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A B S T R A C T   

Background: Widespread structural and functional brain network changes have been shown in Juvenile 
Myoclonic Epilepsy (JME) despite normal clinical neuroimaging. We sought to better define these changes using 
magnetoencephalography (MEG) and source space connectivity analysis for optimal neurophysiological and 
anatomical localisation. 
Methods: We consecutively recruited 26 patients with JME who underwent resting state MEG recording, along 
with 26 age-and-sex matched controls. Whole brain connectivity was determined through correlation of 
Automated Anatomical Labelling (AAL) atlas source space MEG timeseries in conventional frequency bands of 
interest delta (1−4 Hz), theta (4−8 Hz), alpha (8−13 Hz), beta (13−30 Hz) and gamma (40−60 Hz). We used 
a Linearly Constrained Minimum Variance (LCMV) beamformer to extract voxel wise time series of ‘virtual 
sensors’ for the desired frequency bands, followed by connectivity analysis using correlation between frequency- 
and node-specific power fluctuations, for the voxel maxima in each AAL atlas label, correcting for noise, po-
tentially spurious connections and multiple comparisons. 
Results: We found increased connectivity in the theta band in posterior brain regions, surviving statistical cor-
rection for multiple comparisons (corrected p  <  0.05), and decreased connectivity in the beta band in sen-
sorimotor cortex, between right pre- and post- central gyrus (p  <  0.05) in JME compared to controls. 
Conclusions: Altered resting-state MEG connectivity in JME comprised increased connectivity in posterior theta – 
the frequency band associated with long range connections affecting attention and arousal - and decreased beta- 
band sensorimotor connectivity. These findings likely relate to altered regulation of the sensorimotor network 
and seizure prone states in JME.   

1. Introduction 

Juvenile Myoclonic Epilepsy (JME) is one of the most common 
epilepsy syndromes. The underlying basis for JME remains unknown. 
JME is a sub-syndrome of the Genetic Generalised Epilepsies (GGE) 
(previously known as Idiopathic Generalised Epilepsy), alongside 
Juvenile Absence Epilepsy (JAE), Childhood Absence Epilepsy (CAE), 
and Epilepsy with Generalised Tonic Clonic Seizures Only (EGTCS) 
(Wolf and Beniczky, 2014). JME is a lifelong condition usually pre-
senting in the second decade of life with myoclonic jerks (MJ), absence 
seizures and generalised tonic-clonic seizures. Seizures are linked to 
states of arousal, typically occurring in the first hour after waking and 
are more likely after sleep deprivation (Panayiotopoulos et al., 1994). 

MRI brain scans are normal to visual inspection, and there are no other 
structural, biochemical or metabolic clinical markers in JME. Clinical 
electroencephalography (EEG) in JME is characterised by normal 
background rhythms, and abnormal interictal spike and polyspike wave 
discharges with frontal predominance (Camfield et al., 2013), and 
photosensitivity is present in around 30 % of people with JME 
(Panayiotopoulos et al., 1994). 

Several recent lines of evidence show JME as a brain network dis-
order with predominantly frontal, but also parieto-occipital and sub- 
cortical involvement. Neuropsychological profiles show alterations in 
executive, frontal lobe function (Chowdhury et al., 2014a). Frontal lobe 
changes are also seen with quantitative analysis of structural MRI 
(Focke et al., 2014; Vollmar et al., 2012); and frontal 

https://doi.org/10.1016/j.eplepsyres.2020.106324 
Received 15 November 2019; Received in revised form 6 March 2020; Accepted 26 March 2020    

⁎ Corresponding author at: Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom. 
E-mail address: hamandik@cf.ac.uk (K. Hamandi). 

Epilepsy Research 163 (2020) 106324

Available online 02 April 2020
0920-1211/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/09201211
https://www.elsevier.com/locate/epilepsyres
https://doi.org/10.1016/j.eplepsyres.2020.106324
https://doi.org/10.1016/j.eplepsyres.2020.106324
mailto:hamandik@cf.ac.uk
https://doi.org/10.1016/j.eplepsyres.2020.106324
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eplepsyres.2020.106324&domain=pdf


‘hyperconnectivity’ has been shown with fMRI and DTI analyses 
(Caeyenberghs et al., 2015; Vollmar et al., 2012; Vulliemoz et al., 2011;  
Wandschneider et al., 2012). In addition grey and white matter changes 
beyond the frontal lobes are also reported (Alhusaini et al., 2013;  
Caeyenberghs et al., 2015; Kim et al., 2015). Source localisation of 
spike wave discharges (SWD) implicates early involvement of mesial 
frontal structures in their genesis (Holmes et al., 2010; Stefan et al., 
2009), and EEG-fMRI studies show involvement of ‘default mode’ and 
subcortical brain areas during SWD (Aghakhani et al., 2004; Gotman 
et al., 2005; Hamandi et al., 2006), with the precuneus ‘driving’ or 
modulating these discharges (Vaudano et al., 2009). 

