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Feature-Aware Uniform Tessellations on Video
Manifold for Content-Sensitive Supervoxels

Ran Yi, Zipeng Ye, Wang Zhao, Minjing Yu, Yu-Kun Lai, Yong-Jin Liu, Senior Member, IEEE

Abstract—Over-segmenting a video into supervoxels has strong potential to reduce the complexity of downstream computer vision

applications. Content-sensitive supervoxels (CSSs) are typically smaller in content-dense regions (i.e., with high variation of

appearance and/or motion) and larger in content-sparse regions. In this paper, we propose to compute feature-aware CSSs (FCSSs)

that are regularly shaped 3D primitive volumes well aligned with local object/region/motion boundaries in video. To compute FCSSs, we

map a video to a 3-dimensional manifold embedded in a combined color and spatiotemporal space, in which the volume elements of

video manifold give a good measure of the video content density. Then any uniform tessellation on video manifold can induce CSS in

the video. Our idea is that among all possible uniform tessellations on the video manifold, FCSS finds one whose cell boundaries well

align with local video boundaries. To achieve this goal, we propose a novel restricted centroidal Voronoi tessellation method that

simultaneously minimizes the tessellation energy (leading to uniform cells in the tessellation) and maximizes the average boundary

distance (leading to good local feature alignment). Theoretically our method has an optimal competitive ratio O(1), and its time and

space complexities are O(NK) and O(N +K) for computing K supervoxels in an N -voxel video. We also present a simple extension

of FCSS to streaming FCSS for processing long videos that cannot be loaded into main memory at once. We evaluate FCSS,

streaming FCSS and ten representative supervoxel methods on four video datasets and two novel video applications. The results show

that our method simultaneously achieves state-of-the-art performance with respect to various evaluation criteria.

Index Terms—Supervoxels, video over-segmentation, video manifold, low-level video features, centroidal Voronoi tessellation.

✦

1 INTRODUCTION

SUPERVOXELS are perceptually meaningful atomic re-
gions obtained by grouping similar voxels (i.e., ex-

hibiting coherence in both appearance and motion) in the
spatiotemporal domain. As a special over-segmentation of
videos, supervoxels well preserve the structural content
while still providing sufficient levels of detail. Therefore,
supervoxels can greatly reduce the computational complex-
ity and have been widely used as a preprocessing step
in many computer vision applications, such as video seg-
mentation [13], [19], [45], propagation of foreground object
segmentation [14], spatiotemporal object detection [27], spa-
tiotemporal closure in videos [17], action segmentation and
recognition [15], [25], and many others.

Many methods have been proposed for computing su-
pervoxels, including energy minimization by graph cut
[38], non-parametric feature-space analysis [28], graph-
based merging [9], [13], [42], contour-evolving optimization
[17], [21], [31], optimization of normalized cuts [33], [7],
generative probabilistic framework [5] and hybrid cluster-
ing [30], [43], etc. These methods can be classified according
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to different representation formats: (1) temporal superpixels
[5], [4], [17], [21], [30], [31], [39]: supervoxels are represented
in each frame and their labels are temporally consistent
in adjacent frames, and (2) supervoxels [7], [9], [13], [28],
[33], [38], [42], [43]: they are 3D primitive volumes whose
union forms the video volume. Note that these two rep-
resentations can be transferred to each other. For example,
temporal superpixels can be stacked up frame-by-frame to
reconstruct supervoxels. However, individual supevoxels
obtained in this way may have disconnected components
or have a complex topology type (i.e., having a non-zero
genus). On the other hand, a supervoxel can be sliced by
related frames to decompose it into temporal superpixels,
however, a superpixel sliced in a frame may also consist of
disjoint components or have a complex topology type.

Depending on the size of video data, supervoxel meth-
ods can also be classified into off-line and streaming methods.
Off-line methods require the video to be short enough such
that all video data can be loaded into the memory. On
the other hand, streaming methods do not have such a
limitation on the video length, i.e., video data is accessed
sequentially in blocks and each time only a block is needed
to feed into the memory. In a recent survey [41], seven
representative supervoxel methods are selected, including
five off-line [9], [10], [28], [7], [13] and two streaming [42],
[5] methods, to represent the state of the art.

To measure the quality of supervoxels, the following
principles have been considered in previous work [13],
[22], [38], [41], [24], [44]: (1) Feature preservation: supervoxel
boundaries align well with object/region/motion bound-
aries in a video; (2) Spatiotemporal uniformity: in non-feature
regions, supervoxels are uniform and regular in the spa-
tiotemporal domain; (3) Performance: computing supervox-
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Fig. 1. Superpixels (induced by clipping supervoxels on frames #21, #41 and #61) obtained by GB [9], GBH [13], SWA [32], [33], [7], MeanShift [28],
TSP [5], TS-PPM [16], CSS [43] and our FCSS. All methods generate approximately 1,500 supervoxels. TSP, TS-PPM, CSS and FCSS produce
regular supervoxels (and accordingly regular clipped superpixels), while other methods produce highly irregular supervoxels. As shown in Section
6, these four methods are insensitive to supervoxel relabeling and achieve a good balance among commonly used quality metrics pertaining to
supervoxels, including UE3D, SA3D, BRD and EV, while FCSS runs 5× to 10× faster than TSP, and the peak memory required by FCSS is 22×
smaller than TSP and 7× to 15× smaller than TS-PPM. Both FCSS and CSS generate more supervoxels in content-rich areas (e.g., bushes on
the lake shore) and fewer supervoxels in content-sparse areas (e.g., lake surface), while FCSS better captures low-level video features (e.g., local
object/region/motion boundaries) than CSS, leading to better performance in two video applications (Section 7). See Appendix for more visual
comparison and accompanying demo video for more dynamic details.

els is time-and-space efficient and scales well with large
video data; (4) Easy to use: users simply specify the desired
number of supervoxels and should not be bothered to tune
other parameters; (5) Parsimony: the above principles are
achieved with as few supervoxels as possible.

So far, none of existing methods satisfy all above prin-
ciples. In our previous work [43], we propose a content-
sensitive approach to address the parsimony principle. This
approach is motivated by an important observation: the
scene layouts and motions of different objects in a video
usually exhibit large diversity, and thus the density of video
content often varies significantly in different parts of the
video. Generating spatiotemporally uniform supervoxels
indiscriminately in the whole video often leads to under-
segmentation in content-dense regions (i.e., with high varia-
tion of appearance and/or motion), and over-segmentation
in content-sparse regions (i.e., with homogeneous appear-
ance and motion). Therefore, computing supervoxels adap-
tively with respect to the density of video content can
achieve a good balance among different principles.

To compute content-sensitive supervoxels (CSSs), Yi et
al. [43] map a video Υ to 3-manifold M embedded in a
feature space R

6. The map Φ is designed in such a way
that the volumetric elements in M give a good measure of
content density in Υ, and thus, a uniform tessellation T on
M efficiently induces CSSs (i.e., Φ−1(T )) in Υ. In this paper,
we improve upon our previous work [43] and propose
feature-aware CSS (FCSS). Our key idea is that among all
possible uniform tessellations on M, we find one whose
cell boundaries well align with local object/region/motion
boundaries in video. To achieve this goal, we improve the re-
stricted centroidal Voronoi tessellation (RCVT) method [23],
[43] and make the following contributions.

