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• A review of material and energy flows in the iron and steel industry is provided.

• Material scheduling and energy saving technologies for steelworks are reviewed.

• Forecasting and optimization models of material and energy flows are introduced.

• Challenges of current studies on material and energy flows are identified.

• Future directions of material flow and energy flow research are discussed.
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A B S T R A C T

Integrated analysis and optimization of material and energy flows in the iron and steel industry have drawn
considerable interest from steelmakers, energy engineers, policymakers, financial firms, and academic re-
searchers. Numerous publications in this area have identified their great potential to bring significant benefits
and innovation. Although much technical work has been done to analyze and optimize material and energy
flows, there is a lack of overview of material and energy flows of the iron and steel industry. To fill this gap, this
work first provides an overview of different steel production routes. Next, the modelling, scheduling and in-
terrelation regarding material and energy flows in the iron and steel industry are presented by thoroughly
reviewing the existing literature. This study selects eighty publications on the material and energy flows of
steelworks, from which a map of the potential of integrating material and energy flows for iron and steel sites is
constructed. The paper discusses the challenges to be overcome and the future directions of material and energy
flow research in the iron and steel industry, including the fundamental understandings of flow mechanisms, the
dynamic material and energy flow scheduling and optimization, the synergy between material and energy flows,
flexible production processes and flexible energy systems, smart steel manufacturing and smart energy systems,
and revolutionary steelmaking routes and technologies.

1. Introduction

As the second largest energy user in the global industrial sectors [1],
the iron and steel industry is highly dependent on fossil fuels [2] and
releases massive amounts of environmentally harmful substances [3].
With rapid urbanization and industrialization, the demand for steel has
increased over the last several decades [4]. Crude steel production
reached 1870 Mt globally for the year of 2019, with energy intensity of
20 GJ per tonne of crude steel [5], fresh water intensity of 3.3 m3 per

tonne of crude steel [6], and a CO2 emission intensity of 1.9 t per tonne
of crude steel [7]. Previous studies have concluded that the increasing
output of crude steel is the most important factor leading to the re-
markable increase in the total energy consumption and environmental
emissions of the iron and steel industry. By contrast, decreasing the
energy intensity (i.e. specific energy consumption [8]) is the most im-
portant factor that reduces gross energy consumption and emissions
[9,10]. Energy efficiency improvement or energy conservation are the
most controllable factors that influence the energy consumption and
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emissions of the iron and steel industry, and climate change and rising
energy prices further increase their importance [11]. However, the
opportunity to achieve energy savings becomes narrower and narrower
after decades of hard work by the iron and steel community [12].

With the rapid development of global informatization, modern
steelworks are equipped with the enterprise resource planning (ERP)
systems and manufacturing execution systems (MESs), meeting the
basic hardware requirements for fast information transmission of ma-
terial flow and networked energy flow management [13]. The current
computer integrated manufacturing systems (CIMSs) have great field
data acquisition and monitoring capability, which enables the in-
tegration of material and energy flows. However, the efficient, optimal,
and smart scheduling and the synergistic interaction of material flow
and energy flow have not been fully implemented yet. Thus, it is es-
sential to figure out the operating rules of material and energy flows
and achieve the dynamic optimization and synergistic operation of
them.

There have been many studies conducted on integrating material
and energy flows in the iron and steel industry in recent years. In order
to identify challenges and solutions to reduce energy intensity and cost
of the iron and steel industry, it is necessary to conduct a systematic
literature review of material and energy flows in steelworks. The lit-
erature review in this paper aims to compile the relevant contributions
from previous publications. The review covers journal articles and
conference papers from the publication databases of ScienceDirect,
Springer, Taylor & Francis, CNKI, Wiley Online and IEEE Xplore, as well
as white papers and industrial reports. This paper attempts to provide a
timely and comprehensive review of the material and energy flows of
the iron and steel industry with no limitation on the publication years.
More specifically, the contributions of this review paper are as follows:

First, an overview of the steel production routes is provided by
summarizing different route architectures. In addition, the material and
energy flows and the dynamic operation of the steel production process
are briefly introduced. These contents are presented in Section 2 to
provide readers with an in-depth understanding of steel production
processes.

Next, the status quo of the practice and research on the material and
energy flows of the iron and steel industry is presented. Many journal
articles, conference papers, white papers and industrial reports have
been reviewed here. The selected publications are divided into three
categories, namely, (1) material flow and material flow scheduling, (2)

energy flow and the energy flow network, and (3) the interrelation
between material and energy flows. For each of these categories, we
discuss the principles, technologies, mathematical models, as well as
the potential problems that must be overcome for future development.
The present review differs substantially from the existing ones, classi-
fying the initiatives according to their specific models/algorithms and
technical characteristics. To our knowledge, this paper is the first sys-
tematic review of material and energy flows in the iron and steel sector,
based on the state-of-the-art studies that have been conducted so far in
this area.

Finally, an in-depth discussion of the challenges of material and
energy flows is conducted. Insights about where integrated material
and energy flow research is heading are provided, with the energy-re-
lated issues for the iron and steel industry discussed.

2. Steel production routes

2.1. Classification of steel production routes

Steel is produced via the following two main routes, which are
characterized by the type of raw material and energy consumed.