EEG and magnetoencephalography (MEG) are suited to study whole 
brain network activity on a time scale similar to cognitive and epileptic 
processes. Previous neurophysiological studies in JME have been 
mostly restricted to those using EEG. An early study comparing the 
spectral profiles in resting rhythms at EEG sensor derivations in the 3 
sub-syndromes, JAE, JME, and EGTCS, compared to controls, found 
increases in delta, theta and alpha power and decreased beta power in 
all GGE groups; and increased frontal delta, and global reduction in 
beta power in JME (Clemens et al., 2000). A further study, using low- 
resolution brain electromagnetic tomography (LORETA) source locali-
sation of scalp EEG in a similar population, found increased theta 
source density in the posterior cortex in JME, compared to controls, and 
decreased source density at 20 Hz in parietal areas, parietal lobule and 
posterior cingulate (Clemens et al., 2012). A graph-theoretic analysis 
between EEG epochs in an immediate pre-ictal state (immediately be-
fore generalised spike wave discharge (GSW)), and interictally, at least 
10 s from the next GSW, found increased functional connectivity in 
delta, theta and an alpha1 (7.5–10 Hz) band, and decreases in alpha2 
(10.5–12 Hz) and beta band functional connectivity compared to 
normal controls; these measures were all increased in the immediate 
pre-ictal state (Clemens et al., 2013). Others found increased con-
nectivity, in a sensor-space analysis, in a 6–9 Hz frequency band in 
GGE, but not other bands tested between 1 and 70 Hz (Chowdhury 
et al., 2014b); and higher EEG source power in frontal theta and alpha 
bands (Tikka et al., 2013). 

We are aware of only one MEG study that reported on network 
connectivity differences between patients with JME and heathy con-
trols, and a focal epilepsy group. This study found significant increases 
in total power in all bands except the 8−12 Hz band in JME versus 
controls, and that JME ‘presented greater efficiency’ - a measure of how 
well the network exchanges information - and ‘lower eccentricity’ ie 
lower path distance, than the control subjects for the beta and gamma, 
without a clear topography’ (Niso et al., 2015). 

Here, we sought to identify connectivity differences between pa-
tients with JME and controls using resting-state MEG, combining both 
the high temporal resolution of MEG, but also the spatial anatomical 
localisation of whole head MEG to a cortical anatomical parcellation 
atlas. We adopted the methods of (Colclough et al., 2015) using MEG 
connectivity measures based on spectral features to provide insights 
into the large-scale organisation of brain activity; this was done through 
the correlation of the temporal evolution of spectral power over a five 
minute resting MEG recording across classical frequency bands between 
different brain regions. We used the amplitude envelope correlation 
instead of phase based measures as this has been found to be the most 
consistent method for stationary connectivity estimation in MEG re-
cordings; whereas phase- or coherence-based metrics such as the phase 
lag index or the imaginary part of coherency show poor test-retest re-
liability in (Colclough et al., 2016). 

2. Methods 

2.1. Patient selection 

Patients with a diagnosis of JME were recruited prospectively from 
specialist epilepsy clinics at University Hospital of Wales, Cardiff. 

Inclusion criteria included seizure onset in late childhood or adoles-
cence, with myoclonic jerks, with or without absence seizures, and 
generalised tonic-clonic seizures; normal childhood development as 
assessed on clinical history; generalised spike wave on EEG and normal 
structural MRI. Patients were selected from a larger body of work of 
structural and functional imaging in epilepsy, some of which is pub-
lished elsewhere (Caeyenberghs et al., 2015; Hamandi et al., 2011). 
Data from 26 patients with JME aged 18–48 (median 27), 7 males, in 
whom an eyes open resting state MEG was performed were analysed 
along with 26 age and gender matched controls. Patient studies were 
approved by the South East Wales NHS ethics, and Cardiff and Vale 
Research and Development committees, and the 100 Brains project 
from School of Psychology, Cardiff University Ethics Committee, Car-
diff, UK. All participants gave written informed consent. 

2.2. MEG acquisition 

Whole-head MEG recordings were made using a 275-channel CTF 
radial gradiometer system. An additional 29 reference channels were 
recorded for noise cancellation purposes and the primary sensors were 
analysed as synthetic third-order gradiometers (Vrba and Robinson, 
2001). Two or three of the 275 channels were turned off due to ex-
cessive sensor noise (depending on time of acquisition). Subjects were 
seated upright in the magnetically shielded room. To achieve MRI/MEG 
co-registration, fiduciary markers were placed at fixed distances from 
three anatomical landmarks (left/right preauricular and nasion) prior 
to the MEG recording and identifiable on the subject’s anatomical MRI, 
and their locations were verified afterwards using high-resolution di-
gital photographs. Head localisation was performed before and after 
each recording. Recordings were made at either 600 Hz or 1200 Hz. All 
recordings were later downsampled to 600 Hz for analysis and the data 
were analysed in synthetic third order gradiometer mode. For the 5- 
minute eyes-open rest recording, subjects were asked to sit comfortably 
in the MEG chair while their head was supported with a chin rest and 
with eyes open focus on a red dot on a grey background. Displays were 
generated in MATLAB® (The MathWorks, Inc.), using the Psychophysics 
Toolbox extensions (Brainard, 1997), and were presented on a Mitsu-
bishi Diamond Pro 2070 monitor (1024 768 pixel resolution, 100 Hz 
refresh rate). 

