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Sumimary

In [32], Khovanov and Thomas constructed a categorical action of the braid group
Br,, on the derived category D(T*Fl,,) of coherent sheaves on the cotangent bundle
of the variety Fl,, of the complete flags in C”.

In this thesis, we define the generalised braid category GBr,,, we define the notion
of a skein-triangulated representation of GBrs3, give a sufficient condition for the
existence of a skein-triangulated representation of GBrs and we construct a skein
triangulated representation of GBr3 on D(T*(Fl3(i)) that generalises the Khovanov
and Thomas categorical braid action on D(T* Fl3).






Declarations

This work has not been submitted in substance for any other degree or award at this
or any other university or place of learning, nor is being submitted concurrently in
candidature for any degree or other award.

Signed W % %”‘& (candidate) Date 21/02/2020

This thesis is being submitted in partial fulfillment of the requirements for the degree
of Ph.D.

Signed M U/,% V%M& (candidate) Date 21/02/2020

This thesis is the result of my own independent work/investigation, except where
otherwise stated, and the thesis has not been edited by a third party beyond what
is permitted by Cardiff University’s Policy on the Use of Third Party Editors by
Research Degree Students. Other sources are acknowledged by explicit references.
The views expressed are my own.

Signed e [l [t (candidare) Date 210212020

I hereby give consent for my thesis, if accepted, to be available online in the Uni-
versity’s Open Access repository and for inter-library loan, and for the title and
summary to be made available to outside organisations.

21/02/2020

Signed /W/Y‘feo“ % %M& (candidate) Date

I hereby give consent for my thesis, if accepted, to be available online in the Uni-
versity’s Open Access repository and for inter-library loans after expiry of a bar on
access previously approved by the Academic Standards & Quality Committee.







A Beatrice

vii






ix

Acknowledgements

I wish to thank first my research supervisor, Timothy Logvinenko, for his advice and
his help. His enthusiasm has always been an inspiration to me.

I also wish to thank Rina Anno, for her patience and her support collaborating
with this project.

I am grateful to Marcello Bernardara, for the kindness and the advice during my
visit to the Institut de Mathématiques de Toulouse.

I am also grateful to my examiners, Ed Segal and Simon Wood, for all the tips
and ideas for writing the final version of this thesis.

A special thank you goes to Enrico Fatighenti, for always being there.

Thanks to my academic brother Chris Seaman for these years of joyful Mathe-
matics.

Thanks to Alice Cuzzucoli, Aurelio Carlucci and Claudio Onorati for the useful
discussions and their lovely support of these years.

I am grateful to Bruno Federici, Serena D’Onofrio, Ilaria D’Adamo and Luca
Minciullo: thanks to them, home has never been far away. I am grateful to Nikoleta
Glynatsi, Martina Cracco, Raffacle Grande, Geraint Palmer, Emily Williams, Jack
Noonan, Hassan Izanloo and Gerald Harris: thanks to them, I have had a new home.

Finally, thanks to my family, my friends and all the people who have a special
place in my heart: without them I wouldn’t be able to do anything.






Contents

Contents

List of Figures

1 Introduction

2 Springer resolutions and flag varieties

2.1
2.2

The nilpotent cone and its Springer resolution . . . . . . .. ... ..
Geometry of flag varieties . . . . . .. .. .. ... L.

3 Autoequivalences and braid group actions of derived categories

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

DG-categories and DG-enhancements . . . . . . . . .. ... .. ...
Fourier-Mukai kernels and their adjunction properties . . . .. . ..
Autoequivalences of derived categories . . . . . . ... ... ... ..
Spherical twists . . . . . . . . ...
Spherical functors . . . . . . ... L
P™ twists . . . . .
P™ functors . . . . . . ...
Mukai flops in derived categories . . . . . . . ... .. ... ... ..
The excess bundle formula . . . . . .. ... ...
3.10 A braid group action on D*(T*Fl,)

4 Categorical action of generalised braids

4.1
4.2
4.3
4.4
4.5
4.6

Generalised braid category . . . . . . . .. ..o
Skein-triangulated representations of GBry . . . . . ... ... ...
A skein triangulated action of GBrs on T*Fl3(i) . . . .. ... ...
A skein triangulated action of GBr3: generators . . . . . . . ... ..
A skein triangulated action of GBr3: main theorem . . . . . . . . ..
Further developments . . . . . . .. . . ... ... ... .......

Bibliography

pal

xi

xii

ot

19
20
23
27
28
30
32
35
38
42
43

47
48
50
65
66
71
76

97



1.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

List of Figures

Some generalised braids . . . . . .. ... ... L L 3
Forks . . . . 50
Merges . . . . . .. 50
(1,1)-Crossings . . . . . o v v v it 51
(1,2)- and (2,1)-crossings . . . . . . . . ..o 51
The Multifork relation . . . . . . .. . ... ... ... ... ... 51
The braid relation . . . . . . .. .. oo 52
Inverses relations . . . . . . . . .. ... 92
The pitchfork relation . . . . . . . . ... ... 52
Generators of GBry . . . . . .. 53
First and second forks . . . . . ... ... o 67
First and second merges . . . . . . . . ... Lo 68
Third and fourth forks . . . . . . ... ... ... ... 69
Third and fourth merges . . . . . . .. .. ... ... ... 69
Higher dimensional induction . . . . . .. ... ... ... ... ..... 76
The functor R12, FJR2L FUTRIZ UL 81
The double crossing functor Ty2 . . . . . . ... ... .. 96



— Chapter 1 —

Introduction

The bounded derived category of coherent sheaves can be viewed as an ultimate
cohomological invariant of an algebraic variety. The notion of the derived category,
together with the notion of a triangulated category which axiomatises it, was invented
by Grothendieck and Verdier in 1960s in their search for the natural context for the
generalisations of Serre duality and for the existence of the right adjoint of a direct
image functor [46].

In the past few decades it has become increasingly more relevant in many areas
of algebraic geometry. In particular, in 1994 Kontsevich formulated the Homologi-
cal Mirror Symmetry conjecture at the International Congress of Mathematicians in
Zirich ([33]) which was a far reaching mathematical generalisation and interpreta-
tion of a certain duality between the families of 3-dimensional Calabi-Yau varieties
observed several years earlier by string theorists. The duality was on the level of
Hodge numbers: there were pairs of Calabi-Yau 3-folds X and X’ for which:

dimHP (X, Q%) = dim H" P(X,Q9).

Kontsevich’s Homological Mirror Symmetry conjecture stated that if X and X’ are
two such dual Calabi-Yau manifolds, then the derived category of coherent sheaves
DP(Coh(X)) is equivalent to the derived Fukaya category of D*Fuk(X’) and vice
versa: DP(Coh(X)) ~ D’Fuk(X’). The powerful intuition gained from this conjec-
ture led to the discovery of many new mathematical structures, including spherical
and P"-objects and their generalisations, which lie at the heart of this thesis.

Roughly, the main point of the notion of the derived category is that working with
complexes is better than working with their (co)homologies. For example, there exist
topological spaces X, Y such that their homologies are isomorphic H.(X) = H.(Y),
but X and Y are not homotopy equivalent; while the Whitehead theorem states that
two simplicial complexes X and Y have homotopy equivalent geometric realizations
| X| and |Y] if, and only if, there exists a simplicial complex Z and simplicial maps
f:Z — X and g : Z — Y which are quasi-isomorphisms, that is they induce
isomorphisms between the homology groups H;(X), H;(Z) and H;(Y'). The notion
of derived category is a realisation of the same principle: work with complexes of
objects and formally invert the quasi-isomorphisms to identify any two complexes
with naturally isomorphic cohomologies. We refer to [44] and [15] for an introduction
to derived categories and to [34] and [27] for technical references.
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Given an abelian category A, define the category C(A) to be the category of
complexes of objects of A. For technical purposes, we first invert all the homotopy
equivalences: define the homotopy category K(A) to be the additive category whose
objects are complexes of objects in A

ot T o S ot L (e Z,d" o d" ! = 0)

and whose morphisms spaces are the quotients of those in C(A) by the subspaces of
null-homotopic maps. The derived category D(A) is the category whose objects are
the same as those of K(A), and whose morphisms A®* — B® are certain equivalence
classes fs~! of pairs (s, f)

Ao Lo

of morphisms in K (A) with s a quasi-isomorphim.

If X is a smooth quasi-projective variety we write D?(X) for the bounded de-
rived category of the abelian category Coh(X) of coherent sheaves on X, that is
DY(X) == D*(Coh(X)). The structure of D*(X) can be studied by considering its
autoequivalences and in this context categorical group actions play an important
role. A categorical group action of a group G' on D’(X) is an assignment of an
autoequivalence Fy, of D®(X) to every element g € G such that the group operation
is compatible, up to isomorphism, with the composition of functors.

The classical result by Khovanov and Thomas in [32] states there exist n-1 autoe-
quivalences T; of the derived category of the total space of the complete flag variety
in C™ which satisfy the braid relations:

T,T; = T;T; for |i — j| > 1.
TTT; =TT/, for |i — j| = 1.

In other words, that the braid group Br, acts categorically on D?(T*Fl,). Here
braids are configurations of n disjoint pieces of string with n fixed endpoints, con-
sidered up to isotopies which keep the strands disjoint.

In the work of Khovanov and Thomas, configurations of n points represent the
derived category of the cotangent space of complete flags in C™, and the cobordism
between the two configurations represents an autoequivalence of this category. In
this thesis, we generalise the Kohovanov and Thomas result in dimension 3 to a
skein-triangulated action of the category GBr3 of generalised braids on the derived
categories of the cotangent bundles of the varieties of complete and partial flags in
C3. Generalised braids are the braids whose strands are allowed to touch in a certain
way: they can join up (two at a time), continue as a multiple strand, and split apart.
Moreover, we do not distinguish any permutations of individual strands within a
multiple strand — only the multiplicity matters. Therefore, technically, we define
generalised braids as a certain kind of trivalent coloured graphs with fixed univalent
startpoints and endpoints and satisfying flow conditions.



Due to strands having multiplicity, instead of a single endpoint configuration con-
sisting of n disjoint points, they have multiple endpoint configurations corresponding
to the ordered partitions of n. This, together with the fact that such braids are no
longer necessarily invertible, implies that generalised braids form a category rather

v

Figure 1.1: Some generalised braids

than a group or a groupoid.

In Chapter 2 we describe complete and partial flag varieties as homogeneous
spaces, describe their Picard group, and give a description of T%(Fl,) as Springer
resolution of the nilpotent cone of sl,,.

In Chapter 3 we give an overview of autoequivalences of and braid group actions
on the derived categories of coherent sheaves of smooth (quasi-)projective varieties.

In Chapter 4, we define the generalised braid category GBr,,, we define the notion
of a skein-triangulated representation of GBr3, give a sufficient condition for the
existence of a skein-triangulated representation of GBr3 and we construct a skein
triangulated representation of GBr3 on D(T*(Fl3(i)) that generalises the Khovanov
and Thomas categorical braid action on D(T* Fls).






— Chapter 2 —

Springer resolutions and flag varieties

Flag varieties are interesting geometrical objects, on one hand these Fano varieties
are a natural generalisation of projective spaces and Grasmannians, on the other
hand they are the model example of the notion of homogeneous spaces.

The aim of this chapter is to give a description of flag varieties as homogeneous
spaces, understand their Picard group, give a convenient description of the total space
of the cotangent bundle of complete and partial flag varieties. For the complete flag
variety, we identify this total space with the Springer resolution of the nilpotent cone
of sl,,.

In the first section, for a complex connected Lie group G, we define the nilpo-
tent cone Nj of its Lie algebra g and the Springer resolution Ng of M. We then
define the homogeneous space G/B, and identify the Springer resolution with the
cotangent bundle 7*G/B. In the second section, we describe the Picard group of
Grassmannians and flag varieties.

2.1 The nilpotent cone and its Springer resolution

In this section we describe the Springer resolution of the nilpotent cone of a semisim-
ple Lie group following the Chapter 3 of [20].

Let G be a complex connected Lie group and let g be its Lie algebra, viewed
as the tangent space at the identity T.G. Assume G to be semisimple, i.e. g is
semisimple. Let By a Borel subgroup of G, let Ty C By be a maximal torus of G and
let Uy be the unipotent radical of By. Let moreover g, bg, hp and ng be the respective
Lie algebras of G, B,T and U.

Definition 2.1.1. Let G be a Lie group and g be its Lie algebra. The adjoint action
Adg of G on g is the differential of the adjoint action of G on itself: g € G acts on g
by the differential d(g(—)g~') : g — g. The coadjoint action Ad}, of G on g is the
differential of the coadjoint action of G on itself: g — d(g~1(—)g).

Remark 2.1.2. The differential of the adjoint action Adg : G — GL(g) is the
adjoint representation of Lie Algebras ady : g — gl(g).

Ezample 2.1.3. Let G = GL,, so that g = gl(C"). The adjoint action Adg is the
action by matrix conjugation.
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Definition 2.1.4. Define By to be the set of all Borel subalgebras of g.

Proposition 2.1.5. Let G be a Lie group and let g be its Lie algebra. The adjoint
action Adg of G on g defines a transitive action of G on By.

Proof. Section 3.1 of [20] or [12]. O
Proposition 2.1.6. The normaliser Ng(G) of a Borel subgroup B of G is B.
Proof. Lemma 3.12 of [20] or [12]. O

Remark 2.1.7. We have by = hodng and we have ng = [bg, bg]. More generally, any
b € By contains the canonical subalgebra ny = [b, b] which consists of all ad-nilpotent
elements of b. Under the adjoint action of G, if bg is sent to some b € By, then ng
is sent to ng, but ho can be sent to any of the Cartan subalgebras h C b.

Definition 2.1.8. An element x € g is ad-nilpotent if ad, = 0 for some n € N.

Remark 2.1.9. If g = sl, then x € g is ad-nilpotent in the sense of Definition 2.1.8
if and only if its matriz is nilpotent.

Definition 2.1.10. Define the nilpotent cone Ny of g to be the set of all ad-nilpotent
elements of g.

Proposition 2.1.11. The set Ny has a natural structure of a quasi-projective variety:
it is a closed subvariety of g stable under Adg and C* actions, i.e. a cone variety
singular at the origin. The set By has the structure of a smooth projective variety:
it is the closed subvariety of the Grassmannian Gr(dim(b),g) formed by all solvable
Lie subalgebras of g .

Proof. Section 3.1.6 of [20]. O

Example 2.1.12. Let g = sly generated as Lie algebra by the elements

0 1 00 1 0
=(o) (o) oY) e
subject to the relations
[x,y]=h [h,x] =22 [h,y] =—2y.

Then the nilpotent cone is the space

Ng = {(Z _ba> € sl

which is a quadratic cone in C3. Set

me{(o 2)f mane {0

—a? —bc = 0} : (2.2)
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their respective Lie algebras by and hg consist of the traceless matrices which are
upper triangular and diagonal, respectively. Hence, in the language of Example 77:

bo = <$ah>v ho = <h>7 and ng= <£L’>,

and we see explicitly the decomposition by = hg ® ng of Remark 2.1.7.

Denote by {e1, ea} the standard basis of C2. We can describe by as the traceless
maps C? — C? which preserve (e), ho as the traceless maps that preserve both (e)
and (es), and ng as the maps which send the whole C? to (e1), and (e;) to zero.

Since all b € By are conjugate to by, each b € By is the set of all traceless maps
preserving a line in C?, whence By is isomorphic to P!

Definition 2.1.13. For any Borel subgroup B C G, define G/B to be the set of all
the left cosets {xB | z € G}.

Remark 2.1.14. By Propositions 2.1.5 and 2.1.6, the assignment
g+ g -adg bo

gives a bijection

G/By = By. (2.3)

It can be shown that the G/By admits a natural structure of a smooth projective

variety and that the bijection (2.3) is a G-equivariant isomorphism of varieties, see
section 23.3 of [29] or [12].

Definition 2.1.15. Define
g={(z,b) e gx By |z € b}, (2.4)

Ny = {(z,b) € Ny x By | = € b}. (2.5)

and let the two maps

N,
K T
Ng/ \Bg.

(2.6)
be the corresponding natural projections.
Definition 2.1.16. The Springer morphism is the map
i Ny — Nj. (2.7)

Remark 2.1.17. Consider the trivial vector bundle over By with fibers Ny. We can
view m: Ny — By as its subbundle whose fiber at any point b € By is n.

Remark 2.1.18. /% is a smooth variety since it is a vector bundle over By.
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Example 2.1.19. If g = sly as in example 2.1.12, then 7 : /\7g — By is a line bundle
over P: a point b € By corresponds to the choice of 1-dimensional subspace | C C?
and the corresponding fiber of 7 consists of the line n € Nj of all nilpotent operators
C? — C? whose image is contained in [.

Definition 2.1.20. Define b to be the annihilator of b, i.e. b+ = {x € g* | z(b) =
0}.

Definition 2.1.21. Define G xp, bé to be the quotient of G x b& by By acting on
G by right multiplication and on bé‘ by the coadjoint action Adp .

Proposition 2.1.22. There is an isomorphism

T*By ~ G xp, by (2.8)
given by the map dual to the infinitesimal g-action map G/By x g — T(G/By).
Proof. Proposition 1.4.11 of [20]. O

Lemma 2.1.23. For any b € By, the identification g = g* provided by the Killing
form identifies b with ny.

Proof. Section 8.1 of [28]. O

We can embed G x g, bé into the trivial vector bundle G/By x g* over G/Bjy:
¢ (lg,a]) = (lg], 9 -adc ).
The image of G Xp bé under this embedding is the subbundle
{(b,a) € G/By x g* | a € b*}.
We thus have the following commutative diagram

G XB bd‘
[
{(b,a) |a € bt} —— G/B x g*
Lemma 2.1.23l~ Killing form JN

Ny, G/Bxg
Thus, we obtain

Proposition 2.1.24. There exists a G-equivariant isomorphism of vector bundles
over G/By:
N; 2 G xpbt. (2.9)
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Proof. Lemma 3.3.2 of [20] or [12]. O
Corollary 2.1.25. There is a natural isomorphism ./\~/'g =T7By.

Remark 2.1.26. By Corollary 2.1.25 we can think of the Springer resolution as a
map T*By — Nj.

2.2 Geometry of flag varieties

In this section we give a description of the Picard groups of flag varieties via Schubert
calculus, following [14]. We begin with some preliminaries on Bruhat decompositions
following [?]. Let G be a connected complex reductive algebraic group.

Definition 2.2.1. A parabolic subgroup P is a subgroup of G that contains a Borel
subgroup B.

Proposition 2.2.2. A subgroup P C G is parabolic if and only if G/ P is a projective
variety.

Proof. See [12] or [29]. O

Definition 2.2.3. Let B C G a Borel subgroup and T' C B a maximal torus. The
Weyl group of the Borel pair (T, B) is the group W := Ng(T')/T.

Definition 2.2.4. The Bruhat decomposition of G is the decomposition

G= || BwB (2.10)
weWw

as a disjoint union of double cosets of B parameterized by the elements of W.
More generally, any parabolic subgroup B C Pj defines the generalised Bruhat
decomposition
G= || Buwp (2.11)
weW /W

where Wy = {[v] € W | v € Py} and W/Wj is the set of right cosets of W in W.
See [12] and [29] for further details.

The double cosets of the Bruhat decomposition descend to the left B-cosets in the
right coset quotients G/B and G/P;. This gives the decomposition G/B and G/P;
into the B-orbits under the action of B by left multiplication. These are Schubert
cells, and their closures are Schubert varieties:

Definition 2.2.5. For any w € W, the corresponding Schubert varieties are

X, =[BwB]C G/B, and X/ =[BwPj]c G/Py.
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Definition 2.2.6. Define the Bruhat order on W by

w<w & Xy C Xy (2.12)
Define the Bruhat order on Wj by

w<w e X)cx/. (2.13)
Ezxample 2.2.7. Let G = GL3(C) and let 7" and B be the subgroups of the diagonal

and the upper triangular matrices, respectively:

T:

S O ¥

0 0
* 0 and B =
0 =x*

S O ¥

*
*
0

¥ % ¥

The normaliser Ng(T') consists of all the matrices such that the induced change of
basis keeps all the diagonal matrices diagonal. Up to scaling, any such change of
basis is a permutation of basis vectors. It follows that

W := Ng(T)/T = Ss.

