

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/131073/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Aubineau, Jérémie, El Albani, Abderrazak, Bekker, Andrey, Chi Fru, Ernest , Somogyi, Andrea, Medjoubi, Kadda, Riboulleau, Armelle, Meunier, Alain and Konhauser, Kurt O. 2020. Trace element perspective into the ca. 2.1-billion-year-old shallow-marine microbial mats from the Francevillian Group, Gabon. Chemical Geology 543 , 119620. 10.1016/j.chemgeo.2020.119620

Publishers page: http://dx.doi.org/10.1016/j.chemgeo.2020.119620

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1	Trace element perspective into the ca. 2.1-billion-year-old shallow-marine microbial
2	mats from the Francevillian Group, Gabon
3	
4	Jérémie Aubineau1*, Abderrazak El Albani1, Andrey Bekker2, 3, Ernest Chi Fru4, Andrea
5	Somogyis, Kadda Medjoubis, Armelle Riboulleaus, Alain Meunier1, & Kurt O. Konhauser7
6	
7	1UMR 7285 CNRS IC2MP, University of Poitiers, Poitiers, France
8	² Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521,
9	USA
LO	3Department of Geology, University of Johannesburg, Auckland Park 2006, South Africa
L1	⁴ Centre of Geobiology and Geochemistry, School of Earth and Ocean Sciences, College of
L2	Physical Sciences and Engineering, Cardiff University, Cardiff CF10 3AT, Wales, UK
L3	5Nanoscopium beamline Synchrotron Soleil, BP 48, Saint-Aubin, 91192 GIF-sur-Yvette
L4	France
L5	6UMR 8187 CNRS LOG, University of Lille, ULCO, Villeneuve d'Ascq, France.
L6	⁷ Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta,
L7	Canada.
L8	
L9	*corresponding author: jeremie.aubineau@univ-poitiers.fr

Abstract

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

The sedimentary fabrics of Precambrian mat-related structures (MRS) represent some of the oldest convincing evidence for early life on Earth. The ca. 2.1 billion-year (Ga) old MRS in the FB₂ Member of the Francevillian basin in Gabon has received considerable attention not only because they contain remnants of microbial mats that colonized large areas in oxygenated, shallow-marine settings, but they also contain evidence for ancient multicellular organisms that thrived on these microbial mats using them as a food source. Despite these insights, what remains lacking is a full characterization of the geochemical composition of the MRS to test whether the bulk composition of fossilized MRS is distinct from the host sediments (sandstones and shales). Here, we show that the trace element (TE) content of microbial textures belonging to pyritized MRS, poorly pyritized MRS, and "elephant-skin" textures (EST) is highly variable and differs from that of the host sediments. The poorly pyritized MRS contain a unique matrix with embedded Ti- and Zr-rich minerals and syngenetically enriched in TE. The EST, some of which are developed along the same stratigraphic horizon as the poorly pyritized MRS, display a distinct distribution of TE-bearing heavy minerals, suggesting a local difference in physical conditions during sedimentation. Similarly, high chalcophile-element (CE) content in pyritized MRS relative to the host sediments of the FB₂ Member further points to local bacterially influenced enrichments with high rates of microbial sulfate reduction during early diagenesis. The geochemical relationship between the MRS and the Francevillian sediments (e.g., FB, FC, and FD formations) indicates that specific biological pathways for CE enrichments (i.e., microbially controlled accumulation) are not apparent. Our findings highlight bulk-rock TE distinction between the 2.1-billion-year-old MRS and their host sediments, but also indicate that environmental conditions, such as hydrodynamic regime and water-column redox chemistry, may simply overwhelm any potential biological signal. Our data suggest that the microbial impact may have only passively influenced TE enrichment in the studied sediments, implying that TE concentrations in MRS are a poor biosignature. Importantly, this work indicates that bulk TE geochemistry does not unveil specific microbiological processes in the rock record, which is consistent with the observed patterns in modern analogues.

47 48

49

Keywords

50 Mat-related structures, elemental geochemistry, biological signal, Palaeoproterozoic, Gabon.

1. Introduction

51

52

53

54

55

56

57

58

59

60 61

62

63

64 65

66

67

68

69 70

71

72

73

74

75

76

77

78

79

80

81

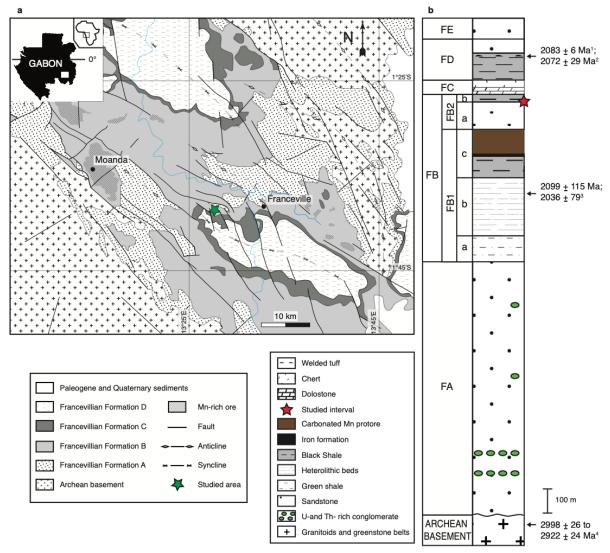
82

83 84

85

86 87

The ca. 2.1 billion-year-old Francevillian sedimentary rocks record significant changes in the Earth's ocean and atmosphere chemistry as they were deposited in the immediate aftermath of the first substantial rise of atmospheric oxygen (Bekker, 2015a; Holland, 2002) and at the time of Earth's longest and most extreme marine positive carbon isotope excursion (Bekker, 2015b; Canfield et al., 2013; El Albani et al., 2010). These sediments record the presence of cm-sized macroscopic fossils with a wide range of characteristics, including lobate, elongated, rod-shaped, and disc-shaped morphotypes (El Albani et al., 2014, 2010), as well as diverse string-shaped structures that have been interpreted as evidence for ancient organism motility (El Albani et al., 2019). In addition, benthic microbial mat communities prevailed in the Francevillian sedimentary deposits (Aubineau et al., 2018; Reynaud et al., 2017) and are now preserved as mat-related structures (MRS) with an exceptional diversity of mat growth patterns (e.g., "elephant-skin" texture, "fairy rings") and mat-protected features (e.g., wrinkle structures) (Aubineau et al., 2018). Based on the observed tufted microtextures and comparison with modern analogues it has been suggested that shallow-marine conditions within the photic zone allowed the development of phototrophic microbial mats composed of oxygenic photosynthesizers such as cyanobacteria (Aubineau et al., 2018; Reynaud et al., 2017). Lastly, these MRS have been shown to record an ancient metabolic activity through a potassium (K)controlled mineral transformation that occurred during diagenesis (Aubineau et al., 2019).


The observation of MRS in the Francevillian Group offers us the opportunity to further ascertain whether specific chemical "biosignatures" unique to MRS might also be present. This is crucial because organic microbial remnants, preserved as graphite, are common features in early Archean rocks (Dodd et al., 2017; Mojzsis et al., 1996; Nutman et al., 2016; Rosing, 1999; Schidlowski et al., 1979), but these have been subjected to deep burial diagenesis and metamorphism, and as a consequence, without clear physical features of MRS, it is difficult to assess their biogenicity. Indeed, it has been suggested that carbonaceous matter may have been generated abiotically under hydrothermal conditions via a process similar to the Fischer-Tropsch synthesis (Brasier et al., 2002; Lindsay et al., 2005; Van Zuilen et al., 2002). Therefore, seeking chemical biosignatures for ancient microbial mats is a sensible way forward because it is well documented that modern microbial mats, comprised of various bacterial species and their extracellular polymeric substances (EPS), are frequently enriched in metal cations at the nmol/g (Huerta-Diaz et al., 2012, 2011; Petrash et al., 2015) to µg/g (Sancho-Tomás et al., 2018; Webster-Brown and Webster, 2007) range. This is a function of the EPS containing a variety of organic functional groups (e.g., carboxyl, phosphate, and sulfhydryl) that deprotonate at circum-neutral pH conditions, thus making them anionic and prone to metal adsorption and potential authigenic mineral nucleation (Konhauser, 1998, 1997). The same functional groups are also responsible for the trapping and binding of detrital particles onto the

surface of mats as they grow upward, including heavy mineral grains, such as titanium oxides and zircons (Homann et al., 2015), or clays (Konhauser et al., 1998; Newman et al., 2017, 2016; Playter et al., 2017).

There is no reason to believe that Precambrian mats behaved differently from the modern so it stands to reason that fossilized mat fabrics should similarly show trace element (TE) enrichments relative to host sediments. In this regard, we measured the bulk TE concentrations of the MRS and host sediments of sandstone and black shale from the *ca.* 2.1 Ga Francevillian FB₂ Member of the Francevillian Group in Gabon to ascertain whether potential biological TE enrichments are recorded. These sedimentary rocks were chosen because previous work has already demonstrated that they contain diverse microbial mat morphotypes (Aubineau et al., 2019, 2018), previously described as pyritized MRS, poorly pyritized MRS, and unpyritized "elephant-skin" textures (EST). The rocks also possess geochemical record that tracks Earth's oxygenation history and MRS with associated K enrichment (Aubineau et al., 2019; Canfield et al., 2013; Chi Fru et al., 2019).

2. Geological context of the Francevillian Group

The unmetamorphosed and minimally deformed *ca.* 2.1 Ga old Francevillian Group in southeastern Gabon is a 1.0 to 2.5 km-thick succession that overlies an Archean crystalline basement (Fig. 1a) (Gauthier-Lafaye and Weber, 1989; Weber et al., 2016). Lithostratigraphically, the Francevillian Group has been divided into five formations, labelled FA to FE from the oldest to youngest (Fig. 1b) (Weber, 1968). The Archean crystalline basement is mainly composed of granitoids and greenstone belts (Thiéblemont et al., 2009) with ages *ca.* 3.0–2.9 Ga (Mouélé et al., 2014). The basal FA Formation unconformably overlies the Archean basement and is predominantly composed of fluvial to fluvio-deltaic, coarse- to fine-grained quartz arenites, and conglomerates with minor interlayered mudstones. Collectively, this sedimentary sequence indicates a progressive transition to marine conditions (Bankole et al., 2015; Gauthier-Lafaye and Weber, 1989).

Figure 1. Geological map of the Paleoproterozoic Franceville sub-basin (**a**) modified from Bouton et al. (2009), showing Gabon in Africa and the Franceville sub-basin in Gabon, and general lithostratigraphic column of the Francevillian Group (**b**). The studied area of the Moulendé Quarry is shown with the green star, while the red star indicates the stratigraphic position of the studied interval with MRS for which synthetic lithostratigraphic column observed in the quarry is shown on Figure 2a. Sources of ages: 1-Horie et al. (2005); 2-Thiéblemont et al. (2009); 3-Bros et al. (1992); 4-Mouélé et al. (2014).

The predominantly marine FB Formation sedimentary rocks conformably overlie the FA Formation and are characterized by fine-grained sediments with interbedded debris flows, dolostones, thin iron-rich intervals, manganese ore deposits, and sandstones (Gauthier-Lafaye, 1986; Gauthier-Lafaye and Weber, 1989). The FB Formation is classically subdivided into FB1 (including a, b, and c units) and FB2 (with a and b units) members based on lithological variations (Azziley Azzibrouck, 1986; Weber, 1968). The FB1 Member is dominated by greenish, silty to sandy shales, heterolithic beds that consist of shales alternating with interbedded dolomite-cemented siltstones, and manganese-rich black shales (Azziley Azzibrouck, 1986; Pombo, 2004; Reynaud et al., 2017). The FB2 Member is essentially dominated by coarse-grained sandstones rapidly deposited from high-density gravity currents

(FB_{2a} unit) that formed largely structureless beds with some intervals showing soft-sediments deformation structures due to dewatering (Reynaud et al., 2017). The sandstones are overlain by black shales with thin interlayered siltstones (FB_{2b} unit), that were deposited during a sealevel fall. Overall, the FB₂ Member sediments were deposited in a shallow-marine environment with an oxygenated water column (Canfield et al., 2013; Ossa Ossa et al., 2018). The overlying FC Formation consists of massive dolostone beds, and stromatolitic cherts interbedded with black shales (Amard and Bertrand-Sarfati, 1997; Bertrand-Sarfati and Potin, 1994; Préat et al., 2011; Weber, 1968). An exceptionally well preserved, Gunflint-type microfossil assemblage was recently documented in cherts of the FC Formation, giving additional support to the diverse ecosystem in the Franceville sub-basin (Lekele Baghekema et al., 2017). The FD Formation is mainly dominated by black shales alternating with volcanic tuffs and fine- to medium-grained sandstones (Thiéblemont et al., 2014). The topmost FE Formation consists of medium-grained arkose with interlayered shales (Gauthier-Lafaye and Weber, 1989; Thiéblemont et al., 2014).

A number of geochronologic dates has been obtained for the Francevillian Group sediments, but the timing of deposition of the Lower Francevillian Group (FA and FB formations) is still controversial. Diagenetic illites in the FB_{1b} unit yielded a Sm-Nd isotope ages of 2099 \pm 115 Ma and 2036 \pm 79 Ma on <0.4 μ m and <0.2 μ m clay fractions, respectively, which constrained the age of early diagenesis in this unit (Bros et al., 1992). Finally, the depositional age of the FD Formation is well constrained with ignimbrite tuffs and sandstones that provided U-Pb ages of 2083 \pm 6 Ma (Horie et al., 2005) and 2072 \pm 29 Ma (Thiéblemont et al., 2009), respectively. Based on carbonate and organic carbon isotope compositions, the FB and FC formations record the end of the Lomagundi carbon isotope excursion (Canfield et al., 2013; El Albani et al., 2010; Préat et al., 2011), dated elsewhere between 2.11 and 2.06 Ga (Karhu and Holland, 1996; Martin et al., 2013). Given these age constraints, deposition of the Francevillian Group likely occurred *ca.* 2.1 Ga ago, during a critical juncture when Earth's atmosphere underwent a critical transition towards persistently oxygenated conditions.

3. Methods

3.1. Sampling

Highly diverse microbial mats and their host sediments were sampled from the Moulendé Quarry, Franceville sub-basin, Gabon. The mat layers were carefully separated from the underlying sediments with a blade, avoiding contamination with the underlying sediments. Directly from below the MRS, the host sediments were also sampled for geochemical analyses.

3.2. Microscopy

Mineral composition and textural relationships were studied in polished and carbon-coated thin sections, using a FEI Quanta 200 scanning electron microscope (SEM) equipped with an energy-dispersive X-Ray Spectrometer (EDX) as previously described (Aubineau et al., 2018).

