
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/130562/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Barati, Masoud 2020. A formal technique for composing cloud services. Information Technology And
Control 49 (1) , pp. 5-27. 10.5755/j01.itc.49.1.23403

Publishers page: http://dx.doi.org/10.5755/j01.itc.49.1.23403

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

5Information Technology and Control 2020/1/49

A Formal Technique for
Composing Cloud Services

ITC 1/49
Information Technology
and Control
Vol. 49 / No. 1 / 2020
pp. 5-27
DOI 10.5755/j01.itc.49.1.23403

A Formal Technique for Composing Cloud Services

Received 2019/05/19 Accepted after revision 2019/12/17

 http://dx.doi.org/10.5755/j01.itc.49.1.23403

HOW TO CITE: Barati, M. (2020). A Formal Technique for Composing Cloud Services. Information Technology and Control, 49(1), 5-27.
https://doi.org/ 10.5755/j01.itc.49.1.23403

Corresponding author: Baratim@cardiff.ac.uk

Masoud Barati
Cardiff University, Department of Computer Science and Informatics, Cardiff, CF24 3AA, UK;
e-mail: Baratim@cardiff.ac.uk

Recent cloud search engines lack a formal method in their service composition mechanisms to automatically
build composite services realizing user requirements. This paper prescribes behavior composition framework
as a formal tools for the search engines. The framework automatically synthesizes a controller that delegates
the service operations requested by a cloud user to the proper available cloud services whose operations satisfy
the request. Since most cloud search engines support semantic and ontology to discover similar service oper-
ations, the paper extends the framework to be more adaptable with such search engines through the use of re-
source reasoning. Several experiments are provided to demonstrate how the extended framework outperforms
the original one in terms of realizing users’ requirements.
KEYWORDS: Behavior composition, cloud computing, resource reasoning, controller synthesis, formal method.

1. Introduction
The tremendous increase in the number of cloud
customers demanding their numerous requirements
stimulates cloud providers to publish services with
a great diversity of functional and non-functional
properties. In many cases, a single service may not
necessarily realize the requirements. Hence, the com-
bination of several services as a composite service is
created to fulfil them.
The architecture of cloud search engines recently
benefit from the notions of semantic and ontology in
order to offer a set of composite services being sim-
ilar to customers’ requirements. For instance, a dis-

tributed architecture was designed for cloud service
discovery in [26]. The architecture benefits from a
semantic Web technology using the Infrastructure
and Network Description Language (INDL) and Stan-
dard Protocol and RDF Query Language (SPARQL)
to exchange information among providers. In [13], a
semantic based search engine architecture–called
Cloudle–was proposed. It utilized a cloud ontology to
measure the degree of similarity between customers’
requirements and cloud services. The search engine
leveraged an agent-based paradigm to build a test bed
for service management. Furthermore, in light of de-

mailto:obodovskiy58@gmail.com

Information Technology and Control 2020/1/496

veloping cloud search engine architectures, a model
using semantic Web and quality of service (QoS) was
presented in [20]. It matches and composes cloud ser-
vices for realizing customers’ requirements. Although
these approaches discover matchable or similar com-
posites services for cloud customers, they integrate
cloud services in an ad-hoc way and suffer from the
lack of a formal method to automatically construct
composite services.
Automatic service composition has lately become an
interesting research area in both industrial and aca-
demic centres. Its purpose is the automatically deter-
mination of a strategy in order to compose available
services realizing a desired service seen as user re-
quirements [1, 24]. Current automated service com-
position approaches not only consider the functional
specification of services, but also take into account the
conversation specification of them through which the
behavior of a service is described [8, 15]. Behavioral de-
scription of services consists of describing the order of
invocation of service operations. To support such de-
scriptions, services are represented by finite state ma-
chines, which in turn, facilitate their verification and
lay a basis for their composition in an automatic way.
A promising automatic composition approach that
acts as a formal tool for web or cloud service inte-
gration is behavior composition [9]. This approach,
first, constructs a framework in which both customer
requirements, called target service, and available ser-
vices are abstracted as finite state machines. Then, it
provides a sound and complete technique for synthe-
sizing a controller that delegates the operations of the
target service to the proper available services being
able to realize the target. The behavior composition
framework generates composite services automati-
cally. Its synthesis technique guarantees that all pos-
sible composite services realizing the target service
are obtained. One of the shortcomings of this frame-
work, however, is that its synthesized controller does
not delegate the target service operations to the avail-
able services that their operations are similar to those
in target. Hence, the framework only builds compos-
ite services whose operations have a fully match with
the target service operations. Note that, two opera-
tions can be similar if they have different names but
the same functionalities.
This paper introduces a semantic-based framework
for behavior composition in which similar operations

to user requests can appear in composite services.
The framework benefits from ontology and resource
reasoning to semantically define service operations.
Three kinds of reasoning methods, namely similarity,
compatibility, and numerical reasoning are taken into
account for calculating the degrees of match among
operations. For the aim of providing a match making
mechanism in the semantic-based framework, such
degrees are used as references in the controller synthe-
sis method proposed by the framework. The paper also
gives come clues about the implementation of frame-
work via model checking tools at hand: Symbolic Mod-
el Verifier (SMV) and Temporal Logic Verifier (TLV).
The rest of this paper is structured as follows. Section
2 reviews the related work. Section 3 briefly presents
a background about the original behavior composi-
tion framework and the notion of resource reasoning.
Section 4 proposes a semantic-based framework for
behavior composition. The section also implements
the framework by the model checking tools. Section
5 provides some experimental results to show the ef-
fects of resource reasoning on the realization of user
requirements in the semantic-based behavior com-
position framework. Finally, Section 6 concludes the
paper and gives some indications about future work.

2. Literature Review
In recent years, many contributions have been pro-
posed for the problems of service composition and
service discovery in the cloud and web. The strategies
applied for such kind of problems can be classified
into informal, semi-formal, and formal.
A brief review of some research using an informal
strategy can be found in [42], which introduces the
description of a Cloud-based Middleware for Ser-
vice Composition, called CM4SC. In this approach,
the middleware appears as a new layer between the
application layer and the platform layer in the con-
ventional cloud architecture to permit automatic
composition planning and accelerate dynamic ser-
vice composition. A flexible open source middleware
has been proposed to support adaptive enactment
of complex service composition in the cloud [16]. It
facilitates the deployment of a large number of com-
posite services and provides the capability of runtime

7Information Technology and Control 2020/1/49

support for monitoring how they have been built. A
semantic-based search engine, called Cloudle, that
takes advantage of a cloud ontology to determine the
measure of similarity between the user requirements
and the available services, was devised for service
composition and discovery [13]. Consequently, an
agent-based architecture showing how the Cloudle
search engine is organized was put forward in [31].
Generally speaking, regardless of the advantages that
such contributions may bring about, the correctness
of service composition cannot be verified.
Usually the solutions exploiting a semi-formal strat-
egy are subcategorized into syntactic-based and se-
mantic-based methods. The methods in the first cat-
egory are also decoupled with respect to the methods
that integrate services with the aid of an orchestrator
or a choreographer. For service orchestration, Busi-
ness Process Execution Language (BPEL) is used to
define an interoperable integration model [37, 38].
For instance, a management-based adaptive and con-
figurable service composition method was proposed
in [37] with the aid of a development in BPEL, called
as VxBPEL, to support variability in service compo-
sitions. For service choreography, Web Service Chore-
ography Description Language (WS-CDL),1 being an
XML-based specification language is used for compos-
ing peer-to-peer, interoperable collaborations among
participants. The methods in the second category in-
clude Ontology Language for Web Services (OWL-S)
to define an ontology for the semantic markup of web
services to enable service invocation and composition
through supplying the proper semantic descriptions
[12, 19]. Furthermore, Web Service Modelling Ontology
(WSMO)2 explicitly defines a conceptual model and
also provides an ontology graph for the description of
different aspects that are related to the semantic web
services to solve the problem of service integration.
A framework for automatic discovery, selection and
composition of RESTful Web services which utilized
linked open data was presented in [21]. The frame-
work applied RDF (Resource Description Framework)
to represent the state of linked data services through
which SPARQL (Standard Protocol and RDF Query
Language) queries has been used to compose RESTful
services. In general, there is no standard or a universal

1 http://www.w3.org/TR/ws-cdl-10

2 http://www.wsmo.org

interfacing language that facilitates the composition of
services written in different languages.
There are several solutions based on a formal strategy
with theoretical models. Four of them, respectively
based on transition systems with formal verification,
proof system, process calculus, and AI planning are
briefly presented. Such approaches ensure sound-
ness, completeness or correctness of service compo-
sition. The first one aims to be applied in the domain
of grid computing. A resource discovery approach to
address multi-attribute queries is introduced [36].
The technique to get replies to queries are very fast
and decreases the number of nodes examined during
the resource discovery process. The proposed mod-
el for resource discovery has been decoupled into
data gathering, discovery, and control to simplify the
formal verification of properties expressed by CTL
(computational tree logic) and LTL (linear temporal
logic) formulas. The second one suggests to exploit
the X-UNITY language for representing services in
the cloud and a proof theory for proving temporal
properties over service specifications needed for
cloud applications [10]. Moreover, a compositional
proof-system was extended in [39] with a number of
inference rules and proven system properties. The
approach proposed a semantic formalization using
SWSpec language in which the complexity of compos-
ing workflows was reduced. The third one includes a
formal definition of composition in terms of a pro-
cess calculus and also provides an implementation
through the extension of the Jolie language [7]. This
approach was applied in the context of service-ori-
ented architectures (SOAs). In the same spirit, a new
model and verification mechanism that relies on a
process calculus for orchestration of web services,
which combined with UML, provides a solution for
the problem of formal verification of cloud manufac-
turing services composition [43]. Following that, a
new extended process calculus for cloud manufactur-
ing service composition was proposed [44]. Through
this contribution, six elements of quality of service
have been evaluated. Furthermore, a formal schema
of service composition and a BPEL code generation
method have been provided. The fourth one propos-
es to exploit planning to optimize both composition
and the underlying collection of information in or-
der to obtain high-quality composite services in-line
[34]. In this solution, irrelevant actions, based on the

Information Technology and Control 2020/1/498

user preferences, are eliminated to reduce the search
space. An automatic service composition by using a
HTN (Hierarchical Task Network) planner JSHOP2
(Java Simple Hierarchical Ordered Planner) was pro-
posed in [35] which considered both functional and
non-functional properties of services.
Although the correctness of service composition is
guaranteed in the contributions based on a formal
strategy, they still suffer from the lack of exploiting
controller synthesis techniques for service composi-
tion. To this end, behavior composition can provide
a sound and complete technique. More precisely, the
problem of behavior composition has been widely
studied in the areas of web services [5], verification
[18], and even multi-agent systems [29]. Among recent
studies which are able to be applied in service-orient-
ed computing, an automatic behavior composition
synthesis framework is quite significant [9], as the au-
thors have extensively investigated a particular type
of behavior composition. In this framework, a specific
controller is generated to coordinate the parallel exe-
cution of available services, so as to simulate a given
target service with respect to constraints imposed on
operations by an environment. A model without en-
vironment constraints, called Roman, was also intro-
duced latter by the same research team [8]. Further-
more, an effective procedure, computing realizable
target fragment, has been developed in the case that a
behavior composition problem is unsolvable [28, 40].