2.3. MRI acquisition 

A GE HDx 3 T scanner (GE Healthcare, Milwaukee WI) was used for 
all MRI acquisition. An axial 3D fast spoiled gradient recalled (FSPGR) 
sequence was acquired (TR/TE/TI = 8/3/ 450 ms; Flip Angle = 20°; 
acquisition matrix = 256(AP)x192(LR)x172(SI), 1 mm isotropic voxels) 
for MEG co-registration. 

2.4. MEG analysis overview 

MEG generates multi-dimensional data, which can be analysed in a 
large variety of ways. We sought to conduct an analysis investigating 
only consistent functional connectivity across the brain, while reducing 
noise. We focused on amplitude-amplitude connectivity of beamformer- 
derived oscillatory source signals, one of the most robust and repeatable 
types of MEG connectivity measures (Colclough et al., 2015; Koelewijn 
et al., 2019). Connectivity was assessed across six frequency bands 
based on standard nomenclature and convention: delta 1–4, theta 4–8, 
alpha 8–13, beta 13–30, low gamma 40–60, and high gamma 60–80 Hz; 
and between 90 Automatic Anatomical Labelling (AAL) atlas (Tzourio- 
Mazoyer et al., 2002) brain regions (Koelewijn et al., 2019). Fig. 1 
shows a visual schematic of the processing steps of the source space 
spectral analysis. 
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2.5. Data pre-processing 

MEG data was band-pass filtered between 1 and 150 Hz. The 5- 
minute resting datasets where then segmented into 2 s epochs. All data 
was visually inspected and any 2 s epochs containing major motion, 
muscle or eye-blink artefact, or interictal spike wave discharges were 
excluded from subsequent analysis. Co-registration was performed 
manually between MEG and MRI, with MEG fiducial locations marked 
manually on the participants MRI for nasion, left ear and right ear. 

2.6. Source space localisation 

The MEG sensor data were source-localised using FieldTrip 
(RRID:SCR_004849) version 20,161,011 (Oostenveld et al., 2011) with 
an LCMV beamformer. Leadfields were calculated using a localspheres 
forward model using a brain surface derived from segmented MRI. The 
trial average covariance matrix was constructed for each of the 6 fre-
quency bands of interest. For each band, the beamformer weights were 
normalized by the vector norm, data were normalized to the MNI 
template, and reduced to 90 nodes following the Automatic Anatomical 
Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002). Epochs were then 
concatenated to generate a continuous virtual-sensor timecourse for 
each voxel. Each of the 90 AAL parcels was represented by a single 
voxel, which was selected based on it having the largest temporal 
standard deviation of all voxels in that AAL region (Koelewijn et al., 
2019). 

The resulting 90-node time series of per AAL region virtual sensors 
were orthogonalized to avoid spurious correlations using a multivariate 
regression approach known as symmetric orthogonalisation (Colclough 
et al., 2015). Oscillatory amplitude envelopes for each of these 90 
concatenated and orthogonalized virtual sensor time series were ob-
tained by performing a Hilbert transform to yield the analytic signal. 
These envelopes were subsequently despiked to remove artefactual 
temporal transients using a median filter, downsampled to 1 Hz and 
trimmed to avoid edge effects (removing the first 2 and last three 
samples) (Koelewijn et al., 2019). 

2.7. Source space connectivity analysis 

An amplitude correlation matrix was calculated based on the 
Pearson correlation between each AAL node’s Hilbert envelope for each 
subject and frequency band. Correlation coefficients were adjusted for 
the non-linearity of Pearson's R by the common Fisher transform to 
allow averaging and statistical testing. The aim of the Fisher Z trans-
formation is to normalise the distribution of the correlation coefficients, 
with variance that is stable across different values. This procedure per 
se is therefore to standardise the distribution for subsequent statistical 
testing and does not deal with unequal variance between the groups. 
These Z scores were then converted to an adjusted Z-statistic using the 
estimated temporal degrees of freedom in each dataset, to account for 
the fact that different subjects may have had connectivity assessed over 
concatenated timeseries of different lengths due to our artefact epoch 
rejection step. Finally, these Z-statistic images were corrected for global 
effects by Z-scoring so that each subject’s connectivity map had zero 
mean and unit standard-deviation. This final procedure corrects for any 
systematic per-subject differences in sensitivity due to methodological 
confounds (Siems et al., 2016; Yan et al., 2013). 

