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ABSTRACT

The (generalised) Mellin transforms of Gegenbauer polynomials, have polynomial
factors pλn(s), whose zeros all lie on the ‘critical line’ ℜ s = 1/2 (called critical
polynomials). The transforms are identified in terms of combinatorial sums related
to H. W. Gould’s S:4/3, S:4/2 and S:3/1 binomial coefficient forms. Their ‘critical
polynomial’ factors are then identified in terms of 3F2(1) hypergeometric functions.
Furthermore, we extend these results to a one-parameter family of critical polyno-
mials that possess the functional equation pn(s;β) = ± pn (1− s;β).

Normalisation yields the rational function qλn(s) whose denominator has singu-
larities on the negative real axis. Moreover as s → ∞ along the positive real axis,
qλn(s) → 1 from below.

For the Chebyshev polynomials we obtain the simpler S:2/1 binomial form, and
with Cn the nth Catalan number, we deduce that 4Cn−1p2n(s) and Cnp2n+1(s) yield
odd integers. The results touch on analytic number theory, special function theory,
and combinatorics.
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1. Introduction

The motivation for this present work is to further understand the triangle of connec-
tions that exist between binomial coefficients, functions which only have critical zeros
(those on the line ℜ s = 1/2 or zeros on the real line, and henceforth referred to as
critical polynomials), and prime numbers.

As stated by K. Dilcher and K. B. Stolarsky, [1]

Two of the most ubiquitous objects in mathematics are the sequence of prime numbers
and the binomial coefficients (and thus Pascal’s triangle). A connection between the two
is given by a well-known characterisation of the prime numbers: Consider the entries in
the kth row of Pascal’s triangle, without the initial and final entries. They are all divisible
by k if and only if k is a prime”.

CONTACT M. C. Lettington. Email: LettingtonMC@cardiff.ac.uk
The authors would like to thank Dr J. L. Hindmarsh, Prof M. N. Huxley and Prof K. M. Schmidt for their
helpful comments and suggestions.



By considering a modified form of Pascal’s triangle, whose kth row consists of the
integers

a(k, j) :=
(2k − 1)(2k + 1)

2j + 3

(

k + j

2j + 1

)

, k ∈ N, 0 ≤ j ≤ k − 1, (1.1)

Dilcher and Stolarsky obtained an analogous characterisation of pairs of twin prime
numbers (2k−1, 2k+1). This says that the entries in the kth row of the a(k, s) number
triangle are divisible by 2k− 1 with exactly one exception, and are divisible by 2k+1
with exactly one exception, if and only if (2k − 1, 2k + 1) are a pair of twin prime
numbers.

The analogous sequence of polynomials Ak(x) obtained from the kth row of the

number triangle generated by the integers a(k, j) is given by Ak(x) =
∑k−1

j=0 a(k, j)x
j .

It was shown in [1] that this polynomial family satisfies the four-term recurrence
relation

Ak+4(x) = (2x+ 4) (Ak+3(x) +Ak+1(x))− (4x2 + 4x+ 6)Ak+2(x)−Ak(x),

as opposed to a three-term recurrence relation required for orthogonality, and so they
do not constitute an orthogonal polynomial system (e.g. [see 2, p.42-44]).

However it is also shown in [1] that the polynomials Ak(x) are closely linked to the
orthogonal system of Gegenbauer polynomials Cλ

n(x) with λ = 2 by

Ak(x) = C2
k−1 ((x+ 2)/2) + (x+ 6)C2

k−2 ((x+ 2)/2) + C2
k−3 ((x+ 2)/2) .

The Genenbauer polynomials are defined for λ > −1/2, λ 6= 0 (e.g., [7]), by the
hypergeometric series representation [see 3, p.773-802], and also in terms of binomial
coefficients and powers of 2 such that

Cλ
n(x) =

(2λ)n
n!

2F1

(

2λ+ n,−n;λ+
1

2
;
1− x

2

)

=

⌊n/2⌋
∑

r=0

(−1)r
(

n−r
r

)(

n−r−1+λ
n−r

)

(2x)n−2r.

(1.2)
The Legendre Polynomials Pn(x) are the case λ = 1/2 of the Gegenbauer polynomials

C
1/2
n (x), and a close connection between these polynomials, the prime numbers and

the absolute value of the Riemann zeta function, ζ(s) =
∑∞

n=1
1
ns , defined for ℜ(s) > 1,

was established in [4], where |ζ(s)| is expressed as an infinite sum over products of
Legendre polynomials and functions derived from prime numbers.

The location of the zeros of the Riemann zeta function is famously known as the
Riemann Hypothesis (1859), which states that all of the non-trivial zeros of ζ(s) (the
trivial zeros lie at the negative even integers) lie on the critical line ℜ s = 1/2. In 1901
von Koch reinforced the connection between ζ(s) and the prime numbers, demonstrat-
ing that the Riemann Hypothesis is equivalent to the statement that the error term
for π(x), the number of primes up to x, is of order of magnitude O (

√
x log(x)) [5].

Riemann had originally shown that

π(x) ∼ Li(x) +

∞
∑

n=2

µ(n)

n
Li(x1/n), where Li =

∫ x

2

du

log u
,

2



and with µ(n) the Möbius function, which returns 0 if n is divisible by a prime squared
and (−1)k if n is the product of k distinct primes.

The Báez-Duarte equivalence to the Riemann Hypothesis [6] links the Riemann Hy-
pothesis (and so the prime numbers) to binomial coefficients, via the infinite sequence
of real numbers ct, defined such that ct :=

∑t
s=0(−1)s

(t
s

)

ζ(2s+2)−1, with the assertion

that the Riemann hypothesis is true if and only if ct = O(t−3/4+ǫ), for integers t ≥ 0,
and for all ǫ > 0.

In relation to understanding the triangle of connections that exist between the three
objects consisting of the prime numbers, the binomial coefficients, and functions which
only have critical zeros, it is those between the binomial coefficients and the ‘critical
polynomials’ that appears to be the least studied, thus motivating the results contained
in this paper.