(a) The blast furnace–basic oxygen furnace (BF–BOF) route. About 75%
of steel in the world is produced by using the BF–BOF route [14], in
which iron ores are reduced to iron, also called pig iron or hot
metal, in the BFs. Then, the iron is converted to steel in the BOFs.
For the BF–BOF route as shown in the left-hand side of Fig. 1, the
material inputs are predominantly iron ores and the energy inputs
are coal and electricity [15]. The steel is produced with several
processing steps, including coking, sintering, pelletizing, ir-
onmaking, primary and secondary steelmaking, casting, and hot
rolling [16]. These processes are generally followed by various
fabrication processes, including cold rolling, forming, forging,
joining, machining, coating, and heat treatment [17]. Finally, the
steel is delivered as coils, plates, sections, or bars.

Another steelmaking technology using hot metal from BFs as the
main material is open hearth furnaces (OHFs). The OHF process is
highly energy intensive. Owing to its environmental and economic
disadvantages, the OHF process makes up only about 0.4% of global
steel production and is still in decline. Therefore, the OHF process is not

Fig. 1. Iron and steel production routes [14].
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discussed in this paper.

(b) The electric arc furnace (EAF) route. About 25% of steel in the
world is produced via the EAF route [18]. The EAF route produces
steel using recycled steel scrap as the major raw material and
electricity as the major form of energy. Additives, such as alloys, are
used to adjust to the desired chemical composition. Depending on
the availability of recycled steel and the plant configuration [19],
other sources of metallic iron, such as direct reduced iron (DRI) or
hot metal, can also be used in the EAF route [20], as shown in the
right-hand side of Fig. 1. Downstream processes, such as casting,
reheating and rolling, are similar to those in the BF–BOF route.

Variations and combinations of production routes also exist. Casting
iron is sometimes produced in the BFs without being sent to the BOFs
[21]. In addition, most steel products will remain in service for decades
before they are recycled, resulting in the fact that current recycled steel
scrap is not enough to meet the growing demand for steel production if
the EAF route is used alone. Therefore, a combination of the BF–BOF
and EAF routes is usually used [22]. For example, hot metal from BFs
can also serve as an input of EAFs.

The iron and steel industry is facing challenges because it would like
to achieve multiple objectives at the same time. The objectives include
maintaining high product quality, boosting productivity, reducing
business costs, reducing energy consumption, and mitigating environ-
mental emissions. To recognize and overcome these challenges, the
integration of material and energy flows should be put forward as a
crucial concern [18,23], rather than treating the material flow and
energy flow separately.

2.2. Material and energy flows in steelworks

In this paper, the term flow refers to any dynamic variation of ma-
terial and energy with time. As shown in Fig. 2, material flows present
the dynamic movement and transformation of iron-bearing materials
[23], including iron ores, steel scrap, hot metal, liquid steel, cast slabs,
finished steel, etc. Energy flows include coke, coal, blast furnace gas
(BFG), coke oven gas (COG), Linz–Donawitz converter gas (LDG) or
BOF gas, power, water, steam, waste heat, compressed air, etc. [18,24].
In the iron and steel production processes, energy flows serve as drivers,
reaction agents, and thermal media to process material flows effi-
ciently, economically, and sustainably.

2.3. Dynamic operation of the steel production process

Complicated iron and steel production processes can be simplified

to processes of the input-output of material flows, the input-output of
energy flows, and the interaction of material and energy flows [23].
The essence of the iron and steel production processes has been re-
vealed as dynamically ordered displacement and conversion of material
and energy flows under designed process networks. These designed
networks involve the material flow network and energy flow network in
the steel production process, respectively [26].

The concept of an energy flow network in the steel production
process has been widely accepted and actively promoted. An energy
system is a complex system which contains the conversion and transfer
of various energy forms [27]. To achieve the networked management of
different forms of energy, an IDDD + N principle (i.e., Integration of
the processes, Differentiation of the demand, Diversification of the
supply, Decentralization of the grid, and Network of multi-energy
flows) was proposed for achieving systemic energy conservation and a
synergistic energy system [28].

Two major international conferences (‘The 2nd European Steel
Technology and Application Days (ESTAD)’ held in 2015 in Düsseldorf,
Germany [29] and ‘The 148th TMS Annual Meeting’ held in 2019 in
Texas, USA [30]) indicated that the dynamic optimization and sy-
nergistic operation of material and energy flows would give birth to a
new round of energy-saving technology innovations in the iron and
steel industry.

3. The State of the art of material and energy flows

The research of material and energy flows in iron and steel pro-
duction processes is still at an early stage and is currently gaining
momentum. Publications on this topic generally fall into three cate-
gories, namely, (i) material flow and material flow scheduling, (ii)
energy flow and energy flow network, and (iii) the interrelation be-
tween material and energy flows.

3.1. Material flow and material flow scheduling

Material flow influences the energy intensity of the iron and steel
production processes. To reduce the energy intensity, much work has
been done from the perspective of material flow. A widely used model
for analyzing the influencing factors of energy intensity per tonne of
crude steel is the e–p analysis model [18,31]. It mainly focuses on
material flow and is expressed as follows:

∑= ∈ ⋯
=

E e p i I, {1, 2, , },
i

I
i i1 (1)

where i is the plant index, and plants include coking, sintering, pelle-
tizing, ironmaking, steelmaking, hot rolling, and on-site power plants,

Fig. 2. Material and energy flows in BF–BOF steelworks [25].
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etc.; I is the total number of plants; E is the comprehensive energy
consumption per tonne of crude steel, also called the energy intensity of
the whole site, [tonnes of coal equivalent (tce)/t]; ei is the plant energy
consumption per tonne of major product produced in plant i, also called
the energy intensity of plant i, [tce/unit of product]; and pi is the
product ratio of plant i, [unit of product/t], which is expressed as fol-
lows:

=p P P/ ,i i (2)

where P is the output of crude steel of the whole site, and Pi is the
output of the major product of plant i.

