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Abstract

On 2019 April 25, the LIGO Livingston detector observed a compact binary coalescence with signal-to-noise ratio
12.9. The Virgo detector was also taking data that did not contribute to detection due to a low signal-to-noise ratio,
but were used for subsequent parameter estimation. The 90% credible intervals for the component masses range
from1.12 to M2.52  (1.46– M1.87  if we restrict the dimensionless component spin magnitudes to be smaller than
0.05). These mass parameters are consistent with the individual binary components being neutron stars. However,
both the source-frame chirp mass -

+ M1.44 0.02
0.02

 and the total mass -
+ M3.4 0.1

0.3
 of this system are significantly larger

than those of any other known binary neutron star (BNS) system. The possibility that one or both binary
components of the system are black holes cannot be ruled out from gravitational-wave data. We discuss possible
origins of the system based on its inconsistency with the known Galactic BNS population. Under the assumption
that the signal was produced by a BNS coalescence, the local rate of neutron star mergers is updated to
250–2810 - -Gpc yr3 1.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Gravitational waves (678)

1. Introduction

The first observation of gravitational waves from the inspiral
of a binary neutron star (BNS)200 system on 2017 August 17
(Abbott et al. 2017b) was a major landmark in multi-messenger
astronomy and astrophysics. The gravitational-wave merger
was accompanied by a gamma-ray burst (Abbott et al. 2017c;
Goldstein et al. 2017; Savchenko et al. 2017); the subsequent
world-wide follow-up of the signal by electromagnetic
telescopes and satellite observatories identified the host galaxy
and observed the kilonova and afterglow emission of the event
over a period of hours to months (see, for example, Abbott
et al. 2017d and references therein; Villar et al. 2017; Hajela
et al. 2019; Troja et al. 2019).

In this Letter, we present the second observation of a
gravitational-wave signal consistent with the inspiral of a BNS
system, GW190425. The source properties of this signal imply

a total mass and chirp mass larger than any known BNS. There
are interesting implications for the formation of this system.
We observed the GW190425 signal on 2019 April 25,

08:18:05 UTC, with it being initially assigned the candidate
name S190425z (LIGO Scientific Collaboration & Virgo
Collaboration 2019a), during the third observing run (O3) of
the LIGO–Virgo network, which started on 2019 April 1. The
network consists of two Advanced LIGO interferometers (Aasi
et al. 2015) in Hanford, Washington, USA (LHO) and
Livingston, Louisiana, USA (LLO) and the Advanced Virgo
interferometer in Cascina, Italy (Acernese et al. 2015). At the
time of GW190425, LHO was temporarily offline with only
LLO and Virgo taking data. GW190425 was detected as a
single-detector event in LLO in low latency by the GSTLAL-
based inspiral search pipeline (Cannon et al. 2012; Privitera
et al. 2014; Messick et al. 2017; Hanna et al. 2019; Sachdev
et al. 2019). Analyses with three other pipelines also detected a
consistent signal. The signal-to-noise ratio (S/N) in Virgo was
below the detection threshold. To date, no confirmed electro-
magnetic or neutrino event has been identified in association
with this gravitational-wave event.

2. Detectors

Between the second observing run (O2) and O3, several
improvements were made to increase the detectors’ sensitivity
(Aasi et al. 2013; Acernese et al. 2015). For the LIGO detectors,
the changes consisted of: the injection of squeezed vacuum at the
level of 2–3 dB (Tse et al. 2019); the replacement of the signal

198 Deceased, 2018 July.
199 Please direct all correspondence to LSC Spokesperson at lsc-spokesperson@
ligo.org, or Virgo Spokesperson at virgo-spokesperson@ego-gw.it.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

200 The term BNS is used here for a system containing two neutron stars,
synonymous with the term “double neutron star system” also used in the
literature.
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recycling mirror with a larger optic with lower transmission; an
increase in the input power to about 40 W through the installation
of a 70 W amplifier and tuned mass dampers for the high-
frequency parametric instabilities of the test masses (Evans et al.
2015; Biscans et al. 2019); the replacement of the end mirrors for
lower optical losses; and light baffle installation to mitigate noise
from scattered light. The sensitivity, quantified by the angle-
averaged BNS inspiral range (see, e.g., the sense-monitor range
discussion in Allen et al. 2012), was 102–111Mpc for LHO and
125–140Mpc for LLO during the first phase of O3. See Abbott
et al. (2019a) for sensitivity curves and ranges during O1 and O2,
for comparison.

For Virgo, the improvements consisted of: the injection of
squeezed vacuum at the level of 2–3 dB (Acernese et al. 2019);
the replacement of the steel test-mass suspension wires with fused
silica fibers; the installation of a 100 W laser amplifier and
increase of the interferometer input power from 10 to 18 W; the
installation of additional baffles in several critical locations in the
interferometer to mitigate scattered light; and the refinement of
global alignment control at higher bandwidth than in O2. The
Virgo BNS inspiral range was about 43–50Mpc over the first
three months of O3.

At the time of GW190425 only LLO and Virgo were
operational; LHO was offline for ∼2 hr around the event time.
Prior to the signal, LLO had been in a stable operational state
for approximately 30 hr, with a BNS inspiral range of
∼135 Mpc. Virgo had been in a stable state for approximately
14 hr, with a BNS inspiral range of ∼48 Mpc.

The LIGO and Virgo detectors are calibrated by photon
pressure from modulated auxiliary lasers inducing test-mass
motion (Karki et al. 2016; Acernese et al. 2018; Viets et al.
2018). The maximum 1σ calibration uncertainties for strain
data used in the analysis of GW190425 were 6% in amplitude
and 3.5° in phase for LIGO data, and 5% in amplitude and 7° in
phase for Virgo data, over the frequency range 19.4–2048 Hz.

We used detection procedures similar to those used to vet
previous gravitational-wave events (Abbott et al. 2016a) and found
no evidence that environmental or instrumental disturbances (Effler
et al. 2015) could account for GW190425. Approximately 60 s
prior to the coalescence time of GW190425 there was a short noise
transient in LLO. Short noise transients of instrumental origin are
common in the LIGO and Virgo detectors. We have verified (see
Section 4), that this noise transient does not affect the inference of
the signal parameters including the S/N by comparing the signal
parameters estimated over the original data to those parameters
deduced with a time-frequency wavelet model (Cornish &
Littenberg 2015; Pankow et al. 2018; Abbott et al. 2019b) of the
noise transient subtracted from the data.

During the first two observing runs, gravitational-wave alerts
were sent to partner observatories in order to facilitate multi-
messenger astronomy. Starting in O3, these alerts have been
made public in low latency and distributed through NASA’s
Gamma-ray Coordinates Network (GCN).201

3. Detection of GW190425

We identified GW190425 as a single-detector event in the
LLO data using a low-latency matched-filtering search for
coalescing binaries, the GSTLAL-based inspiral search pipeline
(Cannon et al. 2012; Privitera et al. 2014; Messick et al. 2017;

Hanna et al. 2019; Sachdev et al. 2019). It was designated the
candidate name S190425z in the GRACEDB event database.202

The event had an S/N of 12.9 and an autocorrelation-x2 of 0.82
in LLO, with the autocorrelation providing a similar con-
sistency test to a c2 value (Messick et al. 2017). Although
Virgo was operating at the time of the event, the S/N it
observed was only 2.5, which is below the threshold of 4.0 at
which searches consider triggers for significance estimation.
The difference in S/N between LLO and Virgo is consistent
with the difference in the sensitivities of the two detectors.
Triggers with consistent S/Ns, signal-consistency-test values,
and mass parameters were produced by other low-latency
matched-filtering searches, PYCBC LIVE (Usman et al. 2016;
Nitz et al. 2018, 2019), MBTAONLINE (Adams et al. 2016),
and SPIIR (Hooper et al. 2012; Luan et al. 2012; Chu 2017; Guo
et al. 2018) (see Appendix B). The searches used post-
Newtonian (PN) waveform models (Blanchet et al. 1995, 2005;
Damour et al. 2001; Arun et al. 2009; Buonanno et al. 2009;
Blanchet 2014; Mishra et al. 2016) for performing matched-
filtering (Sathyaprakash & Dhurandhar 1991; Owen &
Sathyaprakash 1999; Harry et al. 2009).
GSTLAL ranks all candidates that pass the S/N threshold

using the log-likelihood ratio (Cannon et al. 2015) as a
detection statistic (Messick et al. 2017; Hanna et al. 2019;
Sachdev et al. 2019). The log-likelihood ratio is calculated
based on the signal and noise distributions of trigger
parameters: S/N, x2, the sensitivities of the detectors at the
time of the event, and the time and phase delays between the
participating interferometers (for coincident triggers). A false
alarm rate (FAR) is then assigned to each candidate based on
the probability density of the log-likelihood ratio under the
noise hypothesis. The background is informed using non-
coincident triggers that occur during times when multiple
detectors are operating. Log-likelihood ratios assigned to
single-detector candidates have larger uncertainties than those
of two- or three-detector events, because the background
distributions are computed from the triggers of a single detector
and cannot be combined with the background from other
detectors. This primarily affects the marginally significant
triggers that occur at the tail of background distributions, which
is poorly resolved. The triggers that are in the bulk and
consistent with noise, and the triggers that are well separated
from the noise distributions and consistent with signal, can still
be identified. An empirically determined parameter, called the
penalty, is subtracted from the log-likelihood ratios of all the
single-detector candidates, down-weighting their significance,
to ensure that only those events with unambigious separation
from the background sample are marked as significant. We
require this penalty to be such that the single-detector triggers
that are well separated from the background samples are still
significant even after being penalized, but it should downrank
the triggers present at the tail of the background distributions
enough that they are recovered as marginally significant
candidates at best. The penalty was determined to be 14 for
this run based on the results from simulated signals that were
injected in the data during non-coincident times.
Following the application of the penalty, GW190425 was

identified as a confident detection. The low-latency FAR estimate
of the event was one in 69,000 yr. This FAR was estimated using
the data collected in O3 up until the time of the event, amounting