Before elaborating further, we mention some standard notation in which 2F1 denotes
the Gauss hypergeometric function, pFq the generalized hypergeometric function, and

(a)n = Γ(a+ n)/Γ(a) = (−1)nΓ(1− a)/Γ(1 − a− n)

is the Pochhammer symbol, with Γ the gamma function [7,8]. We also set ε = 0 for n
even and ε = 1 for n odd. Our starting point is the following definition:

Definition 1.1. For λ > −1/2, we define the generalised Mellin transform Mλ
n (s),

such that

Mλ
n (s) =

∫ 1

0

Cλ
n(x)x

s−1

(1− x2)3/4−λ/2
dx =

∫ π/2

0
coss−1 θ Cλ

n(cos θ) sin
λ−1/2 θ dθ, (1.3)

wherein x = cos θ, and we assume that ℜ s > 0 for n even and ℜ s > −1 for n
odd, denoting by pλn(s) the polynomial factor of Mλ

n (s). Then for λ = 1 we have the
generalised Mellin transform Mn(s) of the Chebyshev functions [9] of the second kind

Mn(s) ≡
∫ 1

0
xs−1Un(x)

dx

(1− x2)1/4
. (1.4)

The integral transform (1.3) may be evaluated (see Theorem 2.1) using the formula
below, which gives the more general class of integrals in terms of special functions such
that [see 8, p.517 2.21.2(1)]

∫ a

0
xα−1(a2 − x2)β−1Cλ

2n+ε(cx) dx =
(−1)n(λ)n+εc

εaα+2β+ε−2

21−εn!
B

(

α+ ε

2
, β

)

×3F2

(

−n, n+ λ+ ε, (α + ε)/2; ε + (1/2), (α + ε+ 2β)/2; a2c2
)

, (1.5)

where ε ∈ {0, 1}; a,ℜβ > 0;ℜα > −ε, and B(x, y) = Γ(x)Γ(y)
Γ(x+y) , is the beta function.

In [10,11], Mellin transforms were used on [0,∞). Here we consider Mellin transfor-
mations for functions supported on [0, 1]. For properties of the Mellin transform, we
mention [12].

Our main results show that the polynomial factors pλn(s) of the Mellin transforms
in (1.3) of the Gegenbauer (and so Chebyshev) functions Cλ

n(x), yield families of

3



‘critical polynomials’ pλn(s), n = 0, 1, 2, . . ., of degree ⌊n/2⌋, satisfying the functional
equation pλn(s) = (−1)⌊n/2⌋pλn(1 − s). Additionally we find that (up to multiplication
by a constant) these polynomials can be written explicitly as variants of Gould S:4/1
and S:3/2 binomial sums (see [13]), the latter form being

pλ2n+ε(s) = n!(2n+ ε)!
(n+λ−1+ε

n+ε

)(n+ 1

2
(s+ε+λ)− 3

4
n

)

n
∑

r=0

(−1)n−r22r−1+ε(n+r+λ−1+ε

r
)(n+r+ε

2r+ε
)(

1
2
(s+ε−2)+r

r
)

(n+r+ε

r
)(

1
2
(s+ε+λ)− 3

4
+r

r
)

.

(1.6)
In the case of the Chebyshev polynomials (λ = 1), this simplifies to the S : 2/1
form, due to cancellation of binomial factors, and with Cn = 1

n+1

(2n
n

)

, the nth Catalan
number, s an integer, we show that polynomials 4Cn−1p2n(s) and Cnp2n+1(s) yield
integers with only odd prime factors.

The ‘critical polynomials’ under consideration here, in a sense motivate the Rie-
mann hypothesis, and have many important applications to analytic number theory.
For example, using the Mellin transforms of Hermite functions, Hermite polynomials
multiplied by a Gaussian factor, Bump and Ng [10] were able to generalise Riemann’s
second proof of the functional equation of the zeta function ζ(s), and to obtain a new
representation for it.

The polynomial factors of the Mellin transforms of Bump and Ng are realised
as certain 2F1(2) Gauss hypergeometric functions [11]. In a different setting, the
polynomials pn(x) = 2F1(−n,−x; 1; 2) = (−1)n 2F1(−n, x + 1; 1; 2) and qn(x) =
inn!pn(−1/2 − ix/2) were studied [14], and they directly correspond to the Bump
and Ng polynomials with s = −x. Kirschenhofer, Pethö, and Tichy considered com-
binatorial properties of pn, and developed Diophantine properties of them. Their
analytic results for pn include univariate and bivariate generating functions, and
that its zeros are simple, lie on the line x = −1/2 + it, t ∈ R, and that its ze-
ros interlace with those of pn+1 on this line. These polynomials can be written as
pn(x) =

(

n+x
n

)

2F1(−n,−x;−n− x;−1).

Example 1.2. The first few transformed polynomials pλn(s), are given by

pλ0(s) =1/2, pλ1(s) = λ, pλ2(s) =
1

4
λ(2λ+ 1)(2s − 1) =

1

2
λ(2λ+ 1)

(

s− 1

2

)

,

pλ3(s) =
1

2
λ(λ+ 1)(2λ + 1)(2s − 1) = λ(λ+ 1)(2λ+ 1)

(

s− 1

2

)

,

pλ4(s) =
1

8
λ(λ+ 1)(2λ + 1)

(

8λs2 − 8λs+ 6λ+ 12s2 − 12s + 15
)

,

=
1

8
λ(λ+ 1)(2λ + 1)

(

s−
(

1
2 − i

√
9+9λ+2λ2

3+2λ

))(

s−
(

1
2 +

i
√
9+9λ+2λ2

3+2λ

))

,

pλ5(s) =
1

4
λ(λ+ 1)(λ+ 2)(2λ + 1)

(

8λs2 − 8λs + 14λ+ 12s2 − 12s+ 51
)

=
1

4
λ(λ+ 1)(λ+ 2)(2λ + 1)

(

s−
(

1
2 −

i
√
3
√
2λ2+11λ+12
3+2λ

))(

s+
(

1
2 −

i
√
3
√
2λ2+11λ+12
3+2λ

))

Previous results obtained by the authors related to this area of research are discussed
in [15,16], where in the former paper families of ‘critical polynomials’ are obtained from
generalised Mellin transforms of classical orthogonal Legendre polynomials. In the lat-
ter paper sequences of ‘critical polynomials’ are considered which can also be obtained
by generalised Mellin transforms of families of orthogonal polynomials whose coeffi-
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cients are the weighted binomial coefficients defined by Bk(x) =
∑k

j=0
2k+1
2j+1

(

k+j
2j

)

xj .

