
Finite Query Answering in Expressive Description Logics with Transitive Roles

Tomasz Gogacz
University of Warsaw, Poland

t.gogacz@mimuw.edu.pl

Yazmı́n Ibáñez-Garcı́a
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Abstract

We study the problem of finite ontology mediated query an-
swering (FOMQA), the variant of OMQA where the repre-
sented world is assumed to be finite, and thus only finite mod-
els of the ontology are considered. We adopt the most typical
setting with unions of conjunctive queries and ontologies ex-
pressed in description logics (DLs). The study of FOMQA is
relevant in settings that are not finitely controllable. This is
the case not only for DLs without the finite model property,
but also for those allowing transitive role declarations. When
transitive roles are allowed, evaluating queries is challenging:
FOMQA is undecidable for SHOIF and only known to be
decidable for the Horn fragment of ALCIF . We show de-
cidability of FOMQA for three proper fragments of SOIF :
SOI, SOF , and SIF . Our approach is to characterise mod-
els relevant for deciding finite query entailment. Relying on
a certain regularity of these models, we develop automata-
based decision procedures with optimal complexity bounds.

Introduction
Evaluating queries in the presence of background knowl-
edge has been extensively studied in several communities.
A particularly prominent take on this problem is ontol-
ogy mediated query answering (OMQA) where background
knowledge represented by an ontology is leveraged to in-
fer more complete answers to queries (Bienvenu and Ortiz
2015). A widely accepted family of ontology languages with
varying expressive power is offered by Description Logics
(DLs) (Baader et al. 2010), while the most commonly stud-
ied query language is that of (unions of) conjunctive queries.

Often, the intended models of the ontology are finite and
this additional assumption allows to infer more properties:
finite ontology mediated query answering (FOMQA) is the
variant of OMQA restricted to finite models. For some log-
ics the finite variant and the unrestricted variant of the prob-
lem coincide; we then say that OMQA is finitely control-
lable. Studying FOMQA is interesting in settings lacking
finite controllability. This is the case not only for DLs lack-
ing the finite model property (e.g., DLs allowing both in-
verse roles and number restrictions), but also for logics al-
lowing transitive role declarations. Indeed, it has been re-
cently proved that FOMQA is undecidable for SHOIF on-
tologies (Rudolph 2016), whereas the only fragment known
to be decidable is Horn-ALCIF (Ibáñez-Garcı́a, Lutz, and

Schneider 2014); more expressive fragments of SHOIF
are entirely uncharted. In this paper, we establish decidabil-
ity for three of them: SOI, SOF , and SIF .

OMQA is closely related to query answering under in-
tegrity constraints in database theory: given a finite database
instance and a set of constraints, determine answers to a
query that are certain to hold over any extension of the
given instance that satisfies the constraints. Among impor-
tant classes of constraints are inclusion dependencies (IDs)
and functional dependencies (FDs). This problem, often
called open-world query answering (OWQA), has also been
studied in the variant considering only finite extensions of
the given database instance (finite OWQA), which is di-
rectly relevant for our work. OWQA over IDs is known to be
finitely controllable (Johnson and Klug 1984; Rosati 2011).
Rosati’s techniques were extended to show finite controlla-
bility for the guarded fragment of first order logic (Bárány,
Gottlob, and Otto 2014). Under combinations of IDs and
FDs, OWQA is undecidable, both unrestricted and finite,
but multiple decidable fragments have been isolated. For in-
stance, for non-conflicting IDs and FDs (Calı̀, Lembo, and
Rosati 2003), unrestricted OWQA is decidable. However, fi-
nite OWQA is undecidable already for non-conflicting IDs
and keys, which are less expressive than FDs (Rosati 2011).
The work of (Amarilli and Benedikt 2015) investigates finite
OWQA for unary IDs and FDs over arbitrary signatures.

Combinations of unary IDs and unary FDs can be ex-
pressed in relatively simple DLs. This relationship and
the techniques developed by (Cosmadakis, Kanellakis, and
Vardi 1990) have been exploited in the study of finite satis-
fiability for simple DLs (Rosati 2008). Indeed, finite satisfi-
ability has been studied extensively (Calvanese 1996; Lutz,
Sattler, and Tendera 2005; Kazakov 2008; Pratt-Hartmann
2007), but FOMQA has received limited attention in the
DL community. The mentioned results on the guarded frag-
ment give finite controllability for DLs up to ALCHOIb.
For non-finitely-controllable DLs, only the already men-
tioned results about SHOIF and Horn-ALCIF are known.
For Datalog±, finite controllability holds for several frag-
ments (Gogacz and Marcinkowski 2017; Amendola, Leone,
and Manna 2017; Baget et al. 2011; Civili and Rosati 2012).
Finally, (Pratt-Hartmann 2009) studies finite query answer-
ing for expressive fragments of first order logic and es-
tablishes undecidability for the two variable fragment with



counting quantifiers (C2), and decidability for its guarded
fragment, GC2. Decidability of GC2 has no direct implica-
tions for DLs with nominals or transitive roles, but it proves
useful in the study of SIF .

Contributions. We show that the combined complexity of
FOMQA is in 2EXPTIME for SOI, SOF and SIF . These
bounds are tight by existing matching lower bounds for
OMQA for less expressive logics enjoying finite controlla-
bility (Ngo, Ortiz, and Simkus 2016; Lutz 2008). We present
a direct construction of finite counter-models from arbitrary
tree-like counter models for ALCOI, thus re-proving finite
controllability. An extension of this construction builds fi-
nite counter-models from special tree-like models of SOI
and SOF , which are guaranteed to exist whenever finite
counter-models exist. This way finite query entailment re-
duces to entailment over a certain class of tree-like mod-
els recognisable by tree automata. For SIF , we show that
to some extent one can separate the reasoning about transi-
tive and non-transitive (possibly functional) roles, and de-
sign a procedure that uses the decidability results for SOI
and ALCIF as black boxes. The latter is derived from
the work of (Pratt-Hartmann 2009). All missing arguments
can be found in the full version of the paper, available at
arxiv.org/abs/??????????.