Moreover, we have the standard splitting W < Ng(T') given by the permutation
matrices, which permute the standard basis eq, e, e3 of C3.
The upper triangular matrices are the matrices which preserve the standard flag

0OCE,CEy,C E;3=C3

where E; = (eq,...,e;). Hence any right coset of B consists of all the matrices which
send the standard flag to a specific flag

0CViCcVycC Va=C3

This identifies the space G/B with the flag variety Fl3 of complete flags in C3.
There are two parabolic subgroups of G containing B:

* % % * % %
P = 0 * x and P = Xk ok
0 *x =x 0 0 =x

Each P; consists of all matrices which preserve the subspace F;. Its right cosets
consist of the matrices which send E; to a specific i-dimensional subspace of C3.
It follows that the homogeneous spaces G/P; and G/P, can be identified with the
varieties P? and P2V of lines and planes in C?, respectively.

The Bruhat decomposition of a matrix A € G L3 corresponds to its reduction
to column echelon form. Multiplication by an upper triangular matrix on the right
is equivalent to performing a sequence of column operations where we only add to
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each column a linear combination of the columns lying to the left of it. Hence in the
Bruhat decomposition

M =U,oU,

the (inverse of the) matrix Us encodes the column operations, the (inverse of the)
matrix o encodes the permutation of the columns, and the matrix U; is the resulting
column echelon form of M.

Correspondingly, in G/ B the Schubert cell corresponding to o € W consists of all
the points which can be represented by a matrix obtained by permuting the columns
of an upper triangular matrix by o. This translates naturally to the condition on
the corresponding flag in C3. For example, the cell Cio3 which corresponds to the
permutation (123) consists of the points representable by the matrix type

(2.14)

* K ¥
o O %
S ¥ ¥

In terms of the corresponding flag 0 C V; C Vo C C3?, the shape of the first column
is equivalent to the condition

Vl ¢ E27

and then the shape of the second column is determined by the condition

FEi C Vs

The shape of the third column is determined by the first two.

By the first condition V; # E7, thus we can replace the second by Vo =V} & Ej.
Thus Cia3 ~ C? and can be identified with P? of lines in C3 with the line V; C E»
removed. The Schubert variety Xio3 is the closure of Cio3. It is the subvariety
E; C V5 of Fl3. Again, if V] # Ep, we have Vo = V| @ Eq, but if V3 = E; then we
can take any Vs containing Fy. Thus, X935 is the blowup of P? at the point V; = E;.

Similarly, we have:
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o € S3 | Matrix type Schubert cell C, Schubert variety X,
* k%
Id 0 x = pt:Vleth:Eg pt:Vlel,Vg:Eg
0 0 =
* k k
(12) * 0 x* C11V1#E1,‘/2:E2 ]P)lt‘/g:EQ
0 0 =
x k%
(23) 0 *x = (CIZV1:E1,‘/27£E2 ]P)IZV1:E1
0 % 0
e P2 bl t Vi = B
(132) 0 x| |C2:Vi¢ By, Vo=Vi®E, own up at ¥i = L1
E,CcV,
* 0 0
e P2V bl t Vo = Ey:
(123) « % 0] | C2:Vi=EanVa, By ¢ Vs own up ab vz = Bz
Vi C Ey
0 %« 0
% % %
(13) * *x 0 (CSZ V1 ¢ EQ,El ¢ ‘/2 Flg
* 0 0

Thus the Bruhat order on the Schubert subvarieties of Flg is

X3 =Fl3

The parabolic subgroups P; and P, of G intersect W at subgroups W; = ((12))
and Wy = ((23). The generalised Bruhat decompositions of G for P; and P> merge
the Bruhat cells corresponding to the elements of S3 which get identified in W/W;

and W/Ws, respectively. Thus:

o € 53/(23) Schubert cell C} Schubert variety X}
1d, (23) pt: Vi =E; pt: Vi = By

(12),(132) | C': Vi # Ey, Vi C B Pl: V) C Es

(123), (13) C: Vi ¢ By P?

o€ 853/(12) Schubert cell C2 Schubert variety X2
Id, (12) pt: Vo = By pt: Vo = By

(23), (132) C': Vo # Ey, By C Vs Pl: By C Vs

(123), (13) CZ: B ¢ Vs P2V
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Grassmanians

For this section we follow [14]. Let G = GL,, T and B be the standard torus and
the standard Borel subgroup of GL,, consisting of diagonal and the upper triangular
matrices, respectively. The latter are the matrices which preserve the standard flag

OcEFiC---CE,1CE,=C"
obtained from the standard basis {e,...,e,} of C™.

Definition 2.2.8. For any 0 < d < n define the subgroup P; C GL,, by
Py = {A e GL, | A(Ed) - Ed} .

The subgroups Py, ..., P,_1 are the maximal parabolic subgroups containing B.
Any two matrices which send F,; to the same d-dimensional subspace V; € C" differ
by an element of Py, so the right cosets of P; are the sets of all matrices which send
E, to the same V. Thus the homogeneous space G /P, can be identified with:

Definition 2.2.9. The Grassmanian Gr(d,n) is the set of vector subspaces of C"
of dimension d:

Gr(d,n) = {Vg C C" | dim(Vy) = d} .
The following gives Gr(d,n) natural structure of a smooth projective variety:

Definition 2.2.10. The Pliicker embedding is the map

d
Gr(d,n) — P(A\ C")

defined by
(U1, .. o) = [U1 Ao Ay

The intersection of P; with the Weyl group W = S,, is the subgroup S3x S,_q4 C
Sy, which consists of all the permutations in \S,, which preserve the subset {1,...,d}.
The right cosets of Sy x S,,_4 in S,, consist therefore of all the permutations which
send {1,...,d} to some fixed subset of {1,...,n}. We therefore identify the elements
of W/(P;NW), the set which indexes the generalised Bruhat cells of Py, with size d
subsets
I={i1<ig<---<igyC{l,...,n}.

Any o € S,, which lies in such I sends E,; to the subspace
E[: <€j17""€jd>‘ (215)

The corresponding Schubert cell Cf is the orbit of E; under the left action of B, and
1
hence the orbit of E; under the action of its unipotent subgroup U ~ Cz""=1) The
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stabiliser Staby(Er) are the matrices with u;; = 0if j € I and ¢ ¢ I. This gives
S 4y, — k conditions in total, whence Cj ~ U/Staby (Ey) ~ CXZ %k,

Any I as above is uniquely determined by dim(E; N Ej) for all the subspaces E;
of the standard flag. Since the left action of B preserves the standard flag, we have

Cr={Vae Gr(d,n) | dim(VgNE;) =a; forall 1 <j<n},

where a; is the number of 4;, with i, < j. The closure of V3N E; = a; in Gr(d,n) is
VaN E; > aj. Since a;, = k, the Schubert variety X7, the closure of Cy, is given by

Xr={VaeGr(d,n) | dim(VzNE;,) =k for all i, € I}.

Since C7 is irreducible, X7 is an irreducible subvariety of Gr(d, n).

Ezample 2.2.11. Since the condition dim(VyNE,) = d implies E; = Vj, the Schubert
variety Si,__ g is the point Ey € Gr(d,n).

Ezample 2.2.12. Since by dimension considerations dim(Vy N Ej) < d + j — n, the
Schubert variety S,,_g+1,...n is the whole of Grassmanian Gr(d,n).

Ezample 2.2.13. The Schubert variety X,,_qn,—d+2..n consists of those V; whose
intersection with E,_,4 is non-zero, i.e. whose projection onto E,_411,. ., is non-
invertible. Thus X,,_g,—a+2,. . is the hyperplane section p,_q41,.., = 0 of the
Pliicker embedding of Gr(d,n). On the other hand, dim(Vy N E,_44;) < j so if
ViNE,_q =0, we must have dim(Vy N Ey,_q4;5) = j, i.e. Vg € Cr—g41,... n. Thus

GT(d, n) = Cn—d+1,...,n H Xn—d,n—d—l—Q,...,n- (216)

Proposition 2.2.14. The Picard group Pic(Gr(d,n) of the Grasmannian Gr(d,n)
is freely generated by O(Xyp—_dn—d+2,..n)-

Proof. This follows from the decomposition (2.16) given that Cj,_g+1,. n = Cd(n—d)

and X,,_4,—d+2,..n is irreducible. O
More generally we have

Proposition 2.2.15. The classes of the Schubert varieties X give an additive basis
of the cohomology ring H*(Gr(d,n),Z).

Flag varieties

As before, let G = GL,, let T and B be the subgroups of diagonal and the upper
triangular matrices, and let Fo be the standard flag

OcCEFiC---CE,1CE,=C"

obtained from the standard basis {ey,...,e,} of C".
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Definition 2.2.16. Let A = (\q,...,\y,) be an ordered partition of n: > \; = n.
Define Py C G to be the subgroup of all the matrices which preserve the partial
coordinate flag E7:

0C Ex, CExj4r, C... CE\4.qn, =C". (2.17)

It is the subgroup of block upper triangular matrices with diagonal blocks of sizes

Alseeoy A

The groups Py are the standard parabolic groups of G. Any two matrices which
send E to the same partial flag V;* differ by an element of Py, so the right cosets
of Py are sets of all matrices which send E to some fixed V). This identifies the
homogeneous space G /Py with:

Definition 2.2.17. The partial flag variety F1,(\) is the set of all partial flags
0CVy, CTVaygrg Cooo CVaygogn, =C" (2.18)
with dim(V;) = 1.

The following gives F1,,(\) the structure of a smooth projective variety of dimen-
sion » ;5 A
k
ix: Flo(A) = [ Gru + -+ + Ain). (2.19)
i=1

Ezample 2.2.18. Fl,(1,n — 1) is the projective space P"~! of lines in C".

Ezample 2.2.19. Fl,(n — 1, 1) is the dual projective space P(=1DV of hyperplanes in
C".

Ezample 2.2.20. F1(d,n — d) is the Grassmanian Gr(d,n).

Ezample 2.2.21. F1(1,n — 2,1) is the incidence variety of lines V; contained in the
hyperplanes V,,_1 of C™. It is a projective subvariety of P*~! x P~V carved out by
the equation

T1y1 + o Ty =0

where x; and y; are the standard i-th coordinate respectively of C™ and C™*.

Remark 2.2.22. For every partition A the quotient map G/B — G/ Py is the for-
getful morphism
7 : Fl, — FL,(\) (2.20)

which sends each complete flag to its corresponding partial subflag. It is therefore
a flat fibration whose fibers are isomorphic to the partial flag space of the flag type
complementary to .
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The intersection of Py with the Weyl group W = S, is the subgroup [], Sy, of
all the permutations which respect the partition A. Its right cosets can therefore
be identified with partitions of the set {1,...,n} into the subsets of size ;. More
precisely, define Sﬁ to be the subset of S,, consisting of permutations which are order
preserving on each block of the partition . The permutations ¢ € S} uniquely
represent all the cosets in S,/ [[, Sh,-

For each o € ) the corresponding Schubert cell C,, is the B-orbit of the partial
flag o(E}), where o(E}) = <eo(1), e 7eg(k)>. The Schubert variety X, is its Zariski
closure.

Example 2.2.23. The Schubert variety Xiq is the single point F, € Fl,,.

Ezample 2.2.24. Let p be the order reversing permutation (n n — 1 ... 1). The
Schubert variety X, is the whole of FL,.

Ezample 2.2.25. Let 7; be the transposition (¢ i+1). The Schubert variety X, C Fl,
consists of the flags V4, with all V; = E; except for V;. Thus it can be identified with
P! of choices of i-dimensional space V; with E;_y C W; C Ei41.

Example 2.2.26. The Schubert variety S, is a divisor in FI,,()).

Example 2.2.27. Let A be a partition of n and let o € Sfl‘. The inverse image of the
Schubert variety X, C Fl,(\) under the map

7 : Fl, — Fl,(\)

is the Schubert variety Sy C Fl,,, where ¢ is the Bruhat maximal element of [ [, Sy,,
i.e. the product of the order reversing permutations. This allows to reduce some
questions about partial flag varieties to the study of complete flag varieties.

Proposition 2.2.28. The Picard group Pic(F1) of the complete flag variety Fl is
freely generated by the line bundles of the Schubert divisors X pr, Xpry, .., Xpr,-

Proof. Proposition 1.4.1 of [14]. O
More generally:

Proposition 2.2.29. Let A be a partition of n. The classes of Schubert varieties X,
give an additive basis of the cohomology ring H*(Fl,,(\),Z).

Remark 2.2.30. A nilpotent operator a preserving the flag 0 C Vi C --- C C™ has
to satisfy the condition

a(‘/z) C ‘/1'717

therefore Proposition 2.1.22 and Remark 2.1.23 give us the following description of
the total space of T" Fl,,:

T Fl, = {(Va,a) | a: C* = C™ a(V;) C Vi1}.
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We use the following pictorial shorthand to denote such pairs (Ve, a):

AVAVAYE

0 c WV C Vi1 C C™.

Analogously (see section 1.2 of [20]), the total space of T" Fl,(\) can be described
as the space of pairs

«

* g
T Fl,(\) =< 0 C Vxlr\./\VAk L, ccr dim(VAi):Z)\j
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— Chapter 3 —

Autoequivalences and braid group
actions of derived categories

In this chapter, we focus on equivalences and autoequivalences of derived categories
of coherent sheaves of reduced schemes of finite type and their relations with the
braid groups.

Braid groups actions on derived categories occur in many different contexts.

In this chapter, we describe the braid group action arising from an A,, configu-
ration of spherical objects on a smooth projective variety constructed by Seidel and
Thomas in [40] and the braid group action on the cotangent bundle of complete flag
variety constructed by Khovanov and Thomas in [32].

In this thesis we extend the latter to a generalised braid category action on the
derived categories of coherent sheaves of the cotangent bundle of partial flag varieties;
in Chapter 4 we will formulate this statement precisely and we prove it in its first
non-trivial instance.

The first section of this chapter is a quick introduction to the language of DG-
categories, twisted complexes and DG-enhancements.

In the second section, we introduce the notion of Fourier-Mukai transforms and
give some results on standard kernels and the adjunction unit and counit maps
between them.

In the third section, we introduce autoequivalences of bounded derived categories
of coherent sheaves over smooth projective varieties, discuss some examples and give
the results of Bondal and Orlov for the case of Fano and general type varieties in
[11].

The fourth section is about the spherical objects and their twists: introduced by
Seidel and Thomas they were the first example of genuinely derived autoequivalences
of the derived category of coherent sheaves and they could be used to contract a braid
group categorical action.

In section five we discuss a generalisation of the spherical object and their twists.
Anno and Logvinenko in [6] introduced the notion of spherical functors. Given a
scheme X, any £ € D®(X) can be considered as the functor (=) ® £ : D°(pt) —
DP(X), spherical functors are analogues of spherical objects where the point is re-
placed with a scheme Z. A spherical functor F : D?(Z) — DP(X) induces two
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autoequivalences: the twists Tr of D’(X) and the cotwist Cr of Db(X).

In section six, we discuss the other generalisation of spherical objects, the P"-
objects due to Huybrechts and Thomas in [30].

Section seven covers the theory of P"-functors which unifies and generalises the
notion of spherical functors and P™-objects due to Anno and Logvinenko in |7].

In section eight we focus on Mukai Flops in derived categories and on the example
of the flop {T*P?" --» T*P?} which will appear in the generalised braid action we
construct in the case n = 3.

Section 9 contains some technical results on the excess bundle formula which com-
putes the derived tensor product of two structure sheaves of two smooth subvarieties
of a smooth variety.

In section ten, we define categorical group actions and we describe the Khovanov-
Thomas braid group action on the total space of the cotangent bundle of a complete
flag variety.

3.1 DG-categories and DG-enhancements

In this section we introduce DG-categories and DG-enhancements of triangulated
categories, following [6].
We give the basic definitions and we will refer to [45] and [6] for further details.
Let for all this section R be a commutative ring.

Definition 3.1.1. A DG-category is a category C such that for every two objects
A, B € Ob(C) the morphism space Homg(A, B) is a complex of R-modules and such
that the composition map

Hom¢ (B, C) ® Homg (A, B) — Homg (A, C) (3.1)
is map of complexes of R-modules.

Definition 3.1.2. Let C be a DG-category, the homotopy category HY(C) is the
category whose objects are the objects of C and whose morphisms are given by
Hom o (c) (A, B) = H(Homg (A, B)).

Ezxample 3.1.3. The DG-category Mod— R is the category of complexes of R-modules
with morphisms complex Homy;,q_r(M, N) defined by

Homyyoq_p(M, N) = @ Homp (M;, N;) (3.2)
i+j=n

and the differential which sends f € Homy;,q_p(M, N) to

df =dno f—(=1)"fody. (3.3)
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Definition 3.1.4. Let C be a DG-category. The opposite DG-category CPP is DG-
category whose objects are those of C, Whose morphisms are

Hompopp (A, B) = Homg (B, A)
with the composition defined for every ¢ € Homeorr (A, B) and ¢ € Homeorr (B, C)
) oomn ¢ = (_1)deg(¢)deg(¢)¢ oc 1.
Definition 3.1.5. Let C; and Cs be two DG-categories. A DG-functor F
F:C—C (3.4)

is a R-linear functor which commutes with the differentials of the morphism com-
plexes and preserves the grading.

A natural transformation ¢ : F; — F5 of degree n between two DG-functors from
C1 to Cy is a collection of morphisms

{t(A) € Hom, (F1(A), F2<A))}AeOb(C1)

such that for every morphism ¢ € Homg, (A, B) the following equivalence hold
t(B) o Fi(¢) = (=1)""Fy(¢) o t(B).

Example 3.1.6. Let C; and Cy be two DG-categories. The DG-category DG —
Fun(Cy1,Cs) is the category whose objects are the DG-functor from C; to Cy and
whose morphism complexes have as nth graded part all the natural transformations
of degree n.

The grading is determined by the degree of the natural transformations, while
the differentials and the composition are defined in Cy for each A € Ob(Cy).

Ezample 3.1.7. Let C be a DG-category. The category Mod — C is the DG-category
DG — Fun(C°P?,Mod — R): its objects are called (right) C—modules.

Definition 3.1.8. Let C be a DG-category. A twisted complex (A®, ¢e o) over C is
a collection

(A*, dose) = A{Ai, bij : Ai = A} sen) (3.5)
where A; € Ob(C), A; # 0 for only a finite number of indexes and
¢, € Homg 7+ (4;, 4j)

satisfying
(—1)dei; + Z Pk © Gi = 0.
k
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Remark 3.1.9. The twisted complexes over a DG-category C have a natural structure
of a DG-category with morphism complexes defined by

Hom?((A®, ¢ee), (B*,%es)) = Lgiym—n—p Homi (A, By,) (3.6)

with the differential which sends every o € Hom¢(Ay, Bp,) to

do = (—1)"dea + Z(?/)mk oa— (=1)T" "o ¢, ;. (3.7)
keZ
Definition 3.1.10. Let C be a DG-category, let (A®, ¢e o) be a twisted complex over
C and let ®;A;[—i] be the C-module where we implicitly use the Yoneda embedding
to consider A; as objects in Mod — C.
The convolution {A®, ¢e e} 0f (A®, pee) is the C-module &;A;[—i] with the mod-
ified differential
dconv = dold + Z ¢n,m (38)

nmezZ

Definition 3.1.11. A DG-category C is pretriangulated if its image under the
Yoneda embedding is a triangulated subcategory of H'(Mod — C).

