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Molpro is a general purpose quantum chemistry software package with a long devel-

opment history. It was originally focused on accurate wavefunction calculations for 

small molecules, but now has many additional distinctive capabilities that include, 

inter alia, local correlation approximations combined with explicit correlation, highly 

efficient implementations of single-reference correlation methods, robust and 

efficient multireference methods for large molecules, projection embedding and 

anharmonic vibrational spectra. In addition to conventional input-file specification of 

calcula-tions, Molpro calculations can now be specified and analysed via a new 

graphical user interface, and through a Python framework. 
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I. INTRODUCTION 
 

 

Molpro is a general purpose quantum chemistry software package with a development history 

of over 50 years. It was started in the late 1960s by the pioneering work of Wilfried Meyer and 

Peter Pulay; Meyer developed the pseudo-natural configuration interaction (PNO-CI)1 and 

coupled-electron pair (PNO-CEPA)2 methods and Pulay the first Hartree-Fock analyt-ical 

energy gradient program.3 These methods have been used in the 1970s for numerous 

calculations of molecular properties of small molecules with unprecedented accuracy.4–9 Since 

then, the main focus of Molpro has been on high accuracy treatments of electron correlation. 

Perhaps most widely used and distinctive are the internally contracted multireference con-

figuration interaction (IC-MRCI) methods10–14 in Molpro, which allowed for the first time to 

compute global potential energy surfaces (PES) for electronic ground and excited states with 

unmatched precision. In many cases these calculations also included non-adiabatic and spin-

orbit couplings.15 The PES were used in many studies of molecular spectroscopy, as well as in 

quasi-classical and quantum mechanical treatments of inelastic and reactive collision dynamics. 

Molpro is also well known for its highly efficient coupled cluster modules with single, double, 

and triple excitations [CCSD(T)]. Through the inclusion of explicitly cor-related (F12) terms in 

the MP2-F1216,17 (explicitly correlated second-order Møller-Plesset perturbation theory), 

CCSD(T)-F12,18–20 CASPT2-F1221 (explicitly correlated second-order complete active space 

perturbation theory), and MRCI-F12,22–24 programs, the basis set lim-its of the corresponding 

methods can be closely approached using triple-ζ basis sets.19,25–30 Typically, this reduces the 

basis set incompleteness errors of relative energies and molecu-lar properties by at least one 

order of magnitude at rather little additional cost. Molpro also contains an efficient 

implementation of Kohn-Sham DFT that supports, as well as the standard hybrid functionals, 

extensions including dispersion corrections, range-corrected wavefunction hybrids and exact-

exchange functionals. 

 

The traditional functionality of Molpro has been summarized in an earlier review article31 and 

will therefore be outlined only briefly. The main focus of the current paper is on new methods, 

and the current authors are those who contributed significantly to these develop-ments. The full 

list of contributors is given in Ref. 32. We describe improvements of coupled cluster methods 

(distinguishable cluster33–37 and quasi-variational coupled-cluster38–43), as 
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well as recent developments of accurate electron correlation treatments for large 

molecules. This includes highly accurate explicitly correlated local coupled cluster methods 

based on pair natural orbitals [PNO-LCCSD(T)-F12]
44–58

 and embedding methods.
59

 In the 

multiref-erence area, a new multiconfiguration (complete active space) self-consistent field 

(MC-SCF/CASSCF) program has been developed,
60,61

 which allows efficient optimizations 

of wavefunctions for large systems, such as transition metal clusters. The CASSCF orbitals 

can be used in subsequent single-state
62

 or multi-state
63

 PNO-CASPT2 calculations to in-

clude dynamical correlation effects in large systems. 

 
The paper is organized as follows: in sections II and III we describe the many wave-function 

and density functional methods, respectively, which are available in Molpro. Section IV B 

presents projection-based wavefunction-in-dft embedding methods, which allow combination of 

both worlds. Section V summarizes the treatment of scalar-relativistic and spin-orbit ef-fects, 

and section VI describes methods to compute molecular properties and molecular spectra. 

Section VII gives an overview of methods to compute and analyze intermolecular interaction 

energies, either with supermolecular approaches or using symmetry adapted per-turbation 

theory (SAPT). Finally, in section VIII we describe a new graphical user interface (GUI) and 

further interfaces, which can be used for connecting Molpro with other programs or for 

postprocessing molecular orbitals and molecular properties. 

 
 
 
 

II. WAVE FUNCTION METHODS 
 

 

A. Canonical single reference methods 
 

 

1. Hartree-Fock and Kohn-Sham 
 

 

Closed-shell and open-shell Hartree-Fock programs are available with and without spin-

restriction (RHF, UHF), and with or without a Kohn-Sham density functional (KS). The 

programs can run in conventional mode using integrals stored on disk, or in integral-direct 

mode. For large molecular systems we recommend using the density fitting (DF) implemen-

tation, which is most efficient. These programs have been described in Ref. 31 and this is 

not repeated here. More recently, a new parallel version with local approximations has 
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FIG. 1. Parallel speed-ups for spin-restricted Hartree-Fock and hybrid Kohn-Sham (B3LYP) cal-

culation of the 
7
A state of Co2ON4C70H106

67
 with the def2-tzvp basis. Additionally shown is the 

parallel speed-up for the CASSCF calculation of the 
1
A state. The main figure shows parallel speed-

up relative to a single MPI process on a single 20-core node; the subfigure shows the speed-up on 

multiple nodes relative to a single node computation, with 20 processes used on each node. 

 
 
 
 

 

been developed,64 which can considerably speed up calculations for large molecules. Further-

more, a configuration averaged Hartree-Fock (CA-HF) program65,66 has been added, which is 

available with and without local approximations. This is equivalent to state-averaged CASSCF 

that includes all possible states, of any overall spin, within the active space. The method is 

useful for the calculation of crystal field splittings in transition metal and lan-thanide complexes. 

The latest version66 is also applicable to polynuclear complexes. A new density fitting module 

for computing the Coulomb and exchange parts of the Fock matrices with much improved 

parallelization has also been provided. This program can be used on multi-node computer 

systems. An example demonstrating the efficiency and speed-ups is shown in Fig. 1. We note 

that it is sometimes difficult to achieve convergence in ROHF calculations for large open-shell 

transition metal complexes. In such cases we recommend 
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the use of our new MCSCF program (cf. Section II B 1), which converges more rapidly 

and robustly, and is only slightly more expensive per iteration. 

 
 
 

 

2. MP2, Coupled-Cluster 
 

 

Molpro includes highly efficient implementations of all important single reference methods for 

closed-shell and open-shell electron correlation treatments. These range from MP2 to 

CCSD(T), with variants such as Brueckner coupled cluster [BCCD, BCCD(T)],68 quadratic 

configuration interaction [QCISD(T)], distinguishable cluster either with orbital optimiza-tion 

(ODCD and BDCD) or with single and double excitations (DCSD),33–35,37 and quasi-variational 

coupled-cluster [QVCCD(T)].38–43 The latter two methods extend the applica-tion area of 

single-reference coupled-cluster theory to situations where multireference effects become 

important, see section II A 3 for more details. Excited states can be treated us-ing CC269–73 

and EOM-CCSD74 methods. Spin-component scaling approximations75 are available for MP2 

and DCSD.37 The open-shell methods (except spin-unrestricted MP2, UMP2) are based on 

ROHF orbitals, and partially spin restricted [RCCSD(T)]76 as well as unrestricted coupled-

cluster implementations [ROHF-UCCSD(T)] are available. Explicitly correlated (F12) variants18–

20,35,77 are implemented for all the mentioned ground-state meth-ods [except QVCCD(T)]. As 

already mentioned, the F12 terms greatly reduce the basis set incompleteness errors and are 

therefore highly recommended. For most of the methods also analytical energy gradients are 

implemented, as described in section VI A. 

 
Traditionally, the MP2 and coupled-cluster methods use 2-electron integrals stored on disk. 

Integral direct implementations, in which the integrals are computed on the fly whenever 

needed, are available for QCISD and CCSD.
78

 Alternatively, density fitting (DF) can be 

used, and DF-MP2 and closed-shell DF-CCSD(T)-F12 methods are also implemented in 

Molpro. While density fitting greatly improves the efficiency of MP2, this is much less the 

case for canonical coupled-cluster methods. Therefore, DF is normally not recommended 

for conventional CCSD and its variants. However, highly efficient and accurate closed-shell 

and open-shell local CCSD(T) methods for large molecules are also available in Molpro, c.f. 

Section II D 3. These methods are entirely based on density fitting approximations and are 

recommended for calculations on molecules that are too large to be treated by conventional 
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CCSD(T). 
 
 
 

 

3. Coupled-cluster methods for strong electron correlation 
 

 

Although multireference methods are a preferred route to describing strong electron 

correla-tion, the difficulty of controlling both their cost scaling and accuracy for large 

systems means that single-reference methods are attractive whenever they can be 

used. However, it is well understood that standard truncated coupled-cluster methods, 

like CCSD and CCSD(T), result in significant errors when used to describe chemical 

systems with strong non-dynamic correlation.79,80 A number of alternative single 

reference (SR) methods that are able to model inherently MR systems have emerged in 

recent years.33,38,81–83 These include the quasi-variational coupled-cluster doubles 

(QVCCD) and the distinguishable cluster doubles (DCD) approaches.33–43 In essence, 

both of these methods attempt to improve upon CCD, either via the addition of higher 

order terms, as in QVCCD, or in the subtraction of specific quadratic terms, in the case 

of DCD. As a result, these methods can produce remarkable accuracy along 

dissociation paths, even though they are based on a single determinant ref-erence. 

 
QVCCD begins with an energy expression that takes the form of the CEPA(0), or linearised 

CCD, energy. However, the cluster amplitudes used in the energy expression are expressed as 

a linear combination of the true amplitudes that by construction yields an energy that is exact 

for 2 electrons, is extensive, and agrees with the series expansion of variational 
coupled-cluster doubles (VCCD) up to third-order in 

ˆ
. The transformation matrices that 

T 
 
satisfy these constraints are then defined as inverses and inverse square roots of reduced 
density matrices (RDMs) obtained from the CI wavefunction constructed from  ˆ. The 

T 
 
use of matrix powers to achieve this leads to a closed-form expression for the energy 

and amplitude residual equations, introducing the implicit inclusion of a infinite sub-set 

of higher order terms based upon the third-order VCCD terms.38 

 
The further inclusion of the one- and three-body correlations can be obtained to produce a 

quantitatively correct QVCCD(T) method, that approaches chemical accuracy. The effects 

of the singles amplitudes are included via orbital optimisation or the use of Brueckner 

orbitals. Connected triple excitation effects can be effectively approximated by using the 
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standard perturbative (T) correction. However, this has been shown to overshoot for strongly 

correlated regimes,41 and instead a simple modification, effectively a renormalisation of the (T) 

denominator, should be used to produce accurate potential energy surfaces.43 

 

QVCCD is now implemented in Molpro within the Integrated Tensor Framework (ITF, cf. 

section II B 2), with similar computational scaling to CCSD but with a slightly larger 

prefactor because of the need to perform the extra linear algebra required in the QVCCD 

equations. This implementation has led to a significant speed up compared to the older 

implementation, meaning that this method can be routinely used in applications. 

