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Summary

In [32], Khovanov and Thomas constructed a categorical action of the braid group
Brn on the derived category D(T ∗ Fln) of coherent sheaves on the cotangent bundle
of the variety Fln of the complete flags in Cn.

In this thesis, we define the generalised braid category GBrn, we define the notion
of a skein-triangulated representation of GBr3, give a sufficient condition for the
existence of a skein-triangulated representation of GBr3 and we construct a skein
triangulated representation of GBr3 on D(T ∗(Fl3(̄i)) that generalises the Khovanov
and Thomas categorical braid action on D(T ∗ Fl3).
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Chapter 1

Introduction

The bounded derived category of coherent sheaves can be viewed as an ultimate
cohomological invariant of an algebraic variety. The notion of the derived category,
together with the notion of a triangulated category which axiomatises it, was invented
by Grothendieck and Verdier in 1960s in their search for the natural context for the
generalisations of Serre duality and for the existence of the right adjoint of a direct
image functor [46].

In the past few decades it has become increasingly more relevant in many areas
of algebraic geometry. In particular, in 1994 Kontsevich formulated the Homologi-
cal Mirror Symmetry conjecture at the International Congress of Mathematicians in
Zürich ([33]) which was a far reaching mathematical generalisation and interpreta-
tion of a certain duality between the families of 3-dimensional Calabi-Yau varieties
observed several years earlier by string theorists. The duality was on the level of
Hodge numbers: there were pairs of Calabi-Yau 3-folds X and X ′ for which:

dimHp(X,Ωq) = dim Hn−p(X,Ωq).

Kontsevich’s Homological Mirror Symmetry conjecture stated that if X and X ′ are
two such dual Calabi-Yau manifolds, then the derived category of coherent sheaves
Db(Coh(X)) is equivalent to the derived Fukaya category of DbFuk(X ′) and vice
versa: Db(Coh(X)) ' DbFuk(X ′). The powerful intuition gained from this conjec-
ture led to the discovery of many new mathematical structures, including spherical
and Pn-objects and their generalisations, which lie at the heart of this thesis.

Roughly, the main point of the notion of the derived category is that working with
complexes is better than working with their (co)homologies. For example, there exist
topological spaces X, Y such that their homologies are isomorphic H∗(X) ∼= H∗(Y ),
but X and Y are not homotopy equivalent; while the Whitehead theorem states that
two simplicial complexes X and Y have homotopy equivalent geometric realizations
|X| and |Y | if, and only if, there exists a simplicial complex Z and simplicial maps
f : Z → X and g : Z → Y which are quasi-isomorphisms, that is they induce
isomorphisms between the homology groups Hi(X), Hi(Z) and Hi(Y ). The notion
of derived category is a realisation of the same principle: work with complexes of
objects and formally invert the quasi-isomorphisms to identify any two complexes
with naturally isomorphic cohomologies. We refer to [44] and [15] for an introduction
to derived categories and to [34] and [27] for technical references.
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Given an abelian category A, define the category C(A) to be the category of
complexes of objects of A. For technical purposes, we first invert all the homotopy
equivalences: define the homotopy category K(A) to be the additive category whose
objects are complexes of objects in A

· · · −→ Cn−1 dn−1

−→ Cn
dn−→ Cn+1 −→ · · · (n ∈ Z, dn ◦ dn−1 = 0)

and whose morphisms spaces are the quotients of those in C(A) by the subspaces of
null-homotopic maps. The derived category D(A) is the category whose objects are
the same as those of K(A), and whose morphisms A• → B• are certain equivalence
classes fs−1 of pairs (s, f)

A•
s←− C• f−→ B•

of morphisms in K(A) with s a quasi-isomorphim.
If X is a smooth quasi-projective variety we write Db(X) for the bounded de-

rived category of the abelian category Coh(X) of coherent sheaves on X, that is
Db(X) := Db(Coh(X)). The structure of Db(X) can be studied by considering its
autoequivalences and in this context categorical group actions play an important
role. A categorical group action of a group G on Db(X) is an assignment of an
autoequivalence Fg of Db(X) to every element g ∈ G such that the group operation
is compatible, up to isomorphism, with the composition of functors.

The classical result by Khovanov and Thomas in [32] states there exist n-1 autoe-
quivalences Ti of the derived category of the total space of the complete flag variety
in Cn which satisfy the braid relations:

TiTj ∼= TjTi for |i− j| ≥ 1.

TiTjTi ∼= TjTiTj for |i− j| = 1.

In other words, that the braid group Brn acts categorically on Db(T ∗Fln). Here
braids are configurations of n disjoint pieces of string with n fixed endpoints, con-
sidered up to isotopies which keep the strands disjoint.

In the work of Khovanov and Thomas, configurations of n points represent the
derived category of the cotangent space of complete flags in Cn, and the cobordism
between the two configurations represents an autoequivalence of this category. In
this thesis, we generalise the Kohovanov and Thomas result in dimension 3 to a
skein-triangulated action of the category GBr3 of generalised braids on the derived
categories of the cotangent bundles of the varieties of complete and partial flags in
C3. Generalised braids are the braids whose strands are allowed to touch in a certain
way: they can join up (two at a time), continue as a multiple strand, and split apart.
Moreover, we do not distinguish any permutations of individual strands within a
multiple strand — only the multiplicity matters. Therefore, technically, we define
generalised braids as a certain kind of trivalent coloured graphs with fixed univalent
startpoints and endpoints and satisfying flow conditions.
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Due to strands having multiplicity, instead of a single endpoint configuration con-
sisting of n disjoint points, they have multiple endpoint configurations corresponding
to the ordered partitions of n. This, together with the fact that such braids are no
longer necessarily invertible, implies that generalised braids form a category rather
than a group or a groupoid.

Figure 1.1: Some generalised braids

In Chapter 2 we describe complete and partial flag varieties as homogeneous
spaces, describe their Picard group, and give a description of T ∗(Fln) as Springer
resolution of the nilpotent cone of sln.

In Chapter 3 we give an overview of autoequivalences of and braid group actions
on the derived categories of coherent sheaves of smooth (quasi-)projective varieties.

In Chapter 4, we define the generalised braid category GBrn, we define the notion
of a skein-triangulated representation of GBr3, give a sufficient condition for the
existence of a skein-triangulated representation of GBr3 and we construct a skein
triangulated representation of GBr3 on D(T ∗(Fl3(̄i)) that generalises the Khovanov
and Thomas categorical braid action on D(T ∗ Fl3).
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Chapter 2

Springer resolutions and flag varieties

Flag varieties are interesting geometrical objects, on one hand these Fano varieties
are a natural generalisation of projective spaces and Grasmannians, on the other
hand they are the model example of the notion of homogeneous spaces.

The aim of this chapter is to give a description of flag varieties as homogeneous
spaces, understand their Picard group, give a convenient description of the total space
of the cotangent bundle of complete and partial flag varieties. For the complete flag
variety, we identify this total space with the Springer resolution of the nilpotent cone
of sln.

In the first section, for a complex connected Lie group G, we define the nilpo-
tent cone Ng of its Lie algebra g and the Springer resolution Ñg of Ng. We then
define the homogeneous space G/B, and identify the Springer resolution with the
cotangent bundle T ∗G/B. In the second section, we describe the Picard group of
Grassmannians and flag varieties.

2.1 The nilpotent cone and its Springer resolution

In this section we describe the Springer resolution of the nilpotent cone of a semisim-
ple Lie group following the Chapter 3 of [20].

Let G be a complex connected Lie group and let g be its Lie algebra, viewed
as the tangent space at the identity TeG. Assume G to be semisimple, i.e. g is
semisimple. Let B0 a Borel subgroup of G, let T0 ⊂ B0 be a maximal torus of G and
let U0 be the unipotent radical of B0. Let moreover g, b0, h0 and n0 be the respective
Lie algebras of G,B, T and U .

Definition 2.1.1. Let G be a Lie group and g be its Lie algebra. The adjoint action
AdG of G on g is the differential of the adjoint action of G on itself: g ∈ G acts on g

by the differential d(g(−)g−1) : g −→ g. The coadjoint action Ad∗G of G on g is the
differential of the coadjoint action of G on itself: g 7→ d(g−1(−)g).

Remark 2.1.2. The differential of the adjoint action AdG : G → GL(g) is the
adjoint representation of Lie Algebras adg : g→ gl(g).

Example 2.1.3. Let G = GLn so that g = gl(Cn). The adjoint action AdG is the
action by matrix conjugation.
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Definition 2.1.4. Define Bg to be the set of all Borel subalgebras of g.

Proposition 2.1.5. Let G be a Lie group and let g be its Lie algebra. The adjoint
action AdG of G on g defines a transitive action of G on Bg.

Proof. Section 3.1 of [20] or [12].

Proposition 2.1.6. The normaliser NB(G) of a Borel subgroup B of G is B.

Proof. Lemma 3.12 of [20] or [12].

Remark 2.1.7. We have b0 = h0⊕n0 and we have n0 = [b0, b0]. More generally, any
b ∈ Bg contains the canonical subalgebra nb = [b, b] which consists of all ad-nilpotent
elements of b. Under the adjoint action of G, if b0 is sent to some b ∈ Bg, then n0

is sent to nb, but h0 can be sent to any of the Cartan subalgebras h ⊂ b.

Definition 2.1.8. An element x ∈ g is ad-nilpotent if adnx = 0 for some n ∈ N.

Remark 2.1.9. If g = sln then x ∈ g is ad-nilpotent in the sense of Definition 2.1.8
if and only if its matrix is nilpotent.

Definition 2.1.10. Define the nilpotent cone Ng of g to be the set of all ad-nilpotent
elements of g.

Proposition 2.1.11. The set Ng has a natural structure of a quasi-projective variety:
it is a closed subvariety of g stable under AdG and C∗ actions, i.e. a cone variety
singular at the origin. The set Bg has the structure of a smooth projective variety:
it is the closed subvariety of the Grassmannian Gr(dim(b), g) formed by all solvable
Lie subalgebras of g .

Proof. Section 3.1.6 of [20].

Example 2.1.12. Let g = sl2 generated as Lie algebra by the elements

x =

(
0 1

0 0

)
, y =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
(2.1)

subject to the relations

[x, y] = h [h, x] = 2x [h, y] = −2y.

Then the nilpotent cone is the space

Ng =

{(
a b

c −a

)
∈ sl2

∣∣∣∣ −a2 − bc = 0

}
, (2.2)

which is a quadratic cone in C3. Set

B0 =

{(
∗ ∗
0 ∗

)}
and T0 =

{(
∗ 0

0 ∗

)}
,



2.1. The nilpotent cone and its Springer resolution 7

their respective Lie algebras b0 and h0 consist of the traceless matrices which are
upper triangular and diagonal, respectively. Hence, in the language of Example ??:

b0 = 〈x, h〉, h0 = 〈h〉, and n0 = 〈x〉,

and we see explicitly the decomposition b0 = h0 ⊕ n0 of Remark 2.1.7.
Denote by {e1, e2} the standard basis of C2. We can describe b0 as the traceless

maps C2 → C2 which preserve 〈e1〉, h0 as the traceless maps that preserve both 〈e1〉
and 〈e2〉, and n0 as the maps which send the whole C2 to 〈e1〉, and 〈e1〉 to zero.

Since all b ∈ Bg are conjugate to b0, each b ∈ Bg is the set of all traceless maps
preserving a line in C2, whence Bg is isomorphic to P1.

Definition 2.1.13. For any Borel subgroup B ⊂ G, define G/B to be the set of all
the left cosets {xB | x ∈ G}.

Remark 2.1.14. By Propositions 2.1.5 and 2.1.6, the assignment

g 7→ g ·AdG b0

gives a bijection
G/B0

∼−→ Bg. (2.3)

It can be shown that the G/B0 admits a natural structure of a smooth projective
variety and that the bijection (2.3) is a G-equivariant isomorphism of varieties, see
section 23.3 of [29] or [12].

Definition 2.1.15. Define

g̃ = {(x, b) ∈ g× Bg | x ∈ b}, (2.4)

Ñg := {(x, b) ∈ Ng × Bg | x ∈ b}. (2.5)

and let the two maps

BgNg

Ñg
.................................................................................... ........

....

π
................................................................................

....
............

µ

. (2.6)

be the corresponding natural projections.

Definition 2.1.16. The Springer morphism is the map

µ : Ñg −→ Ng. (2.7)

Remark 2.1.17. Consider the trivial vector bundle over Bg with fibers Ng. We can
view π : Ñg → Bg as its subbundle whose fiber at any point b ∈ Bg is nb.

Remark 2.1.18. Ñg is a smooth variety since it is a vector bundle over Bg.
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Example 2.1.19. If g = sl2 as in example 2.1.12, then π : Ñg → Bg is a line bundle
over P1: a point b ∈ Bg corresponds to the choice of 1-dimensional subspace l ⊂ C2

and the corresponding fiber of π consists of the line n ∈ Ng of all nilpotent operators
C2 → C2 whose image is contained in l.

Definition 2.1.20. Define b⊥ to be the annihilator of b, i.e. b⊥ = {x ∈ g∗ | x(b) =

0}.

Definition 2.1.21. Define G×B0 b
⊥
0 to be the quotient of G× b⊥0 by B0 acting on

G by right multiplication and on b⊥0 by the coadjoint action Ad∗B0
.

Proposition 2.1.22. There is an isomorphism

T ∗Bg ' G×B0 b
⊥
0 . (2.8)

given by the map dual to the infinitesimal g-action map G/B0 × g→ T (G/B0).

Proof. Proposition 1.4.11 of [20].

Lemma 2.1.23. For any b ∈ Bg, the identification g ∼= g∗ provided by the Killing
form identifies b⊥ with nb.

Proof. Section 8.1 of [28].

We can embed G×B0 b
⊥
0 into the trivial vector bundle G/B0 × g∗ over G/B0:

φ : ([g, α]) 7→ ([g], g ·AdG α).

The image of G×B b⊥0 under this embedding is the subbundle

{(b, α) ∈ G/B0 × g∗ | α ∈ b⊥}.

We thus have the following commutative diagram

G×B b⊥0

{(b, α) | α ∈ b⊥} G/B × g∗

Ñg G/B × g

∼ φ

∼Lemma 2.1.23 ∼Killing form

Thus, we obtain

Proposition 2.1.24. There exists a G-equivariant isomorphism of vector bundles
over G/B0:

Ñg
∼= G×B b⊥. (2.9)
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Proof. Lemma 3.3.2 of [20] or [12].

Corollary 2.1.25. There is a natural isomorphism Ñg
∼= T ∗Bg.

Remark 2.1.26. By Corollary 2.1.25 we can think of the Springer resolution as a
map T ∗Bg → Ng.

2.2 Geometry of flag varieties

In this section we give a description of the Picard groups of flag varieties via Schubert
calculus, following [14]. We begin with some preliminaries on Bruhat decompositions
following [?]. Let G be a connected complex reductive algebraic group.

Definition 2.2.1. A parabolic subgroup P is a subgroup of G that contains a Borel
subgroup B.

Proposition 2.2.2. A subgroup P ⊂ G is parabolic if and only if G/P is a projective
variety.

Proof. See [12] or [29].

Definition 2.2.3. Let B ⊂ G a Borel subgroup and T ⊂ B a maximal torus. The
Weyl group of the Borel pair (T,B) is the group W := NG(T )/T.

Definition 2.2.4. The Bruhat decomposition of G is the decomposition

G =
⊔
w∈W

BwB (2.10)

as a disjoint union of double cosets of B parameterized by the elements of W .
More generally, any parabolic subgroup B ⊂ PJ defines the generalised Bruhat

decomposition
G =

⊔
w∈W/WJ

BwPJ (2.11)

where WJ = {[v] ∈W | v ∈ PJ} and W/WJ is the set of right cosets of WJ in W .
See [12] and [29] for further details.