• To measure the degree of alignment between RCVT’s
cell boundaries and local video features, we propose
an average boundary distance measure dbdry and use
it to control the positions of generating points in
RCVT.

• We formulate FCSSs by simultaneously minimizing
the RCVT energy (leading to uniform cells in RCVT)
and maximizing dbdry (leading to good local feature

alignment).
• To quickly compute FCSSs, we propose a splitting-

merging scheme that can be efficiently incorporated
into the well known K-means++ algorithm [2], [40].

Our method has a theoretical constant-factor bi-criteria ap-
proximation guarantee, and in practice our method can
obtain good supervoxels in very few iterations. By applying
the streaming version of K-means++ (a.k.a. K-means# [1]),
our method can be easily extended to process long videos
that cannot be loaded into main memory at once. We thor-
oughly evaluate FCSS, streaming FCSS and ten representa-
tive supervoxel methods on four video datasets. A visual
comparison is shown in Figure 1. The results show that our
method achieves a good balance among over-segmentation
accuracies (UE3D, SA3D, BRD and EV in Section 6), com-
pactness, and time and space efficiency. As a case study,
we also evaluate these methods on two novel applications
(foreground propagation in video [14] and optimal video
closure [17]) and the results show that FCSS achieves the
best propagation and spatiotemporal closure performance.

2 PRELIMINARIES

Our method improves the CSS work [43] that uses RCVT
to compute a uniform tessellation of a 3-manifold M ⊂ R

6.
Theoretically our method is a bi-criteria approximation to the
K-means problem [2], [1], [40]. We briefly introduce them
before presenting our method.

2.1 Video manifold M and CSS

Simply treating the time dimension in a video equivalently
as spatial dimensions results in a regular 3D lattice represen-
tation of voxels in R

3, which is not proper due to possibly
non-negligible motions and occlusions/disocclusions. To
overcome this drawback, some methods (e.g., [13], [5]) use
optical flow to re-establish a connection graph of neighbor-
ing voxels between adjacent frames. However, even state-
of-the-art optical flow estimation methods [36] are still
imperfect and may introduce extra errors into supervoxel
computation. Recently, Reso et al. [31] propose a novel
formulation specifically designed for handling occlusions.
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Fig. 2. Left: regular 3D lattices of voxels in R
3. Middle and right: the

map Φ : Υ → M ⊂ R
6 stretches the unit cube ⊡v (red box) centered

at the voxel v(x, y, t) ∈ Υ into a 3-manifold M. Each corner ai of ⊡v ,
i = 1, 2, · · · , 8, is the center of its eight neighboring voxels.

On the contrary, without any special treatment for occlu-
sions, the video manifold M proposed in [43] provides
an elegant continuous search space that circumvents the
aforementioned drawback.

In [43], M is constructed as a 3-manifold embedded
in a combined color and spatiotemporal space R

6, which
stretches a video Υ by a map Φ : Υ → M ⊂ R

6 (Figure 2):

Φ(v) = (λ1x, λ1y, λ2t, λ3l(v), λ3a(v), λ3b(v)) , (1)

where a voxel v ∈ Υ is represented by (x, y, t), (x, y) is the
pixel location and t the frame index. (l(v), a(v), b(v)) is the
color at the voxel v in the CIELAB color space. λ1 = λ2 =
0.435 and λ3 = 1 are global stretching factors.

The volume of a region Φ(Ω) ⊂ M depends on both
the volume of Ω ⊂ Υ and the color variation in Ω. The
higher variation of colors in Ω (indicating higher variation of
appearance and/or motion), the larger the volume of Φ(Ω).
Therefore, the volume form on M gives a good measure of
content density in Υ and the inverse mapping Φ−1 of any
uniform tessellation on M generates CSSs in Υ.

To measure the volume in M, ∀v ∈ Υ, the volume
V (Φ(⊡v)) of Φ(⊡v) ⊂ M is quickly evaluated only
once [43], where ⊡v is the unit cube centered at the voxel v
(Figure 2 middle). Then the volume of Φ(Ω) ⊂ M is simply
the sum Σvj∈ΩV (Φ(⊡vj

)).

2.2 Restricted Voronoi tessellation and RCVT

RCVT has been used to build uniform tessellations on man-
ifolds [23], [43]. Denote by SK = {si}Ki=1 a set of generating
points and M a 3-manifold in R

6. The Euclidean Voronoi
cell of a generator si in R

6, denoted by CR6 , is

CR6(si) , {x ∈ R
6 : ‖x− si‖2 ≤ ‖x− sj‖2,

∀j 6= i, sj ∈ SK}. (2)

The restricted Voronoi cell CM is defined to be the intersec-
tion of CR6 and M

CM(si) , M∩ CR6(si), (3)

and its mass centroid is

mi ,

∫
x∈CM(si)

xdx
∫
x∈CM(si)

dx
. (4)

The restricted Voronoi tessellation RV T (SK ,M) is the col-
lection of restricted Voronoi cells

RV T (SK ,M) , {CM(si) 6= ∅, ∀si ∈ SK}, (5)

which is a finite closed covering of M. An RV T (SK ,M) is
an RCVT if and only if each generator si ∈ SK is the mass
centroid of CM(si).

Theorem 1. [23], [43] Let M be a 3-manifold embedded in R
6

and K ∈ Z+ be a positive integer. For an arbitrary set SK of
points {si}Ki=1 in R

6 and an arbitrary tessellation {Ci}Ki=1 on

M,
⋃K

i=1 Ci = M, Ci

⋂
Cj = ∅, ∀i 6= j, define the tessellation

energy functional as follows:

E({(si, Ci)}Ki=1) =
K∑

i=1

∫

x∈Ci

‖x− si‖22dx. (6)

Then the necessary condition for E to be minimized is that
{(si, Ci)}Ki=1 is an RCVT of M.

Theorem 1 indicates that RCVT is a uniform tessellation
on M, which minimizes the energy E .

2.3 Bi-criteria approximation algorithms

The discretized counterpart of RCVT is the solution to
the K-means problem on the manifold domain M. Given
a fixed K , denote by Sopt

K = {sopti }Ki=1 and {Copt
i }Ki=1

the (unknown) optimal generator set and tessellation on
M, respectively, which minimize the energy E . Let SK

and {Ci}Ki=1 be the generator set and tessellation output
from an algorithm A. An algorithm A is said to be b-
approximation if for all instances of the problem, it produces

a solution {si, Ci}Ki=1 satisfying
E({(si,Ci)}K

i=1)

E({(sopti ,C
opt
i )}K

i=1)
≤ b.

An algorithm is called (a, b)-approximation, if it outputs
{(si, Ci)}aKi=1 with aK generators and tessellation cells, such

that
E({(si,Ci)}aK

i=1)

E({(sopti ,C
opt
i )}K

i=1)
≤ b, where a > 1 and b > 1.

