadecapole modes, corresponding to spherical
harmonic index of ` = 2, 3,and 4, respectively.

The chief finding of our study is that the dependencies of
these dominant mode amplitudes on the symmetric mass ratio
and the binary’s spins, computed in the leading order post-
Newtonian approximation, agree remarkably well with those
extracted from numerical relativity simulations, deep into the
regime where the approximation should not have worked. In
particular, the quadrupole modes (2, 2) and (2, 1), extracted
from numerical relativity simulations, show little departure
from the leading order post-Newtonian expression throughout
the inspiral and merger. This is also true for the (3, 3) and
the (4, 4) modes. This implies that the dominant multipole
structure of the system remains frozen as determined by the
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point-particle approximation. All the modes begin to show
significant departure from post-Newtonian description in the
quasi-normal mode regime, ∼ 10GM/c3 after the waveform
reaches its peak amplitude.

The weaker modes with `=3, 4, m,` modes also agree with
the leading order post-Newtonian expressions when the system
is ∼ 100GM/c3 away from coalescence, but begin to show
significant departure from the leading order post-Newtonian
behavior well-before the epoch when the waveform reaches its
peak amplitude. In other words, the point-particle approxima-
tion of post-Newtonian theory to the leading order is no longer
adequate in describing the behavior of the amplitude of these
modes. It is for this reason that we conclude that these weaker
modes are affected far more by the strong field regime of the
binary evolution than the stronger modes (2, 2), (2, 1), (3, 3)
and (4, 4).

It is well known that the (3, 2) spherical harmonic mode is a
mixture of several spheroidal harmonic modes, which causes
it to decay non-monotonically in the ringdown regime of the
signal [30, 31, 34]. While this is true, the new insight from our
study is that we can exploit the leading order post-Newtonian
expressions in any analytical modeling of the mode amplitudes.
Furthermore, we believe that understanding the multipole struc-
ture of the common horizon could provide further insight into
why certain modes are affected far more by the strong field
dynamics than others.
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Appendix A: Alternative representation of the results for
aligned spin fits

Fig. 5 presents the same information as Fig. 4, but with the
roles of the time τ and mass ratio q flipped in the figure. This
presentation allows a more streamlined look at how each mode
behaves as function of time for a given mass ratio, thus making
very evident, how strongly the (3,2) modes deviates from the
leading order post-Newtonian approximation for mass ratio
q = 1.

Appendix B: Numerical relativity simulations from the SXS
project

For each numerical resolution, the SXS waveform catalog
provides a metadata file with information about the specifics
of the run as well as the gravitational waveforms decomposed
into spherical harmonics for both the Newman-Penrose scalar
Ψ4 and the gravitational wave strain h. Our analysis focuses
on the latter and was conducted with the data contained in the
files ‘rhOverM Asymptotic GeometricUnits CoM.h5’, which
provide the spherical harmonic modes of h, at the outermost
extraction radius, and extrapolated to asymptotic null infinity.
Furthermore, the data in these files are corrected for mode
mixing that can arise if initial transients during start of the
evolution induce a motion of the center of mass of the binary
black hole [65, 69]. The retarded time-coordinate is corrected
for gravitational redshift effects [63].
These HDF5 files structure the data into four groups containing
the same 77 datasets, but for different extrapolation orders
N = 2, 3, 4, as well as the outermost extraction radius. The
datasets store the simulation output as a time series of real and
imaginary components of the coefficients h`m in the expansion
in spherical harmonics with spin-weight s = −2 (1.1) of the
gravitational wave strain h for all 77 modes with ` = 2, . . . , 8,
m = −`, . . . , `. In order to put errors on the numerical data we
restricted our analysis to the 43 non-spinning and 121 aligned
spinning simulations that are provided at a minimum of two
different resolution levels, see Tables III and IV. Further, we
restrict our analysis to the outermost extraction radius which
yields the most accurate numerical results for the merger and
ringdown regimes.
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FIG. 5. The same as Fig. 4, albeit the columns now represent the five mass ratios q = 1, 1.5, 2, 3, 7 and each plot contains the data and fits at the
four different times τ