The double cosets of the Bruhat decomposition descend to the left B-cosets in the
right coset quotients G/B and G/PJ . This gives the decomposition G/B and G/PJ
into the B-orbits under the action of B by left multiplication. These are Schubert
cells, and their closures are Schubert varieties:

Definition 2.2.5. For any w ∈W , the corresponding Schubert varieties are

Xw = [BwB] ⊂ G/B, and XJ
w = [BwPJ ] ⊂ G/PJ .
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Definition 2.2.6. Define the Bruhat order on W by

w ≤ w′ ⇔ Xw ⊆ Xw′ . (2.12)

Define the Bruhat order on WJ by

w ≤ w′ ⇔ XJ
w ⊆ XJ

w′ . (2.13)

Example 2.2.7. Let G = GL3(C) and let T and B be the subgroups of the diagonal
and the upper triangular matrices, respectively:

T =


∗ 0 0

0 ∗ 0

0 0 ∗

 and B =


∗ ∗ ∗0 ∗ ∗

0 0 ∗

 .

The normaliser NG(T ) consists of all the matrices such that the induced change of
basis keeps all the diagonal matrices diagonal. Up to scaling, any such change of
basis is a permutation of basis vectors. It follows that

W := NG(T )/T = S3.

Moreover, we have the standard splitting W ↪→ NG(T ) given by the permutation
matrices, which permute the standard basis e1, e2, e3 of C3.

The upper triangular matrices are the matrices which preserve the standard flag

0 ⊂ E1 ⊂ E2 ⊂ E3 = C3

where Ei = 〈e1, . . . , ei〉. Hence any right coset of B consists of all the matrices which
send the standard flag to a specific flag

0 ⊂ V1 ⊂ V2 ⊂ V3 = C3.

This identifies the space G/B with the flag variety Fl3 of complete flags in C3.
There are two parabolic subgroups of G containing B:

P1 =


∗ ∗ ∗0 ∗ ∗

0 ∗ ∗

 and P2 =


∗ ∗ ∗∗ ∗ ∗

0 0 ∗

 .

Each Pi consists of all matrices which preserve the subspace Ei. Its right cosets
consist of the matrices which send Ei to a specific i-dimensional subspace of C3.
It follows that the homogeneous spaces G/P1 and G/P2 can be identified with the
varieties P2 and P2∨ of lines and planes in C3, respectively.

The Bruhat decomposition of a matrix A ∈ GL3 corresponds to its reduction
to column echelon form. Multiplication by an upper triangular matrix on the right
is equivalent to performing a sequence of column operations where we only add to



2.2. Geometry of flag varieties 11

each column a linear combination of the columns lying to the left of it. Hence in the
Bruhat decomposition

M = U1σU2

the (inverse of the) matrix U2 encodes the column operations, the (inverse of the)
matrix σ encodes the permutation of the columns, and the matrix U1 is the resulting
column echelon form of M .

Correspondingly, in G/B the Schubert cell corresponding to σ ∈W consists of all
the points which can be represented by a matrix obtained by permuting the columns
of an upper triangular matrix by σ. This translates naturally to the condition on
the corresponding flag in C3. For example, the cell C123 which corresponds to the
permutation (123) consists of the points representable by the matrix type

∗ ∗ ∗∗ 0 ∗
∗ 0 0

 . (2.14)

In terms of the corresponding flag 0 ⊂ V1 ⊂ V2 ⊂ C3, the shape of the first column
is equivalent to the condition

V1 6⊂ E2,

and then the shape of the second column is determined by the condition

E1 ⊂ V2.

The shape of the third column is determined by the first two.

By the first condition V1 6= E1, thus we can replace the second by V2 = V1 ⊕E1.
Thus C123 ' C2 and can be identified with P2 of lines in C3 with the line V1 ⊂ E2

removed. The Schubert variety X123 is the closure of C123. It is the subvariety
E1 ⊂ V2 of Fl3. Again, if V1 6= E1, we have V2 = V1 ⊕ E1, but if V1 = E1 then we
can take any V2 containing E1. Thus, X123 is the blowup of P2 at the point V1 = E1.

Similarly, we have:
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σ ∈ S3 Matrix type Schubert cell Cσ Schubert variety Xσ

Id

∗ ∗ ∗0 ∗ ∗
0 0 ∗

 pt : V1 = E1, V2 = E2 pt : V1 = E1, V2 = E2

(12)

∗ ∗ ∗∗ 0 ∗
0 0 ∗

 C1 : V1 6= E1, V2 = E2 P1 : V2 = E2

(23)

∗ ∗ ∗0 ∗ ∗
0 ∗ 0

 C1 : V1 = E1, V2 6= E2 P1 : V1 = E1

(132)

∗ ∗ ∗∗ 0 ∗
∗ 0 0

 C2 : V1 6⊂ E2, V2 = V1 ⊕ E1
P2 blown up at V1 = E1 :

E1 ⊂ V2

(123)

∗ ∗ ∗∗ ∗ 0

0 ∗ 0

 C2 : V1 = E2 ∩ V2, E1 6⊂ V2
P2∨ blown up at V2 = E2 :

V1 ⊂ E2

(13)

∗ ∗ ∗∗ ∗ 0

∗ 0 0

 C3 : V1 6⊂ E2, E1 6⊂ V2 Fl3

Thus the Bruhat order on the Schubert subvarieties of Fl3 is

X13 = Fl3

X132 X123

X12 X23

XId = •

The parabolic subgroups P1 and P2 of G intersect W at subgroups W1 = 〈(12)〉
and W2 = 〈(23〉. The generalised Bruhat decompositions of G for P1 and P2 merge
the Bruhat cells corresponding to the elements of S3 which get identified in W/W1

and W/W2, respectively. Thus:

σ ∈ S3/(23) Schubert cell C1
σ Schubert variety X1

σ

Id, (23) pt : V1 = E1 pt : V1 = E1

(12), (132) C1 : V1 6= E1, V1 ⊂ E2 P1 : V1 ⊂ E2

(123), (13) C2 : V1 6⊂ E2 P2

σ ∈ S3/(12) Schubert cell C2
σ Schubert variety X2

σ

Id, (12) pt : V2 = E2 pt : V2 = E2

(23), (132) C1 : V2 6= E2, E1 ⊂ V2 P1 : E1 ⊂ V2
(123), (13) C2 : E1 6⊂ V2 P2∨
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Grassmanians

For this section we follow [14]. Let G = GLn, T and B be the standard torus and
the standard Borel subgroup of GLn consisting of diagonal and the upper triangular
matrices, respectively. The latter are the matrices which preserve the standard flag

0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = Cn

obtained from the standard basis {e1, . . . , en} of Cn.

Definition 2.2.8. For any 0 < d < n define the subgroup Pd ⊂ GLn by

Pd := {A ∈ GLn | A(Ed) ⊆ Ed} .

The subgroups P1, . . . , Pn−1 are the maximal parabolic subgroups containing B.
Any two matrices which send Ed to the same d-dimensional subspace Vd ⊂ Cn differ
by an element of Pd, so the right cosets of Pd are the sets of all matrices which send
Ed to the same Vd. Thus the homogeneous space G/Pd can be identified with:

Definition 2.2.9. The Grassmanian Gr(d,n) is the set of vector subspaces of Cn
of dimension d:

Gr(d,n) := {Vd ⊂ Cn | dim(Vd) = d} .

The following gives Gr(d, n) natural structure of a smooth projective variety:

Definition 2.2.10. The Plücker embedding is the map

Gr(d,n) −→ P(

d∧
Cn)

defined by
〈v1, . . . , vn〉 7→ [v1 ∧ · · · ∧ vn].

The intersection of Pd with the Weyl groupW = Sn is the subgroup Sd×Sn−d ⊂
Sn which consists of all the permutations in Sn which preserve the subset {1, . . . , d}.
The right cosets of Sd × Sn−d in Sn consist therefore of all the permutations which
send {1, . . . , d} to some fixed subset of {1, . . . , n}. We therefore identify the elements
of W/(Pd ∩W ), the set which indexes the generalised Bruhat cells of Pd, with size d
subsets

I = {i1 < i2 < · · · < id} ⊂ {1, . . . , n} .

Any σ ∈ Sn which lies in such I sends Ed to the subspace

EI = 〈ej1 , . . . , ejd〉 . (2.15)

The corresponding Schubert cell CI is the orbit of EI under the left action of B, and
hence the orbit of EI under the action of its unipotent subgroup U ' C

1
2
n(n−1). The
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stabiliser StabU (EI) are the matrices with uij = 0 if j ∈ I and i 6∈ I. This gives∑
ik − k conditions in total, whence CI ' U/StabU (EI) ' C

∑
ik−k.

Any I as above is uniquely determined by dim(EI ∩Ej) for all the subspaces Ej
of the standard flag. Since the left action of B preserves the standard flag, we have

CI = {Vd ∈ Gr(d, n) | dim(Vd ∩ Ej) = aj for all 1 ≤ j ≤ n} ,

where aj is the number of ik with ik ≤ j. The closure of Vd ∩Ei = aj in Gr(d, n) is
Vd ∩ Ei ≥ aj . Since aik = k, the Schubert variety XI , the closure of CI , is given by

XI = {Vd ∈ Gr(d, n) | dim(Vd ∩ Eik) = k for all ik ∈ I} .

Since CI is irreducible, XI is an irreducible subvariety of Gr(d, n).

Example 2.2.11. Since the condition dim(Vd∩Ed) = d implies Ed = Vd, the Schubert
variety S1,...,d is the point Ed ∈ Gr(d, n).

Example 2.2.12. Since by dimension considerations dim(Vd ∩ Ej) ≤ d + j − n, the
Schubert variety Sn−d+1,...,n is the whole of Grassmanian Gr(d, n).

Example 2.2.13. The Schubert variety Xn−d,n−d+2,...,n consists of those Vd whose
intersection with En−d is non-zero, i.e. whose projection onto En−d+1,...,n is non-
invertible. Thus Xn−d,n−d+2,...,n is the hyperplane section pn−d+1,...,n = 0 of the
Plücker embedding of Gr(d, n). On the other hand, dim(Vd ∩ En−d+j) ≤ j so if
Vd ∩ En−d = 0, we must have dim(Vd ∩ En−d+j) = j, i.e. Vd ∈ Cn−d+1,...,n. Thus

Gr(d, n) = Cn−d+1,...,n

∐
Xn−d,n−d+2,...,n. (2.16)

Proposition 2.2.14. The Picard group Pic(Gr(d, n) of the Grasmannian Gr(d, n)

is freely generated by O(Xn−d,n−d+2,...,n).

Proof. This follows from the decomposition (2.16) given that Cn−d+1,...,n
∼= Cd(n−d)

and Xn−d,n−d+2,...,n is irreducible.

More generally we have

Proposition 2.2.15. The classes of the Schubert varieties XI give an additive basis
of the cohomology ring H∗(Gr(d, n),Z).

Flag varieties

As before, let G = GLn, let T and B be the subgroups of diagonal and the upper
triangular matrices, and let E• be the standard flag

0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = Cn

obtained from the standard basis {e1, . . . , en} of Cn.
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Definition 2.2.16. Let λ = (λ1, . . . , λm) be an ordered partition of n:
∑
λi = n.

Define Pλ ⊂ G to be the subgroup of all the matrices which preserve the partial
coordinate flag Eλ• :

0 ⊂ Eλ1 ⊂ Eλ1+λ2 ⊂ . . . ⊂ Eλ1+···+λm = Cn. (2.17)

It is the subgroup of block upper triangular matrices with diagonal blocks of sizes
λ1, . . . , λk.

The groups Pλ are the standard parabolic groups of G. Any two matrices which
send Eλ• to the same partial flag V λ

• differ by an element of Pλ, so the right cosets
of Pλ are sets of all matrices which send Eλ• to some fixed V λ

• . This identifies the
homogeneous space G/Pλ with:

Definition 2.2.17. The partial flag variety Fln(λ) is the set of all partial flags

0 ⊂ Vλ1 ⊂ Vλ1+λ2 ⊂ . . . ⊂ Vλ1+···+λm = Cn (2.18)

with dim(Vi) = i.

The following gives Fln(λ) the structure of a smooth projective variety of dimen-
sion

∑
i<j λiλj :

iλ : Fln(λ) ↪→
k∏
i=1

Gr(λ1 + · · ·+ λi, n). (2.19)

Example 2.2.18. Fln(1, n− 1) is the projective space Pn−1 of lines in Cn.

Example 2.2.19. Fln(n− 1, 1) is the dual projective space P(n−1)∨ of hyperplanes in
Cn.

Example 2.2.20. Fl(d, n− d) is the Grassmanian Gr(d, n).

Example 2.2.21. Fl(1, n − 2, 1) is the incidence variety of lines V1 contained in the
hyperplanes Vn−1 of Cn. It is a projective subvariety of Pn−1×Pn−1∨ carved out by
the equation

x1y1 + · · ·+ xnyn = 0

where xi and yi are the standard i-th coordinate respectively of Cn and Cn∗.

Remark 2.2.22. For every partition λ the quotient map G/B � G/Pλ is the for-
getful morphism

πλ : Fln → Fln(λ) (2.20)

which sends each complete flag to its corresponding partial subflag. It is therefore
a flat fibration whose fibers are isomorphic to the partial flag space of the flag type
complementary to λ.
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The intersection of Pλ with the Weyl group W = Sn is the subgroup
∏
i Sλi of

all the permutations which respect the partition λ. Its right cosets can therefore
be identified with partitions of the set {1, . . . , n} into the subsets of size λi. More
precisely, define Sλn to be the subset of Sn consisting of permutations which are order
preserving on each block of the partition λ. The permutations σ ∈ Sλn uniquely
represent all the cosets in Sn/

∏
i Sλi .

For each σ ∈ Sλn the corresponding Schubert cell Cσ is the B-orbit of the partial
flag σ(Eλ• ), where σ(Ek) =

〈
eσ(1), . . . , eσ(k)

〉
. The Schubert variety Xσ is its Zariski

closure.

Example 2.2.23. The Schubert variety XId is the single point E• ∈ Fln.

Example 2.2.24. Let ρ be the order reversing permutation (n n − 1 . . . 1). The
Schubert variety Xρ is the whole of Fln.

Example 2.2.25. Let τi be the transposition (i i+1). The Schubert variety Xτi ⊂ Fln
consists of the flags V• with all Vj = Ej except for Vi. Thus it can be identified with
P1 of choices of i-dimensional space Vi with Ei−1 ⊂Wi ⊂ Ei+1.

Example 2.2.26. The Schubert variety Sρτi is a divisor in Fln(λ).

Example 2.2.27. Let λ be a partition of n and let σ ∈ Sλn . The inverse image of the
Schubert variety Xσ ⊂ Fln(λ) under the map

πλ : Fln → Fln(λ)

is the Schubert variety Sσσ̃ ⊂ Fln, where σ̃ is the Bruhat maximal element of
∏
i Sλi ,

i.e. the product of the order reversing permutations. This allows to reduce some
questions about partial flag varieties to the study of complete flag varieties.

Proposition 2.2.28. The Picard group Pic(Fl) of the complete flag variety Fl is
freely generated by the line bundles of the Schubert divisors Xρτ1, Xρτ2, . . . , Xρτn.

Proof. Proposition 1.4.1 of [14].

More generally:

Proposition 2.2.29. Let λ be a partition of n. The classes of Schubert varieties Xσ

give an additive basis of the cohomology ring H∗(Fln(λ),Z).