3 OVERVIEW OF FCSS

The classic Lloyd method is used in [23], [43] to compute
RCVT on manifold M, which iteratively moves each gener-
ator si to the corresponding mass centroid of CM(si) and
updates the RVT. Note that the Lloyd method converges to
a local minimum. Among all possible local minimums (each
corresponding to a uniform tessellation on M), we propose
FCSS which aims at finding one whose cell boundaries well
align with local video boundaries. To achieve this goal,
our FCSS method is built upon an important observation:
when the set of generating points are far away from local
object/region/motion boundaries in M, the cell boundaries
of their RCVT will well align with these local video bound-
aries. See Figure 3 for an illustration.

In a video Υ, local boundaries most likely appear in
regions with high variation of appearance. Therefore, we
can characterize these local regions in M by the volume
V (Φ(⊡v)): the larger the volume V (Φ(⊡v)), the higher the
probability that the voxel v lies on a local boundary. Since
V (Φ(⊡v)) ≥ 1 and it can be extremely large at sharp
boundaries, we use the following nonlinear normalization:

pbdry(v) =
2

π
arctan(V (Φ(⊡v))) (7)

to characterize the possibility of a voxel v being on the local
boundary. Then our objective can be casted as finding a set
of generating points {si}Ki=1, in which each si is around the
mapped position Φ(v′) of a voxel v′ with low boundary
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Fig. 3. Comparison of FCSS and CSS generation on a synthetic, de-
generate gray video Υ, for easy illustration. In Υ, each image frame
at time t is a degenerate 1D gray line image It. Supervoxels are
generated by a tessellation in Υ. Left: Υ is mapped to a video manifold
M = Φ(I, t) ⊂ R

3, whose area elements give a good measure
of content density in Υ. Middle and right: two local minimums of the
tessellation energy specified in Eq.(6). The generating points are shown
in dots on M and their inverse images by Φ−1 are shown in red
crosses + in Υ. In this toy example, the local boundaries in Υ can be
characterized by the zero crossing of the second derivative of Υ(I, t)
(shown in red circles in left). Note that the tessellations in middle and
right are generated without this information. The generating points in
FCSS are farther away from local boundaries (indicating by a larger
average boundary distance proposed in Eq.(8)), and the cell boundaries
of the corresponding tessellation better capture these local boundaries
than that of CSS.

possibility pbdry(v
′). We formulate this objective by propos-

ing an average boundary distance (ABD) for a tessellation
{si, Ci}Ki=1:

dbdry
(
{(si, Ci)}Ki=1

)
=

K∑

i=1

∫

x∈Ci

pbdry(x)‖x− si‖22dx, (8)

where pbdry(x) = pbdry(Φ
−1(x)). The larger the distance

dbdry is, the farther {si}Ki=1 are from the local boundaries.
Two examples are shown in Figure 3: the average boundary
distances of the middle and right tessellations are 2.1× 107

and 2.2× 107, respectively.
In the next section, we implement FCSS using a variant

of the Lloyd method that finds a uniform tessellation by
minimizing the tessellation energy defined in Eq.(6) in such
a way that the optimal generating points are determined
by minimizing the following ABD-weighted tessellation
energy:

Eα
(
{(si, Ci)}Ki=1

)
=

E
(
{(si, Ci)}Ki=1

)
− αdbdry

(
{(si, Ci)}Ki=1

)
=∑K

i=1

∫
x∈Ci

(1− αpbdry(x))‖x− si‖22dx,
(9)

where α > 0 is a weight to balance the two terms E and
dbdry . In all our experiments, we set α = 0.8.

4 IMPLEMENTATION OF FCSS

To obtain a feature-aware uniform tessellation {(si, Ci)}Ki=1

in M, our FCSS method consists of the following two steps:

• Initialization (Section 4.1). We apply a variant of the
K-means++ algorithm [2], [1], [40] to determine the

Algorithm 1 Initialization

Input: A video Υ of N voxels and the desired number of
supervoxels K .

Output: The initial positions of K generating points SK =
{si}Ki=1.

1: Compute V (Φ(⊡v)) for each voxel v ∈ Υ.
2: Choose a point v1 from all voxels v ∈ Υ with probability

proportional to V (Φ(⊡v)).
3: Set s1 = Φ(v1), S1 = {s1} and j = 1.
4: while j < K do
5: Choose a point vj+1 from all voxels v ∈ Υ with

probability proportional to the cost cSj
(v) (Eq.(11)).

6: Set sj+1 = Φ(vj+1), Sj+1 = Sj∪{sj+1} and j = j+1.
7: end while

initial positions of generating points SK = {si}Ki=1,
which ensures an (O(1), O(1))-approximation.

• Feature-aware Lloyd refinement (Section 4.2). Ob-
serving that the classic Lloyd method converges
only to a local minimum and without feature-aware
control on the positions of generating points, we
optimize the tessellation and the positions of gen-
erating points separately by minimizing two energy
forms (i.e., Eqs. (6) and (9)), leading to a local min-
imum of the content-sensitive uniform tessellation
on the manifold M that also optimizes the average
boundary distance dbdry to improve feature align-
ment of cell boundaries. We further propose an ef-
ficient splitting-merging scheme that helps move the
solution out of local minimums, while preserving the
approximation ratio.

The FCSS method is easy to implement and can obtain
high-quality supervoxels in very few iterations. Theoreti-
cally FCSS is (O(1), O(1))-approximation (Section 4.3). We
also present a simple extension of FCSS to streaming FCSS
for processing long videos (Section 5).

4.1 Initialization

We apply a variant of K-means++ algorithm to obtain
a provable high-quality initialization of generating points
SK = {si}Ki=1. The pseudo-code is summarized in Algo-
rithm 1. In each step, a point in M is picked up with
probability proportional to its current cost (defined as its
squared distance to the nearest generator picked so far),
and added as a new generator. To compute the required
probability in the manifold domain M, we consider the
positions of mapped voxels Φ(v) ∈ M, ∀v ∈ Υ. With
respect to an existing generator Φ(vi), the cost of a mapped
voxel Φ(vj) ∈ M, j 6= i, is

cvi
(vj) =

∫
x∈Φ(⊡vj

) ‖x− Φ(vi)‖22dx
≈ V (Φ(⊡vj )) · ‖Φ(vj)− Φ(vi)‖22

(10)

Then the cost of picking Φ(vj) with respect to an existing
generator set S is

cS(vj) = min
vi∈S

cvi(vj) (11)

Algorithm 1 runs in O(NK) time. A simple adaption of the
proofs in [2], [40] shows the following results.
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Lemma 1. [2], [40] If RV T (SK ,M) is used as the tessella-
tion for the selected K generators, Algorithm 1 is an expected
Θ(logK)-approximation algorithm. If βK (β > 1) generators
are selected, Algorithm 1 is an expected b-approximation algo-
rithm, where

b < 8

(
1 +

1 +
√
5

2(β − 1)

)
. (12)

4.2 Feature-aware Lloyd refinement

Given the initial generators SK = {si}Ki=1, si ∈ M, the
classic Lloyd method computes RCV T (SK ,M) iteratively
by alternating the following two steps:

• Step 1: Fixing the generator set SK , compute
RV T (SK ,M) (ref. Eq.(5));

• Step 2: For each cell CM in RV T (SK ,M), update its
generator to be the mass centroid of CM (ref. Eq.(4)).