201 See the user guide for low-latency alerts athttps://emfollow.docs.ligo.
org/userguide/. 202 https://gracedb.ligo.org/
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to 23.5 days. Even though the FAR estimation of single-detector
candidates is challenging (Callister et al. 2017), the matched-filter
pipelines are capable of identifying loud single-detector events.
GW170817 (Abbott et al. 2017b) was initially identified by
GSTLAL as a single-detector event. To further establish the
significance of GW190425, it was compared against the 169.5
days of background from O1 and O2 and 50 days of background
from O3 in the BNS part of the parameter space, and found to be
louder than any background event. The BNS region is defined as
the parameter space with component masses between 1 and 3 M.
The results of this background analysis from the GSTLAL search
are shown in Figure 1, which shows the combined S/N–x2 noise
probability density function for LHO, LLO, and Virgo. The
S/N–x2 distributions from O1 and O2 are taken from the analysis
performed for GWTC-1 (Abbott et al. 2019c), while the S/N–x2

distributions from O3 come from the low-latency search. The
S/N–x2 background distributions are a subset of the parameters
that factor in the calculation of the log-likelihood ratio, which is
the detection statistic used by the GSTLAL search. These
background distributions allow us to include the S/N–x2

information from all the triggers, and not just the trigger in
question while assigning the detection statistic. Events with low
S/Ns and accidentally small residuals would be disfavored by the
signal model, which also factors in the log-likelihood ratio.

As seen in Figure 1, there is no background recorded at the
GW190425 parameters in all the data searched over until now.
Thus, despite the caveats associated with finding signals in a
single detector, GW190425 is a highly significant event that
stands out above all background. In Appendix B we also show
the results from the PYCBC.

We sent out an alert ∼43 min after the trigger (LIGO
Scientific Collaboration & Virgo Collaboration 2019a), which
included a sky map computed using a rapid Bayesian algorithm
(Singer & Price 2016). We assigned GW190425 a >99%
probability of belonging to the BNS source category. The
initial sky map had a 90% credible region of 10,200 deg2.
Although data from both LLO and Virgo were used to

constrain the sky location, it extended over a large area due to
the fact that the signal was only observed with high confidence
in a single observatory. Gravitational-wave localization relies
predominantly on measuring the time delay between observa-
tories. However, in this case it is primarily the observed stain
amplitude that localizes the signal, with the more likely parts of
the sky being dominated by positions where the the antenna
response of LLO is favorable.
We generated an improved sky map using a Bayesian

analysis that sampled over all binary system parameters (see
Section 4), producing a 90% credible sky area of 8284 deg2 and
a distance constrained to -

+159 Mpc71
69 . This sky map, and the

initial low-latency map, are shown in Figure 2. As a
comparison, GW170817 was localized to within 28 deg2 at a
90% credible level. The broad probability region in the sky
map for this event presented a significant challenge for follow-
up searches for electromagnetic counterparts. At the time of
writing, no clear detection of a counterpart has been reported in
coincidence with GW190425 (e.g., Coughlin et al. 2019;
Hosseinzadeh et al. 2019; Lundquist et al. 2019, but also see
Pozanenko et al. 2019), although a wide range of searches for
coincident electromagnetic or neutrino signals have been
performed and reported in the GCN Circular archive.203

4. Source Properties

We have inferred the parameters of the GW190425 source
using a coherent analysis of the data from LLO and Virgo (in
the frequency range 19.4–2048 Hz) following the methodology
described in AppendixB of Abbott et al. (2019c).204 The low-
frequency cutoff of 19.4 Hz was chosen such that the signal
was in-band for the 128 s of data chosen for analysis. In this
frequency range there were ∼3900 phase cycles before merger.
We cleaned the data from LLO to remove lines from

calibration and from known environmental artifacts (Davis
et al. 2019; Driggers et al. 2019). For Virgo, we used the low-
latency data. The LLO data were subsequently pre-processed
(Cornish & Littenberg 2015; Pankow et al. 2018) to remove the
noise transient discussed in Section 2. Details of the transient
model and the data analyzed can be found in Abbott et al.
(2019b). The results have been verified to be robust to this
glitch removal by comparing the analysis of the pre-processed

Figure 1. Combined S/N–x2 noise probability density function for LHO, LLO,
and Virgo in the BNS region, computed by adding the normalized 2D
histograms of background triggers in the S/N–x S N2 2 plane from the three
detectors. The gold star indicates GW190425. There is no background present
at the position of GW190425; it stands out above all of the background
recorded in the Advanced LIGO and Virgo detectors in the first three observing
runs. The background contains 169.5 days of data from O1 and O2 and the first
50 days of O3, at times when any of the detectors were operating. For
comparison the LLO and LHO triggers for GW170817 are also shown in the
plot as blue and red diamonds, respectively.

Figure 2. Sky map for GW190425. The shaded patch is the sky map obtained
from the Bayesian parameter estimation code LALINFERENCE (Veitch et al. 2015)
(see Section 4) with the 90% confidence region bounded by the thin dotted
contour. The thick solid contour shows the 90% confidence region from the low-
latency sky localization algorithm BAYESTAR (Singer & Price 2016).

203 All GCN Circulars related to this event are archived athttps://gcn.gsfc.
nasa.gov/other/S190425z.gcn3.
204 From here on, we will use GW190425 to refer to the gravitational-wave
signal and as shorthand for the system that produced the signal.
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data with that using the non-pre-processed data and by
comparing results with a low-frequency cutoff of 30 Hz. We
estimated the noise spectra of the data from both detectors
using the methods described in Littenberg & Cornish (2015)
and Chatziioannou et al. (2019).

We estimated the posterior probability distribution for the
source model parameter space using the Bayesian stochastic
sampling software in LALINFERENCE (Veitch et al. 2015); the
analysis marginalized over the uncertainty in detector calibra-
tion (Cahillane et al. 2017). The data used in this analysis are
open-access and available from the Gravitational Wave Open
Science Centre (LIGO Scientific Collaboration & Virgo
Collaboration 2019b).

The primary analysis presented here was produced using the
PhenomPv2NRT signal model (Dietrich et al. 2019), a phenom-
enological waveform model for spin-precessing (Hannam et al.
2014; Khan et al. 2016) compact binary systems, which also
includes tidal interactions (Dietrich et al. 2017). At the S/N of
GW190425, it is not expected that systematic errors coming from
our choice of waveform approximant would be significant.
Indeed, comparisons between PhenomPv2NRT and effective-one-
body (EOB) tidal models (Hinderer et al. 2016; Nagar et al. 2018)
in the case of GW170817 suggested that even at the relatively
high S/N of 33, model systematics were subdominant to statistical
errors (Abbott et al. 2019c). To verify this expectation, we also
obtained results with three further models: SEOBNRv4Tsurrogate
(Hinderer et al. 2016; Steinhoff et al. 2016; Bohé et al. 2017;
Lackey et al. 2019), IMRPhenomDNRT (Husa et al. 2016; Khan
et al. 2016; Dietrich et al. 2017, 2019), and TaylorF2
(Sathyaprakash & Dhurandhar 1991; Poisson 1998; Mikóczi
et al. 2005; Arun et al. 2009; Bohé et al. 2013, 2015; Mishra et al.
2016) and conclude that our findings are robust with respect to
waveform systematics. We present details of this investigation in
Appendix D. For the PhenomPv2NRT and PhenomDNRT
waveforms, we applied the reduced-order quadrature method for
evaluating the likelihood (Smith et al. 2016; Baylor et al. 2019;
Smith 2019) to reduce the overall computational cost.