Remark 2.2.30. A nilpotent operator α preserving the flag 0 ⊂ V1 ⊂ · · · ⊂ Cn has
to satisfy the condition

α(Vi) ⊂ Vi−1,

therefore Proposition 2.1.22 and Remark 2.1.23 give us the following description of
the total space of T* Fln:

T* Fln := {(V•, α) | α : Cn → Cn;α(Vi) ⊂ Vi−1} .
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We use the following pictorial shorthand to denote such pairs (V•, α):

0 ⊂ V1

α

��
⊂ . . .

α

��
⊂ Vn−1

α

�� ⊂ Cn

α

��
.

Analogously (see section 1.2 of [20]), the total space of T* Fln(λ) can be described
as the space of pairs

T* Fln(λ) ∼=

 0 ⊂ Vλ1

α
}}

⊂ . . .

α
yy

⊂ Vλk−1

α

~~ ⊂ Cn
α
xx

∣∣∣∣∣∣dim(Vλi) =
i∑

j=1

λj

 .
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Chapter 3

Autoequivalences and braid group
actions of derived categories

In this chapter, we focus on equivalences and autoequivalences of derived categories
of coherent sheaves of reduced schemes of finite type and their relations with the
braid groups.

Braid groups actions on derived categories occur in many different contexts.
In this chapter, we describe the braid group action arising from an An configu-

ration of spherical objects on a smooth projective variety constructed by Seidel and
Thomas in [40] and the braid group action on the cotangent bundle of complete flag
variety constructed by Khovanov and Thomas in [32].

In this thesis we extend the latter to a generalised braid category action on the
derived categories of coherent sheaves of the cotangent bundle of partial flag varieties;
in Chapter 4 we will formulate this statement precisely and we prove it in its first
non-trivial instance.

The first section of this chapter is a quick introduction to the language of DG-
categories, twisted complexes and DG-enhancements.

In the second section, we introduce the notion of Fourier-Mukai transforms and
give some results on standard kernels and the adjunction unit and counit maps
between them.

In the third section, we introduce autoequivalences of bounded derived categories
of coherent sheaves over smooth projective varieties, discuss some examples and give
the results of Bondal and Orlov for the case of Fano and general type varieties in
[11].

The fourth section is about the spherical objects and their twists: introduced by
Seidel and Thomas they were the first example of genuinely derived autoequivalences
of the derived category of coherent sheaves and they could be used to contract a braid
group categorical action.

In section five we discuss a generalisation of the spherical object and their twists.
Anno and Logvinenko in [6] introduced the notion of spherical functors. Given a
scheme X, any E ∈ Db(X) can be considered as the functor (−) ⊗ E : Db(pt) →
Db(X), spherical functors are analogues of spherical objects where the point is re-
placed with a scheme Z. A spherical functor F : Db(Z) → Db(X) induces two
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autoequivalences: the twists TF of Db(X) and the cotwist CF of Db(X).
In section six, we discuss the other generalisation of spherical objects, the Pn-

objects due to Huybrechts and Thomas in [30].
Section seven covers the theory of Pn-functors which unifies and generalises the

notion of spherical functors and Pn-objects due to Anno and Logvinenko in [7].
In section eight we focus on Mukai Flops in derived categories and on the example

of the flop {T ∗P2∨ 99K T ∗P2} which will appear in the generalised braid action we
construct in the case n = 3.

Section 9 contains some technical results on the excess bundle formula which com-
putes the derived tensor product of two structure sheaves of two smooth subvarieties
of a smooth variety.

In section ten, we define categorical group actions and we describe the Khovanov-
Thomas braid group action on the total space of the cotangent bundle of a complete
flag variety.

3.1 DG-categories and DG-enhancements

In this section we introduce DG-categories and DG-enhancements of triangulated
categories, following [6].

We give the basic definitions and we will refer to [45] and [6] for further details.
Let for all this section R be a commutative ring.

Definition 3.1.1. A DG-category is a category C such that for every two objects
A,B ∈ Ob(C) the morphism space Hom•C(A,B) is a complex of R-modules and such
that the composition map

Hom•C(B,C)⊗Hom•C(A,B) −→ Hom•C(A,C) (3.1)

is map of complexes of R-modules.

Definition 3.1.2. Let C be a DG-category, the homotopy category H0(C) is the
category whose objects are the objects of C and whose morphisms are given by
HomH0(C)(A,B) = H0(Hom•C(A,B)).

Example 3.1.3. The DG-categoryMod−R is the category of complexes of R-modules
with morphisms complex Hom•Mod−R(M,N) defined by

Homn
Mod−R(M,N) :=

⊕
i+j=n

HomR(Mi, Nj) (3.2)

and the differential which sends f ∈ Homn
Mod−R(M,N) to

df := dN ◦ f − (−1)nf ◦ dM . (3.3)
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Definition 3.1.4. Let C be a DG-category. The opposite DG-category Copp is DG-
category whose objects are those of C, Whose morphisms are

Hom•Copp(A,B) := Hom•C(B,A)

with the composition defined for every φ ∈ HomCopp(A,B) and ψ ∈ HomCopp(B,C)

ψ ◦Copp φ := (−1)deg(φ)deg(ψ)φ ◦C ψ.

Definition 3.1.5. Let C1 and C2 be two DG-categories. A DG-functor F

F : C1 −→ C2 (3.4)

is a R-linear functor which commutes with the differentials of the morphism com-
plexes and preserves the grading.

A natural transformation t : F1 → F2 of degree n between two DG-functors from
C1 to C2 is a collection of morphisms{

t(A) ∈ Homn
C2(F1(A), F2(A))

}
A∈Ob(C1)

such that for every morphism φ ∈ Homm
C2(A,B) the following equivalence hold

t(B) ◦ F1(φ) = (−1)nmF2(φ) ◦ t(B).

Example 3.1.6. Let C1 and C2 be two DG-categories. The DG-category DG −
Fun(C1, C2) is the category whose objects are the DG-functor from C1 to C2 and
whose morphism complexes have as nth graded part all the natural transformations
of degree n.

The grading is determined by the degree of the natural transformations, while
the differentials and the composition are defined in C2 for each A ∈ Ob(C1).

Example 3.1.7. Let C be a DG-category. The category Mod−C is the DG-category
DG− Fun(Copp,Mod−R): its objects are called (right) C−modules.

Definition 3.1.8. Let C be a DG-category. A twisted complex (A•, φ•,•) over C is
a collection

(A•, φ•,•) := {Ai, φi,j : Ai → Aj}(i,j∈Z) (3.5)

where Ai ∈ Ob(C), Ai 6= 0 for only a finite number of indexes and

φi,j ∈ Homi−j+1
C (Ai, Aj)

satisfying
(−1)jdφi,j +

∑
k

φk,j ◦ φi,k = 0.
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Remark 3.1.9. The twisted complexes over a DG-category C have a natural structure
of a DG-category with morphism complexes defined by

Homp((A•, φ•,•), (B
•, ψ•,•)) := qq+m−n=p Homq

C(An, Bm) (3.6)

with the differential which sends every α ∈ Homq
C(An, Bm) to

dα = (−1)mdCα+
∑
k∈Z

(ψm,k ◦ α− (−1)q+m−nα ◦ φi,j . (3.7)

Definition 3.1.10. Let C be a DG-category, let (A•, φ•,•) be a twisted complex over
C and let ⊕iAi[−i] be the C-module where we implicitly use the Yoneda embedding
to consider Ai as objects in Mod− C.

The convolution {A•, φ•,•} of (A•, φ•,•) is the C-module ⊕iAi[−i] with the mod-
ified differential

dconv := dold +
∑
n,m∈Z

φn,m (3.8)

Definition 3.1.11. A DG-category C is pretriangulated if its image under the
Yoneda embedding is a triangulated subcategory of H0(Mod− C).

Definition 3.1.12. A functor F : C1 −→ C2 between DG-categories is a quasi-
equivalence if induces quasi-isomorphisms on morphism complexes and if the functor
H0(F )

H0(F ) : H0(C1) −→ H0(C2)

is an equivalence.

Definition 3.1.13. An enhancement for a triangulated category D is a couple (C, θ),
where C is a pretriangulated DG-category and

θ : H0(C)
∼=−→ T (3.9)

is an exact equivalence.
Two enhancements (C1, θ1) and (C2, θ2) are equivalent if there exists a quasi-

equivalence
F : C1 −→ C2.

Definition 3.1.14. Let Ho(DG−Cat) be the localisation of the category DG−Cat
of small DG-categories by quasi-equivalences constructed using Tabuada’s model
structure on DG−Cat (See [43] for more details). Let C1 and C2 two DG-categories,
define the set [C1, C2] of quasi-functors to be the set of morphism from C1 to C2 in
Ho(DG− Cat).

Remark 3.1.15. The set [C1, C2] is naturally bijective to the set of isomorphism
classes in Dr−qr(C1−C2), the derived category of right quasi-representable bimodules.
The standard DG-enhancements of the latter can thus be described as a DG-category
of quasi-functors C1 → C2, viewed as RHom(C1, C2).
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In our work we will always work in the context of Fourier-Mukai transforms. By a
fundamental result of Toën ([45]), if C1 and C2 are Karoubi-complete enhancements
of Db(X) and Db(Y ), where X and Y are separated schemes of finite type over
a field, then H0(RHom(C1, C2)) is isomorphic to the subcategory of Db(X × Y )

formed by Fourier-Mukai kernels of functors Db(X) → Db(Y ). Thus we can work
with Fourier-Mukai kernels as DG-enhancements of quasi-functors.

3.2 Fourier-Mukai kernels and their adjunction
properties

In this section we introduce Fourier-Mukai transforms and their behaviour under
adjunction; as explained at the end of section 3.1, Fourier-Mukai trasforms are the
DG-enhanceable functors between the derived categories of coherent sheaves over
separated schemes of finite type.

We refer to [27] and [7] for a more general treatment.
Through this section let k be an algebraically closed fild and let Dqcoh(−) the

unbounded derived category of quasi-coherent sheaves.

Definition 3.2.1. Let X and Y be two separated schemes of finite type over k and
let E ∈ Dqcoh(X×Y ). The Fourier-Mukai transform ΦE with kernel E is the functor

ΦE : Dqcoh(X) −→ Dqcoh(Y )

defined as
ΦE(−) = πY ∗(E ⊗ π∗X(−))

where πX and πY are the natural projections X × Y → X,Y .

Fourier-Mukai kernels admit the following composition operation:

Definition 3.2.2. Let X,Y, Z be separated schemes of finite type over k. Let
E1 ∈ Dqcoh(X × Y ) and let E2 ∈ Dqcoh(Y × Z).

The composition of Fourier-Mukai kernels E1 ? E2 is defined as

E2 ? E1 = π13∗(π
∗
12E1 ⊗ π∗23E2) ∈ Db(X × Z) (3.10)

where π12, π23 and π13 are the natural projections

X × Y X × Z Y × Z

X × Y × Z
..............................................................................................................................

....
............

π12

...................................................................................
.....
.......
.....

π13

.................................................................................................................................. ........
....

π23

The composition of Fourier-Mukai kernels induces the composition of the corre-
sponding Fourier-Mukai transforms
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Proposition 3.2.3. Let X,Y, Z be separated schemes of finite type over k and let
E1 ∈ Dqcoh(X×Y ) and E2 ∈ Dqcoh(Y ×Z). Then we have the following isomorphism

ΦE2 ◦ ΦE1
∼= ΦE2?E1 (3.11)

Proof. Section 5.1 of [27] or [35].

In this thesis we always work with certain standard Fourier-Mukai kernels for
direct image, inverse image, twisted inverse image and tensor product functors. The
following results present some convenient expressions for the kernels involved: al-
though we prove some of them in Chapter 4 here we refer to section 2.6 of [7], since
the discussion is more systematic and more general.

Lemma 3.2.4 (Standard kernels). Let X and Y be separated schemes of finite type
over k and let f : X → Y be a map of separated schemes of finite type over k.

1. For any E ∈ Db(X), then the Fourier-Mukai kernel induces functor E ⊗−

TE = π∗2E ⊗∆∗OX ∈ Db(X ×X). (3.12)

2. The Fourier-Mukai kernel associated to the functor f∗ is the object

F∗ = (IdX × f)∗∆∗OX ∈ Db(X × Y ) (3.13)

3. The Fourier-Mukai kernel associated to the functor f∗ is the object

F ∗ = (IdY × f)∗∆∗OY ∈ Db(Y ×X) (3.14)

4. If f is perfect, the Fourier-Mukai kernel associated to the functor f ! is the
object

F ! = (IdY × f)!∆∗OY ∈ Db(Y ×X) (3.15)

5. If f is perfect, the Fourier-Mukai kernel associated to the functor f! = f∗(−⊗
f !(OY )) is the object

F! = (IdX × f)!∆∗OX ∈ Db(X × Y ) (3.16)

Proof. Lemma 2.18 in [7].

Lemma 3.2.5. Let f : X ′ → X and g : Y ′ → Y be maps of separated schemes
of finite type over k. Let V ∈ Db(X) and W ∈ Db(Y ) and K1 ∈ Db(X × Y ),
K2 ∈ Db(X ′ × Y ′), then we have the following results:

1. The following isomorphism is functorial in K2

(f × g)∗K2
∼= G∗ ? K2 ? F

∗. (3.17)
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2. The following isomorphism is functorial in K1

(f × g)∗K1
∼= G∗ ? K1 ? F∗. (3.18)

3. If f and g are perfect maps, then the following isomorphism is functorial in K1

(f × g)!K1
∼= G! ? K1 ? F! (3.19)

4. If f and g are perfect maps, then the following isomorphism is functorial in K2

(f × g)!K1
∼= G! ? K1 ? F

! (3.20)

5. The following isomorphism is functorial in K1

π∗XV ⊗ π∗YW ⊗K1
∼= TV ? K1 ? TW (3.21)

Proof. Lemma 2.19 in [7].

In general the functor from Fourier-Mukai kernels to Fourier-Mukai transforms
is neither full neither faithful, but for the Counit of the adjunction

ε : ΦL
E ◦ ΦE → Id (3.22)

it is possible to choose naturally a morphism

ε : K → O∆

such that it will be lifted to ε.
The following Lemma is a powerful tool for understanding adjunction unit and

counit at level of Fourier-Mukai kernels.

Lemma 3.2.6. Let f : X → Y be a map of separated schemes of finite type over a
field.

1. There is an isomorphism

F ∗ ? F∗ ' (IdX ×f)∗(Id, f)∗OX (3.23)

which identifies the adjunction counit F ∗ ? F∗
µ−→ IdX with the morphism

(IdX ×f)∗(Id, f)∗OX → ∆∗OX (3.24)

which is the base change map for the commutative square:

X X

X ×X X × Y.

∆ (Id,f)

IdX ×f

(3.25)
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2. There is an isomorphism

F ∗ ? F∗ ' (IdX ×f)∗(f × IdY )∗∆∗OY (3.26)

which identifies the adjunction counit F ∗ ? F∗
µ−→ IdX with the composition

(IdX ×f)∗(f × IdY )∗∆∗OY
∼−→ (IdX ×f)∗(Id, f)∗OX → i∗OX×YX → ∆∗OX

(3.27)
where the first map is the base change isomorphism for the Tor-independent
fiber square at the bottom of the following commutative diagram:

X X ×Y X X ×X

X X × Y

Y Y × Y,

∆ i

π1 IdX ×f

(Id,f)

f f×IdY

∆

(3.28)

the second map is the base change map for its top fiber square, and the third
map is the natural restriction of sheaves which is the image under i∗ of the
adjunction unit OX×YX → ∆∗∆

∗OX×YX .