These corrected connectivity matrices were used to statistically 
compare the between node connectivity at each frequency band be-
tween JME patients and controls. As is common in network analysis, 
weighted edge-connectivity maps were thresholded to suppress con-
nections considered to be “noise” rather than “signal”. This was done by 
selecting AAL connections which were robustly present across the co-
hort by ranking the connections for each group in order of strength, 
here the strongest connection was given the value 1 and the weakest 
given value 0. ‘Valid connections’ were taken as those with an average 
rank above a threshold of 0.8, indicating that these connections are 
consistently among the strongest across participants (Koelewijn et al., 
2019). Importantly, a connection was taken forward for our analysis if 
it was seen as “valid” in either a JME or Control participant. 

In addition to analysing effects within each frequency band sepa-
rately, we also calculated a combined measure of connectivity by cal-
culating the vector-sum of all connectivity matrices (the combined 
correlation matrix is based on summing and squaring the Pearson 
correlation coefficients) from each frequency band (Koelewijn et al., 
2019). The objective being to maximise the amount of information used 

Fig. 1. Visual schematic of the processing steps of the source space spectral and connectivity analysis and comparison between groups.  
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to assess group differences; using the following formula for each ele-
ment (i,j) in the square connectivity matrix: 
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We tested the difference between JME patients and controls using 
an unpaired t-test of the corrected Z-scores, at each of the selected 
“valid” (top 20 %) connectivity edges and looked for significant edges 
at both p  <  0.05 (uncorrected) and at p  <  0.05 (corrected using a 
10,000-permutation test with omnibus thresholding). 

2.8. Source space activity 

In order to assess possible cohort differences in oscillatory activity, 
rather than connectivity, we also calculated a measure of temporal 
variance at each beamformer-reconstructed voxel in the brain, for each 
separate frequency band, via an assessment of the amplitude envelopes. 
Due to large variations in signal sensitivity throughout the brain, 
beamformer reconstructions of virtual-sensors result in signals in which 
the mean and temporal standard-deviation of the amplitude envelopes 
are highly correlated and show large variations across the source space. 
For that reason, we choose to use a normalized measure, the coefficient 
of variation, which is the simply the standard-deviation of the ampli-
tude envelope divided by the mean of the amplitude envelope – i.e. a 
measurement of the degree to which the activity in a given region 
fluctuates around its mean amplitude over time. For each AAL region, 
statistical differences were assessed between JME and control cohorts 
separately for each frequency band using randomisation-based in-
dependent t-tests with 5000 permutations and omnibus correction for 
multiple comparisons (Nichols and Holmes, 2002). Effects are rendered 
on a template AAL90 brain parcellation. 

2.9. Sensor space power 

We also examined the power spectra of various frequency bands in 
sensor space to compare with the existing literature. Using the FieldTrip 
toolbox (Oostenveld et al., 2011) the pre-processed data were first 
converted to planar gradient formation and frequency analysis was 
conducted using Hanning-windowed fast Fourier transforms. The gra-
dients over both planar directions were then combined to obtain a 
single positive-valued number under each sensor. In this sensor con-
figuration, sources can be assumed to lie directly underneath local 
maxima on field maps, thus allowing the results of this analysis to be 
more easily interpretable (Bastiaansen and Knösche, 2000). Frequency 
analysis was conducted between 1 and 30 Hz in 0.5 Hz frequency steps 
to give local maximal under the sensors. We compared differences in 
sensor level power between JME and control cohorts in the following 
frequency bands, delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta 
(13–30 Hz), using a 2-sample t-test. Statistical differences between the 
JME and control cohorts were determined using randomisation testing 
of these difference images (5000 permutations, omnibus correction for 
multiple comparisons). 

3. Results 

3.1. Participants 

A summary of clinical characteristics of the 26 patients with JME 
are given in Table 1 (and full details in Supplementary Table, 1s). Pa-
tients and controls were matched for age and gender, patients (19 F/ 
7 M median age 27  ±  8, handedness 25 right, 1 left), control subjects 
(19 F/7 M, median age 26.5  ±  7, handedness 26 right). Median dura-
tion since onset of first seizures in patients was 14 years, all patients 
were taking anti-epileptic drugs (AED). 

3.2. MEG 

All patients and controls had good quality resting-state MEG re-
cordings suitable for further analysis. Following artefact rejection, there 
were no significant group differences in the number of remaining trials 
(controls mean 146  ±  4.5, patients mean 142  ±  12.1; t(50) = 1.7, 
p = 0.09). Only two patients had generalised spike wave during the 5- 
minute resting recording, one with 4 episodes under 1 s, and the other 
with 2 episodes under one second; these epochs were marked and ex-
cluded from the subsequent analysis pipeline. 