This method converges only to a local minimum with a large
number of iterations [8] and without feature-aware control
on the cell boundaries of RV T (SK ,M). We introduce the
average boundary distance (Eq.(8)) into the tessellation en-
ergy (Eq.(9)) and propose the following feature-aware Lloyd
refinement and Algorithm 2 summarizes the pseudo-code:

• Step 1 (lines 2&14&24): Fixing the generator set SK ,
compute RV T (SK ,M);

• Step 2 (lines 5-13): For each cell CM in
RV T (SK ,M), update its generator to a place Φ(v′)
to reduce the weighted tessellation energy (Eq.(9))
which jointly improves content-sensitive uniform
tessellation and cell boundary feature alignment,
while ensuring the tessellation energy (Eq.(6)) is not
increased.

• Step 3 (lines 15-23): Perform the splitting and merg-
ing operations to move the solution out of local
minimums, while ensuring the tessellation energy
(Eq.(6)) is not increased.

• Step 4 (line 4): If RV T (SK ,M) satisfies the stopping
condition, then stop; otherwise, return to Step 1.

The implementation of Steps 2 and 3 is presented in
Sections 4.2.1 and 4.2.2 respectively. The convergence of
Algorithm 2 is proved in Section 4.3.

4.2.1 Feature-aware update of generators

Our objective is to move each generator to a place Φ(v′)
whose inverse mapping v′ ∈ Υ has low boundary possibil-
ity pbdry(v

′), and meanwhile the RCVT tessellation energy
(Eq.(6)) is decreased. To do so, we minimize the weighted
tessellation energy (Eq.(9)) for each generator si, i.e., setting

∂Eα
(
{(sj , Cj)}Kj=1

)

∂si
= 0 (13)

which implies that the optimal position s̃i for si is

s̃i =

∫
x∈Ci

(1− αpbdry(x))xdx∫
x∈Ci

(1− αpbdry(x))dx
. (14)

However, moving si to s̃i may increase the tessellation
energy (Eq.(6)). We make use of the following proposition.

Algorithm 2 FCSS generation

Input: A video Υ of N voxels, the desired number of
supervoxels K , numrandom the number of repeated
random sampling of generators in each iteration, and
the maximum number of iterations itermax.

Output: K content-sensitive supervoxels.
1: Initialize the generators SK = {si}Ki=1 (Algorithm 1).
2: Compute RV T (SK ,M).
3: Set iter = 0.
4: while iter < itermax do
5: for each cell CM(si) in RV T do
6: Compute the candidate position s̃i that minimizes

the weighted tessellation energy (Eq.(14)).
7: Compute the mass centroid mi of CM(si).
8: if ‖s̃i −mi‖ ≤ ‖si −mi‖ then
9: Update si by s̃i.

10: else
11: Update si by ŝi, which is the intersection point

between the sphere centered at mi of radius ‖si−
mi‖ and the line segment connecting mi and s̃i.

12: end if
13: end for
14: Compute RV T (SK ,M).
15: Set n = 0.
16: while n < numrandom do
17: Randomly pick three generators sm, si, sj in Sk

(Algorithm 4).
18: Check the splitting-merging feasibility of

(sm, si, sj) (Algorithm 3) and put the return
values in (Flag, s′p, s

′
q, s

′
k).

19: if Flag == TRUE then
20: Update SK by splitting sm into (s′p, s

′
q) and merg-

ing (si, sj) into s′k.
21: end if
22: n = n+ 1;
23: end while
24: Locally update RV T (SK ,M).
25: iter = iter + 1;
26: end while
27: Compute Φ−1(RV T (SK ,M)) to obtain K supervoxels.

Proposition 1. Given an RV T (SK ,M), we fix the tessellation
{CM(sj)}Kj=1 and move a generator si ∈ SK to a new position
s′i. Let Cj = CM(sj). The tessellation energy (ref. Eq.(6))

E({(sj , Cj)}Kj=1) =
K∑

j=1

E(sj , Cj) =
K∑

j=1

∫

x∈Cj

‖x− sj‖22dx

(15)
satisfies

E(s′i, Ci) ≤ E(si, Ci), (16)

if and only if

‖s′i −mi‖ ≤ ‖si −mi‖ (17)

where mi is the mass centroid of the cell Ci (ref. Eq.(4)).

Proof. Given inequality (17), we have

E(si, Ci) = E(mi, Ci) +
∫
x∈Ci

‖si −mi‖22dx ≥
E(mi, Ci) +

∫
x∈Ci

‖s′i −mi‖22dx = E(s′i, Ci)
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Algorithm 3 Check splitting-merging feasibility

Input: Three generators (sm, si, sj) in SK and an
RV T (SK ,M).

Output: A Boolean variable Flag indicating the feasibility
and three new generators (s′p, s

′
q, s

′
k).

1: Compute the mass centroids s′m, s′i and s′j of CM(sm),
CM(si) and CM(sj), respectively.

2: Compute the diameter dm of the cell CM(sm) and the
points pm1 and pm2 (see Definition 1).

3: Compute two new cells C ′(pm1) and C ′(pm2), which are
the Voronoi cells of pm1 and pm2 in the domain CM(sm).

4: Compute the mass centroids s′k, s′p and s′q of CM(si) ∪
CM(sj), C

′(pm1) and C ′(pm2), respectively.
5: Compute τm,i,j in Eq. (20).
6: if ‖s′p − s′m‖2 > τm,i,j and ‖s′q − s′m‖2 > τm,i,j then
7: return TRUE and (s′p, s

′
q, s

′
k).

8: else
9: return FALSE and (NULL,NULL,NULL).

10: end if

On the other hand, if E(si, Ci) ≥ E(s′i, Ci), then we have∫
x∈Ci

‖mi− si‖22dx ≥
∫
x∈Ci

‖mi− s′i‖22dx, indicating ‖mi−
si‖ ≥ ‖mi − s′i‖. That completes the proof.

In Algorithm 2 (lines 8-9), we check the condition in
Eq.(17) using the optimal position s̃i. If it is satisfied, we
update si by s̃i. Otherwise, we set si by moving along
the direction from mi to s̃i (the average boundary distance
dbdry is expected to be increased along this direction) and
locating it at the boundary of the sphere centered at mi of
radius ‖si −mi‖ (moving si to this place does not increase
the tessellation energy). In both cases, we try to reduce the
weighted tessellation energy, while ensuring the tessellation
energy is not increased.

4.2.2 Splitting and merging operations

In Algorithm 2 (lines 16-23), we perform splitting and merg-
ing operations for jumping out of a small local search area
in M while the tessellation energy still does not increase.
We find that these splitting and merging operations help
Algorithm 2 obtain high-quality supervoxels in very few
iterations.

A splitting operation ∧ : sm → (s′p, s
′
q) splits an RVT cell

CM(sm) into two new cells C(s′p) and C(s′q). Conversely,
a merging operation ∨ : (si, sj) → s′k merges two RVT
cells CM(si) and CM(sj) into a new cell C(s′k). Splitting
reduces the tessellation energy and merging increases it. The
number of generators does not change by applying a pair of
splitting and merging operations (∧,∨) : (sm, (si, sj)) →
((s′p, s

′
q), s

′
k). Our goal is to design a pair (∧,∨) that does

not increase the tessellation energy. We make use of the
following definition and proposition.

