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Abstract

Hexagonal boron nitride (h-BN) is a critical material for 2D electronic devices and

has attracted considerable attention owing to its structural similarity to graphene.

However, it is a dielectric and modifying its electrical properties is a challenge. Hydro-

genation has been calculated as a potential method, although is rarely experimentally

measured. Here, dielectric spectroscopy of hot-pressed h-BN after various hydrogen

treatments has been investigated. Untreated h-BN showed a frequency independent

dielectric constant (4.2 ± 0.2) and an immeasurably low dielectric loss factor, demon-

strating the ideal dielectric nature of h-BN across the 103 to 1010 Hz range. However,

hydrogen plasma (H+) treatment in a microwave chemical vapour deposition (CVD) re-

actor amplified the complex permittivity dramatically, introducing Havriliak-Negami

(HN) type dispersion (εs ≈ 20 ± 2, ε∞ ≈ 4.2 ± 0.2) and a percolating long range

conductivity (∼ 0.32 mS/m). Annealing in molecular hydrogen (H2) at similar CVD

temperatures showed minimal impact, implying that H2 diffusion is not the cause.

Oxygen plasma treatment, however, removes the percolating conductivity but the De-

bye mechanism remains. This leads to the conclusion that the electrical conductivity

of h-BN ceramics can be modified through hydrogenation, using atomic hydrogen. The

potential as a tunable wide-band gap semiconductor is highlighted however for insu-

lating dielectric substrate applications, microwave CVD may destroy these desirable

properties.
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1 Introduction

The dielectric properties of hexagonal boron nitride (h-BN) have received recent interest

owing to its two-dimensional (2D) structural similarity to graphene, albeit electrically in-

sulating. Since graphene is incredibly sensitive to the environment, dielectric encapsulation

using h-BN is a possible stabilisation method.1–3 h-BN has a small lattice mismatch with

graphene of approximately 1.5 to 1.7%,4,5 a high band gap of 5.97 eV,4 high dielectric

strength6 and a low dielectric constant (ranging from 2 to 5).7,8 There are also contrast-

ing dielectric applications of h-BN, including microwave absorbing composites using h-BN

as an insulating inclusion, as well as potential biomedical applications.9–12 As a dielectric

substrate for graphene, h-BN is commonly produced using thin film sputtering or chemical

vapour deposition (CVD). The resultant material may also include unwanted BN phases

including amorphous and turbostratic boron nitride (a-BN and t-BN). Recent progress has

been made through sputtering onto nanocrystalline diamond substrates, with a lower density

of a-BN and t-BN, although at slow deposition rates of hundreds of nanometres per hour.13

The hot-pressed method can produce thick h-BN ceramics using boric acid binders, with

pores leading to an increased hygroscopicity. From an electronic device perspective, thicker

dielectrics of h-BN are favourable to contain stray electromagnetic fields.

Graphene deposition using CVD involves exposing the substrate to a carrier gas at

high temperatures (>800 ◦C). Successful deposition has been demonstrated using microwave

plasma CVD in hydrogen (H2) on Cu substrates.14,15 h-BN substrates can survive these high

temperatures (stability up towards ∼1000 ◦C).16 It would be assumed that the favourable

low dielectric constant of the h-BN is unchanged, however, like graphene, sp2 bonding is
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prone to etching. Reactive H+ ions are known to etch sp2 in BN,17 partially transform sp2

into sp3 through hydrogen termination of dangling bonds18 and diffuse through and distort

h-BN layers.19 A change in the polarisability is expected, especially with hydrogenation,

though this hypothesis is rarely tested. Also, the conventional tube furnace CVD meth-

ods, where graphene is deposited on h-BN in H2 (>800 ◦C), may also affect the dielectric

properties.20–22

Dielectric spectroscopy of h-BN is an important research area for low dielectric constant

graphene substrates and while there is much in the literature on its calculation, experimental

measurements are uncommon, let alone studies of hydrogenation. Notable works in the radio

frequency (RF) domain by Kim et al. demonstrate the favourably low dielectric constant,7

while Shi et al. show layer stacking effects of BN.23 Previous dielectric measurements have

been conducted in the RF or optical range, though rarely at microwave frequencies.24

This work shows the effect of atomic and molecular hydrogen treatment (plasma and an-

nealing) on the broadband (103 to 1010 Hz) dielectric properties of h-BN, achieved using well-

established non-destructive dielectric spectroscopy methods, including parallel plate capaci-

tor (PPC), broadband coaxial probe (BCP) and microwave cavity perturbation (MCP).25,26