3. We have an isomorphism

F∗ ? F
∗ ' ∆∗f∗OX (3.29)

which identifies the adjunction unit IdY
ε−→ F∗ ? F

∗ with the morphism

∆∗OY → ∆∗f∗OX (3.30)

which is the image under ∆∗ of the adjunction unit for (f∗, f∗).

4. If f is perfect and proper, we have an isomorphism

F∗ ? F
! ' ∆∗f∗f

!OY (3.31)

which identifies the adjunction counit F∗ ? F ! µ−→ IdY with the morphism

∆∗f∗f
!OY → ∆∗OY (3.32)

which is the image under ∆∗ of the adjunction counit for (f∗, f
!).

5. If f is perfect and proper, we have an isomorphism

F ! ? F∗ ' (IdX ×f)!(Id, f)∗OX (3.33)

which identifies the adjunction unit IdX
ε−→ F ! ? F∗ with the morphism

∆∗OX → (IdX ×f)!(Id, f)∗OX (3.34)

which is the twisted base change map ∆∗ Id! → (IdX ×f)!(Id, f)∗ for the com-
mutative square (3.25).
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6. If f is perfect and proper, we have an isomorphism

F ! ? F∗ ' (IdX ×f)!(f × IdY )∗∆∗OY (3.35)

which identifies the adjunction unit IdX
ε−→ F ! ? F∗ with the composition

∆∗OX → i∗π
!
1OX → (IdX ×f)!(Id, f)∗OX

∼−→ (IdX ×f)!(f × IdY )∗∆∗OY
(3.36)

where the first map is the image under i∗ of the adjunction counit ∆∗∆
!π!

1OX →
π!

1OX , the second map is the twisted base change map for the top fiber square
in (3.28), and the third map is the base change isomorphism for the Tor-
independent bottom fiber square in (3.28).

Proof. Proposition 2.20 in [7].

3.3 Autoequivalences of derived categories

In order to study a mathematical object, one can study its decomposition into sub-
objects or study the transformations which preserve its structure. In the context
of derived categories this means either studying semiorthogonal decompositions or
studying derived autoequivalences.

We focus on the latter.
The group Aut(Db(X)) of all isomorphism classes of autoequivalences of Db(X)

can be used to investigate the structure of Db(X).
The following examples of autoequivalences are usually referred to as "standard"

as they are either induced by autoequivalences of the abelian category Coh(X) or
are the shift functors which every triangulated category is equipped with.

Example 3.3.1. Any automorphism f : X
'−→ X induces the autoequivalence

f∗ : Db(X)
'−→ Db(X)

and its inverse is given by f∗ : Db(X)
'−→ Db(X).

Example 3.3.2. For every line bundle L on X the functor

L ⊗ (−) : Db(X) −→ Db(X)

is an autoequivalence with inverse functor L−1 ⊗ (−).

Example 3.3.3. The shift functor [n] is an autoequivalence of Db(X) for every integer
number; its inverse is the shift functor [−n].

Do there exist any other autoequivalences of the bounded derived category of
coherent sheaves on a smooth projective variety?

These would be genuinely derived in the sense of interacting non-trivially with
the triangulated structure od Db(X).

The following Theorem gives an answer when X is a Fano variety or it is a variety
of general type.
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Proposition 3.3.4 (Bondal, Orlov). Let X be a smooth projective variety with
ample (anti)-canonical bundle. The group of autoequivalences Aut(Db(X)) of Db(X)

is generated by

1. Derived pushforwards f∗ of automorphisms f of X.

2. Shift functors [n](−), for n ∈ Z.

3. Twists L ⊗− by line bundles, L ∈ Pic(X).

Thus
Aut(Db(X)) ∼= Z× (Aut(X) n Pic(X)). (3.37)

Proof. Section 4.2 of [27] or [11].

When the canonical bundle is neither ample or anti-ample, for example in the
Calabi-Yau case, the group Aut(Db(X)) has a richer structure.

3.4 Spherical twists

Consider a compact symplectic manifold (M,β) and a Lagrangian sphere S insideM .
In [39] Seidel associated to such S a symplectic automorphism called the generalised
Dehn twist along S.

In [40], Seidel and Thomas introduced the spherical twists, which are the ana-
logues of the generalised Dehn twist under Homological Mirror Symmetry; these
provided an early example of genuinely derived autoequivalences and were used to
construct an example of braid group action.

For this section we refer to [40] and [27].
Let X be smooth projective variety and let Db(X) be the full subcategory of the

derived category of OX -modules consisting of complexes with bounded and coherent
cohomology.

Definition 3.4.1. An object E in Db(X) is called spherical if:

1. Homr
D(X)(E , E) =

{
C, if r = 0, dim(X),

0, otherwise.

2. E ⊗ ωX ∼= E , where ωX is the canonical bundle.

Definition 3.4.2. Given two objects F ∈ D(X) and G ∈ D(Y ) we define

F � G = π∗1F ⊗ π∗2G. (3.38)

Notice that the a bifunctor

π∗1(−)⊗ π∗2(−) : Coh(X)× Coh(Y ) −→ Coh(X × Y )

is exact in each of its two arguments.
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Definition 3.4.3. Let E ∈ Db(X) over the scheme X and let ∆ : X → X ×X be
the diagonal embedding. The twist functor of TE is the Fourier-Mukai transform ΦP
where

P := Cone(E∨ � E η−→ O∆). (3.39)

where η is the canonical pairing which sends⊕
i−j=k

(π∗1E[j])
∨ ⊗ π∗2E[i] −→ 0 ∀k ∈ Z, k 6= 0

and ⊕
i−j=0

(π∗1E[j])
∨ ⊗ π∗2E[i] −→ OX

by the usual canonical pairing of sheaves.

Definition 3.4.4. An (Am)-configuration, m ≥ 1, in Db(X) is a collection of m
spherical objects E1, . . . , Em such that

dimHom∗Db(X)(Ei, Ej) =

{
1 |i− j| = 1,

0 |i− j| ≥ 2.

Theorem 3.4.5 (Seidel, Thomas). The twist TE along any spherical object E is
an autoequivalence of Db(X). Moreover, if E1, . . . , Em is an (Am)-configuration, the
twists TEi satisfy the braid relations:

TEiTEi+1TEi
∼= TEi+1TEiTEi+1 for i = 1, . . . ,m− 1,

TEiTEj
∼= TEjTEi for |i− j| ≥ 2.

Proof. See [40] or Propositions 8.6 and 8.22 of [27].

Remark 3.4.6. The second part of Theorem 3.4.5 is an example of a braid group
action on the derived category Db(X). See section 3.10 for details on categorical
group actions.

Example 3.4.7. Let C be a smooth projective curve and let x ∈ C be a point on C.
The skyscraper sheaf Ox is a spherical object and

TOx(−) ∼= OC(x)⊗ (−).

Example 3.4.8. If C is a smooth rational curve with C2 = −2 in a smooth projective
surface, then the structure sheaf OC is as spherical object.

Example 3.4.9. If X be a Calabi-Yau variety, then any line bundle L ∈ Pic(X) is a
spherical object.
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Example 3.4.10. If C is a smooth projective curve contained in a Calabi-Yau threefold
with normal bundle isomorphic to

NC/X ∼= O(−1)⊕O(−1), (3.40)

Then OC is a spherical object.

Example 3.4.11. If Y is a smooth projective subvariety of a Calaby-Yau variety X
of dimension 2n+1, such that Y ∼= Pn and the normal bundle of Y is isomorphic to

NY/X ∼= O(−1)⊕n+1, (3.41)

then OY is a spherical object.

Remark 3.4.12. If X is Fano or of general type variety then ωX is ample or anti-
ample. The condition

E ⊗ ωX ∼= E (3.42)

forces the support of the spherical object to be 0-dimensional.

3.5 Spherical functors

Anno and Logvinenko in [6] introduced the notion of spherical functors.
Given a scheme X, any E ∈ Db(X) can be considered as the functor

(−)⊗ E : Db(pt)→ Db(X).

Spherical functors are analogues of spherical objects where the point is replaced
with a scheme Z.

A spherical functor F : Db(Z)→ Db(X) induces two autoequivalences: the twist
TF of Db(X) and the cotwist CF of Db(X).

Definition 3.5.1. Let C1 and C2 be enhanced triangulated categories and let

F : D(C1)→ D(C2)

be an enhanceable functor with enhanceable left and right adjoints

L,R : D(C2)→ D(C1).

The spherical twist T : D(C2)→ D(C2) of F is the enhanceable functor that fits
in the natural exact triangle

FR
tr−→ Id→ T

t−→ FR[1]. (3.43)

The spherical cotwist C : D(C1) → D(C1) of F is the enhanceable functor that fits
in the natural exact triangle

C → Id
act−−→ RF

c−→ C[1]. (3.44)

The functor F is spherical if the following conditions hold:



3.5. Spherical functors 31

1. The twist T is an autoequivalence of D(C2).

2. The cotwist C is an autoequivalence of D(C1).

3. The following composition in an isomorphism:

LT
Lt−→ LFR[1]

trR−−→ R[1]

4. The following composition is an isomorphism:

R
Ract−−−→ RFL[1]

cL−→ CL[1]

Theorem 3.5.2. Any two of the conditions 1-4 in the definition above imply all
four.

Proof. Theorem 5.1 of [6].

Remark 3.5.3. By the argument in Lemma 5.16 in [7] if condition (2) of definition
3.5 holds, it is enough to show

R ' CL[1]

for condition (4) to hold.

Example 3.5.4. Let Z = Spec(C), let X be a smooth projective variety, let E be an
object in Db(X) and set F to be the functor

F : D(Z)
−⊗CE−−−−→ D(X).

Then E is a spherical object if and only if F satisfies conditions 2 and 4 of Theorem
3.5.2, so if and only if F is a spherical functor. (See example 3.5 of [5].)

Example 3.5.5. If D is a divisor of an algebraic variety X with inclusion map

i : D ↪→ X (3.45)

Then F := i∗ is a spherical functor.
Indeed, we have the adjunctions

L = i∗ a F a R = i! (3.46)

The Fourier-Mukai kernels are:

• i∗ : OD ∈ D(D ×X);

• i∗ : OD ∈ D(X ×D);

• i! ' i∗ ⊗O(D)[−1] : OD(D)[−1] ∈ D(X ×D).
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By Proposition 3.2.3 the composition RF has Fourier-Mukai kernelOD⊕OD(D)[−1].

Therefore the twist T = Cone(Id→ RF ) has Fourier-Mukai kernel OD(D)[−1] ∈
D(D ×D) and

CL ∼= R.

Example 3.5.6. Let X be a variety of dimension n, let i : D ↪→ X be a divisorial
inclusion and let π : D → Y be a projective bundle of rank k over the variety Y of
dimension n− 1− k.

Y

D X
............................................................................................................
.....
.......
.....

............................................................................................................

........
..
.......
........
..

π

........................................................................................................................................................... ......................
...... i

Define the functor F
F := i∗π

∗ : D(Y ) −→ D(X). (3.47)

The right adjoint R of F is the functor

R = π∗i
! : D(X) −→ D(Y ) (3.48)

while the left adjoint is the functor L

L = π!i
∗ : D(X) −→ D(Y ). (3.49)

The functor F is spherical if and only if

ND/X ' ωD/Y ⊗ π∗L

for some L ∈ Pic(Y ) (See [7]).

3.6 Pn twists

The notion of Pn twists was introduced by Huybrechts and Thomas in [30] as mirror
Dehn twists of Lagrangian CPns.

When n = 2 the notion of a Pn twist coincides with the notion of the square of
a spherical twist, but in higher dimensions, the two notions are different.

Let C a triangulated category and let

A
f−→ B

g−→ C (3.50)

be a complex of objects in C, so that g ◦ f = 0.
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Definition 3.6.1. A right Postnikov system of the complex 3.50 is a diagram

A B C

X

................................................................................................................. ............
f

................................................................................................................. ............
g

.............................................................................................................................
...
............

h

................................................................................................................................ .........
...

j

.......

.......

.......

.......

.......

.......

.......

.......

.......

.............

............

i

(3.51)

where B → C → X is a distinguished triangle and f = i ◦ j.

Definition 3.6.2. The convolution of the right Postnikov system (3.51) is the cone
Cone(A[1]

j→ X).

Definition 3.6.3. A left Postnikov system of the complex (3.50) is a diagram

A B C

Y

................................................................................................................. ............
f

................................................................................................................. ............
g

............
............
............
............
............
............
............
............
............
....................
............

m

............
............

............
............

............
............

............
............

............
................................

l

..........................................................
.....
.......
.....
k

(3.52)

where A→ B → Y is a distinguished triangle and g = m ◦ k.

Definition 3.6.4. The convolution of the left Postnikov system (3.52) is the cone
Cone(Y

m→ C).

Definition 3.6.5. An object E ∈ C is a convolution of the complex (3.50) if it is a
convolution of a right or a left Postnikov system associated to it.

Definition 3.6.6. Let Db(X) be the bounded derived category of coherent sheaves
on a smooth projective variety.
An object E ∈ Db(X) is a Pn-object if :

1. Homr
D(X)(E , E) =

{
C, if r = 2i, i ∈ {0, . . . , n}
0, otherwise.

2. E ⊗ ωX ∼= E , where ωX is the canonical bundle.

Remark 3.6.7. Let E be a Pn object in Db(X) with dim(X) = m, then by Serre
duality

Exti(E , E) = Extm−i(E , E ⊗ ωX)∗ = Extm−i(E , E)∗

that forces m = n.

Example 3.6.8. Let X be an hyperkähler manifold of dimension 2n , and take Pn ↪→
X.
In this case NPn/X ∼= ΩPn , hence Ext(OPn ,OPn) = Ωq

Pn .
Thus the local to global spectral sequence
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Ep,q2 = Hp(X, Ext(OPn ,OPn))⇒ Extp+qX (OPn ,OPn)

gives the following isomorphism of rings

Ext∗X(OPn ,OPn) ∼= H∗(Pn,Ω∗Pn) ∼= H∗(Pn,C).

Thus OPn is a Pn-object.

Example 3.6.9. Let X be a K3 surface an let C be a curve on it; we have that
C ∼= P1 ⊂ X; so by example 3.6.8 OC ∈ Db(X) is a P1 object.
Moreover, by Example 3.4.7 OC is also a spherical object, which agrees with S2 ∼= P1.

Remark 3.6.10. Suppose that E is a Pn object, then Ext2(E , E) is one dimensional
vector space let

φ : E [−2] −→ E

We have Ext2(E , E) ∼= Ext2(E∨, E∨), so just define φ∨ to be the image of φ under
the group isomorphisms of the Exts; φ∨ is a generator for Ext2(E∨, E∨) and can be
represented by a morphism

φ : E∨[−2] −→ E∨. (3.53)

Let φ̃ = φ∨ � Id− Id�φ,

φ̃ : E∨ � E [−2] −→ E∨ � E . (3.54)

The trace map tr : E∨ � E −→ O∆ factorise throughout the cone Cone(φ̃) of φ̃

O∆

E∨ � E Cone(φ̃)
...................................................................................................................................... .......

.....

tr

.......................................................................................................... ............

..........................................................................................................................
.....
............

ψ

Definition 3.6.11. Let E ∈ Db(X) be a Pn-object and let PE = Cone(ψ). The Pn
twist T P

P associated to E is the Fourier-Mukai transform ΦPE with kernel PE

T P
P := ΦPE : Db(X) −→ Db(X) (3.55)

Theorem 3.6.12. If P ∈ Db(X) is a Pn object, then the Pn twist T P
P is an autoe-

quivalence of Db(X).

