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Recent cloud search engines lack a formal method in their service composition mechanisms to automatically 
build composite services realizing user requirements. This paper prescribes behavior composition framework 
as a formal tools for the search engines. The framework automatically synthesizes a controller that delegates 
the service operations requested by a cloud user to the proper available cloud services whose operations satisfy 
the request. Since most cloud search engines support semantic and ontology to discover similar service oper-
ations, the paper extends the framework to be more adaptable with such search engines through the use of re-
source reasoning. Several experiments are provided to demonstrate how the extended framework outperforms 
the original one in terms of realizing users’ requirements.
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1. Introduction
The tremendous increase in the number of cloud 
customers demanding their numerous requirements 
stimulates cloud providers to publish services with 
a great diversity of functional and non-functional 
properties. In many cases, a single service may not 
necessarily realize the requirements. Hence, the com-
bination of several services as a composite service is 
created to fulfil them.
The architecture of cloud search engines recently 
benefit from the notions of semantic and ontology in 
order to offer a set of composite services being sim-
ilar to customers’ requirements. For instance, a dis-

tributed architecture was designed for cloud service 
discovery in [26]. The architecture benefits from a 
semantic Web technology using the Infrastructure 
and Network Description Language (INDL) and Stan-
dard Protocol and RDF Query Language (SPARQL) 
to exchange information among providers. In [13], a 
semantic based search engine architecture–called 
Cloudle–was proposed. It utilized a cloud ontology to 
measure the degree of similarity between customers’ 
requirements and cloud services. The search engine 
leveraged an agent-based paradigm to build a test bed 
for service management. Furthermore, in light of de-
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veloping cloud search engine architectures, a model 
using semantic Web and quality of service (QoS) was 
presented in [20]. It matches and composes cloud ser-
vices for realizing customers’ requirements. Although 
these approaches discover matchable or similar com-
posites services for cloud customers, they integrate 
cloud services in an ad-hoc way and suffer from the 
lack of a formal method to automatically construct 
composite services.
Automatic service composition has lately become an 
interesting research area in both industrial and aca-
demic centres. Its purpose is the automatically deter-
mination of a strategy in order to compose available 
services realizing a desired service seen as user re-
quirements [1, 24]. Current automated service com-
position approaches not only consider the functional 
specification of services, but also take into account the 
conversation specification of them through which the 
behavior of a service is described [8, 15]. Behavioral de-
scription of services consists of describing the order of 
invocation of service operations. To support such de-
scriptions, services are represented by finite state ma-
chines, which in turn, facilitate their verification and 
lay a basis for their composition in an automatic way.
A promising automatic composition approach that 
acts as a formal tool for web or cloud service inte-
gration is behavior composition [9]. This approach, 
first, constructs a framework in which both customer 
requirements, called target service, and available ser-
vices are abstracted as finite state machines. Then, it 
provides a sound and complete technique for synthe-
sizing a controller that delegates the operations of the 
target service to the proper available services being 
able to realize the target. The behavior composition 
framework generates composite services automati-
cally. Its synthesis technique guarantees that all pos-
sible composite services realizing the target service 
are obtained. One of the shortcomings of this frame-
work, however, is that its synthesized controller does 
not delegate the target service operations to the avail-
able services that their operations are similar to those 
in target. Hence, the framework only builds compos-
ite services whose operations have a fully match with 
the target service operations. Note that, two opera-
tions can be similar if they have different names but 
the same functionalities.
This paper introduces a semantic-based framework 
for behavior composition in which similar operations 

to user requests can appear in composite services. 
The framework benefits from ontology and resource 
reasoning to semantically define service operations. 
Three kinds of reasoning methods, namely similarity, 
compatibility, and numerical reasoning are taken into 
account for calculating the degrees of match among 
operations. For the aim of providing a match making 
mechanism in the semantic-based framework, such 
degrees are used as references in the controller synthe-
sis method proposed by the framework. The paper also 
gives come clues about the implementation of frame-
work via model checking tools at hand: Symbolic Mod-
el Verifier (SMV) and Temporal Logic Verifier (TLV).
The rest of this paper is structured as follows. Section 
2 reviews the related work. Section 3 briefly presents 
a background about the original behavior composi-
tion framework and the notion of resource reasoning. 
Section 4 proposes a semantic-based framework for 
behavior composition. The section also implements 
the framework by the model checking tools. Section 
5 provides some experimental results to show the ef-
fects of resource reasoning on the realization of user 
requirements in the semantic-based behavior com-
position framework. Finally, Section 6 concludes the 
paper and gives some indications about future work.

2. Literature Review
In recent years, many contributions have been pro-
posed for the problems of service composition and 
service discovery in the cloud and web. The strategies 
applied for such kind of problems can be classified 
into informal, semi-formal, and formal.
A brief review of some research using an informal 
strategy can be found in [42], which introduces the 
description of a Cloud-based Middleware for Ser-
vice Composition, called CM4SC. In this approach, 
the middleware appears as a new layer between the 
application layer and the platform layer in the con-
ventional cloud architecture to permit automatic 
composition planning and accelerate dynamic ser-
vice composition. A flexible open source middleware 
has been proposed to support adaptive enactment 
of complex service composition in the cloud [16]. It 
facilitates the deployment of a large number of com-
posite services and provides the capability of runtime 
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support for monitoring how they have been built. A 
semantic-based search engine, called Cloudle, that 
takes advantage of a cloud ontology to determine the 
measure of similarity between the user requirements 
and the available services, was devised for service 
composition and discovery [13]. Consequently, an 
agent-based architecture showing how the Cloudle 
search engine is organized was put forward in [31]. 
Generally speaking, regardless of the advantages that 
such contributions may bring about, the correctness 
of service composition cannot be verified.
Usually the solutions exploiting a semi-formal strat-
egy are subcategorized into syntactic-based and se-
mantic-based methods. The methods in the first cat-
egory are also decoupled with respect to the methods 
that integrate services with the aid of an orchestrator 
or a choreographer. For service orchestration, Busi-
ness Process Execution Language (BPEL) is used to 
define an interoperable integration model [37, 38]. 
For instance, a management-based adaptive and con-
figurable service composition method was proposed 
in [37] with the aid of a development in BPEL, called 
as VxBPEL, to support variability in service compo-
sitions. For service choreography, Web Service Chore-
ography Description Language (WS-CDL),1 being an 
XML-based specification language is used for compos-
ing peer-to-peer, interoperable collaborations among 
participants. The methods in the second category in-
clude Ontology Language for Web Services (OWL-S) 
to define an ontology for the semantic markup of web 
services to enable service invocation and composition 
through supplying the proper semantic descriptions 
[12, 19]. Furthermore, Web Service Modelling Ontology 
(WSMO)2 explicitly defines a conceptual model and 
also provides an ontology graph for the description of 
different aspects that are related to the semantic web 
services to solve the problem of service integration. 
A framework for automatic discovery, selection and 
composition of RESTful Web services which utilized 
linked open data was presented in [21]. The frame-
work applied RDF (Resource Description Framework) 
to represent the state of linked data services through 
which SPARQL (Standard Protocol and RDF Query 
Language) queries has been used to compose RESTful 
services. In general, there is no standard or a universal 