3.3. Whole brain functional connectivity 

We tested for differences in whole brain connectivity between AAL 
atlas regions based on an amplitude correlation of source time-series 
data from MEG, between patients with JME and controls, across clas-
sical EEG/MEG frequency bands. Figs. 2–4 to show the findings of the 
connectivity analysis for each of the frequency bands of interest and 
that of all frequency bands combined through each of the statistical 
tests applied. 

We start by showing the number of valid connections for each fre-
quency (the top 20 % of connections after a rank sort of all connections 
based on connection strength at the group level, in each group (JME 
and controls separately) as described in the methods). This rank sorting 
and selection criteria resulted in predominantly frontal connections in 
the delta band, posterior connections in the theta and alpha bands and 
both frontal and posterior connection in the beta band. No valid con-
nections were found in the low gamma band and only two connections 
in the high gamma band (not shown here), and these frequency bands 
were not considered further. A two-sample t-test found differences be-
tween JME and controls across all four frequency bands, delta, theta, 
alpha and beta, predominantly with increased connectivity in JME in 
posterior brain regions for the theta and alpha band, and a combination 
of increased and decreased in between frontal, temporal, parietal and 
occipital in the beta band. The increased posterior theta connectivity in 
JME compared to controls, and decreased beta connectivity between 
right sensorimotor nodes were statistically significant after correction 
using the omnibus-corrected threshold, running 10,000 sign-shuffling 
iterations, and recomputing the t-statistic and p-values. In the theta 
band increased connectivity was found between the following AAL 

Table 1 
Summary of patient and control characteristics. (see table s1, supplementary 
material for individual patient characteristics). MJ – myoclonic jerks, GTCS – 
generalised tonic clonic seizures, LEV- levetiracetam, VPA- sodium valproate, 
LTG- lamotrigine, TPM-topiramate, ZNM-zonisamide. PPR – photoparxysmal 
response. (see table s1 for individual patient characteristics).       

JME  Controls  

Age 27  ±  8  26.5  ±  7 
Sex 19 F/7 M  19 F/7 M   

Age onset, 
median (range)  

Seizures (number of 
patients), 

MJ (N = 26, 100 
%) 

15 (8−20) 

Absences  
(N = 15) 

14 (8–18) 

GTCS (N = 26, 
100 %) 

15 (7–24) 

PPR on EEG N = 8 (30 %) 
Number of AEDs 12 monotherapy 

10 on 2 drugs 
4 on 3 drugs 

AED name and number 
taking each 

LEV, N = 13 
VPA, N = 12 
LTG, N = 5 
TPM, N = 4 
ZNM, N = 4 
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nodes – right inferior temporal gyrus and right precuneous, right in-
ferior temporal gyrus and right inferior parietal gyrus, right angular 
gyrus and right precuneous; and left supramarginal gyrus and left an-
gular gurus, and reduced connectivity in the beta band between right 
pre-central and right post central gyri (Fig. 4 and Table 2). 

We tested a "confidence interval" on the generalisability of the re-
sults. Across 10,000 iterations, half of one group is subsampled ran-
domly and compared to a random half of the second group. Increases 
and decreases in connectivity are tabulated, and connections tested 
showing a consistent effect direction across 95 % of iterations are 
considered "robust" and plotted (blue for decreases, red for increases). 
This test does not take into account the magnitude of the effect, only its 
direction and how consistent this is across re-samplings. The findings 
from this randomised cohort resampling show predominant increased 
connectivity in posterior connectivity in JME in both the theta and 
alpha bands and in the beta band a combination of decreased con-
nectivity between fronto-temporal-parietal nodes, and increased con-
nectivity between frontal-parietal-occipital nodes. 

3.4. Analysis of activity differences 

We compared differences in band limited activity (the standard- 
deviation of the amplitude envelope divided by the mean of the am-
plitude envelope as described in the methods) between patients and 
controls. There were widespread differences with this activity measure 
with increases in temporal and parietal delta activity, posterior theta 
activity, and decreases in sensorimotor beta activity, but also increases 
in frontal beta activity (Fig. 5). The only significant change after 

permutation testing was in the delta band in the R Mid Temp AAL atlas 
region t = 3.7, p = 0.039. 

3.5. Analysis of sensor level in power 

Significant differences were seen in a small number of right tem-
poral sensors in the delta band, theta and alpha bands and in right 
frontal sensors in the beta band, with increased power in these sensors 
in JME compared to controls (supplementary Fig. 1). 

4. Discussion 

We investigated the differences in brain connectivity using MEG 
recorded resting brain activity between patients with JME and age- and 
gender- matched control subjects. We found statistically significant 
increases in connectivity in theta and alpha bands in posterior brain 
regions, and decreased connectivity in pre- and post- central (sensor-
imotor) brain regions. Our findings build on and corroborate previous 
reports using scalp EEG (Clemens et al., 2013) with a greater anato-
mical specificity given by using MEG source space analysis. 