3. Preliminaries
This section devotes a brief review to the original
behavior composition framework and resource rea-
soning.

3.1. Behavior Composition
The main elements of behavior composition frame-
work are available services 1, , n  , a target service

t , an environment  , and controller generator CG
[9]. 3 The asynchronous product of available services
makes a system S. Formally, the target service is de-
fined as a tuple 0, , , ,t t t t tB b A F η〈 〉, where tB is a finite
set of states, 0tb is the initial state, tA is the set of op-

3 Since the use of environment is not very widespread in practice,
the definition of this element is not discussed in our paper.

erations, tF is a set of final states, and t t t tB A Bη ⊆ × ×
is a transition relation. Each available service in the
system is a tuple 0, , , ,i i i i iB b A F η〈 〉 , where iA is the
set of operations defined by i . The operations set

=1
= n

s ii
A A is defined to indicate all available opera-
tions in the system such that t sA A⊆ . Given the target
and system, an algorithm called as largest Nondeter-
ministic-simulation (ND-simulation for short) is in-
troduced to trigger the process of controller synthesis.
Through the algorithm, at each step, a state from the
system does not simulate the one in the target service
is eliminated. This algorithm leads to an ND-simula-
tion relation R in which the relation of

service in the system is a tuple 0, , , ,i i i i iB b A F η〈 〉 , where iA is the set of operations defined by i

. The operations set
=1

= n
s ii

A A


 is defined to indicate all available operations in the system such

that t sA A⊆ . Given the target and system, an algorithm called as largest Nondeterministic-
simulation (ND-simulation for short) is introduced to trigger the process of controller synthesis.
Through the algorithm, at each step, a state from the system does not simulate the one in the target
service is eliminated. This algorithm leads to an ND-simulation relation R in which the relation
of t sb s denotes the state tb of t is simulated by the state ss in  . The output of the
algorithm is a particular controller, called as controller generator. Given the execution of a current
operation, this controller delegates the operation to the appropriate available services being able
to handle it. Technically, the controller generator CG of  for t is a tuple , , , ,t nA I ξ ω〈Σ 〉 ,
where 𝛴𝛴𝛴𝛴 = {⟨𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⟩ ∈ 𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡 × 𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠|𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡 ≼ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠} is the set of CG states, {1 }nI n∈  is the indices of

available services, t nA Iξ ⊆ Σ× × ×Σ is the transition relation, and : 2In
tAω Σ× → is the output

function.
When a controller generator has been emerged, the notions of trace and history can be

defined. A CG trace CGτ is a sequence
1 1 2 2, ,0 1a k a kt tσ σ→ → , where σ ∈Σ , and a CG

history is a finite prefix of a CG trace.
Let CG be the set of all histories on CG . A selection function : CG t nC A I× → is

defined from the output function ω in order to select one service among those that are able to
execute the current operation with respect to the last state of a given history. If CG contains the
initial state 0 0 0= ,t sb sσ 〈 〉 , and 𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡0 ≼ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠0, then a set of controllers–called generated controllers,
which are compositions of t –can be extracted from CG .

 denotes
the state tb of t is simulated by the state ss in S. The
output of the algorithm is a particular controller,
called as controller generator. Given the execution
of a current operation, this controller delegates the
operation to the appropriate available services being
able to handle it. Technically, the controller generator
CG of S for t is a tuple , , , ,t nA I ξ ω〈Σ 〉, where Σ={⟨bt,
ss⟩ ∈ Bt×Ss |bt≼ss} is the set of CG states, {1 }nI n∈ 
is the indices of available services, t nA Iξ ⊆ Σ× × ×Σ
is the transition relation, and : 2In

tAω Σ× → is the
output function.
When a controller generator has been emerged, the
notions of trace and history can be defined. A CG

trace CGτ is a sequence
1 1 2 2, ,0 1a k a kt tσ σ→ →,

where σ ∈Σ, and a CG history is a finite prefix of a CG
trace.
Let CG be the set of all histories on CG. A selection
function : CG t nC A I× → is defined from the output
function ω in order to select one service among those
that are able to execute the current operation with re-
spect to the last state of a given history. If CG contains
the initial state 0 0 0= ,t sb sσ 〈 〉, and bt0 ≼ ss0, then a set of
controllers–called generated controllers, which are
compositions of t –can be extracted from CG.
For the purpose of controller synthesis with the aid of
an available model checking tool, the approach based
on the largest ND-simulation is replaced by the cal-
culation of a winning strategy of a corresponding two
players in a safety game [9]. As depicted in Fig. 1, in
such a game structure, one plays the role of the system
and the other plays the role of the controller. The for-
mer keeps the information about the current state of
the target service, available services, and environment,
and at each step, releases an operation that must be ex-

9Information Technology and Control 2020/1/49

Figure 1
Two players of a safety game

init
bt, b1, ..., bi, ..., bn, e, a

i

b′t, b1, ..., b
′
i, ..., bn, e

′, a′

j

b′t, b1, ..., b
′
i, ..., bn, e

′, a′′

k

ρs

ρs

ρs

ρc

ρc

ρc

Two players in a safety game

ecuted. The latter returns an index indicating which
available service in the system is able to perform the
requested operation. These data appear in two lines
inside each state of the transition system in Fig. 1. The
state init indicates an initial state. In this state, all
available services and the target service are in their ini-
tial states, the current operation is empty and there is
no controller reply, namely the index is zero.
The transition relations sρ and cρ represent
system moves and controller replies, respec-
tively. More precisely, s X Y Xρ ⊆ × × , where

1= ()t nX B B B E A× × × × × ∪∅ and = {0}nY I ∪ ,
and c X Y X Yρ ⊆ × × × , where

1 1, , , , , , , , , , , , ,t n t n cb b b e a i b b b e a j ρ′ ′ ′ ′ ′〈〈 〉 〈 〉 〉∈ 

if and only if 0j ≠ . Notice that, =k kb b′ for all \{ }nk I i∈ .
The reader is referred to [9] for the detailed proce-

dure that shows how to derive a safety-game struc-
ture from a behavior composition problem.

3.2. Reasoning Based on Semantics
To provide a more flexible framework for behavior
composition, a compatibility relation ≪ ⊆ A × A over
the set of operations can be introduced. The relation
substitutes for the present equality between opera-
tions in the definition of the largest ND-simulation
relation proposed in [9] and the underlying algorithm
that computes it. An operation a' can now be carried
out by an available service, if it is compatible with the
delegated operation a, that is, a≪a'. No more details
were given about this issue by the authors.
The use of resource reasoning metrics constitutes a
first appealing solution [2, 31]. It evaluates the degree

Information Technology and Control 2020/1/4910

of match between any two service operations. Gen-
erally, such metrics fit with a domain ontology graph,
which has a well-formed structure to determine the
multipaths connecting two concepts. Hence, the main
effort must be concentrated on building ontologies.

3.2.1. Ontology and Resource Reasoning
Ontology is a representational artifact whose purpose
is the exhibition of entities, defined classes, and re-
lations between them [3]. An ontology can offer me-
ta-information to describe semantics of data and al-
lows for building knowledge bases. Furthermore, it is
a formal structure that supports the communication
between a user and a computer agent [2].
The kinds of ontology are classified into domain ontol-
ogy, reference ontology, top-level ontology, and appli-
cation ontology [3]. The intended class of ontology for
better representation and classification of resources
included in a specific system is the domain one. It
provides a taxonomy with a hierarchical structure for
such resources, considered as concepts, together with
a set of axioms identifying several rules to show how
the concepts and relations can be comprehended [3].
A typical example is a cloud ontology which supplies a
taxonomy for its computing resources [31].
Different kinds of relations can be defined between
the concepts in a domain ontology. For instance, “is-
a”, “part-of”, “is-subtype-of”, “is-member-of”, “par-
ticipates-in”, “has-output”, and “precedes” are some
examples of such relations. A domain ontology is for-
mally defined as follows.
Definition 1 [11]. An ontology in a specific domain O
is a tuple of , , , ,C c R r A〈 ≤ ≤ 〉, where C is a set of con-
cepts, R is a set of relations, ≤ c is a partial order on C
that is called the concept hierarchy, ≤ r is a partial or-
der on R that is called the relation hierarchy, and A is
a set of axioms including rules in the logical forms to
describe the relationships among the concepts.4
Based on a domain ontology, a graph, called an ontol-
ogy graph, is drawn to demonstrate a taxonomy [2]. In
this graph, each concept is represented as a node and
each edge indicates a relationship between two con-
cepts. More precisely, each edge illustrates a relation
such as “is-a” or “part-of”. For example, Fig. 2 depicts