1 http://www.w3.org/TR/ws-cdl-10

2 http://www.wsmo.org

interfacing language that facilitates the composition of 
services written in different languages.
There are several solutions based on a formal strategy 
with theoretical models. Four of them, respectively 
based on transition systems with formal verification, 
proof system, process calculus, and AI planning are 
briefly presented. Such approaches ensure sound-
ness, completeness or correctness of service compo-
sition. The first one aims to be applied in the domain 
of grid computing. A resource discovery approach to 
address multi-attribute queries is introduced [36]. 
The technique to get replies to queries are very fast 
and decreases the number of nodes examined during 
the resource discovery process. The proposed mod-
el for resource discovery has been decoupled into 
data gathering, discovery, and control to simplify the 
formal verification of properties expressed by CTL 
(computational tree logic) and LTL (linear temporal 
logic) formulas. The second one suggests to exploit 
the X-UNITY language for representing services in 
the cloud and a proof theory for proving temporal 
properties over service specifications needed for 
cloud applications [10]. Moreover, a compositional 
proof-system was extended in [39] with a number of 
inference rules and proven system properties. The 
approach proposed a semantic formalization using 
SWSpec language in which the complexity of compos-
ing workflows was reduced. The third one includes a 
formal definition of composition in terms of a pro-
cess calculus and also provides an implementation 
through the extension of the Jolie language [7]. This 
approach was applied in the context of service-ori-
ented architectures (SOAs). In the same spirit, a new 
model and verification mechanism that relies on a 
process calculus for orchestration of web services, 
which combined with UML, provides a solution for 
the problem of formal verification of cloud manufac-
turing services composition [43]. Following that, a 
new extended process calculus for cloud manufactur-
ing service composition was proposed [44]. Through 
this contribution, six elements of quality of service 
have been evaluated. Furthermore, a formal schema 
of service composition and a BPEL code generation 
method have been provided. The fourth one propos-
es to exploit planning to optimize both composition 
and the underlying collection of information in or-
der to obtain high-quality composite services in-line 
[34]. In this solution, irrelevant actions, based on the 
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user preferences, are eliminated to reduce the search 
space. An automatic service composition by using a 
HTN (Hierarchical Task Network) planner JSHOP2 
(Java Simple Hierarchical Ordered Planner) was pro-
posed in [35] which considered both functional and 
non-functional properties of services.
Although the correctness of service composition is 
guaranteed in the contributions based on a formal 
strategy, they still suffer from the lack of exploiting 
controller synthesis techniques for service composi-
tion. To this end, behavior composition can provide 
a sound and complete technique. More precisely, the 
problem of behavior composition has been widely 
studied in the areas of web services [5], verification 
[18], and even multi-agent systems [29]. Among recent 
studies which are able to be applied in service-orient-
ed computing, an automatic behavior composition 
synthesis framework is quite significant [9], as the au-
thors have extensively investigated a particular type 
of behavior composition. In this framework, a specific 
controller is generated to coordinate the parallel exe-
cution of available services, so as to simulate a given 
target service with respect to constraints imposed on 
operations by an environment. A model without en-
vironment constraints, called Roman, was also intro-
duced latter by the same research team [8]. Further-
more, an effective procedure, computing realizable 
target fragment, has been developed in the case that a 
behavior composition problem is unsolvable [28, 40].

3. Preliminaries
This section devotes a brief review to the original 
behavior composition framework and resource rea-
soning.

3.1. Behavior Composition
The main elements of behavior composition frame-
work are available services 1, , n  , a target service 

t , an environment  , and controller generator CG  
[9]. 3 The asynchronous product of available services 
makes a system S. Formally, the target service is de-
fined as a tuple 0, , , ,t t t t tB b A F η〈 〉, where tB  is a finite 
set of states, 0tb  is the initial state, tA  is the set of op-

3 Since the use of environment is not very widespread in practice, 
the definition of this element is not discussed in our paper.

erations, tF  is a set of final states, and t t t tB A Bη ⊆ × ×  
is a transition relation. Each available service in the 
system is a tuple 0, , , ,i i i i iB b A F η〈 〉 , where iA  is the 
set of operations defined by i . The operations set 

=1
= n

s ii
A A  is defined to indicate all available opera-
tions in the system such that t sA A⊆ . Given the target 
and system, an algorithm called as largest Nondeter-
ministic-simulation (ND-simulation for short) is in-
troduced to trigger the process of controller synthesis. 
Through the algorithm, at each step, a state from the 
system does not simulate the one in the target service 
is eliminated. This algorithm leads to an ND-simula-
tion relation R in which the relation of 
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tAω Σ× →  is the output 

function. 
When a controller generator has been emerged, the notions of trace and history can be 

defined. A CG  trace CGτ  is a sequence 
1 1 2 2, ,0 1a k a kt tσ σ→ → , where σ ∈Σ , and a CG  

history is a finite prefix of a CG  trace. 
Let CG  be the set of all histories on CG . A selection function : CG t nC A I× →  is 

defined from the output function ω  in order to select one service among those that are able to 
execute the current operation with respect to the last state of a given history. If CG  contains the 
initial state 0 0 0= ,t sb sσ 〈 〉 , and 𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡0 ≼ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠0, then a set of controllers–called generated controllers, 
which are compositions of t –can be extracted from CG . 

 
  

 denotes 
the state tb  of t  is simulated by the state ss  in S. The 
output of the algorithm is a particular controller, 
called as controller generator. Given the execution 
of a current operation, this controller delegates the 
operation to the appropriate available services being 
able to handle it. Technically, the controller generator 
CG of  S for t  is a tuple , , , ,t nA I ξ ω〈Σ 〉, where Σ={⟨bt, 
ss⟩ ∈ Bt×Ss |bt≼ss} is the set of CG states, {1 }nI n∈   
is the indices of available services, t nA Iξ ⊆ Σ× × ×Σ 
is the transition relation, and : 2In

tAω Σ× →  is the 
output function.
When a controller generator has been emerged, the 
notions of trace and history can be defined. A CG  

trace CGτ  is a sequence 
1 1 2 2, ,0 1a k a kt tσ σ→ →, 

where σ ∈Σ, and a CG history is a finite prefix of a CG 
trace.
Let CG  be the set of all histories on CG. A selection 
function : CG t nC A I× →  is defined from the output 
function ω  in order to select one service among those 
that are able to execute the current operation with re-
spect to the last state of a given history. If CG contains 
the initial state 0 0 0= ,t sb sσ 〈 〉, and bt0 ≼ ss0, then a set of 
controllers–called generated controllers, which are 
compositions of t  –can be extracted from CG.
For the purpose of controller synthesis with the aid of 
an available model checking tool, the approach based 
on the largest ND-simulation is replaced by the cal-
culation of a winning strategy of a corresponding two 
players in a safety game [9]. As depicted in Fig. 1, in 
such a game structure, one plays the role of the system 
and the other plays the role of the controller. The for-
mer keeps the information about the current state of 
the target service, available services, and environment, 
and at each step, releases an operation that must be ex-
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Figure 1 
Two players of a safety game
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Two players in a safety game

ecuted. The latter returns an index indicating which 
available service in the system is able to perform the 
requested operation. These data appear in two lines 
inside each state of the transition system in Fig. 1. The 
state init indicates an initial state. In this state, all 
available services and the target service are in their ini-
tial states, the current operation is empty and there is 
no controller reply, namely the index is zero.
The transition relations sρ  and cρ  represent 
system moves and controller replies, respec-
tively. More precisely, s X Y Xρ ⊆ × × , where 

1= ( )t nX B B B E A× × × × × ∪∅  and = {0}nY I ∪ , 
and c X Y X Yρ ⊆ × × × , where  

1 1, , , , , , , , , , , , ,t n t n cb b b e a i b b b e a j ρ′ ′ ′ ′ ′〈〈 〉 〈 〉 〉∈ 

if and only if 0j ≠ . Notice that, =k kb b′ for all \{ }nk I i∈ . 
The reader is referred to [9] for the detailed proce-

dure that shows how to derive a safety-game struc-
ture from a behavior composition problem.

