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Abstract

The organizing principle of human motor cortex does not follow an anatomical body map, but rather a distributed

representational structure in which motor primitives are combined to produce motor outputs. Electrophysiological

recordings in primates and human imaging data suggest that M1 encodes kinematic features of movements, such as joint

position and velocity. However, M1 exhibits well-documented sensory responses to cutaneous and proprioceptive stimuli,

raising questions regarding the origins of kinematic motor representations: are they relevant in top-down motor control, or

are they an epiphenomenon of bottom-up sensory feedback during movement? Here we provide evidence for spatially and

temporally distinct encoding of kinematic and muscle information in human M1 during the production of a wide variety of

naturalistic hand movements. Using a powerful combination of high-field functional magnetic resonance imaging and

magnetoencephalography, a spatial and temporal multivariate representational similarity analysis revealed encoding of

kinematic information in more caudal regions of M1, over 200 ms before movement onset. In contrast, patterns of muscle

activity were encoded in more rostral motor regions much later after movements began. We provide compelling evidence

that top-down control of dexterous movement engages kinematic representations in caudal regions of M1 prior to

movement production.
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Introduction

Mounting evidence supports the encoding of movements in M1

based on kinematics and synergistic muscle activation, rather

than the anatomy of the peripheral musculature (Overduin

et al. 2012, 2015). Measurements from individual M1 neurons in

non-human primates reveal the encoding of multiple kinematic

features, such as speed, direction, and position in the same cells

in a time-varying manner (Fu et al. 1995). The same neuronal

populations have been shown to encode instantaneous features

duringmotor execution, aswell as the target kinematic end point

and upcoming movement trajectory (Churchland and Shenoy

2007; Hatsopoulos et al. 2007; Aflalo and Graziano 2006; Saleh

et al. 2012).

In the human brain, evidence of neuronal tuning to multi-

ple kinematic features has been reported during the produc-

tion of intended movements from M1 microelectrode recordings
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made in tetraplegic patients (Truccolo et al. 2008). The encod-

ing of kinematic features of hand movements in M1 has also

been supported by human imaging studies (Dayan et al. 2007;

Kadmon Harpaz et al. 2014, 2019). Patterns of functional mag-

netic resonance imaging (fMRI) activity in sensorimotor cortex

have been shown to mirror the relative differences in the final

joint configuration across a range of prehensile movements (Leo

et al. 2016). Similarly, the representational structure of fMRI

activity in M1 during finger flexion is consistent with patterns

of finger couse during naturalistic hand movements (Ejaz et al.

2015).

However, the functional relevance of kinematic encoding in

M1 to human motor control remains a fundamental unknown.

As well as their role in motor output, M1 neurons exhibit rapid

and integrative responses to somatosensory signals (Hatsopou-

los and Suminski 2011; Pruszynski et al. 2011). Kinematic infor-

mation is inextricably linked to proprioceptive and tactile sig-

nals: specific patterns of movement are associated with specific

patterns of sensory feedback. Are kinematic motor representa-

tions reported in human M1 functionally relevant in the process

of top-down motor control, or an epiphenomenon generated by

bottom-up sensory feedback during human movement produc-

tion?

We addressed this question using a spatiotemporalmultivari-

ate representational similarity analysis (RSA) to ask where in the

human brain and when during movement production are the

kinematics of human hand movements encoded? This approach

combined high-field fMRI and magnetoencephalography (MEG)

data with kinematic data glove recordings made during a broad

repertoire of prehensile and nonprehensile hand movements.

Probing recordings of human brain activity with high spatial

resolution from fMRI and high temporal resolution from MEG

offered a powerful means to identify the location and timing of

kinematic information encoding. Together this information was

used to dissociate the relevance of kinematic information in M1

to top-down or bottom-up processes in motor control, as well as

the relevance of alternative muscle-based or ethological action

based models.

Materials and Methods

Methods Summary

A total of 10 right-handed participants performed a range of 26

prehensile and nonprehensile handmovements (Elliott and Con-

nolly 1984; Jones and Lederman 2006) (Table 1, Supplementary

Video S1) in two fMRI sessions (1.5 h total fMRI data per partic-

ipant), two MEG sessions (1.5 h total MEG data per participant),

and a behavioral testing session (35 min kinematic data record-

ing per participant). In each session, participants wore a right-

handed 14-channel fiber optic data glove; kinematic data were

recorded throughout all sessions. Electromyography (EMG) data

were acquired during MEG sessions to validate the movement

onset measures calculated from the data glove.

To probe the spatial and temporal correspondence between

patterns of brain activity and hand kinematics, data glove record-

ings were used to construct a kinematic model quantifying the

similarity of the kinematic signals measured during each of the

26 movements (Fig. 1, top row, Supplementary Figure S2). The

kinematic model quantified the distance between the displace-

ment measures for each movement pair across the 14 channels

(Pearson’s correlation), subject to a Fisher Z-transformation and

averaged across the 14 recording channels. The resulting kine-

Table 1. Outline of the 26 hand movements used in the motor task.
Instructional videos presented in Supplementary Video S1

Hand movements

Abduct fingers Pinch: thumb and little finger

Cylinder grip Pinch: thumb and index finger

Hook grip Pinch: thumb and middle finger

Spherical grip Pinch: thumb and ring finger

Index finger flexion (45◦) Ring finger flexion (45◦)

Index finger flexion (90◦) Ring finger flexion (90◦)

Index & middle finger flexion

(90◦)

Ring and little finger flexion (90◦)

Index finger and thumb roll Rock fingers

Little finger flexion (45◦) Squeeze: thumb and fingers

Little finger flexion (90◦) Abduct thumb

Middle finger flexion (45◦) Extend thumb

Middle finger flexion (90◦) Flex thumb

Middle & ring finger flexion (90◦) Twiddle: thumb and index finger

matic model exhibits strong split-half and intersession consis-

tency within participant (Supplementary Figure S1). In both the

spatial and temporal RSA, the kinematic model was investigated

alongside two other models. A muscle-based model was con-

structed from high-density EMG recordings (15 channels) made

in an independent cohort of 10 participants performing the same

range of hand movements (Fig. 1, bottom row). An additional

ethological action model classified movements into precision

prehensile, power prehensile, and nonprehensile, based on the

notion of ethological maps in primate M1 (Elliott and Connolly

1984; Graziano 2016) (Supplementary Figure S18). A group aver-

age kinematic and muscle model were subject to nonclassical

multidimensional scaling for visualization of the relative dissim-

ilarity of each movement across three dimensions (3D Graphics

1 and 2). An equivalent analyses in two dimensions using videos

illustrating the various movements is also presented for the

group average kinematic model (SupplementaryVideo S2).

Participants and Experimental Design

All data were acquired according to the local university research

ethics committee approval in line with the Declaration of

Helsinki (Cardiff University School of Psychology Research

Ethics Committee: EC.17.03.14.4874 and EC.17.04.11.4885) All

participants provided written informed consent and met local

MRI and MEG safety criteria.