Preliminaries
The DL SOIF extends the classical DL ALC with transi-
tivity declarations on roles (S), nominals (O), inverses (I),
and role functionality declarations (F) (Baader et al. 2010).
We assume a signature of countably infinite disjoint sets
of concept names NC = {A1, A2, . . . }, role names NR =
{r1, r2, . . . } and individual names NI = {a1, a2, . . . }.
SOIF-concepts C,D are defined by the grammar:

C,D ::= > | A | ¬C | C uD | {a} | ∃r.C ,

where r ∈ NR ∪ {r− | r ∈ NR} is a role. Roles of the
form r− are called inverse roles. A SOIF TBox T is a
finite set of concept inclusions (CIs) C v D, transitivity
declarations Tr(r), functionality declarations Fn(r), where
C,D are SOIF-concepts and r is a role. We assume that if
the TBox contains Tr(r), then it contains neither Fn(r) nor
Fn(r−). With an appropriate extension of the signature, each
SOIF TBox can be transformed into an equivalent TBox
whose each CI has one of the following normal forms:

uAi vtBj , A ≡ {a} , A v ∀r.B , A v ∃r.B ,

where empty conjunction is equivalent to > and empty dis-
junction to ⊥. We also assume that for each concept name
A used in T there is a complementary concept name Ā ax-
iomatised with CIs > v A t Ā and A u Ā v ⊥.
SOI, SOF and SIF TBoxes are restrictions of SOIF

TBoxes. SOI TBoxes do not contain functionality declara-
tions, whereas concept inclusions in SOF and SIF do not
contain inverse roles and nominals, respectively. Because
the inverse of a transitive role is transitive anyway, for SOI,
SIF , and SOIF we shall assume that if Tr(r) is present in
the TBox, then so is Tr(r−).

An ABox is a finite set of concept and role assertions of the
form A(a) and r(a, b), where A ∈ NC, r ∈ NR and {a, b} ⊆
NI. A knowledge base (KB) is a pair K = (T ,A). We write
|K| for |A| + |T |. We use CN(K), Rol(K), Nom(K), and
Ind(K) to denote, respectively, the set of all concept names,
roles, nominals, and individuals occurring in K. We stress
that if r occurs in K, but r− does not, then r− /∈ Rol(K).

A unary type is a subset of CN(K) that contains exactly
one of the concept names A, Ā for each A ∈ CN(K). We
write Tp(K) for the set of all unary types.

The semantics is defined via interpretations I = (∆I , ·I)
with a non-empty domain ∆I and an interpretation function
·I assigning to eachA ∈ CN(K) a setAI ⊆ ∆I and to each
role name r with r ∈ Rol(K) or r− ∈ Rol(K), a binary rela-
tion rI ⊆ ∆I×∆I . The interpretation of complex concepts
and roles is defined as usual (Baader et al. 2010). We only
consider interpretations complying with the standard name
assumption in the sense that aI = a for every a ∈ NI.

An interpretation I satisfies α ∈ T ∪A, written as I |= α,
if the following holds: if α is a CI C v D then CI ⊆ DI ,
if α is a transitivity declaration Tr(r) then rI is transitive,
if α is a functionality declaration Fn(r) then rI is a partial
function, if α is an assertion A(a) then a ∈ AI , and if α is
an assertion r(a, b) then (a, b) ∈ rI .

Finally, I is a model of: a TBox T , denoted I |= T , if
I |= α for all α ∈ T ; an ABox A, denoted I |= A, if
I |= α for all α ∈ A; and a KB K if I |= T and I |= A.

Interpretation I is a subinterpretation of interpretation J ,
written as I ⊆ J , if ∆I ⊆ ∆J , AI ⊆ AJ , and rI ⊆ rJ

for all A ∈ CN(K), r ∈ Rol(K). An interpretation I is a
subinterpretation of J induced by ∆0 ⊆ ∆J , written as
I = J � ∆0, if ∆I = ∆0, AI = AJ ∩ ∆0, and rI =
rJ ∩ ∆0 × ∆0 for all A ∈ CN(K), r ∈ Rol(K). We write
J \X for the subinterpretation of J induced by ∆J \X .

Let I and J be interpretations of K. A homomorphism
from I to J , written as h : I → J is a function h :
∆I → ∆J that preserves roles, concepts, and individual
names; that is, (h(d), h(d′)) ∈ rJ whenever (d, d′) ∈ rI ,
r ∈ Rol(K), h(d) ∈ AJ whenever d ∈ AI , A ∈ CN(K),
and h(a) = a for all a ∈ Ind(K). Note that I ⊆ J iff the
identity mapping id is a homomorphism id : I → J .

Let NV be a countably infinite set of variables. An atom
is an expression of the form A(x) or r(x, y) with A ∈ NC,
r ∈ NR, and x, y ∈ NV, referred to as concept atoms and role
atoms, respectively. A conjunctive query (CQ) Q is an exis-
tentially quantified conjunction q of atoms, ∃x1 · · · ∃xn q .
For simplicity we restrict it to be Boolean; that is, var(Q) =
{x1, . . . , xn}. This is without loss of generality since the
case of non-Boolean CQs can be reduced to the case of
Boolean queries; see e.g. (Rudolph and Glimm 2010).

A match for Q in I is a total function π : var(Q) → ∆I

such that I, π |= q under the standard semantics of first-
order logic. An interpretation I satisfies Q, written as I |=
Q if there exists a match forQ in I. Note that we do not con-
sider queries with constants (i.e., individual names); such
queries can be viewed as non-boolean queries with a fixed
valuation of free variables, and thus are covered by the re-
duction to the Boolean case. We do consider unions of con-



junctive queries (UCQs), which are disjunctions of CQs. An
interpretation I satisfies a UCQ Q if it satisfies one of its
disjuncts. It follows immediately that UCQs are preserved
under homomorphisms; that is, if I |= Q and there is a ho-
momorphism from I to J , then also J |= Q.

A query Q is entailed by a KB K, denoted as K |= Q, if
every model of K satisfies Q. A model of K that does not
satisfy Q is called a counter-model. The query entailment
problem asks whether a KBK entails a (U)CQQ. Moreover,
this problem is equivalent to that of finding a counter-model.
It is well known that the query answering problem can be
reduced to query entailment.

In this paper, we address the problem of finite query en-
tailment, which is a variant of query entailment where only
finite interpretations are considered: an interpretation I is fi-
nite if ∆I is finite, and a query Q is finitely entailed by K,
denoted as K |=fin Q, if every finite model of K satisfies Q.

From tree-shaped to finite counter-models
Let us fix anALCOI knowledge baseK and a union of con-
junctive queries Q. Because we have nominals in our logic,
we can assume without loss of generality that K’s ABox
does not contain role assertions.

The construction of a finite counter-model begins from
a tree-shaped counter-model. An interpretation I is tree-
shaped if the interpretation I \ Nom(K) is a finite collec-
tion of trees of bounded degree, with elements of Ind(K) \
Nom(K) occurring only in the roots. It is well known that a
tree-shaped counter-model can be obtained from an arbitrary
counter-modelM by the standard unravelling procedure. To
turn a tree-shaped counter-model into a finite counter-model
we use a variant of the blocking principle: a systematic pol-
icy of reusing elements. For example, rather than adding a
fresh r-successor of unary type τ , one could add an r-edge
to some previously added element of unary type τ (if there
is one). This would give a finite model for K, but not nec-
essarily a counter-model for Q: a query asking for a cycle
of length 42 might be unsatisfied in the original model, but
the blocking principle introduces many new cycles, possibly
one of length 42 among them. This is in fact the key diffi-
culty to overcome: we need a blocking principle that does
not introduce cycles shorter than the size of the query.