4 The notations ≤ c and ≤ r could be replaced by ≤ c and ≤ r,
respectively. Although the latter are better, the former were
adopted to avoid confusion with [11].

a simple ontology graph for an online agency provid-
ing travel services. In this graph, the Travel agency
services is considered as the root node having sub-
nodes including Accommodation reservation, Trans-
portation reservation, and Meal reservation.
In cloud computing, where service operations are de-
fined semantically, the notion of resource reasoning is
put forward, which includes similarity, compatibility,
and numerical reasoning [31]. In similarity reasoning,
to measure the degree of similarity between two dif-
ferent concepts, several semantic similarity functions
have been introduced. Among those proposed in [2, 25,
30], there is one that defines a function being compat-
ible with a hierarchical structure of well-formed con-
cepts that can be found in a domain ontology graph [2].
In comparison to Jaccard [23], cosine [41], and Slima-
ni [33] similarity measures’ functions, Knappe in [2]
defined a function that better considers path length,
depth, and local density of an ontology graph [32]. This
function takes into account specialization or general-
ization of one concept with respect to another.
Definition 2 [2]. The semantic similarity function

: [0,1]sim C C× → is defined as:

| () () | | () ()|(,)= (1) ,
| () | | () |
x y x ysim x y

x y
α α α αρ ρ

α α
∩ ∩

+ − (1)

where the constant [0,1]ρ ∈ determines the degree
of influence of generalization5 that depends on a hi-
erarchical ontology; the parameter ρ permits to tai-
lor the similarity function, and hence can conform
to the generalization property. The term ()xα is con-
sidered as the set of upward nodes reachable from x
(including the node labeled by x), and the expression

() ()x yα α∩ is the reachable common nodes between
x and y .
 For instance, in Fig. 2, the concept of Meal reservation
has two reachable upward nodes from itself, whereas
this is four for Cliff hotel reservation. Hence,

| () |= 2 Mealreservation andα
| () |= 4.Cliffhotelreservationα

In addition, the number of common nodes for Cliff
hotel reservation and Transit hotel reservation is more
than Cliff hotel reservation and Bus reservation, which
are calculated as follows:

5 Generalization is the opposite of specialization.

11Information Technology and Control 2020/1/49

Figure 2
A part of simple ontology graph of a travel agency service

Travel agency services

Accommodation
reservation

Hotel
reservation

Cliff
hotel

reservation

Capsule
hotel

reservation

Transit
hotel

reservation

Motel
reservation

Transportation
reservation

Bus
reservation

Shuttle
bus

reservation

Shuttle
minibus

reservation

Car
reservation

Airplane
reservation

First
class

reservation

Business
class

reservation

Economic
class

reservation

Meal
reservation

Meat
reservation

Vegetable
reservation

: “is-a”

| (. .) (. .) |= 3Cliffhot reserv Transithot reservα α∩

 | (. .) (.) |= 1.and Cliffhot reserv Busreservα α∩

As indicated in Eq. 1, the semantic similarity function
maps two concepts into the unit interval, and its out-
put shows the degree of similarity between x and y.
So, the value 0 means no similarity and 1 means full
similarity.
Given the ontology graph and semantic similarity
function, a square matrix (similarity matrix) of order
n of similarities among concepts is constructed:

1 1 1

1

(,) (,)
= ,

(,) (,)

n

n n n

sim a a sim a a
SIM

sim a a sim a a

 
 
 
  



  



where n is the number of concepts. It is important to
note that each element in this matrix indicates a real
number in [0,1] giving the degree of similarity be-
tween related concepts. Moreover, a threshold in the
interval (0,1] is defined to accept the minimum mea-
sure of similarity between two concepts.
The similarity reasoning was introduced to measure
the degree of similarity for functional requirements
with the aid of a semantic similarity function (see
Def. 2). To calculate the degree of match for technical
requirements in computing systems, both the com-
patibility and numerical reasoning were proposed.
The compatibility reasoning is appropriate for com-
paring two sibling nodes in a domain ontology graph,
for example, the compatibility between two different

Information Technology and Control 2020/1/4912

versions of a software program in the cloud ontology.
Definition 3 [13]. The compatibility reasoning func-
tion : (0, 2)compat C C× → is defined as:

| |
0.8(,) = (,) ,

10

c cx y

compat x y sim x y
−

+ (2)

where The terms cx and cy indicate the chronological
orderings of different versions of a software program.
The expression

| |
0.8

c cx y−
/10 is a fine-grain measure-

ment, because x and y have a small degree of differ-
ence.
In [31], the compatibility reasoning function was gen-
eralized as follows.

| |

(,) = (,) ,
c cx y

compat x y sim x y µ
θ

−

+ (3)

where 0 < < 1µ and 1 < <θ ∞ can be assigned by
an arbitrary value. The terms xc and yc indicate the
chronological orderings of different versions of a soft-
ware program. The most important component in

| |c cx yµ
θ

−

 is the term | |x yc c− .

More precisely, the term (,)sim x y in Eq. 3 is comput-
ed based on Eq. 1 and the main significant value comes
from the expression | |x yc c− . When this value is large,
it means that x and y are less compatible; otherwise,
they are more compatible. Appendix B provides an
example to show how compatibility reasoning is cal-
culated.
The numerical reasoning is about the similarity be-
tween two numeric values of a concept such as CPU
speed or RAM size.
Definition 4 [31]. Let a and b be numeric values
and c a concept. The numerical reasoning function

where 0 < < 1µ and 1 < <θ ∞ can be assigned by an arbitrary value. The terms xc and yc
indicate the chronological orderings of different versions of a software program. The most

important component in
| |c cx yµ
θ

−

 is the term | |x yc c− .

More precisely, the term (,)sim x y in Eq. 3 is computed based on Eq. 1 and the main
significant value comes from the expression | |x yc c− . When this value is large, it means that x
and y are less compatible; otherwise, they are more compatible. Appendix B provides an
example to show how compatibility reasoning is calculated.

The numerical reasoning is about the similarity between two numeric values of a concept
such as CPU speed or RAM size.

Definition 4 [31] Let a and b be numeric values and c a concept. The numerical
reasoning function : [0,1]Sim C× × →  is defined as:

 (, ,) = 1 | |,
c c

a bSim a b c
Max Min

−
−

−
 (4)

where cMax and cMin are the minimum and maximum values being available for c .
 As an example, consider the concept RAM with three different instances whose sizes are

1GB, 4GB, and 8GB. Given Eq. 4, = 8RAMMax and = 1RAMMin . In case of calculating numerical
reasoning between RAM 1GB and RAM 4GB (i.e., = 1a and = 4b), it is:

 1 4(, ,) = 1 | | 0.58.
8 1

Sim a b RAM −
− ≈

−

Placing concepts inside an ontology graph is manually performed and the degree of similarity
between two concepts can be retrieved from a similarity matrix. For locating concepts in an
automatic way, a hierarchy matching method proposed in [22] can be suggested. The details of
such a method is, however, out of the scope of this paper.

4. Semantic-Based Behavior Composition

Given the notion of ontology and reasoning, each operation handled by an available service

is considered as a concept [4]. To have a matchmaking between the operation requested by a target
and those available in the system, two sets of operations are defined in the framework. One set,
denoted by tA , contains the requested operations, and the other set, denoted by sA , includes all
operations handled by available services in the system. Given such sets, the target service t ,
available services (1)i i n≤ ≤ , and the system  are as defined in Sect. 3.1, while t sA A⊆ .

 is defined as:

(, ,) = 1 | |,
c c

a bSim a b c
Max Min

−
−

− (4)

where cMax and cMin are the minimum and maximum
values being available for c.
 As an example, consider the concept RAM with three
different instances whose sizes are 1GB, 4GB, and
8GB. Given Eq. 4, = 8RAMMax and = 1RAMMin . In case
of calculating numerical reasoning between RAM
1GB and RAM 4GB (i.e., = 1a and = 4b), it is:

1 4(, ,) = 1 | | 0.58.
8 1

Sim a b RAM −
− ≈

−
Placing concepts inside an ontology graph is manu-
ally performed and the degree of similarity between
two concepts can be retrieved from a similarity ma-
trix. For locating concepts in an automatic way, a
hierarchy matching method proposed in [22] can be
suggested. The details of such a method is, however,
out of the scope of this paper.

4. Semantic-Based Behavior
Composition
Given the notion of ontology and reasoning, each op-
eration handled by an available service is considered
as a concept [4]. To have a matchmaking between the
operation requested by a target and those available in
the system, two sets of operations are defined in the
framework. One set, denoted by tA , contains the re-
quested operations, and the other set, denoted by sA ,
includes all operations handled by available services
in the system. Given such sets, the target service t ,
available services (1)i i n≤ ≤ , and the system  are
as defined in Sect. 3.1, while t sA A⊆ .
Example 1. Consider requirements expressed as a tar-
get service and depicted in Fig. 3. The requested opera-
tions belong to the set:

= { 210 ,tA StorageSpace GB
Windows7,SQL-Server2008}.
Many of them are not available in the cloud. More-
over, there are three available services able to meet
the target. For instance, the service 1 is able to offer
the operation set:
A1={Windows8,SQL-Server2005}.
Though such resources do not have the same name as
those of the requested resources, they can be similar
or have the same functionality. In this end, a part of
cloud ontology graph is illustrated in Fig. 4 to indicate
the relations among service operations.
Taking into account the three types of resource rea-
soning, the definition of largest ND-simulation rela-
tion must be revisited to support them. Let sv and tv
be the numeric values for sa and ta , respectively, and
c is a concept carried by both ta and sa . Moreover, as-
suming that 1τ , 2τ , and 3τ be thresholds. An ND-simu-

13Information Technology and Control 2020/1/49

lation relation of t by  is a relation tR B S⊆ × such
that ,t s R〈 〉∈ implies:

For each type of reasoning, a condition is provided to
ensure that at each step of operation execution, the
degree of match between a requested operation and
an available operation is equal to or greater than a
predefined threshold.