A total of 10 right-handed participants were recruited in the

main study (age range:22–30; mean age: 24.0; Age SD: 2.8; 5

females). Participantswere not currently taking any psychoactive

medications, and were right-handed according to the Edinburgh

Handedness Inventory (Oldfield, 1971). No participants had a

history of any disorder affecting tactile sensory ormotor function

or any history of neurological illness. Each participant undertook

five experimental sessions: two MRI scan sessions, two MEG

recording sessions, and one behavioral testing session.All partic-

ipants undertook the behavioral testing session first; the subse-

quent order of the fMRI and MEG sessions was counterbalanced,

leaving a minimum of 2 weeks between any one MRI and MEG

session to minimize the effects of magnetic noise on the MEG

signal (Gross et al. 2013). The datasets generated and analyzed

during the current study are available from the corresponding

author on reasonable request.
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Figure 1. Spatial and temporal evidence for distinct encoding of kinematic- andmuscle-based information in humanmotor cortex. Group average kinematic andmuscle

models of handmovement were used in a spatiotemporal RSA. Top row: fMRI data show that kinematic informationwas encoded consistently in of primarymotor cortex

across all 10 participants with a consistent peak in Brodmann areas 4 and 3a; complementary MEG data revealed temporal encoding of kinematic information (blue

box) around the point of movement onset in the broadband signal, further decomposition of which revealed encoding prior to movement onset (green line) in the beta

frequency, from −210 to −90 ms. The group average muscle model (bottom row) showed consistent spatial encoding in more rostral regions of Brodmann area 4 of

primary motor cortex across participants, as well as postcentral regions of Brodmann areas 3b; a temporal searchlight using the muscle model revealed evidence

of encoding much later in the cycle of movement around 735–795 ms after movement onset in the broadband signal; further decomposition revealed this encoding

of the muscle model originated in the gamma frequency. An ethological action model in line with recent primate studies (Graziano, 2016) was investigated and is

presented in Supplementary Figure S18. Full MEG analysis are presented in Fig. 3. Green line—movement onset defined by the data glove; blue regions—significant

peaks in representational similarity between MEG data and the motor model; dashed line—correlation noise ceiling. EMG onset violin plots based on data presented in

Supplementary Figure S10. Both matrices are presented based on the results of hierarchical clustering conducted on the kinematic matrix for ease of comparison. Both

model matrices are reproduced in a larger format in Supplementary Figure S2 using their own respective hierarchical clustering outputs.

Motor Task and Kinematic Data Acquisition

During all sessions participants were engaged in a motor task

involving the production of a range of 26 hand movements

(Table 1, Supplementary Video S1) with the right hand while

wearing a fiber-optic kinematic data glove (Data Glove 14

Ultra; Fifth Dimension Technologies: 5DT, Orlando, FL, USA).

Kinematic data were acquired across 14 independent fiber-optic

channels (one proximal and one distal sensor per digit, plus

one sensor between each digit pair) at 60 Hz. Flexion, extension,

pitch, and roll cause deformation in the fiber optic channels,

impacting the transmission of fiber optic signals and generating

a quantifiable signal change. The behavioral task using the data

glove was implemented in PsychoPy (Version 1.84.20) (Peirce,

2007, 2009) using the Python Computer Graphics Kit (CGkit: cgkit.

sourceforge.net) SDK wrapper for the 5DT data glove.

Each recording session was divided into task runs; each task

run was composed of blocks of a specific movement; each block

comprised individual movement trials; details of the number of

runs, blocks, and trials are specified for MEG and fMRI sessions,

respectively, below. Instructions were presented on a screen in

the testing environment. Each task run contained one block

of each of the 26 movement types, ordered using a random-

without-replacement selection method. Progressive determina-

tion effects wereminimized bymaximizing the range of different

conditions in each run; presenting all 26 movements once per

run (Blais, 2008). At the beginning of each movement block, par-

ticipants were shown a 3 s video of themovement to be produced

(Supplementary Video S1). Participants were cued to produce the

movement in question in each subsequentmovement trial of the

block by an expanding and contracting horizontal bar. In each

movement trial, the bar began at a fully contractedwidth, colored

red, indicating that the hand should be static and in a resting

flat position. The bar subsequently turned green and began to

expand symmetrically at its left and right flanks. Once it reached

its maximal width, the bar began to contract back to its original

width. Once the bar reached its original contracted width, it

turned red, signifying the end of themovement trial. Participants

were instructed to pace their movements to coincide with the

period of expansion and contraction of the green bar, such that

their hand assumed a flat position at the beginning and end of

each trial, corresponding to the time that the static red bar was

presented. The motor task was conducted in a behavioral testing

lab, in the MRI scanner, and in the MEG scanner, as detailed

below.

None of the grasping tasks in this study engaged participants

with real objects; previous work has differentiatedmotor activity

with or without real objects in anterior intraparietal sulcus, but

not primary motor cortex: as such an object-free study design

seemed appropriate for a study focusing onM1 (Freud et al. 2018).

Kinematic Recording Session

During the behavioral testing session participants performed

five runs of the motor task. Participants were seated at a desk

with their right forearm supported on a memory foam mount,

while wearing the data glove. Participants viewed instructions

D
ow

nloaded from
 https://academ

ic.oup.com
/cercorcom

m
s/advance-article/doi/10.1093/texcom

/tgaa009/5815556 by guest on 11 August 2020

https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa009#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa009#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa009#supplementary-data
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa009#supplementary-data
cgkit.sourceforge.net
cgkit.sourceforge.net
https://academic.oup.com/texcom/article-lookup/doi/10.1093/texcom/tgaa009#supplementary-data


4 Cerebral Cortex Communications, 2020, Vol. 00, No. 00

presented on a 14 inch laptop display. Each movement block

comprised a 3 s video of the movement to be produced, a 1 s

preparation period and 8 subsequent movement trials; each

comprising 1.6 s ofmovement (green expanding/contracting bar),

followed by a 0.8 s rest period (red static bar). The transition of

the bar from red to green was defined as the go signal. A break

period of up to 15 s was permitted between each movement

block; participants advanced the task with a keypress using their

left hand. Excluding break periods each task run was 10 min and

3.2 s in duration. The five task runs yielded 33 min and 16.8 s of

kinematic data recording per participant.

Kinematic Movement Model

For each participant, kinematic data from the behavioral, MRI,

and MEG sessions were each processed in parallel. This yielded

a separate kinematic model from each session type for each

participant. These models were used in subsequent multivariate

fMRI and MEG analysis; they captured the kinematic similarities

and differences of the 26 distinct movements under study.

Initially the kinematic data fromeach session and eachmove-

ment block were epoched into individual movement trials using

the time of onset of the green bars and averaged. The resulting

14 channels of data represented the average pattern of displace-

ment of the hand during amovement trial for a givenmovement,

termed the kinematics of the movement: the motion of the hand

without reference to the forces that produce thismotion. In order

to compare this signature of kinematic activity for each possible

pairing of the 26movements, the activity pattern of each of the 14

recording channels was correlated channel-wise using Pearson’s

correlation coefficient, subject to the Fisher Z-transformation,

and the resulting values were averaged across channels to yield

a single measure of the similarity of kinematics across each

movement pair. The resulting value was transformed back into a

Pearson’s r-value and used to construct a 1-r dissimilarity matrix

for each movement pair.

The kinematic dissimilarity matrices were averaged across

task runs to yield an average fMRI, MEG, and behavioral

kinematic model for the group. The split-half consistency

and intersession consistency of these models is outlined in

Supplementary Figure S1. A grand average across all sessions

and participants was computed and subjected to hierarchical

clustering; this resulting clustering was applied to visualiza-

tions of the kinematic model and the muscle model (Fig. 1).

Clustering for the group average muscle model is presented in

Supplementary Figure S2. All analyses used the group average

muscle and kinematic models.

Muscle Model

An independent EMGdatasetwas acquired in order to construct a

model of movement dissimilarity on the basis of muscle activity

in the hand.An independent cohort of 10 participants (age range:

20–30; mean age: 25.1; age SD: 3.57; 5 female) undertook a more

detailed EMG recording than was feasible during the MEG ses-

sion, while performing the same 26 hand movements. EMG data

were acquired using a Biosemi Active 2 systemwith a 32 channel

headbox (Biosemi B.V. Amsterdam).Muscle activity was recorded

using touchproof flat active electrodes. Electrodes 1–15 were

placed as labelled in Supplementary Figure S16 closely matched

to previously published montages (Ejaz et al. 2015; Leo et al.