The first step is to look at sufficiently large neighbour-
hoods, rather than just unary types.

Definition 1. For d ∈ ∆I \Nom(K), the n-neighbourhood
NIn (d) is the subinterpretation of I induced by Nom(K) and
all elements e ∈ ∆I \ Nom(K) within distance n from d
in I \ Nom(K), enriched with a fresh concept interpreted
as {d}. For a ∈ Nom(K), NIn (a) is the subinterpretation
induced by Nom(K), enriched similarly.

Replacing unary types with large neighbourhoods is not
enough, because nearby elements can have arbitrary large
isomorphic neighbourhoods: in the integers with the succes-
sor relation all n-neighbourhoods are isomorphic. The next
step is to enrich the initial counter-model in such a way that
overlapping neighbourhoods are not isomorphic, following
an idea from (Gogacz and Marcinkowski 2013).

Definition 2. A colouring with k colours of an interpreta-
tion I is an extension J of I with ∆J = ∆I , such that
J coincides with I in every element in the signature of I,
and interprets fresh k concept names B1, . . . , Bk such that
BJ1 , . . . , B

J
k is a partition of ∆J . We say that d ∈ BJi

has colour Bi. A colouring J of I is n-proper if for each
d ∈ ∆J all elements of NJn (d) have different colours.

Because Nom(K) is contained in each neighbourhood, in
n-proper colourings each nominal has a unique colour.

Lemma 1. If I \ Nom(K) has bounded degree, then for all
n ≥ 0 there exists an n-proper colouring of I with finitely
many colours.

We write In for an arbitrarily chosen n-proper colouring
of I. Because the neighbourhoods have bounded size and we
used only finitely many colours, there are only finitely many
n-neighbourhoods in In up to isomorphism. The blocking
principle described below relies on this.

Let I be a tree-shaped counter-model for Q. We turn it
into a finite counter-model for Q as follows. Because I \
Nom(K) has bounded degree, we can consider an n-proper
colouring In of I. For each branch π in In \ Nom(K), let
dπ be the first node on π such that some earlier node eπ on π
satisfiesNInn (dπ) ' NInn (eπ). The new interpretationFn is
obtained as follows. Fn \Nom(K) includes the branch π up
to the predecessor of node dπ and the edge originally leading
to dπ is redirected to eπ . Because the degree in In\Nom(K)
is bounded, the domain of Fn \ Nom(K) is a finite subset
of the domain of In \ Nom(K). The whole interpretation
Fn is obtained by including Nom(K) into the domain and
copying from In all edges connecting elements of Nom(K)
with each other and with the elements of Fn \ Nom(K).

Because we started from a model of K, for all n ≥ 0,

Fn |= K .

We claim that for sufficiently large n, Fn is a counter-model
for Q. In order to prove this, we introduce yet another inter-
pretation, containing In and Fn as subinterpretations.

Definition 3. Let i ≤ n and let d, e be elements of In. We
say that (d, e) is an i-link along role r if either d has an r-
successor e′ in In such that NIni (e′) ' NIni (e), or e has
an r-predecessor d′ in In such that NIni (d′) ' NIni (d).

Notice that for i < j, each j-link is also an i-link. Note
also that (d, e) is an i-link along role r if and only if (e, d)
is an i-link along r−.

Definition 4. For i ≤ n, let Iin be the interpretation ob-
tained from In by including into the interpretation of each
role r all i-links along r; that is, for every role r and every
i-link (d, e) along r, (d, e) ∈ rIin .

Clearly, we have

In ⊆ Inn ⊆ In−1n ⊆ · · · ⊆ I1n ⊆ I0n ,

but the domains of all these interpretations coincide. We
keep referring to the edges present in Iin but not in In as
i-links, even though they are ordinary edges now.



Theorem 1. Let P be a CQ with at most k binary atoms
and let n ≥ k2. For each homomorphism h : P → Inn there
exists a homomorphism h′ : P → In such that

NInn−k2(h(x)) ' NInn−k2(h′(x))

for all x ∈ var(P ).
Theorem 1 holds for any interpretation I of any SOIF KB.

Before proving Theorem 1, let us see that it implies that
Fk2 6|= Q, where k is a common upper bound on the num-
ber of binary atoms in the CQs constituting Q. Because Fk2
is obtained from Ik2 by adding some k2-links and restrict-
ing the domain, it follows that Fk2 ⊆ Ik

2

k2 . Consequently, if
there were a homomorphism h : P → Fk2 ⊆ Ik

2

k2 for some
CQ P constituting Q, Theorem 1 would yield a homomor-
phism h′ : P → Ik2 , contradicting I 6|= Q. Thus, we have
proved finite controllability for ALCOI.
Corollary 1. For each ALCOI KB K and UCQ Q,

K |= Q iff K |=fin Q .

Proof of Theorem 1. Let h(P ) denote the subinterpretation
of Inn obtained by restricting the domain to h(var(P )), and
only keeping in each role r edges (h(x), h(y)) such that
r(x, y) is an atom from P . We say that h uses an r-edge
of Inn if this r-edge is present in h(P ).

Let ` be the number of links in Inn used by P . Then ` ≤ k,
because P contains at most k binary atoms. The theorem
follows by applying the following claim ` times: For each
homomorphism h : P → Iin with k ≤ i ≤ n that uses at
least one link, there exists a homomorphism h′ : P → Ii−kn
that uses strictly fewer links and satisfies

NIni−k(h(x)) ' NIni−k(h′(x))

for all x ∈ var(P ). Let us prove the claim.
Let (d, e) be a link used by h: an s-edge in h(P ) ⊆ Iin

that is not an s-edge in In. Then (d, e) is an i-link in In.
By symmetry it suffices to consider the case when d has an
s-successor e′ in In such that NIni (e) ' NIni (e′). Let

g : NIni (e)→ NIni (e′)

be the witnessing isomorphism. Because g is identity over
Nom(K) ⊆ Ind(K), we have e /∈ Nom(K); indeed, other-
wise e′ = g(e) = e and (d, e) would be an s-edge in In. Let
E be the connected component of e in

h(P ) ∩ (In \ Nom(K)) ,

where by J ′ ∩ J ′′ we mean the interpretation J such that
∆J = ∆J

′∩∆J
′′

,AJ = AJ
′∩AJ ′′ for all concept names

A, and rJ = rJ
′ ∩ rJ ′′ for all role names r. Because h(P )

has at most k edges and (d, e) is an s-edge in h(P ) but not
in E, there are at most k − 1 edges in E. We shall bring E
close to d in In by pulling it back by the i-link (d, e).