 

DCD amplitude equations can be obtained from the CCD equations by removing some inter-

cluster exchange diagrams33 or by accounting for all possible electron pair interactions with a 

RPA-screened Coulomb potential.36 The orbital relaxation can be taken into account using 

Brueckner orbitals (BDCD), orbital-optimisation (ODCD), or single-excitation similarity 

transformation (DCSD), resulting in a size-extensive two-electron-exact method.34 

 

The distinguishable cluster methods work remarkably well for strongly and weakly 

corre-lated systems.33,35,37 They outperform the coupled-cluster doubles methods in 

virtually all situations, and are even on a par with CCSD(T) for the accuracy of 

optimized molecu-lar geometries.35 Strongly correlated molecular and model systems 

are treated qualitatively correct. In particular, Hubbard-type one-, two-, or three- 

dimensional equidistant hydrogen lattices are dissociated to the exact limit.33 

 

DCSD has been combined with the explicit correlation methods (DCSD-F12) and is avail-

able as a closed-shell (together with BDCD and ODCD) and an open-shell (RDCSD and 

UDCSD) implementation.
35

 The orbital-optimized and Brueckner versions can be amended 

by a subsequent perturbative F12 correction.
77

 Molecular properties and analytical nuclear 

gradients are implemented in Molpro for the closed-shell DCSD. Linear-scaling versions of 

DCSD are available in PAO and PNO implementations, cf. sections II D 2 and II D 3. 

 
An extension of the distinguishable cluster approximation onto triple excitations (DC-

CCSDT)84 is available through a GeCCo interface (vide infra) and as an ITF implemen-

tation. First benchmarks demonstrate superior accuracy of the method compared to the 

parent CCSDT method. 
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4. EOM-CCSD, TD-CC2 
 

 

The equation-of-motion (EOM) CCSD excitation energies for the singlet excited states from the 

RHF reference can be calculated along with the excited-state density matrices and tran-sition 

density matrices, according to formulas described in Ref. 85, from which first-order properties 

and oscillator strengths are obtained. The population analysis of the singles part of the 

excitation operator can be performed as well. By default, only excitation energies are calculated 

by solving the right-hand-side similarity-transformed Schr¨odinger equation. The iterative 

solution follows the recipe of the generalization of Davidson procedure86 to non-symmetric 

matrices.87 The EOM-CCSD code is generally black-box and it does not require any extra 

settings apart from the required number of states of a given symmetry. The cal-culation of 

properties requires approximately twice as much time due to an additional effort for solving the 

analogous left-hand-side equation, and therefore it is performed on request only. The 

implementation of the EOM-CCSD method within the local approximation has been described in 

detail in Ref. 88. Ionization-potential (IP) and electron-attachment (EA) EOM-CCSD can be 

simulated by the EOM-CCSD code by introducing a diffuse orbital in the basis set, see e.g. Ref. 

89. The one-electron densities for excited states can be computed and stored for subsequent 

analysis. For EOM-CCSD transition densities a Plasser-Lischka analysis in terms of charge-

transfer numbers90 has been implemented in Molpro. 

 
The canonical TD-CC2, as well as the ADC(2), with a ‘strict’ treatment of transition mo-

ments (both independent from the TD-LCC2 and LADC(2) codes of Kats et al., cf. section 
 

II D 2) are also available within Molpro.91 Among application works utilizing the EOM-

CCSD and ADC(2) codes one can name the calculation of accurate UV-Vis spectra of 
 

thiophene92 and furan.93 The EOM-CCSD method has been used for molecules as 

large as magnesium-porphyrine.94 

 
 
 
 
5. Molecular properties from CC wavefunctions 
 

 

Molecular properties in CC theory are usually derived as energy derivatives, which can con-

veniently be formulated through a Lagrangian formalism.95–97 First -order properties defined 

through this formalism are available in Molpro for CCSD,98 QCISD,99 and CCSD(T) the- 
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ories (in the two latter cases along with corresponding gradients, see section VI A). Since 
 

CC theory is nonvariational and therefore does not fulfill the Hellmann-Feynman theorem, 

the calculation of the expectation value of the corresponding perturbation operator gives 
 

a different alternative formalism for obtaining CC properties.100 The development of this 

formalism was hampered for some time by the appearance of the deexcitation T † 

operators in the formula, and although some solutions to this problem were proposed, 

the most ele-gant solution is the expectation-value approach from Ref. 101, where an 

auxiliary excitation operator S, defined through the equation, 

 T † T 
Φ0 

  

eS Φ0 = 

e e 

, (1) Φ0|eT † eT Φ0 
 

is utilized to get rid of the infinite summation problem. The resulting formula for the first-

order property X is then given by the equation, 
 

S† −TˆT −S† 

Φ0  . (2) X  =  Φ0|e  e Xe e 
 

For Eq. (2) one can use the BCH expansion and express it in terms of multiple 

commuta-tors, which – given that both T and S operators are connected – shows that 

this formula is explicitly connected, and additionally allows for a truncation of this 

formula preserving this condition. The formula has been implemented for the CCSD 

case with some approxima-tions in the S operators.102 Numerical tests show that most 

of these terms make negligible contributions to properties such as dipole moments, and 

that for practical calculations one can truncate at third order in T , which is the default 

option when requesting this property in Molpro. 

 

An extension of this model to frequency-dependent second-order properties has been 

pro-posed by Moszynski et al.103 for a general complex frequency ω and perturbation 

operators X and Y oscillating with ω, 

 

    X; Y ω 
= 

   

= 

−S  T
† 

Y e 

−T
†
  S ˆ S

† 

TX (ω)e 

−S
† 

)Φ0 + g.c.c., e  e e Φ0|P(e    

(3)  

where  
ˆ
 is a superoperator which projects onto the 1-, 2-, etc.  excitation space, TX (ω ) 

P 
 

is the first-order response of the CC amplitudes to the perturbation X, and where finally 
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the abbreviation g.c.c. stands for the operation of the replacing the frequency ω by −ω∗ 

and taking the complex conjugate of the result. Based on this formula and employing 

the truncations up to n-tuple commutators, the polarization propagator at the coupled 

cluster level limited to single and double excitations has been derived and implemented 

in Ref. 104. Among several truncation levels proposed in this reference, the CCSD(3) 

one seems to be the most suitable for routine applications. Its accuracy has been found 

to be at the same level as that of the CCSD Lagrangian formalism with unrelaxed 

orbitals, which can be easily deduced from the analysis of the leading order in terms of 

the fluctuation operator, which is the same in both cases.105 

 

Since the polarization propagators can be calculated for any frequency, it is also 

possible to obtain intermolecular dispersion coefficients, like C6 and C9, at the CCSD 

level by calculating several electric-dipole polarizability tensors at imaginary 

frequencies and by performing the Gauss-Legendre numerical quadrature.104 

 
 
 
 

B. Multireference methods 
 

 

1. MCSCF, CASSCF 
 

 

The first second-order MCSCF methods in Molpro were developed by Werner and Meyer,106 

who also contributed the first quadratically convergent state-averaged MCSCF method.107 A 

much improved implementation, which included an extension to CASSCF, was provided in 

1985 by Werner and Knowles.108,109 Due to the inclusion of higher-order terms in the orbital 

optimization, which account approximately for the periodicity of the energy in the orbital rotation 

parameters, and the inclusion of the orbital-CI coupling in the optimization, the Werner, Meyer, 

Knowles (WMK) methods provide extremely fast and robust convergence. The CI optimization 

in the CASSCF methods are based on the efficient determinant-based full CI method of 

Knowles and Handy.110 Alternatively, spin-adapted configuration state functions (CSFs) can be 

used, in which case the coupling coefficients are computed on the fly by an efficient symmetric 

group technique.11 This also makes it possible to choose the CSF basis manually, or to use 

restricted active space (RASSCF) wavefunctions. Recently, the convergence and reliability of 

the WMK method was further improved.60 
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However, the computation time and memory requirements of second-order MCSCF 

methods grow strongly with the molecular size. This is due to the large number of two-

electron integrals required for the orbital Hessian, namely (rs|kl) and (rk|ls), where k, l 

denote occupied orbitals and r, s any orbitals. The number of these integrals scales as 

O(N
4
) and the time for their evaluation as O(N

5
). To overcome this problem, a new MCSCF 

orbital optimization method has recently been proposed and implemented in Molpro,
61

 

which combines a second-order optimization algorithm of the active orbitals with the first-

order Super-CI (SCI) treatment of Roos et al.
111,112

 The active Hessian in this hybrid 

method (denoted as SO-SCI) can be built from the two-electron integrals (rs|tu) and (rt|us) 

with two active orbitals t, u. Hence, the number of integrals only scales as O(N
2
) and the 

computation time as O(N
4
) (if the number of active orbitals is considered as independent of 

the molecular size). The orbitals and the CI coefficients are optimized alternately, yielding 

only first-order convergence. However, the convergence is substantially improved using the 

Limited Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) quasi-Newton method.
113 

 

In all test calculations so far, the SO-SCI method showed faster convergence than the 

SCI method, and this overcompensates the small additional cost introduced by the two-

electron integral computation. The robust convergence of the SO-SCI method allows to 

avoid a preceding Hartree-Fock calculation, if the character of the active orbitals is 

roughly known. Good starting guesses can be obtained by the “Automated Construction 

of Molecular Active Spaces from Atomic Valence Orbitals” (AVAS)114 with orbitals 

obtained from an atomic density guess.64 

 

Table I shows examples for CASSCF calculations with the new first-order program for 

three large transition-metal complexes.67,115 Additionally, results with our local PNO-

CASPT2 program62 (cf. section II D 4) are presented. The structures of these 

complexes are depicted in Fig. 2. All CASSCF calculations were started with AVAS 

based on the Molpro atomic density guess orbitals. The largest CASSCF calculation 

included 5154 basis functions and took 12 hours on a single computer node. More 

details about these computations can be found in Ref. 61. 

 
The SO-SCI method can also be used for the optimization of single-determinant ROHF 

wavefunctions. Due to the second-order optimization of the active orbitals, the SO-SCI 

method converges mostly faster and more robustly than the ROHF method, and we there- 
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TABLE I. CASSCF and PNO-CASPT2 vertical excitation energies of the large transition metal 

complexes shown in Fig. 2. All results are calculated with the def2-tzvpp basis set. The timings 

of the ground state (GS) and the excited state (ES) CASSCF calculations (run on 15 (Fe,Ni) 

and 20 (Co) CPU cores) are shown as well. CASSCF results are from Ref. 61. 
 

Complex Excitation Active Space Natoms Basis size Time GS [h] Time ES [h] ΔE CASSCF ΔE PNO-C 
          

FeC
72

N
2
H

100 
5
A→

3
A CAS(6,10) 175 3785 5.6 3.4 1.972 eV 1.897 e 

Co
2
ON

4
C

70
H

106 
1
A→

3
A CAS(14,14) 183 3937 8.2 8.3 0.009 eV 0.333 e 

[NiC90N20H120]
2+ 3

A→
1
A CAS(8,10) 231 5154 10.9 12.1 2.063 eV 1.819 e 

          

          

 

 

TABLE II. Open-shell single determinant calculations from Ref. 61 of the large transition metal 

complexes shown in Fig. 2. All calculations were done with the def2-tzvpp basis set and run on 

15 CPU cores. Density fitting was used in all cases for integral evaluation and transformation. 
  
     ROHF   SCI  SO-SCI  
        

Complex Basis size Nocc State It. Time [h]  It. Time [h]  It. Time [h] Energy [Hartree] 
           

FeC
72

N
2
H

100 3785 287 
5
Ag  a) 91 15.4 27 4.3 -4156.211 440 

Co
2
ON

4
C

70
H

106 3937 311 7A 62 10.8 87 17.8 27 5.5 -5768.892 008 

[NiC90N20H120]
2+ 

5154 414 3A 26 12.7 27 15.2 16 8.8 -6074.841 763  
a) No convergence after 100 iterations 
 
 
 

fore recommend using the SO-SCI especially for large open-shell transition metal 

clusters where near degeneracies of several d-orbitals exist. Some examples for such 

calculations are presented in Table II. 