2016), namely, first dorsal interosseus (FDI), dorsal interosseus

muscles, abductor digiti minimi (ADM), abductor pollicis brevis

(APB), adductor pollicis, lumbrical muscles, flexor carpi ulnaris,

flexor carpi radialis, flexor digitorum superficialis and flexor

digitorum profundus, flexor pollicis longus. Electrode 16 was

used to rereference the EMG data in subsequent analysis and

was placed on the lateral bony protrusion of the elbow. There

were also Commonmode sense (CMS) and Driven Right Leg (DRL)

electrodes, which served as a ground/reference during recording

in the Biosemi software; they were placed on the dorsal aspect of

the wrist. The EMG data were recorded at 2048 Hz.

The EMG recording sessions mirrored the design and setup

of the kinematic recording session outlined above and were

informed by previous fMRI kinematics studies (Ejaz et al. 2015;

Leo et al. 2016). Five runs were recorded in total, each contain-

ing 26 trials (one for each of the movements). The EMG data

were processed using Fieldtrip (Oostenveld et al. 2011). EMG data

were rereferenced to electrode 16, rectified and subjected to a

band-pass filter (20 Hz and 1000 Hz); and epoched relative to

earliest measured muscle onset in any EMG channel using an

adaptive threshold (activity duration threshold: 200 ms; 5 ms

window smoothing was applied) (Hooman Sedghamiz: Matlab

File Exchange: Automatic Activity Detection in Noisy Signals

using Hilbert Transform). This resulted in individual trials of 2.0 s

in duration. These trials were baselined using the fixation cross

window at the start of each trial. EMG trial data were then subject

to multivariate noise normalization by weighting channels in

trial by the error covariance across the different channels in order

to more accurately quantify the true differences between the

muscle activity across different movements (Walther et al. 2016;

Guggenmos et al. 2018). As in the construction of the kinematic

model, the activity pattern of each of the EMG recording channels

was correlated channel-wise using Pearson’s correlation coeffi-

cient, subject to the Fisher Z—transformation, and the resulting

values were averaged across channels to yield a single measure

of the similarity of kinematics across each movement pair. The

resulting valuewas transformedback into a Pearson’s r-value and

used to construct a 1-r dissimilarity matrix for each movement

pair. A group average muscle model calculated across all 10

participants’ data was generated and used to probe the spatial

and temporal encoding of muscle based dissimilarities in the

brain using fMRI and MEG (Fig. 1 and Supplementary Figure S2).

Ethological Action Movement Model

An alternative ethological action based model was constructed

on more recent evidence of ethological maps in primate

M1 (Graziano 2016), and therefore categorized movements

on the basis of their specific action, namely prehensile

movements, subcategorized into precision grip, power grip,

and nonprehensile movements (Jones and Lederman 2006)

(Supplementary Figure S18). The ethological action model was

subjected to hierarchical clustering for visualization.

MRI Data Acquisition

MR data were acquired using a Siemens 7T Magnetom sys-

tem (Siemens ealthcare, Erlangen, Germany) with a 32-channel

head coil. Blood oxygenation level dependent (BOLD) fMRI was

acquired with a T2∗-weighted multi-slice gradient echo pla-

nar imaging (EPI). True axial slices were positioned for optimal

coverage of the left and right anatomical hand knob (Yousry

et al. 1997) (TR/TE: 1500/25 ms, resolution: 1.2 mm isotropic, 22

axial slices, flip angle: 90◦; GRAPPA factor: 2; anterior-posterior

phase-encoding direction; 391 measurements). Magnetization
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prepared rapid gradient echo (MPRAGE) structural MRI data were

acquired to facilitate BOLD EPI slice placement and for cortical

surface reconstruction (TR/TE: 2200/2.82ms, isotropic resolution:

1.0mm,GRAPPA factor = 2). An additional gradient echo BOLD EPI

acquisition of 4 volumes was acquired using posterior-anterior

phase-encoding direction for distortion correction.

fMRI Behavioral Task

During the fMRI acquisitions, participants performed a total of 10

runs of themotor task (5 runs per MRI session). Participants were

laid supine with their right forearm supported against their right

hip and their elbow supported by a foam pad, while wearing the

data glove. Participants viewed instructions via amirrormounted

on the transmit coil and a projector screen mounted at the end

of the bore. Each movement block comprised of a 3 s instruction

screen (“Prepare to Move”), a 3 s video of the movement to be

produced, and a 1 s further instruction screen (“Move”), followed

by 5 movement trials, each comprising 1.6 s of movement (green

expanding/contracting bar), followed by a 0.4 s rest period (red

static bar). Each movement block was 17 s. In addition to the

movement blocks, 8 rest blocks were included in each task run;

rest blocks were of equivalent duration to movement blocks and

comprised of a 3 s instruction screen (“Rest”), a 3 s video of a

static resting hand, and a 1 s further instruction screen (“Rest”),

followed by the same period of expanding and contracting bar

visual stimuli as the fMRI movement blocks. Rest blocks were

positioned randomly in each run, excluding self-adjacency.

Structural MRI Data Preprocessing

MPRAGE data were subject to reorientation, bias-field correction

and brain extraction using the FMRIB Software Library (FSL)

fsl_anat tool (Zhang et al. 2001; Smith, 2002; Jenkinson et al. 2012)

prior to cortical surface reconstruction using FreeSurfer Version

5.3.0 (Dale et al. 1999; Fischl et al. 2001).

fMRI Data Analysis

fMRI Preprocessing and General Linear Modeling

fMRI data were subject to standard preprocessing, including

motion correction with MCFLIRT (Jenkinson et al. 2002), brain

extraction using BET (Smith, 2002), and high pass temporal fil-

tering (100 s threshold). fMRI data were not subject to spatial

smoothing. All fMRI data were subject to manual independent

components analysis denoising (Griffanti et al. 2017). Distor-

tion correction was undertaken using FSL Topup to estimate

a fieldmap image for use in FSL FUGUE (Glasser et al. 2013).

Undistorted BOLD EPI data were coregistered with structural

MPRAGE data using Boundary-Based-Registration from FMRIB’s

Linear Registration Tool implemented in epi_reg (Jenkinson and

Smith 2001; Jenkinson et al. 2002; Greve and Fischl 2009). Example

fMRI timeseries from a single voxel located in the anatomical

hand knob is presented for four participants on a single session

in Supplementary Figure S15.

For each participant and each fMRI run, fMRI data were ana-

lyzed using a first-level general linear modeling (GLM) approach

implemented in FSL FEAT (Jenkinson et al. 2012) using the FMRIB

Improved Linear Model to estimate time series autocorrelation

and prewhiten each voxel. Each of the 26 movements was

modeled with a separate boxcar regressor with gamma-HRF

convolution and its temporal derivative, giving a total of 52

regressors. Parameter estimates were calculated, contrasting

each movement type against the rest condition; these voxel-

wise maps and an estimate of the residuals from the GLM were

resampled into the respective participants’ structural space and

used in subsequent RSA.

fMRI Multivariate Noise Normalization

In order to account for the spatial structure of the noise inherent

to fMRI data, spatial prewhitening of the parameter estimates

from each participant and each fMRI task run was conducted.

The residuals (R) from the first-level GLM analysis provided an

estimate of data not fit by the model regressors across voxels

(V) and time (T), from which a V×V covariance matrix (ǫ̂) can

estimate the noise structure across voxels (Equation (1)) (Walther

et al. 2016):

6̂ =
1

T
RTR (1)

The noise covariance structure was combined with the voxel-

wise parameter estimates (P) for a given movement type (k)
to generate a spatially prewhitened parameter estimate (P/←

k :

Equation (2)):

P∗k = Pk6̂
−

1
2 (2)

fMRI Surface-Based Searchlight RSA

A surface-based RSA searchlight approach was used to iden-

tify regions in which the multivariate pattern of BOLD activity

mirrored the kinematic and categorical models. This surface-

based analysis constrained the voxels under consideration in

each searchlight to the gray matter and prevented the issue of

sampling of voxels that span a sulcus in a single searchlight,

which is inherent to volumetric approaches (Oosterhof et al.