3.3. Major and trace element analyses

Whole-rock geochemical analyses of major and trace elements were performed on 7 pyritized MRS, 7 poorly pyritized MRS, 4 unpyritized "elephant-skin" textures, 7 sandstones, and 15 black-shale samples. Major element (Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, and P) concentrations were measured by inductively-coupled plasma optical emission spectrometry (ICP-OES), while trace and rare earth element (As, Ba, Bi, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Gd, Hf, Ho, La, Lu, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sm, Sn, Sr, Ta, Tb, Th, Tm, U, V, W, Y, Yb, Zn, Zr) contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) at *Service d'Analyse des Roches et Minéraux* (SARM) of the *Centre de Recherches Pétrographiques et Géochimiques* (CRPG), Nancy, France. Total sulfur content of the MRS and host sediments was measured by infrared absorption with a carbon-sulfur EMIA 320-V2 (HORIBA) at SARM-CRPG.

Prior to analysis, each sample was powdered in an agate mortar. The glass beads were then prepared by fusion with ultra-pure lithium metaborate (LiBO₂) at 980 °C followed by a dissolution in a 1 mol/L nitric acid, 0.5% hydrogen peroxide, and 10% glycerol mixture. The analytical accuracy and precision were found to be better than 5% for major elements, with the exception of Ca (10%) and P (>25%). According to the analyzed trace element concentrations, the uncertainty is lower than 5–10% for elemental concentrations > 50 ppm, less than 5–20% for elemental concentrations between 10 and 1 ppm, and higher than 25% for elemental concentrations near the detection limit (Carignan et al., 2001).

The enrichment factor (EF; cf. Tribovillard et al., 2006) relative to the average shale was used to assess whether an element was authigenically enriched or depleted. The EF is considered to be detectable and substantial when it is >3 and >10, respectively (Algeo and Tribovillard, 2009). EFs were calculated as (X/Al)_{sample}/(X/Al)_{average shale}, where X stands for the element concentration. Descriptive statistics for trace elements was performed with R software (version 3.5.1; R Core Team, 2018) to enhance data resolution relative to the number of individual samples within each lithology.

3.4. X-ray fluorescence (XRF) microscopy

Scanning X-ray fluorescence microscopy analysis was performed on polished slab sections of representative MRS samples. The XRF elemental distribution maps were collected on several areas within the investigated samples at the Nanoscopium hard X-ray nanoprobe beamline

(Somogyi et al., 2015) of Synchrotron Soleil (L'Orme des Merisiers Saint-Aubin, France). The monochromatic X-ray beam with 12 keV energy was focused on the sample by a Kirckpatrick-Baez nano-focusing mirror. We used the fast continuous scanning (FLYSCAN) technique to obtain micrometer resolution for elemental maps of mm₂—sized sample areas (Medjoubi et al., 2013). We have increased the solid angle of detection by the means of two Si-drift detectors (VITUS H50, KETEK GmbH) to collect full XRF spectra in each pixel of the scans. We provide the distribution of Fe, As, and Ni with micron-scale spatial resolution and high analytical sensitivity. Each elemental map was normalized to 10 ms/pixel exposure time.

4. Results

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

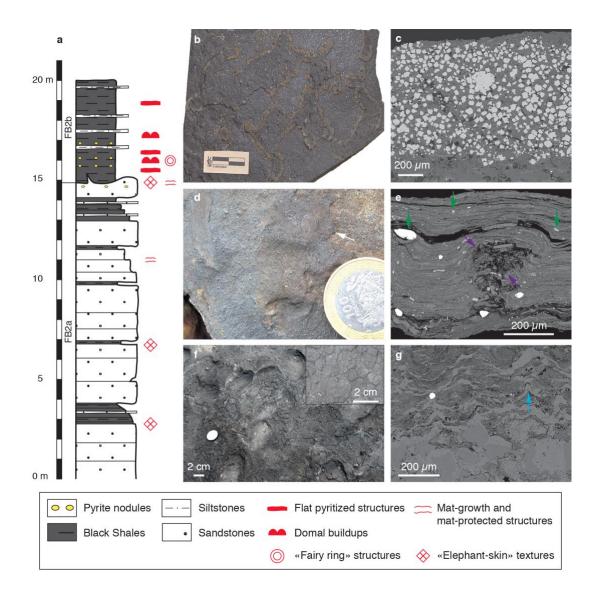
221

222

223

224

225


226

227

228

4.1. Textural diversity of MRS

Mat-related structures, marine shales, and sandstones collected from across the FB2 Member (Fig. 2a) are different in their macroscopic and microscopic textures, mineralogy, and geochemistry (Figs. 2b-g; Tables S1, S2). Pyritized MRS are developed on top of thin bedded, parallel-laminated black shales. They range from 0.8 to 3 mm in thickness and contain euhedral pyrite crystals, 20 to 30 µm in size (Figs. 2b, c). In this study, pyritized MRS refer to flat, pyritized structures, domal buildups, and "fairy ring" features that were previously described by Aubineau et al. (2018) in the same rocks. The poorly pyritized MRS from the sandstone unit reflect mat growth or mat-protected (resulting from mat preservation of structures formed independently from mat growth) patterns (cf. Aubineau et al., 2018; Sarkar et al., 2008). They vary between 0.2 and 0.5 mm in thickness (Figs. 2d, e), and contain a large number of detrital minerals (Fig. 2e; Fig. S1) (Aubineau et al., 2018). Among them, randomly arranged zircons and titanium oxides, and clay particles up to 100 µm in size, are common. Numerous sub-euhedral to euhedral pyrite crystals with varying size, but generally smaller than those in the pyritized MRS, were observed at deeper levels in the poorly pyritized MRS (Fig. S2). In addition, interpreted gas escape and bubble-like structures, having clay minerals disorganized at the edges, but aligned around them, were likely formed before compaction (Fig. 2e). The unpyritized EST, some of which developed on the same bedding planes in sandstones as the poorly pyritized MRS, is one of the most common mat morphologies, characterized by tufted microbial fabrics (Figs. 2f, g) (Aubineau et al., 2018; Reyes et al., 2013; Shepard and Sumner, 2010). They reach up to 2 mm in thickness and lack embedded heavy minerals and putative gas escape structures.

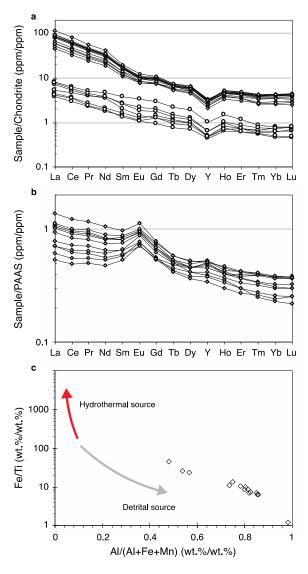


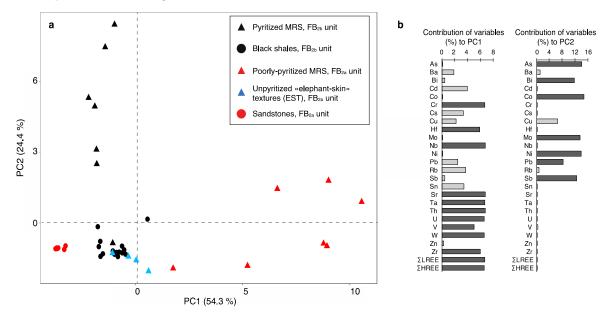
Figure 2. Lithostratigraphic column and representative mat-related structures (MRS) with their associated petrographic textures from both sandstone and black shale facies. **a,** Composite lithostratigraphic section of the FB₂ Member in the studied area showing stratigraphic levels where pyritized MRS (flat pyritized, domal buildup, and 'fairy ring' structures), poorly pyritized MRS (mat-growth and mat-protected structures), and unpyritized MRS (EST: "elephant-skin" texture) developed. **b,** Flat pyritized MRS from the FB_{2b} unit. **c,** SEM image of pyritized MRS in cross-section perpendicular to the bedding plane. Note that pyrite grains and clay particles are developed within biofilms. **d,** Mat-layer structures (white arrow) on the bedding surface of sandstone from the FB_{2a} unit. **e,** SEM image of micrometer-thick poorly pyritized MRS in cross-section perpendicular to the bedding plane. Green and purple arrows show trapped and bound heavy minerals and a gas escape structure, respectively. **f,** EST from the FB_{2a} unit. Inset box shows reticulate pattern. **g,** SEM image of tufted microbial fabrics from the EST above the poorly sorted quartz sandstone. Blue arrow points to tufted microbial fabrics. Images in b and c, and f and g are modified from Aubineau *et al.* (2018) and Aubineau *et al.* (2019), respectively.

4.2. Provenance characterization

The host sediments have similar chondrite-normalized rare earth elements (REE) + Y patterns (Fig. 3a; Table S2). The steep light-REE pattern with a flat heavy-REE profile in the post-

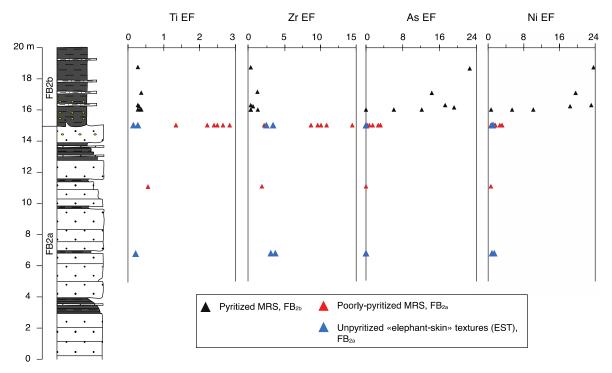
Archean shales reflects REE abundances in the upper continental crust exposed to weathering (Large et al., 2018; Taylor and McLennan, 2001). REE contents decrease with increasing SiO₂ content, reflecting quartz dilution. The similar REE + Y patterns of sandstone and black shale lithologies suggest that the sediments on which the MRS developed had the same provenance. Furthermore, sandstones and black shales are interlayered (Fig. 2a), indicating that they were deposited in the same general setting, but at different energy levels (cf. Reynaud et al., 2017).

Figure 3. Geochemistry of the host rocks, black shales (diamonds) and sandstones (circles). **a,** Chondrite-normalized REE + Y patterns. Chondrite values are from Schmitt et al. (1964) and Evensen et al. (1978). **b,** PAAS-normalized REE + Y patterns. PAAS values are from Taylor and McLennan (1985). **c,** Binary plot of Fe/Ti *vs.* Al/(Al+Fe+Mn) after Pecoits et al. (2009).


The REE abundances have been normalized to the Post-Archean Australian Shale (PAAS), hereafter referred to as REE(sn) (Fig. 3b). The latter is a widely used reference for normalizing sedimentary lithologies, allowing easy comparison with previous studies. The PAAS-normalized REE + Y patterns of black shales from the FB₂ Member show moderately positive Eu anomalies (Eu/Eu*; see Table S2 for method of calculation), ranging from 1.29 to

1.44. A strong positive Eu anomaly in sediments is usually interpreted to indicate high-temperature hydrothermal fluxes to the water column (Bolhar et al., 2004; Hiebert et al., 2018; Planavsky et al., 2010). Moreover, the REE + Y patterns reveal a moderately steep trend with light-REE enrichments, as shown by Pr/Yb_(SN) ratios ranging between 1.45 and 3.54 (Fig. 3b; Table S2). In addition, the binary plot of Fe/Ti *vs.* Al/(Al+Fe+Mn), which resolves the influence of a hydrothermal *vs.* detrital source (Fig. 3c; cf. Pecoits *et al.* 2009), suggests that the studied black shales predominantly reflect a detrital source, with limited hydrothermal influence. Similarly, the average Y/Ho value of 31.4 (Table S2) is lower than the modern seawater Y/Ho ratio that is >44, but above the invariable Y/Ho ratio of continental crust (~26; Bolhar et al., 2004).

4.3. Chemical composition of host sediments and MRS


Petrographic analysis showed that Fe-(oxyhydr)oxide coatings were not found around the pyrite crystals (Figs. 2c, S2). In addition, the X-ray diffraction patterns of the Francevillian MRS and host sediments revealed the occurrence of pyrite as the main iron sulfide, while Fe-(oxyhydr)oxides were lacking (Aubineau et al., 2019). Combined petrographic and XRD analyses suggest that chemical composition of our samples was not appreciably affected by recent oxidative weathering.

Descriptive statistical relationships among independent TE variables of MRS and individual sediment lithologies show the largest variation along the first and second Principal Components (PC) (Fig. 4a). Collectively, both PC explain more than 78% of the total variance in the dataset (Table S3). According to the contribution of each variable along the PC1, the variation is induced by TE that are usually taken to be proxies of the detrital flux (Fig. 4b; McLennan 1989, 2001; Tribovillard et al. 2006). Along the PC2, it appears that the metals enriched in pyrite, apart from Cd and Zn, are responsible for differences amongst the lithologies. The PC1 accounts for 54.3% of the total variance, with the poorly pyritized MRS being different from the pyritized MRS, EST, and host sediments (Fig. 4a). Interestingly, EST, pyritized MRS, and black shales do not cluster into distinctly separate groups. Their spread along the PC1 axis seems largely determined by the elements that are abundant in the heavy mineral fraction, as indicated by the large contribution of Zr and REE (Fig. 4b). This is consistent with petrographic observations that indicate the presence of detrital zircon and Tioxides in the poorly pyritized MRS. The PC2 contributes 24.4% to the total variance, with the pyritized MRS plotting above the poorly pyritized MRS, EST, and host sediments. The pyrite content likely controls their spread along the PC2 axis. One pyritized MRS sample has a signature similar to that of black shales, suggesting either a large contribution of the host sediment during sample separation or a depletion in metals enriched in pyrite compared to the other pyritized MRS (Fig. 4a).

Figure 4. Descriptive statistical treatment. **a,** Principal component analysis of 40 individuals representing the relationships among 3 MRS morphotypes and 2 host sediments (black shales and sandstones) and 26 independent variables (trace element concentrations). **b,** Contribution of each variable (%) along PC1 (left) and PC2 (right). The stronger the contribution of TE, the darker the bar is.