Figure 3
A target service and available services handling cloud service operations

a1 a2 a3

B1

Hotel(3-star , 320$)
Meals(meat , 60$)

Meals(vegetable, 55$)

Airplaneticket(economy , 380$)
Airplaneticket(business, 450$)

Hotel(3-star , 240$)

b1 b2

B2

Meals(vegetable, 50$)

Bus(tour , 30$)

Airplaneticket(economy , 420$)

c1 c2

B3

Airplaneticket(economy , 350$)
Airplaneticket(business, 420$)
Airplaneticket(first , 480$)

Hotel(2-star , 200$)
Hotel(3-star , 250$)
Hotel(4-star , 300$)

Bus(shuttle, 20$)

(a) Available behaviors B1, B2, and B3

t1 t2 t3 t4

Bt

Airplaneticket(not{first},Lowest) Hotel({4-star}/{3-star},Lowest) Meals({vegetable},Lowest)

Bus({shuttle},Lowest)

(b) Target behavior Bt

Based on the extension of the largest ND-simula-
tion relation, the notion of controller generator also
requires a revision to consider the reasoning condi-
tions. Formally, the controller generator CG of t on
 is , , , , ,t s nA A I ξ ω〈Σ 〉 , where:
1 Σ = {⟨t,s⟩ ∈ Bt × S| t ≼ s} is the set of CG states made

by all pairs of t and  states that belong to the
largest ND-simulation relation;

2 ξ is the transition relation, where , ,a a kt sσ σ ′→ in
ξ , if and only if:

 _ there is a transition att t′→ in t ;
 _ there is a transition ,a kss s′→ in  ;
 _ in the case of similarity reasoning, the condition

(,)t ssim a a 1τ≥ holds;
 _ in the case of compatibility reasoning, the condition

(,)t scompat a a 2τ≥ holds;
 _ in the case of numerical reasoning, the condition

3(, ,)s tSim v v c τ≥ holds;
 _ for all , tt s B S′′ ′′〈 〉 ∈ × , such that ,a kss s′′→ in 

and att t′′→ in t , it is the case that ,t s′′ ′′〈 〉 ∈Σ;

Information Technology and Control 2020/1/4914

Thing

IaaS

DaaS

File system

Storage Space

SS-220GB

SS-210GB

SS-205GB

OS

Unix

Windows

Windows8

Windows7

WindowsVista
PaaS Middleware

SaaS

DBMS

SQL-Server2008

SQL-Server2005

Graphics

Figure 4
A part of an ontology for the cloud service operations [14]

15Information Technology and Control 2020/1/49

3 : 2In
t sA Aω Σ× × → is the output function with

(, ,) = { | , , , , }t s t sa a k such that a a kω σ σ σ σ ξ′ ′∃ ∈Σ 〈 〈 〉 〉∈
(, ,) = { | , , , , }t s t sa a k such that a a kω σ σ σ σ ξ′ ′∃ ∈Σ 〈 〈 〉 〉∈ .

Example 2. The largest ND-simulation relation for
Example 1 is computed based on compatibility and nu-
merical reasoning, which are done from the ontology
graph in Fig. 4. Notably, the graph is a part of a cloud
ontology graph represented in [14].
The compatibility reasoning is used for both Windows
and , whereas a numerical reasoning is used for
StorageSpace . Given the simulation relation:

1 1 1 1 2 1 2 1 2 1 1 1= { , , , , , , , , , , , ,R t a b c t a b c t a b c〈 〈 〉〉 〈 〈 〉〉 〈 〈 〉〉

3 1 1 1 3 2 1 1 , , , , , , , },t a b c t a b c〈 〈 〉〉 〈 〈 〉〉
the controller generator, illustrated in Fig. 5, is synthe-
sized. All transitions of the controller generator are la-
beled by a pair of operations, namely a requested opera-
tion of the target and a similar operation to the request
handled by an available service. For instance, due to the
compatibility between WindowsVista and 7Windows ,
the former can be offered to the target service.

Figure 5
The controller generator

Given the possible generated controllers that can be
extracted from the controller generator, the transi-
tion relations of two of them are:

1 1 2:{ , 210 , 220 ,2, ,P s StSpace GB StSpace GB s〈 〉

2 4 , 7, , 2, ,s Windows WindowsVista s〈 〉

4 1 , 2008, 2005,2, }.s SQL Server SQL Server s〈 − − − − 〉

2 1 3:{ , 210 , 205 ,3, ,P s StSpace GB StSpace GB s〈 〉
3 5 , 7, 8,1, ,s Windows Windows s〈 〉

5 1 , 2008, 2005,1, }.s SQL Server SQL Server s〈 − − − − 〉

It is supposed that the predefined threshold for com-
patibility and numerical reasoning are 2 = 0.7τ and

3 = 0.3τ , respectively. Moreover, let ρ in Eq. 1 be set
to 0.5, and µ and θ in Eq. 3 be set to 0.8 and 10, respec-
tively. Given the following amounts, separately com-
puted for each transition in the generated controllers,
the average degree of match for the generated con-
trollers 1P and 2P are 0.68 and 0.79, respectively. For in-
stance, the average degree of match for 1P is calculated
as (0.33+0.88+0.83)/3.

s1

s2

s3

s4

s5

StorageSpace210GB ,StorageSpace205GB , 3

StorageSpace210GB ,StorageSpace220GB , 2

Windows7 ,Windows8 , 1

Windows7 ,WindowsVista, 2

SQL–Server2008, SQL–Server2005, 2

SQL–Server2008, SQL–Server2005, 1

Information Technology and Control 2020/1/4916
1P and 2P are 0.68 and 0.79, respectively. For instance, the average degree of match for 1P is

calculated as (0.33+0.88+0.83)/3.

 (205 ,210 ,) = 0.66,Sim GB GB StorageSpace
 (220 ,210 ,) = 0.33,Sim GB GB StorageSpace
 (7, 8) =compat Windows Windows
 (, 8) = 0.88,compat WindowsVista Windows
 (2008, 2005) = 0.83,sim SQL Server SQL Server− − − −

where 7 8| |= 1,Windows Windowsc c− 7| |= 1,Windows WinVistac c− | (8) |= 5,Windowsα and
| (2008) (2005) |= 3SQL Server SQL Serverα α−− ∩ −− .

4.1 Implementation of Semantic-Based Behavior Composition in

SMV/TLV

Once behavior composition has been translated into the safety-game structure, it can be

implemented with a model checking tool like TLV [27]. TLV (Temporal Logic Verifier) is a tool
for the purpose of verification of LTL specifications. It uses Boolean Decision Diagrams (BDDs)
for indicating state valuations and transitions. The inputs of TLV are an LTL specification written
in SMV and a synthesis procedure. The latter is based on the safety-game structure and its output
represents a controller generator. The procedure of controller synthesis based on a winning strategy
has been implemented in TLV [9]. SMV (Symbolic Model Verifier) is a symbolic model checking
tool supporting the verification of temporal logic (LTL and CTL) properties of finite-state
machines. In SMV, each element of the safety-game players, namely available services, target
service, and controller, is implemented as a module [9]. Figure 6 includes the main modules of
services in Example 1. The module main contains two submodules: the controller Ctr and the
system Sys. The former returns the index of an available service executing the requested operation
of the target service. The latter chooses the next operation that must be executed. Figure 7 gives
the SMV modules of target service t and the available service 1 . The transitions part (TRANS)
of target module indicates how desired operations are released. Such operations are inputs in the
available service module.

where 7 8| |= 1,Windows Windowsc c−
7| |= 1,Windows WinVistac c− | (8) |= 5,Windowsα and

| (2008) (2005) |= 3SQL Server SQL Serverα α−− ∩ −− .

4.1. Implementation of Semantic-Based
Behavior Composition in SMV/TLV
Once behavior composition has been translated into
the safety-game structure, it can be implemented
with a model checking tool like TLV [27]. TLV (Tem-
poral Logic Verifier) is a tool for the purpose of verifi-

cation of LTL specifications. It uses Boolean Decision
Diagrams (BDDs) for indicating state valuations and
transitions. The inputs of TLV are an LTL specifica-
tion written in SMV and a synthesis procedure. The
latter is based on the safety-game structure and its
output represents a controller generator. The pro-
cedure of controller synthesis based on a winning
strategy has been implemented in TLV [9]. SMV
(Symbolic Model Verifier) is a symbolic model check-
ing tool supporting the verification of temporal logic
(LTL and CTL) properties of finite-state machines. In
SMV, each element of the safety-game players, name-
ly available services, target service, and controller, is
implemented as a module [9]. Figure 6 includes the
main modules of services in Example 1. The module
main contains two submodules: the controller Ctr and

1

MODULE main
VAR

sys: system Sys(ctr.index);
ctr: system Ctr;

DEFINE
good := (ctr.initial & sys.initial) | !(sys.failure);

MODULE Ctr
VAR

index : 0..3;
INIT

index = 0
TRANS

case
index=0 : next(index)!=0;
index!=0 : next(index)!=0;
esac

DEFINE
initial := (index=0);

MODULE Sys(index)
VAR
operation : {start_op, StorageSpace205GB, StorageSpace210GB, StorageSpace220GB,

Windows7, Windows8, WindowsVista, SQL-Server2005, SQL-Server2008};
threshold : 0..10;
target : Target(operation,threshold);
B1 : Service1(index,operation,threshold);
B2 : Service2(index,operation,threshold);
B3 : Service3(index,operation,threshold);
DEFINE
initial := (B1.initial & B2.initial & B3.initial & target.initial &

operation=start_op & threshold = 0);
failure := (B1.failure |B2.failure |B3.failure) |

(target.final & !(B1.final & B2.final & B3.final));

Figure 6
Modules of system and controller in SMV

17Information Technology and Control 2020/1/49

the system Sys. The former returns the index of an
available service executing the requested operation
of the target service. The latter chooses the next op-
eration that must be executed. Figure 7 gives the SMV
modules of target service t and the available service