2011). A searchlight was constructed at the centre of each vertex

within the individual participants’ anatomical cortical surface

region corresponding to the field of view of their task fMRI data

(Supplementary Figure S7). Each searchlight had a diameter of

10 mm. The region of interest of each searchlight was projected

from two-dimensional surface to three-dimensional volumetric

space using theConnectomeWorkbenchTool (Glasser et al. 2013),

masked by a FMRIB Automatic Segmentation Tool gray matter

map (Zhang et al. 2001) and a mask excluding voxels spanning

across sulci in the FreeSurfer reconstruction to improve spa-

tial specificity. Spatially prewhitened parameter estimates were

extracted from the resulting volumetric region corresponding to

each searchlight.

fMRI Cross-Validated Distance Measures

Within each searchlight the similarity between each of the spa-

tially prewhitened voxel-wise parameter estimates correspond-

ing to each of the 26 different movement types was calcu-

lated using a cross-validated approach to avoid the possibil-

ity of overfitting the data (Diedrichsen and Kriegeskorte 2017;

Haynes, 2015). In each iteration, the parameter estimate maps

from one fMRI task runwas assigned to fold A and the parameter

estimate maps from the remaining nine task fMRI runs were

assigned to fold B; squared Euclidean distances were calcu-

lated between all possible pairs of the 26 movement parameter

estimate maps across these two-folds (Equation (3)). Distance

measures were calculated across all possible pairs of cross-

validation folds and averaged (Walther et al. 2016). The use of

spatially prewhitened parameter estimate combined with the

cross-validation approach yielded cross-validated Mahalanobis
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Figure 2. Kinematic and muscle models show evidence of distinct spatial encoding in primary motor cortex. (A) Outline of supra-threshold RSA results presented in

Fig. 1 reveal overlapping but distinct encoding of muscle and kinematic information, with muscle information encoding in more rostral regions of Brodmann areas 4

and 6, while kinematic information is encoded in more caudal regions of primary motor cortex, including Brodmann areas 4 and 3a. (B) A Wilcoxon signed-rank test

calculated on Spearman’s ρ values across the muscle and kinematic spatial searchlights revealed a region at the border of Brodmann areas 4 and 3a in which kinematic

information showed significantly greater encoding than the muscle model (Statistical maps subject to FDR correction α =0.05).

distance representational dissimilarity matrices (RDMs) compar-

ing each of the activation patterns across all possible pairings

of the 26 movements. For example, calculation of the distance

between movement k and movement l in one iteration:

d2
Crossvalidated Mahalanobis

(
P∗k,P

∗

l

)
=

(
P∗k − P∗l

)
A

(
P∗k − P∗l

)T
B

(3)

.

The correspondence between the fMRI-derived RDM in each

searchlight and the candidate group average kinematic, mus-

cle, and ethological models was assessed using a Spearman’s

rank correlation, with the resulting ρ (rho) value plotted in each

searchlight’s central vertex on the cortical surface. Spearman’s

ρ was selected because it is rank based, and therefore does

not require assumptions regarding the distributions of the input

variables: this allows for the comparison of models derived from

different source data. For statistical inference, a fixed effects

randomization test (Nili et al. 2014) was applied on the individual

participant level: correlations using 10 000 condition-label ran-

domizations were undertaken in each searchlight. From each of

the permutations, the spatial peak ρ-value (rho) was extracted

from across the cortical surface, forming a maximum accuracy

distribution from which an omnibus threshold (α =0.01) was

extracted. The resulting thresholded ρ-value surface maps for

each participant were resampled onto the Human Connectome

Project 32k surface (S1200.L.pial.MSMAll.32k_fs_LR.surf.gii), bina-

rized and used to form a heatmap corresponding to the spatial

distribution of each model fit across participants. In light of

the interest in contrasting the kinematic and muscle models, a

comparison of the corresponding unthresholded Spearman’s ρ

cortical surface maps was undertaken using a Wilcoxon signed-

rank test (one-sided), subject to FDR correction (α =0.05) (Fig. 2).

fMRI Motion Considerations

Variability in the magnitude of fMRI motion across different

movement conditions has the potential to influence the

observed pattern of results. The potential for noise induced by

participant motion was mitigated in a number of ways. First, all

data were subject to ICA denoising to remove any characteristic

motion artifacts (Griffanti et al. 2017). Second, the multivariate

analysis of fMRI data employed herein used spatial prewhitening

of the parameter estimates to account for voxel-wise variability

in order to not down-weight voxels with high error variance

and to account for noise covariance between voxels (Walther

et al. 2016). Finally, DVARS values were calculated for each fMRI

timeseries (D: temporal derivative of time courses, VARS: root

mean squares variance over voxels). These values quantify

for each frame of an fMRI acquisition the magnitude of signal

intensity change in volume N compared with volume N-1, as per

the following formula:

DVARS(∆I)i =

√〈
[Ii

( →
x

)
− Ii−1

→

x ]2
〉

(4)

where Ii is image intensity at locus -!x on frame i; angle brack-

ets denote the spatial average over the whole brain (Power et

al. 2012). DVARS are able to quantify corruption of fMRI acqu-

sition due to head motion. DVARS values were extracted for

volumes corresponding to each of the 26 hand movements for

all participants; the resulting distribution of DVARS values is

presented in Supplementary Figure S13. The profiles of very lim-

ited motion across participants during each session of around

10 min in duration also demonstrate high quality data acquisi-

tion (Supplementary Figure S14).

MEG Data Acquisition

MEG signals were measured continuously at 1200 Hz during the

motor task using a whole-head 275-channel axial gradiometer

CTF MEG system (CTF, Vancouver, Canada) located inside a

magnetically shielded room.An additional 29 reference channels

were recorded for noise cancelation purposes and the primary

sensors were analyzed as synthetic third-order gradiometers

(Vrba and Robinson 2001). Three electromagnetic coils were

placed on three fiduciary locations (nasion, left and right

preauricular) and their position relative to the MEG sensors

were recorded continuously during each experimental block.
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The head surface and fiducial locations were digitized using an

ANT Xensor digitizer (ANT Neuro, Enschede, Netherlands) prior

to the MEG recording.

MEG Behavioral Task

During the MEG data acquisitions participants performed a total

of 10 runs of the motor task (5 runs per MEG session). Partici-

pants were sitting upright with their right forearm and elbow

supported on a foam armrest, while wearing the data glove.

Participants viewed instructions on a back-projected screen in

front of them from a projector mounted outside the shielded

room. Each movement block comprised of a 2 s period with a

central fixation cross, a 3 s video of the movement to be pro-

duced, and a 1 s instruction screen (“Prepare to Move”) followed

by five movement trials, each comprising 1.6 s of movement

(green expanding/contracting bar), followed by a 0.8 s rest period

(red static bar). Each movement block was 18 s. The order of

movement blocks was randomized within each task run; each

movement was presented once per task run.

Data Glove Movement Onset Detection: MEG Sessions

The 14 channels of data glove recordings collected during

the MEG sessions were synchronized with the MEG acquisi-

tions. Epoched data glove recordings were subject to onset

segmentation using an adaptive threshold (activity duration

threshold: 200 ms, no smoothing) (Hooman Sedghamiz: Matlab

File Exchange: Automatic Activity Detection in Noisy Signals

using Hilbert Transform.). A conservative estimate of movement

onset was derived by taking the earliest signal onset detected

across the 14 data glove channels for each movement trial

(Supplementary Figure S9). The resulting movement onset time

was used to epoch MEG data in further analysis.

MEG Data Analysis

MEG Preprocessing

Each participant’s head shape was digitized using Xensor dig-

itizer software (ANT software BV, Enschede, The Netherlands).

All MEG analysis was conducted using the Fieldtrip toolbox for

EEG/MEG-analysis (Oostenveld et al. 2011) (Donders Institute for

Brain, Cognition and Behaviour, Radboud University Nijmegen,

The Netherlands. See http://www.ru.nl/neuroimaging/fieldtrip).