Proof. See Proposition 2.6 of [30] or Proposition 8.19 of [27].
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3.7 Pn functors

The notion of Pn-functor unifies and generalises those of spherical functors and of
Pn-objects. In its general form, it is due to Anno and Logvinenko, we refer the reader
to [7] for all technical details.

Definition 3.7.1. Let C1 and C2 be enhanced triangulated categories and let

F : C1 → C2

be an enhanceable functor with enhanceable left and right adjoints

L,R : C2 → C1.

F is a Pn-functor if it can be equipped with a triple (H,Qn, γ):

• H is an enhanced autoequivalence of C1 such that H(Ker(F )) = Ker(F ).

• Qn is cyclic degree n coextension of Id by H of the form:

Id Q1 Q2 . . . Qn−2 Qn−1 Qn.

H H2 . . . Hn−1 Hn

?

ι1 ι2

µ1
? µ2 ?

ιn−1

µn−1

ιn

? µn

Here all starred triangles are exact and all the remaining triangles are com-
mutative. Let ι = ιn ◦ · · · ◦ ι1.

• The map γ is an isomorphism

γ : Qn
∼−→ RF

that interweaves the adjunction unit Id
ε−→ RF with the map Id

ι−→ Qn;

Note that as F Fε−−→ FRF is a retract, so is Fι. Hence the exact triangle
FR

Fι1R−−−→ FQ1R → FHR is also split. Choose any splitting FHR ↪→ FQ1R

and denote by φ the composition

FHR ↪→ FQ1R
ιn◦...◦ι2−−−−−→ FQnR

FγR−−−→ FRFR. (3.56)

Define the map FHR ψ−→ FR to be the composition

FHR
φ−→ FRFR

FR tr− trFR−−−−−−−−→ FR.

Note that any choice of the splitting FHR ↪→ FQ1R in the definition of φ will
produce the same map ψ, since the composition (FR tr− trFR)◦FεR is zero.

satisfying the following conditions:
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1. The monad condition. The map

v : FHQn−1
FHιn−−−→ FHRF

ψF−−→ FRF
Fκ−−→ FC[1] (3.57)

is an isomorphism, where C is the spherical cotwist of F defined by the exact
triangle Id

ε−→ RF
κ−→ C[1].

2. The adjoints condition. The map

w : FR
FRε−−−→ FRFL

FµnL−−−→ FHnL (3.58)

is an isomorphism.

3. The highest degree term condition. There exists an isomorphism

u : FHnL
∼−→ FHHnH ′L

that makes the following diagram commutate:

FHQn−1L FHRFL FRFL FHnL

FHQn−1L FHRFL RHRFH ′L FHHnH ′L

Id

FHιnL ψFL FµnL

∼

FHιnL FHRψ′ FHµnH′L
. (3.59)

where H ′ is the inverse of H the map ψ′ : FL− > FH ′L is the left dual of
ψ : FHR→ FR.

Theorem 3.7.2. Let F : C1 → C2 equipped with the triple (H,Qn, γ), as above, be
a Pn-functor.

Let the P-twist PF of F to be the unique convolution of the two-step complex

FHR
ψ−→ FR

tr−→ Id, (3.60)

see [4] for the uniqueness of the convolution.
Then PF is an autoequivalence of the category C2.

Proof. See Theorem 4.1 in [7].

Remark 3.7.3. Definition 3.7.1 is the more general version of the definition of a
split Pn-functor, an enhanced functor F equipped with an isomorphism

RF ' Id⊕H . . .Hn

for which the following conditions hold:



3.7. Pn functors 37

• Strong monad condition : The matrix Al of the left multiplication by H in RF
has the form 

∗ ∗ . . . ∗ ∗
1 ∗ . . . ∗ ∗
0 1 . . . ∗ ∗
...

...
. . .

...
...

0 0 . . . 1 ∗


, (3.61)

i.e., akj = 0 for k > j + 1 and aj+1,j are identities for 0 ≤ j < n.

• Weak adjoints condition: There exists some isomorphism R ' HnL.

Example 3.7.4. Let C1 and C2 be enhanced triangulated categories and let

F : D(C1)→ D(C2)

be a enhanceable functor with enhanceable left and right adjoints

L,R : D(C2)→ D(C1).

F is a spherical functor with twists T and cotwist C if and only if is a P1-functor
with

H ∼= C[1]

and the degree 1 coextension of Id by H structure on RF defined by the exact
triangle

C → Id
act−−→ RF

c−→ C[1]. (3.62)

(See Proposition 7.1 [7]).

Example 3.7.5. Let X be a smooth projective variety and let P ∈ Db(X) be a Pn
object, let Z = Spec(C) and consider the functor F

F : Db(Z)
−⊗CP−−−−→ Db(X) (3.63)

with P ∈ Db(X) ∼= Db(Z ×X).
We have

RF ∼= Hom(P,P) ∼= C⊕ C[−2]⊕ · · · ⊕ C[−2n]

which decomposes RF as

RF ∼= Id⊕H ⊕ · · · ⊕Hn (3.64)

where H = [−2] and (3.64) gives F a structure of split Pn-functor.
Moreover, from the weak adjoint condition we have that

R ' HnL.

(See [1] for details.)
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Example 3.7.6. Let X be the Hilbert scheme of n points on a projective K3 surface
Z so that

X = Z [n]

and define F to be the functor

F : Db(Z) −→ Db(X)

realised by the Fourier-Mukai transform with Fourier-Mukai kernel the universal
ideal sheaf I ∈ Db(Z ×X).

There exists an isomorphism

RF ∼= Id⊕H ⊕H2 ⊕ · · · ⊕Hn−1 (3.65)

where H = Id[−2] and (3.65) gives F the structure of a split Pn−1 functor.
(See Theorem 2 of [1] for details).

Example 3.7.7. Let V be a vector bundle on a smooth projective variety Z, with Pn
fibration

π : PV −→ Z

and embedding in a smooth projective variety X

i : PV ↪→ X

with normal bundle of rank n isomorphic to

NPV/X ∼= Ω1
PV/X .

Define the functors fk to be

fk := i∗ ◦ (OPV(k)⊗ π∗(−)) : Db(Z) −→ Db(X). (3.66)

let rk be their right adjoints and define

h := Id[−2] : Db(Z)→ Db(Z). (3.67)

Let Fk, Rk,LK and H be their standard enhancements.
There exist a structure of cyclyc extension of degree n of Id by H on the adjunc-

tion monad RkFk that makes Fk a Pn-functor (see Theorem 7.2 in [7]) .

3.8 Mukai flops in derived categories

For the first part of this section we refer to section 11.4 of [27], for the second part
we refer to section 5 of [3].

Let X be a smooth projective variety of even dimension and let P be a smooth
subvariety of X with dimension half the dimension of X.
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Let moreover P be isomorphic to Pn, with

NP/X ∼= ΩP . (3.68)

Let X̃ = BlP (X) be the blow up of X along P with projective morphism

q : X̃ −→ X

and exceptional divisor E ∼= P(NP/X) ∼= P(ΩP ).
If we consider P ∼= P(V ), with V an n + 1 dimensional complex vector space,

then from the Euler sequence

0→ ΩP → V ∗ ⊗O(−1)→ OP → 0 (3.69)

we have that

P(ΩP ) ↪→ P(V ∗ ⊗O(−1)) ∼= P(V ∗)× P(V )

The exceptional divisor E ∼= P inside P × P∨ ∼= P(V ∗) × P(V ) is the incidence
variety of pairs (l,H) of lines l ⊂ V and planes H ⊂ V such that l ⊂ H.

Indeed, the fiber ΩP (l) over a line [l] ⊂ P is naturally isomorphic to the space of
linear functions α : V → C which vanish on l.

Therefore, because E ∈ |O(−1, 1)|, from the adjuction formula we deduce that
the canonical bundle of the exceptional divisor

ωE ∼= O(−n,−n)|E (3.70)

Moreover, using the adjuction formula for E ⊂ X̃, we have that the same canon-
ical bundle is isomorhic to

ωE ∼= (ωX̃ ⊗O(E))|E ∼= (q∗ωX ⊗O((n− 1)E))|E ⊗OE(E) ∼= π∗(ωX |P )⊗OE(nE)

where π is the natural map π : E → P .
Since by assumption ωX |P is the trivial bundle, we have that ωE ∼= O(−1,−1)

and conclude that

OE(E) ∼= O(−1,−1) (3.71)

The previous isomorphism, ensure that exists a birational morphism

p : X̃ → X ′

which restricted to E is the second projection E ⊂ P × P∨ → P∨ and away from E

is an isomorphism (by the Fujiki-Nakano criterion).
Moreover,

NP∨/X′ ∼= ΩP∨ and ωX′ |P∨ ∼= OP∨
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E

X̃

P × P∨

P X X ′ P∨

.................................................... ......................
......

...........................................................................
.....
.......
.....

................
...................................................................................................................................................................................................................................................................................................................

....
............

π

....................................................................................................................................................................................................................................................................................................................... ........
....

π′

..................................................................................................................................
....
............

q

...................................................................................................................................... ........
....

p

................................................................................ ......................
......

........................................................................................... ................

Proposition 3.8.1. The Fourier-Mukai transform induced by the compositon of the
functors

p∗ ◦ q∗ : Db(X) −→ Db(X ′) (3.72)

is not fully faithful.

Proof. Proposition 11.28 of [27].

Theorem 3.8.2. Given the reduced subvariety X̃ ∪ (P × P∨) inside X × X ′, and
the object OX̃∪(P×P∨) ∈ Db(X × X ′), the Fourier-Mukai transform with kernel
OX̃∪(P×P∨)

ΦOX̃∪(P×P∨) : Db(X) −→ Db(X ′) (3.73)

is an equivalence.

Proof. Proposition 11.28 of [27] or [31] and [36].

Consider the three dimensional complex vector space C3 and the three dimen-
sional flag variety Fl3, with the natural projection maps to P2∗ and P2

P2 P2∗

Fl3
............................................................

.....

...........
.

p1
................................................................

.
.......
.....

p2

.

Let C be the total space of the cotangent bundle of Fl3

C = T ∗Fl3.

Let A and E be the quasi-projective varieties defined as the total space of the
cotangent bundle of P2 and P2∨:

A = T ∗P2 E = T ∗P2∨.

Let B and D be the quasi-projective varieties defined as the total space of the
pullback via p1 and p2 on Fl3 of the contangent bundles of P2 and P2∨:

B = p∗1T
∗P2 E = p∗2T

∗P2∨.
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Then we have the following diagram

A

B C D

E

......................................................................
.....
.......
.....

......................................................................

........
..
.......
........
..

πA

............................................................................................................................................... ......................
......

iB
..................................................................................................................... ................

iD ......................................................................
.....
.......
.....

......................................................................

........
..
.......
........
..

πE

(3.74)

where iB, iD are divisorial inclusions and πA, πE are P1-bundles respectively on A

and E.
From remark 2.2.30, we have the following descriptions of the quasi-projective

varieties

A =

 0 ⊂ V1

α

��
⊂ C3

α

��
; dim(V1) = 1

 ,

and

E =

 0 ⊂ V2

α

��
⊂ C3

α

��
; dim(V2) = 2

 .

Moreover the four dimensional subvariety of C defined as the (transverse) inter-
section of B and D can be described as

B ∩D =

 0 ⊂ V1 ⊂ V2

α

��
⊂ C3

α

^^

 .

equipped with the two natural forgetful maps

A E

B ∩D
................................................................

.....

...........
.

q1
....................................................................

.
.......
.....

q2

.

where qi is the map that forget the choice of the n− i-th space.
Both q1 and q2 are isomorphic to the blow up of the zero section carved out by

{α = 0} in respectively A and E.
Both the bow-ups have the same exceptional divisor Fl3 carved out by {α = 0}

and the resulting birational transformations

q2 ◦ q−1
1 : A 99K E
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q1 ◦ q−1
2 : E 99K A

are a local model of a four dimensional Mukai flop.
Therefore, from Theorem 3.8.2 we have the following

Corollary 3.8.3. Given the reduced subvariety (B∩D)∪(P2∗×P2) inside E×A, and
the object O(B∩D)∪(P2∗×P2) ∈ Db(E × A), the Fourier-Mukai transform with kernel
O(B∩D)∪(P2∗×P2)

ΦO(B∩D)∪(P2∗×P2)
: Db(E) −→ Db(A) (3.75)

is an equivalence.

3.9 The excess bundle formula

This section is on the excess bundle formula which computes the derived tensor
product of two structure sheaves of two smooth subvarieties of a smooth variety: we
refer to [38] and [7] for more details.

Let Z1, Z2 be two locally complete intersection subvarieties of a smooth algebraic
variety Z with their intersection W = Z1 ∩ Z2 being a locally complete subvariety
of Z1 and Z2.

Let i1, i2, j1, j2 be the inclusion of the following fiber square

Z2 Z

Z1 ∩ Z2 = W Z1

......................................................................................................... ......................
......

i2

....................................................................................................
.....
.......
.....

................

j2

....................................................................................................
.....
.......
.....

................

i1

......................................................................................................... ......................
......

j1

Definition 3.9.1. The excess bundle EW of the insersection W = Z1 ∩ Z2, is the
locally free sheaf which fits in the short exact sequence of sheaves on W

0 −→ NW/Z −→ j∗1NZ1/Z ⊕ j
∗
2NZ2/Z −→ EW −→ 0 (3.76)

Theorem 3.9.2. Under the previous hypothesis, the cohomology sheaves of

i∗2i1∗OZ1 ∈ Db(Z2)

are

H−q(i∗2i1∗OZ1) = j1∗(

q∧
E∨W ) (3.77)

Proof. See [38].
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Definition 3.9.3. The intersectionW = Z1∩Z2 of two locally complete intersection
subvarieties Z1, Z2 of a smooth algebraic variety Z is called transverse if both the
following conditions are satisfied:

1. W is a smooth subvariety of Z.

2. codimZ(W ) = codimZ(Z1) + codimZ(Z2).

Corollary 3.9.4. If the intersection W = Z1 ∩ Z2 is transverse then we have the
following isomorphism

OZ1 ⊗OZ2
∼= OW . (3.78)

3.10 A braid group action on Db(T ∗Fln)

In this section, we present the Khovanov and Thomas braid group action on the
derived category of coherent sheaves of the cotangent bundle of complete flag varieties
Db(T ∗Fln): we refer to [32] for more details.

Definition 3.10.1. An action of a group G on a category C is an assignment of an
invertible functor

Fg : C −→ C

to each g ∈ G such that Fg ◦ Fh ∼= Fg·h. Moreover, the following diagram has to be
commutative

Ff ◦ Fg ◦ Fh Ff ◦ Fg·h

Ff ·g ◦ Fh Ff ·g·h

............................................................................................................................ ............
∼=

..........................................................
.....
.......
.....

∼=
.................................................................................................................................................................. ............

∼=

..........................................................
.....
.......
.....

∼=

.

Remark 3.10.2. The n-braid group Brn is generated by the elements {t1, . . . , tn}

subjects to the relations{
titj = tjtj if | i− j |> 1 ”commutation”

titjti = tjtitj if | i− j |= 1 ”braiding”.

Recall that the the complete flag variety is defined

Fln =
{

0 ⊂ V1 ⊂ . . . ⊂ Vn−1 ⊂ V
∣∣∣ dim(Vi) = i

}
and the total space of its cotangent bundle can be described as the space
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T* Fln ∼=

 0 ⊂ V1

α

��
⊂ . . .

α

��
⊂ Vn−1

α

�� ⊂ V

α

��
; dim(Vi) = i

 .

Denote by C = T ∗Fln(1, . . . , 1) the total space of the cotangent bundle on the
complete flag and by Ai = T ∗Fln(̂i) the total space of the cotangent bundle on the
flag where the choice of Vi is skipped.