We chose a uniform prior between M1.00  and M5.31  for
the redshifted (detector-frame) component masses and used the
conventional definition that m m1 2. As in Abbott et al. (2019d),
we present separate results from using different low-spin and
high-spin priors, with dimensionless spin magnitudes ( cc = ∣ ∣)
for both components uniformly distributed within c < 0.05 and
c < 0.89, respectively, and assuming that the spin directions are
isotropically distributed. The low-spin prior was chosen so as to
include the fastest pulsars among known Galactic BNS systems
that will merge within a Hubble time (Zhu et al. 2018) although,
as we show below, for this event the chirp mass is not consistent
with the known Galactic BNS systems. We gave the component
tidal deformability parameters uniform priors in the ranges
L Î 0, 5 0001 [ ] and L Î 0, 10 000 ;2 [ ] the distinct prior ranges
were selected to ensure that the priors did not affect regions with
significant posterior support. These prior ranges are consistent
with the constraints imposed by causality (Van Oeveren &
Friedman 2017).

All results below are given assuming the high-spin prior
unless otherwise stated. The secondary mass m2 has posterior
support near to the arbitrary bounds enforced by the reduced-
order quadrature method for PhenomPv2NRT. However,
results from the TaylorF2 waveform, with a lower prior bound
on m2 of 0.7, confirm that these restrictions do not affect the
overall results.

In Table 1 we summarize the inferred values for a selection
of the source parameters; unless otherwise stated, all bounds
are given by a 90% credible interval, symmetric in probability
about the median of the marginalized posterior probability
distribution for a given parameter. Frequency-dependent binary
parameters are quoted at 20 Hz.
Assuming a standard flat ΛCDM cosmology with Hubble

constant = - -H 67.9 km s Mpc0
1 1 and matter density para-

meter W = 0.306m (Ade et al. 2016), we infer the cosmological
redshift to be = -

+z 0.03 0.02
0.01. The redshift from peculiar velocity

is expected to be negligible (see Carrick et al. 2015). Therefore,
we find the source-frame chirp mass to be = -

+ M1.44 0.02
0.02

.
From the source-frame chirp mass and inferred mass ratio, we
constrain the primary mass to the range M1.61, 2.52[ ]  and the
secondary mass to the range M1.12, 1.68[ ]  as shown in
Figure 3. We discuss the implications of the chirp mass and the
total system mass of -

+ M3.4 0.1
0.3

 in Section 5.
Spin effects are measurable primarily through the effective

spin parameter ceff (Racine 2008; Ajith et al. 2011), which is
the mass-weighted sum of spins projected along the direction
perpendicular to the orbital plane. In Figure 4 we show the joint
posterior distribution between ceff and mass ratio ( =q m m2 1)
along with one-dimensional posterior distributions. The ceff–q
correlation causes a positive skew in the marginalized ceff
posterior (Cutler & Flanagan 1994). To quantify the support for
spins in GW190425, we calculated the Bayesian evidence for
the same PhenomPv2NRT model, but with spin effects turned
off. We found a Bayes factor of ∼1 between the non-spinning
and spinning cases, implying no evidence for or against spins.
In order to place Figure 4 in an astrophysical context, we also
show the mass ratios and expected effective spins at merger for
the two fastest Galactic BNS systems that are expected to
merge within a Hubble time. For the double pulsar J0737
−3039A/B, precise mass and spin-period measurements are
available for both components (Kramer et al. 2006). With a
mass ratio of 0.93, it is expected to have ceff between 0.008

Table 1
Source Properties for GW190425

Low-spin Prior
c < 0.05( )

High-spin Prior
c < 0.89( )

Primary mass m1 M1.60 1.87–  M1.61 2.52– 

Secondary mass m2 M1.46 1.69–  M1.12 1.68– 

Chirp mass -
+ M1.44 0.02

0.02
 -

+ M1.44 0.02
0.02



Detector-frame chirp mass -
+ M1.4868 0.0003

0.0003
 -

+ M1.4873 0.0006
0.0008



Mass ratio m m2 1 0.8 – 1.0 0.4 – 1.0
Total mass mtot -

+3.3 M0.1
0.1

 -
+ M3.4 0.1

0.3


Effective inspiral spin
parameter ceff

-
+0.012 0.01

0.01
-
+0.058 0.05

0.11

Luminosity distance DL -
+159 Mpc72

69
-
+159 Mpc71

69

Combined dimensionless
tidal deformability L̃

600 1100

Note. We give ranges encompassing the 90% credible intervals for the
PhenomPv2NRT model; in Appendix D we demonstrate these results are
robust to systematic uncertainty in the waveform. Mass values are quoted in
the frame of the source, accounting for uncertainty in the source redshift. For
the primary mass we give the 0%–90% interval, while for the secondary mass
and mass ratio we give the 10%–100% interval: the uncertainty on the
luminosity distance means that there is no well-defined equal-mass bound for
GW190425. The quoted 90% upper limits for L̃ are obtained by reweighting its
posterior distribution as detailed in Appendix F.1.
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and 0.012 (90% credibility interval) when marginalized over
mass and equation of state (EoS) uncertainties (see
Appendix F.3 for details). The fastest-spinning Galactic-field
BNS, which contains the 17 ms pulsar J1946+2052 (Stovall
et al. 2018), has ceff in the range [0.012, 0.018] assuming
aligned spin for the pulsar and negligible spin for its
companion, similar to the double pulsar.
For the results reported herein we used the LALINFERENCE

library’s nested sampling algorithm and validated results using
the LALINFERENCE Markov chain Monte Carlo sampling
algorithm and the BILBY (Ashton et al. 2019) library with the
DYNESTY (Speagle 2019) nested sampling algorithm. When
comparing the high-spin prior results using the different
algorithms, we see 3% differences in the median parameter
values and the credible intervals are consistent and reprodu-
cible. Meanwhile, the runs using the low-spin priors show no
such differences.
We show the posteriors for a wider range of source

parameters in Appendix C.

4.1. Neutron Star Matter

Because of its large mass, the discovery of GW190425 suggests
that gravitational-wave analyses can access densities several times
above nuclear saturation (see, e.g., Figure 4 in Douchin &
Haensel 2001) and probe possible phase transitions inside the core
of a neutron star (NS) (Oertel et al. 2017; Essick et al. 2019; Tews
et al. 2019). However, binaries comprised of more massive stars
are described, for a fixed EoS, by smaller values of the leading-
order tidal contribution to the gravitational-wave phasing L̃
(Flanagan & Hinderer 2008). These are intrinsically more difficult
to measure. For GW190425, this is exacerbated by the fairly low
S/N of the event compared to GW170817. Overall, we find that
constraints on tides, radius, possible p–g instabilities (Venumadhav
et al. 2013; Weinberg et al. 2013; Weinberg 2016; Zhou &
Zhang 2017), and the EoS from GW190425 are consistent with
those obtained from GW170817 (Abbott et al. 2017b, 2019e).
However, GW190425is less constraining of NS properties,
limiting the radius to only below 15 km, L̃ to below 1100 and
only ruling out phenomenological p–g amplitudes above 1.3 times
the 90% upper limit obtained from GW170817 at the same
confidence level. The p–g constraints were obtained with a
different high-spin prior than the rest of the results (see
Appendix F.5) but the difference does not significantly change
our conclusions. Spin priors can affect the inference of tidal and
EoS parameters, and we note that the low-spin results are generally
more constrained. Following Agathos et al. (2020), we estimate the
probability of the binary promptly collapsing into a black hole
(BH) after merger to be 96%, with the low-spin prior, or 97%with
the high-spin prior. Repeating the analyses of Chatziioannou et al.
(2017) and Abbott et al. (2019d), we find no evidence of a
postmerger signal in the 1 s of data surrounding the time of
coalescence. We obtain 90% credible upper limits on the strain
amplitude spectral density and the energy spectral density of

´ - -1.1 10 Hz22 1 2 and -M c0.11 Hz2 1
 , respectively, for a

frequency of 2.5 kHz. Similar to GW170817, this upper limit is
higher than any expected post-merger emission from the binary
(Abbott et al. 2019d). More details on all calculations and
additional analyses are provided in Appendix F.7.

Figure 3. Posterior distribution of the component masses m1 and m2 in the
source frame for the low-spin (c < 0.05; orange) and high-spin (c < 0.89;
blue) analyses. Vertical lines in the one-dimensional plots enclose 90% of the
probability and correspond to the ranges given in Table 1. The one-dimensional
distributions have been normalized to have equal maxima. A dashed line marks
the equal-mass bound in the two-dimensional plot.