As E is a connected subinterpretation of In \ Nom(K)
and has at most k − 1 edges, each element of E lies within
distance k− 1 from e. In particular, E ⊆ NIni (e). Hence, E
is contained in the domain of g and we can define

h′ : P → Ii−kn

as follows. For each x ∈ var(P ), let h′(x) = g(h(x)) if
h(x) ∈ E, and h′(x) = h(x) otherwise. The additional
claim of the theorem follows immediately because g pre-
serves (i − k)-neighbourhoods of elements within distance
k from e. We only need to verify that h′ is indeed a homo-
morphism and that it uses fewer links than h.

Let r(x, y) be an atom of the query P . There are three
cases to consider. First, suppose that h(x), h(y) /∈ E. Then

(h′(x), h′(y)) = (h(x), h(y)) .

We have that (h(x), h(y)) is an r-edge in Ii−kn because h
is a homomorphism into Iin ⊆ Ii−kn . Obviously, h′ uses no
new links for such atoms.

Next, suppose that h(x), h(y) ∈ E. Then

(h′(x), h′(y)) = (g(h(x), g(h(y))) .

Moreover, (h(x), h(y)) is an r-edge in Iin because h is a
homomorphism. Suppose it is a link along r. Then, h(x) has
an r-successor in In with the same colour as h(y), or h(y)
has an r-predecessor in In with the same colour as h(x).
Because both h(x) and h(y) lie within distance k−1 from e,
this successor or predecessor belongs to NIni (e), along with
h(x) and h(y). But this is impossible because all elements
of NIni (e) have different colours. Hence, (h(x), h(y)) is an
r-edge in NIni (e) and (g(h(x)), g(h(y))) is an r-edge in
NIni (e′). That is, (g(h(x)), g(h(y))) is an r-edge in Ii−kn ,
and is not a link along r.

Finally, suppose that h(x) /∈ E and h(y) ∈ E (the sym-
metric case is analogous). Because h is a homomorphism,
(h(x), h(y)) is an r-edge in Iin. Now there are two subcases.
Assume first that (h(x), h(y)) is also an r-edge in In. By
the definition of E it is not an r-edge in In \ Nom(K), so it
must be an r-edge between a nominal and an element of E.
As such, it is also an r-edge in NIni (e). Consequently,

(h′(x), h′(y)) = (h(x), g(h(y))) = (g(h(x)), g(h(y)))

is an r-edge in NIni (e′) and we conclude like previously.
Assume now that (h(x), h(y)) is an i-link along r. We

need to check that (h(x), g(h(y))) is an r-edge in Ii−kn .
Since h(y) and g(h(y)) are in distance at most k− 1 from e

and e′, respectively, and NIni (e) ' NIni (e′), it follows that

NIni−k(h(y)) ' NIni−k(g(h(y))) .

Because (h(x), h(y)) is an i-link, it is also an (i − k)-link.
If h(x) has an r-successor f in In such that

NIni−k(f) ' NIni−k(h(y)) ' NIni−k(g(h(y))) ,

then (h(x), g(h(y))) is an (i − k)-link along r, unless the
successor f is g(h(y)) itself; in either case (h(x), g(h(y)))
is an r-edge in Ii−kn . The remaining possibility is that h(y)
has an r-predecessor f in In such that

NIni−k(f) ' NIni−k(h(x)) .

Because h(y) lies within distance k − 1 from e,

NIni−k(f) ⊆ NIni (e) .



Hence, g(f) is an r-predecessor of g(h(y)) such that

NIni−k(g(f)) ' NIni−k(h(x)) .

Consequently, (h(x), g(h(y))) is an (i − k)-link along r,
unless g(f) is h(x) itself; in either case (h(x), g(h(y))) is
an r-edge in Ii−kn .

Thus h′ is a homomorphism and uses links only for the
atoms of P for which h uses links. To see that h′ uses strictly
fewer links than h, recall that instead of the i-link (d, e)
along s, it uses the s-edge (d, e′), which is not a link.

SOI and SOF
The goal of this section is to prove the following theorem.

Theorem 2. The finite query entailment problem for both
SOI and SOF is 2EXPTIME-complete.

The lower bounds follow immediately from the results on
unrestricted query entailment for ALCO (Ngo, Ortiz, and
Simkus 2016) and ALCI (Lutz 2008), and Corollary 1; the
challenge is to prove the upper bounds. We develop our ar-
gument with SOI in mind, but it adapts easily to SOF (see
the full version).

Let us fix a SOI knowledge base K and a union of con-
junctive queries Q. Like for ALCOI, we can assume that
K’s ABox contains no role assertions.

Because K is normalised, complete information about re-
strictions on the types of neighbours of a node is encoded in
its unary type. Now, we would like the unary type to deter-
mine also the neighbouring nominals. This can be assumed
without loss of generality, because one can always extend K
by adding for each a ∈ Nom(K) and r ∈ Rol(K) fresh con-
cept names Ar,a, Ar−,a axiomatised with Ar,a ≡ ∃r.{a},
{a} ≡ ∀r.Ar−,a, and normalise the resulting KB.

Let I∗ be the interpretation obtained from interpretation
I by closing transitively the interpretation of each transitive
role. Note that each existential restriction satisfied in I is
also satisfied in I∗. The same holds for quantifier-free CI,
and for universal restrictions involving non-transitive roles.
For universal restrictions involving transitive roles, we en-
sure this property by adding a fresh concept name B′ for
each B ∈ CN(K) and CIs A v ∀r.B′, B′ v ∀r.B′, B′ v B
for each CI of the form A v ∀r.B with r transitive.

The last assumption we would like to make about K is
that the unary type of each element of Nom(K) is fully
specified in the ABox; that is, for all a ∈ Nom(K) and
A ∈ CN(K), the ABox contains either A(a) or Ā(a). This
can be done without loss of generality, because K |=fin Q
iff K′ |=fin Q for each K′ that can be obtained from K by
completing assertions about nominals. This adds the factor
2|Nom(K)|·|CN(K)| to the running time of the decision proce-
dure, but the overall complexity bound is not affected, be-
cause it is exponential in the size of K anyway.

Building on the results of the previous section, we show
that the existence of a finite counter-model for Q is equiva-
lent to the existence of a possibly infinite counter-model of
a special form, which generalises tree-shaped models. The
special form is based on the notion of clique-forests.

Definition 5. A clique-forest for an interpretation I of K is
a forest (a sequence of trees) whose each node v is labelled
with a subinterpretation Iv of I \ Nom(K) such that

• the sets ∆Iv are a partition of ∆I\Nom(K);
• each Iv is either a single element with all roles empty

(element node) or a clique over some transitive role with
all other roles empty and no repetitions of unary types
(clique node);

• apart from edges within cliques, in I \ Nom(K) there is
exactly one edge between ∆Iu and ∆Iv for every two ad-
jacent nodes u and v: assuming u is the parent of v, it is
an r-edge from an element of ∆Iu to an element of ∆Iv

for some r ∈ Rol(K).
Definition 6. An interpretation I of K is a SOI-forest if it
admits a clique-forest that consists of at most |K|2 trees of
branching at most |K|2, such that each element of Ind(K) \
Nom(K) occurs in some root.