There it was established that for ℜ s > −1/4, the generalized Mellin transforms

MB
n (s) =

∫ 0

−4

Bn(x)x
s−3/4

(4 + x)3/4
dx = (−1)s+5/44s4−n−1Γ(1/4)pn(s)

Γ
(

s+ 1
4

)

Γ
(

s+ 2n+1
2

) ,

yield critical polynomial factors pn(s), which obey the perfect reflection functional
equation pn(s) = ±pn(1− s).

The ‘perfect-reflection’ functional equation pλn(s) = (−1)⌊n/2⌋pλn(1− s), is similar to
that for Riemann’s xi function ξ(s), defined by ξ(s) = 1

2s(s− 1)π−s/2Γ
(

1
2s
)

ζ(s), and
which satisfies ξ(s) = ξ(1−s), so that for t ∈ R, the zeros of ξ(1/2+ it) and ζ(1/2+ it)
are identical. Drawing upon this analogy, one interpretation is that the polynomials
pλn(s) are normalised (from a functional equation perspective) polynomial forms of the
rational functions qλn(s), defined for n ∈ N and ε ∈ {0, 1} by

qλ2n+ε(s) =
2ε pλ2n+ε(s)

λ(n− 1 + ε)!(2n)!
(2n+2λ−1+ε

2n−1+ε

)(n+ 1

2
(s+ε+λ)− 3

4
n

)

, (1.7)

where both numerator and denominator polynomials of qλn(s) are of degree ⌊n/2⌋.
For λ > −1/2, λ 6= 0, and ℜ s > 0, the ⌊n/2⌋ linear factors of the denominator

polynomials of qλn(s), are each non-zero, so that for these values of λ, we have qλn(s)
has no singularities with ℜ s > 0. Hence the rational function qλn(s) has the same
‘critical zeros’ as the polynomial pλn(s), and for t ∈ R, the roots of pλn(1/2 + it) and
qλn(1/2 + it) are identical. It obeys the binomial functional equation

qλn(s) = (−1)⌊n/2⌋
(⌊n/2⌋ + 1−s+λ+ε

2 − 3
4

⌊n/2⌋

)(⌊n/2⌋+ s+λ+ε
2 − 3

4

⌊n/2⌋

)−1

qλn(1− s).

The [n/2] poles of qλn(s) (so zeros of the denominator polynomial of qλn(s)) occur on
the negative real axis when 2s = 3 − λ − 4j or 2s = 1 − 2λ − 4j (depending on the
parity of n) and for s ∈ (1,∞), we find that qλn(s) takes values on (0, 1), as detailed
in Theorem 2.6 (b) from which it follows that on R>1, the behaviour of qλn(s) has
similarities to that of 1/ζ(s), albeit with a rate of convergence to the limit point 1,
considerably slower than for 1/ζ(s).

To give an overview, the present work is split into four sections, with the main re-
sults concerning the critical polynomials arising from Mellin transforms of Gegenbauer
polynomials appearing after this introduction in the second section. In the third section
we prove these results, utilising continuous Hahn polynomials to locate the ‘critical
zeros’. The fourth and concluding section then considers further possible extensions
to these results.
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2. Critical Polynomial Results

In the following statements we set

Mλ
0 (s) =

Γ
(

λ
2 + 1

4

)

Γ
(

s
2

)

2Γ
(

s+λ
2 + 1

4

) , Mλ
1 (s) = 2λMλ

0 (s+1), and Nλ
n (s) =

Γ
(

λ
2 + 1

4

)

Γ
(

s+n
2

)

2Γ
(

s+n+λ
2 + 1

4

) ,

(2.1)
where as previously mentioned we take ε ∈ {0, 1}.

Theorem 2.1. The Mellin transforms (1.3) may be written as 3F2(1) hypergeometric
functions, such that

Mλ
2n+ε(s) = (−1)nMλ

0 (s+ε)(2n+2)ε
(

λ+n−1+ε
n+ε

)

3F2

(

−n, λ+ n+ ε, s+ε
2 ; 12 + ε, λ+s+ε

2 + 1
4 ; 1

)

,
(2.2)

or equivalently, and independently of ε as

Mλ
n (s) = Nλ

n (s)
(

2λ+n−1
n

)

3F2

(

λ
2 + 1

4 ,
1−n
2 ,−n

2 ;
1
2 + λ, 1− (n+s)

2 ; 1
)

. (2.3)

Theorem 2.2. The Mellin transforms (1.3) satisfy: (a) the recurrence relation

nMλ
n (s) = 2(λ+ n− 1)Mλ

n−1(s+ 1)− (2λ+ n− 2)Mλ
n−2(s),

(b) the generating function Gλ(s, t) =
∫ 1
0 (1− x2)λ/2−3/4(1− 2tx+ t2)−λxs−1 dx

=

∞
∑

k=0

Mλ
k (s)t

k =
Γ
(

1
4 + λ

2

)

2(1 + t2)λ

[

Γ(λ)Γ
(

s
2

)

Γ
(

s+λ
2 + 1

4

) 3F2

(

λ+ 1

2
,
λ

2
,
s

2
;
1

2
,
s+ λ

2
+

1

4
;

4t2

(1 + t2)2

)

+
2tΓ(λ+ 1)

(1 + t2)

Γ
(

s+1
2

)

Γ
(

s+λ
2 + 3

4

) 3F2

(

λ+ 1

2
, 1 +

λ

2
,
s+ 1

2
;
3

2
,
s+ λ

2
+

3

4
;

4t2

(1 + t2)2

)

]

,

(c) the recurrence relation in s

−4(s− 1)(s − 2)Mλ
n (s− 2) + [6− 4(λ+ 2λn + n2)− 16s + 8s(s+ 1)]Mλ

n (s)

+[−9 + 4(n + λ)2 + 16(s + 2)− 4(s+ 2)(s + 3)]Mλ
n (s+ 2) = 0,

with Mλ
0 (s) and Mλ

1 (s) as defined in (2.1), and
(d) the polynomial factors pλn(s) of M

λ
n (s), have zeros only on the critical line,

(e) the polynomial factors satisfy the functional equation pλn(s) = (−1)⌊n/2⌋pλn(1− s).

Theorem 2.3. The Mellin transforms (1.3) may be written as a constant multiplied
by a variant on Gould’s combinatorial S:4/2 and S:3/1 functions, such that

Mλ
2n+ε(s) = Mλ

0 (s + ε)

n
∑

r=0

(−1)n−r22r+ε
(

n+r+λ−1+ε
n+r+ε

)(

n+r+ε
2r+ε

)( s+ε−2

2
+r

r

)(n+ s+ε+λ

2
− 3

4
n−r

)

(n
r

)(n+ s+ε+λ

2
− 3

4
n

)

6



= Mλ
0 (s+ ε)

n
∑

r=0

(−1)n−r22r+ε
(n+r+λ−1+ε

n+r+ε

)(n+r+ε
2r+ε

)( s+ε−2

2
+r

r

)

( s+ε+λ

2
− 3

4
+r

r

)

.