It can be seen from Eq. (1) that the factors influencing the energy
intensity of the whole site include (i) plant energy intensity, e, (ii)
product ratio, p, and (iii) the number of plants, I. Previous studies have
mainly concentrated on the importance of e and p, but less attention has
been paid to I. These studies were conducted at plant and facility levels,
including thick layer iron ore sintering, beneficiated burden material
policies for BFs, the rolling of ingots with liquid cores, and the pro-
duction of energy-efficient products [32]. Afterwards, the iron and steel
community realized the importance of I and eliminated a number of
less-efficient technologies and facilities, such as die casting, blooming,
cupolas, and open hearth furnaces [18], with several advanced tech-
nologies developed as well, including “rolling in one heat” and “one
ladle from BF to BOF” [33].

At the very beginning, most of the main processes of the iron and
steel sites operated in a batch type configuration, hindering pro-
ductivity improvements and the integrated coordination of multiple
processes. Thus, many significant improvements have been made for
the optimized scheduling of material flow, with the goal of transi-
tioning towards maximal continuity and compactness. Table 1 sum-
marizes the literature on material flow optimization.

Based on literature survey, the German iron and steel industry
started very early to optimize and schedule material flow. The variety
of steel grades produced in BOF plants require different treatment steps
and intensities, causing a 1:4 range in processing time for refining and
casting [49]. For the control of the complex processing steps, Hütten-
werke Krupp Mannesmann GmbH (HKM), in Huckingen, developed a
computer scheduling system, namely, the Dispo-system [34], which is
used to control the complex processes and improve the temperature
adjustment in the steelmaking plant. The system is the solution to vi-
sualize actual and future production conditions [35]. For further im-
provement, a satellite system was developed to control the complex
logistics in the BOF plant, which shows an increase in production
output of 10%–15% when compared with conventional expert systems
[36].

The Austrian steel industry has carried out lots of work to develop
expert material flow scheduling systems. The Voest Alpine Scheduling
Expert system, developed by voestalpine Stahl GmbH, showed that the
scheduling problem cannot be solved by using programming techniques
or expert systems alone. A combined approach of expert system, data-
base management, and conventional programming techniques was
proven to be an adequate solution [38]. Voestalpine has also designed a
procedure that assists the operator in the generation of hot-charging
and rolling schedules. The objectives include the significant increase in
the slab temperature in reheating furnaces, at the same time main-
taining the due date performance targets. It consists of a number of
local detailed schedulers and aims to generate near optimal schedules
that gain more business benefits in the context of caster and hot mill
synchronization, process restrictions, and production constraints [39].

The iron and steel industry in other countries, such as Canada
[41,42], the UK [43,50], and Japan [44,51], also have worked hard on
material flow scheduling. The most representative system is the system
developed by Paul et al. for monitoring large-scale distributed processes
and modifying control plans in real time in response to deviations from
the planned production schedule [45].

As the largest steel producer globally, China began to optimize

material flow in the 1980s. The promotion of continuous casting has
enabled the whole steelmaking process to increase in scale and become
continuous and automatic, significantly reducing the energy con-
sumption of steelmaking plants. In the 21st century, blowout studies on
material flow scheduling have been made by Chinese researchers
[46,47,48]. A representative achievement is the multi-functional ma-
terial flow scheduling proposed by Yin [33]. From the view of en-
gineering science, the steel manufacturing process features the decision
and optimization of state change, property control, and the process
scheduling of material flow in the production network.

It can be concluded that the early work on material flow scheduling
has mainly focused on BOF plants, where the steelmaking–continuous
casting zone is usually regarded as a cornerstone and bottleneck in a
modern integrated steel company [48]. In recent years, material flow
scheduling has been extended to the upstream hot metal transport [40]
and downstream hot rolling mill [43]. With the development of mate-
rial flow scheduling, modern iron and steel production processes have
become more and more compact and the total metallurgy time has
become shorter and shorter. However, all the above-mentioned studies
were made with the assumption of a sufficient energy flow supply. It is
worth noting that the scheduling/rescheduling of material flow will
cause a variation in the instantaneous generation and consumption of
energy flows [18]. Material flow scheduling with varying energy flow
constraints is still a research gap at present.

3.2. Energy flow and energy flow network

Another model for analyzing the influencing factors of energy in-
tensity per tonne of crude steel is the c–g analysis model [52]. It de-
composes the energy intensity on the basis of energy flow and is ex-
pressed as follows:

∑= ∈ ⋯
=

E c g k K, {1, 2, , },
k

K
k k1 (3)

where k is the energy flow (energy carrier) index, and the energy flows
include coal, coke, blast furnace gas, coke oven gas, Linz–Donawitz
converter gas, natural gas, electricity, water, steam, oxygen, hot blast,
compressed air, etc.; K is the total number of energy flows; ck is the unit
conversion factor of energy flow k, called the standard coal coefficient
of energy flow [kgce/unit of energy carrier]; and gk is the amount of
energy flow k consumed in the site, measured in GJ for steam, m3 for
fuel gases and other gaseous carriers, kWh for electricity, and t for
water and solid fuels.