Let K∗ denote the KB obtained from K by dropping tran-
sitivity declarations.
Definition 7. A counter-example for Q is a SOI-forest I
such that I |= K∗ and I∗ 6|= Q.

If I is a counter-example for Q, thanks to the initial pre-
processing, I∗ is a counter-model for Q. One could also
show that if there is a counter-model for Q, then there is
a counter-example for Q. But we are interested in finite
counter-models and for that we need an additional condition.
Recall that a path is simple if it does not revisit elements.
Definition 8. An interpretation I is safe if it does not con-
tain an infinite simple r-path for any transitive role r.

The whole argument now splits into two parts: equiv-
alence of the existence of a finite counter-model and a
safe counter-example, and effective regularity of the set of
clique-forests of safe counter-examples. Together they show
that finite query entailment can be solved by testing empti-
ness of an appropriate doubly-exponential automaton (with
Büchi acceptance condition), which can be done in polyno-
mial time. We begin from the second part, as it is needed to
prove the first one.
Theorem 3. Given a union Q of CQs, each of size at most
m, one can compute (in time polynomial in the size of the
output) an automaton of size 2|Q|·|K|

O(m)

that recognises
clique-forests of safe counter-examples for Q.

The proof of Theorem 3 is a routine automata construction
(detailed in the full version). Let us focus on the first part of
the argument.
Theorem 4. Q has a finite counter-model iff Q has a safe
counter-example.

Suppose first that there exists a finite counter-model M
for Q. We build a SOI forest I out of it using a version
of the standard unravelling. We begin by taking copies of
all elements of Ind(K) with unary types copied accordingly.
Then, recursively, for each added element d′ and each CI
A v ∃r.B that is not yet satisfied for d′ in I proceed as
follows. The element d′ is a copy of some d fromM of the
same unary type. Therefore there exists an element e inM



witnessing the CI. If e ∈ Nom(K), then it is already in-
cluded in I, and we just add an r edge from d′ to e. Assume
e /∈ Nom(K). If r is not a transitive role, we just add a copy
of e as an r-successor of d′. Assume that r is a transitive
role. Let X be the strongly connected component of r that
contains e and let X0 be a minimal set that contains at least
one element from each nonempty CM ∩

(
X \ Nom(K)

)
,

where C ranges over CN(K). By minimality, |X0| ≤ |K|.
We add to I an r-clique over a copy of X0, with an r edge
from d′ to the copy of some element f ∈ BM∩X0; f exists
because e ∈ BM∩

(
X \Nom(K)

)
. Note that no other edges

among newly added elements are present: existential restric-
tions for these nodes will be witnessed in the following steps
of the construction. Let I be the interpretation obtained in
the limit. By construction, I admits a clique-forest. For each
element at most one successor per CI is added. Because each
clique node contains up to |K| elements, the branching of
the clique-forest is bounded by |K|2. The same bound holds
for the number of trees in the clique-forest: we begin from
|Ind(K)| nodes, but then the ones corresponding to elements
of Nom(K) are removed and their children become roots.
Hence, I is a SOI forest. Because we do not unravel cliques
in transitive roles, it is safe.

Lemma 2. I is a safe counter-example for Q.

Assume now that there exists a safe counter-example I for
Q. By Theorem 3, the set of clique-forests of safe counter-
examples for Q can be recognised by an automaton. It is
well known that the automaton then accepts a regular for-
est, which has only finitely many non-isomorphic subtrees.
Hence, without loss of generality we can assume that the
clique-forest of I has p non-isomorphic subtrees for some p.
Using the methodology from the previous section we shall
turn I into a finite counter-model for Q. The main obstacle
is thatQ uses transitive roles, which are not fully represented
in I. Our solution is to replace Q with a different query that
can be evaluated directly over I. This is done by exploiting
a bound on the length of simple r-paths for transitive roles
r, guaranteed by the regularity of the clique-forest of I.

Definition 9. An interpretation is `-bounded if for each
transitive role r, each simple r-path has length at most `.

Lemma 3. I \ Nom(K) is `-bounded for ` = 2p · |K|.

Proof. Let r be a transitive role in K. Each r-path going
down the clique-forest of I contains at most p nodes. Indeed,
if there were a longer r-path, then a subtree would occur
twice on that path, which immediately leads to an infinite
simple r-path in I \ Nom(K), contradicting the safety of I.
Each simple path in the clique-forest can be split into an r-
path going up and an r-path going down. Each of them has
at most p nodes. Because each node contains at most |K|
elements, it follows that each simple r-path in I \ Nom(K)
has length at most 2p · |K|.

Lemma 4. For each J , if J \ Nom(K) is `-bounded, then
J is `∗-bounded for `∗ = (`+ 2) · (|Nom(K)|+ 1).

Let Q∗ be obtained from Q by replacing each transitive

atom s(x, y) by the disjunction∨
i≤`∗

si(x, y) ,

where si(x, y) is the conjunctive query expressing the i-fold
composition of s. Assuming that each disjunct ofQ contains
at most k binary atoms, Q∗ can be rewritten as a union of
conjunctive queries, each using at most k · `∗ binary atoms.
Lemma 5. For all `∗-bounded J , J ∗ |= Q iff J |= Q∗.

By Lemmas 3–5, we conclude that I 6|= Q∗. Now we
can use the blocking principle. Because clique nodes have
at most |K| elements and each node has at most |K|2 chil-
dren, I \ Nom(K) has bounded degree and we can consider
the n-properly coloured In, for any n. On each branch π in
In\Nom(K), letDπ be the first node for which some earlier
node Eπ satisfies NInn (dπ) ' NInn (eπ), where dπ ∈ Dπ

and eπ ∈ Eπ are the endpoints of the edges connecting Dπ

and Eπ to their parent nodes. The new interpretation Fn is
obtained as usual: we include the branch π up to the prede-
cessor of node Dπ and the edge originally leading to dπ is
redirected to eπ; edges connecting the elements of Nom(K)
with each other and with the elements of the included parts
of the branches are copied from In.

Because we started from I |= K∗, it is routine to check
that Fn |= K∗ for all n. By the initial preprocessing,
(Fn)∗ |= K. Let us fix

n = max((k · `∗)2, (`+ 1)2 + `) .

By Theorem 1, Fn 6|= Q∗. We conclude (Fn)∗ 6|= Q using
Lemmas 4–5 and Theorem 5 below.
Definition 10. A link (d, e) in I along r is external if ei-
ther no r-path from the witnessing e′ to d is disjoint from
Nom(K) or dually no r-path from e to the witnessing d′ is
disjoint from Nom(K).

By construction, all links in In along transitive roles in-
cluded into Fn are external.
Theorem 5. Assume that I \ Nom(K) has bounded degree
and is `-bounded. Let n > (` + 1)2 + ` and let J be a
subinterpretation of Inn in which all links along transitive
roles are external. Then, J \ Nom(K) is also `-bounded.