Corollary 2.4. When either s = 2t or s = 2t + 1, an even or odd positive integer
then we respectively have

Mλ
0 (2t) =

1

4t

(λ
2 + 1

4 + t− 1

t

)−1

, Mλ
1 (2t+1) = 2λMλ

0 (2t+2) =
λ

2t+ 2

(λ
2 + 1

4 + t

t+ 1

)−1

.

Hence, when s is a non-negative integer then the expressions for Mλ
n (s) given in The-

orem 2.3 can be written as variants of the Gould S:4/3 form.

Theorem 2.5. Let n ∈ N0 and ε = (1− (−1)n)/2. Then the Mellin transforms are of
the form

Mλ
n (s) =

Γ
(

λ
2 + 1

4

)

Γ
(

s+ε
2

)

Γ
(

s+n+λ
2 + 1

4

)

n!
pλn(s) = Lλ

n(s)p
λ
n(s) (say),

where the polynomial factors pλn(s) can be written in terms of hypergeometric functions
such that

pλn(s) =
2(n!)Γ

(

n+s
2

)

Γ
(

s+ε
2

)

(

2λ+ n− 1

n

)

3F2

(

λ

2
+

1

4
,
1− n

2
,−n

2
;λ+

1

2
, 1− (n+ s)

2
; 1

)

,

(2.4)
satisfying the difference equation in s

[6− 4(λ+ 2λn+ n2)− 16s + 8s(s+ 1)]

(

s+ ε

2
− 1

)(

s+ n+ λ

2
+

1

4

)

pλn(s)

+[−9 + 4(n + λ)2 − 4(s− 1)(s + 2)]

(

s+ ε

2

)(

s+ ε

2
− 1

)

pλn(s+ 2)

−4(s− 1)(s − 2)

(

s+ n+ λ

2
+

1

4

)(

s+ n+ λ

2
− 3

4

)

pλn(s− 2) = 0. (2.5)

Theorem 2.6 (Binomial ‘critical polynomial’ theorem). (a) The polynomials pλn(s),
can be written (up to multiplication by a constant) in terms of binomial coefficients
and powers of 2, as a variant of a Gould S:4/1 combinatorial function, such that

pλ2n+ε(s) = n!(2n+ε)!

n
∑

r=0

(−1)n−r22r−1+ε
(n+r+λ−1+ε

n+r+ε

)(n+r+ε
2r+ε

)( 1

2
(s+ε−2)+r

r

)(n+ 1

2
(s+ε+λ)− 3

4
n−r

)

(n
r

) ,

or as a Gould S:3/2 combinatorial function variant, such that

pλ2n+ε(s) = n!(2n+ε)!
(

n+λ−1+ε
n+ε

)(

n+ 1

2
(s+ε+λ)− 3

4
n

)

n
∑

r=0

(−1)n−r22r−1+ε(n+r+λ−1+ε

r
)(n+r+ε

2r+ε
)(

1
2
(s+ε−2)+r

r
)

(n+r+ε

r
)(

1
2
(s+ε+λ)− 3

4
+r

r
)

,
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thus establishing the binomial ‘critical polynomial’ relationship (1.6).
(b) Let qλn(s) denote the rational function in s derived from the S:3/2 form of the
‘critical polynomial’ pλn(s) such that

qλ2n+ε(s) =
(2n+ ε)

(

n+λ−1+ε
n+ε

)

λ
(2n+2λ−1+ε

2n−1+ε

)

n
∑

r=0

(−1)n−r22r−1+ε
(

n+r+λ−1+ε
r

)(

n+r+ε
2r+ε

)( 1

2
(s+ε−2)+r

r

)

(

n+r+ε
r

)( 1

2
(s+ε+λ)− 3

4
+r

r

)

,

Then we have the equivalent form for qλ2n+ε(s) given in (1.7)

qλ2n+ε(s) =
22n+1pλ2n+ε(s)

(2λ)2n+ε
∏n

j=1(2(s + ε) + 2λ+ 4j − 3)
,

where both numerator and denominator polynomials of qλn(s) are of degree ⌊n/2⌋.
(c) For λ > −1/2, λ 6= 0, and ℜ s > 0, the rational function qλn(s) has no singularities,
and has the same ‘critical zeros’ as the polynomial pλn(s), so that for t ∈ R, the roots
of pλn(1/2 + it) and qλn(1/2 + it) are identical.

When s ∈ R>1, q
λ
n(s) takes values on (0, 1), with lims→∞ qλn(s) = 1 (from below),

as does 1/ζ(s), albeit with a rate of convergence considerably slower than than that for
1/ζ(s). We also have that qλn(s) obeys the binomial ratio functional equation

qλn(s) = (−1)⌊n/2⌋
(⌊n/2⌋+ 1−s+λ+ε

2
− 3

4

⌊n/2⌋
)(⌊n/2⌋+ s+λ+ε

2
− 3

4

⌊n/2⌋
)
−1

qλn(1− s). (2.6)

Corollary 2.7. The polynomial factors arising from the Mellin transform of the
Chebyshev polynomials have the simpler form as a variant of a Gould S:2/1 com-
binatorial function, such that

p2n+ε(s) = n!(2n+ ε)!
(

n+ s+ε

2
− 1

4
n

)

n
∑

r=0

(−1)n−r22r−1+ε
(n+r+ε

2r+ε

)( 1

2
(s+ε−2)+r

r

)

( s+ε

2
− 1

4
+r

r

)

,

For s = t ∈ Z an integer, and with Cn = 1
n+1

(2n
n

)

, the nth Catalan number, the
polynomials 4Cn−1p2n(t) and Cnp2n+1(t) yield odd integers. Moreover the polynomials

(22n+1/(2n)!)p2n(t), and (22n+1Tn+1)/((2n + 2)!)p2n+1(t), (2.7)

with Tn+1 the largest odd factor of n+ 1, yield odd integers with fewer prime factors.

Theorem 2.8 (Perfect reflection property theorem). We say that f(s) has the ‘perfect

reflection property’ to mean f(s) = f(s), f(s) = χf(1 − s), with χ = ±1, f(s) = 0,
only when ℜ s = 1/2.