Definition 3.1.12. A functor F' : (1 — C between DG-categories is a quasi-
equivalence if induces quasi-isomorphisms on morphism complexes and if the functor
HO(F)

HYF): H(C)) — H°(Co)

is an equivalence.

Definition 3.1.13. An enhancement for a triangulated category D is a couple (C, 0),
where C is a pretriangulated DG-category and

0:H°C) =T (3.9)

is an exact equivalence.
Two enhancements (Ci,6;) and (C2,62) are equivalent if there exists a quasi-
equivalence
F: Cl — CQ.

Definition 3.1.14. Let Ho(DG — Cat) be the localisation of the category DG —Cat
of small DG-categories by quasi-equivalences constructed using Tabuada’s model
structure on DG — Cat (See [43] for more details). Let C; and Co two DG-categories,

define the set [C1,Cs] of quasi-functors to be the set of morphism from C; to Cy in
Ho(DG — Cat).

Remark 3.1.15. The set [C1,Co| is naturally bijective to the set of isomorphism
classes in D" (Cy —Ca), the derived category of right quasi-representable bimodules.
The standard DG-enhancements of the latter can thus be described as a DG-category
of quasi-functors C; — Co, viewed as RHom(Cy,C2).
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In our work we will always work in the context of Fourier-Mukai transforms. By a
fundamental result of Toén ([|45]), if C; and Ca are Karoubi-complete enhancements
of D’(X) and D’(Y), where X and Y are separated schemes of finite type over
a field, then H°(RHom(C1,C2)) is isomorphic to the subcategory of DP(X x Y)
formed by Fourier-Mukai kernels of functors D?(X) — D?(Y). Thus we can work
with Fourier-Mukai kernels as DG-enhancements of quasi-functors.

3.2 Fourier-Mukai kernels and their adjunction
properties
In this section we introduce Fourier-Mukai transforms and their behaviour under
adjunction; as explained at the end of section 3.1, Fourier-Mukai trasforms are the
DG-enhanceable functors between the derived categories of coherent sheaves over
separated schemes of finite type.
We refer to [27] and [7] for a more general treatment.

Through this section let k be an algebraically closed fild and let Dgeon(—) the
unbounded derived category of quasi-coherent sheaves.

Definition 3.2.1. Let X and Y be two separated schemes of finite type over k and
let £ € Dyeon(X xY'). The Fourier-Mukai transform ® g with kernel E is the functor

‘I’E : choh(X) — choh(Y)

defined as
Pp(—) =7y (E@7x(—-))

where mx and 7wy are the natural projections X x Y — X, Y.

Fourier-Mukai kernels admit the following composition operation:

Definition 3.2.2. Let X,Y,Z be separated schemes of finite type over k. Let
E1 € Dyeon(X x YY) and let Ey € Dyeop(Y x Z).
The composition of Fourier-Mukai kernels Fq x Es is defined as
Eox By = T3, (159 F1 ® mis ) € DY(X x Z) (3.10)
where 712, T3 and w13 are the natural projections

X xYxZ
Vl”l?, 28
XxY X xZ Y xZ

The composition of Fourier-Mukai kernels induces the composition of the corre-
sponding Fourier-Mukai transforms
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Proposition 3.2.3. Let X,Y, Z be separated schemes of finite type over k and let
Ei € Dycon(X XY) and Eo € Dyeon (Y x Z). Then we have the following isomorphism

q)EQ o q)El = (I)EQ*El (311)

Proof. Section 5.1 of [27] or [35]. O

In this thesis we always work with certain standard Fourier-Mukai kernels for
direct image, inverse image, twisted inverse image and tensor product functors. The
following results present some convenient expressions for the kernels involved: al-
though we prove some of them in Chapter 4 here we refer to section 2.6 of [7], since
the discussion is more systematic and more general.

Lemma 3.2.4 (Standard kernels). Let X and Y be separated schemes of finite type
over k and let f: X =Y be a map of separated schemes of finite type over k.

1. For any E € D*(X), then the Fourier-Mukai kernel induces functor E ® —

Tg = 15E ® AOx e D'(X x X). (3.12)

2. The Fourier-Mukai kernel associated to the functor f. is the object

F, = (Idx x f)«A,Ox € D’(X xY) (3.13)

8. The Fourier-Mukai kernel associated to the functor f* is the object

F* = (Idy x f)*A,Oy € D(Y x X) (3.14)

4. If f is perfect, the Fourier-Mukai kernel associated to the functor f' is the
object
F' = (Idy x f)'A.Oy € D'(Y x X) (3.15)

5. If f is perfect, the Fourier-Mukai kernel associated to the functor fi = f.(— ®
f'(Oy)) is the object

Fy = (Idx x f{iA.Ox € D’(X xY) (3.16)

Proof. Lemma 2.18 in [7]. O

Lemma 3.2.5. Let f : X' — X and g : Y/ — Y be maps of separated schemes
of finite type over k. Let V. € DY(X) and W € D*(Y) and K; € D*(X x Y),
Ko € DY(X' x Y"), then we have the following results:

1. The following isomorphism is functorial in Ko

(f X g)*KQ = G* *KQ * F*. (317)
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2. The following isomorphism is functorial in K

(f X g)*Kl ~ G* *Kl *F*. (318)

8. If f and g are perfect maps, then the following isomorphism is functorial in K

(fxg9)KI =G +»K,xF (3.19)

4. If f and g are perfect maps, then the following isomorphism is functorial in Ko

(f x K1 = G x K| x F' (3.20)

5. The following isomorphism is functorial in Ky

VW @ Ky 2 Ty K1« Ty (3.21)

Proof. Lemma 2.19 in |7]. O

In general the functor from Fourier-Mukai kernels to Fourier-Mukai transforms
is neither full neither faithful, but for the Counit of the adjunction

e:PLods —1d (3.22)
it is possible to choose naturally a morphism
e: K — Op

such that it will be lifted to .
The following Lemma is a powerful tool for understanding adjunction unit and
counit at level of Fourier-Mukai kernels.

Lemma 3.2.6. Let f: X — Y be a map of separated schemes of finite type over a
field.

1. There is an isomorphism
F*x F, ~ (Idx xf)*(1d, f).Ox (3.23)
which identifies the adjunction counit F* x F, 5 1dx with the morphism
(Idx x f)*(Id, f)«Ox — AOx (3.24)
which is the base change map for the commutative square:

X:X

JA J(Id,f) (3.25)

X x X 9xxL v oy
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2. There is an isomorphism

F* % F, ~ (Idx x f)*(f x Idy)*A,Oy (3.26)
which identifies the adjunction counit F* % F £ 1dx with the composition

(IdX Xf)*(f X Idy)*A*Oy 1) (Idx Xf)*(Id, f)*OX — i*OXxYX — A*OX
(3.27)
where the first map is the base change isomorphism for the Tor-independent
fiber square at the bottom of the following commutative diagram.:

X —25 Xxy X — 5 XxX
m Idx x f
x Dy iy (3.28)
f FxIdy
N )

Y ————— Y xY,

the second map is the base change map for its top fiber square, and the third
map is the natural restriction of sheaves which is the image under i, of the
adgunction unit Oxx, x = AA*Oxxy x.

. We have an isomorphism

Fo«F* ~ A, f,Ox (3.29)
which identifies the adjunction unit Idy < Fy % F* with the morphism

AOy = A f.Ox (3.30)
which is the image under A, of the adjunction unit for (f*, fx).

. If f is perfect and proper, we have an isomorphism

FoxF' ~ A, f.f' Oy (3.31)
which identifies the adjunction counit F, x F* £ 1dy with the morphism

A fof Oy — ALOy (3.32)
which is the image under A, of the adjunction counit for (f, ).

. If f is perfect and proper, we have an isomorphism

F'% F, ~ (Idx x f)'(Id, ).Ox (3.33)
which identifies the adjunction unit Idx < F' % F, with the morphism
AOx — (Idx xf)'(1d, f).Ox (3.34)

which is the twisted base change map A, 1d' — (Idx x f)'(Id, f). for the com-
mutative square (3.25).



3.3. Autoequivalences of derived categories 27

6. If f is perfect and proper, we have an isomorphism
F'% F, ~ (Idx x f)'(f x Idy)*A,Oy (3.35)
which identifies the adjunction unit Idx < F' * Fy, with the composition

AOx — i miOx — (Idx xf)'(1d, f).Ox = Idx xf)'(f x Idy)*A,Oy
(3.36)
where the first map is the image under i, of the adjunction counit A*Alwll Ox —
W!IOX, the second map is the twisted base change map for the top fiber square
in (3.28), and the third map is the base change isomorphism for the Tor-
independent bottom fiber square in (3.28).

Proof. Proposition 2.20 in [7]. O

3.3 Autoequivalences of derived categories

In order to study a mathematical object, one can study its decomposition into sub-
objects or study the transformations which preserve its structure. In the context
of derived categories this means either studying semiorthogonal decompositions or
studying derived autoequivalences.

We focus on the latter.

The group Aut(DP(X)) of all isomorphism classes of autoequivalences of D?(X)
can be used to investigate the structure of D?(X).

The following examples of autoequivalences are usually referred to as "standard"
as they are either induced by autoequivalences of the abelian category Coh(X) or
are the shift functors which every triangulated category is equipped with.

Ezample 3.3.1. Any automorphism f : X = X induces the autoequivalence
fe : D*(X) = D(X)
and its inverse is given by f*: D?(X) = D(X).
Example 3.3.2. For every line bundle £ on X the functor
L® (-):D"(X) — D°(X)

is an autoequivalence with inverse functor £~ @ (—).

Ezample 3.3.3. The shift functor [n] is an autoequivalence of D?(X) for every integer
number; its inverse is the shift functor [—n].

Do there exist any other autoequivalences of the bounded derived category of
coherent sheaves on a smooth projective variety?

These would be genuinely derived in the sense of interacting non-trivially with
the triangulated structure od D°(X).

The following Theorem gives an answer when X is a Fano variety or it is a variety
of general type.
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Proposition 3.3.4 (Bondal, Orlov). Let X be a smooth projective variety with
ample (anti)-canonical bundle. The group of autoequivalences Aut(D®(X)) of D®(X)
1s generated by

1. Derived pushforwards f. of automorphisms f of X.
2. Shift functors [n](—), for n € Z.
3. Twists L ® — by line bundles, L € Pic(X).

Thus
Aut(D*(X)) = Z x (Aut(X) x Pic(X)). (3.37)

Proof. Section 4.2 of [27] or [11]. O

When the canonical bundle is neither ample or anti-ample, for example in the
Calabi-Yau case, the group Aut(D’(X)) has a richer structure.

3.4 Spherical twists

Consider a compact symplectic manifold (M, 8) and a Lagrangian sphere S inside M.
In [39] Seidel associated to such S a symplectic automorphism called the generalised
Dehn twist along S.

In [40], Seidel and Thomas introduced the spherical twists, which are the ana-
logues of the generalised Dehn twist under Homological Mirror Symmetry; these
provided an early example of genuinely derived autoequivalences and were used to
construct an example of braid group action.

For this section we refer to [40] and [27].

Let X be smooth projective variety and let D?(X) be the full subcategory of the
derived category of Ox-modules consisting of complexes with bounded and coherent
cohomology.

Definition 3.4.1. An object £ in D*(X) is called spherical if:

C, ifr=0,dim(X),

1. Hom/, £,€) =
D(X)( ) {0, otherwise.

2. EQuwx = &, where wy is the canonical bundle.

Definition 3.4.2. Given two objects F € D(X) and G € D(Y') we define

FRG=nF®mG. (3.38)
Notice that the a bifunctor
(=) ® m5(—) : Coh(X) x Coh(Y) — Coh(X xY)

is exact in each of its two arguments.
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Definition 3.4.3. Let £ € D’(X) over the scheme X and let A : X — X x X be
the diagonal embedding. The twist functor of T¢ is the Fourier-Mukai transform ®p
where

P = Cone(EYRE L Op). (3.39)

where 7 is the canonical pairing which sends

P =iey)” @m3Ey — 0 VEEZ, k#0
i—j=k

and

(71 &)Y @ 5y — Ox
i—j=0

by the usual canonical pairing of sheaves.

Definition 3.4.4. An (A,,)-configuration, m > 1, in D?(X) is a collection of m
spherical objects &1, ..., &y, such that

dim Hom'; &E,&) =

Db(X)( i&5) {0 i—j| > 2.

Theorem 3.4.5 (Seidel, Thomas). The twist Tg along any spherical object & 1is
an autoequivalence of D*(X). Moreover, if £1,...,Em is an (Ay,)-configuration, the
twists Tg, satisfy the braid relations:

Te,Te,, Te, = Te,, Te, T, ,, fori=1,...,m—1,
Te, Te, = Te, T, for i — j| > 2.
Proof. See [40] or Propositions 8.6 and 8.22 of [27]. O

Remark 3.4.6. The second part of Theorem 3.4.5 is an example of a braid group
action on the derived category D(X). See section 3.10 for details on categorical
group actions.

Ezxample 3.4.7. Let C be a smooth projective curve and let € C be a point on C.
The skyscraper sheaf O, is a spherical object and

To,(—) = Oc(z) ® (—).

Example 3.4.8. If C is a smooth rational curve with C? = —2 in a smooth projective
surface, then the structure sheaf O¢ is as spherical object.

Ezample 3.4.9. If X be a Calabi-Yau variety, then any line bundle £ € Pic(X) is a
spherical object.
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Ezxample 3.4.10. If C' is a smooth projective curve contained in a Calabi-Yau threefold
with normal bundle isomorphic to

NC/X = O(—l) D O(—l), (340)
Then O¢ is a spherical object.

Ezxample 3.4.11. If Y is a smooth projective subvariety of a Calaby-Yau variety X
of dimension 2n+1, such that Y 2 P" and the normal bundle of Y is isomorphic to

Nyx = O(=1)%"H, (3.41)
then Oy is a spherical object.
Remark 3.4.12. If X is Fano or of general type variety then wx is ample or anti-
ample. The condition
EQuwx =E& (3.42)

forces the support of the spherical object to be 0-dimensional.

3.5 Spherical functors

Anno and Logvinenko in [6] introduced the notion of spherical functors.
Given a scheme X, any £ € D?(X) can be considered as the functor

(=) ® & : D°(pt) — Db(X).

Spherical functors are analogues of spherical objects where the point is replaced
with a scheme Z.

A spherical functor F' : D?(Z) — D?(X) induces two autoequivalences: the twist
Tr of D?(X) and the cotwist C of D*(X).

Definition 3.5.1. Let C; and Cs be enhanced triangulated categories and let
F : D(Cy) — D(Cy)
be an enhanceable functor with enhanceable left and right adjoints
L,R: D(Cy) — D(Cy).

The spherical twist T : D(C2) — D(C2) of F' is the enhanceable functor that fits
in the natural exact triangle

FRZ 1d - T % FR[). (3.43)

The spherical cotwist C : D(C1) — D(Cy) of F' is the enhanceable functor that fits
in the natural exact triangle

C —I1d % RF S O[1]. (3.44)

The functor F' is spherical if the following conditions hold:
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1. The twist T is an autoequivalence of D(Ca).
2. The cotwist C' is an autoequivalence of D(Cy).

3. The following composition in an isomorphism:

LT & LrR1) 25 R

4. The following composition is an isomorphism:

R RELN) S oL

Theorem 3.5.2. Any two of the conditions 1-4 in the definition above imply all
four.

Proof. Theorem 5.1 of [6]. O

Remark 3.5.3. By the argument in Lemma 5.16 in [7] if condition (2) of definition
8.5 holds, it is enough to show
R~ CLI[1]

for condition (4) to hold.

Ezample 3.5.4. Let Z = Spec(C), let X be a smooth projective variety, let F be an
object in D®(X) and set F to be the functor

F: D(Z) =25 D(X).

Then F is a spherical object if and only if F satisfies conditions 2 and 4 of Theorem
3.5.2, so if and only if F is a spherical functor. (See example 3.5 of [5].)

Ezxample 3.5.5. If D is a divisor of an algebraic variety X with inclusion map
1:D—X (3.45)

Then F' := i, is a spherical functor.
Indeed, we have the adjunctions

L=i#4FA4R=4 (3.46)
The Fourier-Mukai kernels are:
e i,:Op e DD x X);
e i*:Op € D(X x D);

e i' ~i*®O(D)[-1]: Op(D)[-1] € D(X x D).
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By Proposition 3.2.3 the composition REF has Fourier-Mukai kernel Op@&Op(D)[—1].

Therefore the twist ' = Cone(ld — RF') has Fourier-Mukai kernel Op(D)[—1] €

D(D x D) and
CL=R.

Ezxample 3.5.6. Let X be a variety of dimension n, let ¢ : D — X be a divisorial
inclusion and let 7 : D — Y be a projective bundle of rank k over the variety Y of

dimension n — 1 — k. '
% X

D
ﬂ-l
Y

Define the functor F

F:=i7": DY) — D(X).

The right adjoint R of F'is the functor
R=mi : D(X) — D(Y)

while the left adjoint is the functor L

L=mi*: D(X)— D(Y).

The functor F is spherical if and only if
Np/x =wpyy ® "L

for some £ € Pic(Y') (See [7]).

3.6 DP" twists

(3.47)

(3.48)

(3.49)

The notion of P twists was introduced by Huybrechts and Thomas in [30] as mirror

Dehn twists of Lagrangian CP"s.

When n = 2 the notion of a P" twist coincides with the notion of the square of

a spherical twist, but in higher dimensions, the two notions are different.

Let C a triangulated category and let
ALt

be a complex of objects in C, so that go f = 0.

(3.50)
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Definition 3.6.1. A right Postnikov system of the complex 3.50 is a diagram

a—L 59 .
S AT
X (3.51)

where B — C' — X is a distinguished triangle and f =17 o j.

Definition 3.6.2. The convolution of the right Postnikov system (3.51) is the cone
Cone(A[1] & X).

Definition 3.6.3. A left Postnikov system of the complex (3.50) is a diagram

A—d g9
\lkV
Y (3.52)

where A — B — Y is a distinguished triangle and g = m o k.

Definition 3.6.4. The convolution of the left Postnikov system (3.52) is the cone
Cone(Y % C).

Definition 3.6.5. An object E € C is a convolution of the complex (3.50) if it is a
convolution of a right or a left Postnikov system associated to it.

Definition 3.6.6. Let D°(X) be the bounded derived category of coherent sheaves
on a smooth projective variety.
An object £ € DP(X) is a P"-object if :

C, ifr=2i,ie{0,...,n}

1. Hom £, € =
D(X)( ) {0, otherwise.

2. EQuwyx =&, where wy is the canonical bundle.

Remark 3.6.7. Let £ be a P object in DP(X) with dim(X) = m, then by Serre
duality
Ext’(£,8) = Ext™(£,£ @ wx)* = Ext™ (&, £)*

that forces m = n.
Example 3.6.8. Let X be an hyperkdhler manifold of dimension 2n , and take P" —»
X

In this case NI[Dn/X >~ Qpn, hence Ext(Opn, Opn) = Q.
Thus the local to global spectral sequence
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EY = HP(X, Ext(Opn, Opn)) = Exth 4(Opn, Opn)
gives the following isomorphism of rings
Ext% (Opn, Opn) =2 H*(P", Qpn) = H*(P", C).

Thus Opr is a P™-object.

Example 3.6.9. Let X be a K3 surface an let C be a curve on it; we have that
C = P! C X; so by example 3.6.8 Oc € DP(X) is a P! object.
Moreover, by Example 3.4.7 O¢ is also a spherical object, which agrees with S? = P

Remark 3.6.10. Suppose that € is a P" object, then ExtQ(E,E) 1s one dimensional
vector space let

¢:E-2] — &
We have Ext?(€,&) = Ext?(EY,&V), so just define ¢V to be the image of ¢ under

the group isomorphisms of the Exts; ¢V is a generator for Ext?(EY,EY) and can be
represented by a morphism

¢:EV[-2] — £V, (3.53)

Let ¢ = ¢V K 1d — Id K,
$:EVRE[-2 — EVRE. (3.54)
The trace map tr : EY R E — Op factorise throughout the cone C’one(qz;) of &

gy @5—>C'one

\/

Definition 3.6.11. Let £ € D*(X) be a P"-object and let P = Cone()). The P*
twist T 711; associated to £ is the Fourier-Mukai transform ®p, with kernel Pg

Tp == ®p, : D°(X) — D°(X) (3.55)

Theorem 3.6.12. If P € D*(X) is a P object, then the P" twist Tg is an autoe-
quivalence of D?(X).