We also tested the 95 % confidence limit across all connections 
(uncorrected) to test the generalisability of our results in terms of the 
direction of an increase or decrease in connection strength between the 
two groups. We show the 95 % confidence interval test alongside the 
corrected and uncorrected t-tests, as it reveals a set of connections that 
are robustly increased, or decreased, in JME compared to controls, ir-
respective of the specific individuals entered into the test. The corrected 
and uncorrected t-test give a clearer depiction of potentially the most 

Fig. 2. Comparison between JME group (N = 26) and Control group (N = 26) for each frequency band of interest and combined across all frequency bands, shown in 
each column, with results by row. showing 1) valid connections, those present after rank sort with threshold > 0.8 for each group.. Anatomical regions and 
connections are colour coded, shown along the bottom bar. For subsequent rows connections that are decreased in JME are shown in blue, while connections that are 
increased in JME are shown in red. 2) Unpaired t-test (uncorrected), 3) Unpaired t-test, with omnibus correction - *the significant connection is between right pre- 
and post-central gyri, the pre-central AAL node placed with parietal nodes to better represent the anatomical distribution, and 4) after randomised cohort resampling. 
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important differences between JME and control connections. 
The classical neurophysiological frequency bands (Kane et al., 

2017) tested here represent different local and global state changes in 
the brain. The delta band predominates during slow wave sleep or 
pathological states during wakefulness, but also increased in frontal 
areas during working memory tasks in healthy volunteers (Harmony, 
2013). The theta and alpha bands are functions of arousal, attention 

and working memory - an area impaired in patients with JME 
(Pascalicchio et al., 2007) - and represent long range interactions (Palva 
and Palva, 2011). The higher frequencies (beta and gamma) pre-
dominate during local stimulus or saliency processing in more focal 
network activity (von Stein and Sarnthein, 2000v). The work of 
Clemens et al. and others shows altered theta power and connectivity as 
potential markers of JME (Clemens et al., 2000, 2007, 2011, 2013;  

Fig. 3. The same results as Fig. 2 shown on a template brain to better visualize the anatomical relationship of differences between JME and control groups. 
Comparison between JME and Controls for each frequency band of interest and combined across all frequency bands in each row, and columns showing uncorrected 
t-test, corrected t-test and 95 % confidence intervals. 
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Elshahabi et al., 2015). Altered resting posterior EEG oscillations in the 
6–9 Hz theta band have also been proposed as a potential disease 
classifier by others (Schmidt et al., 2016); using a short, 20 s segment of 
routine clinical EEG they found that a functional network inferred from 
the EEG of each individual subject, integrated with an oscillator, best 
distinguished patients with GGE from controls (Schmidt et al., 2016). 

Posterior brain regions have also been implicated in the patho-
physiology of JME from EEG-fMRI studies of generalised spike wave 
discharges, where GSW associated fMRI deactivation are seen in par-
ietal lobes and precuneous, as well as mesial frontal regions, as part of 
the ‘default mode’ brain network (Gotman et al., 2005; Hamandi et al., 
2006). Analysis of causal influence between these areas on spike wave 
discharge in two independent studies found the signal from the pre-
cuneous to be the driver or influence of the other regions (Lee et al., 
2014; Vaudano et al., 2009). Our results here show increased node 
connectivity involving right precuneous in 2 of the 4 theta band con-
nections surviving multiple comparison between JME and controls. The 
left and right angular gyrus both showed increased theta connectivity to 
precuneous and supramarginal gyrus. The angular gyrus forms part of 
the parietal association cortex, and is a major connecting hub shown in 
previous functional imaging connectivity studies that has a role in at-
tention, memory, visual and semantic processing (Seghier, 2013). 
Whilst existing literature attributes psychological profiles in JME as a 
disorder of predominantly frontal lobe dysfunction (Motamedi et al., 
2014; Piazzini et al., 2008; Wandschneider et al., 2012), our findings 
here, along with others, provide strong evidence for dysfunction outside 
the frontal lobe and in particular in posterior attentional networks and 
temporo-parietal regions (Caeyenberghs et al., 2015; Kim et al., 2015;  
Pascalicchio et al., 2007; Tian et al., 2010). 

Beta band oscillations predominate in pre- and postcentral gyri 

along with alpha/mu rhythms (Groppe et al., 2013) with beta rhythms 
proposed to have a key role in sensorimotor regulation (Engel and Fries, 
2010; Ritter et al., 2009) and orchestrate sensorimotor activity, motor 
planning and execution (Engel and Fries, 2010; Pfurtscheller, 1981). 
We have previously shown alterations in beta band task related re-
sponses in JME (Hamandi et al., 2011) and in benign epilepsy with 
centrotemporal spikes (BECTS) (Brindley et al., 2016; Koelewijn et al., 
2015). Altered connectivity and oscillatory activity in both these con-
ditions likely reflect pathological alterations leading to the clinical 
manifestations of myoclonic jerks in JME and focal motor seizures in 
BECTS. These measures may reflect an uncoupling of sensorimotor in-
tegration in JME. Others, using Transcranial Magnetic Stimulation, 
have shown reduced sensorimotor intracortical inhibition in JME 
(Manganotti et al., 2004) 