2 Theory

2.1 Complex permittivity

The complex permittivity is defined as the ability of a material to polarise in an electric field

with the imaginary part associated with the time-harmonic polarisation loss:

εr(ω) = ε′r(ω)− jε′′r (ω) (1)

where ε′r(ω) is the frequency dependent dielectric constant, ε′′r (ω) is the dielectric loss fac-

tor, ω is angular frequency in rad/s or 2πf and f is frequency in Hz. Dielectric polari-
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sation mechanisms in solids arise from free charge conductivity (Drude DC model), space

charge polarisation in inhomogeneous conducting mixtures or dipolar relaxation (Drude AC

or Debye/Havriliak-Negami models) and bound electronic polarisation (Lorentz model).27

In the case of non-polar materials, dipolar relaxation is non-existent and so too are Lorentz

based frequency dependent contributions from electronic relaxation when measuring at much

lower than terahertz frequencies. For percolating free charge conductivity or long range con-

ductivity, the dielectric loss factor follows:28,29

ε′′r, Drude(f) ≈ σ

ωε0

(2)

where ε0 is the permittivity of free space and σ is the free charge conductivity in S/m. A

characteristic ω−1 dependence in the dielectric loss implies this mechanism. For space charge

polarisation, both real and imaginary parts are modelled by Debye/Havriliak-Negami type

relaxations:27

εr, HN ≈ ε∞ +

(
εs − ε∞

[1 + (jωτ)α]
β

)
(3)

where εs and ε∞ are the low and high frequency dielectric constants, respectively, τ is the

time constant of the hopping process and α and β are fitting exponents as empirical values

rarely follow the ideal Debye model (where α = β = 1). The result is a decrease in the real

part and a loss peak at the relaxation frequency of 1/τ .

3 Experimental

The complex permittivity of most materials can be measured, broadly speaking, with two

approaches: broadband transmission/reflection and resonant techniques, whereby the former

allows the observation of dispersion from frequency dependent polarisation mechanisms while

the latter methods offer high narrowband sensitivity.

4
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3.1 Parallel plate method (PPC)

The parallel plate method is the simplest non-resonant approach to obtaining the complex

permittivity, whereby the material is contacted using two metallic electrodes and impedance

is measured, diagram shown in Figure 1. The complex permittivity is related through:30

C − jG
ω

= keffεr(ω) (4)

where C is the capacitance, G is the conductance, keff is a geometrical constant found from

an air-measurement or of a known calibration sample. The first term of (4) can be obtained

by measuring the fixture in free space. The sample must cover the entirety of the electrode,

whereby the out-of-plane dielectric value is measured for flat samples.

3.2 Broadband coaxial probe (BCP)

The open ended coaxial probe is a reflection based method which uses a similar capacitance

perturbing approach in that a coaxial cable is terminated into free space or a dielectric sam-

ple. The radial transverse electromagnetic fields which exist within the cable are suddenly

interrupted by a free space section, giving rise to a predominantly parallel field with some

perpendicular fields into the sample, diagram shown in Figure 1. Assuming that the sample

occupies infinite space at the end of the probe, the complex permittivity can be obtained

using the reflection coefficient. This assumption is fulfilled by having a sample several hun-

dreds of microns thick for a millimetre small coaxial aperture. The impedance has been

measured here through scattering parameters and the extraction of complex permittivity is

approximated as follows:25

εr(ω) ≈ 1

jωε0C0Z0

(
1− ΓL/Γa

1 + ΓL/Γa

)
+ 1 (5)
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where ΓL and Γa are the air and sample terminated complex reflection coefficients, respec-

tively, Z0 is the characteristic impedance taken as 50 Ω and C0 is the probe capacitance

which may be obtained by measuring a material of known dielectric constant. In this study,

we have calibrated the BCP to a polytetrafluoroethylene (PTFE) standard.