Coregistration was performed in a two stage process: first the

fiducial locations were marked on the T1 structural for that

participant; the head digitization data was then used to align the

data with theMRI, subject tomanual adjustment. Alignment was

undertaken independently for data from the two MEG sessions.

Data from each movement type were epoched from the 10

task runs and concatenated into a new dataset containing 10

blocks, each containing 5 movement trials. The fixation cross

and movement trials were epoched from the overall block. The

movement trials were defined relative to the data glove defined

movement onset time (movement trial time: 2 s; preonset time:

0.5 s, postonset time: 1.5 s). The fixation cross period was used

as a baseline for the 5 movement trials within each movement

block.A high pass filter of 1Hz and a lowpass filter of 100Hzwere

applied. MEG analyses were conducted across four frequency

bands: alpha (7–14 Hz), beta (15–30 Hz) and gamma (30–100 Hz),

and broad band (7–100 Hz). All of the movement trials for a

givenmovement typewere concatenated across the 10 task runs,

creating a dataset comprising 50 repeats of a movement. At this

point, the data was visually inspected and those trials containing

artefacts were removed from further analysis up to a maximum

of 10 trials, such that the minimum number of movements trials

per movement included in further analysis was 40.

MEG Source Reconstruction

In order to reconstruct oscillatory activity at brain locations

directly comparable across participants, the individual anatom-

ical MRI was nonlinearly warped to the MNI MRI template. The

MNI template was divided into a 10 mm isotropic grid and the

inverse of the previously calculated nonlinear warp was used

to warp the template grid into the anatomical space of each

participant. Sensor leadfields were calculated using a semireal-

istic volume conduction model based on the individual anatomy

(Nolte, 2003). The temporal evolution of source activation at each

location in the brain was estimated using a linearly constrained

minimum variance (LCMV) beam-former algorithm (Veen et al.

1997) with the optimal dipole orientation at each voxel estimated

using singular value decomposition. Virtual sensors were then

reconstructed from all 3294 voxels by multiplying the sensor

level data by the corresponding set of optimized weights. At

this stage, data were subject to multivariate noise normalization

(Guggenmos et al. 2018; Ledoit and Wolf 2004), we calculated

the error covariance matrix at sensor level and then used this

combined with the filters from the LCMV to create the virtual

sensor data. This means that sensors with more noise would

be down-weighted compared to those with less noise. At this

stage, the data were also down-sampled to 600 Hz to reduce

computational cost.

MEG Temporal RSA

The MEG data were split to produce 10 partitions and then aver-

agedwithin each partition to performa cross-validated represen-

tational similarity analysis to avoid the possibility of overfitting

the data (Diedrichsen and Kriegeskorte 2017; Haynes, 2015). RSA

was performed across time using a sliding time window with a

width of 20ms and a time step of 5ms creating 396 timewindows

across 2 s of the movement trial (0.5 s rest, 1.5 s movement).

After selecting virtual sensors within the left hemisphere motor

region of the AAL atlas (Tzourio-Mazoyer et al. 2002) (Precentral

L, 31 sources; Supplementary Figure S8), the frequency-filtered

MEG signalmeasured during eachmovement typewas compared

using a cross-validated approachwithin each timewidth. In each

iteration, the signals from one MEG data partition were assigned

to fold A, and the signals from the remaining nine partitionswere

assigned to fold B; squared Euclidean distances were calculated

between all possible pairs of the 26 signals across the two-

folds and averaged (Walther et al. 2016). The use of multivariate

noise normalization to account for spatial autocorrelation in

theMEG signal yielded subject-wise cross-validatedMahalanobis

distance RDMs comparing the alpha-, beta-, or gamma-band

signal in the motor Region of Interest (ROI) across all possible

pairings of the 26 movements (Guggenmos et al. 2018).

Participant-level motor ROI RDMs were averaged in order to

perform a fixed-effects analysis. The correspondence between

the MEG-derived RDMs and the candidate group average kine-

matic, muscle, and ethological models across time was assessed

using a Spearman’s rank correlation, with the resulting ρ (rho)

values plotted for each time window. As in the fMRI analysis,

a rank-based correlation was used to allow for the comparison

of models originating from different source data without mak-

ing assumptions about the distribution of values within these

models. In light of the interest in contrasting the kinematic and
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muscle models, these were each assessed in a partial correlation

to discount the contribution of the other. Randomization testing

was used for statistical inference (Nichols and Holmes 2002),

whereby candidate model RDMs were shuffled 1000 times and

time-resolved correlation coefficients were recomputed in order

to estimate an empirical null distribution. P-values were calcu-

lated using a cluster thresholding approach across time. To cor-

rect formultiple comparisons, the cluster-forming threshold was

set to P< 0.01 and clusters in the correlation time-courses corre-

sponding to each candidate model were thresholded against the

maximal cluster distribution (α =0.001).
To assess the maximal correlation possible with our data,

each participant’s RDM was correlated with the average cross-

subject RDM; the correlations were then averaged to obtain an

upper bound of the noise ceiling (Nili et al. 2014).

MEG: Action Observation Analysis

MEG data from the period of action observation during the

instruction video preceding each movement block were epoched

using the same approach as the MEG data recorded during

movement. The fixation cross and action observation trials were

epoched from the overall block. The action observation trial was

defined relative to the video stimulus onset time (preonset time:

0.5 s, postonset time: 3.0 s). The fixation cross period was used

as a baseline for the action observation period. Temporal RSAs

were conducted using the same approach as the MEGmovement

data, as described above.

MEG Motion Considerations

MEG analysis included multivariate noise normalization to

account partially for the effects of motion, where each channel

is normalized by an estimate of error covariance across different

sensors; this process has been demonstrated to substantially

improve multivariate analyses of MEG data (Guggenmos et al.

2018).Motion parameters for all MEG acquisitions were extracted

and analyzed to rule out the possibility of excessive headmotion

as a potential driving force behind any observed patterns of

brain activity. Rotational and translational displacement for

each participant and each experimental session are presented in

Supplementary Figure S11. In addition, the motion parameters

during each movement block were extracted and the resulting

distribution is presented across the 26 different movement

types (Supplementary Figure S12). The profiles of motion across

participants demonstrate a high quality data acquisition.

Electromyography with MEG

EMG data were acquired simultaneously with MEG data. Three

surface EMG electrodes were attached to the right hand under-

neath the data glove, positioned on APB, FDI, and ADM. The area

under the electrodes was exfoliated and cleaned with alcohol

prior to data acquisition. EMG signals were recorded at 1200 Hz.

EMG data were initially subject to a bandpass filter (20–

1000 Hz) and a notch filter (50 Hz). EMG data were epoched

and baselined alongside the MEG data. Epoched EMG data were

subject to manual artifact rejection. Signals from the three elec-

trodes during each epochwere independently subject to a Hilbert

transform and smoothing (5 ms smoothing window) prior to

activity onset segmentation using an adaptive threshold (activity

duration threshold: 200 ms) (Hooman Sedghamiz: Matlab File

Exchange: Automatic Activity Detection in Noisy Signals using

Hilbert Transform). A conservative estimate of muscle activity

onset was derived by taking the earliest signal onset detected

across the three EMG channels for eachmovement trial; any trial

in which the onset estimate from the EMG and data glove activity

recorded during MEG showed a discrepancy of >±100 ms was

excluded. Due to constraints of electrode placement alongside

the kinematic data glove, measures of activity onset were not

robustly measured in all participants. EMG onset data are pre-

sented in order to validate the data glovemeasures of movement

onset, which have been used to epoch the MEG data (Fig. 1 and

Supplementary Figure S10).