It can be seen from Eq. (3) that the factors influencing the energy
intensity of the whole site include (i) standard coal coefficient of energy
flow, c, (ii) consumption of the energy flow, g, and (iii) the number of
energy flows, K. Besides the material flow optimization described in
Section 3.1, more detailed work has been conducted on the optimiza-
tion of c and g. A series of key generic technologies have been devel-
oped, such as high temperature air combustion (HTAC) [53], BFG dry
dedusting and recovery [54], LDG dry dedusting and recovery [55],
BFG top-pressure recovery turbine (TRT) [56], coke dry quenching
(CDQ) [57], pulverized coal injection (PCI) [58], process excess heat
recovery [59], organic Rankine cycle (ORC) power generation [60],
enhanced heat transfer [61], energy storage [62], and replacement with
energy-efficient machines [63]. The adoption of the above-mentioned
energy-efficient measures can significantly reduce energy usage in the
iron and steel industry [64]. Table 2 summarizes the various energy-
saving technologies for the iron and steel industry.

Besides the individual energy-efficient technologies, the rapid de-
velopment of energy flow network optimization has enhanced the en-
ergy efficiency of the whole industry significantly in recent years, with
attention paid to mainly two aspects, namely, physical models of the
energy flow network and mathematical models for energy flow fore-
casting and scheduling.
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3.2.1. Physical models
Energy flow is regarded as the amount of energy flowing from one

piece of equipment to another [69]. The structure of an energy flow
network is thus the combination of paths through which energy car-
riers, such as electricity and heat, flow in the iron and steel production
processes.

(a) Gas network

Many studies have been conducted with an emphasis on one sub-
network or subsystem of the whole energy flow network in steelworks.
The gas network is the one studied most frequently, because of its
important role in the whole network [70]. Purchased gas is mainly
natural gas and byproduct gases of steel production processes include
COG, BFG, and LDG. Some steelworks mix BFG with COG or mix the
three gases to create mixed gas (MG). For a gas flow sub-network,
originally the physical model was usually set up based on the geo-
graphical and geometric characteristics of the gas pipelines, as shown in
Fig. 3. Afterwards, more and more researchers concentrated on the
interchangeability and coordinated use of multiple gas [71], neglecting
the spatial locations, as shown in Fig. 4 [72].

(b) Steam network

Likewise, the physical model of the steam network can also be set up
with and without considering the spatial locations (as shown in Fig. 5
[73]). The physical model shown in Fig. 5 visualizes the generation and
utilization of steam of different grades in the whole steelmaking site.

(c) Multi-energy network

Only a few publications were found on the establishment of multiple
energy flows in the whole site [18,74]. According to the energy flow
input and output characteristics, the energy flow network can be clas-
sified into five systems, namely, energy conversion system, energy use
system, waste heat recovery system, energy buffer system, and energy
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Fig. 3. The physical model of a BFG sub-network.

Fig. 4. The physical model of a gas network [72].
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storage system. A physical model of the whole energy flow network can
be built as shown in Fig. 6.

Actually, many facilities in iron and steel sites produce and consume
energy simultaneously. For instance, coke ovens consume coal and
produce coke and COG. BOFs consume electricity and oxygen and
produce LDG. Boilers consume works arising gas and produce steam
and even cooling [75]. These facilities, which both produce and con-
sume energy carriers, are called prosumers [76]. As shown in Fig. 7, the
BF serves as a prosumer in the energy flow network. When it performs
its task of hot metal production, it consumes coke, PCI and hot blast
from the energy use system, and oxygen from the energy storage
system. Simultaneously, it converts coke and PCI into BFG through the

energy conversion system, which will be sent to energy storage system.
In addition, it converts the top pressure to electricity via the waste
energy (pressure) system. Thus, energy flow sub-networks can be in-
tegrated into the whole energy flow network through the prosumer
nodes in the network. As shown in Fig. 8, the gas network, the steam
network, and the electricity network can be integrated into a larger
network.

3.2.2. Mathematical models
Mathematical modelling is an important basis for the optimization

of the energy flows and energy flow networks. However, widely-used
energy system models such as the MARKAL model [77] and LEAP
model [78] are mainly focused on national- or industrial-sector-levels,
while less attention has been paid to site-wide energy systems [79]. For
the iron and steel production processes, although mature energy system

Fig. 5. The physical model of a steam network without considering spatial locations [73].

Fig. 6. The energy flow network model of the whole steelmaking site [74].

Fig. 7. BF as a prosumer in the energy flow network.
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models and software are less used in practice, many steelworks have
integrated some energy flow optimization models to some degree. Ispat
Inland Steel and voestalpine Stahl are two of the earliest steelworks
who built energy flow models [80]. Afterward, more researchers con-
ducted many investigations on the mathematical models [81].

Aiming at forecasting and optimizing energy flows, at first, various
static supply and demand models of energy flows have been established
to report energy flow balances. Afterwards, dynamic forecasting and
scheduling models were built mainly in an attempt to guide production.

For forecasting the supply and demand of energy flows, many
forecast methods and models have been developed, which can be
classified into two categories, namely, time series forecasting and
causal relationship forecasting. For time series forecasting, statistical
analysis on historical data are carried out to figure out the variation of
the unknown quantity with time. The time series models applied in
energy flow forecasting include the Box–Jenkins model [82], moving
average models [83], and Markov methods [84]. For causal relationship
forecasting methods, the forecasting models are built based on the de-
terministic function or nondeterministic correlational relativity be-
tween the known and unknown quantities. The causal models used in
energy flow forecasting include regression analysis models [85], arti-
ficial neural network (ANN) models [86], genetic algorithm (GA)
models [87], echo state networks [88], and grey models [89]. A more
detailed summary of the literature on the energy flow forecasting is
presented in Table 3. It can be seen that most work focuses on gas flow.