3.2. Reasoning Based on Semantics
To provide a more flexible framework for behavior 
composition, a compatibility relation ≪ ⊆ A × A over 
the set of operations can be introduced. The relation 
substitutes for the present equality between opera-
tions in the definition of the largest ND-simulation 
relation proposed in [9] and the underlying algorithm 
that computes it. An operation a' can now be carried 
out by an available service, if it is compatible with the 
delegated operation a, that is, a≪a'. No more details 
were given about this issue by the authors.
The use of resource reasoning metrics constitutes a 
first appealing solution [2, 31]. It evaluates the degree 
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of match between any two service operations. Gen-
erally, such metrics fit with a domain ontology graph, 
which has a well-formed structure to determine the 
multipaths connecting two concepts. Hence, the main 
effort must be concentrated on building ontologies.

3.2.1. Ontology and Resource Reasoning
Ontology is a representational artifact whose purpose 
is the exhibition of entities, defined classes, and re-
lations between them [3]. An ontology can offer me-
ta-information to describe semantics of data and al-
lows for building knowledge bases. Furthermore, it is 
a formal structure that supports the communication 
between a user and a computer agent [2].
The kinds of ontology are classified into domain ontol-
ogy, reference ontology, top-level ontology, and appli-
cation ontology [3]. The intended class of ontology for 
better representation and classification of resources 
included in a specific system is the domain one. It 
provides a taxonomy with a hierarchical structure for 
such resources, considered as concepts, together with 
a set of axioms identifying several rules to show how 
the concepts and relations can be comprehended [3]. 
A typical example is a cloud ontology which supplies a 
taxonomy for its computing resources [31].
Different kinds of relations can be defined between 
the concepts in a domain ontology. For instance, “is-
a”, “part-of”, “is-subtype-of”, “is-member-of”, “par-
ticipates-in”, “has-output”, and “precedes” are some 
examples of such relations. A domain ontology is for-
mally defined as follows.
Definition 1 [11]. An ontology in a specific domain O  
is a tuple of , , , ,C c R r A〈 ≤ ≤ 〉, where C is a set of con-
cepts, R is a set of relations, ≤ c is a partial order on C 
that is called the concept hierarchy, ≤ r is a partial or-
der on R that is called the relation hierarchy, and A is 
a set of axioms including rules in the logical forms to 
describe the relationships among the concepts.4  
Based on a domain ontology, a graph, called an ontol-
ogy graph, is drawn to demonstrate a taxonomy [2]. In 
this graph, each concept is represented as a node and 
each edge indicates a relationship between two con-
cepts. More precisely, each edge illustrates a relation 
such as “is-a” or “part-of”. For example, Fig. 2 depicts 

4 The notations ≤ c  and ≤ r  could be replaced by ≤ c and ≤ r, 
respectively. Although the latter are better, the former were 
adopted to avoid confusion with [11]. 

a simple ontology graph for an online agency provid-
ing travel services. In this graph, the Travel agency 
services is considered as the root node having sub-
nodes including Accommodation reservation, Trans-
portation reservation, and Meal reservation.
In cloud computing, where service operations are de-
fined semantically, the notion of resource reasoning is 
put forward, which includes similarity, compatibility, 
and numerical reasoning [31]. In similarity reasoning, 
to measure the degree of similarity between two dif-
ferent concepts, several semantic similarity functions 
have been introduced. Among those proposed in [2, 25, 
30], there is one that defines a function being compat-
ible with a hierarchical structure of well-formed con-
cepts that can be found in a domain ontology graph [2]. 
In comparison to Jaccard [23], cosine [41], and Slima-
ni [33] similarity measures’ functions, Knappe in [2] 
defined a function that better considers path length, 
depth, and local density of an ontology graph [32]. This 
function takes into account specialization or general-
ization of one concept with respect to another.
Definition 2 [2]. The semantic similarity function 

: [0,1]sim C C× →  is defined as: 

| ( ) ( ) | | ( ) ( )|( , )= (1 ) ,
| ( ) | | ( ) |
x y x ysim x y

x y
α α α αρ ρ

α α
∩ ∩

+ −  (1)

where the constant [0,1]ρ ∈  determines the degree 
of influence of generalization5 that depends on a hi-
erarchical ontology; the parameter ρ  permits to tai-
lor the similarity function, and hence can conform 
to the generalization property. The term ( )xα  is con-
sidered as the set of upward nodes reachable from x  
(including the node labeled by x), and the expression 

( ) ( )x yα α∩  is the reachable common nodes between 
x  and y . 
 For instance, in Fig. 2, the concept of Meal reservation 
has two reachable upward nodes from itself, whereas 
this is four for Cliff hotel reservation. Hence,

| ( ) |= 2 Mealreservation andα
| ( ) |= 4.Cliffhotelreservationα

In addition, the number of common nodes for Cliff 
hotel reservation and Transit hotel reservation is more 
than Cliff hotel reservation and Bus reservation, which 
are calculated as follows: 

5  Generalization is the opposite of specialization.
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Figure 2 
A part of simple ontology graph of a travel agency service
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As indicated in Eq. 1, the semantic similarity function 
maps two concepts into the unit interval, and its out-
put shows the degree of similarity between x and y. 
So, the value 0 means no similarity and 1 means full 
similarity.
Given the ontology graph and semantic similarity 
function, a square matrix (similarity matrix) of order 
n of similarities among concepts is constructed: 

1 1 1

1

( , ) ( , )
= ,

( , ) ( , )

n

n n n

sim a a sim a a
SIM

sim a a sim a a

 
 
 
  



  



where n is the number of concepts. It is important to 
note that each element in this matrix indicates a real 
number in [0,1] giving the degree of similarity be-
tween related concepts. Moreover, a threshold in the 
interval (0,1] is defined to accept the minimum mea-
sure of similarity between two concepts.
The similarity reasoning was introduced to measure 
the degree of similarity for functional requirements 
with the aid of a semantic similarity function (see 
Def. 2). To calculate the degree of match for technical 
requirements in computing systems, both the com-
patibility and numerical reasoning were proposed.
The compatibility reasoning is appropriate for com-
paring two sibling nodes in a domain ontology graph, 
for example, the compatibility between two different 
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versions of a software program in the cloud ontology.
Definition 3 [13]. The compatibility reasoning func-
tion : (0, 2)compat C C× →  is defined as: 

| |
0.8( , ) = ( , ) ,

10

c cx y

compat x y sim x y
−

+ (2)

where The terms cx and cy indicate the chronological 
orderings of different versions of a software program. 
The expression 

| |
0.8

c cx y−
/10 is a fine-grain measure-

ment, because x and y have a small degree of differ-
ence. 
In [31], the compatibility reasoning function was gen-
eralized as follows. 

| |

( , ) = ( , ) ,
c cx y

compat x y sim x y µ
θ

−

+ (3)

where 0 < < 1µ  and 1 < <θ ∞  can be assigned by 
an arbitrary value. The terms xc  and yc  indicate the 
chronological orderings of different versions of a soft-
ware program. The most important component in 

| |c cx yµ
θ

−

 is the term | |x yc c− .