Let n ∈ N0 and ε = (1− (−1)n)/2. Then the polynomials

pn(s;β) =
Γ
(

n+s
2

)

Γ
(

s+ε
2

) 3F2

(

1− β,
1− n

2
,−n

2
; 2(1 − β), 1− (n+ s)

2
; 1

)

,

have the perfect reflection property with χ(n) = (−1)⌊n/2⌋, wherein β < 1, of degree
⌊n/2⌋, satisfy the functional equation pn(s;β) = (−1)⌊n/2⌋pn(1 − s;β). These poly-
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nomials have zeros only on the critical line, and all zeros 6= 1/2 occur in complex
conjugate pairs.

Corollary 2.9. (a) The properties of Theorem 2.8 are satisfied by the polynomials

pn(s; 0) =
2(n+ s)

(n+ 1)(n + 2)

Γ
(

n+s
2

)

Γ
(

s+ε
2

)

[

1− 2F1

(

−(n+ 1)

2
,−n

2
− 1;−(n + s)

2
; 1

)]

=
2(n+ s)

(n+ 1)(n + 2)

Γ
(

n+s
2

)

Γ
(

s+ε
2

)



1−
Γ
(

− (n+s)
2

)

Γ
(

1−s
2

)

Γ
(

n+3−s
2

)

Γ
(

1− s
2

)



 .

(b) More generally, for β a negative integer, the properties of Theorem 2.8 are satis-
fied by the polynomials pn(s;−m), and these polynomials may be written in terms of
elementary factors and the gamma function.

Table 1.: Table of values of (22n+1/(2n)!)p2n(t), for 0 ≤ n ≤ 5, −4 ≤ t ≤ 4.

n \ t -4 -3 -2 -1 0 1 2 3 4

0 1 1 1 1 1 1 1 1 1
1 -27 -21 -15 -9 -3 3 9 15 21
2 421 261 141 61 21 21 61 141 261
3 -7119 -3969 -1995 -861 -231 231 861 1995 3969
4 154665 80361 36729 13401 3465 3465 13401 36729 80361
5 -4029795 -1946637 -828135 -293073 -65835 65835 293073 828135 1946637

Table 2.: Table of values of ((22n+1Tn+1)/(2n + 2)!)p2n+1(t), for 0 ≤ n ≤ 5, −4 ≤ t ≤ 4.

n \ t -4 -3 -2 -1 0 1 2 3 4

0 1 1 1 1 1 1 1 1 1
1 -9 -7 -5 -3 -1 1 3 5 7
2 279 183 111 63 39 39 63 111 183
3 -1341 -819 -465 -231 -69 69 231 465 819
4 128637 72765 37581 17325 8157 8157 17325 37581 72765
5 -1809459 -959805 -465975 -197505 -52731 52731 197505 465975 959805

3. Proof of the Main Results

Proof of Theorem 2.1. Setting a = 1, α = s, β = λ
2 + 1

4 , and c = 1 in (1.5), we
obtain (2.2). Taking n = 0 and n = 1 in (2.2) gives us (2.1).

To see the hypergeometric form (2.3) of Mλ
n (s), we use the Cλ

n(x) series represen-
tation [see 17, p.278 (6)], to obtain the expression

Mλ
n (s) =

[n/2]
∑

k=0

(2λ)n(−1)k

4kk!(λ+ 1/2)k(n − 2k)!

∫ 1

0
xs+n−2k−1(1− x2)k+λ/2−3/4dx.

9



Applying the beta integral,

∫ 1

0
xa−1(1− x2)b−1dx =

1

2
B
(a

2
, b
)

, ℜ a > 0, ℜ b > 0,

and replacing with gamma factors and rearranging we then obtain

Mλ
n (s) =

Γ
(

λ
2 + 1

4

)

Γ
(

s+n
2

)

2Γ
(

s+n+λ
2 + 1

4

)

(

2λ+n−1
n

)

3F2

(

λ
2 + 1

4 ,
1−n
2 ,−n

2 ;
1
2 + λ, 1 − (n+s)

2 ; 1
)

,

as required, where the above has used the identity 1
Γ(n−2k+1) =

4k

n!

(

−n
2

)

k

(

1−n
2

)

k
.

Proof of Theorem 2.2. (a) follows from ([see 7, p.303] or [see 8, p.1030])

(n+2)Cλ
n+2(x) = 2(λ+n+1)xCλ

n+1(x)−(2λ+n)Cλ
n (x), Cλ

0 (x) = 1, Cλ
1 (x) = 2λx.

(b) follows from (1− 2xt+ t2)−λ =
∑∞

n=0C
λ
n(x)t

n (see [7, p,302], or [8, p.1029]).
(c) To obtain the difference equation for Mλ

n (s), we apply the ordinary differential
equation satisfied by Gegenbauer polynomials [see 8, p.1031],

(x2 − 1)y′′(x) + (2λ+ 1)xy′(x)− n(2λ+ n)y(x) = 0.

If f(x) ≡ Cλ
n(x)/(1− x2)3/4−λ/2, we then substitute Cλ

n(x) = (1− x2)3/4−λ/2f(x) into
this differential equation. We then find that

1

4
(1− x2)−1/4−λ/2

[

(6− 4(λ+ 2λn+ n2) + (−9 + 4(λ+ n)2)x2)f(x)

+4(x2 − 1)(−4xf ′(x) + (1− x2)f ′′(x))
]

= 0.

It follows that the quantity in square brackets is zero. We multiply it by xs−1 and
integrate from x = 0 to 1, integrating the f ′ term once by parts, and the f ′′ term
twice by parts. We determine that the Mellin transforms satisfy the following difference
equation:

−4(s− 1)(s − 2)Mλ
n (s− 2) + [6− 4(λ+ 2λn + n2)− 16s + 8s(s+ 1)]Mλ

n (s)

+[−9 + 4(n + λ)2 + 16(s + 2)− 4(s+ 2)(s + 3)]Mλ
n (s+ 2) = 0.

and hence the result.
(d) The case λ = 1

2 was proven in [16] and the case λ = 3
2 can be deduced similarly.

To show that the resulting zeros of pλn(s) occur only on ℜ s = 1/2 for general λ > −1
2

we apply a connection with continuous Hahn polynomials [see 7, p,331],

hm(x; a, b, c, d) = im
(a+ c)m(a+ d)m

m!
3F2 (−m,m+ a+ b+ c+ d− 1, a+ ix; a+ c, a+ d; 1) .