3.3 Microwave cavity perturbation (MCP)

The microwave cavity perturbation method is a resonant technique whereby the sample is

placed within the electric (E) or magnetic (H) fields of a microwave cavity resonator and the

presence of the sample within the field alters the resonant frequency of the system, diagram

shown in Figure 1. Differences in the unperturbed and perturbed response are attributed to

the dielectric or magnetic properties, depending on the volume perturbation within the E

or H field as given by the following:

−∆ω

ω0

≈ εr(ω)− 1

1 +N [εr(ω)− 1]

Vs

Vm

(6)

where ∆ω/ω0 is the fractional change in complex resonance caused by a sample perturbation,

Vs and Vm denote the sample volume and mode volume of the cavity, respectively and N is

the geometric sample depolarising factor which is positive and less than or equal to unity.26

For low permittivity samples placed in minimal depolarising geometry N ≈ 0. In other cases,

N may be obtained analytically, through finite element modelling, or through measurement

of a known sample.26,31

4 Experimental Method

The samples used were commercially available hot-pressed h-BN ceramics used in previous

studies.32 The as received h-BN substrates have dimensions of ∼ 0.5×10×10 mm. Hydrogen

plasma treatment of the as received h-BN was carried out using a Seki Technotron AX6500

microwave CVD reactor (4 kW at 50 Torr, 500 sccm of H2 for 1 hour at ∼ 800◦C). The

6

Page 6 of 32

ACS Paragon Plus Environment

ACS Applied Electronic Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



substrate temperature was monitored using a Williamson dual wavelength pyrometer. After

the H-plasma treated sample was measured, attempts to remove the hydrogenation through

oxygen termination was achieved at room temperature using an RF oxygen plasma in an

evacuated PE-25 Plasma Etch chamber (120 W, 30 sccm of O2 for 1 minute). The annealed

samples were treated using a furnace at ∼ 800 ◦C in vacuum or hydrogen ambient (100 sccm

of H2 at 7.5 Torr for 1 hour). Samples were also dipped in deionised water before annealing

to encourage hydrogen uptake.

Material characterisation was carried out using Raman and x-ray photoelectron spec-

troscopy (XPS). Raman spectroscopy was conducted using a Renishaw inVia Reflex spec-

trometer with a green laser (λ = 514 nm, ×20 objective). Spectra was obtained from 3

separate regions on the sample surface and have been corrected by subtracting a background

signal, fitted to a fourth order polynomial. XPS was conducted using a Thermo scientific K-

Alpha system utilising a micro focused monochromatic Al Kα X-ray source operating at 72

W (6 mA x 12 kV). Survey scans were performed with coarse step energies of 1eV, and high

resolution scans were performed with fine steps of 0.1 eV. Data was analysed using CasaXPS

(v2.3.23) after removal of Shirley type background, using Scofiled sensitivity factors and an

electron energy dependence of 0.6.

Dielectric measurements have been carried out from 1 kHz to 10 GHz. The PPC method

has been conducted from 1 kHz to 1 MHz (Keysight E4990A impedance analyser and

16451B). For moderately conductive samples, electrode polarisation (EP) introduces an addi-

tional inverse power law artefact in PPC (∝ f−γ).33 This has been accounted for by assuming

a static low frequency dielectric constant and extrapolating the BCP ε′r value, revealing the

long range conductivity component. The BCP method has been conducted from 10 MHz to

10 GHz (Keysight N5232A vector network analyser) with an estimated penetration depth of

<0.2 mm.25,34 MCP has been conducted with an Al rectangular cavity at 2.5, 4.6 and 5.5

GHz.26 An additional WG14 waveguide cavity was used at 4.5, 5.6, 7.4 and 9.6 GHz to cor-

roborate the Al cavity. For the unperturbed response, an acetate sheet was used to suspend

7
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the sample in the centre of the cavity. Prior to sample measurement, a 1.5 × 10 × 10 mm

piece of PTFE was used as a calibration standard. The well-known non-dispersive dielectric

nature of PTFE allowed the different methods to be lined up across the frequency range

with the PPC value as reference. Multi-meter measurements were also obtained using probe

contacting only. Metal contacts or devices were not deposited in order to preserve the sur-

face integrity and to decouple any additional effects associated with the deposited electrodes.

This means that all dielectric measurements are obtained at lower power, however, the ad-

vantages of using the PPC, BCP and MCP fixtures are that surface measurements can be

made electronic properties without any additional electrode fabrication steps or significant

surface damage.

5 Results

5.1 Complex permittivity

The measured complex permittivity of the PTFE, as received h-BN, plasma treated h-BN

and annealed h-BN samples are given in Figures 2 and 3 and Tables 1 and 2. The PTFE

standard gave a nominal value of 2.05 across the low kilohertz to megahertz frequency range.

Since PTFE is assumed non-dispersive, this value is extrapolated to higher frequencies,

allowing the PPC, BCP and MCP methods to be compared for the h-BN samples. It is

also shown that there are considerable variations from 1 to 10 kHz which are systematic

errors associated with the sensitivity of the measurement. From Table 2 the WG14 MCP

measurements showed much higher losses with increasing frequency, particularly at 9.6 GHz.