Proof. Suppose there is a simple s-path π in J \ Nom(K)
of length ` + 1, for some transitive role s. We can view
π as a conjunctive query with ` + 1 s-atoms. By applying
Theorem 1 to π we lift the inclusion homomorphism π ⊆
J ⊆ Inn to a homomorphism h : π → In , that preserves
`-neighbourhoods. Because π is disjoint from Nom(K), so
is its image. Hence, we can view h as a homomorphism

h : π → In \ Nom(K) .

Because In \Nom(K) is `-bounded, it suffices to show that
h is injective to obtain a contradiction.

Observe first that h is injective over segments of π that do
not contain links. Indeed, because In is n-properly coloured
and n ≥ |π|, in each such segment all elements have dif-
ferent colours. Hence, it suffices to show that the images of
the segments are disjoint. Suppose the images of some two



different segments overlap on an element from a strongly
connected component X of s in In \ Nom(K). Hence, all
segments between these two are entirely mapped to X . In
particular, there exists an n-link (d, e) along s such that
h(d) ∈ X and h(e) ∈ X . We claim this is impossible.

By symmetry we can assume that d has an s-successor e′
such that no s-path from e′ to d is disjoint from Nom(K) and
NInn (e′) ' NInn (e). In particular, e′ and e have the same
colour. Because n > 1, we have e′ ∈ NInn (d). We obtain a
contradiction by finding another element in NInn (d) of the
same colour as e.

Let D be the strongly connected component of s in
In \ Nom(K) that contains d. Because In \ Nom(K) is
`-bounded, all elements of D are within distance ` < n
from d. Consequently, D is isomorphic to X , because h
preserves `-neighbourhoods. Hence, there exists an element
e′′ ∈ D ⊆ NInn (d) of the same colour as e. Because e′ /∈ D,
we have e′ 6= e′′, as required for the contradiction.

SIF
ForALCIF , a tight upper bound on the complexity of finite
query entailment can be obtained by revisiting some known
and implicitly proven results on the guarded fragment with
two variables and counting (Pratt-Hartmann 2009; 2007).
We consider a slightly more general problem of finite en-
tailment modulo types, which will be useful later. For a KB
K, a query Q, and a set of unary types T ⊆ Tp(K) we write
K |=T

fin Q if for each interpretation I that only realises types
from T , if I |= K then I |= Q. This problem reduces to
finite query entailment by including into Q one CQ for each
type not listed in T , but this makes Q exponential in the size
of CN(K) and leads to a worse complexity upper bound.

Theorem 6. Given an ALCIF KB K, a union Q of CQs,
each of size at mostm, and a set T ⊆ Tp(K), one can decide
whether K |=T

fin Q in time 2O(|K|+|Q|·mm).

Corollary 2. The finite query entailment problem for
ALCIF is 2EXPTIME-complete.

Relying on Theorem 6 and our previous results for SOI, we
extend the upper bound of Corollary 2 to SIF .

Let us fix a UCQ Q and a SIF KB K. We work again
with counter-models of a special shape, this time based on
tree partitions. We assume a proviso that the ABox of K
does not contain transitive and non-transitive roles simul-
taneously; we lift it by the end of the section.

Definition 11. A tree partition of an interpretation I is a
tree T whose each node v is labelled with a finite subinter-
pretation Iv of I, called a bag, such that

⋃
v∈T Iv = I and

for each element some bag containing it is the parent of all
other bags containing it. The maximal bag size is called the
width of T .

Definition 12. An interpretation I is a SIF-tree if it admits
a tree partition such that

• the root bag contains Ind(K),
• each bag contains edges in transitive roles only (TR bag)

or in non-transitive roles only (NT bag),
• each element is in exactly two bags, one TR and one NT,

• each two adjacent bags share exactly one element.

Lemma 6. There exists a finite counter-model forQ iff there
exists a SIF-tree counter-model for Q of finite width.

Proof. Let F be a finite counter-model for Q. We turn it
into a SIF-tree counter-model I using a very simple un-
ravelling procedure. For each µ ∈ {TR, NT}, let Fµ be the
interpretation obtained from F by restricting the set of roles
to µ roles. By the proviso, the ABox of K contains only µ0

roles for some µ0 ∈ {TR, NT}. We construct the SIF-tree
top down. In the root we put Fµ0 itself. Then, iteratively,
for each element d that belongs only to a µ bag we add a
child bag obtained by taking an isomorphic copy of Fν for
ν 6= µ, in which all elements except d are replaced with their
fresh copies; in particular, each individual different from d
is replaced with an ordinary anonymous element of the same
unary type. It is routine to verify that the resulting interpre-
tation I is a model of K. The natural homomorphism from
I to F ensures that I 6|= Q. The width of I is |F|.

Let us now take a SIF-tree I of width ` that is a counter-
model forQ. We use the methodology developed for SOI to
turn I into a finite counter-model. Because |Iv| ≤ `, I has
degree at most 2 · ` · |K|. Because each r-path for any tran-
sitive role r is contained within a single TR bag, it follows
that I is (`− 1)-bounded.

For the purpose of the coloured blocking principle, we
need to ensure that each infinite branch of the tree partition
of our interpretation contains infinitely many TR bags that
consist of a single edge (pointing up or down the tree). We
achieve this by performing an additional unravelling of I.
We start with a copy of the root bag in the tree partition of I,
where elements of Ind(K) are preserved and other elements
are replaced with their fresh copies. Let d′ be an element in
the interpretation under construction that so far belongs to
only one bag X ′. By construction, d′ is a copy of some ele-
ment d of I. If X ′ is a TR bag, add a copy of the NT bag that
contains d, with d replaced with d′ and other elements re-
placed with their fresh copies. Assume that X ′ is an NT bag.
For each TR role r and each r-successor e of d, add three
new bags. First, add a bag consisting of d′, a fresh copy e′ of
e, and an r-edge from d′ to e′. Then, for each µ ∈ {TR, NT},
add a copy of the µ-bag containing e, with e replaced with e′
and all other elements replaced with their fresh copies (dif-
ferent for each µ).

Let J be the interpretation obtained in the limit. Because
in the tree partition of I TR bag and NT bags alternate, in
the tree partition of J NT bags have only new single-edge
TR bag children, new single-edge TR bags have one NT bag
child and one TR bag child, and copies of original TR bags
have only NT bag children. Consequently, on each infinite
branch, there are infinitely many single-edge TR bags.