(3.1)
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We use the transformation of a terminating 3F2(1) series

3F2(−n, a, b; c, d; 1) =
(a)n(c+ d− a− b)n

(c)n(d)n
3F2(−n, c−a, d−a; 1−a−n, c+d−a−b; 1)

to obtain

hm(x; a, b, c, d) =
im

m!
(a+ b+ c+ d+m− 1)m(1− b−m− ix)m

× 3F2(1− b− c−m, 1− b− d−m,−m; 2− a− b− c− d− 2m, 1− b−m− ix; 1).

Then comparing with the 3F2(1) function forMλ
n (s) given in (2.3) we see when n = 2m

is even, that setting x = i
2

(

−s+ 1
2

)

, a = c = 1
2− λ

2−m, b = d = 1
4 , our polynomial

factors pλn(s) are proportional to continuous Hahn polynomials such that

pλn(s) = (m!)222m−1(−i)m
(

m+ λ− 1

m

)

hm

(−i

2

(

s− 1

2

)

;
1

2
− λ

2
−m,

1

4
,
1

2
− λ

2
−m,

1

4

)

.

(3.2)
Similarly setting x = i

2

(

−s+ 1
2

)

, a = c = −λ
2 −m, b = d = 3

4 , when n = 2m+ 1

is odd, our polynomial factors pλn(s) are proportional to continuous Hahn polynomials
such that

pλn(s) = (m!)222m(−i)mλ

(

m+ λ

m

)

hm

(−i

2

(

s− 1

2

)

;−λ

2
−m,

3

4
,−λ

2
−m,

3

4

)

.

(3.3)
For fixed values of a, b, c, d, the continuous Hahn polynomials are an orthogonal system
of polynomials which satisfy the recurrence relation [see 7, (6.10.11)]

Amĥm+1(x) = ((a+ ix) +Am + Cm)ĥm(x)−Cmĥm−1(x),

where

ĥm(x) := ĥm(x; a, b, c, d) = Dmhm(x) =
m!

im(a+ c)m(a+ d)m
hm(x; a, b, c, d),

so that Dm = m!/(im(a + c)m(a + d)m), ĥm(x) is the 3F2 hypergeometric function
given in (3.1), and

Am = − (m+a+b+c+d−1)(m+a+c)(m+a+d)
(2m+a+b+c+d−1)(2m+a+b+c+d) , Cm = m(m+b+c−1)(m+b+d−1)

(2m+a+b+c+d−2)(2m+a+b+c+d−1) .

In the case that a = c̄ and b = d̄, we have Amĥm+1(x) = ixĥm(x)− Cmĥm−1(x), and

substituting for ĥm and rearranging we have

hm+1(x) =
ixDm

Dm+1Am
hm(x)− CmDm−1

Dm+1Am
hm−1(x) = Gm xhm(x)−Hm hm−1(x), (3.4)

say, where Gm = iDm

Dm+1Am

, and Hm = CmDm−1

Dm+1Am

.
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As the a, b, c, d values must be constant for the conditions of the orthogonality
theorems to be met, we set m = u, constant in the variable a, so that in (3.4) we take
a = c = 1

2 − λ
2 − u, b = d = 1

4 to obtain hm+1(x) = Gm xhm(x)−Hm hm−1(x), with

Gm =
(−2λ+ 4m− 4u+ 1)(−2λ+ 4m− 4u+ 3)

2(m+ 1)(−2λ + 2m− 4u+ 1)
, (3.5)

and

Hm =
(2m− 1)(2λ − 4m+ 4u+ 1)(−2λ + 4m− 4u+ 3)(−λ+m− 2u)

16(m+ 1)(−2λ + 2m− 4u+ 1)
. (3.6)

Similarly setting a = c = −λ
2 − u, b = d = 3

4 in (3.4) gives us hm+1(x) =
Gm xhm(x)−Hm hm−1(x), with Gm as in (3.5), but where Hm is now given by

Hm =
(2m+ 1)(2λ − 4m+ 4u+ 1)(−2λ+ 4m− 4u+ 3)(−λ+m− 2u− 1)

16(m+ 1)(−2λ + 2m− 4u+ 1)
. (3.7)

For the above coefficient Gm, and the two choices for the coefficient Hm, both of the
resulting recurrence relations hm+1(x) = Gm xhm(x) − Hm hm−1(x) are of the form
Pm+1(x) = (Amx+ Bm)Pm(x) − CmPm−1(x), with Bm = 0, which is the form of the
recurrence relation satisfied by a system of orthogonal polynomials that are not monic
[see 18, p.19 (4.2)].

If P̃m(x) is the monic (scaled) polynomial corresponding to Pm(x), so that Pm(x) =
kmP̃m, where k−1 = 1, then in generality one finds that [see 18, p.19 (4.3)]

Am =
km+1

km
, , Bm = −cm+1

km+1

km
, Cm = µn

km+1

km−1
= µnAmAm−1,

so that cm = 0, µm = Cm/(AmAm−1), and where the corresponding monic recurrence
relation can be written as

P̃m(x) = xP̃m−1(x)− µmP̃m−2(x), P̃−1(x) = 0, P̃0(x) = 1, m = 1, 2, 3, . . . (3.8)

For our two recurrence relations we find that µm = Hm/(GmGm−1), so that in the
cases n = 2m is even, and n = 2m+ 1 is odd, we respectively have

µm = m(2m−1)(2λ−2m+4u+1)(−λ+m−2u)
4(−2λ+4m−4u−3)(−2λ+4m−4u+1) , µm = m(2m+1)(2λ−2m+4u+1)(−λ+m−2u−1)

4(−2λ+4m−4u−3)(−2λ+4m−4u+1) .

(3.9)
For fixed values of u and λ, and m = 0, 1, 2, 3, . . ., with µm 6= 0 and well defined, we
obtain the pair of families of Hahn polynomials given by

hm

(

x;
1

2
− λ

2
− u,

1

4
,
1

2
− λ

2
− u,

1

4

)

, and hm

(

x;−λ

2
− u,

3

4
,−λ

2
− u,

3

4

)

.