1 . The transitions part (TRANS) of target module
indicates how desired operations are released. Such
operations are inputs in the available service module.
More precisely, the submodules indicating the two
players of the game structure are detailed. For ctr, be-
ing an instance of controller or orchestrator (Ctr), the
transition relation defined via the constraints in the
INIT and TRANS parts encodes an unconstrained

orchestrator, assigning at each step, one operation
to each available service, by assigning values to the
state variables state, operation, and threshold. The
goal of synthesis is to restrict such a relation in order
to obtain a winning strategy. More specifically, the
constraints enforced on the controller player’s state
are as follows. Given the INIT part, in its initial state
(where variable initial holds true) the controller must
instruct every service to initialize itself by perform-
ing the dummy operation start (all services initialize
simultaneously). As for non-initial states, the TRANS
part defines the following constraints: (i) no initial-
ization operation can be assigned to any service; (ii)

1

MODULE Target(operation,threshold)
VAR

state : {start_st,t1,t2,t3};
INIT

state = start_st & operation = start_op & threshold = 0
TRANS
case operation

state = start_st & operation = start_op & threshold = 0:
next(state) = t1 & next(operation) in {StorageSpace210GB}
& next(threshold) = 3;

state = t1 & operation in {StorageSpace210GB} & threshold = 3:
next(state) = t2 & next(operation) in
{Windows7} & next(threshold) = 8;

state = t2 & operation in {Windows7} & threshold = 8 :
next(state) = t3 & next(operation) in
{SQL-Server2008} & next(threshold) = 7;

state = t3 & in {SQL-Server2008} & threshold = 7 :
next(state) = t1 & next(operation) in
{StorageSpace210GB} & next(threshold) = 3;

esac
DEFINE
initial := state = start_st & operation = start_op & threshold=0;
final := state in {t1};

MODULE Service1(index,operation,threshold)
VAR

state : {start_st,a1,a2};
INIT

state = start_st
TRANS
case
state = start_st & operation = start_op & threshold = 0 & index = 0: next(state) in {a1};
(index != 1) : next(state) = state;
(state=a1 & operation in {Windows8,Windows7} & threshold<=8) : next(state) in {a2};
(state=a2 & operation in {SQL-Server2005,SQL-Server2008} & threshold<=8) : next(state) in {a1};
esac
DEFINE
initial := state = start_st & operation = start_op & threshold = 0 & index = 0;
failure := index = 1 & !((state = a1 & operation in {Windows8,Windows7} & threshold<=8) |

(state = a2 & operation in {SQL-Server2005,SQL-Server2008} & threshold<=8));
final := state in {a1};

Figure 7
Modules of target service and an available service

Information Technology and Control 2020/1/4918

the current operation request must match at least one
of the service operation (by regarding the similarity
between operations); (iii) a service can be instructed
to execute an operation only if that operation is the
one currently requested; and (iv) at most one service
can be instructed to operate at a time.
Given the module Sys, being an instance of system,
it contains all the aspects of the system player. More
precisely, Sys is the synchronous product of available
services (submodule Service1, Service2, Service3)
and the target service (submodule Target). Some ab-
breviations are used to define, in the DEFINE part,
namely final and failure states. In fact, the system fails
(failure) when any of the available service is instruct-
ed to perform an operation that it cannot run based on
its current state. Prohibiting such situations, by prop-
erly constraining sys transition relation, is the syn-
thesis procedure goal. Furthermore, the entire system
does not respect the final-state condition (final) when
the target is in a state where it terminates its execu-
tion but the available services do not.
For providing a matchmaking between operations
of a target service and those of available services, a
variable, named threshold, is declared for each type
of resource reasoning in the system module of SMV.
Through this variable, target service is able to assign
its acceptable threshold for the degree of match be-
tween its requested operation and the one in system
 . The type of this variable must be integer, since real
numbers are not supported in SMV. For instance, a
real number 0.7 is considered as an integer number 7.
Given the ranges of resource reasoning functions, the
domain of threshold for both similarity and numeri-
cal reasonings is integer numbers in an interval [0,10]
and for compatibility reasoning is integer number in
an interval (0,20). Such domains are appropriate if
only one digit of decimal precision is taken into ac-
count for thresholds. Note that, the values returned
from reasoning functions defined from Def. 2 to 4 can-
not be computed through SMV/TLV.
The variable threshold is considered as an argument
in both target module and available service modules.
In the former, it is regarded as an output argument in
which at each step of an operation request, its thresh-
old, denoting the acceptable degree of match between
the operation and the ones in available services, is re-
leased. In contrast, this variable is an input argument
in the latter through which the precomputed degree

of match between a requested operation and simi-
lar ones in the current state of an available service is
compared with the released threshold. In the transi-
tion part of the available service module, the condi-
tion for the threshold is associated with an operation
handled by the service and the one requested by the
target. Hence, in each transition of the module, a set is
provided to encompass both operations.
Example 3. Given the transitions in the target service
module depicted in Fig. 7 , it is supposed that:
 _ the threshold 1τ for the degree of match between

SQL–Server2005 and the similar operation in the
system is 7,

 _ the threshold 2τ for the degree of match between
Windows7 and the similar operation in the system is 8,

 _ the threshold 3τ for the degree of match between
StorageSpace210GB and the similar operation in
the system is 3.

For simplification, although three different variables
should be declared for 1τ , 2τ and 3τ in the implementa-
tion of this example, only one variable threshold is de-
clared. Given the transition part of the target service
module, this variable is assigned with three values of
3, 8, and 7 to consider the acceptable thresholds for
numerical, compatibility, and similarity reasonings,
respectively. These values are inputs in the module
of available services. For instance, the requested re-
source SQL–Server2008 can be matched with the
operation SQL–Server2005 in the module Service1,
since the current input of threshold in this module
has the value of 7, and the degree of similarity be-
tween the operations is 8 ().
Appendix A provides the details about the rest of SMV
modules of Example 1 along with a part of TLV output
indicating controller generator.

5. Experimental Results
Through the implementation of resource reasoning in
SMV, three different experiments have been provided.
Given a fixed number of target services, the first one
is related to the effects of similarity reasoning on the
number of realized target services. The second one is
calculating the average time that it takes for the real-
ization of target services. Finally, the third one evalu-
ates the relationship between similarity reasoning and

19Information Technology and Control 2020/1/49

the synthesized generated controllers for a target ser-
vice under different rates of available services’ failures.

5.1. Effect of Similarity Reasoning on
Realized Target Services
The assumption is that there is one available service,
carrying 16 different operations. Furthermore, it is
supposed that number of target services varies from
2 to 12. Each target service requests four different
operations so that from those, one operation is ran-
domly chosen to be possibly matched with a similar
one in the available service. The predefined threshold
in the target service can be 2, 4, 6, or 8. Moreover, in
the available service, the degree of match between an
operation and the one requested by target service is
randomly selected between 1 and 10.
Given the graphs illustrated in Fig. 8, the horizon-
tal axes represent the number of target services, and
the vertical axes indicate the average number of real-
ized target services, where for each datum (point in a
curve), it is calculated after 10 times execution of TLV
program. To investigate the average number of real-
ized target services in the larger scale of operations,
the graphs depicted in Fig. 8(b) and Fig. 8(c) have been
provided. In the former, the available service carries 32
different operations, and in the latter, the number of
operations is extended to 48. Note that, in both graphs,
the scenario for the requested operations of target ser-
vices is similar to the one assumed for Fig. 8(a).
It can be comprehended from the graphs that when
the rate of threshold increases, the average number
of realized target services decreases sharply. Further-
more, the growth in the number of operations leads to
an increase in the average number of realized target
services. Besides, a compare between the curves and
the threshold rates indicates that curves, having low-
er rates of threshold, are closer to each other, and such
curves are mapped onto each other when the num-
ber of operations increases. For instance in Fig. 8(c),
when the amount of thresholds were 2, 4, and 6, the
curves were mapped onto each other and all released
target services were realized. The reason of such ful-
ly realizable target services is that the probability of
finding an operation whose degree of match with a
requested operation of target service is high when
target requests lower rates of thresholds and we have
larger scale of operations. Notably, the fluctuations in
the curves of the graphs are simply due to the random
selection of degree of match between operations.

2 4 6 8 10 12

2

4

6

8

10

12

The number of target services

T
h
e
av
er
a
g
e
n
u
m
b
er

o
f
re
a
li
ze
d
ta
rg
et
s

(a) 16-operations

τ1 = 0.2
τ1 = 0.4
τ1 = 0.6
τ1 = 0.8

2 4 6 8 10 12

2

4

6

8

10

12

The number of target services

T
h
e
av
er
a
g
e
n
u
m
b
er

o
f
re
a
li
ze
d
ta
rg
et
s

(b) 32-operations

τ1 = 0.2
τ1 = 0.4
τ1 = 0.6
τ1 = 0.8

2 4 6 8 10 12

2

4

6

8

10

12

The number of target services

T
h
e
av
er
ag
e
n
u
m
b
er

of
re
al
iz
ed

ta
rg
et
s

(c) 48-operations

τ1 = 0.2
τ1 = 0.4
τ1 = 0.6
τ1 = 0.8

1

2 4 6 8 10 12

2

4

6

8

10

12

The number of target services

T
h
e
av
er
ag
e
n
u
m
b
er

of
re
al
iz
ed

ta
rg
et
s

(a) 16-operations

τ1 = 0.2
τ1 = 0.4
τ1 = 0.6
τ1 = 0.8

2 4 6 8 10 12

2

4

6

8

10

12

The number of target services

T
h
e
av
er
ag
e
n
u
m
b
er

of
re
al
iz
ed

ta
rg
et
s

(b) 32-operations

τ1 = 0.2
τ1 = 0.4
τ1 = 0.6
τ1 = 0.8

2 4 6 8 10 12

2

4

6

8

10

12

The number of target services

T
h
e
av
er
ag
e
n
u
m
b
er

of
re
al
iz
ed

ta
rg
et
s

(c) 48-operations

τ1 = 0.2
τ1 = 0.4
τ1 = 0.6
τ1 = 0.8

1

2 4 6 8 10 12

2

4

6

8

10

12

The number of target services

T
h
e
av
er
ag
e
n
u
m
b
er

of
re
al
iz
ed

ta
rg
et
s

(a) 16-operations

τ1 = 0.2
τ1 = 0.4
τ1 = 0.6
τ1 = 0.8

2 4 6 8 10 12

2

4

6

8

10

12

The number of target services

T
h
e
av
er
ag
e
n
u
m
b
er

of
re
al
iz
ed

ta
rg
et
s

(b) 32-operations

τ1 = 0.2
τ1 = 0.4
τ1 = 0.6
τ1 = 0.8

2 4 6 8 10 12

2

4

6

8

10

12

The number of target services

T
h
e
av
er
ag
e
n
u
m
b
er

of
re
al
iz
ed

ta
rg
et
s

(c) 48-operations

τ1 = 0.2
τ1 = 0.4
τ1 = 0.6
τ1 = 0.8

1

Figure 8
The relationships between realized target services and
similarity reasoning under different scale of operations