Let the map pi
pi : Fln → Fln(̂i)

be the projection which just skip the choice of Vi containing a Vi−1 and contained
in Vi+1, therefore a P1 bundle over Fln(̂i).

Denote Bi = p∗iT
∗Fln(̂i) the total space of the pullback via the morphism pi on

Fln of the cotangent bundle of Fln(̂i).
As before, Bi can be described as the space

 0 ⊂ V1

α

��
⊂ . . .

α

��
⊂ Vi−1

α

�� ⊂ Vi ⊂ Vi+1

α

��
⊂ . . .

α

��
⊂ V

α

		

∣∣∣∣∣∣∣∣∣dim(Vi) = i

 .

For every integer i ∈ {1, . . . , n} we have a couple of natural maps ji and πi

Ai

Bi C
......................................................................
.....
.......
.....

......................................................................

........
..
.......
........
..

πi

............................................................................................................................................... ......................
......

ji

(3.79)

which are respectively the divisorial inclusion of Bi in C and the canonical projection
of Bi onto Ai.

Lemma 3.10.3. Let Vi be the pullback on Fln of the tautological bundle of Gr(i, n).
The normal bundle OBi of the divisor Bi inside C is isomorphic to

O(Bi) ∼= (ΛiV∗i )−2 ⊗ Λi−1V∗i−1 ⊗ Λi+1V∗i+1.

Proof. Section 4.1 of [32].

For every i ∈ {1, . . . , n− 1}, define the functors

Fi = ji∗ ◦ p∗i : Db(Ai)→ Db(C)
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and denote their right adjoints by

Ri = pi∗ ◦ j!
i : Db(C)→ Db(Ai)

Since we are in the hypothesis of example 3.5.6 Fi are spherical functors and
their spherical twists are autoequivalences.

Moreover, since Bi is a divisor inside C the right adjoint of the functor j!
i is the

functor ji∗(−)⊗O(−Bi), so by Lemma 3.10.3 we have the isomorphism

ji∗(p
∗
i (−)⊗ ωpi))⊗O(−Bi)[2] ∼= ji∗p

∗
i [2]

thus, the following adjuctions hold

Fi a Ri a Fi[2] (3.80)

with the respective counit and unit maps

εi : FiRi → Id εi : Id[−2]→ FiRi.

and, therefore, the cotwist around Fi is [2].
Define the functors

Ti = Cone(FiRi
εi−→ Id) T ′i = Cone(Id

εi−→ FiRi). (3.81)

Theorem 3.10.4. The functors Ti defined in 3.81 are autoquivalences of Db(T∗Fln)

with respective inverses T ′i , i.e.

T ′i ◦ Ti ∼= Id ∼= Ti ◦ T ′i

Moreover the n− 1 autoequivalences Ti satisfy the braid relations:

TiTj ∼= TjTi for |i− j| ≥ 1.

TiTjTi ∼= TjTiTj for |i− j| = 1.

Thus, there is a categorical action of the braid group Brn on Db(T∗Fln).

Proof. Theorem 4.1 in [32].

To conclude this section we prove two results on the canonical bundle of the
quasi-projective varieties C, Bi and Ai.

Proposition 3.10.5. Let X be a smooth projective variety and let p : E → X be the
cotangent vector bundle ΩX Let Y = Spec(Sym(E∗)) be the total space of E, then
the canonical bundle of ωY is trivial.
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Proof. Consider the projection π

π : Y −→ X,

then the relative tangent bundle TY/X of Y over X is isomorphic to

TY/X ∼= π∗E

thus the relative canonical bundle ωYX is isomorphic to

ωYX
∼= π∗det(E).

Therefore the canonical bundle ωY of the total space of E is isomorphic to

ωY ∼= π∗ωX ⊗ ωY/X ∼= π∗(ωX ⊗ det(T ∗X)) ∼= π∗OX ∼= OY

since the dual commutes with the determinant.

As a corollary of Proposition 3.10.5, the canonical bundle of C and Ai is trivial
for every i.

Proposition 3.10.6. The canonical bundle of Bi is

ωBi
∼= OBi(−Bi) ∼= (ΛiV∗i )2 ⊗ (Λi−1V∗i−1)−1 ⊗ (Λi+1V∗i+1)−1 (3.82)

Proof. Using adjunction formula and Proposition 3.10.5 we have that

ωBi
∼= OBi(−Bi)

and from Lemma 3.10.3 follows that

ωBi
∼= (ΛiV∗i )2 ⊗ (Λi−1V∗i−1)−1 ⊗ (Λi+1V∗i+1)−1.
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Chapter 4

Categorical action of generalised braids

Braids are topological configurations of n disjoint pieces of string with n fixed end-
points, considered up to isotopies which keep the strands disjoint. In [32] Khovanov
and Thomas constructed a categorical action of the braid group Brn on the de-
rived category D(T ∗ Fln) of coherent sheaves on the cotangent bundle of the variety
Fln of the complete flags in Cn. The configuration of n distinct fixed endpoints is
represented by D(T ∗ Fln) and a braid starting and ending at such configuration is
represented by an auto-equivalence of this category.

In this chapter we describe a more general structure: GBrn, the generalised braid
category on n-strands. Our goal is to study its categorical representations. The
definition of GBrn resembles that of the category Webn of sln-webs ([19], [37]), but
unlike the latter category, GBrn is not additive. Like inWebn, the objects of GBrn are
ordered partitions ī = (i1, . . . , ik) of n and the morphisms are generated by certain
elementary diagrams modulo relations. The key difference is that Webn is enriched
over Z[q, q−1], and some relations are additive. The category GBrn is topological
in nature, and its relations stem from isotopies. Our main interest, however, lies in
skein triangulated representations of GBrn where we impose triangulated relations
on functors that conjecturally categorify those of Webn.

In particular, it is expected that there is a certain skein-triangulated action of
GBrn on the derived categories of coherent sheaves of the cotangent bundles of Fln(̄i),
the varieties of complete and partial flags in Cn. This action consists of a network of
functors between these derived categories, some of which are well-known in geomet-
ric representation theory: the Khovanov-Thomas braid group action [32] comprises
a limited subset of the endofunctors of the full flag variety, a single node in the
network. The Cautis-Kamnitzer-Licata categorical sl2(C)-action [18] comprises a
limited subset of our functors between the Grassmanians, a few of the nodes in the
network. To obtain the Cautis-Kamnitzer tangle calculus [17], on the other hand,
we restrict a part of our network to a small slice of each flag variety, the resolution
of (n, n)-Slodowy slice. On these slices, the generalised braid relations simplify and
become the tangle calculus.

In Section 1, we define the generalised braid category GBrn. In Section 2, we
define the notion of a skein-triangulated representation of GBr3 and give the con-
ditions on fork generator functors which allow us to construct such representation
out of them. In Section 3, we introduce the setup for a generalised braid action
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on Db(T* Fl3), we define the merge and the fork functors and compute their com-
positions at level of Fourier-Mukai kernels. In Section 4, we describe a conjectural
program which allows us to inductively compute the multiple crossing functors and
verify it for GBr3. In Section 5, we construct the conjectured skein triangulated
representation of GBr3 on D(T ∗(Fl3(̄i)).

4.1 Generalised braid category

Intuitively, generalised braids should be thought of as braids where we remove the
restriction that the strands are not allowed to touch each other. They can now come
together, continue as a strand with multiplicity, and then possibly split apart:

Any two strands with multiplicities p and q can join up and continue as a strand
with multiplicity p + q. Any strand with multiplicity p + q can split up into two
strands with multiplicities p and q. Instead of a single configuration of n disjoint
endpoints, we have multiple configurations indexed by the ordered partitions of n.
Finally, we want to consider the generalised braids up to isotopies which preserve
the intervals on which strands come together. An isotopy can make such interval
shorter or longer, but can’t make it vanish completely or join two such intervals into
one.

This intuitive idea needs to be coarsened: we do not want to distinguish individ-
ual strands within a strand with multiplicity. One approach would be to take the
definition above, and factorise by the action of the permutation group Sp on each
multiplicity p strand which permutes the individual strands within it.

We take another approach, that of embedded trivalent graphs:

Definition 4.1.1. The generalised braid category GBrn is the category with:

• Objects: ordered partitions of n:{
ī = (i1 . . . ik)

∣∣∣∣∣
k∑
s=1

īs = n

}
.

• Morphisms: The morphisms

ī = (i1 . . . ik) → j̄ = (j1 . . . jl)
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are the generalised braids with startpoint/endpoint configurations ī and j̄. Such
braid is an oriented graph with edges colored by integers from 1 to n. We refer
to the colors as the multiplicities. The graph must have:

– k ordered 1-valent startpoint vertices with the emerging edges of multi-
plicities i1, , . . . , ik,

– l ordered 1-valent endpoint vertices with the terminating edges of multi-
plicities j1, . . . , jl,

– The remaining vertices are trivalent with the flow condition respected:
the total multiplicity of the terminating edges equals that of the emerging
edges.

We consider this oriented graph together with an embedding into R2 × [0, 1],
which satisfies:

– The startpoint vertices are (1, 0, 0), (2, 0, 0), . . . , (k, 0, 0).

– The endpoint vertices are (1, 0, 1), (2, 0, 1), . . . , (l, 0, 1).

– The orientation at any point must project positively onto [0, 1].

We considered these generalised braids up to equivalence generated by two
types of relations. One is the isotopy of embedded trivalent graphs. The other
is the multifork and multimerge relations, where we identify the graphs which
can be obtained one from another by the modification:

•

•

q r

p

q+r

p+q+r

=⇒

•

•

p q

p+q

r

p+q+r

(4.1)

and its obvious analogue for merge vertices.

• The composition: The composition is given by concatenation of graphs.

• Identity morphisms: The identity morphism from ī = (i1, . . . , ik) to itself is
the graph which consists of k vertical edges: from the j-th startpoint vertex to
the j-th endpoint vertex for all l ≤ j ≤ k.
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4.2 Skein-triangulated representations of GBr3

General notation

Let ī = (i1, . . . , ik) denote a partition of n. The general principle is that the source
partition and the target partition are denoted by the subscript and the superscript,
respectively. Specifically, if ī and j̄ allow a fork between them, let f j̄

ī
denote this

unique fork. Similarly, let gj̄
ī
denote the unique merge and when ī 6= j̄, let tj̄

ī
and

dj̄
ī
denote the unique positive and the negative crossings. When ī = j̄, there is an

ambiguity, so we overscore the subscript indices which correspond to the strands
being crossed, e.g. t111

1̄1̄1
or t111

11̄1̄
.

The generators of GBr3

The generalised braid category GBr3 has the following generators:

1. Four forks:

f12
3 f21

3 f111
12 f111

21

Figure 4.1: Forks

2. Four merges:

g3
12 g3

21 g12
111 g21

111

Figure 4.2: Merges

3. Two positive and two negative (1, 1)-crossings:

4. Two positive and two negative (2, 1)- and (1, 2)-crossings:
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t111
1̄1̄1

d111
11̄1̄

t111
11̄1̄

d111
1̄1̄1

Figure 4.3: (1, 1)-crossings

t21
12 t12

21 d21
12 d12

21

Figure 4.4: (1, 2)- and (2, 1)-crossings

Insipired by the results in [8], we formulate the following conjecture.

Conjecture 4.2.1. All the relations between these generators in GBr3 can be ob-
tained from the following four basic relations via three operations: vertical reflection
(swap the source and the target partitions, change all forks into merges and vice
versa, reverse the parity of the crossings); horizontal reflection (swap the partitions
12 and 21, reverse the parity of the crossings); and blackboard reflection (reverse
the parity of the crossings).

1. Multifork relation: f111
21 f21

3 = f111
12 f12

3 .

=

Figure 4.5: The Multifork relation

2. The braid relation: t111
1̄1̄1
t111
11̄1̄
t111
1̄1̄1

= t111
11̄1̄
t111
1̄1̄1
t111
11̄1̄

.

3. Inverses relations: t12
21d

21
12 = id12, d

21
12t

12
21 = id21, t111

1̄1̄1
d111

1̄1̄1
= t111

11̄1̄
d111

11̄1̄
= id111.

4. The pitchfork relation: f111
12 t12

21 = t111
1̄1̄1
t111
11̄1̄
f111

21 .
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=

Figure 4.6: The braid relation

= =

= =

Figure 4.7: Inverses relations

=

Figure 4.8: The pitchfork relation

Remark 4.2.2. The category GBr2 has a simpler structure; indeed, the generators
of GBr2 are f11

2 , g2
11, t

11
1̄1̄
, d11

1̄1̄
and the only relation between them is

t11
1̄1̄d

11
1̄1̄ = Id = d11

1̄1̄t
11
1̄1̄. (4.2)
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f11
2 g2

11 t11
1̄1̄

d11
1̄1̄

Figure 4.9: Generators of GBr2

Skein-triangulated representations for n = 3

In this section, we describe a special type of categorical representations of GBr3

which we call skein-triangulated. In these representations, GBr3 acts on enhanced
triangulated categories and certain additional relations are satisfied which make use
of the triangulated structure of the target categories.

Let C3, C12, C21, and C111 be enhanced triangulated categories. Let

F 111
21 : D(C21)→ D(C111), (4.3)

F 111
12 : D(C12)→ D(C111), (4.4)

F 21
3 : D(C3)→ D(C21), (4.5)

F 12
3 : D(C3)→ D(C12), (4.6)

be enhanced functors with enhanced 2-categorical left and right adjoints. Denote
the left and right adjoints of each F j̄

ī
by Lī

j̄
and Rī

j̄
.

Assume that Conjecture 4.2.1 holds and assume moreover that

1. (1, 1)-forks F 111
12 and F 111

21 are split spherical functors with cotwist [−2].

2. (1, 2)-fork F 12
3 and (2, 1)-fork F 21

3 are split P2-functors with H = [−2].

3. There exists a multifork isomorphism

α : F 111
21 F 21

3
∼−→ F 111

12 F 12
3 . (4.7)

4. There exist isomorphisms

R3
12R

12
111F

111
12 F 12

3 ' Id3⊕[−2]⊕ [−2]⊕ [−4]⊕ [−4]⊕ [−6] ' R3
21R

21
111F

111
21 F 21

3

which together with P2-functor structures on F 12
3 and F 21

3 identify the maps

R3
12F

12
3

R3
12 actF 12

3−−−−−−−→ R3
12R

12
111F

111
12 F 12

3 , (4.8)

R3
21F

21
3

R3
21 actF 21

3−−−−−−−→ R3
21R

21
111F

111
21 F 21

3 , (4.9)

with the maps

Id3⊕[−2]⊕ [−4]→ Id3⊕[−2]⊕ [−2]⊕ [−4]⊕ [−4]⊕ [−6]

which are the direct summand embeddings whose images are Id3 ⊕ the first
[−2] ⊕ the first[−4], and Id3 ⊕ the second [−2] ⊕ the second [−4], respectively.