Proof. See Proposition 2.6 of [30] or Proposition 8.19 of [27]. O
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3.7 [P" functors

The notion of P™-functor unifies and generalises those of spherical functors and of
P"-objects. In its general form, it is due to Anno and Logvinenko, we refer the reader
to [7] for all technical details.

Definition 3.7.1. Let C; and C2 be enhanced triangulated categories and let
F:CL—Cy
be an enhanceable functor with enhanceable left and right adjoints
L,R:Cy— (.
F is a P"-functor if it can be equipped with a triple (H, Q,,~):
e H is an enhanced autoequivalence of C; such that H(Ker(F)) = Ker(F).

e (), is cyclic degree n coextension of Id by H of the form:

P L -1
Id ! @ 2 Qa—> ... —> Qn-2 - Qn-1 o Qn
8 K K Ko X
* A * A / * %—1 * %
H 4-mmmmmmmmo e H? 4o D H" b e H"

Here all starred triangles are exact and all the remaining triangles are com-
mutative. Let ¢ = ¢, 0---0¢1.

e The map ~ is an isomorphism
v:Qn = RF

that interweaves the adjunction unit Id <> RF with the map Id < Q,,;

Note that as F ~5 FRF is a retract, so is Fi. Hence the exact triangle

FR fuf, FQiR — FHR is also split. Choose any splitting FHR — FQ1R

and denote by ¢ the composition

FHR < FQ,R 2 pQ, R 2% FRFR. (3.56)

Define the map FHR £> FR to be the composition

FRtr—tr FR
_—

FHR % FRFR FR.

Note that any choice of the splitting FHR — F @1 R in the definition of ¢ will
produce the same map 1), since the composition (FRtr —tr F'R) o FeR is zero.

satisfying the following conditions:
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1. The monad condition. The map

vi FHQu 2 FHRF 5 FRE X% PO (3.57)

is an isomorphism, where C' is the spherical cotwist of I’ defined by the exact
triangle Id = RF = C[1].

2. The adjoints condition. The map
w: FR % FREL 25 pHOL (3.58)

is an isomorphism.
3. The highest degree term condition. There exists an isomorphism
w: FH"L = FHH"H'L
that makes the following diagram commutate:

FHQu L ™% pyrrr " prrp — Y pHL

Idl JN . (3.59)

FHQu 1L Mt pyrrr ™% perra' L e g g gL

where H' is the inverse of H the map ¢': FL— > FH'L is the left dual of
w: FHR — FR.

Theorem 3.7.2. Let F': C; — Cy equipped with the triple (H,Qn,7), as above, be
a P"-functor.
Let the P-twist Prp of F to be the unique convolution of the two-step complex

FHR Y FR ™ 1d, (3.60)

see [4] for the uniqueness of the convolution.
Then Pr is an autoequivalence of the category Cs.

Proof. See Theorem 4.1 in [7]. O

Remark 3.7.3. Definition 3.7.1 is the more general version of the definition of a
split P™"-functor, an enhanced functor F equipped with an isomorphism

RF ~Id®H...H"

for which the following conditions hold:
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e Strong monad condition : The matriz A; of the left multiplication by H in RF
has the form

* * %
1 = * %
0 1 LI I (3.61)
00 ... 1 %

i.e., ag; =0 for k> j+1 and ajy1,; are identities for 0 < j < n.
e Weak adjoints condition: There erists some isomorphism R ~ H"L.
Example 3.7.4. Let C; and Cy be enhanced triangulated categories and let
F : D(Cy) = D(Cy)
be a enhanceable functor with enhanceable left and right adjoints
L,R:D(Cy) — D(Cy).

F is a spherical functor with twists 7" and cotwist C' if and only if is a P'-functor
with
H = C[1]

and the degree 1 coextension of Id by H structure on RF' defined by the exact
triangle
C = Id 4 RF S C). (3.62)

(See Proposition 7.1 [7]).

Ezample 3.7.5. Let X be a smooth projective variety and let P € D*(X) be a P"
object, let Z = Spec(C) and consider the functor F

F:DYz) =25, Db(x) (3.63)
with P € D¥(X) = D*(Z x X).
We have
RF = Hom(P,P)=Ca®C[-2]| @ - & C[—2n]
which decomposes RF' as
RF=IdeH @ ---® H" (3.64)

where H = [—2] and (3.64) gives F' a structure of split P"-functor.
Moreover, from the weak adjoint condition we have that

R~ H"L.
(See [1] for details.)
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Ezxample 3.7.6. Let X be the Hilbert scheme of n points on a projective K3 surface
Z so that
X =z

and define F' to be the functor
F:D%Z) — D%X)

realised by the Fourier-Mukai transform with Fourier-Mukai kernel the universal
ideal sheaf T € D*(Z x X).
There exists an isomorphism

RF=1deH®H?*®---@ H"! (3.65)

where H = Id[—2] and (3.65) gives F the structure of a split P*~! functor.
(See Theorem 2 of [1] for details).

Example 3.7.7. Let V be a vector bundle on a smooth projective variety 7, with P"
fibration
m:PY —Z

and embedding in a smooth projective variety X
1: PV —= X
with normal bundle of rank n isomorphic to
Npvyx = Qpy)x-

Define the functors fj to be

fi = i 0 (Opp(k) @ (<)) : DY(Z) — DV(X). (3.66)
let 7 be their right adjoints and define

h:=1d[-2] : D’(Z) — D"(Z). (3.67)

Let Fj, Ri,Lx and H be their standard enhancements.
There exist a structure of cyclyc extension of degree n of Id by H on the adjunc-
tion monad Ry F}, that makes Fy, a P"-functor (see Theorem 7.2 in [7]) .

3.8 Mukai flops in derived categories

For the first part of this section we refer to section 11.4 of [27], for the second part
we refer to section 5 of [3].

Let X be a smooth projective variety of even dimension and let P be a smooth
subvariety of X with dimension half the dimension of X.
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Let moreover P be isomorphic to P, with

Npjx = Qp. (3.68)

Let X = Blp(X) be the blow up of X along P with projective morphism
q: X —X

and exceptional divisor £ = P(Np,x) = P(Qp).
If we consider P = P(V), with V' an n + 1 dimensional complex vector space,
then from the Euler sequence

0=-Qp=>V"®20(-1) > 0p—0 (3.69)

we have that

P(Qp) = P(V* ® O(—1)) X P(V*) x P(V)

The exceptional divisor £ 2 P inside P x PV =2 P(V*) x P(V) is the incidence
variety of pairs (I, H) of lines | C V and planes H C V such that | C H.

Indeed, the fiber Qp(l) over a line [[] C P is naturally isomorphic to the space of
linear functions « : V' — C which vanish on [.

Therefore, because E € |O(—1,1)|, from the adjuction formula we deduce that
the canonical bundle of the exceptional divisor

wg = O0(—n,—n)|E (3.70)

Moreover, using the adjuction formula for E C X, we have that the same canon-
ical bundle is isomorhic to

we = (wg ®@O(E))|E = (¢Fwx @O0((n—1)E))|g® Op(E) = 1*(wx|p) ® Op(nk)

where 7 is the natural map 7 : £ — P.
Since by assumption wx|P is the trivial bundle, we have that wg = O(—1,-1)
and conclude that

Op(F)=0(-1,-1) (3.71)
The previous isomorphism, ensure that exists a birational morphism
p: X X'

which restricted to E is the second projection E C P x PV — PV and away from F
is an isomorphism (by the Fujiki-Nakano criterion).
Moreover,
NPV/X/ = QP\/ and wX/‘pv = Op\/
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E —Px PV

RN

P —— X X' <~—— PV

D<o

Proposition 3.8.1. The Fourier-Mukai transform induced by the compositon of the
functors
peoqt: DY(X) — DY(X) (3.72)

is not fully faithful.
Proof. Proposition 11.28 of [27]. O

Theorem 3.8.2. Given the reduced subvariety X U (P x PY) inside X x X', and
the object Oz pypvy € DY(X x X'), the Fourier-Mukai transform with kernel

O)Zu(PxPV)

Do DbY(X) — D*(X') (3.73)

Xu(PxPV) :
18 an equivalence.
Proof. Proposition 11.28 of |27] or [31] and [36]. O

Consider the three dimensional complex vector space C* and the three dimen-
sional flag variety Fls, with the natural projection maps to P?* and P?

Fis
1

/N

b2
IP)2 PZ*'
Let C be the total space of the cotangent bundle of Fls

C =T*Fls.

Let A and E be the quasi-projective varieties defined as the total space of the
cotangent bundle of P? and P2?V:

A = T*P? E = T*P?.

Let B and D be the quasi-projective varieties defined as the total space of the
pullback via p; and py on Fl3 of the contangent bundles of P? and P2V:

B =piT*P*  E=piT*P%.
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Then we have the following diagram

B S - C - > D
iB iD
ﬂAl TE
A E (3.74)

where ip,ip are divisorial inclusions and 74, 7g are Pl-bundles respectively on A
and F.
From remark 2.2.30, we have the following descriptions of the quasi-projective

varieties
A=¢0 C Vv Cc C;dim(Vi)=1,,
and

/NS

E={0C W C C*; dim(Vr) =2

Moreover the four dimensional subvariety of C' defined as the (transverse) inter-
section of B and D can be described as

e

v~ O\

BnD={0cVc V c C3

«

equipped with the two natural forgetful maps

BNnD

Ch/ \?2
A E-

where ¢; is the map that forget the choice of the n — i-th space.

Both ¢ and ¢s are isomorphic to the blow up of the zero section carved out by
{a = 0} in respectively A and E.

Both the bow-ups have the same exceptional divisor Fl3 carved out by {a = 0}
and the resulting birational transformations

q20qf1:A———)E
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qloqgle——-)A

are a local model of a four dimensional Mukai flop.
Therefore, from Theorem 3.8.2 we have the following

Corollary 3.8.3. Given the reduced subvariety (BND)U(P?* xP?) inside Ex A, and
the object O(pnpyu(r2+xp2) € DY(E x A), the Fourier-Mukai transform with kernel

O(BnD)u(P2* xP?)

(pO(BﬂD)u([P’?*x]P?) : Db(E) — Db(A) (375)

18 an equivalence.

3.9 The excess bundle formula

This section is on the excess bundle formula which computes the derived tensor
product of two structure sheaves of two smooth subvarieties of a smooth variety: we
refer to [38| and [7] for more details.

Let Z1, Z5 be two locally complete intersection subvarieties of a smooth algebraic
variety Z with their intersection W = Z; N Z5 being a locally complete subvariety
of Z1 and Z5.

Let 41,19, j1, jo be the inclusion of the following fiber square

1N 4y = WLZl

J2 i1
Definition 3.9.1. The excess bundle Ey of the insersection W = Z1 N Zs, is the
locally free sheaf which fits in the short exact sequence of sheaves on W
0 — Nwyz — 1Nz )z © 3Nz, 7 — Ew — 0 (3.76)
Theorem 3.9.2. Under the previous hypothesis, the cohomology sheaves of
i3i1.07, € D*(Z)
are

q
H™(i5i1.07,) = ji.(/\ &) (3.77)

Proof. See [38]. O
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Definition 3.9.3. The intersection W = Z1NZs of two locally complete intersection
subvarieties Z1, Zo of a smooth algebraic variety Z is called transverse if both the
following conditions are satisfied:

1. W is a smooth subvariety of Z.
2. codimyz (W) = codimz(Z1) + codimy(Z2).

Corollary 3.9.4. If the intersection W = Z1 N Zy is transverse then we have the
following isomorphism

OZ1 (03] 022 =~ Ow. (3.78)

3.10 A braid group action on D’(T*Fl,)

In this section, we present the Khovanov and Thomas braid group action on the
derived category of coherent sheaves of the cotangent bundle of complete flag varieties
DY(T*Fl,): we refer to [32] for more details.

Definition 3.10.1. An action of a group G on a category C is an assignment of an
invertible functor

Fy,:C—¢C

to each g € G such that Fj; o Fj, = F,.},. Moreover, the following diagram has to be
commutative

FfOFgOFhi)-FfOFg.h

|= |=

~

Ff.g o} Fh ———:—)- Ff~g~h
Remark 3.10.2. The n-braid group Br, is generated by the elements {t1,...,tn}
subjects to the relations

tit; = t;t; if|i—7|>1 "commutation”
tit]’ti = tjtitj if | ) —j ‘: 1 ”braiding”.

Recall that the the complete flag variety is defined
Fln:{o CVC...CVoqCV dim(w):z‘}

and the total space of its cotangent bundle can be described as the space
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T'Fl,,2{ 0 C V/\/\ /\

Vo1 € Vo dim(V;) =4

Denote by C = T*Fl,(1,...,1) the total space of the cotangent bundle on the
complete flag and by A4; = T*Fln(%) the total space of the cotangent bundle on the
flag where the choice of V; is skipped.

Let the map p;

pi: Fl, — Fln(%)

be the projection which just skip the choice of V; containing a V;_; and contained
in Vi1, therefore a P! bundle over Fl,,(z).

Denote B; = piT*Fl,,(i ) the total space of the pullback via the morphism p; on
Fl,, of the cotangent bundle of FI, (7).

As before, B; can be described as the space

AV AVAY SRSV

1 CcV;C Vi C V |dim(V;

For every integer 7 € {1,...,n} we have a couple of natural maps j; and m;

B —7l

|

A (3.79)

which are respectively the divisorial inclusion of B; in C' and the canonical projection
of B; onto A;.

Lemma 3.10.3. Let V; be the pullback on Fl,, of the tautological bundle of Gr(i,n).
The normal bundle Op, of the divisor B; inside C' is isomorphic to

O(B;) = (AVH) 2@ NIV @ ATV
Proof. Section 4.1 of [32]. O
For every i € {1,...,n — 1}, define the functors

F; = jiop} : D'(A;) — Db(C)
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and denote their right adjoints by
R; = pis 0 j; : D'(C) — D"(A;)

Since we are in the hypothesis of example 3.5.6 F; are spherical functors and
their spherical twists are autoequivalences.

Moreover, since B; is a divisor inside C' the right adjoint of the functor ]z' is the
functor ji«(—) ® O(—B;), so by Lemma 3.10.3 we have the isomorphism

Jix (07 (=) @ wp,)) @ O(=Bi)[2] = jiup; [2]
thus, the following adjuctions hold
F; 4 R; 4 F;[2] (3.80)
with the respective counit and unit maps
g : F;R; — Id €; : Id[—2] — F;R;.

and, therefore, the cotwist around F; is [2].
Define the functors

T; = Cone(F;R; =% Id) T = Cone(Id - FiR;). (3.81)

Theorem 3.10.4. The functors T; defined in 3.81 are autoquivalences of Db(T*Fln)
with respective inverses T}, i.e.

Tgoﬂ %’]d%TZ-oTi/
Moreover the n — 1 autoequivalences T; satisfy the braid relations:

LTy =TT, for li—j = 1.
TIYT; = 11T, Jor li—j = 1.

Thus, there is a categorical action of the braid group Br, on Db(T*Fln).

Proof. Theorem 4.1 in [32]. O

To conclude this section we prove two results on the canonical bundle of the
quasi-projective varieties C, B; and A;.

Proposition 3.10.5. Let X be a smooth projective variety and let p: E — X be the
cotangent vector bundle Qx Let Y = Spec(Sym(E*)) be the total space of E, then
the canonical bundle of wy is trivial.
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Proof. Consider the projection
m:Y — X,
then the relative tangent bundle Ty, x of ¥ over X is isomorphic to
Ty)x =m'F
thus the relative canonical bundle wy,, is isomorphic to
wy, = mrdet(E).
Therefore the canonical bundle wy of the total space of E is isomorphic to
wy Emwx ® wy/x = ™ (wx ®@det(Tx)) 21" 0x = Oy
since the dual commutes with the determinant. O

As a corollary of Proposition 3.10.5, the canonical bundle of C' and A; is trivial
for every 1.

Proposition 3.10.6. The canonical bundle of B; is
wp, = Op,(~B) = (AV)? @ (A e (A7) (382)
Proof. Using adjunction formula and Proposition 3.10.5 we have that
wp, = Op,(—B;)
and from Lemma 3.10.3 follows that

wp, = (AV))? @ (MY e (WY
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Categorical action of generalised braids

Braids are topological configurations of n disjoint pieces of string with n fixed end-
points, considered up to isotopies which keep the strands disjoint. In [32] Khovanov
and Thomas constructed a categorical action of the braid group Br, on the de-
rived category D(T* F1,,) of coherent sheaves on the cotangent bundle of the variety
Fl,, of the complete flags in C™. The configuration of n distinct fixed endpoints is
represented by D(T*Fl,) and a braid starting and ending at such configuration is
represented by an auto-equivalence of this category.

In this chapter we describe a more general structure: GBr,, the generalised braid
category on m-strands. Our goal is to study its categorical representations. The
definition of GBr, resembles that of the category Web,, of sl,-webs ([19], [37]), but
unlike the latter category, GBry, is not additive. Like in Web,,, the objects of GBr, are
ordered partitions 4 = (i1, ...,4x) of n and the morphisms are generated by certain
elementary diagrams modulo relations. The key difference is that Web,, is enriched
over Z[q,q~ '], and some relations are additive. The category GBr, is topological
in nature, and its relations stem from isotopies. Our main interest, however, lies in
skein triangulated representations of GBr, where we impose triangulated relations
on functors that conjecturally categorify those of Web,,.

In particular, it is expected that there is a certain skein-triangulated action of
GBr;, on the derived categories of coherent sheaves of the cotangent bundles of Fl,, (i),
the varieties of complete and partial flags in C™. This action consists of a network of
functors between these derived categories, some of which are well-known in geomet-
ric representation theory: the Khovanov-Thomas braid group action [32| comprises
a limited subset of the endofunctors of the full flag variety, a single node in the
network. The Cautis-Kamnitzer-Licata categorical sla(C)-action [18] comprises a
limited subset of our functors between the Grassmanians, a few of the nodes in the
network. To obtain the Cautis-Kamnitzer tangle calculus [17], on the other hand,
we restrict a part of our network to a small slice of each flag variety, the resolution
of (n,n)-Slodowy slice. On these slices, the generalised braid relations simplify and
become the tangle calculus.

In Section 1, we define the generalised braid category GBr,. In Section 2, we
define the notion of a skein-triangulated representation of GBrs and give the con-
ditions on fork generator functors which allow us to construct such representation
out of them. In Section 3, we introduce the setup for a generalised braid action
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on DY(T"Fl3), we define the merge and the fork functors and compute their com-
positions at level of Fourier-Mukai kernels. In Section 4, we describe a conjectural
program which allows us to inductively compute the multiple crossing functors and
verify it for GBrs. In Section 5, we construct the conjectured skein triangulated
representation of GBrs on D(T™*(Fl3(4)).

4.1 Generalised braid category

Intuitively, generalised braids should be thought of as braids where we remove the
restriction that the strands are not allowed to touch each other. They can now come
together, continue as a strand with multiplicity, and then possibly split apart:

Any two strands with multiplicities p and q can join up and continue as a strand
with multiplicity p + ¢. Any strand with multiplicity p + ¢ can split up into two
strands with multiplicities p and ¢g. Instead of a single configuration of n disjoint
endpoints, we have multiple configurations indexed by the ordered partitions of n.
Finally, we want to consider the generalised braids up to isotopies which preserve
the intervals on which strands come together. An isotopy can make such interval
shorter or longer, but can’t make it vanish completely or join two such intervals into
one.