Information Technology and Control 2020/1/4920

To have a compare between our semantic-based
framework and the original automatic behavior
composition synthesis (ABCS) framework6 pro-
posed in [9], the graph depicted in Fig. 9 is repre-
sented. In the experiment, the assumption is that we
have one available service handling 32 operations
and the rate of threshold released by target service
is 7 in the semantic-based framework. Moreover, the
number of released target services ranges from 2 to
12 and the degree of match between an operation of
each target service and the one in available service
is randomly selected between 1 and 10. As seen from
Fig. 9, the chance of realization of target services in
our approach is much more than the original frame-
work proposed in [9], since our approach considers
the operations which are similar to those requested
by target service during building composite services.

5.2. Realization Time of Target Services
This experiment evaluates the average of time taken
for the realization of targets services in both seman-
tic-based and original behavior composition frame-
works. It is assumed that there is one available ser-
vice carrying 32 different operations and the number
of target services varies from 2 to 12, each of which
requests four different operations. Furthermore, in
the available service, the degree of match between
an operation and the one demanded by target ser-
vice is randomly selected between 1 and 10. Target
service requests only one similar operation along
with a threshold randomly selected between one and
ten.7 Table 1 represents the average time (in seconds)

6 It is called also as original behavior composition framework.

which is taken for the realization of target services.
The calculation of the average realization time was
obtained after ten times execution of TLV program.
As seen from the table, by increasing the number of
target services, the realization time rises drastically.
Moreover, the realization time in the original behav-
ior composition is totally shorter than our seman-
tic-based framework. This is due to the fact that the
number of realized targets in the semantic-supported
framework is much more than those realized by the
original framework (see Fig. 9).

Figure 9
A comparison between realization time in semantic-based
framework and original behavior composition framework

2 4 6 8 10 12

1

2

3

4

5

6

7

Number of target service

A
ve
ra
ge

n
u
m
b
er

of
re
al
iz
ed

ta
rg
et

se
rv
ic
es Semantic-based framework

ABCS framework

1

5.2.1. Effect of Similarity Reasoning on Controller
Synthesis Under Different Rates of Service
Failure7

The assumption is that a target service requests 5
different operations. Some requested operations are
randomly chosen to be possibly matched with the
similar ones in the system. The number of request-
ed similar operations varies from 1 to 5, and the pre-
defined threshold can be 2, 4, 6, 8, or 10. There are 10
available services in the system handling totally 25
different operations, and for each operation, there ex-
ists at least two instances. More precisely, in this ex-

7 When the target demands a threshold 10, it means a fully
match should be found. Such demands are simply allowed in the
original behavior composition framework.

Table 1
A comparison between semantic-based framework and
original behavior composition framework (ABCS)

Number of
target services

Average realization
time in semantic-
based framework

Average realization
time in original

framework (ABCS)

2 0.05 0.04

4 0.08 0.06

6 0.16 0.13

8 0.52 0.41

10 4.63 3.52

12 67.22 65.74

21Information Technology and Control 2020/1/49

periment, available services have been classified into
three groups:
 _ the group with five services each of which has one

state and handles 5 different operations;
 _ the group with three services each of which has two

states and handles 10 different operations;
 _ the group with two services each of which has three

states and handles 15 different operations.
In each available service, the degree of match between
an operation and the similar one requested by target
service is randomly chosen between 1 and 10.

Given the graphs illustrated in Fig. 10, the horizon-
tal axes represent the number of similar operations
requested by target service, and the vertical axes in-
dicate the average number of synthesized controllers
(generated controllers). For each datum (point in a
curve), the average is calculated after 10 times execu-
tion of TLV program. To evaluate the average num-
ber of controllers when some available services ran-
domly encounter with failures, the depicted graphs
in Fig. 10(b)-(d) are provided. The results after the
failures of 2, 4, and 6 available services are illustrat-
ed by the graphs, respectively.

Figure 10
The relationships between controller synthesis and similarity reasoning under different rates of failure

Information Technology and Control 2020/1/4922

As seen from the figures, there is a significant de-
crease in the number of synthesized controllers when
the rate of failures increases. Although the average
number of controllers is nearly zero for the threshold
one, the chance of synthesis rises when lower thresh-
olds are requested. As another result, the increase in
the number of requested similar operations leads to
the increase in the number of controllers.

6. Conclusion
 This paper introduced a semantic-based framework
for the problem of behavior composition whereby
service operations that have different names but the
same functionality are taken into account during
building composite services. Our semantic-based
framework extended the original behavior compo-
sition framework [9] by developing synthesis proce-
dure, leveraging three types of resource reasoning,
namely similarity, compatibility, and numerical rea-
soning. Such an extension not only provided a more
flexible framework for the behavior composition
framework to match similar service operations, but
also enabled semantic-supported cloud ecosystems
to compose their services in an automatic way. More-
over, the paper gave some clues about the implemen-
tation of our framework via model checking tools in
hand: SMV and TLV.
The kind of control exercised in our framework is a
control by delegation. Other formal methods have
been proposed for service composition when super-
vision (i.e., disabling controllable events) is adopted
as kind of control (e.g., [6]), but the theoretical frame-
work behind them do not consider resource reason-
ing behind their synthesis mechanism. Some formal
methods for service composition, very different from
the aforementioned ones, use a probabilistic (e.g.,
[17]), preferences-based planning (e.g., [34]) or pro-
cess calculus(e.g., [7]) approach. These sorts of meth-
ods, however, did not synthesize automatic control-
lers to orchestrate a community of services.
The experiments showed that the possibility of real-
izing user requirements in our semantic-based ver-
sion is much more than the original framework due
to the flexible match between similar operations in
the former. However, the realization time of specifi-

cations in our framework was fairly longer than the
original one. Given possible failures of some available
services, our framework indicated that has a higher
rate of fault tolerance compared to the original one in
terms of building composite services.
Although our framework prescribed a promising for-
mal tools for composing cloud services in an automat-
ic way, it still requires further work or investigations
to be readily applied in a real cloud environment. In
our present approach, the values returned from the
resource reasoning functions, showing the degree of
match between service operations, were not auto-
matically computed by SMV/TLV. In fact, these val-
ues were manually calculated and inserted as integer
numbers in the SMV module skeletons extended for
the implementation of our framework. Hence, this
problem may raise a question about how to establish
a link between SMV/TLV and the available ontolog-
ical engineering tools for building ontology graphs
and knowledge-based solutions. As another potential
research for future work, the integration of real-time
constraints in our framework can be examined. By
supporting such constraints, manufacturing cloud
and Internet of Things (IoT) industries, often deter-
mining deadlines for the use of their services, can
benefit from our proposed formal method to integrate
objects or services. Furthermore, investigating the
scalability of our semantic-based framework in terms
of orchestrators synthesis will be another possible re-
search direction.

Appendix

Appendix A. Implementation in SMV/TLV
Figure 11 represents the SMV modules of two avail-
able services 2 and 3 in Example 1. The controller
generator that is obtained for the example is illustrat-
ed in Fig. 12. The TLV output indicates an automaton
with 7 states and 10 transitions that was successfully
synthesized.

Appendix B. An example of compability
reasoning
Given the graph in Fig. 13, the values 1 to 9 show the
chronological orderings of Windows. 95Windows is

23Information Technology and Control 2020/1/49

assigned 1 to demonstrate that it is the oldest version
of Windows and 2008WindowsServer is assigned 9 to
represent the latest version. The degree of compati-
bility between 98Windows and WindowsVista, and the
one between 7Windows and WindowsVista are calcu-
lated as follows.

(98) = (7) =Windows Windowsα α
 () = 2,WindowsVistaα

(98) () = Windows WindowsVistaα α∩
 (7) () = 1,Windows WindowsVistaα α∩

and

(98,) =sim Windows WindowsVista
(7,) = (0.5 0.5) / 2 = 0.5.sim Windows WindowsVista +

The label values of 98, ,Windows WindowsVista and
7Windows are 98 = 2, = 7,w wvc c and 7 = 8wc . For the

aim of experimentation, µ and θ are set to 0.8 and
10, respectively. Given the compatibility reasoning
function, (98,) = 0.533compat Windows WindowsVista
and (7,) = 0.58.compat Windows WindowsVista Hence,
compared to 98,Windows 7Windows is more compat-
ible with WindowsVista .