Figure 4. Joint posterior distribution of ceff and q for the low-spin (c < 0.05;
orange) and high-spin (c < 0.89; blue) prior. Vertical lines enclose the 90%
credible interval for ceff and horizontal lines mark the 90% lower limits for q.
The one-dimensional distributions have been normalized to have equal
maxima. For comparison, the effective spins are shown for two Galactic
BNS systems, PSR J1946+2052 (green) and PSR J0737−3039A/B (red), if
extrapolated to their mergers. For PSR J1946+2052, it is assumed that the
primary spin is perpendicular to the orbital plane and that the unmeasured
secondary spin is negligible. Uncertainties in the pulsar q and ceff values,
calculated by marginalizing over mass and equation of state information, are
smaller than the markers except for the mass ratio of PSR J1946+2052, which
is shown with an error bar.
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5. Astrophysical Implications

The component masses of GW190425 are consistent with mass
measurements of NSs in binary systems (Antoniadis et al. 2016;
Alsing et al. 2018) as well as expected NS masses in supernova
explosion simulations (Woosley et al. 2002; Burrows et al. 2019;
Ebinger et al. 2019a, 2019b). Taking a fiducial range of NS
masses between 1.2 and M2.3 , our low-spin posteriors are
entirely consistent with both objects being NSs, while there is
~25% of posterior support for component masses outside this
range given the high-spin prior. The lower end of this fiducial
range corresponds to the lowest precisely measured NS mass,

 M1.174 0.004  for the companion of PSR J0453+1559 in
Martinez et al. (2015) (see Tauris & Janka 2019 for an alternative
white-dwarf interpretation). It is also difficult to form light NSs
with masses below ~ M1.2  in current supernova explosion
simulations (Burrows et al. 2019; Müller et al. 2019). The upper
end is based on the highest precise NS mass measurement of

-
+ M2.14 0.18

0.20
 (95% credibility interval) for PSR J0740+6620 in

Cromartie et al. (2019; see also Abbott et al. 2020 for a discussion
of NS upper mass bounds).

Here we discuss the implications for the GW190425 system
origin assuming it consists of a pair of NSs. Under this
assumption, we have calculated the astrophysical rate of merger
when including GW190425. We also briefly discuss the
possibility of the system containing BH components.

5.1. Possible System Origins

Currently there are 17 known Galactic BNSs with total mass
measurements, ranging from 2.50 to M2.89 ; 12 of them have
masses measured for both components, implying chirp masses
from 1.12 to M1.24  (see Table 1 in Farrow et al. 2019 and
references therein for details). In order to quantify how
different the source of GW190425 is from the observed
Galactic population, we fit the total masses of the 10 binaries
that are expected to merge within a Hubble time with a normal
distribution. This results in a mean of M2.69  and a standard
deviation of M0.12 . With a total mass of -

+ M3.4 0.1
0.3

,
GW190425 lies five standard deviations away from the known
Galactic population mean (see Figure 5).205 A similar ( s5 )
deviation is found if we compare its chirp mass to those of
Galactic BNSs. This may indicate that GW190425 formed
differently than known Galactic BNSs.

There are two canonical formation channels for BNS systems:
the isolated binary evolution channel (Flannery & van den
Heuvel 1975; Massevitch et al. 1976; Smarr & Blandford 1976;
for reviews see Kalogera et al. 2007; Postnov & Yungelson 2014),
and the dynamical formation channel (see Phinney & Sigurdsson
1991; Prince et al. 1991; Grindlay et al. 2006; Lee et al. 2010; Ye
et al. 2019, and references therein). The former is the standard
formation channel for Galactic-field BNSs (e.g., Tauris et al.
2017), in which the two NSs are formed in a sequence of
supernova explosions that occur in an isolated binary.

Assuming a formation through the standard channel,
GW190425 might suggest a population of BNSs formed in
ultra-tight orbits with sub-hour orbital periods. Such binaries are
effectively invisible in current radio pulsar surveys due to severe
Doppler smearing (Cameron et al. 2018) and short inspiral times

(10 Myr), but have been predicted to exist in theoretical studies
(e.g., Belczynski et al. 2002; Dewi & Pols 2003; Ivanova et al.
2003), and possibly with a comparable formation rate to the
currently observed Galactic sample (Vigna-Gómez et al. 2018).
The formation of GW190425ʼs source might have involved a
phase of stable or unstable mass transfer from a post-helium main-
sequence star onto the NS. If the mass ratio between the helium-
star donor and the NS were high enough, the mass transfer would
be dynamically unstable and lead to a Case BB common-envelope
phase that could significantly shrink the binary orbit to sub-hour
periods (Ivanova et al. 2003; Tauris et al. 2017). If it is possible for
a binary to survive this common envelope phase, the high mass of
GW190425 may be indicative of this formation pathway, since a
more massive helium-star progenitor of the second-born NS would
be required for a common envelope to form. In this process the
secondary would likely be ultra-stripped, and so the subsequent
supernova kick may be suppressed (Tauris et al. 2015). The small
supernova kick, combined with the very tight orbital separation,
will increase the probability that the binary remained bound
following the supernova that formed the BNS. Additionally, the
high mass of GW190425 may point to its NSs being born from
low-metallicity stars (e.g., Ebinger et al. 2019b). Giacobbo &
Mapelli (2018) showed that BNSs with total masses of 3.2–3.5 M
can be formed from isolated binaries provided that the metallicity
is relatively low (∼5%–10% solar metallicity). Athough not
obviously related to scenarios discussed here, the high-mass X-ray
binary Vela X-1 contains an NS with varying mass estimates from
1.5 up to M2.1  (Barziv et al. 2001; Quaintrell et al. 2003;
Falanga et al. 2015; Giménez-García et al. 2016) in a nine day orbit
with a ~ M22  supergiant star companion. Though it is unlikely
that the Vela X-1 system will survive a future common envelope
phase (Belczynski et al. 2012), if it does survive the supergiant will
eventually undergo core collapse forming an NS or BH, potentially
leading to a high-mass BNS similar to GW190425. The existence
of a fast-merging channel for the formation of BNSs could be
detected by future space-based gravitational-wave detectors
(Andrews et al. 2019; Lau et al. 2020).
An alternative way to make the GW190425 system is to have

the stellar companion of a massive NS replaced with another NS
through a dynamical encounter. Observations of millisecond
pulsars in globular clusters have found evidence of massive NSs

Figure 5. Total system masses for GW190425 under different spin priors, and
those for the 10 Galactic BNSs from Farrow et al. (2019) that are expected to
merge within a Hubble time. The distribution of the total masses of the latter is
shown and fit using a normal distribution shown by the dashed black curve.
The green curves are for individual Galactic BNS total mass distributions
rescaled to the same ordinate axis height of 1.

205 PSR J2222−0137, with a mass of  M1.76 0.06 , is also in a high-mass
binary (with = m M3.05 0.09tot , 3σ higher than the mean of the Galactic
BNS population, Cognard et al. 2017); however, the secondary is believed to
be a white dwarf rather than an NS.
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up to ~ M2  (Ransom et al. 2005; Freire et al. 2008). Current
modeling of globular clusters suggest that the dynamical
formation channel has a negligible contribution to the BNS
merger rate in the local universe (Belczynski et al. 2018; Ye et al.
2019), which makes a dynamical origin for GW190425 unlikely.
However, a dynamical formation scenario was recently proposed
for three BNSs in the Galactic field with similarly short orbital
periods and high eccentricities to the globular-cluster BNS PSR
B2127+11C (Jacoby et al. 2006); Andrews & Mandel (2019)
argued that the clustering of these binaries in the orbital period–
eccentricity space challenges the standard binary evolution theory,
and further proposed that they were formed in globular clusters,
but ejected into the field due to dynamical interactions.

Another explanation for the large primary mass of
GW190425 is that the event is gravitationally lensed, coming
from a lower-mass source at higher redshift (Wang et al. 1996;
Dai et al. 2017; Hannuksela et al. 2019). However this is highly
unlikely considering standard estimates of merger rate evol-
ution and lensing optical depth (Ng et al. 2018; Oguri 2018).

5.2. Astrophysical Rate

In Abbott et al. (2019c), the BNS merger rate  was found
to be 110–2520 - -Gpc yr3 1 assuming a uniform (0.8– M2.3 )
component-mass distribution. Here we calculate two rates,
alternatively treating GW170817 and GW190425 as two
counts from this same uniform-in-component-mass population,
or as one count each from GW170817-like and GW190425-
like populations. We calculated the sensitive volume of these
two mass models semi-analytically, setting a nominal once per
century FAR threshold and calibrating to results of the
GSTLAL search pipeline run on injected signals.

Taking the uniform component-mass distribution from
Abbott et al. (2019c), counting both BNS events as two
detections during O1, O2, and 50 days of O3, and applying an

- 1 2 Jeffreys prior, gives a BNS merger rate of
-
+ - -980 Gpc yr730

1490 3 1. Alternatively, using the method of Kim
et al. (2003) as previously used in Abbott et al. (2016b), we
have also calculated both GW170817-like and GW190425-like
merger rates according to our sensitivities during O1, O2, and
50 days of O3 to BNS populations with the inferred mass and
spin distributions for GW170817 and GW190425, respectively.
These give =170817 -

+ - -760 Gpc yr650
1740 3 1 and =190425

-
+ - -460 Gpc yr390

1050 3 1. Combining these according to Kim
et al. (2003) forms a total BNS rate = +  170817 190425
and, after applying the same Jeffreys prior, gives a BNS merger
rate of -

+ - -1090 Gpc yr800
1720 3 1.