Definition 1. The diameter di of a cell CM(si), si ∈ SK , is the
maximum Euclidean distance between pairs of points in the cell,
i.e.,

di = max
∀x,y∈CM(si)

‖x− y‖2 (18)

Denote by pi1 and pi2 the two points in CM(si) satisfying ‖pi1−
pi2‖ = di.

pm1
pm2

dm

s'm s'q

s'p
C'1 C'2

Fig. 4. The diameter dm = ‖pm1 − pm2‖2 of an RVT cell CM(sm)
(shaded area) is the maximum Euclidean distance between pairs of
points in this cell. The splitting operation ∧ : sm → (s′p, s

′
q) splits an

RVT cell CM(sm) (shaded area) into two arbitrary new cells C′
1

(orange
shaded area) and C′

2
(green shaded area), satisfying pm1 ∈ C′

1
and

pm2 ∈ C′
2
, C′

1
∩ C′

2
= ∅ and C′

1
∪ C′

2
= CM(sm). The mass centroids

of cells CM(sm), C′
1

and C′
2

are s′m, s′p, s′q , respectively. Lemma 2
proves that s′m lies on the line segment connecting s′p and s′q .

Proposition 2. Let sm, si, sj be three generators in an
RV T (SK ,M). Let (mm,mi,mj) and (s′m, s′i, s

′
j) be the

masses and mass centroids of the cells CM(sm), CM(si),
CM(sj), respectively. Consider a splitting of CM(sm) into two
arbitrary new cells C ′

1 and C ′
2, which satisfies pm1 ∈ C ′

1,
pm2 ∈ C ′

2, C ′
1 ∩ C ′

2 = ∅ and C ′
1 ∪ C ′

2 = CM(sm). Let s′p, s
′
q

and s′k be the mass centroids of C ′
1, C ′

2 and CM(si) ∪ CM(sj),
respectively. If

‖s′p − s′m‖2 > τm,i,j and ‖s′q − s′m‖2 > τm,i,j , (19)

where

τm,i,j =

√
mimj

mm(mi +mj)
‖s′i − s′j‖2 (20)

then the pair of operations (∧,∨) : (sm, (si, sj)) →
((s′p, s

′
q), s

′
k) do not increase the tessellation energy E in Eq.(6).

Proof. See Appendix.

To ensure the pair of operations (∧,∨) do not increase
the tessellation energy E , in Algorithm 2 (lines 16-21), we
check the splitting-merging feasibility condition (Eq.(19))
and Algorithm 3 summarizes the pseudo-code. Note that
computing the diameter of an arbitrary region (line 2 of Al-
gorithm 3) is time-consuming. In practice, we compute the
axis-aligned bounding box B of CM(sm). B is determined
by two supporting points p1 and p2 in CM(sm) and we use
them as fast approximations to pm1 and pm2.

Lemma 2. Let s′m, s′p and s′q be the mass centroids as specified
in Proposition 2. Then s′m lies on the line segment connecting s′p
and s′q .

Proof. Refer to Figure 4. Let mm, m1 and m2 be the masses
of CM(sm), C ′

1 and C ′
2. Since C ′

1 ∩ C ′
2 = ∅ and C ′

1 ∪ C ′
2 =

CM(sm), we have

s′m =

∫
x∈CM (sm) x dx

mm
=

∫
x∈C′

1
x dx+

∫
x∈C′

2
x dx

m1+m2
=

m1s
′
p+m2s

′
q

m1+m2
= m1

m1+m2
s′p +

m2

m1+m2
s′q

(21)

That completes the proof.

Note that for a region Ω ⊂ Υ with a fixed volume, the
higher variation of colors in Ω, the larger the volume of
Φ(Ω) ⊂ M and vice versa. Lemma 2 and Proposition 2
imply the following important geometric observation:
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• to pass the feasibility checking in inequalities (19),
we need to pick up three generators (sm, si, sj) that
have large ‖s′p − s′m‖2 and ‖s′q − s′m‖2, and small
τm,i,j ;

• a large volume of a cell CM(sm) will result in
large mm, ‖s′p − s′m‖2 and ‖s′q − s′m‖2, and small
τm,i,j , implying that the larger the volume of a cell
CM(sm), the more likely it is split, thus producing
more generators in content-rich regions.

• small volumes of cells CM(si) and CM(sj) will
result in small mi, mj and τm,i,j in Eq.(20), implying
that the smaller the volumes of cells CM(si) and
CM(sj), the more likely they are merged, thus re-
ducing the number of generators in content-sparse
regions.

Therefore, to increase the feasibility of the splitting-merging
operation at line 18 of Algorithm 2, we estimate content-
dense and content-sparse regions in RV T (SK ,M) and
collect their corresponding generators into subsets Sdense

and Ssparse in Algorithm 4. If Sdense and Ssparse contain
sufficient generators, we randomly pick two neighboring
generators in Ssparse to be merged and pick one generator
in Sdense to be split; otherwise, we randomly pick three
generators in SK . To estimate the content density of cells,
we compute the expected cell volume as the average of K
cells over the total volume of video manifold M:

E(V (CM)) =

∑
v∈Υ V (Φ(⊡v))

K
(22)

For each cell CM in RV T (SK ,M), we compare its volume
V (CM) with E(V (CM)): (1) if V (CM) > 4E(V (CM)), we
put the generator of this cell into Sdense, and (2) if V (CM) <
E(V (CM))/4, we put the generator of this cell into Ssparse.
Algorithm 4 summarizes the pseudo-code.

4.3 Proof of (O(1), O(1))-approximation

In all our experiments, we set itermax = 20 and
numrandom = 20 in Algorithm 2. We show in Section 6
that our algorithm can obtain high-quality supervoxels in
20 iterations. We have the following theoretical results.

Theorem 2. By selecting (1 + ε)K generators, 0 < ε < 1, Al-

gorithm 2 is a bi-criteria
(
1 + ε, 8

(
1 + 1+

√
5

2ε

))
-approximation

algorithm in expectation.

Proof. Let Sopt
K = {sopti }Ki=1 and {Copt

i }Ki=1 be the (un-
known) optimal generator set and tessellation on M,
which minimize the energy E in Eq.(6). Let EOPT =
E({(sopti , Copt

i )}Ki=1). By Lemma 1, for any K ′ = (1 + ε)K
generators selected by Algorithm 1, the expected tessellation
energy E satisfies

E(E({(si, Ci)}K
′

i=1))

EOPT

≤ 8

(
1 +

1 +
√
5

2ε

)
(23)

In feature-aware Lloyd refinement, we alternate the
two steps — i.e., the feature-aware update of generators
and splitting-and-merging operations — until the termi-
nation condition is reached. Both steps are designed for
not increasing the energy E . Therefore for any tessellation

Algorithm 4 Randomly pick three generators

Input: An RV T (SK ,M) and an expected cell volume
E(V (CM)) (Eq.(22)).