Stratigraphic geochemical profiles of the FB₂ Member reveal dramatic difference in bulk composition among the three MRS morphotypes even on the same stratigraphic level, but also heterogeneous composition of the poorly pyritized and pyritized MRS (Fig. 5). In the poorly pyritized MRS samples, EFs have a mean of 2.1 for Ti (EFTi) and 6.6 for Zr (EFZr), suggesting moderate to strong enrichment, respectively. These elements are predominantly depleted to moderately enriched in the EST (mean EFTi = 0.2; mean EFZr = 2.5) and in the pyritized MRS (mean EFTi = 0.3; mean EFZr = 0.5). Chalcophile elements (CE) are depleted to weakly enriched (mean EFAs = 0.1; mean EFNi = 1.1) and weakly enriched (mean EFAs = 1.4; mean EFNi = 2.0) in the EST and the poorly pyritized MRS, respectively. On the other hand, the pyritized MRS are strongly enriched in CE (mean EFAs = 13.2; mean EFNi = 14.5). The host sediments (both sandstone and black shale) show no enrichment to weak TE enrichment for most samples, with mean EFs for Ti, Zr, As, and Ni of 0.4, 1.5, 0.5, and 1.2, respectively (Fig. S3).

Figure 5. Stratigraphic profile of enrichment factors (EF) of selected detrital and chalcophile elements within MRS. EF are normalized to the average shale (Ti, Zr, and Ni concentrations for the average shale are from Taylor and McLennan (2001) and As concentration for the average shale is from Li and Schoonmaker, 2003).

318

319

320

321

322

323

324

325

326

327

328329

330

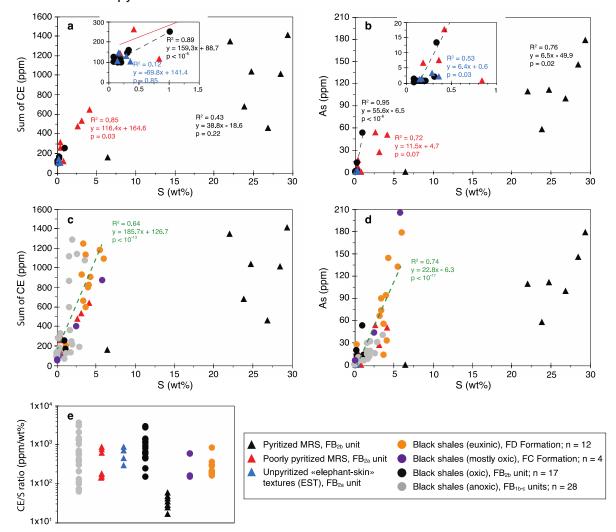
331

332333

334

335

336


337

338

339

Generally, CE are enriched within the sediment in association with S-bearing minerals, and when plotted against each other, show positive covariation. The trends found within the MRS and black shales from the FB2 Member show more or less the expected pattern for the preferential incorporation of CE into sulfide minerals (Figs. 6a, b). The mixing trends associated with the poorly pyritized MRS, EST, and host shale reflect the variable content of CE-bearing pyrite. Nonetheless, the correlation trends of pyritized MRS differ from those of pyrite-poor MRS and host sediments, indicating that either some intrinsic properties (e.g., mineralogy, organic matter, or microbial sulfate reduction rate) or the dynamic fluctuations in supply of CE controlled incorporation of pyrite-hosted metals. For instance, organic substrate may have controlled the availability of CE as the carbonaceous material of MRS and host rocks was derived from different sources (i.e., benthic vs. planktonic origin). Minor to no contribution of benthically produced organic matter to the host sediments, which is suggested by the lack of microbial mat structures (Aubineau et al., 2018) and K enrichment (Aubineau et al., 2019), argues for two distinct carbon sources. Specifically, K incorporation occurred during the living stage of benthic MRS through a bacterially mediated process, whereas the sinking flux of particulate organic material did not incorporate and deliver K to the sediments to the same extent. Moreover, 43% (R₂=0.43) of total co-variation in the pyritized MRS between CE and S (Fig. 6a) implies that CE are also associated with other components. However, this relationship might be biased as it seems to be controlled by the one pyritized MRS sample with lower CE

content, by a factor of 10 to 100, and moderate S concentration. It reveals high heterogeneity in CE contents in pyritized MRS.

Figure 6. Relationship between chalcophile elements and bulk-rock sulfur in pyritized MRS, poorly pyritized MRS, unpyritized "elephant-skin" textures (EST), and Francevillian Group black shales (from the FB_{1b} and FB_{1c} units and the FD Formation). **a,** Cross plot of Σchalcophile element (As, Bi, Co, Cu, Mo, Ni, Pb, and Sb) contents vs. bulk-rock S concentrations for MRS and host black shales. **b,** Cross plot of As content vs. bulk-rock S concentration for MRS and host black shales. Insets (a and b) show co-variation at low CE and S contents. **c,** Cross plot of Σchalcophile (As, Bi, Co, Cu, Mo, Ni, Pb, and Sb) contents vs. bulk-rock S concentrations for MRS and all the Francevillian Group black shales (green trend). **d,** Cross plot of As contents vs. bulk-rock S concentrations for MRS and all the Francevillian Group black shales (green trend). **e,** CE/S ratios for 3 MRS morphotypes and 2 host sediments (black shales and sandstones). CE and S contents for black shales of the Francevillian Group are from Canfield *et al.* (2013). p-value (p) is provided with a confidence level of 95%. Data for some samples are below the detection limit; in that case a value of half of the detection limit was used.

Compiled data for CE and S contents of the Francevillian Group black shales (from the FB_{1b} unit to FD Formation) illustrate an overall linear relationship (Fig. 6c), suggesting that sulfide production controlled the enrichment in CE. The strong positive co-variation (R²= 0.64) for black shales of the Francevillian Group suggests that CE contents are only moderately controlled by other mineral phases. The pyritized MRS show a different trend with higher S

contents for the same CE concentrations. The same trend is also observed for As and S (Fig. 6d), indicating that the As content was affected by the same processes that controlled CE enrichments. Finally, the CE/S ratios of pyrite-poor MRS and the Francevillian Group black shales are mostly within the same range from 10₂ to 10₃, whereas the pyritized MRS show the lowest ratios down to 17 (Fig. 6e).

4.4. High-resolution metal distribution in the MRS

360361

362

363

364

365

366

367

368

369370

371

372

373

374

375

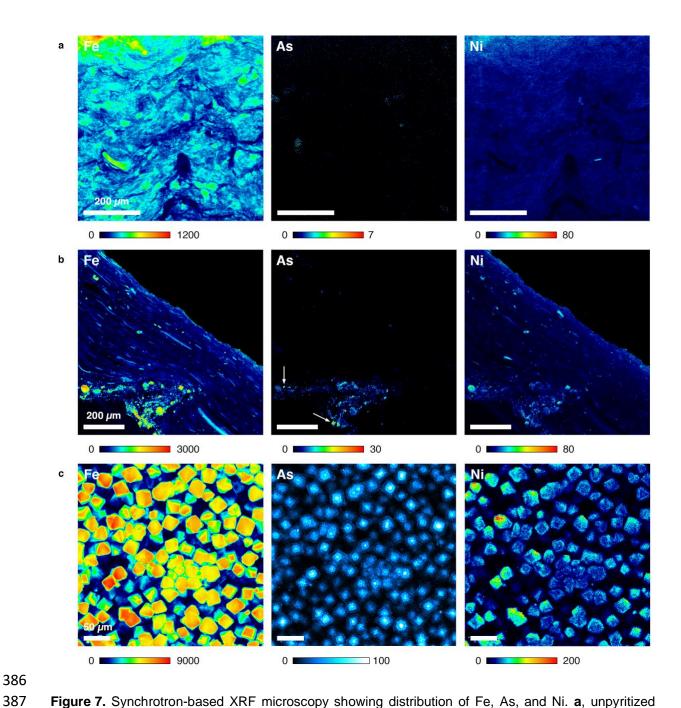
376

377

378

379

380


381

382 383

384

385

Millimeter-sized areas of each MRS morphotype were analyzed by synchrotron-based scanning X-ray fluorescence microscopy revealing spatial variations in S, K, Ca, Ti, Ce, Ba, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, Hf, and As. The distribution maps of Fe, As, and Ni are shown in Figures 7 and 8. Pyrite crystals are highlighted by Fe distribution and location of CE by Ni and As maps. Although some Fe is hosted in phyllosilicates, the highest abundance of iron is in pyrite grains, highlighting the difference amongst the MRS. EST have Ni and As concentrations close to the detection limit (Fig. 7a). These elements are unlikely to be associated with pyrite, since pyrite is not present at a detectable level in the same spots. This also applies to the absence of a strong relationship between CE and S in the EST. The poorly pyritized MRS contain higher CE concentrations relative to the EST that are heterogeneously distributed in pyrite grains (Fig. 7b). A few small, euhedral pyrite crystals display As-rich cores. Arsenic is preferentially located within the pyrite cores in the pyritized MRS with a variation in As content of \pm 10% (1 SD), whereas Ni is mostly concentrated within the overgrowths (Fig. 7c). This pattern suggests high As content in early pore-waters from which pyrite cores nucleated and higher Ni content during later diagenesis when the overgrowths were formed. Arsenic distribution within individual pyrite crystals is heterogeneous, resulting from micrometer-thick As-rich rims around the cores and a decrease in As content toward the crystal surface (Fig. 8). Ni also exhibits a highly variable abundance pattern often with a micrometerthick Ni-rich zone at the pyrite crystal surface. CE appear to be enriched by a factor of 15 (As) and 6 (Ni) in pyritized MRS compared to poorly pyritized MRS.

Figure 7. Synchrotron-based XRF microscopy showing distribution of Fe, As, and Ni. **a**, unpyritized EST. **b**, poorly pyritized MRS. White arrow indicates As-rich pyrite core. **c**, pyritized MRS. Colour bars indicate intensity scale of the metal XRF distribution maps in counts/10 ms (black colour indicates concentrations below the detection limit). Higher XRF intensities correspond to higher metal contents.

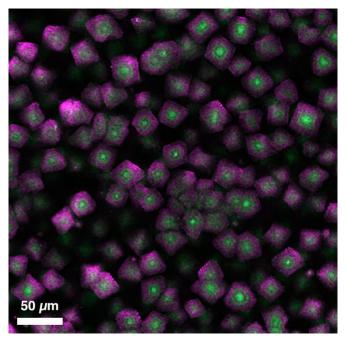


Figure 8. Composite image: As (green) and Ni (magenta) XRF maps for pyritized MRS.

5. Discussion

5.1. Microbial fabric and response to the environment

At high concentrations of suspended material in the water column, laboratory-cultured cyanobacteria can become rapidly coated with clay minerals, which means that they may preserve the TE and mineralogical context of detrital input to the depositional setting in which they lived (Newman et al., 2017, 2016; Playter et al., 2017). The Francevillian poorly pyritized MRS and EST contain in a high abundance TE-bearing heavy minerals relative to the host sandstone facies. The absence of heavy mineral enrichment in the overlying pyritized MRS reflects a significant decrease in sedimentation rate and energy in the depositional setting (Fig. 9a), consistent with a change in sediment supply from sand-rich high density flows to fine-grained black shales (Reynaud et al., 2017). As such, the distribution of heavy minerals in the Francevillian Group MRS, or for that matter any MRS, is best explained by passive trapping and binding processes (Sforna et al., 2017).

Importantly, poorly pyritized MRS and EST developed along the same uppermost stratigraphic horizon in coarse-grained sediments (Fig. 9a). Although the transition from sandstone to black shale might imply a transgressive surface, the sandstones of the FB Formation were deposited from pulses of high density flows into a depositional setting with a background mud sedimentation (Reynaud et al., 2017). It is thus reasonable to assume that the poorly pyritized MRS and EST were formed under exactly the same depositional conditions. The variable abundance of Ti- and Zr-bearing heavy minerals in these mats only few meters apart likely reflects minor changes in environmental conditions under which the

MRS flourished (e.g., hydrodynamic regime or sediment delivery pattern) (Fig. 9a). These changes appear to have impacted microbial growth patterns, resulting in a shift to different mat morphology (Fig. 9a). Indeed, numerous observations on stromatolite morphology have shown active adaptation by the bacterial community to environmental conditions, such as water energy and the availability of light and nutrients (e.g., Allwood et al., 2006; Jahnert and Collins, 2012; Petrash et al., 2012). Similarly, distribution patterns of distinct microbial mat morphotypes across ancient tidal flats constrain palaeoenvironmental conditions (Bose and Chafetz, 2009; Homann et al., 2015; Sarkar et al., 2014).

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

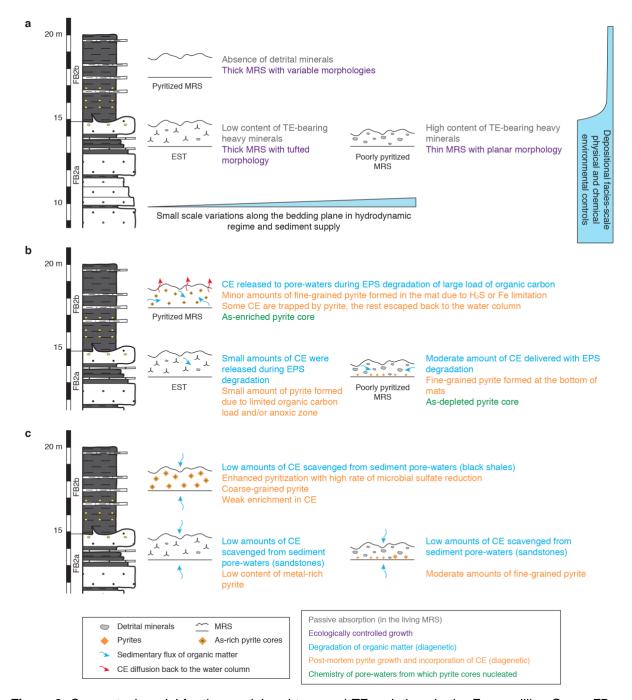
431

432

433

434

435


436

437

438

439

The poorly pyritized MRS typically display the smallest mat thickness and planar morphologies that likely reflect a morphological adjustment to high energy hydrodynamic regime, while the EST and pyritized MRS show larger mat thicknesses and well-developed mat-growth fabrics (i.e., tufted features, domal buildups) that likely indicate optimal growth conditions (e.g., Gerdes et al., 2000). Differences in physical environmental conditions would have also led to highly variable abundance of TE-bearing heavy minerals in the Francevillian Group MRS and may have triggered ecologically controlled growth (Fig. 9a). While mat morphology and thickness are linked to external environmental factors, it has been recently documented that the mat thickness may similarly influence the community structure (Suarez et al., 2019). This leads to different redox profiles and internal carbon recycling styles amongst the microbial communities since thick mats contain a well-expressed anoxic area in the mat structure, whereas thin mats create only a limited anoxic region (Suarez et al., 2019). However, effects of thickness on microbial architecture are difficult to quantify because the hydrodynamic regime (Battin et al., 2003; Flemming et al., 2016), water depth (Lydmark et al., 2006), temperature (He et al., 2016), and dissolved carbon to nitrogen ratios (Okabe et al., 1996) also impact on the microbial community structure. Thus, in combination, these environmental parameters might have promoted the lack or poor expression of an anoxic zone in the thick unpyritized EST (Fig. 9b).