Interpretations of transitive roles in J need not be transi-
tive relations, but it is straightforward to check that J is a
model of K∗; in particular, functionality declarations were
not affected because the new single-edge bags involve only
TR roles (non-functional). Moreover, J ∗ 6|= Q because J
maps homomorphically to I and, consequently, so does J ∗.
The degree in J is bounded by 2 · ` · |K|+ 1, because each
element belongs to one TR bag and one NT bag of size at



most `, and possibly one single-edge bag. Finally, J is 2`-
bounded because in the worst case a simple r-path for any
transitive role r goes first through a bag with at most ` ele-
ments, then two single-edge bags, and then another bag with
at most ` elements.

We can now apply the coloured blocking principle. Sup-
pose each disjunct of Q uses at most k binary atoms. Let
`∗ = 2` and let Q∗ be obtained from Q by replacing each
transitive role atom S by the disjunction∨

i≤`∗
Si(x, y) ,

and rewriting the resulting query as a UCQ. Each CQ in Q∗
has at most k · `∗ binary atoms. Because J has bounded de-
gree, we can consider its n-proper colouring Jn for any n.
On each branch π of the tree partition of Jn, let Dπ be the
first single-edge TR bag for which some earlier single-edge
TR bag Eπ satisfies NJn

n (dπ) ' NJn
n (eπ), where dπ ∈ Dπ

and eπ ∈ Eπ are the elements that Dπ and Eπ share with
their respective parents. The new structure Fn is obtained
like before: we include the branch π up to the predecessor
of node Dπ and the edge in Dπ is redirected to the succes-
sor of eπ in Eπ . Because J is a model of K∗ and we only
redirected edges in non-functional roles, it follows that Fn
is a model of K∗. Consequently, F∗n |= K. Let us now fix

n = max((k · `∗)2, (`∗ + 1)2 + `∗) .

By Theorem 1, we get Fn 6|= Q∗. Because J is `∗-bounded
and we clearly used only external links in the construction
of Fn, by Lemma 5 and Theorem 5 we obtain F∗n 6|= Q.

Thus, it suffices to consider counter-models that are SIF-
trees of finite width, but there is a priori no bound on the
width, which hinders direct application of automata. Instead,
we show that one can test existence of SIF-tree counter-
models without manipulating SIF-trees directly.

Our first step is to adjust the structure of Q’s disjuncts to
the structure of SIF-trees. To keep this as simple as possi-
ble, we make a second proviso that each CQ constituting Q
is connected. We eliminate it towards the end of the section.
Let P be one of the CQs constituting Q. It is convenient to
think P as an interpretation with the domain var(P ) and in-
terpretations of concepts and roles given by the atoms of P .
Whenever P is mapped homomorphically into a SIF-tree
I, the image of P is a SIF-tree as well. Indeed, because P
is connected, a witnessing tree partition of the image of P
is naturally induced by the tree partition of I. Hence, if Q
is a union of n CQs of size at most m, over SIF-trees Q is
equivalent to

Q1 ∪Q2 ∪ · · · ∪Qp , (*)

where the queries Qi are all non-isomorphic SIF-trees ob-
tained as homomorphic images of the CQs of Q, each using
a fresh set of variables, and p ≤ n ·mm.

For all µ ∈ {TR, NT} and x ∈
⋃
i var(Qi), letQµ,x be the

query obtained by taking all bags that are reachable from the
µ bag containing x without visiting the other bag containing
x, as illustrated in Figure 1. For all x ∈ var(Qi) it holds that
Qi = QTR,x ∧QNT,x.

Figure 1: Queries QTR,x and QNT,x for x ∈ var(Qi).

LetKQ be obtained fromK by extending the TBox as fol-
lows: for each µ ∈ {TR, NT} and x ∈

⋃
i var(Qi), we add

a fresh concept name Aµ,x and the complementary concept
name Āµ,x, together with the usual axiomatisation. The in-
terpretation of Aµ,x is intended to collect elements d such
that Qµ,x can be matched with x mapped to d.

A specialisation Z̃ of a bag Z of query Qi is obtained
by including for each x ∈ var(Z) and each µ ∈ {TR, NT}
either the atom Aµ,x(x) or the atom Āµ,x(x), where Āµ,x
is the concept name complementary to Aµ,x. A specialisa-
tion Z̃ of a µ-bag Z of Qi is consistent if for all x it holds
that: Z̃ contains Aµ,x(x) iff for all y ∈ var(Z̃) \ {x}, Z̃
contains Aν,y(y) with ν 6= µ. An interpretation I (with
the extended set of concept names) is consistent if it does
not match inconsistent specialisations of bags of queries
Q1, Q2, . . . , Qp.

For a SIF KB L and µ ∈ {TR, NT} we write L � µ for
the KB obtained by dropping all ABox assertions, CIs, and
declarations that involve ν-roles for ν 6= µ.

Definition 13. T ⊆ Tp(KQ) is a counter-witness for Q if

• for all x ∈
⋃
i var(Qi), each τ ∈ T contains ĀTR,x or

ĀNT,x;
• assuming K uses only µ0-roles in the ABox, there exists a

consistent finite model of KQ �µ0 that realises only types
from T ; and

• for all τ ∈ T and µ ∈ {TR, NT} there exists a consistent
finite model of the TBox of KQ �µ that realises type τ and
realises only types from T .

Lemma 7. Q admits a SIF tree counter-model of finite
width iff there exists a counter-witness for Q.

Proof. Let I be a SIF-tree counter-model for Q; we do not
need to assume that I has finite width. Let IQ be obtained
by extending I with the unique interpretation of the con-
cept names Aµ,x and Āµ,x faithful to their intended mean-
ing: if Qµ,x can be matched in I with x mapped to d, then
d ∈ (Aµ,x)

IQ , and otherwise d ∈
(
Āµ,x

)IQ . By construc-
tion, IQ is consistent, and so is each of its bags. Let T be
the set of types realised in IQ. Because I 6|= Q, no type
from T contains both ATR,x and ANT,x, which gives the first
condition in Definition 13. The root bag of IQ witnesses the
second condition. As each element of IQ belongs to a TR



bag and a NT bag, each τ ∈ T is realised in some TR bag
and in some NT bag. These bags witness the third condition.

Conversely, let T ⊆ Tp(KQ) be a counter-witness for Q.
Let I0 be the interpretation guaranteed by the second condi-
tion, and let Iµ,τ be interpretations guaranteed by the third
condition. From them we build a SIF-tree counter-model
forQ in a top-down fashion. The root bag is I0. Take an ele-
ment d that so far only belongs to a µ-bag. By construction,
the type τ of d belongs to T . Let ν 6= µ. We add to the SIF-
tree under construction a copy of Iµ,τ , with one element of
type τ replaced by d. Because K is normalised, the resulting
SIF-tree I is a model ofK. The tree partition of I has finite
width because each bag is a copy of one of the finitely many
finite interpretations I0 and Iµ,τ .