Figure 11
The SMV modules of available services

MODULE Service2(index,operation,threshold)

VAR

state : {start_st,b1,b2};

INIT

state = start_st

TRANS

case

state = start_st & operation = start_op & threshold = 0 & index = 0 : next(state) in {b1};

(index != 2) : next(state) = state;

(state=b1 & operation in {StorageSpace210GB,StorageSpace220GB} & threshold<=3) : next(state) in {b2};

(state=b2 & operation in {WindowsVista,Windows7} & threshold<=8) : next(state) in {b1};

(state=b1 & operation in {SQL-Server2005,SQL-Server2008} & threshold<=8) : next(state) in {b1};

esac

DEFINE

initial := state = start_st & operation = start_op & threshold = 0 & index = 0;

failure := index = 2 & !((state = b1 & operation in {StorageSpace210GB,StorageSpace220GB} & threshold<=3) |

(state = b1 & operation in {SQL-Server2005,SQL-Server2008} & threshold<=8) |

(state = b2 & operation in {WindowsVista,Windows7} & threshold<=8));

final := state in {b1};

MODULE Service3(index,operation,threshold)

VAR

state : {start_st,c1,c2};

INIT

state = start_st

TRANS

case

state = start_st & operation = start_op & threshold = 0 & index = 0 : next(state) in {c1};

(index != 3) : next(state) = state;

(state=c1 & operation in {SQL-Server2008} & threshold==10) : next(state) in {c2};

(state=c2 & operation in {SQL-Server2008} & threshold==10) : next(state) in {c1};

(state=b1 & operation in {StorageSpace205GB,StorageSpace210GB} & threshold<=3) : next(state) in {b1};

esac

DEFINE

initial := state = start_st & operation = start_op & threshold = 0 & index = 0;

failure := index = 3 & !((state = c1 & operation in {SQL-Server2008} & threshold==10) |

(state = c1 & operation in {StorageSpace205GB,StorageSpace210GB} & threshold<=3) |

(state = c2 & operation in {SQL-Server2008} & threshold==10));

final := state in {c1};

1

Information Technology and Control 2020/1/4924

All winning states satisfy invariant

Automaton States

State 1

sys.operation = start_op sys.threshold = 0 sys.target.state = start_st

sys.B1.state = start_st sys.B2.state = start_st sys.B3.state = start_st

ctr.index = 0

State 2

sys.operation = Storage210GB sys.threshold = 3 sys.target.state = t1

sys.B1.state = a1 sys.B2.state = b1 sys.B3.state = c1

ctr.index = 2

State 3

sys.operation = Storage210GB sys.threshold = 3 sys.target.state = t1

sys.B1.state = a1 sys.B2.state = b1 sys.B3.state = c1

ctr.index = 3

State 4

sys.operation = Windows7 sys.threshold = 8 sys.target.state = t2

sys.B1.state = a1 sys.B2.state = b1 sys.B3.state = c1

ctr.index = 1

State 5

sys.operation = SQL_Server2008 sys.threshold = 7 sys.target.state = t3

sys.B1.state = a2 sys.B2.state = b1 sys.B3.state = c1

ctr.index = 1

State 6

sys.operation = Windows7 sys.threshold = 8 sys.target.state = t2

sys.B1.state = a1 sys.B2.state = b2 sys.B3.state = c1

ctr.index = 2

State 7

sys.operation = SQL_Server2008 sys.threshold = 7 sys.target.state = t3

sys.B1.state = a1 sys.B2.state = b1 sys.B3.state = c1

ctr.index = 2

Automaton Transitions

From 1 to 2 3

From 2 to 6

From 3 to 4

From 4 to 5

From 5 to 2 3

From 6 to 7

From 7 to 2 3

Automaton has 7 states, and 10 transitions

BDD nodes allocated: 7955

max amount of BDD nodes allocated: 7955

Bytes allocated: 589888

1

Figure 12
TLV output (controller generator)

25Information Technology and Control 2020/1/49

Figure 13
A simple ontology graph [31]

References
1. Amato, F., Moscato, F. Automatic Cloud Services Com-

position for Big Data Management. Proceedings of
IEEE 30th International Conference on Advanced In-
formation Networking and Applications Workshops,
Crans-Montana, Switzerland, 2016, 46-51. https://doi.
org/10.1109/WAINA.2016.169

2. Andreasen, T., Bulskov, H., Knappe, R. From Ontology
Over Similarity to Query Evaluation. In Bernardi R.,
Moortgat, M. (Eds.), 2nd CoLogNET-ElsNET Sym-
posium - Questions and Answers: Theoretical and
Applied Perspectives, Amsterdam, The Netherlands,
2003, 39-50.

3. Arp, R., Smith, B., Spear, A. D. Building Ontologies
with Basic Formal Ontology. MIT Press, Cambridge,
Massachusetts, 2015. https://doi.org/10.7551/mit-
press/9780262527811.001.0001

4. Barati, M. Composition of Dynamic Components Based
on Behavioral Descriptions. Ph.D. Thesis, Département
d’informatique, Université de Sherbrooke, 2018.

5. Berardi, D., Cheikh, F., De Giacomo, G., Patrizi, F.
Automatic Service Composition via Simulation. In-
ternational Journal of Foundations of Computer

Science, 2008, 19, 429-451. https://doi.org/10.1142/
S0129054108005759

6. Bertoli, P., Pistore, M., Traverso, P. Automated Compo-
sition of Web Services via Planning in Asynchronous
Domain. Artificial Intelligence, 2010, 174, 316-361.
https://doi.org/10.1016/j.artint.2009.12.002

7. Dalla Preda, M., Gabbrielli, M., Guidi, C., Mauro, J.,
Montesi, F. Interface-Based Service Composition with
Aggregation. In De Paoli, F., Pimentel, E., Zavattaro, G.
(Eds.), First European Conference on Service-Orient-
ed and Cloud Computing, Lecture Notes in Computer
Science, Bertinoro, Italy, 7592, 2012, 48-63. https://doi.
org/10.1007/978-3-642-33427-6_4

8. De Giacomo, G., Mecella, M., Patrizi, F. Automated
Service Composition Based on Behaviors: The Roman
Model. In: Bouguettaya, A., Sheng, Q. Z., Daniel, F. (Eds.),
Web Services Foundations, Springer, New York, 2014,
189-214. https://doi.org/10.1007/978-1-4614-7518-7_8

9. De Giacomo, G., Patrizi, F., Sardina, S. Automatic Be-
havior Composition Synthesis. Artificial Intelligence,
2013, 196, 106-142. https://doi.org/10.1016/j.art-
int.2012.12.001

https://doi.org/10.1109/WAINA.2016.169
https://doi.org/10.1109/WAINA.2016.169
https://doi.org/10.7551/mitpress/9780262527811.001.0001
https://doi.org/10.7551/mitpress/9780262527811.001.0001
https://doi.org/10.1142/S0129054108005759
https://doi.org/10.1142/S0129054108005759
https://doi.org/10.1016/j.artint.2009.12.002
https://doi.org/10.1007/978-3-642-33427-6_4
https://doi.org/10.1007/978-3-642-33427-6_4
https://doi.org/10.1007/978-1-4614-7518-7_8
https://doi.org/10.1016/j.artint.2012.12.001
https://doi.org/10.1016/j.artint.2012.12.001

Information Technology and Control 2020/1/4926

10. Hale, M. L., Gamble, M. T., Gamble, R. F. A Design and
Verification Framework for Service Composition in the
Cloud. Proceedings of 2013 IEEE 9th World Congress
on Services, Santa Clara, CA, 2013, 317-324. https://doi.
org/10.1109/SERVICES.2013.46

11. Han, L., Dave, B. Semantic-Supported and Agent-Based
Decentralized Grid Resource Discovery. Future Gener-
ation Computer Systems, 2008, 24, 806-812. https://doi.
org/10.1016/j.future.2008.04.005

12. Huangab, C., Wangab, X., Wang, D. Type Theory Based
Semantic Verification for Service Composition in Cloud
Computing Environment. Information Sciences, 2018,
496, 101-118. https://doi.org/10.1016/j.ins.2018.08.042

13. Kang, J., Sim, K. M. Cloudle: An Agent-Based Cloud
Search Engine That Consults a Cloud Ontology. Pro-
ceedings of Annual International Conference on Cloud
Computing and virtualization, Singapore, 2010, 312-
318. https://doi.org/10.5176/978-981-08-5837-7_224

14. Kang, J., Sim, K. M. Cloudle: An Ontology-Enhanced
Cloud Service Search Engine. Proceedings of 1st Inter-
national Workshop Cloud Information System Engi-
neering, Collocated with 11th International Conference
Web Information System Engineering, Hong Kong, 2010,
416-427. https://doi.org/10.1007/978-3-642-24396-7_33

15. Kil, H., Nam, W., Lee, D. Behavioural Description
Based Web Service Composition Using Abstraction
and Refinement. International Journal of Web and
Grid Services, 2013, 9, 54-81. https://doi.org/10.1504/
IJWGS.2013.052849

16. Leite, L., Moreira, C. E., Cordeiro, D., Gerosa, M. A., Kon,
F. Deploying Large-Scale Service Compositions on the
Cloud with the CHOReOS En actment Engine. Proceed-
ings of 2014 IEEE 13th International Symposium on
Network Computing and Applications, Cambridge, MA,
2014, 121-128. https://doi.org/10.1109/NCA.2014.25

17. Li, L., Jin, Z., Li, G., Zheng, L., Wei, Q. Modeling and
Analyzing the Reliability and Cost of Service Composi-
tion in the IoT: a Probabilistic Approach. Proceedings
of 19th International Conference on Web Services,
Honolulu HI, 2012, 584-591. https://doi.org/10.1109/
ICWS.2012.25

18. Lustig, Y., Vardi, M. Y. Synthesis from Component Li-
braries. International Journal on Software Tools for
Technology Transfer, 2012, 15, 603-618. https://doi.
org/10.1007/s10009-012-0236-z

19. Martin, D., Burstein, M., McDermott, D., McIlraith, S.,
Paolucci, M., Sycara, K., McGuinness, D. L., Sirin, E.,
Srinivasan, N. Bringing Semantics to Web Services

with OWL-S. World Wide Web Journal, 2007, 10, 243-
277. https://doi.org/10.1007/s11280-007-0033-x

20. Modi, K. J., Garg, S. A QoS-Based Approach for
Cloud-Service Matchmaking, Selection and Composi-
tion Using the Semantic Web. Journal of Systems and
Information Technology, 2019, 21, 63-89. https://doi.
org/10.1108/JSIT-01-2017-0006

21. Modi, K. J., Garg, S., Chaudhary, S. An Integrated
Framework for RESTful Web Services Using Linked
Open Data. International Journal of Grid and High
Performance Computing, 2019, 11, 24-49. https://doi.
org/10.4018/IJGHPC.2019040102

22. Nayak, G., Dutta, S., Ajwani, D., Nicholson, P., Sala, A.
Automated Assessment of Knowledge Hierarchy Evo-
lution: Comparing Directed Acyclic Graphs. Informa-
tion Retrieval Journal, 2019, 22, 256-284. https://doi.
org/10.1007/s10791-018-9345-y

23. Niwattanakul, S., Singthongchai, J., Naenudorn, E.,
Wanapu, S. Using of Jaccard Coefficient for Keywords
Similarity. Proceedings of the International MultiCon-
ference of Engineers and Computer Scientists, Hong
Kong, 2013.