Figure 9. Conceptual model for the spatial and temporal TE variations in the Francevillian Group FB₂ unit MRS. **a,** processes that took place during the living stage of mats. Depositional, small-scale to facies-scale environmental factors controlled the distribution of heavy minerals in the Francevillian MRS. The external mat morphologies provide information on local ecologic conditions. **b,** short-lived, first stage of pyrite formation on the earliest phase of diagenesis. The EPS degradation resulted in the release of CE to pore-waters. The amount of CE delivered with EPS decay should be proportional to the organic carbon content that is buried. Depending of sulfur and Fe availability, CE were trapped by fine-grained pyrite or diffused back to the water column. **c,** long-lived, second stage of pyrite formation as diagenesis progressed. The remaining organic matter was degraded and, thus, larger amounts of H₂S and Fe were released to pore-waters. High concentrations of biogenic H₂S were locally produced, but only small amounts of CE were scavenged into coarse-grained pyrite.

5.2. Microbial mineralization

Recent studies on transition metals and metalloids associated with present-day hypersaline mats (Huerta-Diaz et al., 2012; Petrash et al., 2015; Sancho-Tomás et al., 2018; Sforna et al., 2017) have revealed that TE can be trapped by and bound to the organic matrix, progressively accumulating with depth via incorporation into sulfides. The latter form as the original mat organic material is degraded by the activity of anaerobic heterotrophs (*e.g.*, sulfate-reducing microorganisms), eventually diminishing the cation-binding capacity of the EPS matrix (Dupraz et al., 2009; Dupraz and Visscher, 2005). Then, as authigenic pyrite forms by the reaction of reactive Fe and biogenic H₂S, metals liberated from mats to pore-waters are scavenged into sulfidic microenvironments where pyrite crystals grow (Fig. 9b), resulting in high spatial variability of metal distribution (Huerta-Diaz et al., 2012; Sforna et al., 2017). The spatial restriction of pyrite grains to deeper levels in the mat in the poorly pyritized MRS or their development over the entire mat structure in the pyritized MRS likely reflects the extent of the sulfidic region (Fig. 9b).

The pyrite overgrowths in the MRS that formed later during diagenesis precipitated from pore-waters that were no longer enriched in As, but in Ni (Fig. 9b). Alternatively, the preferential incorporation of As into the early pyrite phase and Ni in the later phase may simply suggest that these two elements have different kinetic behavior whereby As is more reactive towards H₂S than Ni (cf. Huerta-Diaz and Morse, 1992). Hydrothermal fluids affecting sediments during diagenesis could produce CE-rich pyrite rims (Large et al., 2009), but we have no evidence for migration of such fluids or late-stage remobilization that could account for strongly enriched CE in pyrite rims during late diagenesis. Variability in concentration of pyrite-hosted metals in the three microbial mat morphotypes is mainly linked to the sulfide production and concentration in pore-waters (Figs. 9b, c). The relationship between CE and total S is, however, complicated since whole-rock data seem to reflect several host minerals. Some of these CE might be incorporated into clays, scavenged by organic matter, and/or absorbed onto the surface of Fe oxides (Chappaz et al., 2014; Chi Fru et al., 2019; Nachtegaal et al., 2005), which might explain weak to moderate correlations within each MRS morphotype.

5.3. Implications of weak enrichment in CE in the pyritized MRS

The CE enrichment is not unique to the MRS, but instead typical for the depositional setting of the Francevillian Group where seawater and pore-water sulfide levels controlled their incorporation into sediments. Although a moderately positive Eu anomaly is observed, low Y/Ho and Fe/Ti ratios in combination with high Al/(Al+Fe+Mn) ratios (see Fig. 3) do not support a strong influence of hydrothermal fluids on the depositional site, and rather suggests that CE were supplied by continental weathering. Consistent with this interpretation, large variations in CE/S ratios for the Francevillian Group shales (FB_{1b-c} units, and FC and FD formations) were

not observed. However, absence of substantial CE enrichment in the pyritized MRS is unexpected because they contained appreciable amounts of carbonaceous materials to maintain extensive pyritization. The pyritized MRS samples with high bulk-rock S concentrations have lower CE/S ratios than the Francevillian Group sediments, which requires an explanation for the weak enrichment in CE.

Weak enrichment in CE in the pyritized MRS might reflect a change in aqueous fluxes of CE to the ocean during the living stage of the MRS, but this would not explain the similar range of CE content in the pyrite-poor MRS and the Francevillian Group black shales (FB_{1b-c} units, and FC and FD formations). Similarly, different scavenging capabilities of planktonic (in the Francevillian Group black shales) and benthic (in MRS) organic matter is not likely to explain weak enrichment in CE in the pyritized MRS. Rather, low CE/S ratios recorded by the pyritized MRS could be related to profuse sulfide production in pore-waters in microenvironments with high content of easily degradable benthic organic matter. Basinal restriction from the global ocean could have also diminished the reservoirs of metals and metalloids, which could have resulted in low CE/S ratios in the pyritized MRS. However, it is unlikely that the depletion of the basinal inventory of TE would have occurred at the time when the development of pyritized MRS took place, but not during deposition of the Francevillian Group black shales. Importantly, restricted basins with near-quantitative drawdown of the sulfate reservoir often show positive δ₃₄S values for early diagenetic pyrite (Diamond et al., 2018). By contrast, highly negative δ_{34} S values of the pyritized Francevillian Group macrobiota specimens point to bacterial sulfate reduction during early diagenesis with open connection to the overlying water column (El Albani et al., 2019, 2010). In this regard, we suggest that the amount of CE delivered to the sediments was largely controlled by both the mat thickness and sedimentary flux of organic matter (Figs. 9b, c). With high concentration of biogenic H₂S in the studied MRS, CE were not as enriched as in black shales from the Upper Francevillian Group, which were deposited under euxinic conditions where pyrite formed in the water column had ready access to a much larger reservoir of CE.

We propose that the pyrite formation and CE trapping in the pyritized MRS followed a two-stage process, resulting in weak enrichment in CE (Figs. 9b, c). First, the EPS degradation released to pore-waters CE, which were subsequently either incorporated into microcrystalline pyrite or returned to the water column (Fig. 9b). As EPS degradation takes place immediately after deposition (Decho et al., 2005), CE trapping at this stage was limited by sulfur and/or iron availability and, specifically, their reduction and release from the sediments. Hence, CE that were not trapped by pyrite diffused back to the water column, resulting in loss of co-variance between CE and S contents. During the second, protracted stage, most of remaining organic matter in sediments was degraded under anoxic and, locally, massive sulfidic conditions which resulted in the formation of coarse-grained, crystalline pyrite and overgrowths with low CE

contents (Fig. 9c). As this stage lasted longer, larger amounts of sulfide and iron were released to pore-waters, whereas pyrite formed was not enriched in CE since CE were either already trapped or lost from sediments during EPS degradation on the first stage.

The observed trend of weak enrichment in CE in the pyritized MRS thus reflects: (1) pyrite formation in pore-waters in the MRS and incorporation of CE delivered to the sediments with organic matter, specifically with EPS, and (2) the released to pore-waters during EPS degradation rather than a specific, biologically controlled pathway for accumulation of CE. Diagenetic pyrite production within the MRS likely also enhanced the potential for preservation of the Francevillian Group macrobiota.

5.4. TE geochemistry: a biosignature of benthic microbial activity?

As discussed above, the TE content is greater in MRS than in host sediments of the FB2 Member, a pattern that likely reflects variations in hydrodynamic regime and water-column redox chemistry. Specifically, the TE data for the Francevillian Group MRS suggest that the relationship between CE and sulfide concentrations are not consistent with a biological control over metal enrichment. These observations differ from Sforna et al. (2017) who suggested biologically controlled accumulation of TE in organic-rich globules in modern microbialites was a consequence of specific metabolic pathways (Sforna et al., 2017). By contrast, our results are similar to Rico et al. (2020) who observed that living microbial mats from the Middle Island Sinkhole (located 23 m below the water level of Lake Huron) do not significantly influence bulk TE geochemistry at the sediment-water interface, although highly heterogeneous redox conditions were observed. Considering that the water column redox conditions (e.g., oxygen, sulfate, and iron concentrations) in the Middle Island Sinkhole could be analogous to those that were in Proterozoic shallow-marine environments (cf. Biddanda et al., 2012; Rico and Sheldon, 2019; Ruberg et al., 2008), we believe that these microbial mats provide a close analogue to the MRS of the Francevillian Group FB₂ Member. Together, TE data from benthic microbial communities in modern and ancient settings indicate that TE geochemistry is not a straightforward biosignature to be utilized in studies of the geological rock record.

6. Conclusion

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555556

557

Textural relationship and combined with TE geochemistry suggest distinct biological signals in the Francevillian Group MRS relative to their host sediments. However, no conclusive example of biologically controlled TE enrichment was found. Instead, our results, summarized in Figure 9, indicate highly variable TE contents with environmental factors overprinting biologically controlled TE distribution.

A lack of accumulation of heavy minerals and pyrite-hosted CE characterizes the EST. The poorly pyritized MRS contain in a high abundance of Ti- and Zr-bearing minerals concentrated through passive absorption. External morphology of these two MRS could be a potential biogenicity indicator and provides information on local environmental and ecological conditions, largely controlled by hydrodynamic regime and sediment supply. The CE concentrations in the poorly pyritized MRS co-vary ($R_2 = 0.85$) with pyrite content, which suggests that the CE are largely hosted by pyrite. Abundant organic matter in the now pyritized MRS did not result in similar CE/S ratios as in the Francevillian Group black shales deposited in euxinic settings due to the limited trapping capacity of pore-waters close to the sediment-water interface immediately after sediment deposition when CE-enriched EPS degraded. Arsenic-rich pyrite cores indicate high As concentrations in the early diagenetic pore-waters, where it was likely supplied via decay of EPS.

In summary, bulk-rock TE data provide additional evidence for biological activity during deposition of the *ca.* 2.1 Ga Francevillian Group, but there is no definitive biological signal since physical controls and water column redox chemistry outweighed microbial influences on the TE distribution in MRS. Recognition of the overprinting power of physical and chemical environmental conditions over microbially imprinted TE patterns in MRS further contributes to our understanding of interaction among ancient microbial life and the environmental and biological controls affecting TE contents in MRS, and their relationship to TE sinks in deep time.

Acknowledgements

We are grateful to the Gabonese Government, CENAREST, General Direction of Mines and Geology, and Agence Nationale des Parcs Nationaux of Gabon for logistic support. This work was supported by CNRS-INSU, FEDER, the University of Poitiers, Nouvelle Aquitaine Region, and the French Embassy Libreville, Gabon. We would like to thank sincerely Prof. P. Mouguiama Daouda for his support. We also acknowledge F. Martin, L. Pallas, and P. Sardini for analytical advice and C. Fontaine, C. Laforest, and P. Recourt for laboratory support at the Universities of Lille and Poitiers. Participation of AB was supported by NSERC Discovery and Accelerator Grants.

Data availability. The authors declare that the data supporting this study are available within the paper and its supplementary information files.

Declaration of competing interests. The authors declare no competing interests.

References

- 591 Algeo, T.J., Tribovillard, N., 2009. Environmental analysis of paleoceanographic systems 592 based on molybdenum-uranium covariation. Chemical Geology 268, 211–225.
- 593 https://doi.org/10.1016/j.chemgeo.2009.09.001
- 594 Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., Burch, I.W., 2006. Stromatolite 595 reef from the Early Archaean era of Australia. Nature 441, 714–718. 596 https://doi.org/10.1038/nature04764
- 597 Amard, B., Bertrand-Sarfati, J., 1997. Microfossils in 2000 Ma old cherty stromatolites of the Franceville Group, Gabon. Precambrian Research 81, 197–221. 598 https://doi.org/10.1016/S0301-9268(96)00035-6 599
- 600 Aubineau, J., El Albani, A., Bekker, A., Somogyi, A., Bankole, O.M., Macchiarelli, R., 601 Meunier, A., Riboulleau, A., Reynaud, J.-Y., Konhauser, K.O., 2019. Microbially induced potassium enrichment in Paleoproterozoic shales and implications for reverse 602 603 weathering on early Earth. Nat Commun 10, 2670. https://doi.org/10.1038/s41467-019-604 10620-3
- 605 Aubineau, J., El Albani, A., Chi Fru, E., Gingras, M., Batonneau, Y., Buatois, L.A., Geffroy, 606 C., Labanowski, J., Laforest, C., Lemée, L., Mángano, M.G., Meunier, A., Pierson-607 Wickmann, A.-C., Recourt, P., Riboulleau, A., Trentesaux, A., Konhauser, K.O., 2018. 608 Unusual microbial mat-related structural diversity 2.1 billion years ago and implications 609 for the Francevillian biota. Geobiology 16, 476–497. https://doi.org/10.1111/gbi.12296
- Azziley Azzibrouck, G., 1986. Sédimentologie et géochimie du Francevillien B 610 611 (protérozoïque inférieur). Métallogénie des gisements de manganèse de Moanda, Gabon. Université Louis Pasteur, Strasbourg. 612
- Bankole, O.M., El Albani, A., Meunier, A., Gauthier-Lafaye, F., 2015. Textural and paleo-613 fluid flow control on diagenesis in the Paleoproterozoic Franceville Basin, South Eastern, 614 Gabon. Precambrian Research 268, 115-134. 615 616 https://doi.org/10.1016/j.precamres.2015.07.008
- Battin, T.J., Kaplan, L.A., Newbold, J.D., Cheng, X., Hansen, C., 2003. Effects of current 617 velocity on the nascent architecture of stream microbial biofilms. Applied and 618 619 Environmental Microbiology 69, 5443-5452. https://doi.org/10.1128/AEM.69.9.5443-620 5452.2003
- Bekker, A., 2015a. Great Oxygenation Event, in: Gargaud, M., Irvine, W.M., Amils, R., 621 622 Cleaves II, H.J., Pinti, D.L., Quintanilla, J.C., Rouan, D., Spohn, T., Tirard, S., Viso, M. 623 (Eds.), Encyclopedia of Astrobiology. Springer-Verlag, Berlin, Heidelberg, pp. 1009– 624
- 625 Bekker, A., 2015b. Lomagundi carbon isotope excursion, in: Gargaud, M., Irvine, W.M., Amils, R., Cleaves II, H.J., Pinti, D.L., Quintanilla, J.C., Rouan, D., Spohn, T., Tirard, S., 626 627 Viso, M. (Eds.), Encyclopedia of Astrobiology. Springer-Verlag, Berlin, Heidelberg, pp. 628 1399-1404.
- Bertrand-Sarfati, J., Potin, B., 1994. Microfossiliferous cherty stromatolites in the 2000 Ma 629 Franceville group, Gabon. Precambrian research 65, 341–356. 630
- 631 Biddanda, B.A., Nold, S.C., Dick, G.J., Kendall, S.T., Vail, J.H., Ruberg, S.A., Green, C.M., 632 2012. Rock, water, microbes: underwater sinkholes in Lake Huron are habitats for ancient 633 microbial life. Nature Education Knowledge 3, 13.
- Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M., Whitehouse, M.J., 2004. 634
- 635 Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters 222, 43–60. https://doi.org/10.1016/j.epsl.2004.02.016 636
- Bose, S., Chafetz, H.S., 2009. Topographic control on distribution of modern microbially 637 induced sedimentary structures (MISS): A case study from Texas coast. Sedimentary 638
- 639 Geology 213, 136–149. https://doi.org/10.1016/j.sedgeo.2008.11.009