54 Chapter 4. Categorical action of generalised braids

' Id3 ⊕ [−2]⊕ [−2]⊕ [−4]⊕ [−4]⊕ [−6] '

5. The following diagram can be completed to an exact triangle in D(C12-C12):

F 12
3 R3

12 → R12
111F

111
21 R21

111F
111
12 → Id12[−2]. (4.10)

−→−→ [−2]

Here the first map is the composition

F 12
3 R3

12

R12
111F

111
12 F 12

3 R3
12R

12
111F

111
12

R12
111F

111
21 F 21

3 R3
21R

21
111F

111
12

R12
111F

111
21 R21

111F
111
12 ,

actF 12
3 R3

12 act

multifork∼

R12
111F

111
21 trR21

111F
111
12

(4.11)

and the second map is the composition

R12
111F

111
21 R21

111F
111
12 ' L12

111F
111
21 R21

111F
111
12 [−2]

tr[−2]−−−→ Id12[−2]. (4.12)

6. The following diagram can be completed to an exact triangle in D(C21-C21):

F 21
3 R3

21 → R21
111F

111
12 R12

111F
111
21 → Id21[−2]. (4.13)
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−→ −→−→

Its two maps are defined analogously to (4.11) and (4.12):

F 21
3 R3

21

R21
111F

111
21 F 21

3 R3
21R

21
111F

111
21

R21
111F

111
12 F 12

3 R3
12R

12
111F

111
21

R21
111F

111
12 R12

111F
111
21 ,

actF 21
3 R3

21 act

multifork∼

R21
111F

111
12 trR12

111F
111
21

(4.14)

and

R21
111F

111
12 R12

111F
111
21 ' L21

111F
111
12 R12

111F
111
21 [−2]

tr[−2]−−−→ Id21[−2]. (4.15)

Theorem 4.2.3. Under the assumptions above, the following assignments define a
categorical action of GBr3:

1. Each partition ī of 3 is represented by the enhanced triangulated category Cī.

2. Each fork f j̄
ī
is represented by the functor F j̄

ī
.

3. (1, 1)-merges gj̄
ī
are represented by the functors Gj̄

ī
defined by

Lj̄
ī
[−1] ' Gj̄

ī
' Rj̄

ī
[1]. (4.16)

4. (1, 2)- and (2, 1)-merges gj̄
ī
are represented by the functors Gj̄

ī
defined by

Lj̄
ī
[−2] ' Gj̄

ī
' Rj̄

ī
[2]. (4.17)
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5. (1, 1)-crossings are represented by the spherical twists of (1, 1)-forks:

T 111
1̄1̄1 = Cone

(
F 111

21 G21
111[−1]

tr−→ Id111

)
, (4.18)

T 111
11̄1̄ = Cone

(
F 111

12 G12
111[−1]

tr−→ Id111

)
, (4.19)

D111
1̄1̄1 = Cone

(
Id111[−1]

act−−→ F 111
21 G21

111

)
, (4.20)

D111
11̄1̄ = Cone

(
Id111[−1]

act−−→ F 111
12 G12

111

)
, (4.21)

−→= Cone ( )[−1]

−→= Cone ( )[−1]

6. (1, 2)- and (2, 1)-crossings are represented by the cones:

T 21
12 = Cone

(
F 21

3 G3
12[−1]

λ−→ G21
111F

111
12

)
, (4.22)

T 12
21 = Cone

(
F 12

3 G3
21[−1]

µ−→ G12
111F

111
21

)
, (4.23)

D21
12 = Cone

(
G21

111F
111
12 [−1]

λ′−→ F 21
3 G3

12

)
, (4.24)

D12
21 = Cone

(
G12

111F
111
21 [−1]

µ′−→ F 12
3 G3

21

)
, (4.25)

−→= Cone ( )[−1]

−→= Cone ( )[−1]
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where λ is defined by either of the two equal compositions

F 21
3 R3

12

F 21
3 R3

12R
12
111F

111
12

F 21
3 R3

21R
21
111F

111
12

R21
111F

111
12

F 21
3 R3

12 act

multifork∼

trR21
111F

111
12

F 21
3 R3

12

R21
111F

111
21 F 21

3 R3
12

R21
111F

111
12 F 12

3 R3
12

R21
111F

111
12

actF 21
3 R3

12

multifork∼

R21
111F

111
12 tr

, (4.26)

λ′ is defined by either of the two equal compositions

L21
111F

111
12

L21
111F

111
12 F 12

3 L3
12

L21
111F

111
21 F 21

3 L3
12

F 21
3 L3

12

L21
111F

111
12 act

multifork∼

trF 21
3 L3

12

L21
111F

111
12

F 21
3 L3

21L
21
111F

111
12

F 21
3 L3

12L
12
111F

111
12

F 21
3 L3

12

actL21
111F

111
12

multifork∼

F 21
3 L3

12 tr

, (4.27)

and µ and µ′ are defined similarly.

Moreover, this categorical action also satisfies the following condition:

• Flop + Flop = Twist:

1. T 12
21 T

21
12 is isomorphic in D(C12-C12) to the P-twist of F 12

3 ,

2. T 21
12 T

12
21 is isomorphic in D(C21-C21) to the P-twist of F 21

3 .

Motivated by the previous result, we give the following definition.

Definition 4.2.4. A skein-triangulated representation of GBr3 is a system of cate-
gories and functors satisfying the assignments properties of Theorem 4.2.3.

Proof of Theorem 4.2.3. It suffices to prove that the four basic relations between
the generators of GBr3 listed in (4.2.1) hold under the assumptions of the theorem.
The proofs for the relations obtained from these four by vertical, horizontal and
blackboard reflections are identical.

(T 111
1̄1̄1

, D111
1̄1̄1

) and (T 111
11̄1̄

, D111
11̄1̄

) are pairs of mutually inverse equivalences.

This follows from F 111
21 and F 111

12 being spherical functors, see [6], Theorem 5.1.
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The pitchfork relation

We need to show the existence of an isomorphism

F 111
12 T 12

21 ' T 111
1̄1̄1 T

111
11̄1̄F

111
21 .

By definition we have

T 111
1̄1̄1 = Cone

(
F 111

21 G21
111[−1]

tr−→ Id111

)
,

T 111
11̄1̄ = Cone

(
F 111

12 G12
111[−1]

tr−→ Id111

)
,

therefore T 111
1̄1̄1

T 111
11̄1̄

F 111
21 is isomorphic in D(C111 − C111) to the convolution of the

twisted complex

F 111
21 R21

111F
111
12 R12

111F
111
21

(
trF111

12 R12
111F

111
21

−F111
21 R21

111trF
111
21

)
−−−−−−−−−−−−−−−−→ F 111

12 R12
111F

111
21 ⊕ F 111

21 R21
111F

111
21

(trF21 trF111
21 )

−−−−−−−−−−−−→ F 111
21

deg.0

By Lemma 5.10 of [6], we have a homotopy equivalence of twisted complexes

between F 111
21 R21

111F
111
21

deg.0

trF 111
21−−−−→ F 111

21 and F 111
21

F 111
21 act
−−−−−→ F 111

21 R21
111F

111
21

deg.0
.

It follows by the Replacement Lemma that T 111
1̄1̄1

T 111
11̄1̄

F 111
21 is further isomorphic

to the convolution of

F 111
21 R21

111F
111
12 R12

111F
111
21 ⊕ F 111

21

(
trF111

12 R12
111F

111
21 0

−F111
21 R21

111trF
111
21 F111

21 act

)
−−−−−−−−−−−−−−−−−−−−−−→ F 111

12 R12
111F

111
21 ⊕

deg.-1
F 111
21 R21

111F
111
21 .

Moreover, there exists an homotopy equivalence from F 111
21 F 21

3 R3
21 to

F 111
21 R21

111F
111
12 R12

111F
111
21 ⊕ F 111

21

(−F111
21 R21

111trF
111
21 F111

21 act)
−−−−−−−−−−−−−−−−−−−−−−→ F 111

21 R21
111F

111
21

deg.0

whose F 111
21 F 21

3 R3
21 → F 111

21 R21
111F

111
12 R12

111F
111
21 component is the map F 111

21 (4.11).
It follows by the Replacement Lemma, that T 111

1̄1̄1
T 111

11̄1̄
F 111

21 is therefore isomorphic
to the convolution of

F 111
21 F 21

3 R3
21

trF 111
12 R111F 111

21 ◦F 111
21 (4.11)

−−−−−−−−−−−−−−−−−→ F 111
12 R12

111F
111
21

deg.-1

and hence by the multifork isomorphism to the convolution of

F 111
12 F 12

3 R3
21

trF 111
12 R111F 111

21 ◦F 111
21 (4.11)◦multifork

−−−−−−−−−−−−−−−−−−−−−−−−→ F 111
12 R12

111F
111
21

deg.-1
.

On the other hand, by the definition of T 12
21 the object F 111

12 T 12
21 is isomorphic in

D(C111 − C111) to the convolution if the twisted complex
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F 111
12 F 12

3 R3
21

F 111
12 µ
−−−−→ F 111

12 R12
111F

111
21

deg.-1
.

And since

trF 111
12 R111F

111
21 ◦ F 111

21 (4.11) ◦multifork = F 111
12 µ

we have

F 111
12 T 12

21 ' T 111
1̄1̄1 T

111
11̄1̄F

111
21 .

The braid relation

Consider the following twisted complexes of enhanced functors:

F 111
21 R21

111F
111
12 R12

111F
111
21 R21

111 ⊕ F 111
21 R21

111
deg.0

F111
21 R21

111 trF111
21 R21

111⊕F
111
21 actR21

111−−−−−−−−−−−−−−−−−−−−−−−−−−→ F 111
21 R21

111F
111
21 R21

111, (4.28)

F 111
12 R12

111F
111
21 R21

111F
111
12 R12

111 ⊕ F 111
12 R12

111
deg.0

F111
12 R12

111 trF111
12 R12

111⊕F
111
12 actR12

111−−−−−−−−−−−−−−−−−−−−−−−−−−→ F 111
12 R12

111F
111
12 R12

111. (4.29)

There are natural maps from both to F 111
21 R21

111F
111
12 R12

111 ⊕ F 111
12 R12

111F
111
21 R21

111

induced by the maps

F 111
21 R21

111F
111
12 R12

111F
111
21 R21

111

F 111
21 R21

111F
111
12 R12

111 ⊕ F 111
12 R12

111F
111
21 R21

111

trF 111
12 R12

111F
111
21 R21

111⊕F 111
21 R21

111F
111
12 R12

111 tr (4.30)

and
F 111

12 R12
111F

111
21 R21

111F
111
12 R12

111

F 111
21 R21

111F
111
12 R12

111 ⊕ F 111
12 R12

111F
111
21 R21

111.

F 111
12 R12

111F
111
21 R21

111 tr⊕ trF 111
21 R21

111F
111
12 R12

111
(4.31)

By [6], Theorem 6.2, if there exists a D(C111-C111) isomorphism between the convolu-
tions of the twisted complexes (4.28) and (4.29) which intertwines the maps induced
by (4.30) and (4.31), then the braid relation holds for T 111

1̄1̄1
and T 111

11̄1̄
.

Claim: There exist homotopy equivalences from the objects F 111
21 F 21

3 R3
21R

21
111

and F 111
12 F 12

3 R3
12R

12
111 to the twisted complexes (4.28) and (4.29) whose

F 111
21 F 21

3 R3
21R

21
111 → F 111

21 R21
111F

111
12 R12

111F
111
21 R21

111,

F 111
12 F 12

3 R3
12R

12
111 → F 111

12 R12
111F

111
21 R21

111F
111
12 R12

111,

components are the maps F 111
21 (4.14)R21

111 and F 111
12 (4.11)R12

111.
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Indeed, since (4.5) fits into an exact triangle inD(C21-C21), there exist a homotopy
equivalence of twisted complexes of the form

F 111
21 F 21

3 R3
21R

21
111

deg.0

F 111
21 R21

111F
111
12 R12

111F
111
21 R21

111
deg.0

F 111
21 R21

111[−2].

F 111
21 (4.14)R21

111

?

F 111
21 (4.15)R21

111

(4.32)

Since F 111
21 is split-spherical with cotwist [-3], there is a split exact triangle

F 111
21 R21

111

F 111
21 actR21

111−−−−−−−−→ F 111
21 R21

111F
111
21 R21

111
π−→ F 111

21 R21
111[−2].

Therefore, the object F 111
21 R21

111[−2] is homotopy equivalent to the twisted complex

F 111
21 R21

111

F 111
21 actR21

111−−−−−−−−→ F 111
21 R21

111F
111
21 R21

111
deg.0

. It follows by the Replacement Lemma

([7], Lemma 2.1) that there exists a homotopy equivalence of form

F 111
21 R21

111F
111
12 R12

111F
111
21 R21

111
deg.0

F 111
21 R21

111[−2]

F 111
21 R21

111F
111
12 R12

111F
111
21 R21

111 ⊕ F
111
21 R21

111
deg.0

F 111
21 R21

111F
111
21 R21

111

F111
21 (4.15)R21

111

Id⊕0
?0⊕?

F111
21 R21

111 trF111
21 R21

111⊕F111
21 actR21

111

(4.33)

The composition of (4.32) and (4.33) is the desired homotopy equivalence from
F 111

21 F 21
3 R3

21R
21
111 to the twisted complex (4.28).

Therefore, we have proven the claim for the twisted complex (4.28); the proof for
(4.29) are similar.

Now, recall that we have the multifork isomorphism α : F 111
21 F 21

3
∼−→ F 111

12 F 12
3 .

Let β denote its inverse F 111
12 F 12

3
∼−→ F 111

21 F 21
3 , and let βR : R3

21R
21
111

∼−→ R3
12R

12
111.

We now claim that the D(C111-C111) isomorphism between the convolutions of
(4.28) and (4.29) which is induced via the isomorphisms provided by the Claim from
the isomorphisms

F 111
21 F 21

3 R3
21R

21
111

αβR−−−→ F 111
12 F 12

3 R3
12R

12
111

is the requisite isomorphism intertwining the maps (4.30) and (4.31).
The target of the maps is the direct sum

F 111
21 R21

111F
111
12 R12

111 ⊕ F 111
12 R12

111F
111
21 R21

111.

We prove that the isomorphism intertwines the components of (4.30) and (4.31)
which go into the second direct summand. The proof that it intertwines the first
direct summand components is similar.
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It suffices to show that the following diagram commutes in D(C111-C111):

F 111
21 F 21

3 R3
21R

21
111 F 111

12 F 12
3 R3

12R
12
111

F 111
21 R21

111F
111
12 R12

111F
111
21 R21

111 F 111
12 R12

111F
111
21 R21

111F
111
12 R12

111

F 111
12 R12

111F
111
21 R21

111 F 111
12 R12

111F
111
21 R21

111.

αβR

F111
21 (4.14)R21

111 F111
12 (4.11)R12

111

trF111
12 R12

111F
111
21 R21

111 F111
12 R12

111F
111
21 R21

111 tr

This can be simplified to:

F 111
21 F 21

3 R3
21R

21
111 F 111

12 F 12
3 R3

12R
12
111

F 111
21 F 21

3 R3
21R

21
111F

111
21 R21

111 F 111
12 R12

111F
111
12 F 12

3 R3
12R

12
111

F 111
12 F 12

3 R3
12R

12
111F

111
21 R21

111 F 111
21 R21

111F
111
21 F 21

3 R3
12R

12
111

F 111
12 R12

111F
111
21 R21

111 F 111
12 R12

111F
111
21 R21

111.

αβR

F111
21 F21

3 R3
21 actR21

111 F111
12 actF12

3 R3
12R

12
111

αβRF111
21 R21

111 F111
12 R12

111βα
R

F111
12 trR12

111F
111
21 R21

111 F111
21 R21

111F
111
21 trR12

111

The commutativity of this diagram reduces to the commutativity of the diagram

F 111
12 F 12

3 R3
21R

21
111

F 111
12 F 12

3 R3
21R

21
111F

111
21 R21

111 F 111
12 R12

111F
111
12 F 12

3 R3
21R

21
111

F 111
12 F 12

3 R3
12R

12
111F

111
21 R21

111 F 111
12 R12

111F
111
21 F 21

3 R3
21R

21
111

F 111
12 R12

111F
111
21 R21

111.