 

The new CASSCF methods are well parallelized. An example for the speed-ups 

achieved with up to 100 cores in 5 computer nodes (connected by Infiniband) for the 

CASSCF calculation for the cobalt-complex is shown in Fig. 1. 

 
 
 

2. Multireference configuration interaction 
 

 

All multireference methods in Molpro are fully or partially internally contracted (IC). This 

means that the configuration space is created by applying excitation operators to the com- 
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FIG. 2. Transition metal complexes
67,115

 used in the calculations shown in Table I and II. 
 
 

 

plete fixed reference functions.116–118 The first fully contracted multireference configuration 

interaction (MRCI) program has been presented in 1981 by Werner and Reinsch.119,120 A 

much improved partially contracted MRCI method was implemented by Werner and Knowles 

(WK) in 1988.10,11 In this method only the excitations with 2 electrons in the external (vir-tual) 

space are internally contracted. Nonvariational approximately size consistent approx-imations 

such as the averaged coupled pair functional121 (ACPF), variational perturbation theory 

(VPT)122 [equivalent to CEPA(0)], or quasi-degenerate variational perturbation the-ory (QD-

VPT),123 are also available in Molpro’s IC-MRCI program.12 Somewhat later, the IC-MRCI 

method was extended to accurately treat electronically excited states.13 In order to avoid 

artifacts near avoided crossings and conical intersections, the internally contracted 

configuration space has to be made invariant with respect to unitary transformations among the 

reference states. This can be achieved by using the union of the internally-contracted 

configurations (ICCs) obtained from all (or some) reference states. With this ansatz, even 

narrow avoided crossings and conical intersections can be accurately described. However, the 

computational effort scales almost cubically with the number of states. This problem can be 

avoided by using state-specific ICCs. To avoid root-flipping problems, a projection technique 

can be used.13 At the end, a small CI in the space of the (non-orthogonal) Nstate wavefunc-

tions |Ψn is carried out, yielding finally orthogonal wavefunctions and variational energies for all 

included states. This works well unless the reference coefficients change strongly in the vicinity 

of narrow avoided crossings. In such cases, the contraction coefficients must be relaxed in 

order to obtain accurate potentials. 

 
The WK ansatz described above avoids the computation and diagonalization of higher-order 
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RDMs, but has the disadvantage that the number of uncontracted CSFs increases strongly 

with the number of reference configurations. Furthermore, in cases with large active 

spaces, very many spin-couplings occur, many of which may have only a minor contribution 

since they do not belong to the first-order interacting space. In order to reduce these 

problems, Celani and Werner (CW) proposed to internally contract also parts of the internal 

and singly external configuration spaces.
124

 In the CW ansatz, all spaces that have at most 

2 active orbital labels are contracted, so that all required overlap matrices only depend on 

one- and two-electron RDMs. This greatly reduces the configuration space but has very 

little effect on the accuracy. In the original work of Celani and Werner,
124

 the CW ansatz 

was used for an efficient CASPT2 implementation denoted in Molpro RS2C. Later on, a new 

IC-MRCI program (in Molpro called CIC) based on this ansatz has been developed by 

Shamasundar and Knizia.
14

 In both programs all contributions of inactive (doubly occupied) 

orbitals are treated explicitly, so that only the active-space RDMs are needed. This greatly 

improves the efficiency for larger molecules with many correlated inactive orbitals and 

eliminates a restric-tion to 32 correlated orbitals that is present in the original WK 

implementation. However, a huge number of terms in the amplitude equations occur. In the 

RS2C program these were still implemented manually, but for MRCI (or even MRCC) this is 

not feasible. Therefore a semi-automatic implementation based on the so-called Integrated 

Tensor Framework (ITF) developed by Knizia
14,31

 was used, which can efficiently execute 

long sequences of binary tensor contractions. The input is provided by a formula file, which 

can either be written manually or generated by a computer algebra program. The ITF 

program has been extended by Kats to support local domain and pair approximations
62,125

 

(cf. section II D 4). It has also been used to implement the QVCCD methods of Knowles et 

al.
42,43

 (cf. section II A 3) as well as analytical MP2-F12 and CCSD(T)-F12 energy 

gradients,
126,127

 and it is currently used by K¨ohn and coworkers to implement a new 

efficient multireference coupled-cluster program. 

 
Due to the high complexity, the CIC code currently only supports calculations with ICCs 

generated from a single-state reference wavefunction. However, we are actively 

working on multi-state extensions and hope that these can be made available to the 

community in the near future. 
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3. Multireference second-order perturbation theory 
 

 

Second-order multireference perturbation theory (MRPT2 or CASPT2) differs from non-

variational variants of MRCI by replacing the full Hamiltonian in the Hylleraas functional by 

an effective one-electron Hamiltonian that only depends on a Fock matrix. Third-order 

multireference perturbation theory (MRPT3, CASPT3) requires in addition effectively the 

computation of one MRCI residual. Thus, MRPT2 and MRPT3 programs can quite easily be 

obtained by modifying an MRCI program, skipping in the MRPT2 part all two-electron 

contributions and replacing the one-electron Hamiltonian by the effective Fock matrix. This 

has been done in the original RS2 and RS3 implementations in Molpro.
128

 For the reasons 

outlined in section II B 2 these programs are less efficient than the more recent RS2C pro-

gram of Celani,
124

 but they support multi-state (MS) CASPT2 calculations using the same 

wavefunction ans¨atze as described in section II B 2 for the WK MRCI program. The proper 

treatment of conical intersections with MS-CASPT2 requires a configuration space that is 

invariant with respect to unitary transformations among the reference states. This has been 

realized in the extended multireference multi-state (MR-XMS-CASPT2) method,
129,130

 

which is based on the work of Granovsky.
131

 Recently, an approximate form of the XMS-

CASPT2 has also been implemented, in which state-specific ICCs are used for each state 

(SR-XMS-CASPT2). Despite the fact that in this case the configuration space is not unitar-

ily invariant with respect to rotation of the reference vectors, this approximation works quite 

well to describe avoided crossings where the coupling between the states is weak (e.g. the 

avoided crossing in LiF). However, larger discrepancies have been observed for example in 

the treatment of valence-Rydberg mixings, and in this case the MR-XMS-CASPT2 method 

is more reliable. A thorough investigation of these effects is currently being carried out and 

will be published elsewhere. 

 
 
 

 

4. Internally contracted multireference coupled-cluster 
 

 

Transferring the accuracy and size-consistency of a coupled-cluster expansion of the wave-

function to the multireference domain has been one of the main challenges in electronic 

structure method development over the past decades; for reviews see Refs. 132–134. A 
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straightforward approach is to replace the reference determinant of conventional 

coupled-cluster theory by a multiconfigurational state, 

 
ˆ 

cR
n , 

 

|Ψn  = eT |ΦR (4) 
R 

where 
ˆ
 is the cluster operator that, in addition to the usual occupied to virtual excitations, 
T 

 

also involves excitations from the (doubly) occupied space into the active orbitals and 

from the active orbitals into the virtual space. As the ansatz generates internally 

contracted configurations, the notion internally contracted multireference coupled-

cluster (icMRCC) theory has been established for this theory. Early work on this method 

was presented by Banerjee and Simons.135,136 The theory was recently revived137–140 

and in particular extended by allowing for self-consistent relaxation of both, cluster 

amplitudes and reference coefficients cn
R. Relaxing the reference coefficients is in fact 

one of the main reasons for the particular accuracy of the resulting method and it has 

been shown that it thus unifies state-specific and multistate coupled-cluster theories.141 

 
The success of the method comes at a price of high complexity of the underlying 

equations, in particular due to the non-commutativity of the cluster operator 

manifold.138 The current Molpro implementation still relies on a symbolic code (called 

GeCCo) that is generated by the automatized evaluation of the underlying second-

quantized operator algebra. A more efficient implementation, based on the ITF and 

making use of Molpro features like avoidance of the full integral transformation, is 

currently under development. At present, a convenient interface to Molpro is provided, 

that allows the transfer of all important run state variables (e.g. wavefunction symmetry, 

core orbitals, etc.) and to use procedures like numerical geometry optimization. The 

methods icMRCCSD and icMRCCSD(T) can be selected directly from the Molpro input. 

A full integral transformation is performed, with the option to use density fitting, before 

the external program performing the icMRCC calculation is called. 

 
Using this interface, a number of demonstrative applications have been carried out in the past, 

like a highly accurate reactive potential energy surface for [F,H,Cl]142 or a set of benchmark 

computations for diatomic transition metal compounds.143 In order to address larger systems, 

an embedding scheme has been developed144 that was inspired by the ‘region’ approximation 

originally developed for LCCSD(T).145 Here, a mean-field computation is 
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FIG. 3. Example of region-based embedding. Shown are the computed excitation energies (1st 

excitation: 1 
5
A →1 

3
A, 2nd excitation: 1 

5
A→1 

1
A) of an iron complex for different region sizes, 

as indicated in the right part of the figure. Reproduced with kind permission from Ref. 144. 

Copyright 2018 American Chemical Society. 
 
 
 

 

carried out for the entire system, followed by localizing the orbitals using the intrinsic 

bond orbital (IBO) approach.146 From the full system a local region is selected by both 

geometric and energy criteria, and the subsequent icMRCC computation is carried out 

for the subsystem only. Missing correlation contributions from the environment are 

added by a subtractive embedding approach, using the new PNO- CASPT2 program to 

treat the entire system. The approach is illustrated in Fig. 3. 
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Further work has been recently conducted in order to better understand the individual 

contributions to the icMRCCSD energy and to devise further approximations either 

based on perturbation theory147 or linearization of the equations.148 Excited states can 

also be targeted using icMRCC2 and linear response theory.149 All these efforts have 

the goal of providing a more efficient access to size-consistent multireference theories 

in future versions of Molpro. 

 
 

 

5. Uncontracted multireference and higher-order coupled cluster methods (MRCC) 
 
 
 

 

Molpro provides also an interface to the uncontracted MRCC program of M. K´allay et 

al.150 As the icMRCC program this can be invoked using commands and options in the 

Molpro input. The program can also be used to carry out higher-order coupled-cluster 

calculations (including perturbative corrections and excitation energies). 

 
 

 

C. Explicitly correlated methods 
 

 

Explicitly correlated (F12) methods are available in Molpro for MP2,16,17 coupled clus-ter methods 

[CCSD(T)-F12x, x={a,b,c} and DCSD-F12],18–20,35 as well as CASPT221 and MRCI.22–24 These 

methods greatly reduce the basis set incompleteness errors and are there-fore strongly 

recommended for most calculations. When using F12 it is important to include diffuse functions in 

the basis set, and we recommend using the cc-pVXZ-F12 sets,151–154 which have been especially 

designed for F12 calculations. Such sets are also available for heavier elements with pseudo-

potentials.154 The application of F12 methods is very useful for highly accurate 

thermochemistry,19,35,155–157 including core-valence correlation effects,20,30,152 transition metal 

compounds,153,158 and intermolecular interactions.26,27,159 In the latter case, it is recommended to 

use the recently added augmented aug-cc-pVXZ-F12 basis sets.160 

 
In the F12 methods, all integrals that involve the F12 correlation factor are computed using 

density fitting approximations. Furthermore, resolution of the identity (RI) approximations are 

necessary to approximate 3-electron and 4 -electron integrals. Thus, apart from the orbital 

basis, also density fitting and RI auxiliary basis sets are necessary in F12 calculations. 
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For most elements, these basis sets are chosen automatically. More details about 

these basis sets and the Molpro basis set library are given in section VIII B. 