Although many energy flow forecasting methods have been developed
with a high accuracy, fewer models have been established on the basis
of material flow. Actually, the variation in material flow influences the
energy flow, both directly and decisively. Therefore, a material flow-
based energy flow forecasting method has the potential of reducing the
model complexity and computational burden, which thus should be
further developed in the future. In addition, almost all the previous
studies have focused on the energy flow quantity, but the forecast of the
energy quality, such as the LHV for gas flow and the pressure and
temperature for steam flow, is still lacking.

Compared with material flow optimization, the research on dy-
namic energy flow optimization is still at an early stage. The main
models used in energy flow scheduling include linear programming
models [94], mixed integer linear programming (MILP) models [95],
dynamic programming models [96], and heuristic models [97]. The
energy scheduling unit model is often used to solve plant-wide energy
flow scheduling problems. In the model, the energy system is divided
into four groups, namely, rigid energy consuming units, flexible energy
consuming units, energy conversion units, and energy buffer units,
which are basically consistent with the physical model structure pro-
posed in Fig. 6. In the mathematical programming models, minimized
cost is usually selected as the objective. Many researchers have studied
the optimization and scheduling of surplus energy flow, especially
surplus gas flow [98]. In addition, the scheduling of steam, oxygen, and
waste heat flows in the iron and steel production processes have also

Fig. 8. Integration of energy flow sub-networks.

Table 3
Summary of energy flow forecasting methods.

Energy flow types Forecasting methods Description Refs.

BFG Echo state neural network (ESN) • The error of BFG generation is 1.6%–6.9%.

• The error of BFG demand in HBSs is 5.0%–12.1%.
[88]

BFG Hybrid event-, mechanism- and data-driven
prediction

• The hybrid event-, mechanism- and data-driven model exhibits high accuracy.

• The mean average error (MAE) of the hybrid model is 71.17 m3/min lower than that of ANN
models.

[90]

BFG Quantile regression-based echo state
network ensemble (QR–ESNE)

• The QR–ESNE method exhibits strong robustness and generalization when modelling the industrial
data with high-level noises and outliers. The root mean square error (RMSE) of the QR–ESNE
method is 19.84–24.96 while that of ESN is 30.82–47.32.

[91]

Gas flow Material flow-based moving average method • Productivity of material flow was considered.

• The method is appropriate for formulating a long-term production plan.
[22]

Gas flow Genetic algorithm optimized support vector
Machine (GA–SVM)

• The gas flow of an annealing furnace was predicted.

• Combination of GA and SVM made the model accuracy more than 95%.
[87]

Oxygen Multiple linear regression models, and
oxygen balance models

• The average relative error is < 1%.

• The hit rate is 97.14% when the relative errors are within 5%.
[92]

Steam flow Bayesian ESN models • Combination of Bayesian theory with ESN via avoiding over-fitting in the training process.

• Baosteel CDQ turbine data showed the validity and practicality. The mean absolute percentage
error (MAPE) of the Bayesian ESN is 1.06%–2.36% while that of ESN is 1.80%–4.12%.

[93]

All energy flows Autoregressive integrated moving average
(ARIMA) method

• ARIMA (1,0,0) × (0,1,1) was the best fitted model for energy consumption, with the MAPE of
0.221.

• Further integration of different techniques may lead to more efficient forecasting.

[83]

All energy flows Seemingly unrelated regression method • The energy intensity was predicted on a yearly basis.

• Energy consumption level is sensitive to energy price changes.
[85]
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been investigated by simulation [99]. Table 4 summarizes the energy
flow optimization and scheduling models in the iron and steel industry
in more detail. Similar to the forecasting methods, most of the energy
flow scheduling models do not consider the influences of material flow
or equipment status. Moreover, the assumption that the energy flow to
be allocated is always sufficient in amount is usually used in the
models. However, a short-time energy flow shortage is a common
phenomenon. Therefore, further work is suggested to be carried out in
terms of the replacement of energy flow when it is too scarce to support
material flow for production [18].

3.3. Interrelation between material and energy flows

Energy is usually used in the displacement, physiochemical con-
version, deformation and phase change of materials in various iron and
steel manufacturing processes [33]. It is important to clarify the in-
terrelation between material and energy flows.

From a site-wide perspective, material and energy flows are inter-
connected. Based on a flow track, as shown in Fig. 9(a), energy flow
runs along with material flow in some paths, but it is separated from
material flow at some other nodes in the network [23]. When material
and energy flows run together, they influence and interact with each
other. When running in a separated way, they perform their individual
features. From a plant- or facility-level perspective, material and energy
flows enter the plant or facility separately, or part of the energy flow is
carried by the material flow, as shown in Fig. 9(b). Inside the plant or
facility, material flow interacts with energy flow to finish the produc-
tion process. At the output terminal, material flow leaves the plant or
facility with part of energy flow carried, while different forms of sec-
ondary energy flows can be exported separately. Yu et al. [103] and Na
et al. [104] pointed out that adjusting the product structure is very
important for improving energy efficiency, highlighting the importance
of the interaction and synergy between material and energy flows
[105].