More precisely, the term ( , )sim x y  in Eq. 3 is comput-
ed based on Eq. 1 and the main significant value comes 
from the expression | |x yc c− . When this value is large, 
it means that x and y are less compatible; otherwise, 
they are more compatible. Appendix B provides an 
example to show how compatibility reasoning is cal-
culated.
The numerical reasoning is about the similarity be-
tween two numeric values of a concept such as CPU 
speed or RAM size.
Definition 4 [31]. Let a and b be numeric values 
and c a concept. The numerical reasoning function 

where 0 < < 1µ  and 1 < <θ ∞  can be assigned by an arbitrary value. The terms xc  and yc  
indicate the chronological orderings of different versions of a software program. The most 

important component in 
| |c cx yµ
θ

−

 is the term | |x yc c− . 

More precisely, the term ( , )sim x y  in Eq. 3 is computed based on Eq. 1 and the main 
significant value comes from the expression | |x yc c− . When this value is large, it means that x  
and y  are less compatible; otherwise, they are more compatible. Appendix B provides an 
example to show how compatibility reasoning is calculated. 

The numerical reasoning is about the similarity between two numeric values of a concept 
such as CPU speed or RAM size. 

Definition 4  [31] Let a  and b  be numeric values and c  a concept. The numerical 
reasoning function : [0,1]Sim C× × →   is defined as:  

 ( , , ) = 1 | |,
c c

a bSim a b c
Max Min

−
−

−
 (4) 

where cMax  and cMin  are the minimum and maximum values being available for c .   
 As an example, consider the concept RAM with three different instances whose sizes are 

1GB, 4GB, and 8GB. Given Eq. 4, = 8RAMMax  and = 1RAMMin . In case of calculating numerical 
reasoning between RAM 1GB and RAM 4GB (i.e., = 1a  and = 4b ), it is:  

 1 4( , , ) = 1 | | 0.58.
8 1

Sim a b RAM −
− ≈

−
 

Placing concepts inside an ontology graph is manually performed and the degree of similarity 
between two concepts can be retrieved from a similarity matrix. For locating concepts in an 
automatic way, a hierarchy matching method proposed in [22] can be suggested. The details of 
such a method is, however, out of the scope of this paper. 

 
4. Semantic-Based Behavior Composition 
  
Given the notion of ontology and reasoning, each operation handled by an available service 

is considered as a concept [4]. To have a matchmaking between the operation requested by a target 
and those available in the system, two sets of operations are defined in the framework. One set, 
denoted by tA , contains the requested operations, and the other set, denoted by sA , includes all 
operations handled by available services in the system. Given such sets, the target service t , 
available services  (1 )i i n≤ ≤ , and the system   are as defined in Sect. 3.1, while t sA A⊆ . 

 
 

   
  

 is defined as: 

( , , ) = 1 | |,
c c

a bSim a b c
Max Min

−
−

− (4)

where cMax  and cMin  are the minimum and maximum 
values being available for c.  
 As an example, consider the concept RAM with three 
different instances whose sizes are 1GB, 4GB, and 
8GB. Given Eq. 4, = 8RAMMax  and = 1RAMMin . In case 
of calculating numerical reasoning between RAM 
1GB and RAM 4GB (i.e., = 1a  and = 4b ), it is: 

1 4( , , ) = 1 | | 0.58.
8 1

Sim a b RAM −
− ≈

−
Placing concepts inside an ontology graph is manu-
ally performed and the degree of similarity between 
two concepts can be retrieved from a similarity ma-
trix. For locating concepts in an automatic way, a 
hierarchy matching method proposed in [22] can be 
suggested. The details of such a method is, however, 
out of the scope of this paper.

4. Semantic-Based Behavior 
Composition
Given the notion of ontology and reasoning, each op-
eration handled by an available service is considered 
as a concept [4]. To have a matchmaking between the 
operation requested by a target and those available in 
the system, two sets of operations are defined in the 
framework. One set, denoted by tA , contains the re-
quested operations, and the other set, denoted by sA , 
includes all operations handled by available services 
in the system. Given such sets, the target service t , 
available services  (1 )i i n≤ ≤ , and the system   are 
as defined in Sect. 3.1, while t sA A⊆ .
Example 1.  Consider requirements expressed as a tar-
get service and depicted in Fig. 3. The requested opera-
tions belong to the set: 

= { 210 ,tA StorageSpace GB
Windows7,SQL-Server2008}.
Many of them are not available in the cloud. More-
over, there are three available services able to meet 
the target. For instance, the service 1  is able to offer 
the operation set:
A1={Windows8,SQL-Server2005}.
Though such resources do not have the same name as 
those of the requested resources, they can be similar 
or have the same functionality. In this end, a part of 
cloud ontology graph is illustrated in Fig. 4 to indicate 
the relations among service operations. 
Taking into account the three types of resource rea-
soning, the definition of largest ND-simulation rela-
tion must be revisited to support them. Let sv  and tv  
be the numeric values for sa  and ta , respectively, and 
c is a concept carried by both ta  and sa . Moreover, as-
suming that 1τ , 2τ , and 3τ  be thresholds. An ND-simu-
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lation relation of t  by   is a relation tR B S⊆ ×  such 
that ,t s R〈 〉∈  implies:  

For each type of reasoning, a condition is provided to 
ensure that at each step of operation execution, the 
degree of match between a requested operation and 
an available operation is equal to or greater than a 
predefined threshold.

Figure 3 
A target service and available services handling cloud service operations

a1 a2 a3

B1

Hotel(3-star , 320$)
Meals(meat , 60$)

Meals(vegetable, 55$)

Airplaneticket(economy , 380$)
Airplaneticket(business, 450$)

Hotel(3-star , 240$)

b1 b2

B2

Meals(vegetable, 50$)

Bus(tour , 30$)

Airplaneticket(economy , 420$)

c1 c2

B3

Airplaneticket(economy , 350$)
Airplaneticket(business, 420$)
Airplaneticket(first , 480$)

Hotel(2-star , 200$)
Hotel(3-star , 250$)
Hotel(4-star , 300$)

Bus(shuttle, 20$)

(a) Available behaviors B1, B2, and B3

t1 t2 t3 t4

Bt

Airplaneticket(not{first},Lowest) Hotel({4-star}/{3-star},Lowest) Meals({vegetable},Lowest)

Bus({shuttle},Lowest)

(b) Target behavior Bt

Based on the extension of the largest ND-simula-
tion relation, the notion of controller generator also 
requires a revision to consider the reasoning condi-
tions. Formally, the controller generator CG of t  on 
  is , , , , ,t s nA A I ξ ω〈Σ 〉 , where:   
1 Σ = {⟨t,s⟩ ∈ Bt × S| t ≼ s} is the set of CG  states made 

by all pairs of t  and   states that belong to the 
largest ND-simulation relation; 