 

In order to obtain highly accurate results with F12 methods, it is important to apply the 

complementary auxiliary basis set (CABS) singles correction
18

 in order to minimize errors 

of the Hartree-Fock energy contribution. This correction is applied automatically in all 

canonical F12 calculations. For explicitly correlated local correlation methods (cf. section 
 

II D), the correction can either be computed separately or automatically. The default is 

to compute it separately, since it does not include local approximations. Furthermore, 

local calculations are often repeated with different threshold in order to study the 

convergence with respect to the local approximations, and since the CABS correction is 

additive it is not necessary to recompute it each time. 

 
 

 

D. Local correlation methods 
 

 

1. Orbital localization 
 

 

The occupied orbitals can be localized using the Foster-Boys,161 Pipek-Mezey,162 or IBO163 

methods. The localization can be restricted to groups, as for example closed-shell and active 

orbitals. The performance of local correlation methods as described below does not strongly 

depend on the choice of the localization procedure. A comparison can be found in Ref. 51. 

 
 

 

2. PAO based CC methods 
 

 

In order to reduce the steep scaling of coupled cluster methods with system size, local 

correlation methods have been implemented in Molpro. The first generation of linear scaling 

methods in Molpro164–180 used domains of projected atomic orbitals (PAOs) to span the local 

virtual orbital space for each electron pair. With these methods energy calculations are possible 

up to the LCCSD(T)-F12 level, and analytical energy gradients are available for LMP2.175,181, 

182 Excited state calculations for large systems, including calculation of molecular properties 

and analytical nuclear gradients, can be done with local CC2 and ADC(2) methods.70–

74,183,184 A problem of these approaches is that very large PAO domains 
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are needed to approach the canonical limit closely, and it is difficult to obtain accurate 

and balanced results if the electronic structure of a system changes strongly during a 

reaction. This problem is much alleviated in the explicitly correlated variants, since the 

explicitly correlated terms not only reduce basis set incompleteness errors, but also 

strongly reduce the domain errors.44–47 Since 2012, a new generation of local coupled 

cluster methods has been developed,48–58 which are based on domains of pair natural 

orbitals (PNOs). These methods, which are much more accurate and efficient than PAO 

methods, are described in section II D 3. At an intermediate stage, these methods also 

use orbital specific virtual orbitals (OSVs).185–187 

 
 
 
 

3. Explicitly correlated local coupled-cluster methods using pair natural orbitals PNO-

LCCSD(T)-F12 

 

 

Over the past few years a new generation of local correlation methods using pair natural 

orbitals (PNOs) has been developed in Molpro, which brings roughly an order of magni-

tude reduction in local errors over the previous methods described in Sec. II D 2 at even 

lower costs. In Molpro2019, PNO-LMP2-F12
49,50

 and PNO-LCCSD(T)-F12
53–55

 methods 

are available for closed-shell molecules. A review of these methods and extensive 

benchmark results can be found in Ref. 56. A new revision of the methods that supports 

both closed-shell and open-shell molecules, namely PNO-RMP2-F12,
57

 PNO-RCCSD(T)-

F12, and PNO-UCCSD(T)-F12
58

 is featured in Molpro 2020 (the prefix “L” in the names of 

the methods is omitted for simplicity). Explicitly correlated distinguishable cluster methods 

(see Sec. II A 3) PNO-RDCSD-F12 and PNO-UDCSD-F12 will also be available. 

 
The local correlation methods are based on two distinct approximations: “domain 

approx-imations”, which limit the correlation space for each electron pair to a domain of 

PAOs or PNOs, and “pair approximations”. The latter simplify the amplitude equations 

for weak and distant pairs, which are very numerous but each of them contributes only 

a very small amount to the total correlation energy. For example, distant pair energies 

can be approxi-mated using multipole approximations, and the treatment of weak pairs 

can be simplified by linearizing the amplitude equations, neglecting small couplings 

between pairs, or neglecting terms in the amplitude equations that cancel at long range. 
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The major improvements over the PAO-based local methods include: (1) The use of PNOs on 

top of PAO domains leads to significantly more compact wave functions, and therefore makes 

possible calculations on larger molecules with less aggressive local approximations. Using 

PNOs also allows the iterative solution of the local (T) equations at a reasonable cost.55 (2) 

Improved pair approximations in the LCCSD equations,53,188 together with more accurate 

multipole approximations for distant pair energies52 are adopted. These techniques reduce the 

pair-approximation errors in relative energies to below 0.1 kcal mol−1 in nearly all systems we 

tested. (3) Near-linear scaling F12 treatment has been implemented.50,54 The F12 terms add 

only a small fraction to the computational cost, yet significantly reduce the basis-set 

incompleteness and superposition errors, as well as local domain approximation errors. (4) 

Refined parameters for local approximations have been established based on systematic 

benchmark tests56 so that the methods can be used in a black-box manner. 
 

(5) Advanced parallelization techniques using both the GlobalArrays toolkit189 and MPI 

(Message Passing Interface) point-to-point communication have been implemented to 

allow efficient cross-node parallelization on small computer clusters with fast network 

connection (e.g. InfiniBand), and hence a shorter time-to-solution. 

 
As an illustration of the performance of the methods, we present some PNO-LCCSD(T)-

F12 results in Tables III and IV. Calculations on systems involving open-shell molecules 

were computed with a development version of the PNO-RCCSD(T)-F12 program. Table III 

shows the errors of the local calculations against the canonical ones for several benchmark 

sets on small to medium sized molecules. The errors from the local approximations are only 

a small fraction of 1 kcal mol
−1

 for these systems using the default settings, and the errors 

can be further reduced by using large PAO and PNO domains. The pair approximations 

show little effect on the results. Table IV shows the results for some large and difficult test 

systems. It can be seen that the domain errors should be at the 1 kcal mol
−1

 scale, 

estimated from the difference between standard and large-domain calculations. All these 

large calculations can be done in hours of elapsed time on a small computer cluster. The 

largest PNO-LCCSD(T)-F12 calculation we have performed so far has more than 10000 

basis functions (using augmented triple-ζ basis sets). 

 
Table V presents some computed excitation energies for the Fe-complex in Fig. 2 using 

different methods and basis sets. For comparison, also the results from Table I are included. 
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TABLE III. Root-mean-square errors of PNO-LCCSD(T)-F12 relative energies against canonical 

CCSD(T)-F12 results in kcal mol
−1

 using various program settings. Unless otherwise stated, 

the same F12 ANSATZ and basis sets were used in local and canonical calculations. 
 
 

benchmark set default 
large tight pair 

  

  domains options 
    

organic chemical reactions
a 

0.18 0.10 0.18 

noncovalent interactions
b 

0.10 0.02 0.10 

radical stability energies
c 

0.05 0.01 0.05 

ionization potentials
d 

0.13 0.06 0.13 
    

    

 
a A benchmark set of 51 reactions described in Ref. 190; cc-pVTZ-F12 basis.

 
 

b S66 benchmark set, using the aug-cc-pVTZ-F12 basis and F12 scaled triples. Errors are against
 

 

the “silver” CCSD(T)/CBS estimates in Ref. 191. 
 

c Radical stability energies of 30 radicals described in Ref. 192; aug-cc-pV(T+d)Z basis.
 

 
d Vertical ionization potentials of 30 ions described in Ref. 192; aug-cc-pVTZ basis. 

 
 

It is found that CASPT2, RMP2, and RCCSD yield very similar results, and also basis 

set effects are small. However, the inclusion of connected triple excitations lowers the 

excitation energies significantly. 

 
 

 

4. PNO-CASPT2 
 

 

The computational cost of the conventional CASPT2 method (cf. II B 3) scales as O(N5) 

with the molecular size. However, the scaling can be reduced to linear by applying local 

correlation techniques, similar to the linear-scaling single-reference methods (cf. II D 2 

and II D 3). 

 

The PNO-CASPT2 method62 is based on the internally contracted formalism and therefore the 

interacting configuration space can be divided into eight mutually orthogonal subspaces, 

coupled through generalized Fock matrices. These subspaces differ in the number of electrons 

in the closed-shell, active, and virtual orbital subspaces. Some of them are expanded in PNO 

bases, and others (involving single excitations) in the PAO basis. Due to the local restrictions 
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TABLE IV. PNO-LCCSD(T)-F12 reaction energies (in kcal mol
−1

) and computational cost of 

some reactions involving large molecules. The molecular size and computational time shown 

are for the most expensive single-point PNO-LCCSD(T)-F12 calculation in the reaction. 
 

 

  largest calculation  reaction energy cost (default settings) 
       

reaction basis molecular NAO
a
Nel

b
default

c tightd
No. CPU 

elapsed 
  formula     cores time / h 
          

ISOL24-4
e 

cc-pVTZ-F12 
C

30
H

50
O 

2543 176 67.5 68.0 80 3.6 

AuAmin
f 

cc-pVTZ-F12  AuN4PC41H45 3345 244 47.3 47.7 120 6.4 

WCCR10-4
g 

cc-pVTZ-F12 RuCl2P3C62H106 5168 390 51.5 53.0 150 10.6 

Fe(tacn)2 cplx.
h 

aug-cc-pVTZ
i 

FeC12N6H30 1645 122 0.8 1.3 60 4.5 

FeC72N2H100 cplx.
j
 aug-cc-pVDZ 

FeC
72

N
2
H

100 2939 406 39.0 38.3 64 13.3 
          

 
a Number of AO basis functions.

 
 

b Number of correlated electrons.
 

 
c Using default settings.

 

 

d Using tight domain settings denoted as “domopt=tight” in Ref. 56. The local errors are 

almost exclusively from domain errors and results using other settings are not shown here.
 

 
e Reaction 4 from the ISOL24 set of isomerization reactions from Ref. 193.

 
 

f Dissociation energy of a gold(I)-aminonitrene complex from Ref. 194, using re-optimized ge-
 

 

ometries from Ref. 49. 
 

g Dissociation energy of Complex 4 in the WCCR10 benchmark set from Ref. 195, using re-

optimized geometries from Ref. 56.
 

 
h 1

A → 
5
B spin-state energy of [Fe(tacn)2]

2+
, geometries from Ref. 196.  

i aug-cc-pwCVTZ basis for Fe. 3S and 3P orbitals of Fe are correlated.
 

 
j 5

A → 
3
A spin-state energy difference of an iron complex, geometries from Ref. 115.

 

 

 

only the residual calculations for one of the eight subspaces scale linearly with the molecular 

size, all other residuals can be obtained in nearly constant time, cf. Figure 4. It should be noted, 

however, that this applies to a linear chain system, for which the asymptotic region is quickly 

reached. For 3-dimensional systems the linear scaling region is much more difficult to reach. 

Nevertheless, very large systems can be treated in quite short times. 
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TABLE V. Energy differences (in eV) between the triplet first excited state and the quintet 

ground state of the complex FeC72N2H100. Basis aVTZ: aug-cc-pVTZ, H=cc-pVTZ. 
 
 

method energy difference 
  

HF/def2-TZVP 2.496 

HF/aVTZ 2.484 

CASSCF/def2-TZVPP 1.972 

PNO-CASPT2/def2-TZVPP 1.897 

PNO-RMP2/aVTZ 1.888 

PNO-RMP2-F12/aVTZ 1.778 

PNO-RCCSD-F12/aVTZ 1.806 

PNO-RCCSD(T)-F12/aVTZ 1.688 
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FIG. 4. Timings of individual contributions to the PNO-CASPT2 residuals for the 
1
A ground 

states of [(C4SH3)-[CH2]n-(C4SH3)]
2+

 using a (10,10) active space. Reproduced from Ref. 62, 

with the permission of AIP Publishing. 