Both estimates are broadly consistent with previous BNS
merger rates. The inferred lower limits are higher than the
previous estimate, and potentially in tension with the lower
BNS merger rates predicted by multiple studies (Chruslinska
et al. 2018; Kruckow et al. 2018; Mapelli & Giacobbo 2018;
Eldridge et al. 2019), but they are consistent with the most
recent population synthesis models (Bray & Eldridge 2018;
Giacobbo & Mapelli 2019). These are also consistent with the
rates estimated from observations of the Galactic BNS
population when taking into account the range of systematic
uncertainties (Pol et al. 2019).

5.3. Black Holes

A BNS merger is the most straightforward explanation for
GW190425. However, the possibility that one or both binary

components of GW190425 are BHs cannot be ruled out with a
gravitational-wave analysis because we lack the requisite
sensitivity to detect matter effects.
A BH interpretation of GW190425 would require BHs falling in

the apparent mass gap between NSs and BHs (Bailyn et al. 1998;
Özel et al. 2010; Farr et al. 2011), the existence of which is still
under debate. Some theoretical models of supernova explosions
predicted a smooth transition from NS to BH masses (Woosley &
Weaver 1995; Fryer & Kalogera 2001; Ertl et al. 2020), while
others suggested a lower limit of BH masses at~ M4  (Kochanek
2014; Pejcha & Thompson 2015). In addition to supernovae
remnants, it is also possible to fill the mass gap with BNS merger
remnants (e.g., Gupta et al. 2019). Kreidberg et al. (2012) argued
that the mass gap can be explained by possible systematic errors in
the mass measurements of BHs in X-ray binaries. Recently,
Wyrzykowski & Mandel (2019) found that the mass gap is
disfavored by microlensing measurements of Gaia Data Release 2
if small BH natal kicks (<20–80 km s−1) are assumed.
As an alternative to stellar-origin BHs, a more exotic

possibility is that GW190425 was a merger of primordial black
holes (PBHs). It has been speculated that PBHs may make up
the binaries detected by gravitational-wave detectors (Bird
et al. 2016; Sasaki et al. 2016; Clesse & García-Bellido 2017).
Byrnes et al. (2018) have shown that if PBHs were produced in
the mass range relevant to gravitational-wave detectors, their
mass function should consist of a peak around one solar mass.
In the scenario that GW190425 was produced by the merger of
PBHs, the implied merger rate would then be consistent with
the upper limits for subsolar-mass BH mergers (Abbott et al.
2019f) and the possibility that one or more of the previously
detected BH mergers are of primordial origin.

6. Conclusions

GW190425 represents a highly significant gravitational-
wave signal most likely originating from the merger of two
NSs, which would make it the second such signal to be
observed with gravitational waves. The low-latency FAR for
the signal, as estimated by the GSTLAL pipeline, was one in
69,000 yr. The signal only passed the detection threshold in a
single detector, but it has a detection statistic that was a distinct
outlier from the single detector triggers seen in the previous O1
and O2 observing runs.
If the source of GW190425 is a BNS system, it is significantly

different from the known population of Galactic double NS
systems, with a total mass ( -

+ M3.4 0.1
0.3

) and chirp mass
( -

+ M1.44 0.02
0.02

) larger than any of the Galactic systems (Farrow
et al. 2019; Zhang et al. 2019). This may have implications for
the system’s origin, suggesting isolated formation in ultra-tight
orbits with sub-hour orbital periods, or formation through the
dynamical channel. Since we cannot see evidence of tides, it is
possible that one or both objects could be BHs. However, this
would require a previously unaccounted-for formation channel
for binary BHs in this mass range. In the BNS scenario, the
detection of GW190425 provides an update on the rate of BNS
mergers of 250–2810 - -Gpc yr3 1, taking the union between
two scenarios for component mass distributions. In either case,
the source of GW190425 represents a previously undetected
type of astrophysical system. Future gravitational-wave observa-
tions of BNS mergers and electromagnetic follow-ups should
greatly improve our understanding of BNS formation.
Stretches of data containing this signal, and samples from the

posterior probability distributions of the source parameters, are
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available from the Gravitational Wave Open Science Center
(LIGO Scientific Collaboration & Virgo Collaboration 2019b).
The software packages used in our analysis are open source.
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Software: The detection of the signal and subsequent
significance evalution have been performed using the GSTLAL-
based inspiral software pipeline (Cannon et al. 2012; Privitera et al.
2014; Messick et al. 2017; Hanna et al. 2019; Sachdev et al. 2019).
These are built on the LALSUITE software library (LIGO Scientific
Collaboration 2018). The signal was also verified using the
PYCBC (Usman et al. 2016; Nitz et al. 2018, 2019), MBTAON-
LINE (Adams et al. 2016) and SPIIR (Hooper et al. 2012; Luan
et al. 2012; Chu 2017; Guo et al. 2018) packages. The parameter
estimation was performed with the LALINFERENCE (Veitch et al.
2015) and LALSIMULATION libraries within LALSUITE (LIGO

Scientific Collaboration 2018); additional checks were performed
using the BILBY library (Ashton et al. 2019) and the DYNESTY
Nested Sampling package (Speagle 2019). The estimates of
the noise spectra and the postmerger analysis were performed
using BAYESWAVE (Cornish & Littenberg 2015; Littenberg &
Cornish 2015). The sky map plot has made use of Astropy,206 a
community-developed core Python package for Astronomy
(Astropy Collaboration et al. 2013; Price-Whelan et al. 2018)
and ligo.skymap.207 All plots have been prepared using
Matplotlib (Hunter 2007).

Appendix

These Appendices provide more details from the analysis of
GW190425. In Appendix A we explicitly give the data channels
used for the analyses. In Appendix B we give more details of the
triggers produced using multiple search pipelines and describe a
single-detector-trigger background analysis using the PYCBC
pipeline. In Appendices C and D, we give more details on the
source properties and studies of the differences resulting from the
use of different waveform families. In Appendix E, we discuss
what we can learn about NS matter and the EoS.

Appendix A
Data

The data used in the analysis are described briefly in Section 4.
For completeness, here we also give the channel names within the
gravitational-wave frame format (LIGO Scientific Collaboration
& Virgo Collaboration 2019c) files containing the data that we
used. We used data from LLO that had been cleaned to remove
lines from calibration and from known environmental artifacts
(Davis et al. 2019; Driggers et al. 2019), which was stored
in the channel name L1:DCS-CALIB_STRAIN_CLEAN_C01.
In the case of Virgo, we used the low-latency data held in
the channel name V1:Hrec_hoft_16384Hz. Following the
removal of noise transients from the data, we created new frame
files containing channels named L1:DCS-CALIB_STRAIN_
CLEAN_C01_T1700406_v3 and V1:Hrec_hoft_16384Hz_
T1700406_v3 for LLO and Virgo, respectively. These were the
data we used for estimation of the source properties, and they can
be found in Abbott et al. (2019b).

Appendix B
Detection

In Section 3, we describe the low-latency detection of
GW190425 by the GSTLAL matched-filtering pipeline. Here,
we discuss the consistency between results from different
matched-filtering searches. As discussed in Section 3, consistent
triggers had been produced by other low-latency matched-filtering
searches, PYCBC LIVE, MBTAONLINE, and SPIIR. These trigger
parameters are listed in Table 2. The difference in S/N between
the pipelines is due to the different template banks (Sathyaprakash
& Dhurandhar 1991; Owen & Sathyaprakash 1999; Harry et al.
2009) and different methods to estimate the noise power spectral
density employed by different searches. Each search pipeline also
uses a different definition for calculating the signal-consistency-
test values, but for all searches, these values are distributed around
1.0 for signals. Chirp mass is a well measured parameter for
relatively low-mass systems (see, e.g., Berry et al. 2016), therefore

206 http://www.astropy.org
207 https://lscsoft.docs.ligo.org/ligo.skymap
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all of the pipelines obtain consistent chirp mass estimates. To
verify that the noise transient described in Section 2 has a
negligible effect on the detection of GW190425, we applied a
window function to zero out the data around the transient (Usman
et al. 2016; Abbott et al. 2017b), which resulted in no significant
change in the S/Ns and signal-consistency-test values.

GW190425 was detected as a single-detector event in LLO.
As discussed in Section 3, estimating the significance of single-
detector candidates is challenging, therefore GW190425 was
also compared against background from O1, O2, and the first
50 days of O3 in the BNS region of the parameter space
(defined as the parameter space with component masses
between 1 and 3 M), shown in Figure 1. Here, we present
these results from the PYCBC search, obtained with a template
bank constructed using a hybrid geometric-random algorithm,
as outlined in Roy et al. (2017, 2019). Histograms of
reweighted S/N (Babak et al. 2013; Abbott et al. 2016c),
which is the detection statistic for the PYCBC search and a
function of S/N and reduced c2 (Allen 2005), are shown for
LLO and LHO in Figure 6. For reference, the LLO and LHO
triggers for GW170817 are shown as blue and red diamonds,
respectively. GW190425 is shown as a gold star. It is louder
than all the background events.