Results

We first used high-resolution fMRI data to perform a cross-

validated cortical surface-based searchlight RSA to find evidence

for the spatial encoding of kinematic information during

movement. In each participant and each cortical searchlight,

the unsmoothed pattern of fMRI activity during movement was

used to construct a RDM (Nili et al. 2014). The RDMwas compared

to group average kinematic or muscle models (3D graphics 1

and 2), and a theoretical ethological action model, resulting in

representational similarity cortical surface maps of Spearman’s

ρ values for each participant and model. Spearman’s ρ surface

maps for each model were subject to an omnibus threshold

(α =0.01) and used to construct a cross-participant heatmap.

This analysis assessed where the relative dissimilarities in the

kinematic, muscle and ethological actions across the different

hand movements were mirrored by the relative differences in

the pattern of fMRI activity elicited by performing the same

movements.

For the kinematic model, the searchlight revealed a strong

and very consistent representational similarity in the contralat-

eral precentral region of the anatomical hand-knob (Yousry

et al. 1997) across participants (Fig. 1, top row). Specifically,

the fMRI searchlight results revealed the consistent encoding

of the kinematic information in Brodmann area 4 during the

production of hand movements across participants (Table 2)

(Glasser et al. 2016). This means that the same differences

we observed in the kinematics of our 26 movements were

also observed in differences in the patterns of BOLD activity

measured in caudal M1 during movement production.

Inspection of the single-subject cortical searchlight results for

the kinematic model highlights the consistent and spatially lim-

ited correspondence of the kinematicmodel and fMRI data at the

level of individual participants in contralateralM1 (Fig. 2A). In the

contralateral hemisphere, the peak spatial overlap in the encod-

ing of kinematic information across participants was observed

in Brodmann areas 4 and 3a; other regions to reach significance

at the level of individual participant searchlight analyses, but

were not observed consistently across the entire group, include

Brodmann area 3a, Brodmann areas 2, 3b, and Brodmann area

(Supplementary Figure S3). A highly comparable result was also

observed using the group average kinematic model constructed

from the data glove recordings made in the behavioral test-

ing session (Supplementary Figure S19), highlighting the appli-

cability of this result to real-world hand use in an upright sit-

ting position. No such consistent representational similarity was

observed in the corresponding searchlight of movement-related

activity in the ipsilateral hemisphere at the group level; however,

at the level of individual participants, significant encoding was

observed in greater than three participants included Brodmann

areas 4, 3a, and 6 (Fig. 2B and Supplementary Figure S19B).

Equivalent spatial searchlight analyses for the muscle model

also revealed supra-threshold activity consistent with encoding

in the precentral region of the anatomical hand knob (Fig. 1,
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Table 2.Outline of peak anatomical correspondence betweenmovementmodels and fMRI calculated using across participant cortical heatmaps

Model Peak heatmap overlap (Participants) Peak vertex Anatomical location

Kinematic 10 8053/5378 Brodmann area 4

Muscle 10 5070 Brodmann area 4

8015/8044 Brodmann area 3b

Ethological 8 8070 Area 3b

Peak regions calculated as centre of gravity of areas of peak overlap; peaks separated by a minimum of 20 mm. Vertex positions and anatomical definitions are based

on HCP S1200 32k release (Glasser et al. 2016).

bottom row). The muscle model shared representational struc-

ture with patterns of brain activity in more rostral and ventral

regions compared with the kinematic model, including both

areas of Brodmann areas 4 and 6, as well as areas of Brodmann

area 3b. This pattern showed less spatial consistency across

participants (Figure 1 and Supplementary S6). This means that

differences in the pattern of muscle activity measured across

different movements were mirrored by differences in the asso-

ciated patterns of BOLD activity in rostral M1 during movement

production.

In light of the interest in contrasting the kinematic and mus-

cle models (Leo et al. 2016), a Wilcoxon signed-rank test (one-

sided) was used to compare the vertex-wise ρ maps of these

two models, which demonstrated the superior fit of the group

average kinematic model in comparison to the group average

muscle model in a localized region principally corresponding to

Brodmann areas 4 and 3a (Nili et al. 2014) (Fig. 2).

The ethological action model (Supplementary Figure S18A)

revealed more limited evidence of consistent cortical encoding

across participants, centered on somatosensory cortex in the

postcentral gyrus; specifically, Brodmann area 3b (Supplemen-

tary Figure S18B).

High field fMRI data analyzed at the level of individual sub-

jects offered detailed spatial resolution, revealing distinct encod-

ing of kinematic andmuscle information in different areas of the

hand knob region of M1.

However, fMRI offers relatively poor temporal resolution to

understand the point in time at which the kinematic andmuscle

models match the pattern of brain activity in M1. The boundary

betweenmotor and somatosensory cortex is increasingly blurred

by evidence of sensory processing in M1 (Hatsopoulos and

Suminski 2011) and motor modulation of sensory afferents (Lee

et al. 2008). The encoding of muscle and kinematic information

observed from patterns of fMRI activity may result from top-

down control of motor function, or from bottom-up propriocep-

tive information passed back to M1 and S1. In order to dissociate

the driving force behind the spatial model fit observed in the

fMRI data, a temporal RSA of MEG data was used to identify

the point during movement preparation or execution at which

kinematic and muscle information is encoded in the M1.

A cross-validated fixed-effects RSA was applied, comparing

a group average of the kinematic and muscle models to

the pattern of alpha (7–14 Hz), beta (15–30 Hz), gamma (30–

100 Hz) and broad (5-100 Hz) band MEG brain activity in M1

(Supplementary Figure S8) in 20 ms sliding windows during

movement preparation and execution. The ethological action

model was assessed in equivalent analyses. In light of the

interest in contrasting the group average kinematic and muscle

models, these models were assessed using a Spearman’s

correlation, as well as in a partial correlation to discount the

contribution of the other (Supplementary Figure S21).

TemporalMEG searchlight analysis revealed distinct temporal

encoding of the kinematic and muscle models in the alpha,

beta, and gamma frequencies. The kinematic model showed

significant encoding in the alpha band immediately after move-

ment onset (55–135 ms). In the beta band, the kinematic model

mirrored the pattern of brain activity in a significant peak from

before movement onset (−210 to −90 ms). This means that the

same differences that we observe in the kinematics of the 26

different movements under study are also observed in the oscil-

latory activity of motor cortex up to 200 ms before these move-

ments even begin. Specifically, before a movement is initiated,

information about the upcoming kinematics is encoded in the

beta oscillations recorded fromprimarymotor cortex. In contrast,

the muscle model showed significant encoding in neural activity

substantially after movement initiation, which originated from

a temporal correspondence with information encoded in the

gamma band (735 to 795 ms relative to movement onset) (Fig. 3).

This means that over 700 ms after movements were initiated,

differences in the pattern of high frequency oscillations inmotor

cortex mirrored differences in muscle activity across the 26

different movements.

An analogous MEG temporal searchlight analysis dur-

ing action observation revealed evidence of a correspon-

dence between the kinematic model and brain activity dur-

ing the movement videos preceding each movement block

(Supplementary Figure S4). During action observation a corre-

spondence between the MEG signal and kinematic model was

observed from 220–255 to 890–955 ms in the alpha band, 705–

735 ms in the beta band, and 545–560 ms in the gamma band,

relative to stimulus onset. No peaks in any frequency band were

observed for the muscle model or the ethological action model

during the period of action observation.

Discussion

Taken together, theMEG and fMRI results presented here strongly

implicate the distinct spatial and temporal encoding of kine-

matic and muscle information in M1. Specifically, fMRI data

suggest that kinematic information is representedmore caudally

in M1, in Brodmann areas 4 and 3a. Complementary MEG data

suggested that kinematic information is encoded prior to and

immediately following movement onset in oscillatory neuronal

activity in alpha and beta frequencies (Fig. 3). In other words,

the relative differences in the kinematic structure of a range of

different hand movements is encoded in M1 up to 210 ms before

the onset of movement can be detected in the hand.

In contrast, the muscle-basedmovement model was encoded

in more rostral regions of M1, including Brodmann areas 4 and

6 (Figs. 1 and 3). Temporally, the muscle model was encoded

much later in the cycle of movement, starting at 735 ms after

movement onset in the gamma frequency (Fig. 3).