Brain network dysfunction in epilepsy is also seen using fMRI and 
simultaneous EEG-fMRI studies (Centeno and Carmichael, 2014). One 
study found no changes in fMRI connectivity in areas seeded from GSW 
associated activation (Moeller et al., 2011), though others more re-
cently have shown altered fMRI connectivity in JME affecting wide-
spread cortical and subcortical areas - thalamus, cerebellum, precuneus, 
inferior temporal lobe and sensorimotor-related areas, including the 
middle cingulate cortex, supplemental motor area, and paracentral lo-
bule (Qin et al., 2019; Zhong et al., 2018). In a task based fMRI study, 
increased functional connectivity between the motor system and frontal 
and parietal lobes in a working memory paradigm are seen with in-
creased cognitive load (Vollmar et al., 2011), and also seen in first 
degree relatives of patients with JME (Wandschneider et al., 2014). 
These studies also showed less task-based fMRI deactivations in pre-
cuneus and medial prefrontal areas in JME relatives compared to con-
trols, supporting a key link between cognitive and motor networks in 

Fig. 4. Circle plot of AAL nodes, with anatomical labels, and significant differences between JME and controls, unpaired t-test with omnibus correction, p  <  0.05. 
The significant connection in the right panel is between right pre- and post-central gyri; the pre-central AAL node placed with parietal nodes to better represent the 
anatomical distribution. 

Table 2 
AAL regions showing statistically significant differences between patients with JME and Controls for the theta (4 – 8 Hz) and beta (13 – 30 Hz) frequency bands. 
Regions and t-statistic, and p-values are shown, 2 sample t-test, JME vs controls, for the frequency bands and regions reaching statistical significance following 
omnibus correction for multiple comparisons (see method and Figs. 2–4).       

Frequency band AAL connections  t-statistic p value  

Theta, 4–8 Hz R Inferior Temporal Gyrus L Inferior Parietal Gyrus 3.7469 0.0344  
R Inferior Temporal Gyrus R Precuneus 3.9000 0.0426  
R Angular Gyrus R Precuneus 3.6631 0.0266  
L Angular Gyrus L Supramarginal Gyrus 3.8272 0.0266 

Beta, 13–30 Hz R Postcentral Gyrus R Precentral Gyrus −4.3508 0.0155 
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JME. We did not find significant differences between patients and 
control in sub-cortical connectivity despite current evidence and hy-
potheses of thalamic and basal ganglia involvement in JME. This is 
likely due to the lower signal to noise of deeper sources recorded by 
MEG. 

Our findings of decreased connectivity in sensorimotor cortex is in 
contradiction to that of Elshahabi et al. (2015), where they showed 
increased functional connectivity in alpha and beta bands in motor 
areas. Their study however differed from ours in terms of the diagnoses 
and age range of the cohort studied and the connectivity measures used. 
In their study of 13 patients included with IGE/GGE only one had JME, 
the others having other IGE subsyndromes JAE, CAE and GTCS only. 
There may be key differences in these neurophysiological makers be-
tween sub-syndromes and where possible they should be considered 
separately in future studies to better appreciate similarities or differ-
ences between them. Furthermore, the connectivity measure used the 
imaginary coherence between network nodes to generate connectivity 
matrices that were used to generate graph theory metrics of network 
connectivity. The study by Caeyenberghs et al. (2014) assessed struc-
tural rather than functional connectivity using DTI measure and a graph 
theory analysis, the relationship between structural and functional 
connectivity remain to be clarified, and negative correlations have been 
seen between structural and functional measures (Cociu et al., 2018). 

We also looked for differences in a measure of source level activity 
(fluctuation in the Hilbert envelope of the virtual sensor timeseries) and 
sensor level power in each of the 4 frequency bands used in the con-
nectivity analysis. The activity measure (calculated as standard devia-
tion / mean) is a measurement of the degree to which a given region 
fluctuates around its mean amplitude over time. It is possible for a 

region to differ in its activity pattern to its connectivity pattern. This 
distinction is important when contrasting between groups. For example, 
it is possible to see increased connectivity between regions A and B in 
the JME group vs. controls, even though the activity of regions A or B 
may be reduced in the JME group compared to controls, and vice versa. 
Thus, activity (not power) is a complementary measure to functional 
connectivity. In contrast to activity, sensor power (the amplitude 
squared) gives a measure of the total signal strength within a specified 
frequency window for a sensor. Methodological issues with beam-
forming make it difficult to estimate power in source space (Luckhoo 
et al., 2014). We provide a comparison of band-limited power in sensor 
space and the activity measure in source space. The differences we 
found in source level activity and sensor level power are similar to those 
reported in the previous literature with overall increases in delta, theta 
and alpha frequency bands and decreased frontal beta band in JME 
compared to controls (Clemens et al., 2000). 