2 ξ  is the transition relation, where , ,a a kt sσ σ ′→  in 
ξ , if and only if:  

 _ there is a transition att t′→  in t ; 
 _ there is a transition ,a kss s′→  in  ; 
 _ in the case of similarity reasoning, the condition 

( , )t ssim a a  1τ≥  holds; 
 _ in the case of compatibility reasoning, the condition 

( , )t scompat a a  2τ≥  holds; 
 _ in the case of numerical reasoning, the condition 

3( , , )s tSim v v c τ≥  holds;
 _ for all , tt s B S′′ ′′〈 〉 ∈ × , such that ,a kss s′′→  in   

and att t′′→  in t , it is the case that ,t s′′ ′′〈 〉 ∈Σ; 
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Graphics

Figure 4 
A part of an ontology for the cloud service operations [14]
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3 : 2In
t sA Aω Σ× × →  is the output function with 

( , , ) = { | , , , , }t s t sa a k such that a a kω σ σ σ σ ξ′ ′∃ ∈Σ 〈 〈 〉 〉∈
( , , ) = { | , , , , }t s t sa a k such that a a kω σ σ σ σ ξ′ ′∃ ∈Σ 〈 〈 〉 〉∈ . 

Example 2. The largest ND-simulation relation for 
Example 1 is computed based on compatibility and nu-
merical reasoning, which are done from the ontology 
graph in Fig. 4. Notably, the graph is a part of a cloud 
ontology graph represented in [14].
The compatibility reasoning is used for both Windows  
and , whereas a numerical reasoning is used for 
StorageSpace . Given the simulation relation: 

1 1 1 1 2 1 2 1 2 1 1 1= { , , , , , , , , , , , ,R t a b c t a b c t a b c〈 〈 〉〉 〈 〈 〉〉 〈 〈 〉〉

3 1 1 1 3 2 1 1                              , , , , , , , },t a b c t a b c〈 〈 〉〉 〈 〈 〉〉
the controller generator, illustrated in Fig. 5, is synthe-
sized. All transitions of the controller generator are la-
beled by a pair of operations, namely a requested opera-
tion of the target and a similar operation to the request 
handled by an available service. For instance, due to the 
compatibility between WindowsVista  and 7Windows , 
the former can be offered to the target service.

Figure 5 
The controller generator

Given the possible generated controllers that can be 
extracted from the controller generator, the transi-
tion relations of two of them are: 

1 1 2:{ , 210 , 220 ,2, ,P s StSpace GB StSpace GB s〈 〉

2 4  , 7, , 2, ,s Windows WindowsVista s〈 〉

4 1  , 2008, 2005,2, }.s SQL Server SQL Server s〈 − − − − 〉

2 1 3:{ , 210 , 205 ,3, ,P s StSpace GB StSpace GB s〈 〉
3 5  , 7, 8,1, ,s Windows Windows s〈 〉

5 1  , 2008, 2005,1, }.s SQL Server SQL Server s〈 − − − − 〉

It is supposed that the predefined threshold for com-
patibility and numerical reasoning are 2 = 0.7τ  and 

3 = 0.3τ , respectively. Moreover, let ρ  in Eq. 1 be set 
to 0.5, and µ  and θ  in Eq. 3 be set to 0.8 and 10, respec-
tively. Given the following amounts, separately com-
puted for each transition in the generated controllers, 
the average degree of match for the generated con-
trollers 1P  and 2P  are 0.68 and 0.79, respectively. For in-
stance, the average degree of match for 1P  is calculated 
as (0.33+0.88+0.83)/3.

s1

s2

s3

s4

s5

StorageSpace210GB ,StorageSpace205GB , 3

StorageSpace210GB ,StorageSpace220GB , 2

Windows7 ,Windows8 , 1

Windows7 ,WindowsVista, 2

SQL–Server2008, SQL–Server2005, 2

SQL–Server2008, SQL–Server2005, 1
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1P  and 2P  are 0.68 and 0.79, respectively. For instance, the average degree of match for 1P  is 

calculated as (0.33+0.88+0.83)/3. 
 
 (205 ,210 , ) = 0.66,Sim GB GB StorageSpace  
 (220 ,210 , ) = 0.33,Sim GB GB StorageSpace  
 ( 7, 8) =compat Windows Windows  
 ( , 8) = 0.88,compat WindowsVista Windows  
 ( 2008, 2005) = 0.83,sim SQL Server SQL Server− − − −  

where 7 8| |= 1,Windows Windowsc c− 7| |= 1,Windows WinVistac c− | ( 8) |= 5,Windowsα and 
| ( 2008) ( 2005) |= 3SQL Server SQL Serverα α−− ∩ −− .  

 
 
4.1  Implementation of Semantic-Based Behavior Composition in 

SMV/TLV 
 
Once behavior composition has been translated into the safety-game structure, it can be 

implemented with a model checking tool like TLV [27]. TLV (Temporal Logic Verifier) is a tool 
for the purpose of verification of LTL specifications. It uses Boolean Decision Diagrams (BDDs) 
for indicating state valuations and transitions. The inputs of TLV are an LTL specification written 
in SMV and a synthesis procedure. The latter is based on the safety-game structure and its output 
represents a controller generator. The procedure of controller synthesis based on a winning strategy 
has been implemented in TLV [9]. SMV (Symbolic Model Verifier) is a symbolic model checking 
tool supporting the verification of temporal logic (LTL and CTL) properties of finite-state 
machines. In SMV, each element of the safety-game players, namely available services, target 
service, and controller, is implemented as a module [9]. Figure 6 includes the main modules of 
services in Example 1. The module main contains two submodules: the controller Ctr and the 
system Sys. The former returns the index of an available service executing the requested operation 
of the target service. The latter chooses the next operation that must be executed. Figure 7 gives 
the SMV modules of target service t  and the available service 1 . The transitions part (TRANS) 
of target module indicates how desired operations are released. Such operations are inputs in the 
available service module. 

 
   

 

where 7 8| |= 1,Windows Windowsc c−
7| |= 1,Windows WinVistac c−  | ( 8) |= 5,Windowsα and 

| ( 2008) ( 2005) |= 3SQL Server SQL Serverα α−− ∩ −− . 

4.1. Implementation of Semantic-Based 
Behavior Composition in SMV/TLV
Once behavior composition has been translated into 
the safety-game structure, it can be implemented 
with a model checking tool like TLV [27]. TLV (Tem-
poral Logic Verifier) is a tool for the purpose of verifi-

cation of LTL specifications. It uses Boolean Decision 
Diagrams (BDDs) for indicating state valuations and 
transitions. The inputs of TLV are an LTL specifica-
tion written in SMV and a synthesis procedure. The 
latter is based on the safety-game structure and its 
output represents a controller generator. The pro-
cedure of controller synthesis based on a winning 
strategy has been implemented in TLV [9]. SMV 
(Symbolic Model Verifier) is a symbolic model check-
ing tool supporting the verification of temporal logic 
(LTL and CTL) properties of finite-state machines. In 
SMV, each element of the safety-game players, name-
ly available services, target service, and controller, is 
implemented as a module [9]. Figure 6 includes the 
main modules of services in Example 1. The module 
main contains two submodules: the controller Ctr and 

1

MODULE main
VAR

sys: system Sys(ctr.index);
ctr: system Ctr;