Output: Three generators (sm, si, sj) in SK .
1: Set Sdense = ∅ and Ssparse = ∅.
2: for each cell CM(si) in RV T (SK ,M) do
3: Compute the volume V (CM(si)).
4: if V (CM(si)) > 4E(V (CM)) then
5: Sdense = Sdense ∪ {si}.
6: else if V (CM(si)) < E(V (CM))/4 then
7: Ssparse = Ssparse ∪ {si}.
8: end if
9: end for

10: if |Sdense| > 2 then
11: Randomly pick a generator sm in Sdense.
12: else
13: Randomly pick a generator sm in SK .
14: end if
15: Randomly pick a generator si in Ssparse.
16: Collect all neighboring pairs of si using 26-connectivity

from Ssparse and put them into the set N .
17: if |N | > 2 then
18: Pick a pair (sj , si) in N such that CM(sj) has the

closest mean color to CM(si).
19: else
20: Randomly pick two generators si and sj in SK .
21: end if
22: return (sm, si, sj).

RCV T (SK′ ,M) output from Algorithm 2, its expected
tessellation energy E satisfies

E(E(RCV T (SK′ ,M))) ≤ 8

(
1 +

1 +
√
5

2ε

)
EOPT

That completes the proof.

Theorem 3. By selecting (1 + ε)K generators, 0 < ε < 1,
the time and space complexities of Algorithm 2 are O(NK) and
O(N +K), respectively.

Proof. In Algorithm 2 (line 1), the initialization step (by
Algorithm 1) takes O(NK) time and O(N + K) space. In
the iteration (lines 4-26),

• by using a local search strategy in [23], computing or
locally updating RVT takes O(N) time and space;

• feature-aware update of generators takes O(N) time;
• randomly picking three generators by Algorithm 4

takes O(N) time and space;
• both checking the splitting-merging feasibility and

applying the splitting-merging operations take O(1)
time and space.

As a summary, the time and space complexities of Algo-
rithm 2 are O(NK+ itermax(N +numrandN)) and O(N +
K), respectively. Since we used fixed values itermax = 20
and numrandom = 20, the time complexity reduces to
O(NK). That completes the proof.
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5 STREAMING FCSS FOR LONG VIDEOS

Using a simple adaption of the streaming K-means algo-
rithm [1], Algorithm 2 is readily extended to a streaming
version for processing long videos that cannot be loaded
into main memory at once. The streaming FCSS algorithm
represents the video manifold M by an ordered, discretized

sequence of weighted points M̃ = {(xi, yi, ti, wi)}Ni=1,
where (xi, yi, ti) is the position of voxel vi in Υ and wi

is the volume V (Φ(⊡v)). Pseudo-code is summarized in
Algorithm 5.

Algorithm 5 Streaming FCSS

Input: A video Υ of N voxels and the desired number of
supervoxels K .

Output: K content-sensitive supervoxels.

1: Compute the discretized manifold representation M̃ =
{(xi, yi, ti, wi)}Ni=1.

2: Initialize S = M̃.
3: while S cannot be loaded into main memory do

4: Set S̃ = ∅.
5: Divide S into l disjoint batches χ1, · · · , χl, such that

each batch can be loaded into main memory.
6: for each batch χi do
7: Apply Algorithm 2 to compute (1+ε)K generators

SK(χi).
8: Compute RV T (SK(χi), χi).
9: for each generator gj in SK(χi) do

10: Compute the total weight of all points in the
cell corresponding to gj in RV T (SK(χi), χi) and
assign it to gj as the weight wj ;

11: end for
12: S̃ = S̃ ∪ (gj , wj), ∀gj ∈ SK(χi).
13: end for
14: S = S̃.
15: end while
16: Apply Algorithm 2 to S for obtaining K supervoxels.

The simple one-pass streaming scheme analyzed in

[1] partitions the points M̃ sequentially into batches
{χ1, · · · , χl}, such that each batch χi of points can be loaded
into main memory. For each χi, we preform Algorithm 2 to
obtain (1+ε)K generators and the weight for each generator
can be determined by the corresponding cell in the RVT ap-
plied on χi. Finally, we consolidate all weighted generators
produced from {χ1, · · · , χl} into one single weight point set
S. If S is still too large to fit in memory, the above process
repeats. When S fits in memory, we apply Algorithm 2
again on S to obtain K supervoxels. Assume that the size
of main memory is Ξ (in terms of the point number). Since
each batch produces (1 + ε)K generators, to ensure that
the process only needs to be performed once, the number
of batches l should satisfy both of the following: N

l
≤ Ξ

(where each batch fits in memory) and (1 + ε)K · l ≤ Ξ
(where S fits in memory), i.e. N

Ξ ≤ l ≤ Ξ
(1+ε)K . Here N

is the number of weighted points in M̃ (i.e., the number
of voxels in the video). Ignoring rounding, such l exists,

if N
Ξ ≤ Ξ

(1+ε)K , i.e., N ≤ Ξ2

(1+ε)K . This shows although our

algorithm may repeatedly apply lines 4-14 to reduce the size
of S to handle arbitrarily large videos, in practice, doing so

once already allows processing very large videos, with up to
Ξ2

(1+ε)K voxels, significantly larger than Ξ voxels that can be

handled by non-streaming FCSS. Note that in any case, the
whole video only needs to be processed once, and remaining
steps involve much smaller set S. In our experiments, we set
ε = 0.2.

Theorem 4. If (1 + ε)K generators, 0 < ε < 1, are selected by
Algorithm 2, Algorithm 5 is (O(1), O(1))-approximation.

Proof. By Theorem 2, selecting (1+ ε)K generators, 0 < ε <
1, makes Algorithm 2 an expected bi-criteria (O(1), O(1))-
approximation algorithm. Theorem 3.1 in [1] states that if
Algorithm 2 is an (a, b)-approximation, the two-level Algo-
rithm 5 is an (a, 2b+4b(b+1))-approximation. Accordingly,
Algorithm 5 is (O(1), O(1))-approximation. That completes
the proof.

6 EXPERIMENTS

We implemented FCSS (Algorithm 2) and streaming FCSS
(Algorithm 5) in C++ and source code is publicly available1.
We compare our method (FCSS and streaming FCSS) with
our previous work (CSS and streamCSS) [43] and eight
methods: TS-PPM [16] and seven representative methods
selected in [41], including NCut [34], [11], [10], SWA [32],
[33], [7], MeanShift [28], GB [9], GBH [13], streamGBH [42]
and TSP [5]. All the evaluations are tested on a PC with
an Intel Core E5-2683V3 CPU and 256GB RAM running
Linux. Since FCSS, streaming FCSS, CSS and streamCSS
adopt a random initialization, we report the average results
of 20 initializations. The performances are evaluated on four
video datasets, i.e., SegTrack v2 [20], BuffaloXiph [6], BVDS
[37], [12] and CamVid [3], which have ground-truth labels
drawn by human annotators.

We adopt the following quality metrics that are com-
monly used for supervoxel evaluation. Some visual compar-
isons are illustrated in Figure 1, appendix and demo video
in supplemental material.