There are several potential limitations to our study. Interictal epi-
leptiform activity during the resting state recording could alter network 
connectivity dynamics in patients with JME (Qin et al., 2019). We 
manually inspected the data for movement and physiological artefacts, 
as well as epileptiform activity. We found a very low number of short 
lived GSW interictal discharges in only two patients. We excluded these 
GSW epochs from our analysis. This would exclude any artifactual 
differences in resting state rhythms between patients and controls in 
our study due to interictal paroxysms. We suspect several reasons for 
the low number of GSW events seen here. All our patients were taking 
AEDs, we acquired a 5-minute scan run where participants were seated 
in the MEG scanner, and asked to remain awake and fixate on a central 
cross-hair rather than relax fully; all scans were acquired during 

Fig. 5. Comparison of ‘source activity’ between JME group (N = 26) and Control group (N = 26) for each frequency band of interest, unthresholded. Colour bar 
shows the mean change from the control mean, increases in JME compared to controls in red and decreases in JME compared to controls in blue. Changes jn right mid 
temporal delta only survived correction for multiple comparisons. 
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working hours after patients travelled to the centre, and the scanner 
environment was new to all our patients. GSW events are known to 
occur during relaxed wakefulness and more commonly in the first hour 
after waking, neither of which were met in our acquisition (Seneviratne 
et al., 2012). 

Although we used a fairly homogenous group of patients with JME 
in terms of epilepsy presentation and classification, there was variation 
among the cohort in terms of seizure frequency, level of seizure control, 
duration of epilepsy and number and type of AEDs. Our patients were 
recruited from a tertiary epilepsy clinic and therefore reflect the more 
severe end of the spectrum in terms of seizure control. Most patients 
were taking more than one AED, the commonest AEDs here being le-
vetiracetam, sodium valproate and lamotrigine. We were not able to 
control for AED use. Lamotrigine has been shown to decrease delta and 
theta power, and the level of lamotrigine-related power decrease cor-
related with initial (untreated) power (Zhong et al., 2018). Further, 
when compared with unmedicated patients, those treated with sodium 
valproate have shown a more 'normalised' functional connectivity, ie 
closer to controls (Clemens, 2008) compared to those not treated with 
sodium valproate. It may be the case that differences in power or 
connectivity were masked and/or exacerbated by a number of un-
controlled variables in our patient cohort, however the consistency of 
our findings with previous network alterations in JME, suggest a gen-
uine disease specific effect here, rather than that related to treatments. 

We have a relatively small sample size that precludes the analysis of 
correlations between connectivity measures and clinical parameters 
such as seizure frequency, severity and anti-epileptic drug type and 
doses, given the multiple clinical variables that can be generated. 
Nevertheless, the findings presented can form the basis for larger pro-
spective studies where accurately ascertained and informed clinical 
variables can be compared against these connectivity measures. 

A further limitation of our study is the use of the AAL atlas on which 
to base our virtual sensor locations for the connectivity analysis. A 
number of different atlases exist for the type of analysis conducted here. 
The purpose of the brain atlas being to reduce the data into meaningful 
parcellations that are computationally efficient and reflect underlying 
anatomy and physiology, for examples see (Fan et al., 2016; Wang 
et al., 2016). A detailed discussion and testing of different atlas selec-
tion is however beyond the scope of this paper. The AAL atlas is widely 
used in studies of functional MEG connectivity (Demuru et al., 2017; Jin 
et al., 2013; Koelewijn et al., 2019; Lardone et al., 2018; Velmurugan 
et al., 2019). In this context, the AAL regions are not assumed to work 
as single functioning units, but rather are based on a pragmatic choice, 
where regions of interest reflect cortical functional organisation across 
the brain, with adequate spatial separation to avoid signal leakage or 
cancellation with our beamformer methods, and that allows compar-
isons of brain structural and functional brain measures between in-
dividual and groups in a systematic way (Evans et al., 2012). A final 
methodological consideration is the thresholding of the connections, 
with only the 20 % strongest connections from each group taken for-
ward for further analysis. This step is done to avoid analysing noise. We 
did not systematically test the choice of this threshold, which is outside 
the scope of this paper, nevertheless we chose a conservative estimate 
that has been used in other studies (Koelewijn et al., 2019), with re-
sultant biologically plausible findings. A lower threshold would in-
variably lead to greater connections, some of which may be spurious, 
and a higher threshold likely too conservative. 

4.1. Conclusion 

Increases as well as decreases in connectivity in patients with epi-
lepsy is in keeping with current concepts of ictogenesis, the process by 
which epileptic seizures develop. Increased posterior connectivity in 
theta and alpha (4−8 and 8−13 Hz) bands and decreased connectivity 
in sensorimotor beta (13−30 Hz) band may be the resting neurophy-
siological hallmark of JME and offer a potential biomarker for future 

studies of treatment effects and seizure risk. 
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