DEFINE
good := (ctr.initial & sys.initial) | !(sys.failure);

MODULE Ctr
VAR

index : 0..3;
INIT

index = 0
TRANS

case
index=0 : next(index)!=0;
index!=0 : next(index)!=0;
esac

DEFINE
initial := (index=0);

MODULE Sys(index)
VAR
operation : {start_op, StorageSpace205GB, StorageSpace210GB, StorageSpace220GB,

Windows7, Windows8, WindowsVista, SQL-Server2005, SQL-Server2008};
threshold : 0..10;
target : Target(operation,threshold);
B1 : Service1(index,operation,threshold);
B2 : Service2(index,operation,threshold);
B3 : Service3(index,operation,threshold);
DEFINE
initial := (B1.initial & B2.initial & B3.initial & target.initial &

operation=start_op & threshold = 0);
failure := (B1.failure |B2.failure |B3.failure) |

(target.final & !(B1.final & B2.final & B3.final));

Figure 6 
Modules of system and controller in SMV
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the system Sys. The former returns the index of an 
available service executing the requested operation 
of the target service. The latter chooses the next op-
eration that must be executed. Figure 7 gives the SMV 
modules of target service t  and the available service 

1 . The transitions part (TRANS) of target module 
indicates how desired operations are released. Such 
operations are inputs in the available service module.
More precisely, the submodules indicating the two 
players of the game structure are detailed. For ctr, be-
ing an instance of controller or orchestrator (Ctr), the 
transition relation defined via the constraints in the 
INIT and TRANS parts encodes an unconstrained 

orchestrator, assigning at each step, one operation 
to each available service, by assigning values to the 
state variables state, operation, and threshold. The 
goal of synthesis is to restrict such a relation in order 
to obtain a winning strategy. More specifically, the 
constraints enforced on the controller player’s state 
are as follows. Given the INIT part, in its initial state 
(where variable initial holds true) the controller must 
instruct every service to initialize itself by perform-
ing the dummy operation start (all services initialize 
simultaneously). As for non-initial states, the TRANS 
part defines the following constraints: (i) no initial-
ization operation can be assigned to any service; (ii) 

1

MODULE Target(operation,threshold)
VAR

state : {start_st,t1,t2,t3};
INIT

state = start_st & operation = start_op & threshold = 0
TRANS
case operation

state = start_st & operation = start_op & threshold = 0:
next(state) = t1 & next(operation) in {StorageSpace210GB}
& next(threshold) = 3;

state = t1 & operation in {StorageSpace210GB} & threshold = 3:
next(state) = t2 & next(operation) in
{Windows7} & next(threshold) = 8;

state = t2 & operation in {Windows7} & threshold = 8 :
next(state) = t3 & next(operation) in
{SQL-Server2008} & next(threshold) = 7;

state = t3 & in {SQL-Server2008} & threshold = 7 :
next(state) = t1 & next(operation) in
{StorageSpace210GB} & next(threshold) = 3;

esac
DEFINE
initial := state = start_st & operation = start_op & threshold=0;
final := state in {t1};

MODULE Service1(index,operation,threshold)
VAR

state : {start_st,a1,a2};
INIT

state = start_st
TRANS
case
state = start_st & operation = start_op & threshold = 0 & index = 0: next(state) in {a1};
(index != 1) : next(state) = state;
(state=a1 & operation in {Windows8,Windows7} & threshold<=8) : next(state) in {a2};
(state=a2 & operation in {SQL-Server2005,SQL-Server2008} & threshold<=8) : next(state) in {a1};
esac
DEFINE
initial := state = start_st & operation = start_op & threshold = 0 & index = 0;
failure := index = 1 & !((state = a1 & operation in {Windows8,Windows7} & threshold<=8) |

(state = a2 & operation in {SQL-Server2005,SQL-Server2008} & threshold<=8));
final := state in {a1};

Figure 7 
Modules of target service and an available service
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the current operation request must match at least one 
of the service operation (by regarding the similarity 
between operations); (iii) a service can be instructed 
to execute an operation only if that operation is the 
one currently requested; and (iv) at most one service 
can be instructed to operate at a time.
Given the module Sys, being an instance of system, 
it contains all the aspects of the system player. More 
precisely, Sys is the synchronous product of available 
services (submodule Service1, Service2, Service3) 
and the target service (submodule Target). Some ab-
breviations are used to define, in the DEFINE part, 
namely final and failure states. In fact, the system fails 
(failure) when any of the available service is instruct-
ed to perform an operation that it cannot run based on 
its current state. Prohibiting such situations, by prop-
erly constraining sys transition relation, is the syn-
thesis procedure goal. Furthermore, the entire system 
does not respect the final-state condition (final) when 
the target is in a state where it terminates its execu-
tion but the available services do not.
For providing a matchmaking between operations 
of a target service and those of available services, a 
variable, named threshold, is declared for each type 
of resource reasoning in the system module of SMV. 
Through this variable, target service is able to assign 
its acceptable threshold for the degree of match be-
tween its requested operation and the one in system 
 . The type of this variable must be integer, since real 
numbers are not supported in SMV. For instance, a 
real number 0.7 is considered as an integer number 7. 
Given the ranges of resource reasoning functions, the 
domain of threshold for both similarity and numeri-
cal reasonings is integer numbers in an interval [0,10] 
and for compatibility reasoning is integer number in 
an interval (0,20). Such domains are appropriate if 
only one digit of decimal precision is taken into ac-
count for thresholds. Note that, the values returned 
from reasoning functions defined from Def. 2 to 4 can-
not be computed through SMV/TLV.
The variable threshold is considered as an argument 
in both target module and available service modules. 
In the former, it is regarded as an output argument in 
which at each step of an operation request, its thresh-
old, denoting the acceptable degree of match between 
the operation and the ones in available services, is re-
leased. In contrast, this variable is an input argument 
in the latter through which the precomputed degree 

of match between a requested operation and simi-
lar ones in the current state of an available service is 
compared with the released threshold. In the transi-
tion part of the available service module, the condi-
tion for the threshold is associated with an operation 
handled by the service and the one requested by the 
target. Hence, in each transition of the module, a set is 
provided to encompass both operations.
Example 3. Given the transitions in the target service 
module depicted in Fig. 7 , it is supposed that:  
 _ the threshold 1τ  for the degree of match between 

SQL–Server2005 and the similar operation in the 
system is 7, 

 _ the threshold 2τ  for the degree of match between 
Windows7 and the similar operation in the system is 8, 

 _ the threshold 3τ  for the degree of match between 
StorageSpace210GB and the similar operation in 
the system is 3. 

For simplification, although three different variables 
should be declared for 1τ , 2τ  and 3τ  in the implementa-
tion of this example, only one variable threshold is de-
clared. Given the transition part of the target service 
module, this variable is assigned with three values of 
3, 8, and 7 to consider the acceptable thresholds for 
numerical, compatibility, and similarity reasonings, 
respectively. These values are inputs in the module 
of available services. For instance, the requested re-
source SQL–Server2008 can be matched with the 
operation SQL–Server2005 in the module Service1, 
since the current input of threshold in this module 
has the value of 7, and the degree of similarity be-
tween the operations is 8 (). 
Appendix A provides the details about the rest of SMV 
modules of Example 1 along with a part of TLV output 
indicating controller generator.