 

The amplitude equations have been implemented using the local ITF framework, which can 

efficiently handle various local restrictions.
62,125,197,198

 A PNO-CASPT2 calculation of the 

iron-complex in Figure 2 takes around 30 minutes using four compute cores. 

 

Multiple states in the same space/spin symmetry can be obtained using state-averaged 

CASSCF, and the dynamical correlation can be added using the state-specific PNO-CASPT2 
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method. However, it is more efficient to use the multi-state PNO-CASPT2 method (PNO-MS-

CASPT2),63 which additionally approximately accounts for couplings of the states. A PNO-MS-

CASPT2 calculation for 45 states for the same iron-complex takes about 12.5 hours using four 

compute cores. Additional approximations are possible, which neglect couplings between some 

of the configuration subspaces.63 Then the amplitudes which describe the correlation of the 

electrons in inactive orbitals (P2 space in Figure 4) are identical for all states and need to be 

computed only once. Thus, the additional effort for computing the excited state energies is 

small and nearly independent of the molecular size. Using such approximations, the time for the 

above-mentioned calculation with 45 states can be reduced to 7.2 hours, with a maximum 

additional error of 11 meV in the excitation energies. 

 
 
 
 

III. DENSITY FUNCTIONAL METHODS 
 

 

Molpro implements Kohn-Sham theory in its most commonly-used forms, including (a) 

pure density functionals that are integrals of general functions of the spin-density, its 

scalar gradient, and the kinetic energy density; (b) hybrid functionals that include also a 

fraction of the exact exchange energy; (c) additional empirical dispersion corrections 

including the D3199 and D4200 models and the nonlocal DFT (NLDFT) functional;201,202 

(d) range-separated hybrids, with wavefunction methods for long-range correlation; (e) 

exact exchange (EXX) density functionals based on the local Hartree-Fock (LHF) 

method203 and the optimised effective potential (OEP) method.204 

 
Kohn-Sham theory in a finite basis requires evaluation of the exchange-correlation func-tional 

and its derivative with respect to elements of the one-particle density matrix. Numer-ical 

quadrature is implemented through a newly-written library that generates grids for a pseudo-

adaptive quadrature specified through a target accuracy and some other parameters. The usual 

fuzzy Voronoi partitioning205,206 with a spherical-polar atomic coordinate system is used, and 

the library implements most of the available radial and angular quadrature schemes. A fixed-

size radial quadrature is chosen, and then at each radial grid point, exper-iments are carried out 

with different angular grids in order to achieve the target accuracy for a simple model energy 

density function with minimum effort. This scheme automatically ensures the avoidance of 

unnecessarily large grid densities close to nuclei (where a low-order 
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spherical-harmonic expansion describes the density well) and distant (where electron 

density and/or Voronoi switch functions mean the integrand is small). 

 

Density functionals are specified through a library in which the exchange-correlation energy 

density is defined using one or more Maple symbolic-algebra expressions. This library is then 

compiled into Fortran code using the dfauto207 utility, which also generates documentation. 

 
 

 

A. Dispersion corrections 
 

 

Common DFT methods need to be corrected by additional dispersion interaction energy 

contributions in order to describe noncovalent interactions between two separate molecules 

or to describe the intramolecular interactions of large molecular complexes.
208

 In addition 

to the standard D3 and D4 dispersion corrections by Grimme,
199,200

 Molpro contains an 

implementation of the NLDFT (nonlocal DFT) method that is based on a double-Hirshfeld 

partitioning of the correlation energy density.
201,202

 Due to this, the influence of the hybridi-

sation states of the interacting atoms on the long-range interaction is implicitly described, 

requiring no additional informations of the atom bond partners like in the D3 model.
199

 

Moreover, the NLDFT method is a consistent Kohn-Sham method because the long-range 

correction also describes a modified xc potential through the functional derivative of the 

NLDFT correlation functional. It was shown that the NLDFT method outperforms many 

dispersion corrected GGA and meta-GGA functionals for a large number of thermodynamic 

properties from the GMTKN30 data base and it delivers mean absolute errors in the range 

of 0.2 kcal/mol only for the S22 and S66 benchmark databases.
201,209,210

 The accuracy of 

the method was also tested for describing the interaction energy of H2O with graphene,
201

 

for the description of the interactions of large supramolecular complexes
211

 and for the 

description of conformer geometries of a range of peptide molecules.
202 

 
 

 

B. Exact exchange Kohn-Sham methods 
 

 

Unlike in common hybrid Kohn-Sham (KS) DFT methods, in exact exchange (EXX) KS 

methods the functional derivative with respect to the exact exchange energy is taken with 
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respect to the electron density212,213: 
 

vx(r) = 
δEx[ρ] 

(5) 
δρ(r)   

 

yielding a local exchange potential. Due to this, EXX methods have a number of advan-

tages as compared to the Hartree-Fock method, e.g., orbital energy differences computed 

from EXX orbital energies are suitable first approximations to valence excitation energies, 

see, e.g. Ref. 214. Molpro contains various EXX implementations based on the optimised 

effective potential (OEP) method
204,215–218

 and the common energy denominator approxi-

mation (LHF and CEDA methods).
203,219,220

 Orbitals from EXX or hybrid-EXX (mixing the 

EXX functional with standard GGA exchange and correlation functionals) calculations are 

also suitable for use in DFT-SAPT calculations (see section VII B 1) because the local 

exact exchange potential vx(r) possesses the correct asymptotic behaviour and thus yields 

an improved description of the electronic density in the asymptotic range.
221 

 

 

C. Time-dependent density functional theory 
 

 

A basic implementation of time-dependent density functional theory (TDDFT)222 is 

available in Molpro that can be used to calculate excitation energies and linear 

response properties within the standard GGA approximation. While having a number of 

limitations regard-ing choices for the exchange-correlation functional and kernel, the 

program is capable to treat large systems through the employment of density-fitting 

techniques for computing the Hessian-times-vector products. 

 

Exact-exchange TDDFT (TDEXX) calculations214,223–225 can currently be done within 

the adiabatic approximation to the TDEXX kernel. This feature may be used in 

conjunction with EXX ground-state calculations, see section III B. 

 

The response module of the TDDFT program can be used both for computing static and 

frequency-dependent linear response properties for arbitrary one-electron operators available in 

Molpro, as well as for computing the coupled Kohn-Sham response matrix of the molecule at a 

given (imaginary) frequency. These quantities can be used to calculate two-body and three-

body dispersion interaction energies between two/three noncovalently bonded sub-systems. 

The former is required, e.g., to calculate the coupled and uncoupled dispersion 
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energies in MP2C calculations, see section VII A 2. 
 
 
 
 
 
 
 
 
 

 

IV. MULTISCALE MODELLING 
 

 

A. Quantum mechanics/molecular mechanics 
 

 

Combined quantum mechanics/molecular mechanics (QM/MM) calculations are possible 

using practically any electronic structure method in Molpro for the QM region. The key 

elements of the interface are the lattice and force commands, respectively allowing an 

array of point charges to be specified, and forces on the QM atoms to be computed. The 

charges are specified in a simple file format in which each row specifies the Cartesian 

coordi-nates of the charge (in 
˚
A), the charge itself, and a flag to indicate whether the 

gradient with respect to the coordinates of this charge should be computed. Interfacing to 

MM molecular dynamics packages can be hand-rolled using these tools, or there is also an 

existing Molpro interface in the Tcl-ChemShell package.
226 

 

For QM/MM calculations with large MM regions, the interaction contribution can become a 

bottleneck. In Molpro, extremely rapid evaluation of these contributions is achieved by 

unpublished early-summation techniques (inspired by analogous approaches for the 

Coulomb operator
227,228

). For the energy, the Boys function can be contracted immediately 

with the fixed point charges, so that the recurrence relations that build and transfer angular 

momentum, and the contraction steps, are performed only once, not once per point charge. 

Similarly in the gradient, early contraction with the density (as is commonly done) prevents 

the need to compute individual gradient integrals. 

 

The density-fitted local correlation methods and QM/MM functionality in Molpro have been 

combined in numerous studies in enzymology.
229–232

 More recently, and as described in 

the next section, three-layer combinations of wavefunction-based methods, density 

functional theory, and MM have proved a powerful addition to the suite of tools available in 

Molpro for the treatment of complex, multiscale chemical problems. 
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B. Projection-based wavefunction-in-DFT embedding 
 

 

Despite dramatic improvements in algorithms and efficiency, it is often the case that the 

sheer complexity of the chemical problem precludes direct application of coupled-cluster or 

mul-tireference methods. For such problems DFT plays a key role, but selection of the 

exchange-correlation functional can be difficult; and systematic deficiencies across large 

classes of functionals can lead to errors that are hard to eliminate. 

 

Molpro provides a suite of tools that allow for multiscale combinations of highly accurate 

wavefunction-based methods with DFT. This allows high-accuracy treatment of a small, 

chemically relevant part, with a more approximate description of a complex chemical 

en-vironment. Wavefunction-in-DFT (WF-in-DFT) embedding in Molpro is based on the 

use of projection operators to maintain orthogonal subsets of orbitals describing the two 

subsystems.59 This simple approach is robust and efficient, leading to a total 

computational cost equivalent to DFT on the whole system, plus the high-level 

calculation on the small, active subsystem. The coupling between subsystems is 

entirely captured through a modi-fied core-Hamiltonian in the high-level subsystem, so 

that almost any electronic structure method in Molpro can be used. The implementation 

in Molpro has been tested and ap-plied in a range of application areas,233–240 

demonstrating the robustness and utility of the approach. 

 

The method was used in combination with experiment in a detailed study of a new class of 

cobalt-based hydrogen-evolution catalysts.
235

 A small subsystem, containing the transition 

metal and its first coordination sphere, was treated using OSV-LCCSD(T),
186,187

 with the 

surrounding environment described using DFT with the BP86 functional. This combination 

provided close agreement with LCCSD(T) on the whole complex, while the restriction of the 

coupled-cluster treatment to a small, electronically complex region reduced the compu-

tational cost of each energy evaluation by a factor of around 20. 

 

DFT — often in combination with QM/MM — is a standard workhorse for computa-tional 

enzymology. Elucidation of reaction mechanisms requires reliable prediction of barrier heights 

across competing chemical processes, and conclusions from DFT are often sensitive on the 

choice of the exchange-correlation functional. Projection-based embedding combining CCSD(T) 

on a small, active subsystem with DFT on the surrounding chemical environment 
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all but eliminates dependence on the choice of functional.236,239 

 

New features that greatly improve the range of applicability of projection-based 

embedding include efficient truncation of the atomic-orbital basis set for the high-level 

calculation,241 and development of analytic gradients for CCSD(T)-in-DFT.242 

Robustness of calculations can further be improved using the even-handed approach 

for partitioning the system into high- and low-level subsystems.238 Together these 

provide a powerful tool for studying reac-tivity in complex chemical environments. 

 
 

 

V. RELATIVISTIC EFFECTS 
 

 

A. All-electron effective Hamiltonians 
 

 

For all-electron calculations, Molpro allows the use of the Douglas-Kroll-Hess (DKH)243–245 

and eXact-2-Component (X2C) scalar relativistic Hamiltonians.246,247 In both cases only the 1-

electron integrals are modified. In the case of the DKH Hamiltonian, the default order of the 

associated unitary transformation is 2, but arbitrarily higher orders can be selected.248 Because 

scalar relativistic effects change, in particular, the radial extent of inner-core orbitals, it is 

important to use orbital basis sets that are optimized using the relativistic Hamiltonian; as 

described in Section VIII B, these are available for most of the periodic table. Related to the use 

of these all-electron relativistic Hamiltonians, Molpro now also allows the use of a Gaussian 

finite nuclear model249 instead of the default point-charge nucleus. 