Since it is well-known that PTFE has negligible loss at gigahertz frequencies, the additional

loss is likely a systematic error associated with the strong coupling to the resonator.

The as received h-BN gave a dielectric constant of 4.3±0.1 in the kilohertz to megahertz

range, in close agreement with the analytically calculated out-of-plane value.35 Even though

h-BN is 2D, the material is a compressed ceramic and so an anisotropic value was not

8
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obtained, rather an averaged isotropic value. With increasing frequency, there was minimal

change with a value of 4.2±0.2 obtained using the BCP method. In the gigahertz range,

MCP corroborated the BCP values as shown in Table 1. As with the PTFE sample, the

dielectric loss was immeasurable in the megahertz to gigahertz range, with the same artefact

of the slight increase at 9.6 GHz. The negligible loss and low dielectric constant demonstrates

the favourable insulating dielectric properties of h-BN.

After H-plasma treatment of the as received samples, the complex permittivity increased

dramatically, with dispersive features. Starting with the MCP values at gigahertz frequen-

cies, the dielectric constant increased from the untreated sample to 4.726 ± 0.006 at 2.5

GHz though remained at a similar value to the untreated of 4.101± 0.001 at 9.6 GHz. The

dielectric loss, however, increased substantially from immeasurable to 1.48±0.01 at 2.5 GHz

and decreasing to 0.38± 0.01 at 9.6 GHz, characteristic of a relaxation process occurring at

lower megahertz frequencies. The BCP data confirmed this relaxation mechanism, with an

approximate Havriliak-Negami (HN) model (εs = 20, ε∞ = 4.2, τ−1 = 150 MHz, α = 0.9

and β = 1). Finally, towards lower frequencies, the conductivity was large enough to induce

EP in the PPC method. The corrected data, extrapolated from the BCP dielectric constant,

revealed a percolating free charge conduction mechanism of approximately 0.32 mS/m. This

value was corroborated with contacting multi-meter measurements of 0.1 to 0.5 mS/m. All

other samples could not be measured due to their high resistivity.

When the as received h-BN samples were exposed to similar elevated temperatures in a

H2 atmosphere, minimal change in the complex permittivity was observed. Figure 3 shows

that there was a small decrease in the overall dielectric constant and a very small increase

in the low frequency loss. Similar values were obtained for vacuum annealed samples while

wet annealing to encourage H2 uptake also gave minimal change. This result demonstrates

that exposing h-BN to H2 at elevated temperatures has minimal impact to the electrical

properties.

After exposing the H-Plasma treated sample to an RF O-plasma the dispersive features

9
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change. Starting with the MCP values, the dielectric constant follows a similar trend to the

H-Plasma sample, with slightly reduced values of 4.428 ± 0.006 at 2.5 GHz, decreasing to

3.892± 0.006 at 9.6 GHz, with measurements at intermediate frequencies following a similar

trend. The lower values imply that the megahertz relaxation frequency has decreased. This

is corroborated in the BCP measurement (τ−1 = 60 MHz, α = 0.9). At lower frequencies,

however, the percolating conduction is non-existent. Consequently, no EP correction was

needed at all on the sample. The static dielectric constant has remained similar to the H-

plasma treated sample (εs = 20), however, a discrepancy in the HN relaxation behaviour is

noticed between the PPC and BCP methods. The reason for this is due to the measurement

technique, attributed to the different E field orientations and effective probing area; PPC

measures perpendicular to the sample plane while BCP measures predominantly parallel as

is shown in Fig. 1. Assuming that both measurements relax to the same ε∞ value, the PPC

relaxation occurs at a much lower frequency with a broader characteristic (τ−1 = 320 kHz,

α = 0.48). This O-plasma experiment demonstrates that the percolating conductivity from

the H-plasma treatment can be switched off, however, the dielectric relaxation mechanisms

remain.