Appendix C
Source Properties

In Section 4, we show posterior probability distributions for
the source component masses, system total mass, sky location,

and effective spin parameter ceff . These are produced using the
PhenomPv2NRT waveform model (Dietrich et al. 2019) and
are shown given two different prior assumptions about the
component spins: the low-spin case with a uniform prior
distribution over c 0 0.05, and the high-spin case with a
uniform prior distribution over c 0 0.89. Here, we
provide additional posterior distributions from the analysis
using this waveform model.
In Figure 7, we show the source-frame chirp mass. The

posteriors are consistent independent of the two different prior
assumptions; this is expected as the chirp mass is a particularly
well measured property of the signal (see, e.g., Poisson &
Will 1995; Berry et al. 2015; Farr et al. 2016).
In Figure 8, we show the posterior distribution of the mass-

weighted linear combination of the spins, known as the
effective spin parameter ceff (see, e.g., Equation (3) of Abbott
et al. 2019d, and associated references) alongside the prior
distribution. For the low-spin case, the effective spin posterior
is dominated by the informative prior (i.e., the 0.05 upper

Table 2
S/N, Signal-consistency-test Value, and Chirp Mass for GW190425 from

Different Low-latency Matched-filtering Pipelines

Search S/N Signal-consistency- Detector-frame
Pipeline Test Value Chirp Mass M

GSTLAL 12.9 0.82 1.487
PYCBC LIVE 12.1 1.03 1.487
MBTAONLINE 12.9 1.31 1.487
SPIIR 12.0 0.79 1.487

Figure 6. Histogram of reweighted S/N for single-detector triggers in the BNS
region: the red curve shows the histogram for LLO from O1 and O2, the blue
curve shows the histogram for LHO from O1 and O2, and the yellow curve shows
the histogram for LLO from the first 50 days of O3. GW190425 is shown as a gold
star. It is louder than all the background events. For reference, the LLO and LHO
triggers for GW170817 are also shown as blue and red diamonds.

Figure 7. Posterior distribution of the source-frame chirp mass for the low-spin
prior (c < 0.05; orange) and high-spin prior (c < 0.89; blue) analyses using
the PhenomPv2NRT waveform. Vertical lines mark the 90% credible interval.

Figure 8. Posterior distribution of the effective spin ceff for the low-spin prior
(c < 0.05; orange) and high-spin prior (c < 0.89; blue) analyses using the
PhenomPv2NRT waveform. The prior distribution is shown as the dashed line
for each analysis. Predicted at-merger effective spins for two Galactic BNSs,
PSR J1946+2052 (green) and PSR J0737−3039 (red), are shown for
comparison. The widths of the vertical bands correspond to the uncertainty
in ceff due to the unknown NS equation of state, as well as the unknown mass
ratio for PSR J1946+2052, as explained in Appendix F.3.
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bound on spin magnitude). For the high-spin prior, which is
close to flat over the range of interest, the value of c = 0eff is
excluded from the 90% posterior credible interval, with 98.8%
probability for c > 0eff . However, as discussed in the
Section 4, a comparison of analyses both with and without
spin effects present showed no evidence for a spinning system
being favored over a non-spinning one. Figure 8 also shows
estimates of ceff for the two highest-spin Galactic BNS systems
that are expected to merge within a Hubble time, showing that
the effective spin of the GW190425 source is consistent with
these systems.

The precessing spin model PhenomPv2NRT allows one to
probe the spin-induced precession of the binary. In Figure 9,
we plot the inferred component spin magnitudes and orienta-
tions from the high-spin prior results. We are able to rule out
modest anti-aligned spin. Degeneracy between aligned spin and
mass ratio makes it difficult to measure aligned spin. In
Figure 10, we show the posterior distribution for the effective
precession parameter cp (Schmidt et al. 2015) along with the
prior. This illustrates that the data are largely uninformative
about the precession of GW190425, with the posterior showing
only slight differences compared to the prior.

The luminosity distance DL to the source of GW190425 is
given in Table 1 as -

+159 Mpc72
69 and -

+159 Mpc71
69 for the low-

and high-spin priors, respectively. The spin prior does not have
a significant effect on the estimation of the distance. The
distance is, however, strongly correlated with the angle of the
total angular moment vector with respect to the line of sight,
qJN (see, e.g., Cutler & Flanagan 1994; Nissanke et al. 2010;
Abbott et al. 2016d). In Figure 11, we show the marginalized
posterior distributions for DL and qJN . This demonstrates that
for GW190425, the inclination angle is not a well measured
property.

Appendix D
Source Properties: Waveform Systematics

The results discussed in Section 4 were obtained with
PhenomPv2NRT, a waveform model that augments the numerical
relativity (NR)-informed phenomenological description of grav-
itational-wave phase of a spinning precessing point-particle
baseline model (Hannam et al. 2014; Khan et al. 2016) with an
analytical effective description of the tidal phase (Dietrich et al.
2017), informed by both EOB waveforms obtained with the
TEOBResumS model (Damour & Nagar 2010; Vines et al. 2011;
Damour et al. 2012; Bernuzzi et al. 2015; Nagar et al. 2018) (up to
the late inspiral) and NR simulations for the last few orbits up to
merger. The model also includes spin-induced quadrupole
moments (Poisson 1998; Bohé et al. 2015). As PhenomPv2NRT
is the only model that includes both spin-precession and tidal

Figure 9. Component spin parameter posteriors, marginalized over the
azimuthal angle and plotted with respect to the orbital angular momentum.
This is shown for the high-spin prior using the PhenomPv2NRT waveform at a
reference frequency of 20 Hz. A tilt angle of 0° indicates alignment with the
orbital angular momentum.

Figure 10. cp posterior distribution plotted at a reference frequency of 20 Hz
from the results using the PhenomPv2NRT waveform. The prior distribution is
shown as the dashed line.

Figure 11. Joint posterior distribution of the luminosity distance and qJN from
the results using the PhenomPv2NRT waveform. Lines in the two-dimensional
plot mark the 90% credible interval. Vertical and horizontal lines in the one-
dimensional plots mark the extent of the 90% credible interval.
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effects, it represents a good compromise between physical
accuracy and computational efficiency.

Tests of PhenomPv2NRT, EOB tidal models, and NR
simulations on simulated signals have suggested that the
different models can result in inconsistencies in the inferred
BNS parameters for higher S/N∼100 (Dudi et al. 2018;
Messina et al. 2019). These comparisons were restricted to low
spins (Dietrich et al. 2019), and comprehensive studies of
waveform systematics (including precessing effects) for large
spins have not yet been carried out (Messina et al. 2019). The
effort to test waveform models for BNS systems including
large, and possibly precessing, spins is made more challenging
by the lack of NR simulations of appropriate length. However,
since the GW190425 progenitor system may not belong to the
same population as Galactic NS binaries, it is of astrophysical
interest to also analyze the data of GW190425 with a broad
spin prior.

In order to study the effect of waveform systematics, we have
obtained results for GW190425 with different waveform
approximants, namely SEOBNRv4Tsurrogate (Hinderer et al.
2016; Steinhoff et al. 2016; Bohé et al. 2017; Lackey et al.
2019), IMRPhenomDNRT (Husa et al. 2016; Khan et al. 2016;
Dietrich et al. 2017, 2019), and TaylorF2 (Sathyaprakash &
Dhurandhar 1991; Poisson 1998; Mikóczi et al. 2005; Arun
et al. 2009; Bohé et al. 2013, 2015; Mishra et al. 2016).
PhenomDNRT is the spin-aligned version of PhenomPv2NRT
and does not include the EOS-dependent spin-quadrupole terms
(Poisson 1998; Bohé et al. 2015). TaylorF2 is the standard PN
spin-aligned approximant taken at 3.5PN order, which is known
to potentially induce biases in the recovery of tidal parameters
for large S/N, because of the incomplete description of the
point-mass phasing (Messina et al. 2019). SEOBNRv4Tsurro-
gate is the faster, frequency-domain surrogate of the tidal, spin-
aligned effective-one-body model SEOBNRv4T (Hinderer et al.
2016; Steinhoff et al. 2016), obtained using Gaussian process
regression. The SEOBNRv4Tsurrogate analyses are under
investigation, but were not fully converged at the time of
writing; the preliminary results show qualitatively consistent
masses and spins with the other waveforms. Nonetheless, our
investigations indicate that, given the moderate S/N of