 
 
 

B. Pseudopotentials 
 

 

Effective core potentials (ECPs) or pseudopotentials (PPs) can be an effective and 

convenient way to include relativistic effects, both scalar and spin-orbit. Of course in 

many cases the use of PPs can also lead to significant computational cost savings due 

to the reduced number of electrons and basis functions included in the calculation. This 

becomes less of a factor, however, when highly correlated methods such as coupled 

cluster or MRCI are used. The implementation of a given pseudopotential Vpp in Molpro 

is based on the following general form involving a maximum of 4 terms250 
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corresponding to (i) the monopole potential with core charge Q = Z − ncore, where ncore 

is the number of core electrons replaced by the PP, (ii) a local term, (iii) a semi-local 

term for scalar relativity, and (iv) a semi-local term for the radial potentials of the spin-

orbit (SO) part. The semi-local terms involve angular momentum projectors Pℓ , and the 

terms involving VℓMAX , Vℓ − VℓMAX , and ∆Vℓ are defined by expansions over terms cj r
m

J 

−2e−γ
J r2 with tabulated parameters cj , mj , and γj . The 1-electron SO term, if defined, 

can be used in the state-interacting approach as described above. 

 

A large number of PP families are available from the Molpro basis set library. These 

include the LANL ECPs,251,252 the SBKJC series,253,254 the Casino ECPs,255,256 and 

the energy-consistent PPs from the Stuttgart/K¨oln groups.257,258 Other PPs can easily 

be entered di-rectly into the input as long as they adhere to the general form above. An 

ECP for a given element generally has one or more Gaussian basis sets associated 

with it - often just of double-zeta quality - but in the cases of many of the Stuttgart/K¨oln 

PPs, the latter are accompanied by full sequences of correlation consistent basis sets, 

e.g., cc-pVnZ-PP (n=D, T, Q, 5). See, for instance, reference 259. It is important to note 

that the resulting accuracy of a particular choice of ECP, as compared to an analogous 

scalar relativistic all-electron calculation for example, is not only dependent on the 

underlying adjustment method used to define the ECP and the number of core 

electrons it replaces, but also on the basis set used to represent the remaining valence 

electrons. In general a given basis set is also not transferable between different ECPs. 

 

 

C. Spin-orbit coupling 
 

 

The calculation of spin-orbit coupling is implemented for MRCI wavefunctions using the 

Breit-Pauli operator. For any atoms described with a PP, the one-electron spin-orbit part of 

PP replaces the bare-nucleus operator. Matrix elements of the operator between MRCI 
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wavefunctions are evaluated for a single choice of 
ˆ
 eigenvalue, and then the complete effec-

S
z  

tive Hamiltonian matrix is constructed using the Wigner-Eckart theorem. Diagonalization of 

this Hamiltonian yields new states, for which properties such as dipole matrix elements are 

transformed. To make calculations more efficient without significant sacrifice of accuracy, 

an effective Fock matrix technique is used for the external parts of the MRCI wave function, 

but retaining the full two-electron operator for the dominant part of the wavefunction with 

configurations that occupy only internal orbitals.
260,261 

 

For larger systems, different approximate schemes are implemented. These include the 

use of effective Fock matrix for internal parts as well (then spin-orbit becomes one-

electron effective operator), and the use of one-center approximation. In these cases, 

the integral-direct calculations can strongly speed up the computation. 

 

 

VI. MOLECULAR PROPERTIES AND WAVEFUNCTION ANALYSIS 
 

 

A. Energy gradients, geometry optimization, and harmonic vibrational 

frequencies 

 

 

Analytical gradients are implemented for Hartree-Fock (spin restricted and 

unrestricted), DFT, and most single reference methods. This includes closed-shell 

MP2,175,181,182 CCSD, DCSD, QCISD(T),99 and CCSD(T) as well as for the 

corresponding F12 methods.126,127 Particularly accurate geometries are obtained with 

DCSD-F12 gradients,35 which avoids the expensive inclusion of triple excitations. 

 

Analytical MCSCF and CASPT2 gradients129,262,263 are available for the methods 

based on the WK contraction (cf. sections II B 2, II B 3), including MS-CASPT2 and 

XMS-CASPT2.129,263 For most methods the gradients are implemented with and 

without density fitting approximations. The latter are highly efficient and preferable for 

most applications. Gradients are also available for local MP2,175,181,182 using either 

Pipek-Mezey localization162 or intrinsic bond orbitals (IBOs).146 

 

Geometry optimizations264 ,265 and harmonic frequency calculations use the analytical gradi-

ents whenever available. Otherwise, the gradients or Hessians are computed automatically 

using finite difference methods. In such numerical derivative calculations the energies or 
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gradients for different displacements can be computed in parallel. The program automati-

cally switches from its normal mode (parallel execution of a single workflow) to devolve the 

displaced-geometry energies to each MPI process as a serial task; this embarrassingly-

parallel strategy leads to very good parallel scaling of the overall derivative computation. 

 
 
 
 

B. Anharmonic vibrational spectra 
 

 

Besides the multitude of electronic structure methods, Molpro offers a variety of pro-

grams for solving the nuclear Schr¨odinger equation, all of them being based on the 

Watson Hamiltonian.266 This allows for the very accurate simulation of vibrational and 

vibronic spectra as well as many vibrationally averaged properties. 

 

 

The first step within these calculations is the generation of a multidimensional potential 

energy surface (PES), which can be obtained in a fully automated manner using any of the 

implemented electronic structure methods.
267,268

 Likewise, dipole moment and polariz-

ability tensor surfaces as needed for infrared and Raman intensities can be generated for 

those methods, for which analytical gradients are available.
269

 Usually, these surfaces are 

represented in an n-mode expansion of a user-defined order.
270

 Alternatively, one may use 

quartic or sextic force fields. The PES generator can handle any molecular point group and 

can exploit molecular point group symmetry and permutational symmetry in dependence on 

the chosen coordinate system, which is currently restricted to canonical or localized normal 

coordinates.
268,271

 Multi-level schemes,
272,273

 interpolation and prescreening 

techniques
271

 in combination with an embarrassingly parallel implementation allow for the 

very efficient calculation of PESs of local minima or degenerate double-well potentials.
274

 

In particular the modeling of high-order terms of the PES expansion leads to substantial 

accelerations.
275,276

 These potentials can be dumped as ASCII files to be used in any 

other program. In a subsequent transformation program the grid representation of the PES 

can be transformed to an analytical sum-of-products representation of multivariate 

polynomials, B-splines or distributed Gaussians.
277

 This transformation is based on highly 

efficient Kronecker product fitting. 
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Once the PES has been generated it can be used for determining wavefunctions from 

conventional vibrational self-consistent field theory (VSCF), configuration-averaged VSCF 

theory (CA-VSCF)278 or multiconfigurational self-consistent field theory (VMCSCF).279–281 

Grid-based and finite basis variants of these programs are available. One-mode wavefunc-tions 

(modals) are expanded in terms of harmonic oscillator functions or mode-specific, local 

distributed Gaussians. Vibrational angular momentum terms are added a posteriori to the state 

energies.282 In order to account for vibration correlation effects, programs for 2nd order 

vibrational Møller-Plesset perturbation theory (VMP2), vibrational configura-tion interaction 

(VCI) calculations or vibrational multireference configuration interaction theory (VMRCI) have 

been implemented.283–285 These programs can handle up to 9-tuple excitations and provide a 

variety of options to tailor the configuration space. Vibrational ground-state and state-specific 

calculations are offered, which fully exploit molecular sym-metry, even for non-Abelian point 

groups. By default, the VCI program uses a highly efficient configuration selection scheme, 

which allows for calculations of up to 1010 initial configurations.283,286 Sparse matrix 

techniques and a newly developed eigenvalue solver are used to limit memory demands and to 

speed up the calculations.287 Once the PES has been determined from explicitly correlated 

coupled-cluster calculations and the n-mode expansion of the PES has been converged, typical 

mean absolute deviations are in the range of 1-5 cm−1 for fundamental transitions and slightly 

larger values for overtones and combination bands.288 For example, Table VI shows the mean 

absolute and maximum deviations of com-puted VCI fundamentals from experimental gas 

phase or matrix isolation data for a small set of molecules. Molecular properties as for example 

intensities, vibrationally averaged rotational constants, molecular geometries and dipole 

moments, etc. can be obtained from these VCI calculations.289 These programs have been 

applied to a multitude of molecules and molecular clusters of up to 20 atoms.286 Besides these 

variational methods, a program based on 2nd order vibrational perturbation theory (VPT2) is 

available, which relies on the polynomial coefficients determined in the PES transformation 

program.277,290 

 

 

Photoelectron or photoionization spectra can be computed in two different ways. This first one 

being offered by Molpro relies on a selection of Franck-Condon factors at the VSCF level within 

a sum-over-states approach.291 In order to match the normal coordinates of the two 
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TABLE VI. Mean absolute (MAD) and maximum deviations (MAX) of VCI calculations based on 

explicitly correlated coupled-cluster calculations from experimental data for the fundamental 

modes of a small set of molecules (in cm
−1

). 

 
 

Molecule MAD MAX 
   

CH2F2 1.6 4.3 

C2H4 2.7 5.9 

CH3OPO 4.4 8.2 

C2H6 1.5 3.6 

CH3CH2F 2.1 7.4 
   
   

 
 
 
 
 
 
 
 
 

 

potential energy surfaces, a Duschinsky transformation is provided, which can also be used 

to alter the normal coordinates of a PES in order to compute vibrational spectra for any 

isotopologues without recomputing the PES.
292

 Once the list of significant Franck-Condon 

factors has been generated, the corresponding vibrational states can be computed at the 

VCI level, which will be used for the calculation of Franck-Condon factors at the correlated 

level. Note that this approach is only meaningful once the vibrational states retain their 

state identity within the VCI calculations, otherwise the sum of the Franck-Condon factors 

will not add up to 1.0. This approach has been applied to a variety of small molecules, e.g. 

ketene.
293

 In cases of high density of states or the loss of the state identity in general, the 

time-independent Raman wavefunction approach (RWF)
294

 can be used instead, which 

avoids the explicit calculation of vibrational eigenstates altogether, but determines the ori-

entationally averaged absorption cross section at relevant spectral points. This leads to an 

iterative solution of the inhomogeneous Schr¨odinger equation, for which several 

techniques have been developed. This method was found to be very robust, even for very 

high state densities, see for example the spectrum of CH2F 2.
295

 Quite recently, this 

approach has been extended for the calculation of Herzberg-Teller terms. 
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C. One electron properties and transition moments 
 

 

Normally, the expectation values and transition moments of standard one-electron 

properties are computed automatically where possible. By default, only dipole moments are 

evaluated, but other properties can be requested, including multipole moments, electric 

field and its gradient, angular momentum, diamagnetic shielding tensor, and velocity. 

Transition proper-ties can be calculated for state-averaged CASSCF calculations, or for 

MRCI wavefunctions. For MRCI wavefunctions, it is also possible to evaluate properties in 

the case when bra- and ket- molecular orbitals are different, via a transformation to bi-

orthogonal orbitals.
296

 Calcu-lation of overlaps, one-electron transition properties and 

Hamiltonian operators is possible, including the overlap between MRCI wave functions 

obtained at different molecular geome-tries. These can be used, by applying numerical 

differentiation, to obtain non-adiabatic first- and second-order corrections. 