5.2 Raman Spectroscopy

Structural characterisation of the samples are shown in the Raman data in Fig. 4, reveal-

ing that the predominant phase in the as received BN ceramic is hexagonal (1364 cm−1),

with almost no detectable cubic phase (1055 cm−1).32,36 After H-plasma treatment, there

is minimal change in the spectra with a similar result for the subsequent O-plasma treated

sample. Curiously, a very small band is apparent at approximately 1580 cm−1 which is at-

tributed to the G-Band of sp2 carbon. This is most likely associated with the formation of

trace carbon contaminants that have been incorporated into the ceramics from etching of

the sample holder. Similarly, for the H2 and vacuum annealed samples, the h-BN peak is ap-

parent with a very small G-Band. However, the origin of this band is most likely associated

10
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with contaminants from the graphite crucible during annealing. While carbon contaminated

crucibles cannot be avoided, this band is incredibly small in comparison to the h-BN peak

and only implies a very small concentration of carbon contamination. This is an interesting

result and demonstrates that the increase in dielectric properties is less likely to be due to

an increase in sp2 carbon contamination since both the plasma and annealed samples show

this band, even though sp2 carbon is known to increase the complex permittivity of various

materials.26,37 However, Raman spectroscopy is not effective for the quantification of surface

carbon features. Microscope images are given only for visual reference in Fig. 4 and show

that there was minimal visual differences between the as received and the annealed sample;

similar images were obtained for the wet and vacuum annealed samples. The plasma treated

sample, however, showed significant discolouration.

5.3 X-Ray Photoelectron Spectroscopy

Quantification of the surface is measured using XPS, shown in Fig. 6. The untreated h-BN

shows four distinct regions in the survey spectra, located at ca. 191, 285, 398 and 534 eV,

attributed to the core B1s, C1s, N1s and O1s spectra respectively. Weak corresponding

KLL spectra was also found at higher binding energies. The B1s spectra is ascribed to B-N

bonding (190.6 eV), while the higher binding energy peaks (191.2 eV and 193.6 eV) with

much lower intensity indicate concentrations of boric oxides such as B2O3 which are likely

introduced by the binder.38–40 The O1s spectra also shows these oxides associated with

O=B (534) and O-B bonding (532.5 eV). The N1s spectra resolves two peaks associated

with predominantly N-B bonding (398.2 eV) and some N-C bonding (398.8 eV). Finally,

the C1s spectra shows C-C bonding (284.8 eV) and some C-O bonds (285.8 eV), attributed

to surface adventitious carbon and contamination.36,41 Note that the C=C peak at lower

binding energies was not detected, implying that the marginal sp2 carbon contributions

observed in Raman is deeper than the XPS probing depth. Atomic percentages are given in

Fig. 5, calculated by integrating the the background subtracted spectra and correcting for the
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elemental sensitivity values, whereby a B:N atomic ratio of approximately 1.32:1 was found.

The higher boron content is due to the boric oxides on the surface, as is corroborated by a

high oxygen ratio. Additionally, the surface adventitious carbon contamination is significant

at 14%.

After H-plasma treatment, the dominant 190.6 eV peak in the B1s spectra remains in all

samples while the 193.6 eV peak became undetectable and the 534 eV peak in the O1s spectra

has diminished (ca. 2%) and shifted to a lower binding energy of ca. 532.5 eV. This result

has been reported in other works and is ascribed to a decreasing concentration of B2O3.38

This implies that the trace binder surface components are etched in the H-plasma. The B-N

peaks in the B1s and N1s spectra have increased in intensity and yield a B:N ratio of 1.07:1,

indicative of a much cleaner h-BN surface. The C1s spectra has also decreased between the

as received and the H-plasma treated (ca. 11%). After annealing in H2, the samples are

similar to the H-plasma treated sample although the O1s decrease is less dramatic (ca. 3 to

5%), and the surface carbon contamination is much lower (ca. 6 to 8%). After O-plasma

treatment of the H-plasma treated sample, the BN ratio is similar at 1.1:1 although most

notably the O1s spectra features a large O-B bonding peak, indicative of oxygen termination.

The surface oxygen content increases to 10%, giving evidence towards removing the previous

surface hydrogen with oxygen termination. Additionally, in the C1s spectra, another peak

emerges which is associated with C=O bonding (288.9 eV).

6 Discussion

The complex permittivity data of the untreated h-BN results are similar to the calcu-

lated values reported by several authors.5,7,35 For h-BN, the 2D structure inherently implies

anisotropy, to which the anticipated bulk complex permittivity in-plane (εr,‖) is dissimilar

to the out-of-plane value (εr,⊥); calculations demonstrate that electronic polarisation pre-

dominantly contributes with εr,‖ > εr,⊥.35 Even though the field orientations vary amongst
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PPC, BCP and MCP, anisotropy is not measured implying that the macroscopic dielectric

properties of hot-pressed h-BN ceramics is isotropic.