(3.10)
In both expressions in (3.10) we find that h−1(s) = 0 and h0(s) = 1, and applying
Favard’s Theorem [see 18, p.21] concerning polynomial sequences satisfying the three-
term recurrence relation given in (3.8), for cm = 0, and noting that µm 6= 0 it follows
that the pair of expressions given in (3.10) form two families of orthogonal polynomial
systems.
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It is a well known fact (e.g. [18, p.27], or [2,9]) that systems of orthogonal polynomi-
als have only real zeros which interlace. Hence the polynomial families corresponding
to (3.10) have only real zeros which interlace on the real line. Setting x =

(−i
2

)

(s− 1
2 )

in (3.10), the resulting polynomials will therefore have their zeros dilated by the factor
of 1

2 on the real line; rotated by π
2 clockwise onto the imaginary axis by the factor of

−i, and then translated by −1
2 from the imaginary axis to the critical line ℜs = 1

2 .

Henece setting x =
(−i

2

)

(s − 1
2) in (3.10), yields families of polynomials which have

zeros only on the critical line ℜ s = 1
2 .

Restricting u ∈ N, to be a positive integer, analysis of (3.10) shows that for λ 6= 1
2

and λ 6= 3
2 , µm is well defined for u ≤ m, and when λ = 1, µm is well defined for

u < 2m. If λ is not an integer or half-integer then µm is well defined for all u ∈ N.
Therefore, for each integer value u ≤ m, and fixed λ > −1

2 , λ 6= 1
2 , λ 6= 3

2 , we get
two families of Hahn ‘critical polynomials’ in (3.10). For each particular family, there
will exist one value of m, namely m = u, where the Hahn polynomial corresponds
to that given for pλn(s) given in (3.2). This argument implies that all the zeros of our
polynomial families pλn(s) lie on the critical line ℜs = 1

2 , as required. (e) The functional
equation can be deduced directly from the fact that Bm = 0 in the above recurrence
relations discussed in the proof of part (d).

Remark 3.1. If a family of polynomials with only critical zeros whose distribution of
zeros is proportional to that of the Riemann zeta function is ever discovered, then it
would be of great interest to apply the above arguments and see when the recurrence
coefficients are well defined.

Proof of Theorem 2.3. The binomial forms of Mλ
n (s) are obtained by rewriting

the hypergeometric forms given in Theorem 2.1 in terms of Pochhammer symbols,
and then rearranging them into binomial coefficients.

Corollary 2.4 then follows immediately by by replacing Mλ
0 (s) and Mλ

0 (s+ 1) with
their equivalent binomial coefficients forms when s is respectively an even or an odd
integer.

Proof of Theorem 2.5. It follows from either part (c) of Theorem 2.2 or the hyper-
geometric form in Theorem 2.3, that the Mellin transforms are of the form given in
(2.5).

The difference equation for pλn(s) given in (2.5) follows from part (c) or Theorem 2.2,
where the Mellin transform expression (2.5) in terms of pλn(s) is substituted. Noting
that the factor Γ

(

λ
2 + 1

4

)

/(2n!) is independent of s, and repeatedly applying the func-
tional equation Γ(z + 1) = zΓ(z), the result follows.

Proof of Theorem 2.6. (a) The S:4/1 type combinatorial expressions for the poly-
nomial factors pλn(s) are obtained from the S:4/2 type expressions for Mλ

n (s) in The-
orem 2.3, by respectively multiplying through by the factors

n!(2n)!

2Mλ
0 (s)

(

n+ s+λ
2 − 3

4

n

)

, or
n!(2n+ 1)!

2Mλ
0 (s+ 1)

(

n+ s+1+λ
2 − 3

4

n

)

,

depending on whether n is odd or even.
(b) The two expressions for qλn(s) given can be verified by inserting the explicit ex-
pressions for pλn given in part (a) into the latter expression for qλn(s) given in part (b)
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and rearranging. The degree of both numerator and denominator polynomials of qλn(s)
being ⌊n/2⌋, then follows from the degree of the polynomials pλn(s) given in Theorem
2.2, and the number of s-linear factors appearing in the denominator product of qλn(s).
(c) The zeros of the denominator polynomials (and so poles of qλn), correspond to the
zeros of the linear factors 2s+2λ+4j−3, or 2s+2λ+4j−1, with 1 ≤ j ≤ ⌊n/2⌋. For
λ > −1/2, λ 6= 0 and ℜ s > 0, each linear factor is non-zero, ensuring that the rational
function qλn(s) has no singularities. Hence the ‘critical zeros’ of the polynomials pλn(s),
are the same as for qλn(s), and so for t ∈ R, the roots of pλn(1/2 + it) and qλn(1/2 + it)
are identical.

To see that the rational functions qλn(s) are normalised with limit 1 as s → ∞, we
consider the limit term by term as s → ∞ in the S:3/2 sum

lim
s→∞

n
∑

r=0

(−1)n−r22r−1+ε(n+r+λ−1+ε

r
)(n+r+ε

2r+ε
)(

1
2
(s+ε−2)+r

r
)

(n+r+ε

r
)(

1
2
(s+ε+λ)− 3

4
+r

r
)

=

n
∑

r=0

(−1)n−r22r−1+ε(n+r+λ−1+ε

r
)(n+r+ε

2r+ε
)

(n+r+ε

r
)

,

Applying the combinatorial identity

n
∑

r=0

(−1)n−r22r−1+ε
(

n+r+λ−1+ε
r

)(

n+r+ε
2r+ε

)

(n+r+ε
r

) =
n+ ε

2n + ε

(

2n+ 2λ− 1 + ε

2n− 1 + ε

)(

n+ λ− 1 + ε

n− 1 + ε

)−1

,

we then have the upper bounds for the combinatorial sums, so that lims→∞ qλn(s) = 1
from below, as required. The functional equation follows from that for pλn(s), by con-
sidering the third and fourth displays in part (b) of the theorem.

To see Corollary 2.7, substituting λ = 1 in the S/3:2 forms for pλn(s), simplifies the
sums to the Gould S/2:1 combinatorial functions stated. Term-by-term analysis of the
n+1 terms in each sum then reveals that for s an integer, each term is an even integer

apart form the r = 0 term, given by n!(2(n+ε))!
2

(n+ s+ε

2
− 1

4
n

)

.
The binomial coefficients contribute the power of two 2−2n, so that the power of 2 in

the r = 0 term is determined by (2n)!/22n+1 when n is even, and (2n+2)!/22n+1, when
n is odd. Noting that the n! terms cancel between numerator and denominator, we see
that multiplying through by the reciprocal of these respective powers of 2 will produce
odd integer values for the r = 0 term, whilst leaving the others terms r = 1, 2, . . . , n
even. Hence the summation results in odd integers, being the sum of n even numbers
and one odd number.