These results present strong newevidence in our understand-

ing of movement encoding in M1. They suggest that kinematic

features of movements are encoded immediately prior to and

during the initiation of a movement, consistent with a role
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Figure 3. MEG temporal RSA searchlight in motor cortex reveals distinct encoding of kinematic and muscle information. Temporal MEG searchlight analysis of the

broadband MEG signal revealed encoding of kinematic information around the time of movement onset (5–120 ms), contrasted against much later encoding of muscle

information 735–785 ms after movement onset. Decomposition of the MEG signal into alpha, beta, and gamma frequencies revealed distinct encoding of the group

average kinematic and muscle models across bands. The kinematic model showed significant encoding in the alpha band after movement onset (55–135 ms) and the

beta band prior to movement onset (−210 to −90 ms). In contrast, the muscle model showed significant encoding in the gamma band substantially after movement

onset (735–795 ms). Green line—movement onset defined by the data glove; blue regions—significant peaks in representational similarity between MEG data and the

model (1000 shuffled permutations of candidate model RDMs; cluster-forming threshold: P< 0.01; maximal cluster distribution (α =001); dashed line—correlation noise

ceiling.
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for this organization’s structure in top-down motor control. In

contrast, brain activity that mirrors EMG recordings of muscle

activity was observed much later after movement onset in more

anterior regions of motor cortex; suggestive of a role in bottom

up signaling later during movement production.

The observation of distinct rostral and caudal representa-

tional structures in human M1 is in keeping with an extensive

primate literature reporting markedly distinct connectivity pro-

files along this axis of M1 in non-human primates. Specifically,

retrograde labelling studies have reported that the evolutionarily

newer caudal region ofM1 contains a very high density of cortico-

motorneuronal cells (CM cells): those whichmakemonosynaptic

connections with motoneurons and are associated with highly

skilled movements. In contrast, the evolutionarily older rostral

M1 contains few, if any, CM cells, relying instead on integrative

processesmediated via connections to interneurons in the spinal

intermediate zone (Rathelot and Strick 2009).

The observed kinematic information encoding in caudal M1

is in keeping with the notion of this cortical region containing

CM cells that facilitate specific muscle synergies (Cheney and

Fetz 1985). The evolutionary development of this caudal M1

region has been specifically associated with the rise of manual

dexterity in non-human primates: for example, the existence of

large populations of CM cells with monosynaptic connections

to motoneurons in the ventral horn of the spinal cord is a

hallmark of the ability for independent finger use in the cebus

monkey when compared to the squirrel monkey, which has a

similar hand structure, but lacks direct cortico-motoneuronal

projections (Bortoff and Strick 1993). These direct connections via

CM cells are not present at birth, but rather develop during early

life, and mirror patterns of enhanced dexterous function during

infancy and childhood (Olivier et al. 1997).

In contrast to encoding of kinematic information in caudal

M1, we observed encoding of muscle information in more rostral

regions of M1 (Fig. 2). Lacking CM cells, rostral M1 has been asso-

ciatedwithmovement via pattern generators ormotor primitives

via connections to spinal interneurons. In cats, which exhibit

only a rostral M1, electrical stimulation to motor cortex elicits

movements restricted to very precisemuscular anatomy (Nieoul-

lon and Rispal-Padel 1976), rather than the patterns of complex

movement observed in similar studies of non-human primates

(Graziano, 2016). In addition, the inputs to rostral M1 differ from

caudal M1: neurons responsive to deep muscle or joint sensory

input are concentrated in rostral M1, while cutaneous sensory

inputs are concentrated in caudal M1 (Rathelot and Strick 2006;

Tanji and Wise 1981; Picard and Smith 1992).

Our results provide functional evidence for organizational

and temporal differences in the previously described ros-

tral and caudal divisions of M1. Caudal M1, with its direct

motoneuronal projections, here showed evidence of encoding

movement kinematics, prior to and immediately following

movement onset, during the production hand movements.

Rostral M1, with its strong deep muscle/joint sensory inputs,

showed evidence for the encoding of muscle-based information

derived from EMG recordings, which occurred 735–795 ms after

movement onset, strongly consistent with bottom-up sensory

signaling from deep joint and muscle receptors. This spatial

and temporal dissociation of functional organization in M1

provides a unique insight into the cortical control of dexterous

movements.

Information contained in the kinematic model showed tem-

porally distinct correspondence to information contained in the

alpha and beta bands of the MEG data. From 210 to 90 ms

before movement is detected, the representational structure in

the M1 beta band corresponds significantly to the representa-

tional similarity of the kinematics of the upcoming movement.

In other words, even before a movement begins, beta oscillatory

brain activity already differs depending on the kinematics of the

upcoming movement.

Beta oscillations are observed at rest; it is well established

that beta activity is suppressed immediately prior to and during

movement: movement-related beta desynchronisation (MRBD),

and then rebounds following movement cessation: postmove-

ment beta rebound (Pfurtscheller and Lopes da Silva 1999). The

magnitude of the reduction in beta-band power observed prior

to movement onset in motor cortex has been shown previously

to relate to the degree of uncertainty in the upcoming move-

ment (Tzagarakis et al. 2010) or action anticipation (Denis et

al. 2017). Previous comparisons of beta desychronisation made

across kinematic and kinetic tasks concur: the strength of MRBD

is correlatedwith the physical kinematic displacement of a given

hand movement rather than the magnitude of muscle contrac-

tion (Nakayashiki et al. 2014). Similar patterns of desynchroni-

sation are observed in alpha band activity, where ERD in M1

corresponds to increased activation in the region (Pfurtscheller

and Lopes da Silva 1999),with postmotion event related synchro-

nization in M1 (Ohara et al. 2000). The postmovement peak in

kinematic information encoding in the alpha band was observed

early after movement onset, during a window of time in which

the magnitude of ERD continues to increase after movement has

begun (Babiloni et al. 1999). Here we demonstrate that there is a

link between information contained in the beta frequency in M1

before movement onset and the subsequent kinematics of hand

movements (Figs. 1 and 3), suggesting that the encoding of an

upcomingmotor command in beta oscillatory activity is based on

the kinematic outcome of the planned movement (Nakayashiki

et al. 2014; Engel and Fries 2010).

The observed concurrence between the group averagemuscle

model and patterns of brain activity measured by MEG occurred

sometime aftermovement onset (735–795ms, Fig. 3). An increase

in the amplitude of gamma oscillations has previously been

reported during motor execution: movement-related gamma

synchronization (Cheyne et al. 2008; Nowak et al. 2018). Increased

gamma frequency power is correlated with the size of a given

movement, but their strength does not persist during isometric

contraction. However, increases in gamma power in M1 are

not observed in passive movement conditions, suggesting that

gamma activity is not directly associated with muscle activity

alone, but rathermuscle activity associated with limbmovement

and the associated sensory feedback (Muthukumaraswamy,

2010).

Hand kinematics have previously been investigated in the

context of human fMRI. Relative differences in target joint posi-

tion at the end of a handmovement have been shown previously

to mirror the relative differences in the fMRI signal in a broad

region of sensorimotor cortex (Leo et al. 2016).

Additional work considering unidigit and multidigit flexion

has demonstrated that patterns of M1 fMRI activity associated

with such movements are better explained by kinematic models

of digit couse than by competing muscle-based models (Ejaz

et al. 2015). In the present study, we have used MEG and 7 T BOLD

fMRI to fundamentally extend on these findings. Specifically in

the context of fMRI, high spatial resolution fMRI data enabled us

to reveal a spatial dissociation in muscle and kinematic infor-

mation encoding in M1 along the rostro-caudal axis (Fig. 2). We

have been able to pinpoint a region of caudal Brodmann area

4 in which kinematic information shows significantly greater

encoding than muscle information (Yousry et al. 1997). Taken

D
ow

nloaded from
 https://academ

ic.oup.com
/cercorcom

m
s/advance-article/doi/10.1093/texcom

/tgaa009/5815556 by guest on 11 August 2020



12 Cerebral Cortex Communications, 2020, Vol. 00, No. 00

alongside evidence from MEG for a temporal dissociation of

kinematic and muscle information during the movement cycle,

these data strongly implicate kinematic organization structure

in top-down control of hand movements.