The most pertinent finds in this study are (i) the dielectric properties of h-BN when

annealed in H2 at ∼ 800 ◦C are minimally changed, (ii) when exposed to atomic H, a huge

amplification occurs with an associated relaxation in the megahertz range in addition to

(iii) a long range conduction mechanism and finally (iv) the disappearance of the long range

conduction after a short oxygen plasma exposure.

In the case of (i), the temperature stability of h-BN has been demonstrated and that

tube furnace type CVD methods to deposit graphene are seemingly least likely to damage

the insulating properties of the h-BN. The peculiar result of (ii) and (iii) demonstrates

that atomic H leads to an enhanced complex permittivity including a DC conductivity. A

diagram of the following explanation is given in Fig. 7. The DC conductivity is due to

percolating pathways on the surface and in the bulk. The enhanced complex permittivity

and HN relaxation likely stems from a form of Maxwell-Sillars-Wagner type polarisation of an

insulating host medium with small conducting regions and pathways.42 In an electric field,

the charges migrate along these pathways and are impeded by the insulating boundaries,

resulting in charge build-up and an amplified capacitance effect. At shorter timescales, or

higher frequencies, these charges never polarise resulting in relaxation at a characteristic

time (τ−1 = 150 MHz in Fig. 2). Additionally, after the short O-plasma exposure, most of

the surface conducting regions are removed including direct connection to the percolating

ones. This is the reason why the DC conductivity disappears and instead a lower frequency

relaxation is observed since now the charges are impeded by the less conductive oxygen

terminated surface (τ−1 = 320 kHz in Fig. 2).

For the plasma treated h-BN, however, regions of some conducting phase must exist.

There are a number of possibilities for this, where the less likely causes are explained first.

The first is electronic modification due to B or N vacancy formation as the BN is etched

in the hydrogen plasma. There are numerous density functional theory (DFT) studies on
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the vacancy formation in h-BN sheets which all show that the electronic properties of h-

BN are altered.43–45 Huang and Lee demonstrated using a DFT model that introducing

vacancies at both B and N sites creates several mid-gap states, although seemingly deep at

several eV from the valence band minimum.44 This implies that vacancy formation is not

the principal cause of the increased room temperature conductivity observed in the present

study. A second possibility is due to band gap narrowing of h-BN using an RF O-plasma. In

this notable study, the plasma is used to create nitrogen vacancies to substitute in oxygen

which results in a lower resistivity to pristine h-BN.46 In the present study, after H-plasma

treatment, when the sample is brought to atmosphere, surface oxygen could be incorporated,

however, further exposing this sample to O-plasma increases the oxygen and removes the

conductivity. A third possibility is that the h-BN is affected by the diffusion and intercalation

of H2 into the bulk at elevated temperatures. Since H2 annealing only resulted in a small

decrease in the overall dielectric constant and a very small increase in the low frequency loss

this is likely not responsible. Also, attempts to encourage H2 uptake through wetting gave

minimal change, even though the binder is very hygroscopic. A fourth possibility is due to

the low melting point of the boric acid binder which may dissociate at higher temperatures

causing the electrical properties to change. Annealing in vacuum gave similar results to the

H2 annealed, implying that the enhancement is not due to any temperature related phase

changes associated with the binder. Finally, one of the most obvious possibilities is that sp2

carbon contamination from the sample holder has become incorporated into the h-BN. This

case is not as likely because similar sp2 carbon concentrations were found in both the plasma

treated and annealed samples. At first the C1s results seemingly contradict the Raman data,

however, it is noted that the predominant binding energy peak is that of C-C character and

not C=C. Hence, the first ca. 10 nm of the surface (as probed by XPS) is covered with

surface adventitious carbon layer after exposure to air and at greater depths (as probed by

Raman), formation of sp2 carbon which has diffused between the h-BN layers is found. From

a macroscopic dielectric perspective, the sp2 carbon observed at further depths has made
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little difference to the measured complex permittivity.

With no evidence of increasing oxygen or carbon in the H-plasma treated sample but

the subsequent O-plasma treated surface decreases the conductivity leads to the most likely

cause to being full or partial surface hydrogenation. The exposure of the h-BN ceramic to

atomic hydrogen results in hydrogen termination of surface and bulk regions of h-BN which

are separated by the binder. One theory is that hydrogen termination is known to produce

a negative electron affinity (NEA),47 which in turn promotes surface conductivity,48 similar

to that in hydrogen terminated diamond.49,50 Although, full hydrogenation of the h-BN

sheets is likely not responsible for the enhanced conduction losses as it is also known that

while this does indeed decrease the wide band gap, it does not create significant mid gap

states to allow room temperature conductivity.45 It was, however, calculated that metallic

conduction is possible with semi-hydrogenated BN layers, whereby only the B atoms are

bonded to hydrogen.45 This form of semi-hydrogenation, as opposed to full hydrogenation

and just hydrogen bonding to N atoms, is seemingly stable and gives rise to a metallic BN

character, in addition to a distorted and buckled lattice structure.