It remains to see that I 6|= Q. We first prove by in-
duction on the size of Qµ,x that for each homomorphism
f : Qµ,x → I, it holds that f(x) ∈ A Iµ,x. Let Zx and Zf(x)
be the µ-bags of x and f(x), respectively. By the inductive
assumption, f(y) ∈ A Iν,y for all y ∈ Zx \ {x} and ν 6= µ.
BecauseZf(x) matches only consistent specialisations, there
is a consistent specialisation Z̃x of Zx such that f induces
a homomorphism from Z̃x to Zf(x). From the consistency
of Z̃x it follows that f(x) ∈ A Iµ,x. Now, if I |= Q, then
there is a homomorphism f : Qi → I for some i. Then,
f(x) ∈ A ITR,x∩A INT,x for all x ∈ var(Qi). Because all types
realised in I occur in T , this contradicts Definition 13.

Theorem 7. The finite query entailment problem for SIF
is in 2EXPTIME.

Proof. Let K be a SIF KB using only TR or only NT roles
in the ABox and let Q be a union of connected CQs, each of
size at most m. By Lemmas 6-7, testing K |=fin Q amounts
to deciding if there exists a counter-witness forQ, which can
be done using the following variant of type elimination (Pratt
1979; Rudolph, Krötzsch, and Hitzler 2012). Let T0 be the
set of types from Tp(KQ) that contain either ĀTR,x or ĀNT,x

for all x ∈
⋃
i var(Qi). For T ⊆ T0, let F (T ) be the set of

types τ ∈ T0 such that for all µ ∈ {TR, NT} there exists a
consistent finite model of the TBox of KQ � µ that realises
type τ and realises only types from T . Then, a set T is a
counter-witness if it is a fixed point of the operator F and
satisfies the second condition of Definition 13. Notice that
F is a monotone operator on subsets of T0. Consequently, F
has the greatest fixed point and it can be obtained by iterating
F on T0:

T0 ⊇ F (T0) ⊇ F 2(T0) ⊇ · · · ⊇ F i(T0) = F i+1(T0)

for some i ≤ |T0|. Thus, a counter-witness for Q exists iff
F i(T0) satisfies the second condition of Definition 13. It re-
mains to see how to test this condition and how to compute
F (T ) for a given T . Both these tasks reduce to finite query
entailment modulo types for simpler logics.

A given T satisfies the second condition of Definition 13
iff it is not the case thatKQ �µ0 |=T

fin Q
′, where the UCQ Q′

is the union of all inconsistent specialisations of the bags of
queries Q1, Q2, . . . , Qp (*). The size of KQ �µ0 is bounded
by the size of KQ which is |K|+O(mp), and Q′ is a union
of at most p · 22m CQs of size O(m).

If µ0 = NT, then KQ � µ0 is an ALCIF KB. By
Theorem 6, we can decide if KQ � µ0 |=T

fin Q′ in time
2O(|KQ�µ0|+|Q′|·mm), which is 2O(|K|+mp·2poly(m)).

If µ0 = TR, then KQ � µ0 is a SOI KB (with no nomi-
nals used). Using our previous results on SOI, we can de-
cide if KQ � µ0 |=fin Q

′ in time 2|Q
′|·|KQ�µ0|O(m)

, which is
2mp·(|K|+mp)

O(m)

. We can easily incorporate the set of types
T without increasing the complexity: if the ABox contains
some type not in T the algorithm immediately accepts; oth-
erwise, the automaton is constructed like before, except that
the set of all types is replaced everywhere with T .

To compute F (T ) for a given T we need to test for each
τ ∈ T and µ ∈ {TR, NT} whether there is a consistent fi-
nite model of the TBox of KQ � µ that realises type τ and
realises only types from T . For each τ and µ this test can
be done just like above, except that in KQ � µ we replace
the ABox with {A(b) | A ∈ τ} where b is a fresh indi-
vidual name. The complexity bounds for a single test carry
over. To compute the fixed point we need at most 22mp+|K|

iterations of F , each requiring at most 22mp+|K| SOI tests
and at most 22mp+|K| ALCIF tests. These factors are ab-
sorbed by the asymptotic bounds on the cost of single tests.
Substituting the bound p ≤ |Q| · mm we obtain the bound
2(|K|+|Q|)

poly(m)

for the total running time.

Let us now lift the provisos. Take an arbitrary SIF KB
K and arbitrary UCQ Q. Like for SOI, we can assume
that each individual has its unary type fully specified in the
ABox. Consider two KBs K1 and K2 obtained from K by
removing from the ABox of K all transitive and all non-
transitive roles, respectively. It is not hard to prove (see the
full version) thatK 6|=finQ iff there exist finite interpretations
F1 |= K1 and F2 |= K2 such that for each disjunct P of Q,
for each V ⊆ var(P ), for each function h : V → Ind(K),
for each partition of the atoms of P into P1 and P2 with
var(P1)∩var(P2) ⊆ V , for some i it holds thatFi 6|= h(Pi),
where h(Pi) is a CQ with constants obtained from Pi by
applying h to variables in V . For each P , V , h and each
partition P1, P2 of P , guess whether it is h(P1) or h(P2)
that will not hold. Let Qi be the union of all chosen h(Pi);
note that this is a union of exponentially many CQs of size
bounded by the maximal size of Q’s CQs. (The number of
possible Qi is doubly exponential, so eliminating this non-
determinism adds a doubly exponential factor to the running
time.) It holds that K 6|=finQ iff Ki 6|=finQi for all i, and each
Ki respects the proviso. For the second proviso, consider
R = R1∪· · ·∪Rp withRj = R1

j ∧· · ·∧R
qj
j , where Rkj are

connected CQs over disjoint sets of variables and constants.
Then for any KB L, L 6|= finR iff L 6|= finR

k1
1 ∪ · · · ∪ R

kp
p

for some k1, . . . , kp. The number of sequences k1, . . . , kp to
check is singly exponential in p. Applying this construction
to Ki and Qi, we arrive at the case where both provisos are
satisfied. Because Qi is an exponential union of CQs, this
step introduces a doubly exponential factor to the running
time, but the size bounds for the involved KBs and UCQs
are not affected. After eliminating constants from Qi in the
usual way, we can use the algorithm described above.



Conclusions and Discussion
We have established decidability of finite query entailment
of SOI, SOF and SIF , and proved that the combined com-
plexity coincides with that of unrestricted query entailment
(2EXPTIME-complete in all cases). Decidability of finite
query entailment for SOIF remains open.

Since existing 2EXPTIME-hardness proofs hold for fi-
nite query answering for both ALCI and ALCO, our up-
per bound is tight for all logics containing either of these.
For SF and its fragments, the best known lower bound is
co-NEXPTIME of query answering in S (Eiter et al. 2009).

One crucial aspect in our techniques is the ability to de-
fine a suitable notion of decomposition of counter-models.
This appears to be more challenging for logics with role in-
clusions, and we conjecture that for fragments of SOIF ex-
tended with role inclusions a different approach is needed. A
promising direction for future work is to push our techniques
to establish tight bounds for Horn fragments of SOIF .
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