- Bouton, P., Thiéblemont, D., Simo Ndounze, S., Goujou, J.C., Kassadou, A.B., Walemba, A.,
 Boulingui, B., Ekhogha, H., Moussavou, M., Lambert, A., Roberts, D., Deschamps, Y.,
 Préat, A., 2009. Carte géologique de la République du Gabon à 1/200 000, feuille
 Franceville Boumango.
- Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., Van Kranendonk, M.J., Lindsay,
 J.F., Steele, A., Grassineau, N.V., 2002. Questioning the evidence for Earth's oldest
 fossils. Nature 416, 76–81. https://doi.org/10.1038/416076a
- Bros, R., Stille, P., Gauthier-Lafaye, F., Weber, F., Clauer, N., 1992. Sm-Nd isotopic dating
 of Proterozoic clay material: An example from the Francevillian sedimentary series,
 Gabon. Earth and Planetary Science Letters 113, 207–218.
- Canfield, D.E., Ngombi-Pemba, L., Hammarlund, E.U., Bengtson, S., Chaussidon, M.,
 Gauthier-Lafaye, F., Meunier, A., Riboulleau, A., Rollion-Bard, C., Rouxel, O., Asael,
 D., Pierson-Wickmann, A.-C., El Albani, A., 2013. Oxygen dynamics in the aftermath of
 the Great Oxidation of Earth's atmosphere. Proceedings of the National Academy of
 Sciences 110, 16736–16741. https://doi.org/10.1073/pnas.1315570110
- Carignan, J., Hild, P., Mevelle, G., Morel, J., Yeghicheyan, D., 2001. Routine analyses of
 trace elements in geological samples using flow injection and low pressure on-line liquid
 chromatography coupled to ICP-MS: a study of geochemical reference materials BR,
 DR-N, UB-N, AN-G and GH. Geostandards Newsletter 25, 187–198.
 https://doi.org/10.1111/j.1751-908X.2001.tb00595.x
- Chappaz, A., Lyons, T.W., Gregory, D.D., Reinhard, C.T., Gill, B.C., Li, C., Large, R.R.,
 2014. Does pyrite act as an important host for molybdenum in modern and ancient
 euxinic sediments? Geochimica et Cosmochimica Acta 126, 112–122.
 https://doi.org/10.1016/j.gca.2013.10.028
- Chi Fru, E., Somogyi, A., El Albani, A., Medjoubi, K., Aubineau, J., Robbins, L.J., Lalonde,
 S.V., Konhauser, K.O., 2019. The rise of oxygen-driven arsenic cycling at *ca*. 2.48 Ga.
 Geology 47, 243–246. https://doi.org/10.1130/G45676.1
- Decho, A.W., Visscher, P.T., Reid, R.P., 2005. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeography, Palaeoclimatology, Palaeoecology 219, 71–86. https://doi.org/10.1016/j.palaeo.2004.10.015
- Diamond, C.W., Planavsky, N.J., Wang, C., Lyons, T.W., 2018. What the ~1.4 Ga Xiamaling
 Formation can and cannot tell us about the mid-Proterozoic ocean. Geobiology 16, 219–
 236. https://doi.org/10.1111/gbi.12282
- Dodd, M.S., Papineau, D., Grenne, T., Slack, J.F., Rittner, M., Pirajno, F., O'Neil, J., Little,
 C.T.S., 2017. Evidence for early life in Earth's oldest hydrothermal vent precipitates.
 Nature 543, 60–64. https://doi.org/10.1038/nature21377
- Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S., Visscher, P.T., 2009.
 Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews
 96, 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005
- Dupraz, C., Visscher, P.T., 2005. Microbial lithification in marine stromatolites and
 hypersaline mats. Trends in Microbiology 13, 429–438.
 https://doi.org/10.1016/j.tim.2005.07.008
- El Albani, A., Bengtson, S., Canfield, D.E., Bekker, A., Macchiarelli, R., Mazurier, A.,
 Hammarlund, E.U., Boulvais, P., Dupuy, J.-J., Fontaine, C., Fürsich, F.T., GauthierLafaye, F., Janvier, P., Javaux, E., Ossa, F.O., Pierson-Wickmann, A.-C., Riboulleau, A.,
 Sardini, P., Vachard, D., Whitehouse, M., Meunier, A., 2010. Large colonial organisms
 with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature 466, 100–104.
 https://doi.org/10.1038/nature09166
- El Albani, A., Bengtson, S., Canfield, D.E., Riboulleau, A., Rollion Bard, C., Macchiarelli, R., Ngombi Pemba, L., Hammarlund, E., Meunier, A., Moubiya Mouele, I., Benzerara,

- K., Bernard, S., Boulvais, P., Chaussidon, M., Cesari, C., Fontaine, C., Chi-Fru, E.,
- Garcia Ruiz, J.M., Gauthier-Lafaye, F., Mazurier, A., Pierson-Wickmann, A.C., Rouxel,
- O., Trentesaux, A., Vecoli, M., Versteegh, G.J.M., White, L., Whitehouse, M., Bekker,
- A., 2014. The 2.1 Ga old Francevillian biota: Biogenicity, taphonomy and biodiversity.
- 694 PLoS ONE 9, e99438. https://doi.org/10.1371/journal.pone.0099438
- El Albani, A., Mangano, M.G., Buatois, L.A., Bengtson, S., Riboulleau, A., Bekker, A.,
- Konhauser, K., Lyons, T., Rollion-Bard, C., Bankole, O., Lekele Baghekema, S.G.,
- Meunier, A., Trentesaux, A., Mazurier, A., Aubineau, J., Laforest, C., Fontaine, C.,
- Recourt, P., Chi Fru, E., Macchiarelli, R., Reynaud, J.Y., Gauthier-Lafaye, F., Canfield,
- D.E., 2019. Organism motility in an oxygenated shallow-marine environment 2.1 billion
- years ago. Proceedings of the National Academy of Sciences 116, 3431–3436. https://doi.org/10.1073/pnas.1815721116
- Evensen, N., Hamilton, P., O'Nions, R., 1978. Rare-earth abundances in chondritic meteorites. Geochimica et Cosmochimica Acta 42, 1199–1212.
- Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., Kjelleberg, S., 2016.
 Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology 14, 563–575.
 https://doi.org/10.1038/nrmicro.2016.94
- Gauthier-Lafaye, F., 1986. Les gisements d'uranium du Gabon et les réacteurs d'Oklo.
 Modèle métallogénique de gîtes à fortes teneurs du protérozoique inférieur. Université
 Louis Pasteur, Strasbourg.
- Gauthier-Lafaye, F., Weber, F., 1989. The Francevillian (Lower Proterozoic) uranium ore deposits of Gabon. Economic Geology 84, 2267–2285.
- Gerdes, G., Klenke, T., Noffke, N., 2000. Microbial signatures in peritidal siliciclastic
 sediments: A catalogue. Sedimentology 47, 279–308.
- He, J., Hu, H., Qiu, W., Liu, J., Liu, M., Zhao, C., Shi, X., Xu, J., 2016. Community diversity and biofilm characteristic response to low temperature and low C/N ratio in a suspended carrier biofilm reactor. Desalination and Water Treatment 57, 22212–22222. https://doi.org/10.1080/19443994.2015.1121840
- Hiebert, R.S., Bekker, A., Houlé, M.G., Rouxel, O.J., 2018. Depositional setting of the Late
 Archean Fe oxide- and sulfide-bearing chert and graphitic argillite in the Shaw Dome,
 Abitibi greenstone belt, Canada. Precambrian Research 311, 98–116.
 https://doi.org/10.1016/j.precamres.2018.04.004
- Holland, H.D., 2002. Volcanic gases, black smokers, and the Great Oxidation Event.
 Geochimica et Cosmochimica Acta 66, 3811–3826.
- Homann, M., Heubeck, C., Airo, A., Tice, M.M., 2015. Morphological adaptations of 3.22
 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton
 Greenstone Belt, South Africa). Precambrian Research 266, 47–64.
 https://doi.org/10.1016/j.precamres.2015.04.018
- Horie, K., Hidaka, H., Gauthier-Lafaye, F., 2005. U-Pb geochronology and geochemistry of
 zircon from the Franceville series at Bidoudouma, Gabon. Presented at the 15th Annual
 Goldschmidt Conference, Moscow, United States.
- Huerta-Diaz, M.A., Delgadillo-Hinojosa, F., Otero, X.L., Segovia-Zavala, J.A., Martin
 Hernandez-Ayon, J., Galindo-Bect, M.S., Amaro-Franco, E., 2011. Iron and trace metals
 in microbial mats and underlying sediments: Results from Guerrero Negro saltern, Baja
 California Sur, Mexico. Aquat Geochem 17, 603–628. https://doi.org/10.1007/s10498 011-9126-3
- Huerta-Diaz, M.A., Delgadillo-Hinojosa, F., Siqueiros-Valencia, A., Valdivieso-Ojeda, J.,
- Reimer, J.J., Segovia-Zavala, J.A., 2012. Millimeter-scale resolution of trace metal
- distributions in microbial mats from a hypersaline environment in Baja California,
- 739 Mexico. Geobiology 10, 531–547. https://doi.org/10.1111/gbi.12008

- Huerta-Diaz, M.A., Morse, J.W., 1992. Pyritization of trace metals in anoxic marine
 sediments. Geochimica et Cosmochimica Acta 56, 2681–2702.
 https://doi.org/10.1016/0016-7037(92)90353-K
- Jahnert, R.J., Collins, L.B., 2012. Characteristics, distribution and morphogenesis of subtidal
 microbial systems in Shark Bay, Australia. Marine Geology 303–306, 115–136.
 https://doi.org/10.1016/j.margeo.2012.02.009
- 746 Karhu, J.A., Holland, H.D., 1996. Carbon isotopes and the rise of atmospheric oxygen.
 747 Geology 24, 867–870. https://doi.org/10.1130/0091 748 7613(1996)024<0867:CIATRO>2.3.CO;2
- Konhauser, K.O., 1998. Diversity of bacterial iron mineralization. Earth-Science Reviews 43, 91–121. https://doi.org/10.1016/S0012-8252(97)00036-6
- Konhauser, K.O., 1997. Bacterial iron biomineralisation in nature. FEMS Microbiology Reviews 20, 315–326. https://doi.org/10.1111/j.1574-6976.1997.tb00317.x
- Konhauser, K.O., Fisher, Q.J., Fyfe, W.S., Longstaffe, F.J., Powell, M.A., 1998. Authigenic
 mineralization and detrital clay binding by freshwater biofilms: The Brahmani river,
 India. Geomicrobiology Journal 15, 209–222.
 https://doi.org/10.1080/01490459809378077
- Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S.,
 Scott, R., Emsbo, P., Thomas, H., Singh, B., Foster, J., 2009. Gold and trace element
 zonation in pyrite using a laser imaging technique: Implications for the timing of gold in
 orogenic and carlin-style sediment-hosted deposits. Economic Geology 104, 635–668.
 https://doi.org/10.2113/gsecongeo.104.5.635
- Large, R.R., Mukherjee, I., Zhukova, I., Corkrey, R., Stepanov, A., Danyushevsky, L.V.,
 2018. Role of upper-most crustal composition in the evolution of the Precambrian ocean–
 atmosphere system. Earth and Planetary Science Letters 487, 44–53.
 https://doi.org/10.1016/j.epsl.2018.01.019
- Lekele Baghekema, S.G., Lepot, K., Riboulleau, A., Fadel, A., Trentesaux, A., El Albani, A.,
 2017. Nanoscale analysis of preservation of *ca.* 2.1 Ga old Francevillian microfossils,
 Gabon. Precambrian Research 301, 1–18.
 https://doi.org/10.1016/j.precamres.2017.08.024
- Li, Y.H., Schoonmaker, J., 2003. Chemical composition and mineralogy of marine sediments,
 in: Mackenzie, F.T. (Ed.), Treatise on Geochemistry, Vol. 7: Sediments, Diagenesis, and
 Sedimentary Rocks. Elsevier, Oxford, pp. 1–35.
- Lindsay, J.F., Brasier, M.D., McLoughlin, N., Green, O.R., Fogel, M., Steele, A., Mertzman,
 S.A., 2005. The problem of deep carbon—An Archean paradox. Precambrian Research
 143, 1–22. https://doi.org/10.1016/j.precamres.2005.09.003
- Lydmark, P., Lind, M., Sörensson, F., Hermansson, M., 2006. Vertical distribution of
 nitrifying populations in bacterial biofilms from a full-scale nitrifying trickling filter.
 Environ Microbiol 8, 2036–2049. https://doi.org/10.1111/j.1462-2920.2006.01085.x
- Martin, A.P., Condon, D.J., Prave, A.R., Lepland, A., 2013. A review of temporal constraints
 for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the
 Lomagundi–Jatuli Event). Earth-Science Reviews 127, 242–261.
 https://doi.org/10.1016/j.earscirev.2013.10.006
- McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary
 rocks and upper continental crust: Trace element composition and upper continental
 crust. Geochemistry, Geophysics, Geosystems 2, 2000GC000109.
 https://doi.org/10.1029/2000GC000109
- McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry 21, 169–200.
- 789 Medjoubi, K., Leclercq, N., Langlois, F., Buteau, A., Lé, S., Poirier, S., Mercère, P., Sforna,