This intuitive idea needs to be coarsened: we do not want to distinguish individ-
ual strands within a strand with multiplicity. One approach would be to take the
definition above, and factorise by the action of the permutation group S, on each

multiplicity p strand which permutes the individual strands within it.
We take another approach, that of embedded trivalent graphs:

Definition 4.1.1. The generalised braid category GBr, is the category with:

e Objects: ordered partitions of n:

e Morphisms: The morphisms

i=(i1...ir) — j=01---7)
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are the generalised braids with startpoint /endpoint configurations i and j. Such
braid is an oriented graph with edges colored by integers from 1 to n. We refer
to the colors as the multiplicities. The graph must have:

— k ordered 1-valent startpoint vertices with the emerging edges of multi-
plicities 1, , ..., i,

— [ ordered 1-valent endpoint vertices with the terminating edges of multi-
plicities 71, ..., Jji,

— The remaining vertices are trivalent with the flow condition respected:
the total multiplicity of the terminating edges equals that of the emerging
edges.

We consider this oriented graph together with an embedding into R? x [0, 1],
which satisfies:

— The startpoint vertices are (1,0,0),(2,0,0),...,(k,0,0).

— The endpoint vertices are (1,0,1),(2,0,1),...,(1,0,1).

— The orientation at any point must project positively onto [0, 1].
We considered these generalised braids up to equivalence generated by two
types of relations. One is the isotopy of embedded trivalent graphs. The other

is the multifork and multimerge relations, where we identify the graphs which
can be obtained one from another by the modification:

p ° o r
b N
N o/
% = N (4.1)
[ ] [
p+q+r p+q+r

and its obvious analogue for merge vertices.

The composition: The composition is given by concatenation of graphs.

Identity morphisms: The identity morphism from i = (i1, ...,i) to itself is
the graph which consists of k vertical edges: from the j-th startpoint vertex to
the j-th endpoint vertex for all [ < j < k.
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4.2 Skein-triangulated representations of GBr;

General notation

Let i = (i1,...,ix) denote a partition of n. The general principle is that the source
partition and the target partition are denoted by the subscript and the superscript,
respectively. Specifically, if ¢ and j allow a fork between them, let ff denote this

unique fork. Similarly, let gg denote the unique merge and when i # j, let tg and

dg denote the unique positive and the negative crossings. When i = j, there is an

ambiguity, so we overscore the subscript indices which correspond to the strands
: 111 111
being crossed, e.g. 777 or t177-

The generators of GBr;

The generalised braid category GBrs has the following generators:

|

12 21 111 111
3 3 12 21

1. Four forks:

Figure 4.1: Forks

AN

3 3 12 21
g12 921 9111 9111

2. Four merges:

Figure 4.2: Merges

3. Two positive and two negative (1, 1)-crossings:

4. Two positive and two negative (2,1)- and (1, 2)-crossings:
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{ J { J
p ( p [

111 11 111 111
tin dii tin din
Figure 4.3: )-crossings

/w%«\\

Figure 4.4: (1,2)- and (2, 1)-crossings

Insipired by the results in [8], we formulate the following conjecture.

Conjecture 4.2.1. All the relations between these generators in GBrs can be ob-
tained from the following four basic relations via three operations: vertical reflection
(swap the source and the target partitions, change all forks into merges and vice
versa, reverse the parity of the crossings); horizontal reflection (swap the partitions

12 and 21, reverse the parity of the crossings); and blackboard reflection (reverse
the parity of the crossings).

1. Multifork relation: fiilf3' = fitlfi2

Figure 4.5: The Multifork relation

11141114111 1114111411
2. The braid relation: t111t111t111 t111t111t111

on.s- 21,412 _ . 111 7111 11 _ .
3. Inverses relations: t33d3% = idyo, d35t3 = ida, 111951, = 111d111 tdy11.

111 114111 111
4. The pitchfork relation: fiilti? t111t111 .
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J J

_ WS
s
( (

Figure 4.6: The braid relation

. . .

ﬁ!

Oﬁ

[ |

J J
SHIH
! 1

Figure 4.7: Inverses relations

J

f

Figure 4.8: The pitchfork relation

Remark 4.2.2. The category GBry has a simpler structure; indeed, the generators
of GBro are f211, g%l, t%, d% and the only relation between them is

B (1.2
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11 2 11 11
2 911 t11 dyy

Figure 4.9: Generators of GBry

Skein-triangulated representations for n = 3

In this section, we describe a special type of categorical representations of GBrs
which we call skein-triangulated. In these representations, GBrs acts on enhanced

triangulated categories and certain additional relations are satisfied which make use
of the triangulated structure of the target categories.
Let C3, C12, Co1, and C111 be enhanced triangulated categories. Let

FiY: D(Cy1) — D(Cin1), (4
Fi3Y: D(Cyg) — D(Ci11), (4
F2': D(C3) — D(Co1), (4.
F}2: D(C3) — D(C12), (4

be enhanced functors with enhanced 2-categorical left and right adjoints. Denote
the left and right adjoints of each F¥ by L% and R%
Assume that Conjecture 4.2.1 holds and assume moreover that

1

2.

3

(1,1)-forks Fi3' and Fy! are split spherical functors with cotwist [—2].
(1,2)-fork F3? and (2,1)-fork F2! are split P?-functors with H = [-2].
There exists a multifork isomorphism

a: Byt PP 5 PRS2 (4.7)
There exist isomorphisms
Ry, Rify Fly ' Fy® = 1ds ©[-2] @ [-2] @ [~4] & [-4] & [-6] = R, RYy Fyi ' '

which together with P2-functor structures on Fy? and F3! identify the maps

3 12
12 Ry, act Fy

RiyFy Rl Rt Fiy By, (4.8)

R3. act F21
3 21 21 3
R21F3

R3, R Fyl ' 5, (4.9)
with the maps
Ids ®[-2] & [—4] — Ids®[-2] & [-2] & [-4] & [—4] & [—6]

which are the direct summand embeddings whose images are Ids @ the first
[—2] @ the first[—4], and Id3 @ the second [—2] @& the second [—4], respectively.
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~Id3 @ [-2] @ [-2] ® [-4] & [-4] ® [-6] ~

5. The following diagram can be completed to an exact triangle in D(C12-C12):

F?R3, — RI2 F}'RH Fl3t — 1dio[—2]. (4.10)

Here the first map is the composition

12 p3
F3 R12
act F32R3, act
12 111 12 111
R111F12 F3 R 2R111F12
~ | multifork (4 1 1)
111 721 PR3 21 111
R 1F21 F R21R111F

12 il 21 77111
Ri71Fo1 " tr Ripy Fig

111 111
R111F21 R111F12 ’

and the second map is the composition

tr[—2]

]%111F1211111%111F111211 L111F21111R111F11211[_2] Idl?[ ] (412)

6. The following diagram can be completed to an exact triangle in D(Ca1-Ca1):

FARS — RH FUIRI Folt — Tdgy [-2]. (4.13)



4.2. Skein-triangulated representations of GBrs 55

SRR

Its two maps are defined analogously to (4.11) and (4.12):

21 P3

F3 R21

act F321Rg1 act
21 111 721 P3 P21 111

R111F21 F3 R21R111F21

~ | multifork (4 14)
21 111 712 R3 12 111

R111F12 F3 R12R111F21

21 ppill 12 711l
Riy Fiy tr Ryt Fyp

21 11l pl12 plll
R Fiy R For s
and

tr[—2]
RiLF RIS ~ L F R 3 [-2) == Tdm[-2). (4.15)

Theorem 4.2.3. Under the assumptions above, the following assignments define a
categorical action of GBrs:

1. Each partition i of 3 is represented by the enhanced triangulated category C;.

2. Each fork fg s represented by the functor Fg

3. (1,1)-merges gg are represented by the functors Gg defined by
Li[-1] ~ G2 ~ RI[1]. (4.16)

4. (1,2)- and (2,1)-merges gg are represented by the functors Gg defined by

Li[-2 ~ Gl ~ RI]2). (4.17)



56 Chapter 4. Categorical action of generalised braids

5. (1,1)-crossings are represented by the spherical twists of (1,1)-forks:

T = Cone ( 111G111 —> Id111> (4.19)

DM = Cone (Idm[—u 2t Qlfle) (4.20)
L X = Cone ( [-1] -
( ) = Cone ( (1] -
6. (1,2)- and (2,1)-crossings are represented by the cones:

T2} = Cone (F?)QIG o[—1 G2 FiH (4.22)

2]_ = Cone < — 1]_1 1 (4 23)

D32} = Cone (GﬁlFlll[— X, FAG3, (4.24)

D = Cone (G, FY1[-1] £ 264 (1.25)

)
i)

)

)

i
Q=
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where A is defined by either of the two equal compositions
21 13 21 p3
Fi Ry, Fi Ry,
F21 R‘%2 act act F321R?2
21 111 1 21 p3
F3 R RlllF R111 F3 Ry,
~ | multifork ~ | multifork > (426)
21 p3 111 Fl2p3
F3 R21R111F Rlll 3 R12
tr Ry, P! R?thz“tr
111 111
Rlll R111
15 define etther of the two equal compositions
Nisd d by eith the t qual posit
111 111
L111F L111F
L%}lFfQH act act L%thQn
111 1273 21713 111
L111F12 F3=Ly, F3 L21L111F
~ | multifork ~ | multifork ) (427)
111 2173 2173 111
L111F21 FS L12 F3 L12L111F1
tr F2LL3, F2LL3, tr

21713 21713
FS L12 F3 L12

and p and p' are defined similarly.
Moreover, this categorical action also satisfies the following condition:
o Flop + Flop = Twist:
1. TRTE is
2. T1221T21 18

isomorphic in D(C12-C12) to the P-twist of Fl2
isomorphic in D(Ca1-Ca1) to the P-twist of F321.

Motivated by the previous result, we give the following definition.

Definition 4.2.4. A skein-triangulated representation of GBrs is a system of cate-
gories and functors satisfying the assignments properties of Theorem 4.2.3.

Proof of Theorem 4.2.3. It suffices to prove that the four basic relations between
the generators of GBry listed in (4.2.1) hold under the assumptions of the theorem.
The proofs for the relations obtained from these four by vertical, horizontal and
blackboard reflections are identical.

(Tllllll, Dﬁ}) and (Tllllll7 Dﬁ%) are pairs of mutually inverse equivalences.

1

This follows from FJ{! and F}}! being spherical functors, see [6], Theorem 5.1.
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The pitchfork relation

We need to show the existence of an isomorphism
L1 111111 111
Fiy T 21 ~ Tiq; Thig Fai

By definition we have

T111111 Con e( 1G] 1] 5 Id111>,

111111 = Con e( 11Gln[ 1] 1] 5 Idlll) )

therefore T% 111111T111111F 111 is isomorphic in D(C111 — C111) to the convolution of the

twisted complex

111 p12 111
(”Fm Ri11F )

111 p21 111 111
—Fyi Ry trky (trFa1 trF3t)
4>

111
F21

111 Pl 111 111
Fl3'Ri Pyt @ Pyl RYY Fag
deg.0

111 p21 111 111
F21 R111F12 RlllF

By Lemma 5.10 of [6], we have a homotopy equivalence of twisted complexes

tT'Flll
between F{1R2L FILT 20, plil opq plit 220 %% pliip2l plit
deg.0 deg.0
It follows by the Replacement Lemma that T111111T 111111F 111 is further isomorphic
to the convolution of

F2111 Lact

111 111
(*”Tlﬁ mhe o )
111 2 Rllterl F21 act

i 111 fotl 111 i 111 i
R Fi3'RiT Py @ F Fl3'RiT, Fy @1F21 R Fyit.

Moreover, there exists an homotopy equivalence from FJ{'FZ RS, to

111 p21 111 111
(—F3{' Rl trF3{'  F3{'act) FHIRL plt
11k
deg.0

i 111 F 111
R} F3'RIY P @ F3)

whose Faf ! FA RS, — FIIRI FIHM R PN component is the map FJit(4.11).

It follows by the Replacement Lemma, that T 111111T 111111F 111 i5 therefore isomorphic

to the convolution of

trF1 Ry F o R (4.11)

11R111 111

111 721 3
F21 FS R21
deg.-1

and hence by the multifork isomorphism to the convolution of

trF11211R111F211110F21111(4.11)omultifork

11 111
Rlll .
deg.-1

11F12R

On the other hand, by the definition of T2 the object F{41T4? is isomorphic in
D(Cy11 — C111) to the convolution if the twisted complex
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111
plipizps o B Fiy'p 11]% 111
12 L'37 gy — 1 fai
deg.-1

And since
trFly Ry Fyt o Fyl'(4.11) o multi fork = Fily '
we have
111 111111 111
Fiy' Tyt ~ T Ti{ Fy

The braid relation

Consider the following twisted complexes of enhanced functors:

21 111 111
Pyt RI tr F3l ' RI @ Py ! act RY,

111 p21 111 111 p21 111
F21 R111F12 Rll%iFQl Rlll 69F21 R111
eg.0

111 p21 o111
Fyt'RI Py RiT,, (4.28)

111 p12 111 111
Fl3'RIT, o Py ' RIT ®F)3 " act RiY,

111 111 p21 111 p12 111 p12
F12 RlllF Rll%iF12 Rlll D F12 Rll
eg.0

F111R111F11211R111 (429)

There are natural maps from both to Fy'RH, FYtRIZ, @ FIHURE FHRY
induced by the maps

Fy' RY FI3 ' Ri3 Fo ' RY,
\Ltr FlllRilelllRQI @FlllR%%lFlllRlll tr (430)
Fy'RY Fiy 'Ryt @ Fiy ' Ri3 Fy 'R,
and
FUIRI2 pHIR2 pLLRI2
|FH R R o P R PRI, (431)
Fy' R F 'R, © Fly 'R Fy P RY.
By [6], Theorem 6.2, if there exists a D(C;111-C111) isomorphism between the convolu-

tions of the twisted complexes (4.28) and (4.29) which intertwines the maps induced

by (4.30) and (4.31), then the braid relation holds for T3 and T}

Claim: There exist homotopy equivalences from the objects F211F321R (RA,
and FiHFI2R3, R12, to the twisted complexes (4.28) and (4.29) whose

111 7721 pR3 111 111 111
F21 F3 R lRlll — F Rlll Rlll Rllla

111 1712 3 111 111 111
F12 F3 R 2R111 - F12 Rlll Rlll Rllla

components are the maps Fj{1(4.14) R4, and F}J1(4.11)R}2,.
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Indeed, since (4.5) fits into an exact triangle in D(Ca1-Ca1), there exist a homotopy
equivalence of twisted complexes of the form

111 21
F21 FS R Rlll
deg.O
o

nglll (4.14)R2}, - (4.32)

Fi1(4.15)RYY, 1
11
» Fyi' R} [-2].

111 p21 11l pl12 lll
F21 R111F12 R111F21 Rlll
deg.0

Since Fyi! is split-spherical with cotwist [-3], there is a split exact triangle

111 21
Fy+act R{j,

F21111R111 F21111R IFQHR ILF2111R111[ ]

Therefore, the obJect F}{'R#,[—2] is homotopy equivalent to the twisted complex

t R}
F21111R111 Lact Fihy FgllllRfilFQﬁHRln It follows by the Replacement Lemma
eg.0

([7], Lemma 2.1) that there exists a homotopy equivalence of form

111
it (a15)RTY, 111 p21
Fyy ' Ripq[-2]

111 p21 111 p12 111 p21
F21 R111F12 R111F21 Rlll
deg.0

”
lld@o 0®? J (4.33)
111 p21 111 pl2 111 p21 111 p21 111 p21 111 p21
Fy1 " R11 Fip” RiT i Foy Ripy @ Fop  Riny AT R2T . e pldl 21 e pldl 57— Foi R Fei Rin
deg.0 21 Bi11tr Foi  Rip1©F3q " act Ripy

The composition of (4.32) and (4.33) is the desired homotopy equivalence from

FHYFZLR3 R, to the twisted complex (4.28).

Therefore, we have proven the claim for the twisted complex (4.28); the proof for
(4.29) are similar.

Now, recall that we have the multifork isomorphism «: F1HF32 = F111F12.
Let 8 denote its inverse Fi41Fi2 = FyllF2L and let % RS, R?L = R3,R1%,.

We now claim that the D(Ci11-C111) isomorphism between the convolutions of
(4.28) and (4.29) which is induced via the isomorphisms provided by the Claim from
the isomorphisms

R
F21111F321R313111 L F12 F:)}QRBanl

is the requisite isomorphism intertwining the maps (4.30) and (4.31).
The target of the maps is the direct sum

111R111 111}{111 D 111R111 111]%111

We prove that the isomorphism intertwines the components of (4.30) and (4.31)
which go into the second direct summand. The proof that it intertwines the first
direct summand components is similar.
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It suffices to show that the following diagram commutes in D(C111-Ci11):

111 21 3 p21
Fyy " F3" Ry R11y
111 21
Fill(a.14)R2L,
111 p21 7111 pl2 7111 p21
Fyi " RinFia R Far Rin

111 12 11 521
tr Fig® Ry7y Foi~ Riqq

R
ap 111 712 p3  pl2
Fiy " F3" Ry, RiT;

111 12

Figt(411)R1,

111 pl2 plll p21 11l pl2

Fiy R For Ry Fia Rana

111 512 @111 21 .
Fig Ri11Foi Ripp tr

111 p12 111 p21
F12 R111F21 Rlll

This can be simplified to:

111 p12 111 p21
F12 R111F21 Rlll'

R
afB 111 ;712 p3  p12
Fiy F3" Ry, RiTy

PR R R
PR R REL P REL
ARt A,
PR RY R P AL

111, pl2 @111 p21
Frg = tr Ry Foi " Riqy

Pigtact F32RY RIT
PRI R R RE,
R R, o
PR P R R,

111 521 111 12
Foi Ri11Fa1” tr Ry

111 p12 111 p21
F12 R111F21 R111

111 p12 111 p21
F12 R111F21 Rlll'

The commutativity of this diagram reduces to the commutativity of the diagram

111 012 3 21
Fip " F3® Ry act Riqy

111 12 3 21 111 21

Fiy F3" Ry Rip Foy Ripy
111 p12 R @111 p21
Fig Fg®B M Faq~ Riqy

111 ;12 3 12 111 p21
F12 FS R12R111F21 Rlll

111 12 o111 p21
Figm tr Ri7 Foi " Ri1y

111 12 p3 21
F12 F3 R21R111

111 12 53 21
Fig ™ act Fg= Ry i1y
111 12 111 12 p3 21
Fiy Ryt Fiy F3” Ry Ripy
111 521 gp3 p21
Fy1 " Ri118 Ry R1q

111 pl2 111 721 3 21
F12 R111F21 FS R21R111

111 p12 111 p21
FHQ }{111P51 1{111

and then further to the commutativity of

111 212 p3 21
Fiy " F3”R3 RT1y
111 p12 g R 3 a21
Fig Fg“p BR3 Ri11
111 212 p3 12 111 221 3 p21
Fiy " Fs" Ry, Ry Fy1 F3 Ry Ry,
\ tr
Idi11,

which commutes since 8 is the right dual of 3.
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Flop-+flop=twist
We only prove the first of the “flop-flop = twist” relations, the second is proved
identically. We need to show that

{F{2R3, & R FIHFP RS, & R FI2) (4.34)

deg.0 deg. 0
is isomorphic to
p %
F3*Riy[-2] = F3*Riy = 1de,, -

The tensor of product of convolutions in (4.34) is isomorphic to the convolution
of the twisted complex

Fy2 RS, F3U R,
l( wF R, )
—F3? B3,
Rify Fol ' B3 RY, © F2 B3, R ! [2] (4.35)
|(maEs umsta)
R%?1F1;13111F112”~
Since Fyi! and F}}! are split spherical with cotwist [—3], we have
111 721 112 12 12 p3
Rit i F3 Ry = Rit Fly ' Fy? Ry = F3*Riy @ F3?Riy[-2),
12 FU 12 FL 12
F3?R3 R Fiy' =~ FP R R Fly' ~ F3® R, @ F3®Ri[-2],
Since F2! is split P2-functor with H = [—2] we also have

F3?R3, F5' R}y ~ Fy* R}y & F3*Ri[—2] & FyR}y[—4].