The fMRI spatial searchlight analysis did not reveal evidence

of consistent encoding of kinematic information in ipsilateral

M1 across participants (Supplementary Figure S3). Previous fMRI

studies provide evidence for the activation of ipsilateral M1 dur-

ing the production of individual unidigit movements (Diedrich-

sen et al. 2013; Berlot et al. 2018) but not multidigit sequences

of unidigit movements (Yokoi et al. 2018). The present study

considered a broad array of naturalistic handmovements, engag-

ing a wide variety of hand kinematics, involving simultaneous

and/or sequential movement of different digits. It is possible

that unlike sequences of unidigit movement, these more com-

plex movements do not drive the circuits of ipsilateral M1 as

unidigit movements do (Diedrichsen et al. 2013; Berlot et al.

2018).

Previous studies have made direct comparisons between

muscle-based models and kinematic models, arguing for the

latter as an organizing principle in the encoding of hand

movements (Ejaz et al. 2015; Leo et al. 2016). As with previous

studies, the present findings do not rule out the existence

of muscle representations in M1, but rather support the

existence of highly organized muscle representations structured

around movement kinematics rather than muscle anatomy.

The assertion perhaps explains the fractures and repetitions

observed in muscle representations during the search for an M1

body map (Lemon, 1988).

Data glove recordings were used to accurately define the

point of movement onset in order to epoch MEG trials rela-

tive to this point. This approach enabled us to make precise

and accurate statements regarding the nature of information

encoding in sensorimotor cortex before and after movement

began. The onset signals measured from data glove recordings

were validated against more limited concurrent EMG recordings

during MEG. Onset detection from EMG showed broadly later

onset detection times when compared against data glove record-

ings. The data glove recordings potentially provided a slightly

more conservative (i.e. earlier) estimate of movement detection

because of the limited muscle coverage feasible with surface

EMG electrodes. In any case, even using the more conserva-

tive movement onset detection times from the data glove, we

observe the encoding of kinematic information over 200 ms

prior to movement, supporting the notion that the kinematics

of an upcoming movement are relevant in motor execution

in M1.

The ethological action model reported less consistent pat-

terns of fMRI encoding, centered on the postcentral gyrus, con-

sistent with activation in S1 (Supplementary Figure S18). The

ethological action model also did not reveal any significant peak

in the temporal representational analysis. It is possible thatwhile

at a coarse level, ethological maps exist in the primate cortex,

the concept of ethological organization does not extend down

to the fine-grain level of individual encoding of human hand

movements; in other words, the broad motor reportoire of the

human hand may not be encoded on the basis of the functional

role of each movement. However, in the case of the primate, the

coarser division ofmovements based on the functional role of the

entire upper limb, including the hand (e.g. feeding and reaching),

may play a role in the way the cortex is organized (Graziano

et al. 2002). The observed patterns of postcentral activity may

alternatively result from selective disinhibition of S1 by M1 dur-

ing motor activity, though such direct cortico-cortical signaling

remains speculative in the human brain (Lee et al. 2008, 2013;

Choi et al. 2018).

Analysis of the action observation period of the MEG

data preceding each movement block also provided some

support for the kinematic encoding of information in M1

(Supplementary Figure S4). Previous MEG data acquired during

action observation have demonstrated characteristic changes

in M1 activity comparable to action execution (Hari et al. 1998).

Analyses of event-related desynchronisation (ERD) in M1 during

action observation have suggested a peak change in the mu

frequency as the observed movement evolves (Tani et al. 2018).

These observations are potentially consistent with the pattern

of kinematic model fit observed in the alpha and beta band MEG

data during action observation,when the trajectory ofmovement

has become clear (Supplementary Figure S4). Additional work

considering the encoding of kinematic information in oscillatory

alpha band activity in M1 suggests that the observation of

stimuli consistent with biological motion is sufficient to induce

ERD in this frequency band (Meirovitch et al. 2015), potentially

consistent with the notion that during observation of biological

motion, M1 may encode kinematic information. Given the focus

of the present study on movement production, the infrequent

and brief exposure of participants to action observation stimuli

during the fMRI experiment did not provide sufficient data

to make firm inferences regarding the spatial encoding of

kinematic information while movements were observed. Based

on existingmeta-analyses, onewould expect that such kinematic

information could be encoded across a broad network of brain

regions known to exhibit motor mirror properties (Molenberghs

et al. 2012).

The data presented in this study rely on complementary

information acquired fromBOLD fMRI andMEG, though the remit

of this work does not extend to fusion of the two modalities.

BOLD fMRI provides only an indirectmeasure of neuronal activity

based on haemodynamic changes associated with the execution

of a given task (Jezzard et al. 2001), which can be resolved with

a relatively high degree of spatial specificity with 7 T imaging.

In contrast, MEG reflects a more direct, temporally rich,measure

of neuronal activity. While the origins of the measured signals

differ, compelling recent evidence provides noncoincidental data

to support the notion of shared information across MEG and

fMRI measures of brain activity across a wide range of frequency

bands (Hipp and Siegel 2015); similar correspondences have been

reported from invasive electrocorticography data (Siero et al.

2014). However, the spatial component of MEG data must be

inferred from mathematical modeling. Despite advances in the

context of MEG source localization, this feature of MEG analysis

limits the spatial specificity of the measured signals, which

integrate information across relatively large tissue volumes in

comparisonwith fMRI (Hall et al. 2014). It is therefore not possible

to definitely colocalize the signals fromMEG and fMRI data.Thus,

the motor cortex MEG signal used in the temporal multivariate

searchlight analysis could have been influenced by signals from

adjacent somatosensory cortex; mu-rhythm activity has been

shown to associate with sensorimotor BOLD activity (Yin et al.

2016). However, previous data from comparative MEG/fMRI stud-

ies has suggested a broad association of the sensorimotor alpha

frequency signal with the BOLD activity in the postcentral gyrus,

and the beta frequency with BOLD activity in the precentral

gyrus (Salmelin and Hari 1994; Salmelin et al. 1995; Cheyne

et al. 2003; Ritter et al. 2009), a similar gradient has been sup-

ported broadly by intracortical recordings from non-human pri-

mates (Jasper and Penfield, 1949; Rougeul et al. 1979). Here, we

observe a premovement encoding of kinematic information in
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the beta frequency, and a similar peak immediately after move-

ment onset in the alpha frequency (Fig. 3). It is therefore possible

to speculate that the beta frequency encoding is more likely to

represent precentral activity in motor cortex, which would again

support the conclusion that kinematic information is involved in

the top-down control of dexterous movement.

In this work, we apply a rich multimodal design with mul-

tivariate analysis to provide evidence for spatial and tempo-

ral dissociations of kinematic and muscle-based information in

human M1 during hand movement. Mounting evidence for the

encoding of complex kinematic information in M1 from this and

other work continues to blur the boundary between primary

somatosensory and primarymotor cortex: evenM1 neurons have

been shown to rapidly consolidate sensory torque information

across multiple joints (Pruszynski et al. 2011). The notion of

kinematic representation in M1 immediately prior to movement

initiation is compatible with recent evidence of the tight inte-

gration of information across the central sulcus (Arce-McShane

et al. 2016), whereby S1 encodes the current body state, while

M1 encodes the kinematics necessary to achieve the intended

body state. Such a system of motor control would see kinematic

information encoded prior tomovement onset as a prediction for

the future sensory inputs expected by S1 when a movement has

been achieved (Adams et al. 2013).

Supplementary Material

Supplementary material is available at Cerebral Cortex
Communications online.
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