The synergy between material and energy flow is a crucial topic,
which has the potential to further reduce energy consumption and
improve the energy efficiency of iron and steel production processes
[33]. Hot sinter and pellets should be cooled to ambient temperature
before being sent to BFs because of the temperature restrictions im-
posed by the feeding system and furnace roof of BFs. The sensible heat
carried on them cannot enter the BF together with the hot sinter and
pellets. Thus, a heat recovery facility is needed to convert the excess
process heat to steam or electricity to save energy [106]. In this regard,
the synergy between material and energy flow is embodied in the re-
covery of excess heat carried on the hot sinter and pellets. In contrast,
sensible heat carried on the hot metal, molten steel, and casting slabs
can be sent to the next procedure, along with the material flows. As
such, the synergistic effect between material and energy flow is re-
flected in the utilization of process heat carried on the material flows by
the next procedure. For example, the sensible heat and chemical energy

of hot metal can be synergistically used in the BOF [107], and the
sensible heat carried on casting slabs can be efficiently used by a re-
heating furnace for a synergetic purpose [7,59].

4. Challenges and future directions

4.1. Fundamental understanding of material and energy flows

The review of existing literature shows that methods and technol-
ogies previously used in the iron and steel industry are mainly based on
static and individual optimization of material and energy flows. Thus,
in order to further improve the energy efficiency of steelmaking, new
theories, technologies and management tools are needed for synergistic
operation of material and energy flows [108].

“Quantity”, based on the first law of thermodynamics, is always
used in this field to measure material and energy flows, either for
supply or demand [109]. However, the “quality” of material and energy
flows at the site level for integrated steelmaking sites is less discussed.
Actually, the qualities of material and energy flows greatly influence
their quantities and are crucial to the whole network. For example, the
grades of ores determine the amount of hot metal produced, and the
cleanliness of molten steel influences the energy intensity of the re-
fining process. The concept of exergy, based on the second law of
thermodynamics, indicates that “quality” plays a more important role
in assessing the usefulness of energy [110]. Exergy has been applied to
several industrial sectors and is becoming a powerful strategy to eval-
uate the real efficiency of a process [111]. Exergy analysis has been
used in steelworks to analyze some specific energy conversion processes
and has demonstrated benefits when compared with general energy
analysis [112]. However, it has not been used for the entire iron and
steel production site for optimizing the material and energy flow net-
works. Thus, it is necessary to use the concept of “exergy” in steelworks
to identify specific processes or plants that have large exergy losses.

Although there have been many studies conducted on the optimi-
zation and scheduling of material and energy flows in the steel and
energy fields, less attention has been paid to the material and energy
flow mechanisms in steelworks, except for the analysis on flow paths
and flow directions. More work should be conducted to identify the
flow patterns and quantify the changes of material and energy flows
throughout their conversion, transmission, storage, usage, recovery and
reuse in processes. Two approaches used in fluid mechanics to track the
motion of fluid, namely, the Euler approach and the Lagrange approach
[113], provide good references to the description of material and en-
ergy flows. The Euler approach has been widely used in existing studies
to analyze the production or consumption of material and energy flows
of a specific facility (e.g., in coke ovens, blast furnaces, and reheating
furnaces). The properties of material and energy flows (e.g. tempera-
ture, pressure, velocity, heat value, etc.) are described as functions of
space and time. However, the Euler approach is not suitable for in-
vestigating the life-cycle flow behavior of a specific energy carrier from

Fig. 9. Interrelation between material and energy flows. (a) site-level; (b) facility-level.
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its generation to the end use. For instance, the consumption of BFG in
reheating furnaces is directly influenced by the working conditions of
reheating furnaces, but is also influenced by the generation of BFG in
blast furnaces and the consumption of BFG in other users, which are
difficult to be described by the Euler approach. By contrast, using the
Lagrange approach, the properties of material and energy flows are able
to be determined by tracking the properties of flows as they move in
time. Thus, more attention should be paid to the motion behaviors of
material and energy flows by using the Lagrange approach in the future.

4.2. Dynamic assessment, utilization, recovery, scheduling, and
optimization

The reviewed publications show that much work has been done on
the static planning of material and energy flows, but less work on dy-
namic optimization, especially for energy flow. In developing dynamic
material and energy flow models, a major obstacle is the absence of
data. A lot of data are initially collected and used for other purposes
rather than scheduling material and energy flows, and some data are
considered as commercially confidential. Absent or incomplete data
make it difficult to investigate the optimization of material and energy
flows from a dynamic view. Therefore, most studies are conducted at
the static level, and a small number of studies on dynamic optimization
still remain in the dynamic balancing of material and energy flows. In
fact, the iron and steel production processes are more complex than that
described by the existing simplified models [114]. In the future, the
dynamic models of material and energy flows can be improved sub-
stantially if adequate monitoring instruments and necessary data are
available. In this case, some key issues that are difficult to be solved at
present can be addressed, including (1) optimal maintenance plan of
the whole site considering both energy consumption and environmental
emissions, (2) optimal scheduling of material flow in various con-
tinuous facilities with parallel operation, (3) coordination of the pro-
duction rhythm of several batch-type facilities, and (4) accurate pre-
diction of instantaneous amounts of energy supply and demand.

In addition, the assessment of the dynamic volatility of material
flow and energy flow has not been studied in detail, although many
researchers have reported the importance of quantifying flow volatility
[115]. Therefore, an index for assessing the volatility degree should be
figured out, based on which the effects of flow volatility on the energy
efficiency and energy intensity can be studied.