There are not many techniques which can confirm the hydrogenation directly; XPS is not

sensitive to hydrogen and so one would not expect a significant perturbation or additional

peaks in the B1s or N1s spectra. For the B1s spectra, the escape depth of a photoelectron

is approximately 32 Å and therefore the total information depth for the obtained spectra

is around 3 times this value (ca. 10 nm). Since the surface component of this (B-H bond

of around 1.2 Å45,51) is so small in comparison to the probing depth no change may be

measured. Additionally, since only select areas of the surface are semi-hydrogenated, this

further reduces the possibility of measuring. However, the sharp decrease in all other surface

elements (carbon and oxygen) after exposure to atomic hydrogen still provides inference

towards hydrogen termination. Thus, this is the most plausible explanation behind the

increased dielectric properties of the h-BN in that the hydrogen plasma exposure results in

locally high dielectric loss, or electrically conducting, islands of semi-hydrogenated h-BN, as
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is shown in the representation given in Fig. 8. This also explains why the H2 annealed h-BN

yielded minimal change in εr, as molecular hydrogen does not hydrogenate the h-BN layer,

as this is only achieved with the high energy density plasma. Further precedence to this is

that several DFT studies demonstrate that H2 bonding to BN is not stable.45

This result demonstrates that microwave plasma CVD of any material onto a h-BN

dielectric substrate is ill-advised. As a demonstration, a similar dielectric amplification

result was obtained when several microns of CVD diamond was deposited on the h-BN

sample. Using the same conditions except with an additional 5% CH4 in the gas phase,

the amplification was larger (εs ≈ 45, ε∞ ≈ 8, τ−1 ≈ 770 MHz) in addition to a finite long

range conductivity of 8 mS/m (see Supporting Information, Fig. S1). The larger conductivity

reported here is due to the additional contributions from the non-diamond carbon impurities

and potential leeching of boron into the diamond layer, however, these mechanisms are out

of scope of this study. Moving forward with other new and exciting applications of h-BN,

however, h-BN is a promising hydrogen storage material to which the detection of changes in

dielectric property may infer the concentration of adsorbed atomic hydrogen on B sites. This

of course can be easily achieved with the above non-destructive and non-contact methods

(MCP in particular).12,52,53

7 Conclusion

In conclusion, it is demonstrated that the complex permittivity of h-BN has a low dielectric

constant and an immeasurably low dielectric loss across the kilohertz to gigahertz frequency

range. A dramatic increase in complex permittivity is observed after exposure to atomic

hydrogen, resulting in dispersive features. The importance of this work draws attention to the

fact that while popular microwave plasma CVD methods are capable of producing graphene

on Cu substrates, the desire to move away from metal catalysts and use similar techniques for

h-BN must be approached with caution. Annealing studies here demonstrate that adopting
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tube furnace CVD techniques are a lower risk approach to retaining low dielectric constant

h-BN when directly depositing graphene. For other applications including sensing and other

electronic applications, it has been demonstrated that the conductivity of h-BN can be tuned

through hydrogenation in a microwave plasma, although, it is not only the surface that is

modified but the bulk also owing to atomic H diffusion.
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8 Figures and Tables

PPC BCP MCP

Sample
Sample

Figure 1: Graphical representation of the methods used in this study

Table 1: Tabulated dielectric constant of PTFE and h-BN samples

Method* PPC BCP MCP (Al Cavity) MCP (WG14 Cavity)
f (GHz) 10-6 to -3 10-2 to 1 2.5 4.6 5.5 4.5 5.6 7.4 9.6
PTFE 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05 2.05
h-BN 4.3 4.2 4.320 4.298 4.275 4.309 4.287 4.221 4.143
h-BN (HP) 20 20 to 4.2 4.726 4.636 4.309 4.691 4.482 4.282 4.101
h-BN (HP & OP) 20 to 14 20 to 4.2 4.428 4.533 3.990 4.533 4.424 4.071 3.892
h-BN (H2 Anneal, Dry) 3.9 3.6 3.796 3.991 3.754 4.146 4.060 3.969 3.669
h-BN (H2 Anneal, Wet) 4.3 4.2 3.948 4.135 3.972 4.240 4.158 4.087 3.835
h-BN (Vac. Anneal, Dry) 3.7 4.5 3.807 4.018 3.855 4.021 3.951 3.940 3.640
h-BN (Vac. Anneal, Wet) 3.8 4.2 4.016 4.254 3.931 4.056 3.949 3.922 3.725