24. Paik, I., Chen, W., Huhns, M. N. A Scalable Architecture
for Automatic Service Composition. IEEE Transac-
tions on Services Computing, 2014, 7, 82-95. https://doi.
org/10.1109/TSC.2012.33

25. Pirró, G. A Semantic Similarity Metric Combining
Features and Intrinsic Information Content. Data &
Knowledge Engineering, 2009, 68, 1289-1308. https://
doi.org/10.1016/j.datak.2009.06.008

26. Pittaras, C., Ghijsen, M., Wibisono, A., Grosso, P., Der
Ham, J. V., Laat, C. Semantic Distributed Resource Dis-
covery for Multiple Resource Providers. Proceedings of
8th International Conference on Semantics Knowledge
and Grids, Beijing, China, 2012, 225-228. https://doi.
org/10.1109/SKG.2012.46

27. Pnueli, A., Shahar, E. A Platform for Combining De-
ductive with Algorithmic Verification. Proceedings of
International Conference Computer Aided Verification
(CAV), New Brunswick, NJ, 1996, 184-195. https://doi.
org/10.1007/3-540-61474-5_68

28. Ramirez, M., Yadav, N., Sardina, S. Behavior Composition
as Fully Observable Non-Deterministic Planning. Pro-
ceedings of 23rd International Conference on Automat-
ed Planning and Scheduling, Rome, Italy, 2013, 180-188.

29. Randelli, G., Marchetti, L., Marino, F. A., Iocchi, L.
Multi-Agent Behavior Composition Through Adapt-
able Software Architectures and Tangible Interfac-

https://doi.org/10.1109/SERVICES.2013.46
https://doi.org/10.1109/SERVICES.2013.46
https://doi.org/10.1016/j.future.2008.04.005
https://doi.org/10.1016/j.future.2008.04.005
https://doi.org/10.1016/j.ins.2018.08.042
https://doi.org/10.5176/978-981-08-5837-7_224
https://doi.org/10.1007/978-3-642-24396-7_33
https://doi.org/10.1504/IJWGS.2013.052849
https://doi.org/10.1504/IJWGS.2013.052849
https://doi.org/10.1109/NCA.2014.25
https://doi.org/10.1109/ICWS.2012.25
https://doi.org/10.1109/ICWS.2012.25
https://doi.org/10.1007/s10009-012-0236-z
https://doi.org/10.1007/s10009-012-0236-z
https://doi.org/10.1007/s11280-007-0033-x
https://doi.org/10.1108/JSIT-01-2017-0006
https://doi.org/10.1108/JSIT-01-2017-0006
https://doi.org/10.4018/IJGHPC.2019040102
https://doi.org/10.4018/IJGHPC.2019040102
https://doi.org/10.1007/s10791-018-9345-y
https://doi.org/10.1007/s10791-018-9345-y
https://doi.org/10.1109/TSC.2012.33
https://doi.org/10.1109/TSC.2012.33
https://doi.org/10.1016/j.datak.2009.06.008
https://doi.org/10.1016/j.datak.2009.06.008
https://doi.org/10.1109/SKG.2012.46
https://doi.org/10.1109/SKG.2012.46
https://doi.org/10.1007/3-540-61474-5_68
https://doi.org/10.1007/3-540-61474-5_68

27Information Technology and Control 2020/1/49

es. In Ruiz-del Solor, J., Chown, E., Plöger, P. G. (Eds.),
RoboCup 2010: Robot Soccer World Cup XIV, Lecture
Notes in Computer Science, Singapore, 6556, 2011, 278-
290. https://doi.org/10.1007/978-3-642-20217-9_24

30. Rodriguez, M. A., Egenhofer, M. J. Determining Se-
mantic Similarity Among Entity Classes from Dif-
ferent Ontologies. IEEE Transactions on Knowledge
and Data Engineering, 2003, 15, 442-456. https://doi.
org/10.1109/TKDE.2003.1185844

31. Sim, K. M. Agent-Based Cloud Computing. IEEE
Transactions on Services Computing, 2012, 5, 564-577.
https://doi.org/10.1109/TSC.2011.52

32. Slimani, T., Description and Evaluation of Semantic
Similarity Measures Approaches. International Jour-
nal of Computer Applications, 2013, 80, 25-33. https://
doi.org/10.5120/13897-1851

33. Slimani, T., Ben Yaghlane, B., Mellouli, K. A New Simi-
larity Measure Based on Edge Counting. World Acade-
my of Science, Engineering and Technology, 2006, 34-
38.

34. Sohrabi, S., McIlraith, S. A. Preference-Based Web
Service Composition: A Middle Ground Between Ex-
ecution and Search. In Patel-Schneider, P. F., Pan, Y.,
Hitzler, P., Mika P., Zhang, L., Pan, J. Z., Horrocks, I.,
Glimm, B. (Eds.), Proceedings of 9th International Se-
mantic Web Conference, Lecture Notes in Computer
Science, Shanghai, China, 6496, 2010, 713-729. https://
doi.org/10.1007/978-3-642-17746-0_45

35. Song, Y., Sun, Q., Zhou, A., Wang, S., Li, J. QoS-Aware
Service Composition Using HTN Planner. Proceedings
of 8th International Symposium on Cloud and Service
Computing, Paris, France, 2018, 107-110. https://doi.
org/10.1109/SC2.2018.00022

36. Souri, A., Navimipour, N. J. Behavioral Modeling and
Formal Verification of a Resource Discovery Approach
in Grid Computing. Expert Systems with Applica-
tions, 2014, 41, 3831-3849. https://doi.org/10.1016/j.
eswa.2013.11.042

37. Sun, C., Wang, Z., Wang, K., Xue, T., Aiello, M. Adaptive
BPEL Service Compositions via Variability Manage-
ment: a Methodology and Supporting Platform. Inter-
national Journal of Web Services Research, 2019, 16,
37-69. https://doi.org/10.4018/IJWSR.2019010103

38. Ter Beek, M. H., Bucchiarone, A., Gnesi, S. Formal
Methods for Service Composition. Annals of Mathe-
matics, Computing & Teleinformatics, 2007, 1, 1-10.

39. Viriyasitavat, W., Xu, L. D., Bi, Z. The Extension of Se-
mantic Formalization of Service Workflow Specifi-
cation Language. IEEE Transactions on Industrial
Informatics, 2019, 15, 741-754. ttps://doi.org/10.1109/
TII.2018.2807400

40. Yadav, N. K. Behavior Composition Optimisation. PhD
thesis, School of Computer Science and Information
Technology, RMIT University, Melbourne, Australia,
2014.

41. Ye, J. Cosine Similarity Measures for Intuitionistic
Fuzzy Sets and Their Applications. Mathematical
and Computer Modelling, 2011, 53, 91-97. https://doi.
org/10.1016/j.mcm.2010.07.022

42. Ylianttila, M., Riekki, J., Zhou, J., Athukorala, K., Gil-
man, E. Cloud Architecture for Dynamic Service
Composition. International Journal of Grid and High
Performance Computing, 2012, 4, 17-31. https://doi.
org/10.4018/jghpc.2012040102

43. Yongxiang, L., Xifan, Y., Jie, Z., Bin, L. Cloud Manufac-
turing Service Composition Modeling and Formal Ver-
ification Based on Calculus for Orchestration of Web
Service. Proceedings of 25th Chinese Control and De-
cision Conference, Guiyang, China, 2013, 2806-2810.
https://doi.org/10.1109/CCDC.2013.6561422

44. Yongxiang, L., Xifan, Y., Xiangmin, X., Hong, J. Formal
Verification of Cloud Manufacturing Service Com-
position and BPEL Codes Generation Based on Ex-
tended Process Calculus. Information Technology
Journal, 2014, 13, 1779-1785. https://doi.org/10.3923/
itj.2014.1779.1785

https://doi.org/10.1007/978-3-642-20217-9_24
https://doi.org/10.1109/TKDE.2003.1185844
https://doi.org/10.1109/TKDE.2003.1185844
https://doi.org/10.1109/TSC.2011.52
https://doi.org/10.5120/13897-1851
https://doi.org/10.5120/13897-1851
https://doi.org/10.1007/978-3-642-17746-0_45
https://doi.org/10.1007/978-3-642-17746-0_45
https://doi.org/10.1109/SC2.2018.00022
https://doi.org/10.1109/SC2.2018.00022
https://doi.org/10.1016/j.eswa.2013.11.042
https://doi.org/10.1016/j.eswa.2013.11.042
https://doi.org/10.4018/IJWSR.2019010103
https://doi.org/10.1109/TII.2018.2807400
https://doi.org/10.1109/TII.2018.2807400
https://doi.org/10.1016/j.mcm.2010.07.022
https://doi.org/10.1016/j.mcm.2010.07.022
https://doi.org/10.4018/jghpc.2012040102
https://doi.org/10.4018/jghpc.2012040102
https://doi.org/10.1109/CCDC.2013.6561422
https://doi.org/10.3923/itj.2014.1779.1785
https://doi.org/10.3923/itj.2014.1779.1785