5. Experimental Results
Through the implementation of resource reasoning in 
SMV, three different experiments have been provided. 
Given a fixed number of target services, the first one 
is related to the effects of similarity reasoning on the 
number of realized target services. The second one is 
calculating the average time that it takes for the real-
ization of target services. Finally, the third one evalu-
ates the relationship between similarity reasoning and 
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the synthesized generated controllers for a target ser-
vice under different rates of available services’ failures.

5.1. Effect of Similarity Reasoning on 
Realized Target Services
The assumption is that there is one available service, 
carrying 16 different operations. Furthermore, it is 
supposed that number of target services varies from 
2 to 12. Each target service requests four different 
operations so that from those, one operation is ran-
domly chosen to be possibly matched with a similar 
one in the available service. The predefined threshold 
in the target service can be 2, 4, 6, or 8. Moreover, in 
the available service, the degree of match between an 
operation and the one requested by target service is 
randomly selected between 1 and 10.
Given the graphs illustrated in Fig. 8, the horizon-
tal axes represent the number of target services, and 
the vertical axes indicate the average number of real-
ized target services, where for each datum (point in a 
curve), it is calculated after 10 times execution of TLV 
program. To investigate the average number of real-
ized target services in the larger scale of operations, 
the graphs depicted in Fig. 8(b) and Fig. 8(c) have been 
provided. In the former, the available service carries 32 
different operations, and in the latter, the number of 
operations is extended to 48. Note that, in both graphs, 
the scenario for the requested operations of target ser-
vices is similar to the one assumed for Fig. 8(a).
It can be comprehended from the graphs that when 
the rate of threshold increases, the average number 
of realized target services decreases sharply. Further-
more, the growth in the number of operations leads to 
an increase in the average number of realized target 
services. Besides, a compare between the curves and 
the threshold rates indicates that curves, having low-
er rates of threshold, are closer to each other, and such 
curves are mapped onto each other when the num-
ber of operations increases. For instance in Fig. 8(c), 
when the amount of thresholds were 2, 4, and 6, the 
curves were mapped onto each other and all released 
target services were realized. The reason of such ful-
ly realizable target services is that the probability of 
finding an operation whose degree of match with a 
requested operation of target service is high when 
target requests lower rates of thresholds and we have 
larger scale of operations. Notably, the fluctuations in 
the curves of the graphs are simply due to the random 
selection of degree of match between operations.
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Figure 8 
The relationships between realized target services and 
similarity reasoning under different scale of operations
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To have a compare between our semantic-based 
framework and the original automatic behavior 
composition synthesis (ABCS) framework6 pro-
posed in [9], the graph depicted in Fig. 9 is repre-
sented. In the experiment, the assumption is that we 
have one available service handling 32 operations 
and the rate of threshold released by target service 
is 7 in the semantic-based framework. Moreover, the 
number of released target services ranges from 2 to 
12 and the degree of match between an operation of 
each target service and the one in available service 
is randomly selected between 1 and 10. As seen from 
Fig. 9, the chance of realization of target services in 
our approach is much more than the original frame-
work proposed in [9], since our approach considers 
the operations which are similar to those requested 
by target service during building composite services.

5.2. Realization Time of Target Services
This experiment evaluates the average of time taken 
for the realization of targets services in both seman-
tic-based and original behavior composition frame-
works. It is assumed that there is one available ser-
vice carrying 32 different operations and the number 
of target services varies from 2 to 12, each of which 
requests four different operations. Furthermore, in 
the available service, the degree of match between 
an operation and the one demanded by target ser-
vice is randomly selected between 1 and 10. Target 
service requests only one similar operation along 
with a threshold randomly selected between one and 
ten.7 Table 1 represents the average time (in seconds) 

6 It is called also as original behavior composition framework.

which is taken for the realization of target services. 
The calculation of the average realization time was 
obtained after ten times execution of TLV program. 
As seen from the table, by increasing the number of 
target services, the realization time rises drastically. 
Moreover, the realization time in the original behav-
ior composition is totally shorter than our seman-
tic-based framework. This is due to the fact that the 
number of realized targets in the semantic-supported 
framework is much more than those realized by the 
original framework (see Fig. 9).

Figure 9 
A comparison between realization time in semantic-based 
framework and original behavior composition framework
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5.2.1. Effect of Similarity Reasoning on Controller 
Synthesis Under Different Rates of Service 
Failure7

The assumption is that a target service requests 5 
different operations. Some requested operations are 
randomly chosen to be possibly matched with the 
similar ones in the system. The number of request-
ed similar operations varies from 1 to 5, and the pre-
defined threshold can be 2, 4, 6, 8, or 10. There are 10 
available services in the system handling totally 25 
different operations, and for each operation, there ex-
ists at least two instances. More precisely, in this ex-

7 When the target demands a threshold 10, it means a fully 
match should be found. Such demands are simply allowed in the 
original behavior composition framework.

Table 1 
A comparison between semantic-based framework and 
original behavior composition framework (ABCS)

Number of 
target services

Average realization 
time in semantic-
based framework

Average realization 
time in original 

framework (ABCS)

2 0.05 0.04

4 0.08 0.06

6 0.16 0.13

8 0.52 0.41

10 4.63 3.52

12 67.22 65.74
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periment, available services have been classified into 
three groups:  
 _ the group with five services each of which has one 

state and handles 5 different operations; 
 _ the group with three services each of which has two 

states and handles 10 different operations; 
 _ the group with two services each of which has three 

states and handles 15 different operations. 
In each available service, the degree of match between 
an operation and the similar one requested by target 
service is randomly chosen between 1 and 10.

Given the graphs illustrated in Fig. 10, the horizon-
tal axes represent the number of similar operations 
requested by target service, and the vertical axes in-
dicate the average number of synthesized controllers 
(generated controllers). For each datum (point in a 
curve), the average is calculated after 10 times execu-
tion of TLV program. To evaluate the average num-
ber of controllers when some available services ran-
domly encounter with failures, the depicted graphs 
in Fig. 10(b)-(d) are provided. The results after the 
failures of 2, 4, and 6 available services are illustrat-
ed by the graphs, respectively.

Figure 10 
The relationships between controller synthesis and similarity reasoning under different rates of failure
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As seen from the figures, there is a significant de-
crease in the number of synthesized controllers when 
the rate of failures increases. Although the average 
number of controllers is nearly zero for the threshold 
one, the chance of synthesis rises when lower thresh-
olds are requested. As another result, the increase in 
the number of requested similar operations leads to 
the increase in the number of controllers.