*Maximum standard deviation of 6 samples of approximately ±0.1, ±0.2 and ±6× 10−3 for PPC, BCP and MCP, respectively.

Table 2: Tabulated dielectric of loss PTFE and h-BN samples

Method* PPC BCP MCP (Al Cavity) MCP (WG14 Cavity)
f (GHz) 10-6 to -3 10-2 to 1 2.5 4.6 5.5 4.5 5.6 7.4 9.6
PTFE 0 0 0.002 0 0 0.006 0 0.03 0.2
h-BN 0 0 0.006 0.004 0.004 0.01 0 0.06 0.4
h-BN (HP) 0.00032/ωε0 6.4 to 0 1.48 0.97 0.76 3.97 0.77 0.55 0.38
h-BN (HP & OP) 0 to 5 5 to 0 0.54 0.38 0.29 0.38 0.35 0.23 0.05
h-BN (Vac. Anneal, Dry) 0.5 to 0 0 0 0 0 0.009 0 0.07 0.04
h-BN (Vac. Anneal, Wet) 0.2 to 0 0 0 0.004 0.002 0.01 0 0.02 0
h-BN (H2 Anneal, Dry) 0.4 to 0 0 0 0 0 0.01 0 0.06 0
h-BN (H2 Anneal, Wet) 0.2 to 0 0 0 0.003 0.002 0.02 0 0.05 0

*Maximum standard deviation of 6 samples of approximately ±0.1, ±0.2 and ±6× 10−3 for PPC, BCP and MCP, respectively.

25

Page 25 of 32

ACS Paragon Plus Environment

ACS Applied Electronic Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

HP & OP

HP & OP 

h-BN HP & OP

HP & OP 

Figure 2: Complex permittivity of PTFE, h-BN, H-plasma treated (HP) and subsequent O-
plasma treated (OP) samples obtained using PPC, BCP and MCP with the σ-HN model from
(2) and (3). EP correction provides an estimate of free charge conductivity. Shaded regions
show the uncertainty: the standard deviation of 6 sample measurements and instrumental
limitation.
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Figure 3: Complex permittivity of PTFE standard, h-BN and annealed h-BN samples ob-
tained using PPC, BCP and MCP. The shaded regions mark the uncertainty: the standard
error of 6 sample measurements and instrumental limitation.
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(a) (b) (c)

Figure 4: Raman Spectroscopy (top) and microscope images (bottom) of hydrogen treated
h-BN samples. Data shows three spectra of each sample overlaid with all peaks normalised
to the h-BN peak with background correction. No significant variations in composition are
noticed although a small G-band is found in all treated samples. Microscope images (20×
magnification) of (a) as received h-BN , (b) H2 dry annealed and (c) H-Plasma treated
samples are given only for visual reference of the surface roughening.
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HP & OP

Figure 5: XPS survey (top) and atomic ratios of h-BN samples. Arrows in survey denote
pertinent differences after treatment. Relative Sensitivity factors for B, C, N and O are given
as 0.486, 1, 1.8 and 2.93, respectively.
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HP & OP HP & OP

(a) (b)

HP & OP HP & OP

(c) (d)

Figure 6: XPS data of h-BN samples all normalised to the largest N1s peak: (a) B1s (b)
C1s, (c) N1s and (d) O1s.
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Figure 7: Representative diagram of conducting pathways created by the H-plasma (top)
and truncation of pathways by removing surface termination with O-plasma (bottom). The
atomic H reacts with the surface and the bulk of the h-BN to create various electrically con-
ducting pathways which are measured by PPC and BCP, blue and green traces, respectively.
The oxygen plasma removes most of the surface conductivity, leaving bulk long and short
pathways, as measured by PPC and BCP, red and green traces, respectively.
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Figure 8: Representative model of low and high dielectric loss regions from as received and
hydrogenated h-BN, respectively. Long range conduction results from percolating hydro-
genated h-BN pathways whereas finite regions result in Debye type relaxation.
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