Thus three out of four objects in the twisted complex (4.35) are isomorphic to direct
sums of shifted copies of FoRy. Under these identifications (4.35) becomes:

F3?R},[2] & F32 RYy ® F3?Riy[—2]

Id 0 0

0 1d P1

—1Id 0 0
0 —Id —s 7 (4.36)

(F3?R,[2] © F32RY,) ® (F3?Ri,[2] © F32RY,)

((a1) 61 (a11) ¢2)

R111F211;1R111F11211 [2]

where 11, 19 are the compositions

12 p3 12 p3
12 3 12p3 123 WE3 Ry, Fy R12tr
F37Riy[-2] < F3"R{3F3° Ry, R127




4.2. Skein-triangulated representations of GBrs 63

and ¢, and ¢y are the compositions

Fi*RY, F3?RY,
[ l
Rity Fig ' F3? R, [2) F2 R}, Ri% Fiy ' [2)
lRifl (multifork) R%, lR}fl (multifork) R3,
Rity Fy{ ' F§ R, [2) F2 R RILWFiy ' [2)
lg}flpgln act F2'RY, and lFE}ZR;’l act B2
Rity Fyi ' R Fai F3ERY (2] F32 RS, R Fai ' Ry Fiy (2]
lR}fl Fy' R31, (multifork) RS, lF?}Z (multifork) Fy ' R31, Fiy!
Rity i R Fiy 52 Ry [2] F32 R, R Foi ' R Fiy (2]
| A R Jor mi%, P R
Rty By ' RILFiy (2] Rity Fyi ' RiL Fip (2]

Note that since the map (4.12) is the composition

R12 tr Flll
12 111 p21 111 ™M1 12
R111F21 R111F12

Rt Fiy" — Tdin[-2],
we have the following equality of maps F312R:i’2 — Ids:

¢1 0 (4.12) = tr = ¢ 0 (4.12).

The map 1) in the definition of the P-twist of F32 is 1)1 —1)2. Changing the basis
of the middle term of (4.36) to the diagonal and the antidiagonal we obtain:

F32R3,[2] © Fy? Riy © F3? Riy[—2]

0 0 0
) ¥
21d 0 0
0 2Id Y1+ (437)

(F3?Ri5[2] ® F5?Rip) @ (F5*Ri[2) & F3*Riy)

(2(411) ¢1+d2 0 G1-02)

12 111 p21 111
R111F21 111F12 [2}
deg.0

We can remove the following acyclic subcomplex of (4.37)

21d 0
0 2Id
e

Fy*R;[2] @ F3* R, Fy*R;[2] @ F3 Ry,

deg.-1
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using the Replacement Lemma. Since the subcomplex has no external arrows emerg-
ing from its degree —2 part, no other differentials are affected. We obtain:

0
FI12R3.1_9 (¢> F12R3.12 F12R3(2(4‘11) ¢1+¢2)R12 Fl11R21 pillfg 4.38
5 Rp[ 2] » F32R{,[2] © F3°Riy ———— 1112i1 011112[]- (4.38)
eg.

Since (4.5) fits into an exact triangle, we have a homotopy equivalence of form

2(4.11
F2RG[2) N R R R P2

\ |pa (4.39)

Idqo
deg.0

By the Replacement Lemma, we finally obtain:

¥ 1(4.12)0(p1+¢2)

Fi2R3,[-2] ——— Fi2R3,[2] Id;s. (4.40)

deg.0

Since (4.12) o ¢; = tr, this is homotopy equivalent to the P-twist of F312:

FI2R3,[-2] —Y FRR3,[2) — % Ty, (4.41)
eg.

(T)2, D?}) and (T)2, D?}) are pairs of mutually inverse equivalences.

This follows from the “twist-twist=flop” relations. Indeed, Ti2T%4 and TE Ty are
isomorphic to P-twists of F312 and F321 and hence are both autoequivalences. There-
fore T4 and Ty are also autoequivalences. On the other hand, the maps X’ and 1/
which define the functors D?} and D17 are the left duals of the maps p and A which
define the functors T)2 and TZ. Hence D?} and Di? are the left adjoints of Ty and

T122l The claim now follows. O
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4.3 A skein triangulated action of GBr; on T* Fl3(7)

The aim of the rest of this chapter is to define a network of categories and functors
that satisfy the assumption of Theorem 4.2.3.

In particular, we construct such a network on T* Fl3(i) and we prove that all the
hypothesis for a skein triangulated action of GBrjs are verified.

In the following, let D?(X) be the derived category of coherent sheaves on a
smooth quasi-projective variety X and assume all the functors derived, i.e. we omit
R and L.

We omit the pushforward i, applied to structure sheaves when ¢ is an embedding
and the pullbacks applied to line bundles; we also write, when Dy and D are divisors
respectively in X and Y, Oxx,y (D1, D2) for the line bundle Ox (D;) X Oy (D2) on
the fiber product X xz Y.

We write the total space T™* Fl,(i) of the contangent bundle of the flag Fl, (%)
with the little abuse of notation, as in remark 2.2.30

« « « «

_ L~ P2
TEL@H = 0Cc v, c X cv,  cao b,

and we also write

(07 o « (0% « « (07 «
/‘\ VZ—a S VY VZ
0 c T N condxloTty, N ey, cen

for the subspace of T*Fl,(i) x T* Fl,(j) where the maps as need to satisfy
alViy) C Vi, and a(V,) C V.,

We write V; for the pullback on Fl,, of the tautological bundle of Gr(i,n).

Recall that if X and Y are quasi-projective subvarieties of Z such that their
intersection X NY is a Cartier divisor in Y than we have the short exact sequence
of coherent sheaves of Z

0—)0y(—XﬁY)—)OXUy—>Ox—>O. (4.42)

Recall moreover that if f: X — Y is proper, then we have the following adjunc-
tion of derived functors

AfAS (4.43)

where f' = f*(—) ® wy/y[dimY — dimX].
If f is a divisorial embedding we write Oxyx vy € Db(X xY) and Oyx,x €
Db(Y x X)(X,0)[~1] for the Fourier-Mukai kernels representing respectively f. and

2
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If f is a fibration we write Oxx v € DY(X xY) and Oyxyx € DY(Y x X) for
the Fourier-Mukai kernels representing respectively f,. and f*.
We write moreover Oxx, x € Db(X x X) for the Fourier-Mukai kernel repre-
senting the identity on X.
As in section 3.8, let C' be our ambient variety the total space of the contangent
bundle of Fl3
C =T"Fls.

Let A and E be the quasi-projective varieties defined as the total space of the
contangent bundle of P? and P2?V:

A = T*P? E = TP?V.

Let B and D be the quasi-projective varieties defined as the total space of the
pullback via p; and py on Fl3 of the contangent bundle of P? and P2V:

B =piT*P? D =piT*P?".

We have therefore the following diagram

B ¢ - C - > D
i iD
Mi wEl
A E
]@2 o
2 ¢ 2v
P Tpt2 p Tptl P

(4.44)

. . . . « e . . . s s
where ip, ip,ipzv and ip2 are divisorial inclusions and B =2 A and D -£ FE are
P! bundles.

Definition 4.3.1. We define the categories C3) = DP(pt), Cao = Db(A), Co1) =
Db(E), and C(l,l,l) = Db(C>

4.4 A skein triangulated action of GBr;: generators

In this section we define the generators of skein triangulated action of GBrs, the
forks and the merges.

The functors Fi3' Fil and their respective right adjoints Ri%, R?}; are the
spherical functors F; and their right adjoints R; of section 3.10.
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After giving a description of them as Fourier-Mukai transforms, we will compute
the first compositions of them.

In the following sections, we use D(pt), D*(A), D*(E), D*(C) instead of the
notation of Definition 4.3.1.

Definition 4.4.1. We define the first fork functor
FiY =ip, ol : DY(E) — D*(C) (4.45)
and define the second fork functor

FL =ip, on% : D'(A) — D*(0). (4.46)
Bl ip. o P ip. o,
Figure 4.10: First and second forks
Proposition 4.4.2. The Fourier-Mukai kernel of Foi! and F{3' are respectively the

sheaves Opx D € DY(E x C) and Oax,B € DY(A x C).

Proof. Let w19, mo3, m13 be the natural projections

ExDxC
. (4.47)
E x D DxC Dx FE

By Proposition 3.9.4, the composition Fii! of ip, o 7y, is represented by the
convolution of their Fourier-Mukai kernels, thus

134 (M120Ex s E ® T330Dx p,0) = T13+(OEx s Exc ® OExDxpD)

By Corollary 3.9.4 the latter derived tensor product of the structure sheaves is
isomorphic to the structure sheaf of the intersection

Opxpexc @ ObxDxpb = OExgExpD

Indeed the subvariety £ xg D x C'is of codimension 4 inside £ x D x C while
the condimension of the subvariety £ x D xp D is 6 inside ¥ x D x C.

Their intersection (E xg D x C)N(E x D xp D) is smooth and of codimension
9, therefore they intersect transversally.



68 Chapter 4. Categorical action of generalised braids

Notice that £ xg E xg D is isomorphic to a copy of D in the third component,
therefore m13 : E xg E xp D — E x C is an embedding, so the derived pushforward
of Opx yEx D is just the structure sheaf of the image of the support.

So in conclusion the Fourier-Mukai kernel of Fyi! is isomorphic to

OExgD-

The same argument applies to ip, o 7% for showing that the kernel of Fi s
isomorphic to

OAXAB'
O
Remark 4.4.3. The first merge
RA, = mp. oy : DY(C) — DY(E) (4.48)
and the second merge
Ri2, = ma. 0y : DY(C) — Db(A) (4.49)

are respectively the right adjoints of Fji' and Fi3t.

21 _ | 12 _ |
Ri1; = pE«oip Ri1| = paxoip

Figure 4.11: First and second merges

Proposition 4.4.4. The Fourier-Mukai kernel to R}, and Ri3, are respectively the
objects Opx e (D,0)[~1] € D*(C x E) and Opx ,A(B,0)[-1] € D*(C x A).

Proof. Let 12,723, m13 be the natural projections as in diagram (4.59)
By Proposition 3.2.3, the composition B3, of pp. o i!D is represented by the
convolution of their Fourier-Mukai kernels, thus

T13+(T330Dx , D(D, 0) @ 1150Ex E) =~ T13+(OExDx (D, 0,0) ® Opx zExC)

As in the proof of Proposition (4.59), by transversality of the intersection of
E x D xp D with E xg E x C, we can apply Corollary 3.9.4 and obtaining the
isomorphism

OEXDXDD(D7O)O) ® OEXEEXC) = OEXEEXED(D7O)O)'

Notice that £ xg E xg D is isomorphic to a copy of D in the third component,
therefore m13 : E Xg F xXgp D — E x C' is an embedding, so the derived pushforward
of Opx ,Ex D is just the structure sheaf of the image of the support.
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Since w3 is an embedding restricted to £ xgp E xg D, we conclude that the
Fourier-Mukai kernel associated to R?1; is isomorphic to

Opxpe(D,0)[—1].

The same argument applies to i, o 7} for showing that the Fourier-Mukai asso-
ciated to R}?, is isomorphic to

Opx ,4(B,0)[—1].

Definition 4.4.5. We define the third and fourth forks
FJ? = ipa, o T Db(pt) — Db(A), F2':=ipa, o Tt - Db(pt) — D°(E)
and the third and fourth merges

R?Q = Tpt1s O i]lP,g : Db(A) — Db(pt), Rgl = Tpt2s O i]!pgv ] Db(E) — Db(pt).

12 . * 21 .__ *
F3 — ZPQ* (¢] ﬂ-pt]. F3 — Z]P)ZV* o 7Tpt2

Figure 4.12: Third and fourth forks

R%z = Tptlx © i]lpz Rgl = Tpt2x © i]!lmv
Figure 4.13: Third and fourth merges

Remark 4.4.6. The functor Fi% (and similarly for the functor F3') can be also
described as the functor that maps the 1-dimensional vector space to Opz2 and its
right adjoint R3, is the functor RHom(Opa, —).

R}2, is represented by the Fourier-Mukai kernel Opy , 4(B,0)[—1].

F21111 is represented by the Fourier-Mukai kernel Oy ,p.
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Proposition 4.4.7. The Fourier-Mukai kernel associated to Ri3 Fii'! is Oz, @ Vi ®
(A2V5)?[—1], where

AN A

Z1 =X 0cC Vo, cCcC3Px{0cCcV ccC?

is a line bundle over Flg and it is also the blow up of A or E along their zero sections.

Proof. Let w2, mos3, w13 be the natural projections

ExCxA
ExC ExA Cx A

By Proposition 3.2.3, the composition is represented by the convolution of their
Fourier-Mukai kernels, thus the kernel of R1%, F}l! is isomorphic to

7713*(7TT20E><ED®7T§3OB><AA(B7 O)[_l]) = 7T13*(OE><ED><A®OE><B><AA(07 37 0))[_1]

The subvariety E xp D x A is of codimension 5 inside E x C x A; the same
codimension is the one of E x B x4 Ain E x C x A.

Their intersection (Exg D x A)N(ExBx4A) = Exg(DNB) x4 A is smooth
and of codimension 10, therefore £ x g D x A and E x B x 4 A intersect transversally
in £ xC x A.

By Corollary 3.9.4,

OEXEDXA ® OE‘><B><AA = OEXE(DQB)XAA

The subvariety E xg (D N B) x4 A can be described as the space

« o « « «

/NN 7N /NN

0CV,CcCPxd0cCcVicVa CcCPxl0cCV, cCd

[0}

It is the clear that m3 : E xp (DN B) x4 A — E x A is an embedding.
The image Z; of E xp (DN B) x4 A under m3 is of the form

AN T

Z1=X0cCc Vo, CcC}x<0cCcWVccC?
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Notice that by 3.10.3 Oz, (0, B,0) ~ Vi ® (A?V,)?, so the Fourier-Mukai kernel
of Ri% F3 ! is isomorphic to

Oz, @ Vi @ (A*Vy)?[-1].
Il

The single crossings are the autoequivalences T; of section 3.10 that induces the
Khovanov-Thomas braid group action on D*(C) of Theorem 3.10.4.

Remark 4.4.8. The simple crossing functors Tllllll Tllilil are

11} = Cone (F21111R111[ 1] 1] 5 Idm) ,

where tr is the counit of the adjunction.

Proposition 4.4.9. The Furier-Mukai kernel associated to T111111 is the sheaf

O(cxe0)u(Dx D) (D, 0).
The Furier-Mukai kernel associated to T3 is the sheaf Ocxo0)uBx 4B)(B,0).

111

Proof. Proposition 4.4 in [32]. O

4.5 A skein triangulated action of GBr;: main theorem

In this section, we prove the main theorem of the thesis verify assumptions for a
skein triangulated action of GBr3 on D°(T* Fls(i)).

Lemma 4.5.1. The following isomomorphism holds

111 21 o 7111 12
PR FR ~ P F
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Proof. The Fourier-Mukai kernel representing F21111F321 is isomorphic to
713+ (T12(Opix pea) ® m33(Oax 4 B))
= 7Tl3*(opt><ptIP’2V><C ® OPtXAXAB) (4'50)
=~ 7T13*(Opt><pt]P’2V><]PgFl3) = OthFZB

Similarly the Fourier-Mukai kernel associated to Fj4!Fi? is isomorphic to

OptxFls-
O

Remark 4.5.2. From Remark 4.4.6, Lemma 4.5.1 can be also proved showing that
functors FIPYF and FIJ1Fi? both map the 1-dimensional vector space to Opy,.

Lemma 4.5.3. The mapping cone of the morphism

RI2, PR R2L Rt P, g

1s isomorphic to
Cone(tr[—2]) ~ Fi*R3,. (4.51)

Sl

Proof. The Fourier-Mukai kernel representing Fj2R3, is isomorphic to

~

13 (172(O 4 upt) © W33(Opie (0, P2)) [~1] =

~

= 7r>1k2(O]P’2><pt><A) ® OAxptx]P’2 (O’ O’]PQ))[_H
71—13*(OP2><pt><P2 (07 0, PZ) [_1] = OPZXPZ (07 PQ) [_1]
The Fourier-Mukai kernel representing Ri?, F}{'RH, Fi! is isomorphic, by the

proof of Lemma 4.4.7, to
7715*(OA><A(BQD)><EE><C><A(Oa D7 07 Oa 0) ® OAXCXEXE(BOD)XAA(Ov 0,0, Bv 0))[_2]

The subvarieties A x4 (BND)xg ExCxAand AxCx Exg(BND)xA are
both of codimension 10 in A x C'x E' x C' x A. Their intersection A x4 (BN D) xg
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E x (BN D) x4 Ais of codimesion 20 in A x C x E x C' x A therefore by Corollary
3.9.4 the Fourier-Mukai kernel representing Ri%, Fil R?H FL is isomorphic to

7154 (O ax 4 (BAD)x g Ex p(BnD)x 4A(0, D, 0, B, 0))[-2]

whose support is isomorphic to (BN D) xg (BN D).

The variety (BN D) xg (BN D) has two irreducible components, one of them
X is isomorphic to Z; of Proposition 4.4.7, and the other one X35 is the blow up of
P2 x P? along the diagonal.

The intersection X7 N X5 of the two components is isomorphic to Fl3 which is
the exceptional divisor inside Xo.

Thus, by 4.42 we have the following short exact sequence

0 = Ox,(=(X1 N X3)) = Ox,ux, = Ox, = 0
hence we have the isomorphism
Ox,ux, ~ Cone(Ox,[1] = Ox,(—(X1 N X1)))

and therefore in D’ (Ax C x ExC x A) O 4x A(BND)x g Ex z(BnD)x 4A(0, D, 0, B, 0)

is isomorphic to
Cone(Oy, [1] = Oy, (—(Y1NY1))) ® O(0, D, 0, B,0).

When we project via 7, to A x A the first component X7, it surjects onto the
diagonal, while the second component X surjects onto P? x P2. Since both maps are
blow-downs, the projection is an isomorphism except over the diagonal in P? x P?
where it is a P!-bundle.

Thus, taking the derived pushforward 715, of Cone(Oy,[1] — Oy, (—(Y1NY1)))®
0(0,D,0,B,0) and applying Corollary 4.5 of [3] to the map

12 73 12 111 p21 111
R3 F12 - R111F21 R111F12

we have that
F3?Riy — Rif Byl ' RiY Fly ' — 1da[—2]

is a distinguished triangle. O
The following Lemma holds in a more general context.

Lemma 4.5.4. Let X be smooth projective variety over k, m : X — Spec k be the
structure morphism, and t: X — T * (X) be the embedding of the zero section:

X s TH(X)
Jﬂ (4.52)

pt.
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Let P* and P, be the standard Fourier-Mukai kernels of the exact functors
7 D(pt) — D(X),
e D(X) — D(pt),
and let I, and I' be the standard Fourier-Mukai kernels of the exact functors
te: D(X) = D(T*X),
/' D(T*X) — D(X).