 
 

 

D. Population analysis, IBO, NBO 
 

 

Mulliken population analysis and distributed multipole analysis
297

 as well as intrinsic bond 

orbital (IBO) analysis
146

 are available in Molpro. The latter is based on Pipek-Mezey lo-

calized orbitals in a polarized minimal basis of atomic orbitals that spans the Hartree-Fock 

wavefunction exactly. The results of this method are particularly independent of the basis 

set and give a picture that corresponds closely to chemical intuition. Some applications can 

be found in Refs. 298–302. Molpro also provides an interface to the NBO6 program.
303 

 
 
 

VII. INTERMOLECULAR INTERACTIONS 
 

 

A. Supermolecular calculations 
 

 

Intermolecular interaction energies can be computed either using supermolecular calcula-

tions or by symmetry adapted perturbation theory (SAPT). The former has the advantage 

that any electronic structure method can be used, and the current gold standard for such 

calculations is CCSD(T) or, even better, CCSD(T)-F12.
191

 On the other hand, SAPT calcu- 
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lations make it possible to analyze the interaction energies and to determine various physical 

meaningful contributions. Larger systems, for which canonical CCSD(T) calculations are too 

expensive, can be treated very accurately using the new PNO-CCSD(T)-F12 program in 

Molpro. For recent benchmarks and references to previous work see Ref. 159. 

 

 

1. Counterpoise corrections 
 

 

Supermolecular calculations of interaction energies require counter-poise (CP) 

corrections
304

 to compensate the basis set superposition errors (BSSE). This is even 

recommended with explicitly correlated methods which yields results close to the complete 

basis set (CBS) limit already with triple-ζ basis sets. Counterpoise calculations can be 

straightforwardly done by specifying “dummy” atoms, which carry a basis set but no nuclear 

charge and no electrons. It is also possible to remove the basis set from the dummy atoms 

for convenient computation of the monomer energies at formally infinite separation. 

 

 

2. Dispersion corrections to MP2 
 

 

The standard second-order Møller-Plesset perturbation theory (MP2) method fails to de-

scribe long-range correlation energies accurately. The reason for this stems from the fact 

that the MP2 method does not take into account intramolecular correlation effects of two 

interacting monomers, i.e., describes dispersion interactions on an uncoupled Hartree-Fock 

level.
305,306

 To remedy this, the supermolecular MP2 interaction energy can be corrected 

in a hybrid supermolecular-perturbation theory approach by subtracting the uncoupled HF 

(UCHF) dispersion energy and adding the dispersion energy from a more accurate 

response theory method instead.
306,307

 In the MP2C (MP2 coupled) method, the latter is 

computed using the time-dependent density-functional theory (TDDFT) approach, 

employing static response functions from the EXX method (see section III B) and coupled 

response functions computed by using the ALDA exchange kernel:
307,308 

∆EMP2C = ∆EMP2 − E(20) [UCHF] + E(2) 
[TDDFT] (7) 

int int disp disp   

 
In Molpro, MP2C calculations can be performed with the aid of the TDDFT module that 

computes frequency-dependent coupled or uncoupled response functions. Exact-exchange 
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KS calculations required to compute Edisp
(2)[TDDFT] can be performed using the EXX 

meth-ods described in section III B. A remarkable feature of the MP2C approach of Eq. 

(7) is that it delivers far more accurate interaction energies than the MP2 method for 

dispersion energy dominated systems, while in case of hydrogen-bonded systems the 

overall well performance of MP2 is conserved.306,307 In a thorough study of Burns et al. 

of a large number of differ-ent spin-component-scaled (SCS), explicitly correlated (F12) 

and specialised wavefunction approaches using four different benchmark data bases 

with 94 dimers and 345 geometry configurations in total, the MP2C method was 

appointed to bronze standard for describing noncovalent interactions, as it yields very 

accurate energies at a moderate computational cost as compared to the other methods 

studied.309 Binding energies of large supramolecular complexes were found to be very 

similar to results from DFT-SAPT (section VII B 1) or the NLDFT method (section III A). 

 
 
 
 
 
 
 

 

B. Symmetry adapted perturbation theory (SAPT) 
 

 

1. Symmetry-adapted perturbation theory based on Kohn-Sham description of monomers 
 
 
 

 
Intermolecular interaction energies between two noncovalently bonded molecules (denoted as 

monomers) can be calculated by perturbation theory approaches using the product of the 

monomer wave functions as the zeroth order approximation to the dimer wave function. In order 

to enforce the proper antisymmetry of the dimer wave function, various weak to strong 

symmetry forcing procedures can be employed,310 which are generally known un-der the name 

symmetry-adapted perturbation theory (SAPT).310–312 Among these methods the symmetrized 

Rayleigh-Schr¨odinger theory (SRS), which belongs to the weak symmetry-forcing group, 

turned out to be the best practical choice, as it yields very accurate inter-molecular interaction 

energies at equilibrium and even in the short distance range.310,313 The SAPT interaction 

energy is typically expanded up to second order in terms of the intermolec-ular interaction 

operator (defined as a difference between the total electronic Hamiltonian 
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of the dimer and the sum of monomer Hamiltonians), leading to the terms 
 

∆ESAPT = E(1)
 + E(1) + E(2) + E(2) + 

int pol exch ind exch−ind  

 +E(2) + E(2) + ∆3−∞ (8) 
 disp exch−disp   

 

 

with Epol
(1): electrostatic energy, Eind

(2): induction energy, Edisp
(2): dispersion energy 

and Eexch
(1), Eexch

(2)
−ind, Eexch

(2)
−disp are the corresponding exchange interaction 

counterparts that stem from a tunneling of the electrons among the monomers and 

which vanish at large distances be-tween monomers. The term ∆3−∞ defines an 

approximation to the higher order interaction energy terms and can be estimated using 

the supermolecular Hartree-Fock method314. As compared to the supermolecular 

method, the SAPT method has a number of advantageous features. Namely, it is free 

from any basis set superposition error (BSSE) and it yields a deeper physical insight 

into the nature of the interaction through the energy decomposition of Eq. (8). 

 

In order to obtain accurate interaction energies from Eq. (8), intramolecular correlation ef-fects 

need to be taken into account. The most efficient approach is to describe the monomers in 

terms of densities, density matrices and response properties obtained by density functional 

theory methods and the corresponding SAPT variant is termed as DFT-SAPT.315–322 The 

DFT-SAPT method was shown to yield very accurate intermolecular interaction energies for 

small221,318,321,323 and large324,325 dimer systems. The DFT-SAPT method implemented in 

the Molpro program can be used with a large variety of different settings in the monomer and 

the perturbation theory calculations. It should be noted that further approximations are usually 

employed for exchange contributions: namely, the so-called S2 or single-exchange simplified 

variants of these energies are used, where double and higher simultaneous ex-changes of 

electrons between the monomers are neglected. This approximation works well for the 

minimum region and for larger distances. However, it can become inaccurate in the valence 

wall region. Errors in the short-range regions of the intermolecular potential, 
 

originating from the common single-exchange approximation to the Eexch
(1), Eexch

(2)
−ind  and terms can 

be overcome using the infinite-exchange expansion approach derived 
 

 

by Sch¨affer and Jansen.326 , 327 Charge- transfer interactions, which are a contribution to the sum 

of Eind
(2) + Eexch

(2)
−ind, can be calculated by the regularised SAPT method of Misquitta.328 This 

variant of the SAPT method can also be employed in cases where the standard pertur- 
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bative approach breaks down, e.g., in the calculation of heavy metal interactions329 or 

for describing the σ-hole bond in complexes containing halogen electron donors.330 

 

As an alternative to the commonly employed generalised gradient approximations (GGA) to 

the exchange-correlation (xc) potential and kernel in DFT-SAPT calculations, it is also pos-

sible to use orbital-dependent exact exchange functionals (see section III B) and 

kernels,
331

 using Molpro. It was recently shown that DFT-SAPT methods which employ the 

ex-act nonadiabatic Kohn-Sham exchange kernel (TDEXX) and accurate long-range 

corrected exchange-correlation potentials in the monomer calculations clearly outperform a 

large num-ber of empirical and nonempirical quantum chemistry approaches for the popular 

S22 and S66 dimer benchmark sets of Hobza et al.
209,210,332 

 

All contributions in Eq. (8) can be computed using density-fitting techniques in the DFT-SAPT 

program, leading to remarkable speed-ups in the calculations already for medium sized dimers 

like benzene-benzene.221 The DFT-SAPT method implemented in the Molpro program was 

also tested on the S12L set of large supramolecular complexes of Grimme et al.333,334 

containing dimers with more than 800 electrons.211 The interaction energy of the bucky catcher 

complex (system C4b in the S12L data base) can be calculated within 6 days using the DFT-

SAPT program on a 16 core Sandybridge computer clocked at 2 Mhz. Here, almost two thirds 

of the CPU time were spent in the calculation of the exchange-dispersion energy Eexch
(2)

−disp 

that possesses a scaling of N 5 with respect to the system size N .211 Other interesting 

applications of this code include endohedral complexes of fullerenes, like e.g. hydrogen 

molecule(s) inside C60 and C70
335 or CHFClBr inside chiral isomers of C82.336 

 
 

 

2. Symmetry-adapted perturbation theory based on Coupled-Cluster monomer 

wave functions 

 

 

The SAPT with monomers described at the CCSD level has been implemented for all SAPT 

components of the first and second order with respect to the intermolecular in-teraction 

operator (see also Eq. (8)) as described in a number of papers for individual SAPT 

components.
102

 
,337–341

 It should be noted that dispersion and exchange-dispersion 

components are calculated from a numerical integration over several imaginary frequen-

cies, where the integrand contains full frequency-dependent polarization propagators at the 
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CCSD level.
104

  Since the calculation of such propagators requires N
2
  responses (for each 

 
ˆ r operator), and each of these responses is as expensive as a single CCSD calculation, Es

 

 

the cost for full CCSD propagators scales with the 8th power of molecular size N . This 

scaling can be reduced by one order of N if density fitting is applied to the electron-density 

operator entering into the definition of the polarization propagator.
340,341

 Nevertheless, the 

SAPT(CCSD) method is primarily devoted to produce high-quality benchmarks for small 

noncovalent complexes and to compare them with less accurate methods. For instance, in 

Ref. 342 the SAPT(CCSD) and supermolecular CCSD(T) results were compared to a num-

ber of SAPT(DFT) approaches with different functionals. The SAPT(CCSD) code is also 

available in the monomer-centered basis set (MCBS) or various other subsets of the full 

dimer-centered basis set, thus making use of the SAPT independence on BSSE. It should 

be noted, however, that the saturation of orbital basis sets for most expensive SAPT 

compo-nents (dispersion and exchange-dispersion) is very slow, which makes the use of 

the MCBS inefficient in most cases. 