Adherence to object boundaries. As perceptually mean-
ingful atomic regions in videos, supervoxels should well
preserve the object boundaries of ground-truth segmenta-
tion. 3D under-segmentation error (UE3D), 3D segmentation
accuracy (SA3D) and boundary recall distance (BRD) are
standard metrics in this aspect [5], [18], [41]. UE3D and
SA3D are complementary to each other and both measure
the tightness of supervoxels that overlap with ground-truth
segmentation. Denote a ground-truth segmentation of a
video as G̃ = {g̃1, g̃2, . . . , g̃KG

}, and a supervoxel segmen-
tation as S̃ = {s̃1, s̃2, . . . , s̃KS

}, where KG and KS are the
numbers of supervoxels for the ground-truth segmentation
G̃ and segmentation S̃. The UE3D and SA3D metrics are
defined as

UE3D =
1

KG

∑

g̃i∈G̃

∑
{s̃j∈S̃:V (s̃j∩g̃i)>0} V (s̃j)− V (g̃i)

V (g̃i)

(24)

SA3D =
1

KG

∑

g̃i∈G̃

∑
{s̃j∈S̃:V (s̃j∩g̃i)≥0.5V (s̃j)} V (s̃j ∩ g̃i)

V (g̃i)

(25)

1. https://cg.cs.tsinghua.edu.cn/people/∼Yongjin/Yongjin.htm
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(f) Compactness
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(g) Runtime with respect to K
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(h) Peak memory without NCut

Fig. 5. Evaluation of ten representative methods and our methods (FCSS and streaming FCSS) on the SegTrack v2 dataset. Superpixels in all
methods are unrelabeled. Due to its high computational cost, NCut is run at a fixed frame resolution of 240×160 downsampled from original videos
and is not present in (h). Only FCSS achieves good performance on all seven metrics of UE3D, SA3D, BRD, EV, compactness, running time and
peak memory. In particular, FCSS is 5× to 10× faster than TSP. The peak memory of FCSS is 22× smaller than TSP and 7× to 15× smaller than
TS-PPM. Similar performances are observed on the other three video datasets (BuffaloXiph, BVDS and CamVid), which are reported in Appendix.

where V (x) is the voxel number in a segment x. Both Eqs.
(24) and (25) take the average score from all ground-truth
segments G̃. A small UE3D value means that very few
voxels are leaked from ground-truth segments. The range
of SA3D values is [0, 1], where a larger value means a
better over-segmentation result. BRD measures how well
the ground-truth boundaries are successfully retrieved by
the supervoxel boundaries. Denote the t-th frame’s ground-
truth segmentation as G̃t, and the t-th frame’s supervoxel
segmentation as S̃t. The BRD metric is defined as

BRD =
1

∑
t

∣∣∣B(G̃t)
∣∣∣

∑

t

∑

p∈B(G̃t)

min
q∈B(S̃t)

d(p, q) (26)

where B(·) returns the 2D boundaries in a frame, d(·, ·)
measures Euclidean distance between two points, and |·|
returns the number of pixels in a 2D boundary. As shown
in Figures 5a-5c, TS-PPM and FCSS have good performance
on UE3D, SA3D and BRD, demonstrating their ability to
adhere to object boundaries. GBH and SWA are only good
at BRD and SA3D, but not good at UE3D. CSS is only good
at UE3D and SA3D, but not good at BRD. TSP and NCut
are only good at UE3D, but not good at SA3D and BRD.
GB and MeanShift are not good for all three metrics UE3D,
SA3D and BRD. All three streaming methods have similar
performance on SA3D, while streamFCSS and streamCSS
are better in UE3D and streamGBH is better in BRD.

Explained variation (EV). EV is a standard metric that
measures the color variations in supervoxels [26], [41], de-
fined as

EV =

∑
s̃i∈S̃(µ(s̃i)− µ) |s̃i|∑

j(xj − µ)
(27)

where µ is the average color of all voxels in a video, µ(s̃i)
is the average color of the supervoxel s̃i, and xj is the
color of the voxel j. The score range is in [0, 1], where a

larger value means a better representation (i.e., the color
in each supervoxel is closer to homogeneity). As shown in
Figure 5e, SWA has the largest EV. GBH, FCSS, TS-PPM are
better than CSS and TSP, which are in turn better than other
methods. For the three streaming methods, streamFCSS and
streamCSS have similar performance and are better than
streamGBH.

Compactness. It is a measure of shape regularity [44],
defined as

C(S̃) =
∑

s̃i∈S̃

Q(s̃i)
|s̃i|
N

,where Q(s̃i) =
6π

1
2V (s̃i)

A(s̃i)
3
2

, (28)

where S̃ is a given supervoxel over-segmentation as used in
Eqs.(24) and (25), A(s̃i) and V (s̃i) are bounding surface area
and volume of supervoxel s̃i, respectively. In many real-
world video applications, their solutions rely on minimizing
an energy function defined on a spatiotemporal supervoxel
graph in a video clip. The shape regularity of supervoxels
has a direct influence on the complexity of this spatiotempo-
ral supervoxel graph, and thus, affects the application per-
formance. It was observed that compact supervoxels usually
have better segmentation performance than non-compact
ones. The larger the compactness value is, the more regular
the shape of supervoxels is. As shown in Figure 5f, CSS and
FCSS have the largest compactness values. StreamFCSS and
streamCSS have similar performance and are better than
streamGBH.

Computational cost. We record runtime and peak mem-
ory of all twelve methods. All methods are implemented
in C or C++ except NCut (Matlab running with 8 threads)
and TSP (Matlab with MEX). As shown in Figure 5g, GB,
TS-PPM, CSS, FCSS and MeanShift are five fastest methods.
As shown in Figures 5h, streamFCSS, streamCSS, FCSS and
CSS are four methods that use smallest peak memory.
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Fig. 6. For easy illustration, we present a superpixel example on a
2D image. Assume 8-connectivity. For an arbitrary image with arbitrary
ground-truth segmentation, four unrelabeled superpixels are sufficient to
achieve a perfect performance on the BRD metric, i.e., BRD = 0. These
four superpixels are characterized by the parity of the coordinates (x, y)
of image pixels; i.e., the green, yellow, red and blue superpixels consist
of pixels with coordinates (even, even), (even, odd), (odd, even) and
(odd, odd), respectively.

Three more metrics – mean size variation (MSV), tem-
poral extent (TEX) and label consistency (LC) – are used
in [41]. MSV and TEX measure the size variation and aver-
age temporal extent of all supervoxels in a video. Since our
work advocates to adapt the size of supervoxels according
to video content density, these two metrics are no longer
suitable. LC is evaluated using ground-truth optical flow.
As aforementioned, optical flow is only a preprocessing tool
to video applications and may introduce extra error into
supervoxel evaluation. In Section 7, we directly evaluate
these supervoxel methods in two video applications.