See [7], Section 2.6.2 for the details on the standard kernels.
Then we have an isomorphism in D(pt):

P.I'I.P* ~ A H* (X, k).
Proof. By Lemma 2.19 of [7], we have
PI'I.P* ~ (1 x 7),I'I,. (4.53)
By Proposition 7.8 of [7], the object I'T, € D(X x X) has the cohomology sheaves:
H(I'L) ~ Ay N Nyjpex,

in degrees 0 < ¢ < n and 0 elsewhere.
Moreover, by Theorem 1.8(6) of [9], the object I'I, is formal, and hence

=0

Since Ny p+x =~ Q}(/k, we conclude that

I'l, ~ A, <€B Qg(/k> :
=0

Thus we have

n n
P.I'ILP* =~ (1 x ). I, ~ (7 x 7). A, (@ ngk) ~ A, (@ Qf‘X/k> :
i=0 i=0
Since 7, is isomorphic to the derived global section functor RT'(—), the assertion of
the lemma follows by the degeneration of the Hodge-de-Rham spectral sequence. [
The main theorem of the thesis is the following:

Theorem 4.5.5. Assume that Conjecture 4.2.1 holds; then the assignment of:

1. the partition (111) to the category DP(T" Fl3);
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2. the partition (12) to the category D*(T" P?);
3. the partition (21) to the category D*(T" P?V);
4. the partition (3) to the category D®(pt);
and the assignment of:
1. the fork fH' to the functor FJ}it;
2. the fork fi}l to the functor Fi}1;
3. the fork f3' to the functor F3l;
4. the fork fi? to the functor F}?;
define a skein triangulated representation of GBrs on T" Fl3(i).

Proof. By Examples 3.5.6 and 3.7.5, Fa{! and F{4! are split spherical functors with
cotwist [—2], while F§! and FJ? are split P? functors with H = [—2].

As a consequence of Lemma 4.5.1, there exists a multifork isomorphism.

By Lemma 4.5.4, there exists an isomorphism

R Rt Fiy ' F3? = 1dy ®[-2] © [-2] @ [-4] © [-4] @ [-6] =~ RS, R}, Fyy ' F3'
and moreover, from Theorem 7.2 of [7] , it identifies together with the P? functor
structure of F321 and F312 the maps 4.8, 4.9 with
Ids ®[-2] & [—4] — Id3 ®[—2] & [-2] & [-4] & [-4] @ [-6].

Finally, by Lemma 4.5.3, the following two diagrams can be completed to two
distinguished triangles

F3?Riy — R Y/ R FIS Y — 1dio[-2],

F321R21 - Rlll 11R111 111 — Idg1[—2].

Thus, by Theorem 4.2.3 such assignment define a categorical action of GBr3 on
T" Fl(i). O

Remark 4.5.6. From Remark 4.2.2, a categorical action of GBra needs only to
satisfy relation 4.2.
Therefore, it is a case already covered by Theorem 3.10.4 of Section 3.10.
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4.6 Further developments

As a continuation of the results of the previous section, the long term research plan
is to generalise our theory to the GBr, case.

In this section we present some computations that we expect to be helpful to
understand how to generalise Theorem 4.5.5 in arbitrary dimensions.

In particular, for computing higher dimensional multiple crossings we use the
invariance of the generalised braids under isotopies and an induction on the con-
struction of figure 4.14.

Figure 4.14: Higher dimensional induction

The idea behind this computation is a conjectural program which allows us to
inductively compute the multiple crossing functors in higher dimensions and obtain

equivalences of type (pq) — (qp).
To motivate the general argument, in this thesis we provide the case n = 3.

Therefore, we construct the functor T3¢ as the difference

12 12 @111 o p21 plllplll o111
Toi o By Fiy™ ~ Ry T gy Fis (4.54)

We first compute the loop functor R, Fjit

R31, is represented by the Fourier-Mukai kernel Opx , g(D,0)[—1].

F12111 is represented by the Fourier-Mukai kernel Ogy . p.

Lemma 4.6.1. The Fourier-Mukai kernel associated to R3}, Fall is isomorphic to
m13+(E) where the cohomologies of € are

OEXEDXEE(())D)O)a ’LfT‘ZO,
HT(‘c/,) = OEXEDXEE7 if r = —1;
0, otherwise.
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and where w3 is the natural projection m3: A X C x A — A x A.

Proof. Let w12, mo3, m13 be the natural projections

AxC x A
. (4.55)
AxC Ax A CxA

By the standard technique of Proposition 3.2.3, the Fourier-Mukai kernel of the

composition R?}, Fi! is isomorphic to

T13+(M120Ex 5D ® T330Dx z (D, 0)[-1]) =~

~ M3+ (Opx zpxE @ Opxpx zE(0, D, 0))[—1].

We observe that the the supports £ xg D X E and E x D xg E of the sheaves
involved in the derived tensor product are both of codimesion 5 inside £ x C' x E.

The intersection E xg D xp E = (Exp D x A)N(E x D xg D) is smooth and
codimension 9 inside F x C' x E, therefore with a rank 1 excess bundle £.

The excess line bundle £ is equal to O(0, —D, 0); this follows from the adjuction
formula and by fact that £ is of rank 1. By Proposition 3.9.2 the cohomologies of
OExppxE @ OpxpxzE(0,D,0) are therefore

OEXEDXEE(OuDaO)v ifTZO,
H"(Opx;pxE ® Opxpxpe(0,D,0) = § Opx uDx B if r=-1;

0, otherwise.

The following Lemma holds for general varieties and vector bundles.

Lemma 4.6.2. LetY be a variety and let E — Y be a vector bundle. If X = P(E) is
the projectivisation of E and is the projection w: X = P(E) — Y then TF*(Q];(/Y) =
Oy k] .

Proof. Consider the short exact sequence
0= Qy/y =7 (EY)(-1) = Ox =0 (4.56)

which is the dual of the Euler sequence.
If we apply the functor 7, to (4.56) we obtain the short exact sequence

0= m(Qx/y) > 0—0y =0 (4.57)

indeed, since X is a projective bundle, 7,0x = Oy and 7, F(—1) = 0.
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Thus, from the long exact sequence associated to (4.57) we get

7 (@ )y) = Oy [k,

O
Lemma 4.6.3. 713+(Opx ,pxE @ OpxpxpE(0,D,0))[—1] is formal in E x E.
Proof. From the adjunction (4.43) we have the distinguished triangle
id — R} Fop' — id[—2]
which at level of Fourier-Mukai kernels correspond to the distinguished triangle
AOp = X — AOg[-2] (4.58)

where A : E — E X FE is diagonal embedding and X is the Fourier-Mukai kernel of
R¥, F3!L. he abelian group of equivalence classes of distinguished triangles of the
form

Obxpe =Y = Opxye[—2]

with Y € DY(E x E) is isomorphic to the group
Extl(OEXEE[_2]7 OEXEE) ~ Emt3(OEXEE7 OEXEE)-

Therefore, in order to prove that m13+(Orx zDxE®@OExDx pE(0, D,0))[—1] is for-
mal in E'x | it is sufficient to prove that the distinguished triangle (4.58) correspond
to the zero class in Ext?*(Opx y5, OpxzE)-

The functor F{* R}, FH is a retract, so it correspond to the zero class of

Ext! (Fy ' [-2], Fyi)

Let 9, ma3, m13 be the natural projections

ExExC
. (4.59)
ExE ExC ExC

The Fourier-Mukai kernel of Fia'! R?}, F3 ! is then by Proposition 3.2.3 by base
change around the commutative square

ExD Y By pxc
WQ\L lﬂ'23 (460)

D" . pyc
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isomorphic to

T134 (M1 X ® m33(m,9)«Op) = mi3. (7 X ® 33(id, m,4)+OpxD)
by projection formula we have the isomophism

T13s(Ta X ® m53(id, 7,1)+Opxp) ~ mi3(id, m,1)* (id, 7, 1) s X.

Moreover, since
T3+ (id, m,1) = (m13 0 (id, 7,1))s = (7, 1)«

and
(id, 7,i) 7wy = (m12 0 (id,7,1))" = (id, 7)*

we have the isomorphism

mig(id, m,3)" (id, 7, 1) 7o X ~ (7,1).(id, m)" X.

Consider now the following commutative diagram

Exty, 5((7,id).Op, (m,id).Op)

| T (1.61)

ExtiXC((Wai)*ODa (7T>i)*OD) # El't%(l*OD,’L*OD)

The zero element 04xc € Extd, ((m,1):Op, (7,i).Op) is sent by h to the zero
element of Ext}(i,Op,i.Op); showing that the homomorphism (,i), is injective
proves therefore that g is injective and that ¢~ 1(04xc) = Oax 5.

Indeed, since m5i* oy (7, id)s = 75i*is, we have the isomorphism,

a1 152 (7, 1d)«Op ~ m5i%1.Op
but i : D — C'is a divisorial inclusion, hence i*i,Op = Op & Op(D)[1] and
m51"1,.Op ~ 75(Op & Op(D)[1])

which correspond to the zero element as it splits and therefore 7,7, is injective.
Since (7,4)«Opxp ~ Opx B, because D * E is Pl-bundle, and (id, 7)* is fully
faithful, we have that under the isomorphism

f: Ext}(AOp, AOg) = Ext®((r,id)Op, (1,id),Op)

the Fourier-Mukai the element Oaxc € Extd, ((m,1)Op, (7,4).Op) that cor-
respond to the Fourier-Mukai kernel representing Fyi! R?1, Fail! has preimage under
f o g the zero element of Ext3(A.Op, A.OFg) and therefore X is formal.

O]
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Proposition 4.6.4. The Fourier-Mukai kernel associated to R3, Fall is Opypp @
OEXEE[_2]
Proof. Consider the projections 719, o3, m13 as in (4.66).
By Lemma 4.6.1 the non-zero cohomologies of Opx ,pxE ® OpxpxpE(0,D,0)
are Opx ,px5£(0,D,0) in degree -1 and Opx ,px xE I degree Zero.
We have m13:Ogx ,px g B ~ OEx zE since ExpDxpE =2 ExpEisaP! bundle,
while by Lemma 4.6 we have that m13.0px ,pxpE(0, D,0)[—1] ~ Opx ,5[—2].
Finally by Lemma 4.6.3 we conclude that FiR) ~ Opx .5 ® Opx ,5[—2]. d

By Proposition 4.6.4 we know that the Fourier Mukai kernel associated to the
functor Ri2, FiM is Opy 5 ® Opx ,[—2]. While R111T111111T111111F111 is by definition
of T111111 and T111111 isomorphic to

R T THI R ~ R3 Cone(FlY ' RI3, 22 id)Cone(Fa R, 2% id) Fig'

(4.62)

where T111111 = Cone(F3'RI3, N Id) and tr is the counit of the adjunction

11 B Rlll
111T111F111

Therefore the functor R}, T 111 L4 is the convolution of the diagram

12 111 p21 111
R111F21 RlllldFm
tro try

12 111 p21 111 pl12 11l 12 111
RlllF RlllF RlllF @ RlllF

Rif 1P R Byt
(4.63)
Notice that by Lemma 4.6.3 we have the following the isomorphisms

Rl Rl Pl Rl
R F3l 'R Pyl ~ Ri3 Fylt @ Ri3 Fy -2

and similarly for Ri% F{H Ri% Falt

Rit Fiy ' RiL By = Rit Fy' @ Ryt Fyy '[=2].
Thus, the convolution of diagram (4.63) is isomorphic to the convolution of dia-

gram

12 pl 12 il
Rif iy @ Ryq Fop [—2]
U1R2l pl 111 111
Ri} Fyl ' R FIY R Fy Q) Ri} Fy

R} Fl' @ Ri3 Fot (-2
(4.64)
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Thus, to compute the double crossing functor T4 we have the following recipe:

1. Compute the Fourier-Mukai transform associated to

111 p21 p111 111
R111F21 R111F12 Rlll :

2. Determine the Fourier-Mukai kernel of RijToTH ' Fi3! as a convolution of
diagram (4.64).

3. Define the double crossing functor T2 using the isomorphism (4.54).

STEP 1: the Fourier Mukai kernel of Ri} FJ[RY FII R FJN

The first step of the recipe for the computation of the double crossing T4 is to
compute the Fourier-Mukai transform associated to Ri%, Fal'R3 FIJIRI2 F 111.

F2. is represented by the Fourier-Mukai kernel Oy . p.

R is represented by the Fourier-Mukai kernel Opy , 4(B,0)[—1].
F}3 is represented by the Fourier-Mukai kernel O , 5.

R is represented by the Fourier-Mukai kernel Opy (D, 0)[—1].
FZ is represented by the Fourier-Mukai kernel Opy ,p.

R is represented by the Fourier-Mukai kernel Opy , 4(B,0)[—1].

Figure 4.15: The functor R, F{'RH FIIL R P

We begin by spitting the big composition in smaller ones in order make it more
accessible.

Lemma 4.6.5. The Fourier-Mukai kernel associated to R21, F3ll and RI3, F}{t are
respectively Opx ,p(D,0)[—1] and Opx ,5(B,0)[—1].

R is represented by the Fourier-Mukai kernel Opy , g(D,0)[—1].

F 12111 is represented by the Fourier-Mukai kernel Ogy . p.
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Proof. Let w3, mo3, m13 be the natural projections

CxExC
) (4.65)
CxFE E x FE ExC

The Fourier-Mukai kernel associated to R, Fyi! is by Proposition 3.2.3

T13+(M120Dx pE(D, 0)[—1] ® m530Ex z0) = T13+«(Obx pExc(D,0) ® OcxExzp)[—1]

Let us compare the codimensions of the supports of the sheaves involved in the
derived tensor product: it easy to see that D xg E x C' and C x E xg D are both
of codimension 5 inside C' x E x C.

Their intersection (C'x E xp D)N (D xg ExC) =D xg E xg D is smooth and
of codimension 10, therefore their intersection is tranverse and we can use Lemma
3.9.4 and obtain the isomorphism

OpxpExc(D,0) ® Ocxpexpd =~ ObxzExzp(D,0,0).

Notice that the morphism w3 : D Xg E xXg D — C x C'is an embedding. Indeed
is is easy to see that the space D xgp E xg D
(03 « (6% (03 (0% (03
0 CVicVa cCix{0cCc VWV CcC 3x<0cCcV/cWwnccc
is naturally embedded into C' x C
B B B

I VaVa aVaVal

CxC={0cCcV/cV/ cCx<0cWhcWnccC

and the image 7T13(D XE E x D) =D XE D.
In conclusion, the Fourier-Mukai kernel associated to R31; FJi! is isomorphic to

T13+(ODx pEx p0(D, 0))[=1] = Opx zp(D, 0)[-1].

The same argument shows that the kernel of R}?; F{1! is isomorphic to

OBXAB(B,O)[—H.
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Lemma 4.6.6. The Fourier-Mukai kernel associated to Fai'R3L FIH RIZ, s iso-
morphic to Oz, (D,0)[—2] where

AN AN

Zz3={ 0 CcWVic Vy cC}ix{0cCV/cVccC

Proof. Let mya, o3, w13 be the natural projections

CxCxC
. (4.66)
CxC CxC CxC

Denote by Fj Ry Fo Ry the Fourier-Mukai kernel of FjilR# Foll R, .
By Proposition 3.2.3 and by the previous Lemma 4.6.5 F1 R F5 R is isomorphic
in D*(C x O) to

FiR{FsRy ~ 7T13*(TFT2OB><AB(B,O)[—1] X 7'&';3OD><ED(D,0)[—1]) =

- 7T13*(OB><AB><C'<B, 07 O) & OCXDXED(O7 D7 O))[_2]

The supports of Opx ,Bxc(B,0,0) and Ocxpx,p(0,D,0) are both of codimen-
sion 5 inside C' x C' x C, their intersection D xg (BN D) x4 B=(B x4 BxC)N
(C x D xg D) is smooth and of codimension 10.

OBXABXC(Bv 07 0) & OC’XDXED(O: D7 0)) = ODXE(BHD)XAB(Ba D7 O)

The projection 713 : D xg (BN D) x4 B — C x C is an embedding,.
Indeed, B x4 (BN D) xg D is isomorphic to

« « « « o

/N TN v~ O\

0 CVic Vg cC® xS 0cCWVicVa CC®)hxc0cCV/C VhcC C?

«

and therefore id a P! x P'-bundle over the D N B copy in the central component.
Its image under w13 is the subvariety Z3 of C' x C

AN AN

Z3={ 0 CcViC Vg CcCix{0cCV/cVccC
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which is the same P! x P! over the B N D viewed as a line bundle over the flag
{0cVicVacC?}

«

BnD={0cVc V c C3

07

Thus, in conclusion we have that the Fourier-Mukai kernel of Fii!R2H FIILRIZ is

T13+(Opx s (DnB)x 4 B(B; D, 0))[=2] = Oz,(D, 0)[-2].
0

Before merging all the Fourier-Mukai kernel together, we prove the following
technical Lemma which holds in a more general context.

Lemma 4.6.7. Let Wy, Wo, W3 be smooth subvarieties of the variety Z. and consider
the following commutative diagram of inclusion maps

WinNnWyn Ws

! (4.67)
, W,
/
Z
The relative canonical bundle wyy,nw,nws/Z is isomorphic to the sheaf
W Wy /Z = TR 07 ® s* ' 0. (4.68)

Proof. By base change, the relative canonical bundle wyy, nw, 7 is isomorphic to

W,z = €107 ® ¢'Ow
~¢"i'0; R ¢ Oy (4.69)
~ ¢*i'O7 @ p*j'O.

Similarly we can iterate this argument for the relative canonical bundle on Wi N
Wo N W3 / Z
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W, N WanWs3 /2 = r*h' Oz @ h' O,y
~r*h'Oz @ r'h* Oy (4.70)
~r*h' 0, @ s*w'Oy.

Proposition 4.6.8. The Fourier-Mukai kernel representing
Rif Foi ' R Byt ' Rity By
is isomorphic to s, (F), where E x C x C x C x A ™2 E x A and
FeDUExCxCxCxA)

1s the derived tensor product of the Fourier-Mukai kernels involved in the composition
with cohomologies

OY1UY2(07(1,*2)3(*2, 1)7(1’*2)’0)7 if 1 =0,
Hr(f) = OYl (07 (37 _3)¢ (_3¢ O)a (07 0)7 0)7 if?" = —1;

0, otherwise.

The subvarieties Y1 and Ys are the total spaces respectively of the zero section and
the complement of the zero section of E xp (BN D) x4 (BND)Xg(BND) x4 A.
Moreover, the cohomologies of F split under mysy.

Proof. Let w19, T34, T45 and w15 the natural projections

ExCxCOxCxA-"2s ExA

)

E x CxCxC <A

By Proposition 3.2.3 and the previous Lemmas 4.6.5 and 4.6.6 the Fourier-Mukai
kernel RoFyR1FyRoFy associated to R34 F){TR2E FEURI2 Fil is isomorphic to

T15x(T120Ex 5D ® T3340Bx 4 (DNB)x zD (B, D,0))[-2] ® m450px ,A(B,0)[-1])

Let’s deal first with the transverse part of the intersection, since the derived
tensor product is commutative.
As usual we want to use Corollary 3.9.4 in order to obtain the isomorphism

T190Ex 5D ® Ty50Bx 4, A(B,0)[-1] ~
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= OE><;;D><C><C><A & OEXCXCXBXAA(O7 07 Oa Ba 0)[_1]

The subvariety ExgpDXCXBx A= (ExgDXxCxCxA)N(ExCXxCxBx4A)
is smooth and of codimension 10 in £ x C' x C' x C' x A, while the codimensions of
ExgDx(CxCxAandof EXCxCxBxygAof ExgDxC xC x A are both
of codimension 5.