- M.C., Kewish, C.M., Somogyi, A., 2013. Development of fast, simultaneous and multitechnique scanning hard X-ray microscopy at Synchrotron Soleil. Journal of Synchrotron Radiation 20, 293–299. https://doi.org/10.1107/S0909049512052119
- Mojzsis, S.J., Arrhenius, G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., Friend, C.R.L.,
 1996. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59.
- Mouélé, I.M., Dudoignon, P., El Albani, A., Meunier, A., Boulvais, P., Gauthier-Lafaye, F.,
 Paquette, J.-L., Martin, H., Cuney, M., 2014. 2.9–1.9 Ga paleoalterations of Archean
 granitic basement of the Franceville basin (Gabon). Journal of African Earth Sciences 97,
 244–260. https://doi.org/10.1016/j.jafrearsci.2014.04.027
- Nachtegaal, M., Scheidegger, A.M., Dähn, R., Chateigner, D., Furrer, G., 2005.
 Immobilization of Ni by Al-modified montmorillonite: A novel uptake mechanism.
 Geochimica et Cosmochimica Acta 69, 4211–4225.
 https://doi.org/10.1016/j.gca.2005.04.013
 - Newman, S.A., Klepac-Ceraj, V., Mariotti, G., Pruss, S.B., Watson, N., Bosak, T., 2017. Experimental fossilization of mat-forming cyanobacteria in coarse-grained siliciclastic sediments. Geobiology 15, 484–498. https://doi.org/10.1111/gbi.12229
- Newman, S.A., Mariotti, G., Pruss, S., Bosak, T., 2016. Insights into cyanobacterial fossilization in Ediacaran siliciclastic environments. Geology 44, 579–582. https://doi.org/10.1130/G37791.1

- Nutman, A.P., Bennett, V.C., Friend, C.R.L., Van Kranendonk, M.J., Chivas, A.R., 2016.
 Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537, 535–538. https://doi.org/10.1038/nature19355
- Okabe, S., Hiratia, K., Ozawa, Y., Watanabe, Y., 1996. Spatial microbial distributions of nitrifiers and heterotrophs in mixed-population biofilms. Biotechnology and Bioengineering 50, 24–35.
- Ossa Ossa, F., Eickmann, B., Hofmann, A., Planavsky, N.J., Asael, D., Pambo, F., Bekker,
 A., 2018. Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event.
 Earth and Planetary Science Letters 486, 70–83.
 https://doi.org/10.1016/j.epsl.2018.01.009
- Pecoits, E., Gingras, M.K., Barley, M.E., Kappler, A., Posth, N.R., Konhauser, K.O., 2009.
 Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry. Precambrian Research 172, 163–187. https://doi.org/10.1016/j.precamres.2009.03.014
- Petrash, D.A., Gingras, M.K., Lalonde, S.V., Orange, F., Pecoits, E., Konhauser, K.O., 2012.
 Dynamic controls on accretion and lithification of modern gypsum-dominated
 thrombolites, Los Roques, Venezuela. Sedimentary Geology 245–246, 29–47.
 https://doi.org/10.1016/j.sedgeo.2011.12.006
- Petrash, D.A., Lalonde, S.V., González-Arismendi, G., Gordon, R.A., Méndez, J.A., Gingras,
 M.K., Konhauser, K.O., 2015. Can Mn–S redox cycling drive sedimentary dolomite
 formation? A hypothesis. Chemical Geology 404, 27–40.
 https://doi.org/10.1016/j.chemgeo.2015.03.017
- Planavsky, N.J., Bekker, A., Rouxel, O.J., Kamber, B., Hofmann, A., Knudsen, A., Lyons, T.W., 2010. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta 74, 6387–6405. https://doi.org/10.1016/j.gca.2010.07.021
- Playter, T., Konhauser, K.O., Owttrim, G., Hodgson, C., Warchola, T., Mloszewska, A.M.,
 Sutherland, B., Bekker, A., Zonneveld, J.-P., Pemberton, S.G., Gingras, M., 2017.
 Microbe-clay interactions as a mechanism for the preservation of organic matter and trace
- metal biosignatures in black shales. Chemical Geology 459, 75–90.

https://doi.org/10.1016/j.chemgeo.2017.04.007

850

851

852

853 854

855 856

857

858

859

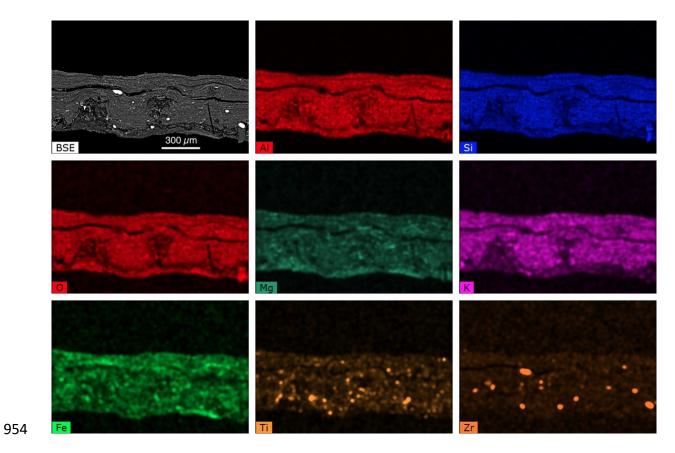
- Pombo, F., 2004. Conditions de formation des carbonates de manganèse protérozosoïques et analyse minéralogique et géochimique des minerais à bioxydes de manganèse associés dans le gisement de Moanda (Sud-Est, Gabon). Université de Bourgogne, Dijon.
- Préat, A., Bouton, P., Thiéblemont, D., Prian, J.-P., Ndounze, S.S., Delpomdor, F., 2011.
 Paleoproterozoic high δ₁₃C dolomites from the Lastoursville and Franceville basins (SE
 Gabon): Stratigraphic and synsedimentary subsidence implications. Precambrian
 Research 189, 212–228. https://doi.org/10.1016/j.precamres.2011.05.013
- R Core Team, 2018. A language and environment for statistical computing. Vienna, Austria. Reyes, K., Gonzalez, N.I., Stewart, J., Ospino, F., Nguyen, D., Cho, D.T., Ghahremani, N.,
 - Reyes, K., Gonzalez, N.I., Stewart, J., Ospino, F., Nguyen, D., Cho, D.T., Ghahremani, N., Spear, J.R., Johnson, H.A., 2013. Surface orientation affects the direction of cone growth by *Leptolyngbya sp.* strain C1, a likely architect of coniform structures Octopus Spring (Yellowstone National Park). Applied and Environmental Microbiology 79, 1302–1308. https://doi.org/10.1128/AEM.03008-12
 - Reynaud, J.-Y., Trentesaux, A., El Albani, A., Aubineau, J., Ngombi-Pemba, L., Guiyeligou, G., Bouton, P., Gauthier-Lafaye, F., Weber, F., 2017. Depositional setting of the 2.1 Ga Francevillian macrobiota (Gabon): Rapid mud settling in a shallow basin swept by high-density sand flows. Sedimentology 65, 670–701.
 - Rico, K.I., Sheldon, N.D., 2019. Nutrient and iron cycling in a modern analogue for the redoxcline of a Proterozoic ocean shelf. Chemical Geology 511, 42–50. https://doi.org/10.1016/j.chemgeo.2019.02.032
- Rico, K.I., Sheldon, N.D., Kinsman-Costello, L.E., 2020. Associations between redox-sensitive trace metals and microbial communities in a Proterozoic ocean analogue.
 Geobiology. https://doi.org/10.1111/gbi.12388
- Rosing, M.T., 1999. 13C depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283, 674–676.
- Ruberg, S.A., Kendall, S.T., Biddanda, B.A., Black, T., Nold, S.C., Lusardi, W.R., Green, R.,
 Casserley, T., Smith, E., Sanders, G.T., Lang, G.A., Constant, S.A., 2008. Observations
 of the Middle Island Sinkhole in Lake Huron A unique hydrogeologic and glacial
 creation of 400 Million Years. Mar Technol Soc J 42, 12–21.
 https://doi.org/10.4031/002533208787157633
- Sancho-Tomás, M., Somogyi, A., Medjoubi, K., Bergamaschi, A., Visscher, P.T., Van
 Driessche, A.E.S., Gérard, E., Farias, M.E., Contreras, M., Philippot, P., 2018.
 Distribution, redox state and (bio)geochemical implications of arsenic in present day
 microbialites of Laguna Brava, Salar de Atacama. Chemical Geology 490, 13–21.
 https://doi.org/10.1016/j.chemgeo.2018.04.029
- Sarkar, S., Banerjee, S., Samanta, P., Chakraborty, N., Chakraborty, P.P., Mukhopadhyay, S.,
 Singh, A.K., 2014. Microbial mat records in siliciclastic rocks: Examples from four
 Indian Proterozoic basins and their modern equivalents in Gulf of Cambay. Journal of
 Asian Earth Sciences 91, 362–377. https://doi.org/10.1016/j.jseaes.2014.03.002
- Sarkar, S., Bose, P., Samanta, P., Sengupta, P., Eriksson, P., 2008. Microbial mat mediated
 structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for
 Proterozoic sedimentation. Precambrian Research 162, 248–263.
 https://doi.org/10.1016/j.precamres.2007.07.019
- Schidlowski, M., Appel, P.W.U., Eichmann, R., Junge, C.E., 1979. Carbon isotope
 geochemistry of the 3.7 x 109-yr-old Isua sediments, West Greenland: Implications for
 the Archaean carbon and oxygen cycles. Geochimica et Cosmochimica Acta 43, 189–
 199.
- Schmitt, R., Smith, R., Olehy, D., 1964. Rare-earth, yttrium and scandium abundances in meteoritic and terrestrial matter—II. Geochimica et Cosmochimica Acta 28, 67–86.

- Sforna, M.C., Daye, M., Philippot, P., Somogyi, A., van Zuilen, M.A., Medjoubi, K., Gérard,
 E., Jamme, F., Dupraz, C., Braissant, O., Glunk, C., Visscher, P.T., 2017. Patterns of
 metal distribution in hypersaline microbialites during early diagenesis: Implications for
 the fossil record. Geobiology 15, 259–279. https://doi.org/10.1111/gbi.12218
- Shepard, R.N., Sumner, D.Y., 2010. Undirected motility of filamentous cyanobacteria
 produces reticulate mats: Motility produces reticulate mats. Geobiology 8, 179–190.
 https://doi.org/10.1111/j.1472-4669.2010.00235.x

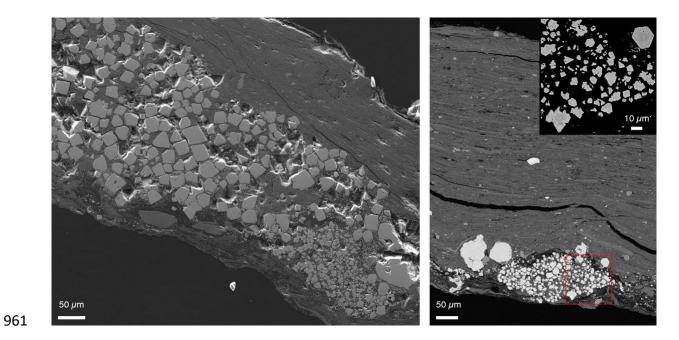
902

903

904


905

906


907

- Somogyi, A., Medjoubi, K., Baranton, G., Le Roux, V., Ribbens, M., Polack, F., Philippot, P.,
 Samama, J.-P., 2015. Optical design and multi-length-scale scanning spectro-microscopy
 possibilities at the Nanoscopium beamline of Synchrotron Soleil. Journal of Synchrotron
 Radiation 22, 1118–1129. https://doi.org/10.1107/S1600577515009364
 - Suarez, C., Piculell, M., Modin, O., Langenheder, S., Persson, F., Hermansson, M., 2019. Thickness determines microbial community structure and function in nitrifying biofilms via deterministic assembly. Scientific Reports 9, 5110. https://doi.org/10.1038/s41598-019-41542-1
 - Taylor, S.R., McLennan, S.M., 2001. Chemical composition and element distribution in the Earth's Crust, in: Roberts, A.M. (Ed.), Encyclopedia of Physical Science and Technology. Academic Press, New York, pp. 697–719.
- Taylor, S.R., McLennan, S.M., 1985. The continental crust: Its composition and evolution.
 Blackwell Scientific Puplications, Oxford.
- Thiéblemont, D., Bouton, P., Préat, A., Goujou, J.-C., Tegyey, M., Weber, F., Ebang Obiang,
 M., Joron, J.L., Treuil, M., 2014. Transition from alkaline to calc-alkaline volcanism
 during evolution of the Paleoproterozoic Francevillian basin of eastern Gabon (Western
 Central Africa). Journal of African Earth Sciences 99, 215–227.
 https://doi.org/10.1016/j.jafrearsci.2013.12.007
- Thiéblemont, D., Castaing, C., Billa, M., Bouton, P., Préat, A., 2009. Notice explicative de la carte géologique et des ressources minérales de la République gabonaise à 1/1,000,000.
- 917 Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and 918 paleoproductivity proxies: An update. Chemical Geology 232, 12–32. 919 https://doi.org/10.1016/j.chemgeo.2006.02.012
- Van Zuilen, M.A., Lepland, A., Arrhenius, G., 2002. Reassessing the evidence for the earliest
 traces of life. Nature 418, 627–630. https://doi.org/10.1038/nature00934
- Weber, F., 1968. Une série précambrienne du Gabon : le Francevillien. Sédimentologie,
 géochimie, relations avec les gîtes minéraux associés. Université de Strasbourg,
 Strasbourg.
- Weber, F., Gauthier-Lafaye, F., Whitechurch, H., Ulrich, M., El Albani, A., 2016. The 2-Ga
 Eburnean Orogeny in Gabon and the opening of the Francevillian intracratonic basins: A
 review. Comptes Rendus Geoscience 348, 572–586.
 https://doi.org/10.1016/j.crte.2016.07.003
- Webster-Brown, J.G., Webster, K.S., 2007. Trace metals in cyanobacterial mats,
 phytoplankton and sediments of the Lake Vanda region, Antarctica. Antarctic Science 19,
 311–319. https://doi.org/10.1017/S0954102007000417

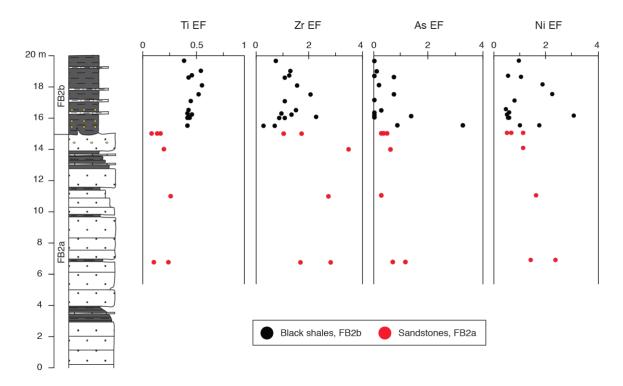

933	APPENDIX A: SUPPLEMENTARY DATA
934	
935	Trace element perspective into the ca. 2.1-billion-year-old shallow-marine microbial
936	mats from the Francevillian Group, Gabon
937	
938	Jérémie Aubineau1*, Abderrazak El Albani1, Andrey Bekker2, 3, Ernest Chi Fru4, Andrea
939	Somogyi₅, Kadda Medjoubi₅, Armelle Riboulleau₅, Alain Meunier₁, & Kurt O. Konhauser7
940	
941	1UMR 7285 CNRS IC2MP, University of Poitiers, Poitiers, France
942	² Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521,
943	USA
944	3Department of Geology, University of Johannesburg, Auckland Park 2006, South Africa
945	⁴ Centre of Geobiology and Geochemistry, School of Earth and Ocean Sciences, College of
946	Physical Sciences and Engineering, Cardiff University, Cardiff CF10 3AT, Wales, UK
947	5Nanoscopium beamline Synchrotron Soleil, BP 48, Saint-Aubin, 91192 GIF-sur-Yvette,
948	France
949	6UMR 8187 CNRS LOG, University of Lille, ULCO, Villeneuve d'Ascq, France.
950	⁷ Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta,
951	Canada.
952	
953	*corresponding author: jeremie.aubineau@univ-poitiers.fr

Figure S1. Petrography, SEM, and EDX of a poorly pyritized MRS in cross-section perpendicular to the bedding plane. Back-scattered electron (BSE) and composite (Al, Si, O, Mg, K, Fe, Ti, and Zr) elemental maps show mineral composition of the poorly pyritized MRS. A number of Ti- and Zr-rich heavy mineral grains are embedded within these mats.