GW190425, our findings are robust with respect to waveform
systematics in the spin-aligned dynamics for both high and low
spins. The spin-precession dynamics in PhenomPv2NRT have
only been verified for signals of shorter length (Dietrich et al.
2019) as no other spin-precessing and tidal model or NR
simulation exists to date.
In Figures 12(a)–(f), we reproduce the figures from Section 4

and Figure 11, but comparing the three waveforms for the high-
and low-spin cases. In Figure 12(a), for the high-spin,
component mass plot, the reduced-order quadrature method
(Smith et al. 2016) imposes an arbitrary lower bound on the
component mass of M1  for PhenomDNRT (Smith 2019) and
PhenomPv2NRT (Baylor et al. 2019). To use the reduced-order
quadrature basis, we applied an additional constraint on the
detector-frame chirp mass to be between M1.485  and

M1.490  for the PhenomPv2NRT model and between
M1.42  and M2.6  for the PhenomDNRT model. The

posterior distribution for both the PhenomPv2NRT and
PhenomDNRT models shows support at the lower detector
frame component mass bound, see Figure 13. However, for
TaylorF2, we reduced the lower bound to M0.7  after initial
results demonstrated a similar feature; we also used a prior on
both component Λ values with a maximum of 5000, unlike
those for the IMRPhenom waveforms. For TaylorF2, the
secondary component mass posterior falls off well above

M0.7 , but otherwise remains broadly consistent with
PhenomDNRT above the cut. Under the assumption that
results from PhenomDNRT with an unconstrained mass prior
would fall off below the cut with similar overall slope to the
other waveforms, we obtain consistent constraints on the
component mass ranges using the three different waveform
models. For the remaining figures, the results are also broadly
consistent, with some approximants showing more conserva-
tive limits on the tidal parameters, providing evidence that our
GW190425 conclusions are not subject to systematic bias due
to the choice of waveforms. This is consistent with conclusions
from the similar systematics study performed on GW170817
(Abbott et al. 2019d), especially given the lower S/N of
GW190425.
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Figure 12. Checks of the robustness to waveform systematics for GW190425. Posterior distributions are given for the component masses, mass-ratio and effective
spin, and distance and inclination for the high-spin prior (left-hand side) and low-spin prior (right-hand side). Vertical and horizontal lines in the one-dimensional plots
mark the extent of the 90% credible interval.
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Appendix E
NS Matter Effects

The macroscopic properties of a NS are related to its
microphysics. The EOS, i.e., the relation that links the star’s
internal pressure to its density, can be mapped to a relationship
between macroscopic observables of NSs such as their mass,
radius, moment of inertia, and tidal deformability (Lattimer &
Prakash 2001). For a coalescing BNS system, this information is
primarily encoded in the mass-weighted tidal parameter L̃
(Flanagan & Hinderer 2008) which generates the leading-order
tidal effects in the waveforms described previously. The smaller
quadrupole–monopole effect (Poisson 1998), which is quadratic
in the spins and caused by the deformations induced by rotation, is
included in our models by means of approximate universal
relations with the tidal deformability of NSs (Yagi & Yunes 2017).
All analyses presented in the following paragraphs assume that
both components of the GW190425 coalescence were NSs.

F.1. Tidal Constraints

From the analyses detailed in the main text, the mass-weighted
tidal parameter L̃ is constrained to 1200 and 1900 for low- and
high-spin priors, respectively. Such upper limits are obtained by
employing a prior that is uniform in the component’s tidal
deformability. This choice leads to a prior distribution for L̃ that
correlates with the mass ratio: any information about q inferred
from the observational data will have an impact on the posterior of
L̃, even if the signal does not carry any information on the tidal
deformabilities, thus complicating the interpretation of the results
(see also Kastaun & Ohme 2019). We therefore construct a
second prior, flat in L̃ at any mass ratio, which avoids the
correlation with q and does not disfavor low L̃ values. We employ
the standard reweighting procedure that explicitly considers the q
dependence of the L̃ prior p L( ˜ ) before marginalization over q. To
generate the posterior distribution of L̃ obtained with a flat prior,
without modifying the mass ratio prior p q( ), we replace the
original prior p L q,old ( ˜ ) =p pL q qold ( ˜ ∣ ) ( ) produced by uniform
component sampling with a prior p p pL = Lq q,new new( ˜ ) ( ˜ ) ( ),
where p Lnew( ˜ ) is independent of q and flat over a fixed range
contained within the original prior and extending well above the

posterior support. We evaulate
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and confirm that this procedure reproduces the results of runs
sampled uniformly in L̃. After reweighing the posterior to
correspond to a flat prior in L̃, we find that under the low-spin
(c < 0.05) assumption L̃ is constrained to L  650˜ for all
approximants, whereas the high-spin case (c < 0.89) leads to
larger differences in upper constraints (Figure 14). These
values are less constraining than those quoted above, and this
ambiguity can be traced back to the fact that tidal information
in current gravitational-wave signals is not strong.
For comparison, we combine the mass posterior distributions of

GW190425 with EoS samples taken from Abbott et al. (2017b)
and compute upper limits for L̃. We consider sets of samples of
GW190425’s component masses m m,1 2( ) and of GW170817ʼs
spectral coefficients g g¼, ,0 3( ), each randomly drawn from its
respective posterior distribution. The spectral coefficients are then
mapped into an EoS through Equation (7) of Lindblom (2010),
which is then employed together with the component masses to
compute tidal parameters. By additionally interpreting the heavier
body as a BH with L = 01 whenever its mass exceeds the
maximum mass supported by the EoS, we infer upper limits on L̃
of 230 and 220 for the GW190425 mass distributions with low-
and high-spin priors, respectively. Following this procedure, the
EoS constraints from GW170817 are effectiely mapped to the
GW190425 progenitor’s mass scale. These limits are much tighter
than those derived from GW190425 alone.

F.2. Radii and EoS

To immediately obtain a rough estimate on the bound that we
can place on the NS radius, we use the L̃ upper limit obtained
above, the individual mass measurements of GW190425 and the
EoS-insensitive relations of Yagi & Yunes (2016, 2017), to find

<R 16 km and <R 15 km with high- and low-spin priors,
respectively. Such values suggest that the GW190425 signal is too
weak to provide further EoS constraints. We obtain similar results
by employing different relations (De et al. 2018; Raithel 2019),
which produce results consistent with those obtained by
comparing directly with a set of EoS models (e.g., Annala et al.
2018). Under the assumption that both NSs are described by a
single fundamental EoS, more detailed analyses can be performed.
The quasi-universal relations explored in Yagi & Yunes
(2016, 2017) allow the inference of the tidal deformabilities and
radii from sampling the mass ratio and the symmetric combination
of the tidal parameters (Abbott et al. 2017b; Chatziioannou
et al. 2018); the same information can be obtained by direct
parameterization of the EoS above densities of 1014 g cm−3

(1017 kgm−3), and fixing the low-density crust to obey the SLy
EoS (Douchin & Haensel 2001) as described in Lackey & Wade
(2015), Carney et al. (2018), and Abbott et al. (2017b). This
second approach additionally allows for EoS reconstruction and
can be supplemented with constraints that incorporate astro-
physical observations, e.g., by introducing a term in the likelihood
that depends on the maximum mass supported by the NS EoS
(Alvarez-Castillo et al. 2016; Miller et al. 2020). While the above
approach is preferred, given the uninformative nature of
GW190425 on matter effects, and for consistency with Abbott
et al. (2017b), we impose a sharp cut on the lower bound of the

Figure 13. High-spin posterior distributions for the detector-frame secondary
component mass. For PhenomDNRT and PhenomPv2NRT, an arbitrary low
prior bound of 1 Me is imposed by the reduced-order quadrature bases used for
the analysis. For TaylorF2, we instead apply a lower bound of 0.7 Me.
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maximum EoS mass, and reject samples that do not support at
least M1.97  (Antoniadis et al. 2013). Due to the high inferred
mass of the heaviest binary component, results obtained through
universal relations could be subject to unexplored modeling
systematics, as such relations are primarily applied to lower-mass
NSs (Yagi & Yunes 2017). On the other hand, a direct EoS
parameterization is expected to more accurately capture the
properties of high-mass NSs (Lindblom 2010); given the moderate
S/N of the event, it is not expected that any significant systematic
issue will arise from spectral analyses. To verify this we compare
the component mass distributions to those shown in Figures 12(a)
and (b), with corresponding results obtained when using the
spectral EoS parameterization and find only minor differences that
can be attributed to the lack of tidal information contained in
GW190425 and to requiring that the sampled EoS support the
sampled component masses. We therefore explicitly show only
results obtained with the latter. Figure 15 shows the reconstructed
EoS. We compute pressure at twice and six times nuclear density
(see Table 3). In Figure 16, instead, we show the marginalized 2D
distribution of the masses and radii obtained through our spectral
investigations. It shows the results from the high- and low-spin
priors and for both cases when the restriction that the EoS support
masses of M1.97  is or is not applied. All cases result in a radius
upper constraint of approximately <R 15 km at 90% credible
level. Both confirm that GW190425 does not carry significant
novel information on the NS EoS and our constraints a posteriori
are similar to our prior beliefs.