Comparison between unrelabeled and relabeled super-
voxels. In the original implementation of the seven methods
in [41], a supervoxel label may be assigned to multiple dis-
connected regions. We call such supervoxels unrelabeled. Un-
relabeled supervoxels may lead to unexpected performance
on previous metrics; see Figure 6 for an (extreme) example.
Then we further evaluate different supervoxel methods by
relabeling supervoxels such that each supervoxel is a simply
connected region and each voxel is assigned to exactly one
supervoxel: we call such supervoxels relabeled. Relabeling
supervoxels only affect the number of supervoxels. It does
not affect the visual appearance and functionality of su-
pervoxels: if one object/region can be represented by the
union of a subset of unrelabeled supervoxels, it can also
be represented by a subset of relabeled supervoxels. After
supervoxel relabeling, the isolated fragments with less than
τ voxels are merged with a randomly chosen neighboring
supervoxel. The performance of twelve supervoxel methods
after relabeling with τ = 5, 10, 50, 100 are summarized
in Figure A5 in Appendix and the results with τ = 50
are shown in Figure 7. The results show that only FCSS,
streamFCSS, CSS, streamCSS, TSP and TS-PPM are insen-
sitive to relabeling. Meanwhile, only FCSS achieves good
performance on all five metrics of UE3D, SA3D, BRD, EV
and compactness.

Comparison with TSP and TS-PPM. FCSS has similar
UE3D, SA3D and EV performance with TSP and TS-PPM.
FCSS has similar BRD performance with TS-PPM and is
better than TSP. FCSS is much better in compactness than
both TSP and TS-PPM. FCSS and TS-PPM are 5× to 10×
faster than TSP. The peak memory of FCSS is 22× smaller
than TSP and 7× to 15× smaller than TS-PPM. Furthermore,
in Section 7, we present two video applications and show
that FCSS achieves better results than TSP and TS-PPM.

Comparison with CSS. Both FCSS/streamFCSS and
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Fig. 7. Evaluation of relabeled supervoxels on the SegTrack v2 dataset.
Only FCSS achieves good performance on all five metrics of UE3D,
SA3D, BRD, EV and compactness.

CSS/streamCSS use RCVT on video manifold M. Thanks
to the feature-aware strategy by forcing cell centroids away
from video local boundaries, the FCSS method better fine
tunes the cell boundaries to align with the video local
boundaries than CSS. As shown in Figure 5d and Figure
A1 in Appendix, FCSS outperforms CSS on the metrics of
BRD, SA3D and EV, and has similar performance with CSS
on UE3D. Meanwhile, FCSS is better than CSS in two novel
video applications presented in Section 7.

7 APPLICATIONS

We evaluate the performance of various supervoxels in
the following two video applications. To faithfully compare
different supervoxel methods, we use their original settings,
i.e., supervoxels are unrelabeled.

Foreground propagation in video. Given the first frame
with manual annotation for the foreground object, a novel
approach is proposed in [14] to propagate the foreground
region through time, with the aid of supervoxels to guide
its estimates towards long-range coherent regions. Youtube-
Objects dataset [29] (126 videos with 10 object classes) with
foreground ground-truth, is used to perform a quantita-
tive assessment. Seven representative methods (GB, GBH,
streamGBH, MeanShift, TSP, TS-PPM and CSS) and our
FCSS method are compared. NCut is not compared due
to its high computational cost. SWA is not compared since
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Fig. 9. Foreground propagation results of seven supervoxel methods on one example in Youtube-objects dataset [29]. Three representative frames
are selected. The foreground masks are shown in green. The incorrectly labeled areas are circled in red. The average F measure for each example
video is shown in the bracket below three frames. The value of the F measure ranges in [0, 1], and larger values mean better results.
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Fig. 8. The average F measures of different supervoxel results on
Youtube-Objects Dataset. The results are plotted per object class and
each object class contains several video sequences. Larger F measure
values mean better foreground propagation results. The results show
that FCSS, TS-PPM and CSS are the top three methods overall in the
whole dataset. FCSS has better results than TS-PPM in six classes (car,
horse, motorbike, cow, boat, dog) and has better results than CSS in
nine classes (except for the train class).

there are many long videos in this dataset and SWA requires
huge memory. The average F measures of 10 classes are
summarized in Figure 8. F measure values range in [0, 1]
and larger values mean better results. These results show
that FCSS, TS-PPM and CSS are top three methods in the
overall F-measure (i.e., including all object classes). FCSS
has better results than TS-PPM in six classes and has the
same performance in the overall F-measure. FCSS achieves
better results than CSS in nine classes, with an overall better
F-measure. Some qualitative results are illustrated in Figure
9.

Optimal video closure by supervoxel grouping. Levin-
shtein et al. [17] propose a novel foreground object segmen-
tation method which does not need manual annotation on
the frame. The idea is to detect spatiotemporal closure for
separating an object from background. A novel framework
for efficiently searching spatiotemporal closure is proposed
by finding subsets of supervoxels such that the contour of
union of these supervoxels has strong boundary support
in the video. The dataset of Stein et al. [35] in which each
sequence has a ground truth segmentation mask, is used
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Fig. 10. Average F measures in the spatiotemporal closure application.
The results are averaged on Stein et al. [35] dataset. Our FCSS method
achieves the best average F measure among all ten methods.

to perform a quantitative assessment. Nine representative
methods (GB, GBH, streamGBH, NCut, MeanShift, SWA,
TSP, TS-PPM and CSS) and our FCSS method are compared.
The average F measures across all sequences are summa-
rized in Figure 10. Some qualitative results are illustrated in
Figure 11. These results show that FCSS results achieve the
best spatiotemporal closure performance.

8 CONCLUSION

In this paper, we introduce feature-aware content-sensitive
supervoxels (FCSS) that have three characteristics: (1) they
are regularly-shaped 3D primitive volumes, (2) they are well
aligned with local object/region boundaries in video, and
(3) they are typically smaller and shorter in content-dense
regions (i.e., with high variation of appearance and/or
motion), and larger and longer in content-sparse regions. We
propose a simple yet efficient algorithm to compute FCSSs
by computing a uniform tessellation on the video manifold
M with an elaborate average boundary distance, such that
the cell boundaries of obtained uniform tessellation well
align with local video boundaries. Our algorithm is easily
extended to a stream version for handling long videos.
In addition to its easy implementation, our algorithm is
theoretically an (O(1), O(1))-approximation. Experimental
results show that FCSS is the only method that can achieve
good performance in all the metrics (i.e., UE3D, SA3D,
BRD EV, compactness, running time and peak memory) and
is insensitive to supervoxel relabeling. Two video applica-
tions are presented, demonstrating that the proposed FCSS
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Video Frame GB GBH MeanShift TSP TS-PPM                     CSS FCSS

0.2659 0.6891 0.4613 0.7399 0.7026 0.7405                    0.7646           

0.7031 0.7112 0.5717 0.7189 0.8059 0.7841                    0.8163           

0.8295 0.7588 0.8475 0.8458 0.8367 0.8906                     0.9609          

Fig. 11. Spatiotemporal closure results of seven supervoxel methods on three examples in Stein et al. dataset [35]. The optimal closure contours
are shown in red, and the boundaries of supervoxels are shown in green. One representative frame is illustrated for each video. The F measure
value for each spatiotemporal closure is shown below each frame; the range of the F measure values is [0, 1], and larger values mean better results.

method can simultaneously achieve the best performance
with respect to various metrics.
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