M = −100,−10, 0, 10. The χeff
lm are defined in Eqs. (3.9). This presentaion shows more clearly how well the data is captured

by the PN inspired fits (lines) in the case of the (2,1) mode for q = 1, 7 and how the data (data points from SXS) slightly scatters around fit lines
for q = 2, 3. Similarly, this presentation makes it much clearer that fits cannot capture the amplitudes of the (3,2) mode for q = 1, even though
q = 7 seem to be fine. Further, it shows beautifully that these modes gain in importance as time advances as well as for increasing mass ratios.
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SXS Id q Resolutions
2 1.00 4, 5, 6

180 1.00 2, 3, 4
198 1.20 3, 4, 5

7 1.50 4, 5
8 1.50 4, 5

194 1.52 2, 3
169 2.00 3, 4, 5
184 2.00 2, 3, 4
201 2.32 1, 2, 3
259 2.50 3, 4, 5
191 2.51 2, 3
30 3.00 3, 4, 5

168 3.00 3, 4, 5
183 3.00 2, 3, 4
200 3.27 1, 2, 3
193 3.50 2, 3
294 3.50 3, 4
182 4.00 2, 3, 4
190 4.50 2, 3
54 5.00 3, 4, 5
56 5.00 3, 4, 5

107 5.00 3, 4, 5

SXS Id q Resolutions
113 5.00 3, 4, 5
187 5.04 1, 2, 3
296 5.50 3, 4, 5
197 5.52 2, 3
181 6.00 3, 4
297 6.50 3, 4, 5
192 6.58 2, 3
298 7.00 3, 4, 5
188 7.19 1, 2, 3
299 7.50 3, 4, 5
195 7.76 2, 3
63 8.00 3, 4, 5
186 8.27 1, 2, 3
300 8.50 3, 4, 5
199 8.73 2, 3
301 9.00 3, 4, 5
189 9.17 2, 3
302 9.50 3, 4, 5
196 9.66 2, 3
185 9.99 1, 2, 3
303 10.00 3, 4, 5

TABLE III. List of 43 SXS simulations for initially non-spinning
binary black holes, showing the SXS simulation ID, the mass ratio q,
and the numerical resolutions used for our analysis.
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Id q χ1 χ2 Res.
4 1.00 −0.50 0.00 5, 6
5 1.00 0.50 0.00 4, 5

148 1.00 −0.44 −0.44 4, 5
149 1.00 −0.20 −0.20 3, 4
150 1.00 0.20 0.20 3, 4
151 1.00 −0.60 −0.60 3, 4
152 1.00 0.60 0.60 3, 4
154 1.00 −0.80 −0.80 3, 4
155 1.00 0.80 0.80 3, 4
156 1.00 −0.95 −0.95 4, 5
157 1.00 0.95 0.95 3, 4
158 1.00 0.97 0.97 5, 6
159 1.00 −0.90 −0.90 3, 4
160 1.00 0.90 0.90 3, 4
170 1.00 0.44 0.44 5, 6
171 1.00 −0.44 −0.44 5, 6
172 1.00 0.98 0.98 3, 4
175 1.00 0.75 0.75 2, 3
176 1.00 0.96 0.96 3, 4
177 1.00 0.99 0.99 3, 4
178 1.00 0.99 0.99 4, 5
209 1.00 −0.90 −0.50 4, 5
210 1.00 −0.90 0.00 4, 5
211 1.00 −0.90 0.90 4, 5
212 1.00 −0.80 −0.80 4, 5
213 1.00 −0.80 0.80 4, 5
214 1.00 −0.62 −0.25 4, 5
215 1.00 −0.60 −0.60 4, 5
216 1.00 −0.60 0.00 4, 5
217 1.00 −0.60 0.60 4, 5
218 1.00 −0.50 0.50 4, 5

Id q χ1 χ2 Res.
219 1.00 −0.50 0.90 4, 5
220 1.00 −0.40 −0.80 4, 5
221 1.00 −0.40 0.80 4, 5
222 1.00 −0.30 0.00 4, 5
223 1.00 0.30 0.00 4, 5
224 1.00 0.40 −0.80 4, 5
225 1.00 0.40 0.80 4, 5
226 1.00 0.50 −0.90 4, 5
227 1.00 0.60 0.00 4, 5
228 1.00 0.60 0.60 4, 5
229 1.00 0.65 0.25 4, 5
230 1.00 0.80 0.80 4, 5
231 1.00 0.90 0.00 4, 5
232 1.00 0.90 0.50 4, 5
304 1.00 0.50 −0.50 3, 4
12 1.50 −0.50 0.00 4, 5
14 1.50 −0.50 0.00 4, 5
16 1.50 −0.50 0.00 5, 6
19 1.50 −0.50 0.50 4, 5
25 1.50 0.50 −0.50 4, 5