The Fourier-Mukai kernel RoFy R F5RoF7 is isomorphic, since the intersection is
transverse, to

7T15*(OE><ED><C><B><AA(O7 Oa Oa Ba 0)[_1] ® OEXBXA(DOB)XEDXA(()) B7 D) 07 O))[_Q])

The subvariety £ xg D x C' x B x 4 A is of dimension 16 so is codimension 10 in
E xC xC xC x A, the subvariety E x B x4 (DN B) xg D x A is of dimension 14
so is codimension 12 in E' x C' x C' x C' x A. Their intersection (E xp D x C X B X 4
A)N(ExBxa(DNB)xgDxA)=Exg(BND)x4(BND)xg(BND)x4A
is a reducible variety; indeed

Exp(BND)xa(BND)xg(BND)xaA=Y1UY,

where Y7 is the zero section {a = 0}

Yi={ocwcClx{ocviccC}lx{ocVichcC}x{ocV clhcC}x{ocV cC?}

which is a P! x P'-bundle over Fl3 and of codimension 21 in ExCxCxCxCx A,
so with one dimensional excess bundle &£1;
Y5 is the component outside of the zero section

o ey Py P A \
YN\ PN ) e N ) s ~ ) 'AYA .
NcWVhcocixqscWoWbocCixiacheo Ve Cirxd0chec Vac Crxq0chc®

‘\___2_’,/ e i ‘\%_2__,,/

which is isomorphic to B N D, so smooth and of codimension 22: therefore the

intersection is transverse on this component.
The intersection between the two components of E xg (BN D) x4 (BN D) xg
(BND)x4Ais

YinY,={0chcC}x{ocVchcC}x{0cnchcC}x{ocViclhcC®}x{0cWcC?}

so isomorphic to Fl3, hence a Cartier divisor in D N B ~ Y5.
Thus, by 4.42 we have the following short exact sequence

0— OY2(—(Y1 N Yl)) — OY1UY2 — OYl — 0
hence we have the isomorphism

0Y1Uy2 o~ C’one(Oyl [1] — OYQ(—(Yl M Yl)))
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therefore in D*(ExCxCXC X A) Opy o(BrD)yx 4(BnD)x s(BnD)x 44 (0, B, D, B, 0)
is isomorphic to

Cone(Oy,[1] = Oy, (—(Y1NY1))) ® O(0, B, D, B,0).
For computing the excess conormal bundle

&= (NEXEDXCXBXAA EB~/\/'E><B><A(DﬁB)><ED><A)/~N'Y1

we will use the fact that it is a line bundle, hence det(£;) = & and the short exact
sequence

0— NYl — NEXEDXCXBXAA @NEXBXA(DHB)XEDXA — & —0 (4'71)

thus,

& = det(NEXEDXCXBXAA) ® det(NEXBXA(DﬂB)XEDXA) ® det(Nﬂﬁ)il

So the excess bundle will be
& =0(0,—D,0,-B,0)®0(0,—B, —B—D, —D, 0)®0(0, wpy, ®ws , Wiy, Wi, &
sz,0) Recall that the tautological bundles can be written as O(—1,0) = V; and
0(0, 1) = A%V,
The canonical bundles of Flg,P?, P2V are respectively
WFI3 = O(=3,-3)®0(1,1) = O(-2,-2), wp2 = 0O(=3,0), wpzv = O(0,-3)
The normal bundles of B and D inside C could be written respectively as
O(B) = (AV3) 2@ Vi =0(1,-2), O(D)=MAV;® (Vi) =0(-2,1)

and we have that wF13®wP2 =0(1,-2) = 0(B), wF13®wP2v =0(-2,1)=0(D)
Then the excess conormal bundle is & = (0, (2,—-1),(-1,-1),(-1 2) 0)
and if £L=0(0,B,D,B,0)=0(0,(1,-2),(-2,1),(1,—2),0) then

& ®L=0(0,(3,-3),(-3,0),(0,0),0)

So the cohomologies of the derived tensor product are

HT(OEXEDXCXBXAA(Oy 0) O) B) O) ® OEXBXA(DOB)XEDxA(O, B, D’ O’ O))) =
OYlUY2(07(1’_2)7(_27 1)7<17_2)70)7 if r = 07
=4 Oy,(0,(3,-3),(=3,0),(0,0),0), ifr = —1;

0, otherwise.

Consider the map
T3 - Y1 — Ex A

As Y7 lies inside the zero section of E x C' x C' x C' x A, its image under 73 is
P2 x P2V. Moreover:
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1. If (V{,V3) ¢ Fl3 then V; is forced to be different from V/, thus Vj is determined:
so Y7 is a P! bundle over the open P2 x P2V \ Fi3.

Vi # V{ implies V5 = Vi;

Vo # Vy implies Vi = V{;

This implies that over Fi3 C P? x P2V, Y] is a P! U P!-bundle.

2. If (V/,V3) € Fls, then {

The morphism 73 is flat on Y7.

Since flatness is a local open condition, on the open P2 x P2V \ Fli3 is flat because
it is a P'-bundle.

For the closed subvariety (V{,Vy) € Fls , by definition, the morphism 3 is flat
if and only if Oy, j is a flat Ogy 4 7,4(p)-module.

Choose z,y and «, 8 to be local coordinates respectively for P? and for P2V, so
that

Opxamsp) = Clas 8,2, Yl(a,8.0.)

Denote moreover 6,y and w, z local coordinates for V; and V; respectively. In P2V xP?
we have the following relations that we want to be satisfied

Vic Vs, ‘/{C‘/Q, VlCVg

Let’s take the local chart for Vj = (1 : « : ), the argument for the other two
charts will be completely specular.

Moreover, since all the linear spaces Vi, V{, Va, V5 lie in the same ambient space
C3, the incidence relations are independent by the action of GL(C,3); we can then
assume that the point (a, ) correspond to the origin and

Vy=(1:0:0)"
If V1 # V{ then V4 = V4, so the local coordinates of V4 and V] can be :

e V/=(0:1:58),Vi=(0:1:0), with 8 forced to be different from §; thus,
the local ring is Oy, , ~ Clo, 8,7, 0, 2, y, w, z](a757$7y)

By symmetry, this case cover also the chart V/ = (0:a: 1), V3 =(0:v:1)

e V/=(0:1:8),Vi=(0:v:1) with 8 and ~ are both forced to be different

from 1. Then, the local ring is Oy,  ~ Cla, 8,7, 6, 2, Y, W, 2] (y,8,2,y)

By symmetry, this case cover also the chart V/ = (0:a:1) , V1 =(0:1:0)

If Vi # V3 then Vi = V{: if we choose as local coordinates of V3 = V/ = (0:1: ),
then V3 is forced to have the coordinates Vo = (0 : 1 : %)L with 8 #0 (Vo = (0:
1:0)* otherwise) or Vo = (0: —a: 1)+,

Therefore, the local ring Oy, , ~ Cle, 8,7, 9, z,y,w, Z](%7B’z7y).

The argument is symmetric in the case we take coordinates V3 = V{ = (0: a: 1).
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Finally, if V5 = V5 and V; = V/ then the two charts for V{ = V{ are (0:1: ) and

(0:a:1).

So, Oy, p = Cla, 8,7, 0, %, y,w, 2](8,2,4) and Oy, p = Cla, 8,7, 0,2, Y, W, 2] (a,zy)
Since w13 is flat, using base change around the commutative square

Yl,p —2 Y1

UJ iﬂls (4.72)

P w IP)Z\/ X I[J)QV

The map 13 is flat and the map w is proper, so the commutative square (4.72)
is Tor-independent.
By flat base change theorem w* o 713, ~ v, o u*.
So w*(m13+Oy; ) ~ v, (u*Oy,).

Moreover, we have that
*
u*Oy; = Oy,

0Oy, =T (Yip, Oy, ,) = C.

Thus, w*m3.0y, = C, therefore the fibers of 73,0y, are one dimensional, so
m13+Op € PiC(PQV X IP’Q).
In particular the the higher dimensional cohomologies of the derived pushforward
m13+0Oy; vanish and
m13+Oy; ~ m13.Oy; .

Since for every point g of E x A, the fiber 713 (¢) is compact, then the only regular
functions of 13,0y, on an open set U containing g are the constant. Therefore we
have the local isomorphisms (713+Oy; )q =~ C =~ (Op2v «p2), induced by Wf;.

Thus, we deduce that m13,0y, = Op2v yp2.

Since w19 : Yo — E x A is an embedding, we conclude that

7r13*(OY1UY2) = 7T13*COTL€(OY1 [1] - OYz(_(Yi N YQ)))
~ Cone(m13+0y;[1] = m13.0y,(—(Y1 N Y3))) (4.73)
~ Cone(Op2v yp2[1] = Oz, (—(Fl3)))

where Z, is the subvariety of £ x A
NN /NN

Zy;={0C Vh CcC®)x<0cCVW ccC?
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Since Fl3 is a Cartier divisor inside Z; we have the isomorphism
OZluIF’QXIF’QV ~ COHE(OPZ\/ %P2 [—1] — OZ1 (—(Flg))),
we conclude that

13+ (Oviuy,) = Oz,up2 xp2v

Denote £ the line bundle O(0, (1, —-2), (-2, 1), (1,—2),0))

T13+(Oy,0y, ® L) ~ m13.Cone(Oy, @ L[1] = Oy, (—(Y1NY32)) ® L)
~ Cone(m13:0y; ® L[1] = m13.0v,(—(Y1NY2)) @ L) (4.74)
~ Cone(0[1] = Oz, (—(Fl3) — D))
Indeed 73,0y, ® L[1] ~ 0: by flat base change theorem around the commutative

square (4.72), the following functors are isomorphic w* o w13, ~ v, o u*.
So w*(m13+(Oyy ® L[1])) = v.(u*(Oy; ® L[1])).

Consider the following commutative square

Yy — P2 x P2 x P2V x P?
T (4.7
]P)QV X ]P)2
Then by Lemma 4.6.7 , the relative canonical bundle wy, /p2vp2 ~ 7T!130[p>2vp2 is
isomorphic to
7T!13(9p2v1p>2 ~ i*p!Opzv «p2 ® i!O[pJ2v < P2 x P2V x P2
~*0(0, -3, -3,0) ©*O(1,2,2,1) (4.76)
~*O(1,-1,-1,1)
Recall that
L£L=0(-2,-1,-1,1)
So
L = ml30p2vyp2 @ Ti30(—3,0)

and therefore

T13:L ~ T13.(m130p2v  p2 ® T130(—3,0))
~ T3 Hom(Oy, , T3 Opav y p2) @ O(—=3,0)
~ m3. Hom(m13:Oy; , Opav 5 p2)[—1] ® O(-3,0)
~ O(-3,0)[-1]

(4.77)

Therefore we have the isomorphisms
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T13+(Oy; ® L) = Opavyp2(—3,0)[—1].

and

7['13*(05/1 (O, (3, —3), (—3, 0), (0, 0), 0)[1]) = Ovasz(—B, 0)[1] ~ OPQ\/X]PQ (QB + D)[l]

since on the fibers the line bundle is trivial.
The last statement of the proposition follows therefore from relative Bott van-
ishing.
O

STEP 2: The Fourier Mukai kernel of R{}, T\ T} Fy!

The second step of the recipe for constructing the double crossing 77 is computing
the Fourier-Mukai kernel of the functor

R Ty For ' = Rin (Fot ' Rty — id) (B Ry — id) ! (4.78)

as the convolution of diagram
12 il 12 il
R Fyi @ Ryt Fop [—2]
12 @il p2l mill pi2 pill 12 @il
Rty Fop  Ryp Fop  Ryqy By b Ry, Fyy

Rit Fai' @ R Fat'[-2]
(4.79)
at level of Foirier-Mukai transforms.

Proposition 4.6.9. The cohomologies of the derived tensor product of Fourier-
Mukai kernels involved in the composition of Ri%, Fatl R2H Id FJ{t before taking the

derived pushforward w15+ are

HT(OEXEDXCXBXAA<07 07 07 B7 0)®0E><D><DD><ED><A(O7 07 D7 07 O)) =

0y,4(0,0, D, B,0), if r =0,
= 4 0y4(0,0,0, B,0), ifr=—1;
0, otherwise.
where
Ys:=(ExgpDxpDxg(BND)x4A)
and

ms5: EXxCxCxCxA—FExA.
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Proof. Consider the following diagram

ExC ™ ExOxCOxCxA-"sExA

x C

C CxC Cx A

By change base theorem and lemma 4.6.5 the Fourier-Mukai kernel K5 associated
to Ryt Fai PR3} Id Fat s

K5 ~ 150 (1120Ex 5D ® T3300x 0 @ 1340Dx 5 0(D, 0)[-1] @ 7350 4 4(B, 0)[-1])
=~ 7r15>l<((I)E><ED><C><B><AA(07 07 07 Bv 0)[_1] ® OEXDXDDXEDXA(O7O7D7O7O))[_l])
(4.80)

The subvariety E xg D x C x B x4 A is of dimension 16 so is codimension 10 in
E x C x C x C x A while the subavariety £ x D xp D xg D x A is of dimension
14 so is codimension 12 in Ex C xC xC x A

Yi=(ExXgDxCxBxAaA)N(ExDxpDxgDxA)~Dxg(DNB) which
is is a P'-bundle over BN D and at the same time the blow up Bl{a—0y(D) over the
zero section of D, so it is 5 dimensional and its codimension in £ x C' x C x C x A
is 21, so with one dimensional excess bundle &3.

For computing &3 we will use the short exact sequence 4.71 to get the isomorphism

E3 ~ det(NExEDxCxBxAA) ® det(NExDxDDxEDxA) ® det(NY4)71
~& =0(0,-D,0,—B,0) ® O(0,—D,+wp — D,—D,0) ® O(0,D,—wp + D,+B + D,0)
~ 0(0,-D,0,0,0)

So by Proposition 3.9.2 the cohomologies of the derived tensor product are

HT(OEXEDXCXBXAA(O) 07 07 Ba 0)®OE><D><DD><ED><A(07 07 -Da 07 0)) -

Oy, (0,0, D, B,0), if =0,
0y;(0,0,0, B,0), ifr=—1;
0, otherwise.

Analogously a symmetric proof proves the following
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Proposition 4.6.10. The cohomologies of the derived tensor product of Fourier-
Mukai kernels involved in the composition of Ri2, 1d Fa! Ri2, il before taking the

derived pushforward mis.« are

HT(OEXEDXCXBXAA(Oy 07 07 B7 0)®OE><B><AB><BB><A(07 Ba 07 07 0)) =

OYS/(O,B,O,B,O), ifr=0,
= (’)YS/(O,O,O,B,O), ifr=—1;
0, otherwise.
where
Yy =EXp(BND)xaBxaBx4A.
and

5 ExCx(OCx(OxA— Ex A.
The following Lemma holds in the context of triangulated categories.

Lemma 4.6.11. Let the following be a distinguished triangle in a triangulated cate-

vicyLw Ly
and let v € Hom®(A[-1], 4") for A’ € T. Let X[1] be the cone of yo h: C — A'[1]

so that

gory C
oy (4.81)

Yoh
V-] =W — X — V'
(4.82)

is a distinguished triangle. Then X ~ Cone(V[—1] IO,y eV

Proof. Consider the following commutative square

V-] L we v
al i(ld,o) (4.83)

w—14 L

and complete it to the following commutative diagram

vi-y L wev @
a (1d,0) %
(4.84)
U, 1;’ ————————— > Qvl]
¥ (0,1d) Id
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Since all the rows and all the colums are distinguished triangle we can aplly the
octaedral axiom of triangualate categories in order to obtain the isomorphism X ~

Q. O
Proposition 4.6.12. The Fourier-Mukai kernel representing the functor

BRI T T Fo
is the object Oz yp2vxp2y © Oz, um2v xp2)[—2] where
(0% (0% [e% «

Z1i=X0cCc VcC3x{0cWwccC?

Proof. By Proposition 4.6.8, Lemmas 4.6.9, 4.6.10 and Proposition 4.4.7, the convo-
lution of diagram (4.64) and therefore the Fourier-Mukai kernel of R{{, T} T} Foi'!
is the derived pushforward of the projection on E x A of the diagram of the coho-

mologies

0y,(0,0,0, B,0)[~2] & Oy, (0,0, D, B,0)[~1]

0% (0. (3.=8). (=3,0),(0,0),0)[=3] & Oy, (0, B. D, D, 02 \—/ /h—éEmmME(o, D.0)-1]

Oyy(0, B,0, B,0)[~2] ® Oy(0,0,0, B,0)[~2]

(4.85)
We want to compute the cone of the subdiagram
0y,(0,0,D, B)
%
OY1UY2(03B3D3B70) @
X)
Oy?)/(o, B,0, B,0)

(4.86)

using Lemma 4.6.11.
The intersection of Y3 with Y7 U Y5 is a divisor in Y3; indeed

Y3ﬁ(Y1UY2)=(Y3ﬂY1)U(YEJ,ﬂ}/2)

where
YsnYy, =Y,
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and Y5 is a divisor in Y3, and
Y5NY1 = Y30-0
so the restriction of Y3 to the zero section, which is a divisor in Y3 and will be denoted

by 573.
So from 4.42 we have the short exact sequence

0 = Oy, (=Y3 — ¥2) = Oyiuvauys — Oviuys — 0 (4.87)

From Proposition 4.6.8 we have that the zero cohomology of RsFy R FoRoF is

Y1 UY2 = Opx,BnDxsBnDx pBnDx 4A(0, B, D, B,0)

meanwhile from Lemma 4.6.10 we know that the zero cohomology of RoFiR;1d Fj
is
Y3 = OpxzDxpDxsBnDx4A(0,0,D, B,0)

Their intersection is the reducible variety
Y3N (Y1 UY2) = OpxppnBxprpbnBxsBnDx 44(0,0, D, B,0)

which is a divisor in Y with conormal bundle N7 = O(0,—B,0,0,0).
So from 4.42; they fit in the short exact sequence

0— OEXEDXDDXEBHDXAA(Oa 07 D7 Ba 0) — 0Y1UY2UY3 (Oa B7 D7 Ba O) — OY1UY2 (Oa B7 D7 Bv O) —0
Similarly the zero cohomology of RoId F5RoF

Y3 = OpxzBnDx4BxpBx 4A(0, B,0, B,0)

the intersection of Yy with Y7 UY53 is

Y3 N (Y1 UY2) = OpxpDnBx pDnBx prsBnDx 4A(0, B, 0, B, 0)
which is a Cartier divisor in Yy with conormal bundle N3 = O(0,0,—D,0,0).
As before, the zero cohomologies of the functors fits in the short exact sequence

0— OEXEBHDXEBXBBXAA(O, B,0, B, 0) — Oyluyzuyé(o, B,D, B, 0) — Oyluyz(o, B,D,B, 0) — 0(4.88)
By Lemma 4.6.11 we have that

Cone(g1 @ g2) ~ Oy,uy,uvy(0, B, D, B, 0). (4.89)

Similarly f is the E2t! map coming from the short exact sequence (4.42) which
glues Y7 on top of Y3, while h became the identity after taking the derived pushfor-
ward since both the varieties Y3 and E x g (DN B) X g E are mapped to Z; under the
projections to E x A. Using Lemma , the derived pushforward of the cone of (4.85)
and therefore the Fourier-Mukai kernel representing the functor Ri% T IlilllT 111111F21111
is isomorphic to

Oz,u@2v xp2) @ Oz,u@2v xp2)[—2]-
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STEP 3: The double crossing functor Ty}

The last step for the construction of the double crossing functor T)7 is to defined it
as the difference of Figure 4.16.

.

Figure 4.16: The double crossing functor 757

Theorem 4.6.13. The Fourier-Mukai kernel representing the double crossing func-
tor Tyt is Oz,u@2v xp2y where

VAR VA
Z1={0cC Vo CcC®}x{0cCV ccC?

Proof. By Proposition 4.6.12 the Fourier-Mukai kernel representing the functor
12 1110111 111
Ry Ty Ty Fai

is the object Oz, p2v xp2) © Oz, u2v xp2)[—2], while by Proposition 4.6.4 the functor
R, F}{! is represented by Opyx .5 ® Opxpr[—2].
Therefore

X % (OpxpE ® Opxpe[—2]) = Oz,ymevxp2) © Oz,u@2v xp2) [ 2. (4.90)
Indeed 4.90 leads to the isomorphism

X ~ OZ1U(P2V><]P’2)' (491)

O

Remark 4.6.14. The Fourier-Mukai kernel of Theorem 4.90 is the Kawamata-
Namikawa Fourier-Mukai kernel of Theorem 3.8.2.
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