Figure S2. SEM image of poorly pyritized MRS in secondary electron (left) and BSE (right) modes. Pyrite-rich layers observed at the bottom of the MRS are highly variable in thickness. Inset shows numerous, tiny sub-euhedral to euhedral pyrite crystals.

Figure S3. Stratigraphic profile with enrichment factor (EF) of selected immobile and chalcophile elements within host sediments. EF are normalized to the average shale (Ti, Zr, and Ni concentrations for the average shale are from Taylor and McLennan (2001), and As concentration for the average shale is from Li and Schoonmaker, 2003).

TABLE S1. Whole-rock composition of major and trace elements and enrichment factors (EF)

974	of Ti,	As, Ni,	and Zr

bbm Cd	0.64 0.29 0.21 0.05 0.05 0.10	0.23 0.12 0.34 0.12 0.39 0.42 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	0.16 0.27 0.05 0.04 0.03 0.05 0.05
Bi bpm	4.24 5.76 4.01 2.71 0.05 0.22	0.11 0.15 0.20 0.31 0.16 0.19 0.29 0.29 0.32 1.35 0.32 1.35 0.32 1.35 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.34 0.35 0.36 0.36 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	0.34 0.05 0.05 0.02 0.02 0.08
Ва ррт	754.50 693.20 526.50 680.70 983.70 885.10	1131.81 1136.75 1231.00 1505.00 648.41 648.41 1254.00 1224.00 1224.00 1318.60 1482.00 1318.60 1483.90 1467.75 1533.94 1467.75 1538.00 1225.00 1463.62 1463.62 1463.62	281.40 281.40 145.20 126.20 95.36 97.90 120.74
As ppm	179.20 110.10 111.90 146.40 58.37 100.30	0.36 1.41 0.80 10.93 2.06 6.99 0.80 0.80 0.81 13.16 53.11 13.23 50.84 6.78 28.01 7.77 7.71 7.75 7.71 17.75 2.33 3.31	1.36 0.80 0.80 0.70 1.11 1.35
Ħ.	0.27 0.36 0.28 0.30 0.32 0.32 0.42	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.20 0.08 0.08 0.16 0.20 0.20 0.20 0.20
P wt%	0.02 0.02 0.02 0.02 0.02	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.02 0.02 0.02 0.02 0.01 0.02 0.03
Ti wt%	0.08 0.11 0.07 0.09 0.09 0.20	0.25 0.25 0.25 0.25 0.25 0.24 0.24 1.66 1.14 1.92 1.92 1.92 0.25	0.20 0.20 0.01 0.02 0.01 0.02
ж %	1.56 1.50 1.11 1.34 1.89 2.52	2.245 2.235 2.235 2.217 2.227 2.335 2.235 2.335 3.317	0.50 0.20 0.20 0.16 0.18 0.15
Na wt%	0.13 0.13 0.16 0.16 0.18 0.23	0.25 0.25 0.25 0.25 0.25 0.26 0.26 0.27 0.28 0.29 0.29	0.03 0.03 0.03 0.03 0.02 0.02
Ca wt%	0.42 0.91 0.58 0.61 0.61 1.49	1.61 1.48 1.89 1.60 1.60 1.50 1.50 1.55 1.55 1.55 1.50 1.50 1.5	0.15 0.47 0.43 0.04 0.01 0.01
Mg wt%	0.81 0.98 1.09 1.12 0.87 0.86	2.06 1.82 1.18 1.18 2.86 3.33 1.85 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72	0.38 0.38 0.70 0.24 0.35 0.12
Mn wt%	0.08 0.12 0.07 0.09 0.06 0.06	0.38 0.05 0.05 0.05 0.01 0.01 0.03 0.03 0.08 0.08 0.00 0.00 0.00 0.00	0.01 0.09 0.05 0.01 0.02 0.01
Fe wt%	26.88 20.82 29.04 24.68 14.57 20.90 7.23	2.58 2.67 1.67 2.41 4.89 4.89 6.21 1.65 1.65 2.71 2.12 2.12 2.12 2.13 8.93 8.93 8.93 8.93 8.93 8.93 8.93 8.9	0.68 0.68 0.46 0.39 0.40 0.40
AI wt%	5.35 5.14 4.37 5.09 6.26 5.56 8.33	8.83 8.85 9.87 7.00 6.33 9.04 7.03 6.37 9.45 9.45 10.13 11.96 11.96 12.39 14.76 12.39 14.76	16.63 2.47 1.30 1.70 1.10 1.51 1.05
Si wt%	10.83 15.34 9.91 12.46 12.99 11.28 23.94	27.56 28.86 26.30 29.34 22.57 27.11 20.38 36.25 26.91 26.91 26.93 26.91	41.65 43.70 44.35 44.09 44.21 44.79
Sr wt%	29.37 22.02 24.81 28.45 23.88 26.90 6.46	0.09 0.02 0.02 0.03 0.03 0.04 0.16 0.17 0.16 0.16 0.16 0.16 0.17 0.16 0.16 0.16 0.17 0.16 0.17 0.16 0.17 0.04 0.03 0.03 0.03 0.04 0.03 0.03 0.03	N N N N N 15 15 15 15 15 15 15 15 15 15 15 15 15
Height m	18.7 17.1 16.3 16.0 16.0	19.7 18.6 18.6 18.6 17.7 17.7 17.7 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	6.9 6.9 6.9 6.9
Sample ID Height m	FPS_s5-mat DB_s4-mat FPS_s4-mat FPS_s3-mat DB_s2-mat DB_s3-mat	WS_s1-sed FPS_s5-sed AFBSO-12 AFBSO-12 AFBSO-7 AFBSO-7 AFBSO-6 DB_s4-sed AFBSO-7 FPS_s3-sed AFBSO-6 DB_s2-sed FPS_s3-sed AFBSO-6 MLS_s3-sed AFBSO-8 MLS_s3-sed MLS_s8-sed MLS_s8-sed MLS_s8-sed MLS_s8-sed MLS_s8-sed MLS_s8-mat MLS_s8	EST_ss-mat MLS_st-sed LP_s3-sed MLS_s2-sed LP_s2-sed MLS_s3-sed MLS_s3-sed EST_st-sed
Lithology	Pyrtitzed MRS	Black shales Pyrite-poor MRS	Sandstones
Formation	FB2b	FB2a	

TABLE S1. (*Cont.*)

EF _Z	0.21 0.95 0.29 0.47 0.20 0.23	0.75 1.29 1.25 1.09 1.53 1.50 1.07 1.33 2.26 1.33 0.36	6.95 1.76 8.05 8.69 2.72 2.02 2.46 2.46 1.02 1.06 1.69 2.45 2.46 3.46 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.7
Ä ≅	23.71 19.68 23.07 18.45 10.11 5.45 0.68	0.95 1.12 0.56 1.06 1.86 2.24 0.81 0.48 0.59 0.53 3.10 0.56	3.29 0.77 3.12 2.63 1.83 1.15 0.71 1.39 0.98 1.12 0.66 0.50 1.15 1.15 1.15 1.16 1.16 1.16 1.16 1.16
EF _{As}	22.68 14.50 17.32 19.46 6.31 12.21	0.03 0.12 0.75 0.20 0.74 0.05 0.05 0.05 0.05 0.05	2.88 0.31 1.54 0.33 0.15 0.04 0.06 0.06 0.39 0.30 0.30 0.31 1.17
Zr ppm	22.46 99.72 25.64 49.17 25.10 26.27	134.81 225.30 225.30 226.40 226.40 197.00 214.30 192.20 230.40 293.30 179.90 66.57	695.00 2899.00 7730.00 2201.00 818.99 626.53 626.53 523.94 996.31 832.59 51.43 51.43 58.75 77.72 83.75 77.72
Zn ppm	41.13 37.07 61.04 63.17 40.57 69.46 72.17	102.44 67.10 93.85 97.86 150.50 65.61 36.97 53.87 62.27 168.90 65.24 168.30 65.24	306.10 74.51 194.70 1179.80 1179.80 70.79 82.36 82.36 77.22 61.00 34.23 5.00 117.75 11.52
w dd	0.75 0.75 0.75 0.75 1.15 1.83	1.31 2.08 0.75 1.66 1.28 1.01 1.78 0.74 0.75 0.88 1.60 1.60	8.75 6.90 9.52 7.03 8.69 8.69 8.69 1.13 1.38 1.38 2.06 1.13 0.75 0.75 0.75
> mdd	30.19 30.27 23.48 30.67 36.07 34.78 41.72	43.01 48.28 48.28 52.97 36.39 32.39 49.54 49.59 45.40 29.13 57.54 50.73	96.43 106.90 91.74 84.62 93.92 99.93 82.74 76.15 77.14 78.76 77.14 78.76 75.49 9.04 4.88 6.23 4.36 2.64
n dd	0.29 0.62 0.30 0.36 0.45 1.10	0.83 1.32 1.21 1.24 1.25 1.25 1.25 1.25 1.12 1.13	8.54 10.16 8.28 8.20 9.20 3.19 2.42 2.32 3.35 3.35 3.35 0.20 0.20 0.20
Th mdd	4.24 6.03 3.70 4.64 6.11 4.80	10.03 15.96 14.44 8.87 10.76 13.53 8.01 13.52 9.47 12.02 9.47 12.81	77.88 54.05 111.20 64.95 99.45 99.45 10.11 10.11 1.07 1.07 0.64 1.73 0.75 0.80
Та ррт	0.13 0.22 0.11 0.14 0.17 0.14	0.38 0.52 0.48 0.53 0.37 0.47 0.47 0.46 0.35 0.31	3.71 2.34 4.35 2.99 6.29 0.29 0.29 0.41 0.04 0.02 0.03 0.03
Sr bbm	36.32 43.15 27.62 36.36 41.59 38.52 79.14	74.20 94.24 87.64 86.32 47.97 69.97 71.00 85.90 85.56 49.69 85.09 85.09 88.36 88.26	294.30 246.30 322.60 242.80 346.00 33.51 67.70 105.07 113.51 14.86 13.51 14.86 13.51 14.86 7.55 7.88
S mdd	0.75 0.75 0.75 0.75 0.75 2.09	0.75 1.23 1.28 2.74 1.31 1.94 1.63 1.63 0.99 0.75 0.75	9.40 6.70 3.14 3.45 3.45 0.59 0.23 0.23 3.50 0.75 0.75 0.75 0.75
Spm	10.67 10.87 5.42 6.89 7.08 12.19 0.53	0.19 0.30 0.24 0.54 0.29 0.28 0.28 1.38 1.38 0.25 0.25	7.95 1.35 5.47 7.36 1.47 1.47 0.23 0.23 0.21 0.17 0.15 0.18
Rb ppm	59.72 56.99 43.84 52.71 76.15 65.29	95.17 105.30 105.10 125.30 54.66 53.39 108.40 95.81 126.10 95.79 47.05 119.66 123.80	148.20 190.80 1124.40 1166.90 15.20 92.43 78.61 110.63 1175.82 110.07 8.70 6.71 7.61
Pb mdd	71.47 91.26 42.72 56.43 28.65 30.65	5.11 8.45 9.13 10.77 8.15 13.44 15.05 9.71 12.30 9.36 34.22 5.42 18.15	97.64 31.89 72.37 96.24 33.47 42.29 9.39 7.45 19.58 2.68 10.70 5.53 4.39 2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56
iN Mdd	738.80 589.20 587.60 547.30 368.90 176.60	48.88 52.08 52.00 60.68 75.97 83.16 42.64 19.49 33.91 26.18 115.10 30.55 112.60	228.80 65.71 223.90 167.30 1134.20 75.91 102.11 69.91 1133.24 94.95 16.04 5.00 7.42 114.37 8.80 10.78
dN mdd	1.64 2.39 1.47 1.86 2.30 1.89 4.70	4.14 5.27 5.27 6.91 4.61 5.63 6.53 3.56 5.28 5.28 5.33 5.36	39.34 26.71 47.91 31.62 44.54 4.83 3.07 11.74 4.52 4.52 0.38 0.19 0.28 0.28
Mo ppm	11.40 19.81 13.94 10.23 9.91 16.62	0.25 0.25 0.25 0.76 0.25 0.03 0.25 0.03 0.25 0.25 0.25 0.25	9.76 9.84 9.86 4.63 1.44 1.44 1.44 1.63 0.63 0.63 0.63 0.65 0.65 0.25 0.25 0.25 0.25
# Wdd	0.63 2.51 0.72 1.29 0.72 0.68	3.53 5.56 5.86 5.58 6.76 5.03 5.03 5.03 5.03 7.20 7.20 7.20 7.20 7.20 7.20 7.20 7.20	45.66 14.80 79.20 44.86 65.04 25.53 19.38 16.57 25.89 25.89 1.28 0.69 1.46 1.94 2.09 0.86 0.86
Cu	147.70 192.10 82.20 99.99 77.00 25.61 105.90	40.13 56.13 56.13 56.63 44.05 58.04 5.06 51.88 62.10 28.16 57.57 57.57	208.60 32.71 115.50 1115.40 121.10 642.3 12.89 13.58 21.95 8.04 7.41 7.41 7.41 7.41 7.41 7.41 7.41 7.4
Cs	5.23 4.63 4.00 4.55 6.70 5.72 9.14	7.95 9.00 9.38 11.08 5.30 5.53 8.54 6.04 10.73 8.60 4.40 11.063 11.063	12.28 22.82 11.76 11.57 13.32 13.09 3.03 2.44 17.74 4.14 5.10 0.63 0.42 0.42 0.42 0.42 0.42
c mdd	2.50 10.95 2.50 2.50 21.85 15.13	37.00 31.64 54.76 36.20 40.61 36.33 42.50 33.76 29.61 30.15 47.73 33.21 47.73	196.00 173.60 230.40 149.30 208.40 193.70 50.23 42.71 87.81 87.81 87.81 87.81 87.81 87.81 87.81 87.81 87.81 87.83 36.3 36.3 36.3 36.3 36.3 36.3 36.3 3
Co	252.90 326.20 192.60 144.20 133.30 99.42 4.71	5.35 6.67 6.67 8.89 12.89 20.14 4.18 0.91 5.06 3.94 49.92 3.43 3.43 3.43 3.43 3.43 3.829	45.86 5.15 48.40 32.23 115.79 115.79 5.38 5.38 5.83 5.83 5.83 1.76 1.76 1.76 1.71 0.73 0.49
Height m	18.7 17.1 16.3 16.0 16.0 16.0	19.7 19.0 18.7 18.6 18.1 17.5 17.5 16.3 16.3 16.2 16.0 16.0	15.0 15.0 15.0 15.0 15.0 15.0 11.0 6.9 6.9 6.9
Sample ID Height m	FPS_s5-mat DB_s4-mat FPS_s4-mat FPS_s3-mat DB_s2-mat DB_s3-mat	WS_s1-sed FPS_s5-sed AFBSO-12 MLS_s7-sed AFBSC-9 DB_S4-sed AFBSC-7 FPS_s4-sed FPS_s4-sed AFBSC-7 FPS_s4-sed AFBSC-7 FPS_s4-sed AFBSC-7 FPS_s4-sed AFBSC-7 MS_s4-sed AFBSC-7 MS_s4-sed AFBSC-7 MS_s4-sed AFBSC-7 MS_s4-sed AFBSC-7 MS_s4-sed AFBSC-7 MS_s4-sed AFBSC-8 MS	MLS. s1-mat LP_s3-mat MLS_s6-mat MLS_s6-mat MLS_s6-mat MLS_s6-mat MLS_s6-mat MLS_s6-mat MLS_s1-sad LP_s3-sad LP_s2-sad MLS_s2-sad EST_s2-sad EST_s2-sad
Lithology	Pyritized MRS	Black shales	Pyrite-poor MRS
Formation	FB2b		- B2a