F.3. Spins

To provide context for the GW190425 spin measurement, we
calculated the effective spins ceff of the two fastest known
Galactic BNSs that will merge within a Hubble time, PSR J1946
+2052 (Stovall et al. 2018) and PSR J0737−3039 (Burgay et al.
2003). When comparing the pulsar and gravitational-wave
observations, the pulsar spin periods P were converted to
dimensionless spins χ via the moment of inertia, which depends
on the unknown NS EoS and the pulsar mass. We inferred the
pulsar moments of inertia using mass posteriors from Farrow et al.
(2019) and samples from the posterior distribution of the spectral
parameterization of the EoS obtained from the analysis of
GW170817 (Abbott et al. 2017b) as inputs. For each sample, we
calculated the moment of inertia from the EoS and NS mass in the
slow-rotation approximation (Hartle 1970). Any uncertainty in
the pulsar mass was marginalized over as part of this procedure.
The binary pulsar effective spins, with error estimates for the EoS

and mass uncertainty, follow from the inferred moments of inertia,
binary masses, and spins. We have verified that the effective spins
obtained in this way agree with those calculated according to the
universal-relation-based method of Landry & Kumar (2018) and
Kumar & Landry (2019), which uses the L1.4 posterior from
GW170817 (Abbott et al. 2017b) as input.

F.4. Central Density and Pressure

NSs are known to be exceptional laboratories for studying
cold matter at extreme densities. GW190425, given its large
chirp mass, suggests that gravitational waves can be used to
probe such densities. By combining the GW170817 EoS
samples with the GW190425 component mass posterior
distributions, we compute the implied central pressure and
density distributions (Figure 17). We estimate the matter
density in the core of the heavier component to be between
three and six times nuclear density and the pressure to between
´ -1 10 dyn cm35 2 and ´ -8 10 dyn cm35 2 ( ´1 10 Pa34 and
´8 10 Pa34 ), at the 90% credible interval.

F.5. Nonlinear Tides

Nonresonant, nonlinear fluid instabilities within NSs (p–g
instabilities) may impact the gravitational waveform, particularly
at low frequencies (Venumadhav et al. 2013; Weinberg et al. 2013;
Weinberg 2016; Zhou & Zhang 2017). With the same techniques
used to analyze GW170817 (Abbott et al. 2019e), we can constrain
a phenomenological model for the p–g instability (Essick et al.
2016; Abbott et al. 2019e) with GW190425. Unlike the rest of the
analyses presented here, we only analyze GW190425 down to
30Hz to be consistent with the procedure adopted for GW170817.
We also assume a high-spin prior (c < 0.89) uniform in the
component of the spins perpendicular to the orbital plane instead of
isotropic spin orientations. This favors larger spins a priori (less
constraining than the isotropic spin prior) and corresponds to
slightly wider mass posteriors, but does not significantly impact
our conclusions. GW190425, by itself, is less informative than
GW170817 and is only able to rule out phenomenological p–g
amplitudes above 1.3 times the 90% upper limit obtained from
GW170817 at the same credible level. GW190425 produces
Bayes factors between models that include p–g effects and those
that do not of = -

+Bln 0.1pg
pg

0.3
1.3

! with the high-spin prior, similar to
GW170817. Again, the data are not informative enough to either
detect or disprove the existence of p–g instabilities. Combining

Figure 14. Distributions of the reweighted tidal parameter L̃ for (left) high-spin and (right) low-spin priors, together with their upper 90% one-sided credible interval
(vertical lines). Shown in red is the distribution of L̃ obtained by propagating GW170817ʼs constraints to GW190425ʼs mass regime.
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information from both events does not significantly improve
existing constraints and is dominated by GW170817.

F.6. Prompt Collapse

Applying the analysis of Agathos et al. (2020) to the total mass
of GW190425 allows us to infer the prompt collapse probability
and the maximum threshold total mass before merger Mthr above
which BNSs are expected to promptly collapse into a BH. By

relying on the EoS samples of GW170817 (Abbott et al. 2017b)
and extrapolating from fits to sparse NR data, obtained from the
simulations of Hotokezaka et al. (2011), Bauswein et al. (2013),
Zappa et al. (2018), Dietrich et al. (2018), Radice et al. (2018), and
Köppel et al. (2019), we estimate the probability of the binary
promptly collapsing to be 96% and 97%, for the low- and high-
spin priors, respectively. The left panel of Figure 18 shows the
distribution of the total mass of the GW190425 system compared
to Mthr. Restricting the EoS samples to consider only those that

Figure 15. 50% and 90% credible levels for the marginalized pressure posteriors p as a function of the rest mass density ρ, for (left) high-spin and (right) low-spin
priors. Plots displayed in the bottom row are obtained from spectral analyses which additionally require that the EoS support masses above M1.97 . The prior (dashed
red line) is also shown. Vertical lines correspond to one, two, and six times nuclear saturation density. In gray, example EoSs are displayed: from top to bottom at
twice nuclear density, H4, APR4, and WFF1. The top and right panels of each figure show, respectively, the central pressure and density cumulative posteriors for the
two stars (blue and green) and the heaviest NS supported by the EoS (black). Vertical dashed lines correspond to the 90% credible interval bounds.

Table 3
Pressures at Twice and Six Times Nuclear Density and Radii Upper Limits Obtained by Analyzing GW190425 with Spectral Decomposition and Different Choices of

Spin and Maximum EoS Mass Priors

Low-spin Priors c < 0.05( ) High-spin Priors c < 0.89( )
Max. Mass No Max. Mass Max. Mass No Max. Mass

rp2 nuc
(dyn cm−2)´1034 - -

+5.9 3.1
4.6

-
+5.5 3.1

4.6
-
+6.7 3.5

5.5
-
+6.3 3.5

5.4

rp6 nuc
(dyn cm−2)´1035

-
+9.4 4.2

13.3
-
+8.2 3.8

13.1
-
+10.9 5.5

15.2
-
+10.0 5.2

15.2

R (km) 14.6 14.4 14.9 14.9
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support a stable nonrotating NS of M1.97 , leads to an increase of
the values of Mthr, and to updated prompt collapse probabilities of
82%and 88%, for the low- and high-spin priors, respectively. We
also compute the behavior of the probability of prompt collapse as
a function of the maximum observed NS mass, which is shown on
the right panel of Figure 18. Assuming both low- and high-spin
priors, the binary is found to have likely undergone prompt
collapse.

F.7. Postmerger

To also consider the unlikely scenario where the remnant
object did not promptly collapse, we repeated the high-frequency

( >f 1000 Hz) unmodeled analysis of Chatziioannou et al. (2017)
and Abbott et al. (2019d) to look for any postmerger signal. We
used approximately 1 s of strain data around the time of merger.
We found no evidence of a statistically significant signal, with a
(natural) log Bayes factor of 0.41 1.13 in favor of stationary
Gaussian noise compared to the signal model. Following Abbott
et al. (2017a), we obtained 90% credible upper limits on the strain
amplitude spectral density and the energy spectral density of

´ - -1.1 10 Hz22 1 2 and -M c0.11 Hz2 1
 , respectively, for a

frequency of 2.5 kHz (see Figure 19). Due to the large distance to
the source, these upper limits are less interesting than those
obtained from GW170817.

Figure 16. Marginalized posterior distributions of the component masses (m1 in blue, m2 in orange) and radii, displayed following the same disposition as Figure 15.
Black (black dashed) lines represent 90% (50%) credible limits. Priors of both quantities are shown through dashed lines, while vertical dotted lines indicate the 90%
credible intervals. Example mass–radius curves for selected EoSs are overplotted in gray.
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Figure 17. Distributions of the pressure (left) and central density (right) obtained with high- and low-spin priors (HS and LS). Vertical dashed lines mark the 90%
credible interval. The moderately high primary mass implies central densities ranging from three up to six times nuclear saturation density.

Figure 18. Left: distributions of the total mass of GW190425, obtained with high-spin and low-spin priors, compared to the distribution of Mthr, computed from the
posterior samples of Abbott et al. (2017b) and required to either support maximum masses of M1.97  (red), or not (blue). Right: probability of prompt collapse for
GW190425 as a function of the heaviest observed NS mass. The 50% and 90% credible levels are computed by marginalizing over uncertainties on the fit coefficients.
Such error estimates are treated as the standard deviations of a bivariate normal distribution. Shaded bands represent exclusion regions of the maximum supported NS
mass, based on mass measurements of the heavy pulsars PSR J0348+0432 and PSR J0740+6620 approximated as Gaussians, in half-σ steps of confidence out to
s5 ; median values are shown as vertical dashed lines.

Figure 19. 90% credible upper limits on radiated energy (left) and gravitational wave strain (right), and the relative priors. The noise amplitude spectral densities of the
Livingston and Virgo instruments used during parameter estimation are also shown for comparison.
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