6. Conclusion
 This paper introduced a semantic-based framework 
for the problem of behavior composition whereby 
service operations that have different names but the 
same functionality are taken into account during 
building composite services. Our semantic-based 
framework extended the original behavior compo-
sition framework [9] by developing synthesis proce-
dure, leveraging three types of resource reasoning, 
namely similarity, compatibility, and numerical rea-
soning. Such an extension not only provided a more 
flexible framework for the behavior composition 
framework to match similar service operations, but 
also enabled semantic-supported cloud ecosystems 
to compose their services in an automatic way. More-
over, the paper gave some clues about the implemen-
tation of our framework via model checking tools in 
hand: SMV and TLV.
The kind of control exercised in our framework is a 
control by delegation. Other formal methods have 
been proposed for service composition when super-
vision (i.e., disabling controllable events) is adopted 
as kind of control (e.g., [6]), but the theoretical frame-
work behind them do not consider resource reason-
ing behind their synthesis mechanism. Some formal 
methods for service composition, very different from 
the aforementioned ones, use a probabilistic (e.g., 
[17]), preferences-based planning (e.g., [34]) or pro-
cess calculus(e.g., [7]) approach. These sorts of meth-
ods, however, did not synthesize automatic control-
lers to orchestrate a community of services.
The experiments showed that the possibility of real-
izing user requirements in our semantic-based ver-
sion is much more than the original framework due 
to the flexible match between similar operations in 
the former. However, the realization time of specifi-

cations in our framework was fairly longer than the 
original one. Given possible failures of some available 
services, our framework indicated that has a higher 
rate of fault tolerance compared to the original one in 
terms of building composite services.
Although our framework prescribed a promising for-
mal tools for composing cloud services in an automat-
ic way, it still requires further work or investigations 
to be readily applied in a real cloud environment. In 
our present approach, the values returned from the 
resource reasoning functions, showing the degree of 
match between service operations, were not auto-
matically computed by SMV/TLV. In fact, these val-
ues were manually calculated and inserted as integer 
numbers in the SMV module skeletons extended for 
the implementation of our framework. Hence, this 
problem may raise a question about how to establish 
a link between SMV/TLV and the available ontolog-
ical engineering tools for building ontology graphs 
and knowledge-based solutions. As another potential 
research for future work, the integration of real-time 
constraints in our framework can be examined. By 
supporting such constraints, manufacturing cloud 
and Internet of Things (IoT) industries, often deter-
mining deadlines for the use of their services, can 
benefit from our proposed formal method to integrate 
objects or services. Furthermore, investigating the 
scalability of our semantic-based framework in terms 
of orchestrators synthesis will be another possible re-
search direction.

Appendix 

Appendix A. Implementation in SMV/TLV
Figure 11 represents the SMV modules of two avail-
able services 2  and 3  in Example 1. The controller 
generator that is obtained for the example is illustrat-
ed in Fig. 12. The TLV output indicates an automaton 
with 7 states and 10 transitions that was successfully 
synthesized.

Appendix B. An example of compability 
reasoning
Given the graph in Fig. 13, the values 1 to 9 show the 
chronological orderings of Windows. 95Windows  is 
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assigned 1 to demonstrate that it is the oldest version 
of Windows and 2008WindowsServer  is assigned 9 to 
represent the latest version. The degree of compati-
bility between 98Windows  and WindowsVista, and the 
one between 7Windows  and WindowsVista are calcu-
lated as follows. 

( 98) = ( 7) =Windows Windowsα α
           ( ) = 2,WindowsVistaα

( 98) ( ) =     Windows WindowsVistaα α∩
         ( 7) ( ) = 1,Windows WindowsVistaα α∩

and 

( 98, ) =sim Windows WindowsVista
( 7, ) = (0.5 0.5) / 2 = 0.5.sim Windows WindowsVista +

The label values of 98, ,Windows WindowsVista  and 
7Windows  are 98 = 2, = 7,w wvc c  and 7 = 8wc . For the 

aim of experimentation, µ  and θ  are set to 0.8 and 
10, respectively. Given the compatibility reasoning 
function, ( 98, ) = 0.533compat Windows WindowsVista  
and ( 7, ) = 0.58.compat Windows WindowsVista  Hence, 
compared to 98,Windows  7Windows  is more compat-
ible with WindowsVista .

Figure 11 
The SMV modules of available services

MODULE Service2(index,operation,threshold)

VAR

state : {start_st,b1,b2};

INIT

state = start_st

TRANS

case

state = start_st & operation = start_op & threshold = 0 & index = 0 : next(state) in {b1};

(index != 2) : next(state) = state;

(state=b1 & operation in {StorageSpace210GB,StorageSpace220GB} & threshold<=3) : next(state) in {b2};

(state=b2 & operation in {WindowsVista,Windows7} & threshold<=8) : next(state) in {b1};

(state=b1 & operation in {SQL-Server2005,SQL-Server2008} & threshold<=8) : next(state) in {b1};

esac

DEFINE

initial := state = start_st & operation = start_op & threshold = 0 & index = 0;

failure := index = 2 & !((state = b1 & operation in {StorageSpace210GB,StorageSpace220GB} & threshold<=3) |

(state = b1 & operation in {SQL-Server2005,SQL-Server2008} & threshold<=8) |

(state = b2 & operation in {WindowsVista,Windows7} & threshold<=8));

final := state in {b1};

MODULE Service3(index,operation,threshold)

VAR

state : {start_st,c1,c2};

INIT

state = start_st

TRANS

case

state = start_st & operation = start_op & threshold = 0 & index = 0 : next(state) in {c1};

(index != 3) : next(state) = state;

(state=c1 & operation in {SQL-Server2008} & threshold==10) : next(state) in {c2};

(state=c2 & operation in {SQL-Server2008} & threshold==10) : next(state) in {c1};

(state=b1 & operation in {StorageSpace205GB,StorageSpace210GB} & threshold<=3) : next(state) in {b1};

esac

DEFINE

initial := state = start_st & operation = start_op & threshold = 0 & index = 0;

failure := index = 3 & !((state = c1 & operation in {SQL-Server2008} & threshold==10) |

(state = c1 & operation in {StorageSpace205GB,StorageSpace210GB} & threshold<=3) |

(state = c2 & operation in {SQL-Server2008} & threshold==10));

final := state in {c1};

1
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All winning states satisfy invariant

Automaton States

State 1

sys.operation = start_op sys.threshold = 0 sys.target.state = start_st

sys.B1.state = start_st sys.B2.state = start_st sys.B3.state = start_st

ctr.index = 0

State 2

sys.operation = Storage210GB sys.threshold = 3 sys.target.state = t1

sys.B1.state = a1 sys.B2.state = b1 sys.B3.state = c1

ctr.index = 2

State 3

sys.operation = Storage210GB sys.threshold = 3 sys.target.state = t1

sys.B1.state = a1 sys.B2.state = b1 sys.B3.state = c1

ctr.index = 3

State 4

sys.operation = Windows7 sys.threshold = 8 sys.target.state = t2

sys.B1.state = a1 sys.B2.state = b1 sys.B3.state = c1

ctr.index = 1

State 5

sys.operation = SQL_Server2008 sys.threshold = 7 sys.target.state = t3

sys.B1.state = a2 sys.B2.state = b1 sys.B3.state = c1

ctr.index = 1

State 6

sys.operation = Windows7 sys.threshold = 8 sys.target.state = t2

sys.B1.state = a1 sys.B2.state = b2 sys.B3.state = c1

ctr.index = 2

State 7

sys.operation = SQL_Server2008 sys.threshold = 7 sys.target.state = t3

sys.B1.state = a1 sys.B2.state = b1 sys.B3.state = c1

ctr.index = 2

Automaton Transitions

From 1 to 2 3

From 2 to 6

From 3 to 4

From 4 to 5

From 5 to 2 3

From 6 to 7

From 7 to 2 3

Automaton has 7 states, and 10 transitions

BDD nodes allocated: 7955

max amount of BDD nodes allocated: 7955

Bytes allocated: 589888

1

Figure 12 
TLV output (controller generator)
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Figure 13 
A simple ontology graph [31]
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