978 Note: FPS: flat, pyritized structure; DB: domal buildup; FR: "fairy-ring" structure; WS: wrinkle 979 structure; KS: "Kinneyia" structure; MLS: mat-layer structure; LP: linear pattern; EST: 980 "elephant-skin" texture as previously described by Aubineau et al. (2018). EFx refers to enrichment factor of X, where X stands for any chemical element. 981 982 Italicized numbers refer to samples for which half or more of the data were below the detection 983 limit. The detection limit is calculated as 6 times the standard deviation of the mean, plus the 984 mean, on 100 blank measurements. 985 N.D. = not determined. 986 987 988

TABLE S2. Bulk-rock data of rare earth elements and calculated Eu anomaly and REEratios.

Pr/Yb _(SN)	3.95 2.33 3.50 2.98 3.72 2.80	2.74 3.05 2.46 1.45 2.62 2.56 2.28 2.28 2.28 2.28 2.28 2.28 2.28 2.2	2.34 2.35 2.35 2.75 2.75 0.91 0.70	1.48 1.87 1.40 0.86 1.29 1.31
У/Но	25.32 29.85 31.88 31.51 30.74 29.97	29.69 33.41 30.56 33.41 30.56 31.09 31.32 31.32 31.44 32.75 32.75 33.33 31.68 30.43	34.57 32.18 31.85 34.30 34.18 34.76 36.01 27.46 31.93	34.38 30.88 31.30 33.79 33.35 30.93
Eu/Eu*	1.24 1.30 1.36 1.35 1.32 1.32	1.36 1.35 1.34 1.43 1.32 1.30 1.30 1.30 1.35 1.35	1.35 1.29 1.33 1.22 1.57 1.48 1.48	1.73 1.60 1.60 1.45 1.45
REE _T	44.70 71.90 42.40 54.40 66.60 51.20	126.80 162.90 178.50 91.50 102.90 111.60 165.10 175.10 176.10 176.10 176.30	781.70 624.80 1085.60 716.30 1089.20 130.50 130.50 84.00 317.40 96.30	19.90 14.50 17.10 9.80 15.40 10.50 9.10
ΣHREE ppm	2.06 4.09 2.31 2.84 3.22 2.57 8.00	6.86 9.64 8.71 7.22 7.22 8.54 9.00 8.74 8.28 8.28 8.26 7.49	31.57 19.79 37.40 29.68 35.78 35.05 11.27 8.97 16.93	2.54 1.70 1.66 1.05 1.30 1.39
ΣLREE ppm	42.39 67.35 39.80 51.20 62.96 48.32	119.05 200.94 153.15 167.96 83.48 94.05 155.04 1144.41 109.09 1150.05 1150.05 1138.85	746.78 602.72 1045.13 683.48 1050.03 960.10 118.16 74.31 298.29 85.14	17.03 12.63 15.26 8.60 13.91 9.05
Lu	0.03 0.04 0.04 0.03 0.03	0.11 0.16 0.16 0.13 0.17 0.15 0.16 0.16 0.16	0.35 0.35 0.35 0.34 0.34 0.35 0.35	0.03 0.03 0.03 0.03 0.02
dy ppm	0.17 0.48 0.19 0.28 0.26 0.21	0.73 1.08 1.06 0.85 0.98 0.98 0.08 1.00 1.05 0.08 0.08	4.98 2.86 7.10 4.61 6.31 6.31 2.09 1.56 1.96 2.14	0.20 0.12 0.18 0.16 0.19 0.12
Tm ppm	0.03 0.03 0.05 N.D. 0.04	0.10 0.10 0.10 0.13 0.13 0.15 0.15 0.16 0.16 0.10 0.10 0.10	0.71 0.42 1.02 0.67 0.89 0.29 0.23 0.28	0.03 0.03 0.03 0.03 0.03
ppm ppm	0.23 0.53 0.26 0.35 0.29 1.04	0.86 1.21 1.20 0.96 0.77 1.19 1.10 1.10 1.10 1.10 1.10 0.85	4.73 2.78 6.25 4.36 5.54 1.89 1.90 1.84	0.30 0.19 0.22 0.15 0.18 0.18
Ho mdd	0.10 0.20 0.10 0.13 0.15 0.12	0.34 0.47 0.43 0.37 0.30 0.30 0.40 0.44 0.45 0.35	1.60 0.94 1.95 1.78 1.74 0.64 0.53 0.75	0.13 0.09 0.09 0.06 0.06 0.07
≻ mdd	2.43 4.22 3.32 5.97 4.52 3.69	10.18 13.85 14.30 11.33 13.78 12.84 9.27 14.28 14.28 14.26 10.50	55.41 30.12 62.18 51.49 58.78 59.31 22.20 19.02 20.62 20.09	4.54 2.75 2.82 1.93 2.08 2.08
Dy ppm	0.52 1.06 0.62 0.74 0.85 0.70	1.78 2.46 2.24 2.44 1.95 2.17 1.70 1.70 2.34 2.34 2.36 2.35 2.16 2.15	7.32 4.54 8.62 7.06 8.19 8.00 2.78 2.34 4.18 2.47	0.73 0.48 0.44 0.27 0.32 0.37
Tb mdd	0.12 0.20 0.13 0.14 0.16 0.13	0.33 0.45 0.41 0.35 0.37 0.39 0.41 0.41 0.64 0.60	1.28 0.81 1.38 1.38 1.31 0.41 0.35 0.35	0.13 0.09 0.05 0.05 0.06 0.07
pb mdd	0.86 1.48 0.95 1.09 1.05 2.99	2.66 3.65 3.14 3.14 2.54 3.22 3.37 3.37 3.37 3.39 3.39 3.39	10.14 7.01 9.92 9.54 10.91 10.27 2.83 2.21 6.73 2.25	0.99 0.70 0.59 0.32 0.43 0.48
Eu	0.26 0.47 0.31 0.35 0.33 0.96	0.84 1.21 1.00 1.08 0.78 0.83 1.00 0.76 0.95 0.95 1.03 1.03	3.34 3.12 3.12 3.12 3.32 1.10 0.76 0.86	0.33 0.22 0.18 0.11 0.13
Sm ppm	1.22 2.11 1.22 1.47 1.84 1.45	3.61 6.39 7.39 9.29 9.29 9.32 9.47 9.72 4.72 4.72 4.70 4.80 4.40	14.65 10.95 16.83 13.91 17.08 16.58 4.00 2.73 9.10 3.32	1.02 0.74 0.71 0.35 0.44 0.39
pN pN	7.49 12.30 7.33 9.06 11.21 8.88	22.18 35.49 27.58 30.55 30.55 16.17 18.16 28.10 18.96 27.99 20.58 20.58 22.54 27.95 27.95	116.60 89.42 184.50 111.10 170.40 156.80 21.94 14.81 54.45 17.14	3.92 3.16 3.20 1.67 2.92 1.76 1.53
Pr ppm	2.13 3.46 2.08 2.64 3.24 2.47 7.49	6.24 10.26 7.87 8.70 4.40 4.91 8.02 5.61 8.04 7.44 5.69 8.24 8.07 7.15	36.33 28.95 53.00 33.87 52.35 47.22 5.93 3.86 15.25 4.40	0.92 0.72 0.81 0.42 0.76 0.48
bbm bbm	20.43 32.25 18.99 24.70 30.21 23.10 69.36	56.98 97.05 73.77 80.44 44.25 73.87 74.22 69.54 74.22 76.86 74.26 66.23	361.10 295.10 498.70 329.80 507.50 460.60 55.73 34.40 140.17 39.22	7.52 5.54 7.01 4.23 6.41 4.28 3.54
La	11.12 17.24 10.18 13.32 16.46 12.41 37.40	30.05 52.75 39.58 43.37 20.48 23.51 39.38 27.01 40.15 40.05 35.87 39.28	218.10 292.10 194.80 302.70 278.90 30.56 18.50 79.32 21.06	3.65 2.48 3.53 1.93 3.27 2.09 1.76
Height m	18.7 17.1 16.3 16.2 16.0 16.0	19.7 19.0 18.7 18.6 17.5 17.5 16.3 16.3 16.0 16.0 16.0	15.0 15.0 15.0 15.0 15.0 15.0 11.0 6.9	15.0 15.0 14.0 11.0 6.8
Sample ID Height m	PPS_s5-mat DB_s4-mat PPS_s4-mat PPS_s3-mat DB_s2-mat DB_s3-mat FR_s1-mat	WS_s1-sed KS_s1-sed FPS_s5-sed AFBSO-12 MLS_s7-sed AFBSO-9 DB_s4-sed AFBSO-7 FPS_s3-sed AFBSO-6 DB_s2-sed AFBSO-6 DB_s2-sed AFBSO-6 MLS_s3-sed MLS_s3-sed MLS_s3-sed MLS_s3-sed MLS_s3-sed MLS_s3-sed MLS_s3-sed MLS_s3-sed	MLS_s1-mat LP_s3-mat MLS_s2-mat MLS_s6-mat MLS_s6-mat EST_s3-mat EST_s3-mat EST_s3-mat EST_s3-mat	MLS_s1-sed LP_s3-sed MLS_s2-sed LP_s2-sed MLS_s3-sed EST_s1-sed EST_s2-sed
Lithology	Pyritized MRS	Black shales	Pyrite-poor MRS	Sandstones
Formation	FB2b	FB2b	FB2a	FB2a

- 992 Note: FPS: flat, pyritized structure; DB: domal buildup; FR: "fairy-ring" structure; WS: wrinkle
- 993 structure; KS: "Kinneyia" structure; MLS: mat-layer structure; LP: linear pattern; EST:
- "elephant-skin" texture as previously described by Aubineau et al. (2018).
- 995 Σ LREE refers to the sum of REE from La to Sm.
- 996 Σ HREE refers to the sum of REE from Gd to Lu.
- 997 REE_T includes all REE.
- 998 Eu/Eu* refers to Eu anomaly where Eu* is the interpolated value for Eu based on Sm and Gd.
- 999 Eu/Eu* (ppm/ppm) is calculated using the following equation: Eu(SN)/(0.66*Sm(SN)+0.33*Tb(SN)).
- 1000 The subscript 'SN' indicates that the REE are normalized to shale composite (PAAS).
- 1001 N.D. = not determined.
- 1002
- 1003

TABLE S3. Weight of each principal component.

	eigenvalue	variance %	cumulative variance %
PC1	14.12	54.32	54.32
PC2	6.35	24.44	78.76
PC3	1.87	7.18	85.94
PC4	1.36	5.22	91.15
PC5	0.73	2.82	93.98
PC6	0.47	1.8	95.78
PC7	0.34	1.32	97.1
PC8	0.24	0.92	98.02
PC9	0.15	0.58	98.6
PC10	0.11	0.43	99.04
PC11	0.09	0.33	99.37
PC12	0.05	0.17	99.54
PC13	0.03	0.13	99.68
PC14	0.02	0.09	99.77
PC15	0.02	0.07	99.84
PC16	0.01	0.06	99.9
PC17	0.01	0.04	99.94
PC18	0.01	0.02	99.96
PC19	0	0.01	99.98
PC20	0	0.01	99.99
PC21	0	0.01	99.99
PC22	0	0	100
PC23	0	0	100
PC24	0	0	100
PC25	0	0	100
PC26	0	0	100