Analysis of the nth Catalan number Cn = 1
n+1

(2n
n

)

, shows that the power of 2 in the

Cn is determined by 22n+1/(2n+2)! (A048881 in the OEIS) so that 4Cn−1 and Cn have
the respective reciprocal powers of 2 to p2n and p2n+1. It follows that for s ∈ Z we
have 4Cn−1p2n and Cnp2n+1 are odd integers. A slight modification of this argument
also removes the odd factors arising in the (2n)! and (2n + 1)! polynomial factors,
where Tn+1 is the largest odd factor of n+ 1, as required.

Proof of Theorem 2.8 and Corollary 2.9. We note the integral representation

∫ 1

0
(1− x)−βx−β

2F1

(

1− n

2
,−n

2
; 1− (n+ s)

2
;x

)

dx

= 22β−1

√
πΓ(1− β)

Γ(3/2 − β)
3F2

(

1− β,
1− n

2
,−n

2
; 2(1 − β), 1− (n+ s)

2
; 1

)

, (2.4)
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with β < 1, so that the 2F1(x) function is transformed to a 2F1(1−x) function and the
result follows. The ‘critical zeros’ follow from Theorem 2.2 (d), setting λ = 3/2 − 2β.

To see Corollary 2.9 (a) The initial β = 0 reduction of Theorem 2.8 to 2F1 form
follows from the series definition of the 3F2 function with a shift of summation index
and the relations (1)j/(2)j = 1/(j + 1) and (κ)j−1 = (κ − 1)j/(κ − 1). The second
reduction is a consequence of Gauss summation. (b) Similarly, with m a positive
integer, (m + 1)j/(2(m + 1))j may be reduced and partial fractions applied to this
ratio. Then with shifts of summation index, the 3F2 function may be reduced to a
series of 2F1(1) functions. These in turn may be written in terms of ratios of gamma
functions from Gauss summation.

4. Discussion

Given the Gould variant combinatorial expressions obtained for pλn(s) and qλn(s), our
results invite several other research questions, such as: is there a combinatorial in-
terpretation of pλn(s) or qλn(s), and more generally, of pn(s;β)? Relatedly, is there a
reciprocity relation for pn(s) and pn(s;β)?

Two instances when the combinatorial sums produce “nice” combinatorial expres-
sions are

qλ2n(1) =

n
∑

r=0

(−1)n−r22r−1
(

n+r+λ−1
r

)(

n+r
2r

)(

r− 1

2
r

)

(

n+r
r

)(λ

2
− 1

4
+r

r

)

=
1

2

(

n+ 2λ−3
4

n

)(

n+ 2λ−1
4

n

)−1

,

qλ2n+1(2) =

n
∑

r=0

(−1)n−r22r
(n+r+λ

r

)(n+r+1
2r+1

)(r+ 1

2
r

)

(n+r+1
r

)(λ

2
+ 3

4
+r

r

)

= (n+1)

(

n+ 2λ−3
4

n

)(

n+ 2λ+3
4

n

)−1

.

The Gegenbauer polynomials have the integral representation

Cλ
n(x) =

1√
π

(2λ)n
n!

Γ
(

λ+ 1
2

)

Γ(λ)

∫ π

0
(x+

√

x2 − 1 cos θ)n sin2λ−1 θ dθ. (4.1)

Then binomial expansion of part of the integrand of Mλ
n (s) is another way to obtain

this Mellin transform explicitly. The representation (4.1) is also convenient for showing
further special cases that reduce in terms of Chebyshev polynomials Un or Legendre
or associated Legendre polynomials Pm

n . We mention as examples

C2
n(x) =

1

2(x2 − 1)
[(n + 1)xUn+1(x)− (n+ 2)Un(x)], (4.2)

and

C3/2
n (x) =

(n+ 1)

(x2 − 1)
[xPn+1(x)− Pn(x)] = −P 1

n+1(x)√
1− x2

.

The Gegenbauer polynomials are a special case of the two-parameter Jacobi polyno-

mials Pα,β
n (x) [7] such that Cλ

n(x) = (2λ)n/
(

λ+ 1
2

)

n
P

λ−1/2,λ−1/2
n (x). The Jacobi poly-
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nomials are orthogonal on [−1, 1] with respect to the weight function (1−x)α(1+x)β.
Therefore, it is also of interest to consider Mellin transforms such as

Mα,β
n (s) =

∫ 1

0
xs−1Pα,β

n (x)(1 − x)α/2−1/2(1 + x)β/2−1/2dx,

especially as the Jacobi polynomials can be written in the binomial form

Pα,β
n (x) =

n
∑

j=0

(

n+ α

k

)(

n+ β

n− s

)(

x− 1

2

)n−s(x+ 1

2

)s

.

In fact this line of enquiry may provide a far more general approach to investigate
‘critical polynomials’ arising from combinatorial sums.
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[2] Szegö G. Orthogonal polynomials. Providence (RI). AMS Colloquium Publications. Vol.
23. Amer Math Soc;1975.

[3] Abramowitz M, Stegun IA. Handbook of mathematical functions. Washington: National
Bureau of Standards; 1964.

[4] Choi S, Chung JW, Kim KS. Relation between primes and nontrivial zeros in the Riemann
hypothesis; Legendre polynomials, modified zeta function and Schrödinger equation. J
Math Phys. 2012;53:122108. [Correction in J Math Phys. 2013;54:019901.]

[5] von Koch H. Sur la distribution des nombres premiers. Acta Math. 1901;24:159-182.
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[14] Kirschenhofer P, Pethö A, Tichy RF. On analytical and diophantine properties of a family

of counting polynomials. Acta Sci Math (Szeged). 1999;65:47-59.
[15] Coffey MW, Hindmarsh JL, Lettington MC. et al. On higher dimensional interlacing Fi-

bonacci sequences, continued fractions and Chebyshev polynomials, J Theor Nom Bordx.
2017;29(2):369-423.

[16] Coffey MW, Lettington MC. Mellin transforms with only critical zeros: Legendre func-
tions. J Number Th. 2015;148:507-536.

[17] Rainville ED. Special functions. Macmillan Publishing Company;1960.
[18] Chihara TS. An Introduction to orthogonal polynomials. New York (NY): Dover Publi-

cations; 2011.

16