The iron and steel industry is energy-intensive and most production
processes operate at high temperatures. Therefore, large amounts of
heat are generated, transferred, utilized, and then dissipated.
Nevertheless, heat flow is insufficiently studied compared to gas, water
and power flows. In iron and steel production processes, the tempera-
ture of heat flow goes up and down along its flow path [33]. Conse-
quently, it is crucial to investigate the heat flow pattern and its dynamic
migration characteristics to decrease heat dissipation and improve the
energy efficiency. Waste heat recovery is another critical issue. Zhang
et al. [8] highlighted that the waste heat recovery potential for a
steelmaking site with the crude steel output of 10 Mt/a is 4.87 GJ/t,
equal to 26.08% of the total energy consumption. Besides technologies
with high conversion efficiency for high- and medium-temperature
waste heat [116], it is also worthwhile to utilize low-temperature waste
heat [117]. Given that different technologies use heats at different
temperature ranges, it will be of great potential to implement con-
current technologies combined by two or more waste heat recovery
methods [65], especially under the condition of fluctuant waste heat
flow supply with dynamically changing temperature or flow rate, to
achieve the most energy-efficient scheme.

Moreover, the model for reasonable energy flow dispatch is still
lacking. The existing models only focus on quantitative allocation and
have been built on the premise of a fixed source–sink matching relation.
No literature has discussed the rationality of the source–sink matching
pairs. An optimization by considering the interchangeability [118] of

energy flows at the site-level is an option to determine which energy
flow should be allocated to which energy consumer at what flow rate.
This includes two key issues, namely, the dispatch of various energy
flows among rigid energy users and the dispatch of surplus energy flow
between buffers and storage units, as shown in Fig. 6.

4.3. Synergy between material and energy flows

Study on the synergy between material and energy flows is still at its
early stage, which needs further investigation. Many studies consider
the energy flow network as an isolated system, and estimate the energy
flow only based on the historical energy flow data, taking no account of
material flow. Actually, it is the variation in material flow parameters
and the change of facilities’ working conditions that cause the fluc-
tuation in energy flows [22]. Thus, a hybrid model combining the data-
driven method with the synergy mechanism between energy and ma-
terial flows has the potential to have good performance [90].

Although the concept of synergy between material and energy flows
has been accepted by researchers [119], there is still a gap in the
quantitative assessment on this topic. Specific energy consumption
(SEC) is always used to assess the energy efficiency of the iron and steel
production processes [120], but Morfeldt and Silveira [121] found that
it is not sufficient. Currently, the framework of how the synergy be-
tween material and energy flows should be evaluated is still under
development. This is one of the main directions in this field.

From a dynamic view, energy saving potential lies in the quantita-
tive imbalance between the instantaneous generation and consumption
of energy flows, the grade mismatch between the supply and demand of
energy flows (e.g., high-grade energy is sometimes supplied to low-
grade energy demand), and the unsynergistic operation between ma-
terial and energy flows. Therefore, the optimization of material and
energy flows based on the synergetic thinking is worthy of further in-
vestigation. From a wider perspective, to reduce environmental pollu-
tion and improve sustainability [122], the synergy among materials,
energies, water, emissions, and cash flows will play a significant role in
promoting the iron and steel industry [18].

4.4. Flexibility in production processes and energy systems

As mentioned above, iron and steel production processes are dy-
namic, nonequilibrium, nonlinear, irreversible, and complicated sys-
tems [33], and their energy-saving potential lies in the current im-
balance, mismatch and non-synergy. Therefore, flexibility in production
processes (material flow) and energy systems (energy flow) is needed in
order to cope with the uncertainty and change.

Sanjeev et al. [123] defined the production process flexibility as the
ability to change states. Much literature on the flexible production are
available, including product mix flexibility [124], routing flexibility
[125], volume flexibility [126], and expansion flexibility [127]. How-
ever, only one study was found with regard to the iron and steel pro-
duction processes in terms of the transport flexibility [128]. Production
process flexibility is adequate for solving several material flow sche-
duling problems, such as hot rolling scheduling [129], steelma-
king–continuous casting scheduling [130], and ladle scheduling [131].

Energy systems also require flexibility to match the energy supply
and demand which dynamically fluctuate with time. This requirement
has originally been pronounced in electric power systems, in which the
supply and demand need to be balanced in real time [132]. The concept
of flexibility was then extended from electric power systems to other
energy systems, such as heating [133] and gas networks [134]. Energy
system flexibility allows for changes in energy flow generation and
consumption over time and is a valuable resource when the energy
flows have increasingly intermittent features. Likewise, energy system
flexibility is also an important tool for the iron and steel industry, which
operates in increasingly uncertain environments. The energy systems of
steelworks need flexibility to adjust the generation and consumption of
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energy flows in response to the changes in material flow and environ-
mental limits. Furthermore, steelworks are able to utilize their energy
system flexibility to provide ancillary services for external power or
heating networks to create more revenues [135]. However, only a few
publications on reductant flexibility [136] and power flexibility [137]
fell with the scope of energy system flexibility of steelworks, so further
research in this area is needed.

As an energy intensive sector, the iron and steel industry is facing
challenges of energy conservation and low-carbon steelmaking. Coal-
related fuels account for 90% of the direct energy consumption of the
iron and steel industry, equivalent to 83% of the total comprehensive
energy consumption [115]. Therefore, the substitution of coal with
other environmentally friendly energy sources, such as renewable en-
ergy or nuclear energy, will considerably reduce the carbon intensity of
the industry. The introduction of intermittent renewable energy in
steelworks reduces the predictability of energy flow and increases the
need for flexibility in energy systems. The results of Feta et al. [137]
showed that, for positive flexibility capacity (demand reduction), Tata
Steel in IJmuiden is able to supply the potential of 10 MW for 15 min
with an availability rate of 97%, or 20 MW with an availability rate of
65%. For the negative flexibility capacity (demand increase), it was
found to be 20 MW for 30 min with the doubling of BFG storage ca-
pacities. The qualification and enhancement of positive and negative
flexibility provisions of the iron and steel industry in the context of
steelmaking, driven by renewable energy and nuclear energy, is sug-
gested to be an important research domain.