162 2.00 0.60 0.00 3, 4
233 2.00 −0.87 0.85 4, 5
234 2.00 −0.85 −0.85 4, 5
235 2.00 −0.60 −0.60 4, 5
236 2.00 −0.60 0.00 4, 5
237 2.00 −0.60 0.60 4, 5
238 2.00 −0.50 −0.50 4, 5
239 2.00 −0.37 0.85 4, 5
240 2.00 −0.30 −0.30 4, 5
241 2.00 −0.30 0.00 4, 5
242 2.00 −0.30 0.30 4, 5

Id q χ1 χ2 Res.
243 2.00 −0.13 −0.85 4, 5
244 2.00 0.00 −0.60 4, 5
245 2.00 0.00 −0.30 4, 5
246 2.00 0.00 0.30 4, 5
247 2.00 0.00 0.60 4, 5
248 2.00 0.13 0.85 4, 5
249 2.00 0.30 −0.30 4, 5
250 2.00 0.30 0.00 4, 5
251 2.00 0.30 0.30 4, 5
252 2.00 0.37 −0.85 4, 5
253 2.00 0.50 0.50 4, 5
254 2.00 0.60 −0.60 4, 5
255 2.00 0.60 0.00 4, 5
256 2.00 0.60 0.60 4, 5
257 2.00 0.85 0.85 4, 5
258 2.00 0.87 −0.85 4, 5
31 3.00 0.50 0.00 4, 5
36 3.00 −0.50 0.00 5, 6
174 3.00 0.50 0.00 5, 6
260 3.00 −0.85 −0.85 4, 5
261 3.00 −0.73 0.85 4, 5
262 3.00 −0.60 0.00 4, 5
263 3.00 −0.60 0.60 4, 5
264 3.00 −0.60 −0.60 4, 5
265 3.00 −0.60 −0.40 4, 5
266 3.00 −0.60 0.40 4, 5
267 3.00 −0.50 −0.50 4, 5
268 3.00 −0.40 −0.60 4, 5
269 3.00 −0.40 0.60 4, 5
270 3.00 −0.30 −0.30 4, 5
271 3.00 −0.30 0.00 4, 5

Id q χ1 χ2 Res.
272 3.00 −0.30 0.30 4, 5
273 3.00 −0.27 −0.85 4, 5
274 3.00 −0.23 0.85 4, 5
275 3.00 0.00 −0.60 4, 5
276 3.00 0.00 −0.30 4, 5
277 3.00 0.00 0.30 4, 5
278 3.00 0.00 0.60 4, 5
279 3.00 0.23 −0.85 4, 5
280 3.00 0.27 0.85 4, 5
281 3.00 0.30 −0.30 4, 5
282 3.00 0.30 0.00 4, 5
283 3.00 0.30 0.30 4, 5
284 3.00 0.40 −0.60 4, 5
285 3.00 0.40 0.60 4, 5
286 3.00 0.50 0.50 4, 5
287 3.00 0.60 −0.60 4, 5
288 3.00 0.60 −0.40 4, 5
289 3.00 0.60 0.00 4, 5
290 3.00 0.60 0.40 4, 5
291 3.00 0.60 0.60 4, 5
292 3.00 0.73 −0.85 4, 5
293 3.00 0.85 0.85 4, 5
202 7.00 0.60 0.00 3, 4
203 7.00 0.40 0.00 2, 3
204 7.00 0.40 0.00 2, 3
205 7.00 −0.40 0.00 2, 3
206 7.00 −0.40 0.00 2, 3
207 7.00 −0.60 0.00 3, 4

TABLE IV. List of 121 SXS simulations for aligned-spin binary black holes, showing the SXS simulation ID, the mass ratio q, the spins
represented by χ1,2 via ~χ1,2 = χ1,2L̂, and the numerical resolutions used for our analysis.
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