 
 
 
 
 
 
 
 
 

VIII. USER INTERFACES 
 

 

A. Input Structure 
 

 

Molpro input is provided in an ASCII file. It contains of commands (calling programs as 

e.g. HF, CCSD(T) etc) with associated options, and directives which provide additional 

information such as occupations, symmetry, spin state etc. Geometries can be given in 

xyz or z-matrix form. Any number of commands can follow each other. Also branching 

and looping over parts of the input is possible. In the beginning of a calculation, the 

input is pre-checked to detect typos or invalid input specifications at the earliest 

possible stage. There are facilities to tabulate, plot, or export results, and marked-up 

xml output is generated as well. Despite the flexibility to generate rather complicated 

program-like inputs, the input for standard calculations is very simple. Some typical 

inputs for DFT and coupled-cluster calculations are shown in Table VII. 
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TABLE VII. Input examples for a DFT, CCSD(T) and PNO-LCCSD(T) calculation. The auxiliary 

basis density fitting and RI basis sets are determined automatically. 
 

geometry=mygeom.xyz  

basis=vtz ! basis set cc-pVTZ 

uks,pbe0+d3 ! unrestricted Kohn-Sham with D3 dispersion correction 

optg ! geometry optimization 

frequencies ! harmonic vibrational frequencies 
  

geometry=mygeom.xyz  

basis=vtz ! basis set cc-pVTZ 

hf ! Hartree-Fock with density fitting 

ccsd(t) ! conventional coupled-cluster 

extrapolate,vtz:vqz:v5z ! automatic basis set extrapolation 
  

geometry=mygeom.xyz  

basis=vtz-f12 ! basis set cc-pVTZ-F12 

df-hf ! Hartree-Fock with density fitting 

pno-lccsd(t)-f12 ! explicitly correlated local coupled-cluster 
  

 
 
 

B. Basis set library 
 

 

An extensive basis set library is included in the Molpro program. This includes not only a 

large variety of orbital basis sets, but also a large number of auxiliary basis sets, i.e., basis 

sets for density fitting in HF, DFT, and correlated methods, as well as sets for approximate 

identity resolution for explicitly correlated calculations. In ad-dition, a large library of 

effective core potentials (ECPs) is also maintained that in-clude those from the Los Alamos 

group,
251,252

 the Stuttgart/K¨oln group,
257,258

 and oth-ers. In particular, the library of orbital 

basis sets includes all currently available cor-relation consistent basis sets
343

 across the 

entire periodic table (see: http://www.grant-hill.group.shef.ac.uk/ccrepo/bib.html). These 

include relatively new basis sets optimized for scalar relativistic Douglas-Kroll-Hess and 

X2C Hamiltonians, as well as those matched to Stuttgart/K¨oln small-core relativistic 

pseudopotentials, all of which extend the range of this basis set family down to Z=103 

(Lr).
259,344,345

 Recent correlation consistent basis 
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sets optimized for explicitly correlated F12 approaches are also included.
346–350

 Finally, of 

course nearly all other commonly used basis sets appearing in the literature (obtained 

predominately from the Basis Set Exchange at https://www.basissetexchange.org) are also 

available, including the Karlsruhe def2 sets,
351,352

 Roos ANO sets,
353,354

 etc. Commonly 

used auxiliary sets include the JKFIT sets of Weigend and co-workers,
355

 the MP2FIT 

series of sets,
356–358

 and the OptRI sets for resolution of the identity in explicitly correlated 

F12 calculations.
359–361

 The Molpro basis set library can be conveniently browsed via the 

web interface at https://www.molpro.net/info/basis.php. 

 
While the user has complete control over the choices of orbital and auxiliary basis set 

for each atom in a given calculation, including any sort of augmentations that might be 

desired, the program automatically selects appropriate defaults for all required auxiliary 

basis sets if an orbital basis set from either the correlation consistent or def2 family of 

basis sets is chosen. This is particularly useful in F12 calculations where 3 different 

auxiliary basis sets are required. 

 
In the case of correlation consistent basis sets, Molpro provides a convenient mechanism 

to perform complete basis set extrapolations. After first specifying the type of energy calcu-

lation, the user specifies a range of basis sets, e.g., cc-pVTZ and cc-pVQZ, and then the 

required calculations are automatically carried out (cf. Table VII). The user can choose be-

tween a large number of common extrapolation formulas, which can be applied separately 

to reference energies, e.g. HF, and correlation energies. For example the user can 

extrapolate the HF energies with an exponential function (requiring 3 energies) and then 

the correlation energies with the default n
−3

 formula (n is the cardinal number of the basis 

set, e.g., 2 for VDZ, 3 for VTZ etc). The latter can be carried out with just the two largest 

basis sets or as a least squares fit to all 3 basis sets. The results of the extrapolation are 

automatically saved to variables that can be used in both geometry optimizations and 

harmonic frequency calculations, as well as output in Molpro’s table command. 

 
 

 

C. Graphical User Interface: gmolpro 
 

 

gmolpro is a GTK-based graphical interface to Molpro that runs on Linux and macOS 

workstations. It supports the preparation of inputs through an expert system that interacts 
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with Molpro’s registry of commands, methods and basis sets, guiding the user towards 

feasible combinations of calculation types (single point, optimisation etc), methods, 

basis sets and options. Checks are implemented so that the geometry, charge and spin 

are consistent, and only appropriate methods are selected. Reasonable default settings 

are provided so that an input can be quickly set up. It also provides a plain-text editor to 

allow further editing of existing job inputs. 

 

Molecular structures can be constructed and edited using an integrated builder derived 

from the PQSMol362 interface to the PQS363,364 package. It incorporates fragment 

libraries, force fields, and an optimisation based on force fields. Jobs can then be 

submitted and managed on the local computer or a remote machine (see section VIII D 

for details). Results may be visualised via the viewer component of PQSMol, including 

an interactive display of struc-tures, orbitals, property maps and vibrational modes. 

Figure 5 shows the PQSMol builder window (upper part) and the gmolpro input window 

(lower part) for a PNO-LCCSD(T)-F12 calculation on a large transition metal complex. 

 
 

 

D. Job submission and analysis tools 
 

 

A new framework for managing individual Molpro runs, collections of calculations, and 

relationships between them has been developed. The central concept is a project, 

which is a filesystem-resident object, implemented as a directory containing all 

necessary files, holding everything that belongs to a single run of Molpro. This includes 

not only the input and output files, but also a dictionary of properties which are simple 

key-value pairs of strings. Some of the property names have special meaning for the 

operation of the project, but otherwise anything can be stored in the dictionary. 

gmolpro makes use of these projects in managing the entire set of data associated 

with a Molpro calculation, but is not the only context in which they can be useful. 

 

The Simple Job Execution Framework (SJEF)365 defines a C++ class that provides an 

interface to these objects; there is also a C binding and command-line utility, as well a 

Python library pysjef that includes a binding to SJEF. Although intended for use with 

Molpro, SJEF has been written in a generic way so that it could be used with any other 

program. As well as providing utilities to manipulate projects and their contents, SJEF 
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FIG. 5. (a) gmolpro builder and (b) input and job submission windows. The builder window, 

based on PQSMol,
362

 shows in its left pane the structure of the reactant molecule of system 4 

in the WCCR10 benchmark.
195

 PNO-LCCSD(T)-F12 results for this benchmark can be found in 

Ref. 56. 
 

(a) Builder window  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(b) Input window  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

supports the launching and monitoring of Molpro runs on either the local computer or a 

different system. Jobs are placed through the definition of one or more backends that are 

defined in per-user and per-system configuration files. A cache copy of the project bundle is 

maintained on the remote host, and synchronization in both directions is carried out as 
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needed. The backend specification contains the command needed to launch a Molpro 

job, either directly or via a batch system, together with further specifications of batch 

systems that facilitate the monitoring and abortion of jobs. SJEF is then able to provide 

information about the status of the job, as well as serving its output after performing any 

necessary synchronisation. 

 

The primary output from a Molpro job consists of a plain-text transcript of the progress of 

the calculation, together with a more detailed log file containing further information about, 

for example, individual steps in a geometry optimization. In addition, a marked-up version of 

the output is generated within the molpro-output XML schema366 to support 

automated post-processing of results such as energies, geometries, 

vibrations, basis sets and orbitals in pysjef, gmolpro and elsewhere. 

 

pysjef
367

 is a Python module that supports the manipulation of collections of projects. As 

well as containing a full Python binding of SJEF, it implements a search for results in output 

files. Projects, output files, and individual elements in the XML tree of the output file are all 

represented as instances of a Node class, that is linked to other nodes in a tree. Because 

nodes can be constructed as containers for other nodes, hierarchies of individual projects can 

be brought together in a single tree. As well as parent and children, each node contains a 

number of attributes, which are typically the actual data from the calculation. pysjef then 

supports selection of nodes from the tree or a list of trees satisfying given conditions, with the 

possibility of returning attributes by value instead of nodes. A group of nodes or sub-trees can 

also be used to build slices of a full tree. This highly flexible structure allows construction of 

complicated workflows with uniform interface to the output, project, or any other custom node. 

Similar to SJEF, pysjef does not have any Molpro specific code and works with any program 

satisfying SJEF’s criteria. We have also developed pysjef molpro368 which is extended with 

utility functions and nodes specialized for Molpro. Figure 6 shows a simple example of a 

pysjef script in a Jupyter notebook,369 in which a potential energy surface scan is carried out. 

Although this simple example could also be expedited through the use of loops within the input 

of a single Molpro job, the Python-driven approach gives the possibility of independent jobs 

being executed in parallel, and localises the entire scientific project to a single shareable file. 

The intention is to give support to more complex workflows involving many different molecules 

and methods. The Python program can be executed repeatedly 
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FIG. 6. Example of pysjef workflow showing calculation of potential energy curves (PEC) for 

ground and first excited states of C2H4 along its dihedral angle. The first input cell imports 

pysjef and pysjef molpro. The second input cell creates root of the project tree, using a 

node that maps to a directory. The third input cell adds projects to the root using a suffix to 

specify that they are Molpro jobs. In the fourth cell all jobs are executed in parallel 

independently on 8 processors, and checked for completion and errors. In the last cell, the 

whole tree is searched to select energies and C-C bond lengths, and PECs are plotted. 
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- for example whilst experimenting with plotting parameters - and, provided the Molpro 

inputs do not change, the Molpro calculations will not be re-executed. 

 
 
 
 

IX. DEVELOPMENT TOOLS 
 

 

A. FCIdump and other interfaces 
 

 

Molpro connects to a number of other programs by providing the Hamiltonian operator 

expressed in molecular orbital basis, together, in some cases, with management of 

input options. The FCIdump370,371 format is used to specify the Hamiltonian structure 

and matrix elements, whilst the molpro-plugin library372 is used to launch, and 

communicate with, the guest program. molpro-plugin works by using the standard 

process-spawning mechanism of MPI, and its installation in the guest is achieved 

through a simple library call that has no effect when not launched from Molpro. 

Programs using this mechanism include MRCC150 and NECI,373 and in both those 

cases, the options for the guest code can be specified in Molpro input. 

 
Conversely, FCIdump files can be read in by Molpro facilitating calculations on model Hamil-

tonians and frozen virtual approximations, using all available integral-non-direct methods. 

 
 

 

B. Development environment, cmake etc 
 

 

Molpro is written in a mixture of Fortran, C and C++, and depends on a number of external 

libraries. In order to manage the complexity of compilation portably, it employs the cmake 

build system generator. This enables, in particular, the easy incorporation of libraries that 

themselves have cmake support, and the use of an integrated development environment. 

Most external libraries are specified by reference; if not found locally by cmake, they are 

fetched and incorporated into the overall build process. 

 
Molpro has a rich interface for basic objects such as orbitals, basis sets and integral 

gen-erators, and can be effectively used as a development platform for new quantum-

chemical methods. 
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X. OUTLOOK AND SUMMARY 
 

 

We have described the principal and recent features of the Molpro program package; further 

details of well-established features can be found in Ref. 31. Many current developments are in 

progress, including in particular a strong focus on multireference methodology for large 

molecules. The package is used by a large community of users, and continues to make a 

distinctive strong contribution to the capability of predicting chemical structure and activity for 

molecules that are large and that have strongly correlated electronic structure. 
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