4.5. Smart steel manufacturing and smart energy system

With the development of new technologies such as the Internet of
Things (IoT), big data analytics, cloud computing and artificial in-
telligence (AI), smart manufacturing has been proposed in modern in-
dustry [138]. Smart steel manufacturing, as the application of smart
manufacturing in steelmaking, is being predicted as the “Industry 4.0”
for the iron and steel industry, with the cyber-physical system (CPS) as
the core [139]. Currently, the main components of the CPS for steel-
making sites, such as BFs, BOFs, ladles, continuous casting slabs and hot
rolled pieces, are still treated as black boxes, because information inside
the reactors and products is unavailable. The physiochemical reactions
inside the black boxes cannot be grasped accurately. As a future di-
rection, “digital twins” [140] of these real-life physical objects are able
to be built, as shown in Fig. 10, using the digital sensing technologies
and the collected big data to describe the changes inside the black
boxes.

Smart steel manufacturing includes smart energy systems, which are

the so-called ‘CPS for an energy system’ (e-CPS) [141]. A smart energy
system requires trusted energy flow data and information at proper
times, locations and forms. Although advanced information technolo-
gies such as radio frequency identification (RFID), smart sensors and
smart meters can be used in e-CPSs to collect energy flow data, it is still
impossible to install instruments at all points in the physical energy
system. With regard to this, state estimation is a feasible solution [142].
In addition, with a flexible energy system, steelmaking sites need to
trade with external energy producers/consumers or provide ancillary
services for bulk energy networks. Blockchain-based technology has
been emerged as a promising solution for establishing the trading
platforms in a replicable, secure, verifiable, and trustworthy way [143].

4.6. Evolutionary steelmaking routes and technologies

To cope with the growing environmental pressures and to dec-
arbonize the iron and steel industry [144], several evolutionary steel-
making routes and technologies are presently being developed. Besides
carbon capture and storage (CCS) technology [24] and the EAF route,
nuclear steelmaking or hydrogen steelmaking, using DRI as the iron-
bearing material, has the potential to replace the current BF–BOF route
which is dominant. As shown in Fig. 11, the CO2 reduction potential is
expected to be 26% at the end of the pilot phase, 50% at the end of
2040s, and 95% at the end of the evolutionary route replacement [145].
The new route relies heavily on the access to electrical power favorably
from renewable resources, on a very large scale, both for hydrogen
production and EAF operation. This route replacement will cause ex-
tensive changes to existing integrated steelworks. However, little lit-
erature was found on the material and energy flow analysis and opti-
mization of the new steelmaking routes. In addition, the challenges
mentioned in Sections 4.1–4.5 also exist for the evolutionary routes and
technologies, which are future research domains as well.

5. Conclusions

The contribution of this review is to provide a timely, academic-led
discussion of material and energy flows of the iron and steel industry.
First, this paper presented an overview of different steel production
routes, including the BF–BOF route, the EAF route, and the combination
of them. Next, the status quo of the material and energy flows of the
iron and steel industry was presented. The selected publications contain
eighty journal articles, conference papers, white papers and industrial
reports, and they have been divided into three categories, namely,
material flow and material flow scheduling, energy flow and energy
flow network, and the interrelation between material and energy flows.
The literature review shows that nearly all the material flow optimi-
zation methods were studied with the assumption of a sufficient energy
flow supply. By reviewing the physical and mathematical models of
energy flows, it has been seen that although there are many studies on
energy flows and energy flow networks and energy consumption has
been remarkably reduced based on these studies, only a few energy
flow models have been established with the consideration of material
flow. Actually, the material–energy nexus should not be ignored and
the synergy of the two aspects is a new field that needs further research.

Material and energy flows are facing a wide variety of challenges to
realize their potential and the corresponding future directions have
been highlighted in the paper. Understanding of the flow mechanisms
of material and energy flows in steelworks is still insufficient, especially
in the uncertain environments of iron and steel production. Besides, the
quality of material and energy flows, as well as their motion features,
require more attention. Therefore, advanced theories in energy sci-
ences, such as the exergy and Lagrange motion tracking approach,
should be introduced to metallurgical engineering practice. The dy-
namic assessment, utilization, recovery, scheduling, and optimization
of the energy flows in steelworks should also be studied in the future,
considering the influences of the steel production rhythms on theFig. 10. CPS for smart steel manufacturing.
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energy use. In addition, from a synergetic perspective, quantitative
assessment and improvement measurements of the synergistic degree
between material and energy flows in steelworks are highly re-
commended. With the increasing requirement of renewable energy
utilization, flexible iron and steel production processes and flexible
energy systems require further research. Another direction of the iron
and steel industry is to develop smart steel manufacturing and smart
energy systems. Finally, the challenges and prospects of evolutionary
steelmaking routes and technologies have been analyzed, concluding
that more work needs to be done on the analysis and optimization of
material and energy flows in order to integrate the evolutionary solu-
tions into integrated steelworks.
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