F111
12 F12

3 R3
21 actR21

111 F111
12 actF12

3 R3
21R

21
111

F111
12 F12

3 βRF111
21 R21

111 F111
21 R21

111βR
3
21R

21
111

F111
12 trR12

111F
111
21 R21

111 F111
12 R12

111F
111
21 trR21

111

and then further to the commutativity of

F 111
12 F 12

3 R3
21R

21
111

F 111
12 F 12

3 R3
12R

12
111 F 111

21 F 21
3 R3

21R
21
111

Id111,

F111
12 F12

3 βR βR3
21R

21
111

tr tr

which commutes since βR is the right dual of β.
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Flop+flop=twist

We only prove the first of the “flop-flop = twist” relations, the second is proved
identically. We need to show that

{F 12
3 R3

21
µ−→ R12

111F
111
21

deg.0
}{F 21

3 R3
12

λ−→ R21
111F

111
12

deg.0
}[2] (4.34)

is isomorphic to
F 12

3 R3
12[−2]

ψ−→ F 12
3 R3

12
tr−→ IdC12 .

The tensor of product of convolutions in (4.34) is isomorphic to the convolution
of the twisted complex

F 12
3 R3

21F
21
3 R3

12

R12
111F

111
21 F 21

3 R3
12 ⊕ F 12

3 R3
21R

21
111F

111
12

R12
111F

111
21 R21

111F
111
12

deg.0
.

(
µF 21

3 R3
12

−F 12
3 R3

21λ

)

(R12
111F

111
21 λ µR21

111F
111
12 )


[2] (4.35)

Since F 111
21 and F 111

12 are split spherical with cotwist [−3], we have

R12
111F

111
21 F 21

3 R3
12 ' R12

111F
111
12 F 12

3 R3
12 ' F 12

3 R3
12 ⊕ F 12

3 R3
12[−2],

F 12
3 R3

21R
21
111F

111
12 ' F 12

3 R3
12R

12
111F

111
12 ' F 12

3 R3
12 ⊕ F 12

3 R3
12[−2],

Since F 21
3 is split P2-functor with H = [−2] we also have

F 12
3 R3

21F
21
3 R3

12 ' F 12
3 R3

12 ⊕ F 12
3 R3

12[−2]⊕ F 12
3 R3

12[−4].

Thus three out of four objects in the twisted complex (4.35) are isomorphic to direct
sums of shifted copies of F2R2. Under these identifications (4.35) becomes:

F 12
3 R3

12[2]⊕ F 12
3 R3

12 ⊕ F 12
3 R3

12[−2]

(
F 12
3 R3

12[2]⊕ F 12
3 R3

12

)
⊕
(
F 12
3 R3

12[2]⊕ F 12
3 R3

12

)

R12
111F

111
21 R21

111F
111
12

deg.0
[2]


Id 0 0

0 Id ψ1

− Id 0 0

0 − Id −ψ2



(
(4.11) φ1 (4.11) φ2

)
, (4.36)

where ψ1, ψ2 are the compositions

F 12
3 R3

12[−2] ↪→ F 12
3 R3

12F
12
3 R3

12

trF 12
3 R3

12, F 12
3 R3

12 tr
−−−−−−−−−−−−−−→ F 12

3 R3
12,



4.2. Skein-triangulated representations of GBr3 63

and φ1 and φ2 are the compositions

F 12
3 R3

12

R12
111F

111
12 F 12

3 R3
12[2]

R12
111F

111
21 F 21

3 R3
12[2]

R12
111F

111
21 R21

111F
111
21 F 21

3 R3
12[2]

R12
111F

111
21 R21

111F
111
12 F 12

3 R3
12[2]

R12
111F

111
21 R21

111F
111
12 [2]

R12
111(multifork)R3

12

R12
111F

111
21 act F 21

3 R3
12

R12
111F

111
21 R21

111(multifork)R3
12

R12
111F

111
21 R21

111F
111
12 tr

and

F 12
3 R3

12

F 12
3 R3

12R
12
111F

111
12 [2]

F 12
3 R3

21R
21
111F

111
12 [2]

F 12
3 R3

21R
21
111F

111
21 R21

111F
111
12 [2]

F 12
3 R3

12R
12
111F

111
21 R21

111F
111
12 [2]

R12
111F

111
21 R21

111F
111
12 [2]

R12
111(multifork)R3

12

F 12
3 R3

21 act R21
111F

111
12

F 12
3 (multifork)F 111

21 R21
111F

111
12

tr R12
111F

111
21 R21

111F
111
12

Note that since the map (4.12) is the composition

R12
111F

111
21 R21

111F
111
12

R12
111 trF 111

12−−−−−−−→ R12
111F

111
12 � Id111[−2],

we have the following equality of maps F 12
3 R3

12 → Id3:

φ1 ◦ (4.12) = tr = φ2 ◦ (4.12).

The map ψ in the definition of the P-twist of F 12
3 is ψ1−ψ2. Changing the basis

of the middle term of (4.36) to the diagonal and the antidiagonal we obtain:

F 12
3 R3

12[2]⊕ F 12
3 R3

12 ⊕ F 12
3 R3

12[−2]

(
F 12
3 R3

12[2]⊕ F 12
3 R3

12

)
⊕
(
F 12
3 R3

12[2]⊕ F 12
3 R3

12

)

R12
111F

111
21 R21

111F
111
12

deg.0
[2].


0 0 0

0 0 ψ

2 Id 0 0

0 2 Id ψ1+ψ2



(
2(4.11) φ1+φ2 0 φ1−φ2

)
(4.37)

We can remove the following acyclic subcomplex of (4.37)

F 12
3 R3

12[2]⊕ F 12
3 R3

12

(
2 Id 0

0 2 Id

)
−−−−−−−−−→ F 12

3 R3
12[2]⊕ F 12

3 R3
12

deg.-1
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using the Replacement Lemma. Since the subcomplex has no external arrows emerg-
ing from its degree −2 part, no other differentials are affected. We obtain:

F 12
3 R3

12[−2] F 12
3 R3

12[2]⊕ F 12
3 R3

12 R12
111F

111
21 R21

111F
111
12

deg.0
[2].

 0

ψ

 (
2(4.11) φ1+φ2

)
(4.38)

Since (4.5) fits into an exact triangle, we have a homotopy equivalence of form

F 12
3 R3

12[2] R12
111F

111
21 R21

111F
111
12 [2]

Id12
deg.0

2(4.11)

∗ 1
2
(4.12) (4.39)

By the Replacement Lemma, we finally obtain:

F 12
3 R3

12[−2] F 12
3 R3

12[2] Id12
deg.0

.
ψ

1
2 (4.12)◦(φ1+φ2) (4.40)

Since (4.12) ◦ φi = tr, this is homotopy equivalent to the P-twist of F 12
3 :

F 12
3 R3

12[−2] F 12
3 R3

12[2] Id12
deg.0

.
ψ tr (4.41)

(T 12
21 , D

21
12) and (T 12

21 , D
21
12) are pairs of mutually inverse equivalences.

This follows from the “twist-twist=flop” relations. Indeed, T 12
21 T

21
12 and T 21

12 T
12
21 are

isomorphic to P-twists of F 12
3 and F 21

3 and hence are both autoequivalences. There-
fore T 21

12 and T 12
21 are also autoequivalences. On the other hand, the maps λ′ and µ′

which define the functors D21
12 and D12

21 are the left duals of the maps µ and λ which
define the functors T 12

21 and T 21
12 . Hence D21

12 and D12
21 are the left adjoints of T 12

21 and
T 21

12 . The claim now follows.
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4.3 A skein triangulated action of GBr3 on T ∗ Fl3(̄i)

The aim of the rest of this chapter is to define a network of categories and functors
that satisfy the assumption of Theorem 4.2.3.

In particular, we construct such a network on T ∗ Fl3(̄i) and we prove that all the
hypothesis for a skein triangulated action of GBr3 are verified.

In the following, let Db(X) be the derived category of coherent sheaves on a
smooth quasi-projective variety X and assume all the functors derived, i.e. we omit
R and L.

We omit the pushforward i∗ applied to structure sheaves when i is an embedding
and the pullbacks applied to line bundles; we also write, when D1 and D2 are divisors
respectively in X and Y , OX×ZY (D1, D2) for the line bundle OX(D1)�OY (D2) on
the fiber product X ×Z Y .

We write the total space T ∗ Fln(̄i) of the contangent bundle of the flag Fln(̄i)

with the little abuse of notation, as in remark 2.2.30

T ∗ Fln(̄i) =

 0 ⊂ Vi1

α
}}

⊂ . . .

α
yy

⊂ Vik−1

α

�� ⊂ Cn
α
xx

 ,

and we also write

 0 ⊂ Vλ1

α
||

⊂ . . .

α
yy

⊂ Vλk−1

α

}} ⊂ Cn
α
ww

×
 0 ⊂ Vj1

α
}}

⊂ . . .

α
yy

⊂ Vjh−1

α

�� ⊂ Cn
α
xx


for the subspace of T ∗ Fln(̄i) × T ∗ Fln(j̄) where the maps αs need to satisfy

α(Vik) ⊂ Vik−1
and α(Vjk) ⊂ Vjk−1

.
We write Vi for the pullback on Fln of the tautological bundle of Gr(i, n).
Recall that if X and Y are quasi-projective subvarieties of Z such that their

intersection X ∩ Y is a Cartier divisor in Y than we have the short exact sequence
of coherent sheaves of Z

0→ OY (−X ∩ Y )→ OX∪Y → OX → 0. (4.42)

Recall moreover that if f : X → Y is proper, then we have the following adjunc-
tion of derived functors

f∗ a f∗ a f ! (4.43)

where f ! = f∗(−)⊗ ωX/Y [dimY − dimX].
If f is a divisorial embedding we write OX×XY ∈ Db(X × Y ) and OY×XX ∈

Db(Y ×X)(X, 0)[−1] for the Fourier-Mukai kernels representing respectively f∗ and
f !.
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If f is a fibration we write OX×XY ∈ Db(X × Y ) and OY×XX ∈ Db(Y ×X) for
the Fourier-Mukai kernels representing respectively f∗ and f∗.

We write moreover OX×XX ∈ Db(X × X) for the Fourier-Mukai kernel repre-
senting the identity on X.

As in section 3.8, let C be our ambient variety the total space of the contangent
bundle of Fl3

C = T ∗Fl3.

Let A and E be the quasi-projective varieties defined as the total space of the
contangent bundle of P2 and P2∨:

A = T ∗P2 E = T ∗P2∨.

Let B and D be the quasi-projective varieties defined as the total space of the
pullback via p1 and p2 on Fl3 of the contangent bundle of P2 and P2∨:

B = p∗1T
∗P2 D = p∗2T

∗P2∨.

We have therefore the following diagram

A

B C D

E

P2 P2∨pt

......................................................................
.....
.......
.....

......................................................................

........
..
.......
........
..

πA

............................................................................................................................................... ......................
......

iB
..................................................................................................................... ................

iD ......................................................................
.....
.......
.....

......................................................................

........
..
.......
........
..

πE

.......

.......

.......

.......

.......

.......

.......

.......

.......

.............

............

................

iP2

.......

.......

.......

.......

.......

.......

.......

.......

.......

.............

............

................

iP2∨

......................................................................................................................... ...................................................................................................................................
πpt1

...................................................................................................................................................... ....................................................................................................................................................................... .................

πpt2

(4.44)

where iB, iD,iP2∨ and iP2 are divisorial inclusions and B πA−−→ A and D πE−−→ E are
P1 bundles.

Definition 4.3.1. We define the categories C(3) = Db(pt), C(1,2) = Db(A), C(2,1) =

Db(E), and C(1,1,1) = Db(C).

4.4 A skein triangulated action of GBr3: generators

In this section we define the generators of skein triangulated action of GBr3, the
forks and the merges.

The functors F 111
12 F 111

21 and their respective right adjoints R12
111 R21

111 are the
spherical functors Fi and their right adjoints Ri of section 3.10.
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After giving a description of them as Fourier-Mukai transforms, we will compute
the first compositions of them.

In the following sections, we use Db(pt), Db(A), Db(E), Db(C) instead of the
notation of Definition 4.3.1.

Definition 4.4.1. We define the first fork functor

F 111
21 = iD∗ ◦ π∗E : Db(E)→ Db(C) (4.45)

and define the second fork functor

F 111
12 = iB∗ ◦ π∗A : Db(A)→ Db(C). (4.46)

F 111
21 := iD∗ ◦ π∗E F 111

12 = iB∗ ◦ π∗A

Figure 4.10: First and second forks

Proposition 4.4.2. The Fourier-Mukai kernel of F 111
21 and F 111

12 are respectively the
sheaves OE×ED ∈ Db(E × C) and OA×AB ∈ Db(A× C).

Proof. Let π12, π23, π13 be the natural projections

E ×D × C

E ×D D × C D × E

π12 π13
π23

. (4.47)

By Proposition 3.9.4, the composition F 111
21 of iD∗ ◦ π∗E is represented by the

convolution of their Fourier-Mukai kernels, thus

π13∗(π
∗
12OE×EE ⊗ π

∗
23OD×DD) = π13∗(OE×EE×C ⊗OE×D×DD)

By Corollary 3.9.4 the latter derived tensor product of the structure sheaves is
isomorphic to the structure sheaf of the intersection

OE×EE×C ⊗OE×D×DD ' OE×EE×ED

Indeed the subvariety E ×E D × C is of codimension 4 inside E ×D × C while
the condimension of the subvariety E ×D ×D D is 6 inside E ×D × C.

Their intersection (E ×E D×C)∩ (E ×D×D D) is smooth and of codimension
9, therefore they intersect transversally.
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Notice that E ×E E ×E D is isomorphic to a copy of D in the third component,
therefore π13 : E ×E E ×E D → E ×C is an embedding, so the derived pushforward
of OE×EE×ED is just the structure sheaf of the image of the support.

So in conclusion the Fourier-Mukai kernel of F 111
21 is isomorphic to

OE×ED.

The same argument applies to iB∗ ◦ π∗A for showing that the kernel of F 111
12 is

isomorphic to
OA×AB.

Remark 4.4.3. The first merge

R21
111 = πE∗ ◦ i!D : Db(C)→ Db(E) (4.48)

and the second merge

R12
111 = πA∗ ◦ i!B : Db(C)→ Db(A) (4.49)

are respectively the right adjoints of F 111
21 and F 111

12 .

R21
111 = pE∗ ◦ i!D R12

111 = pA∗ ◦ i!B

Figure 4.11: First and second merges

Proposition 4.4.4. The Fourier-Mukai kernel to R21
111 and R12

111 are respectively the
objects OD×EE(D, 0)[−1] ∈ Db(C × E) and OB×AA(B, 0)[−1] ∈ Db(C ×A).

Proof. Let π12, π23, π13 be the natural projections as in diagram (4.59)
By Proposition 3.2.3, the composition R21

111 of pE∗ ◦ i!D is represented by the
convolution of their Fourier-Mukai kernels, thus

π13∗(π
∗
23OD×DD(D, 0)⊗ π∗12OE×EE) ' π13∗(OE×D×DD(D, 0, 0)⊗OE×EE×C)

As in the proof of Proposition (4.59), by transversality of the intersection of
E × D ×D D with E ×E E × C, we can apply Corollary 3.9.4 and obtaining the
isomorphism

OE×D×DD(D, 0, 0)⊗OE×EE×C) ' OE×EE×ED(D, 0, 0).

Notice that E ×E E ×E D is isomorphic to a copy of D in the third component,
therefore π13 : E ×E E ×E D → E ×C is an embedding, so the derived pushforward
of OE×EE×ED is just the structure sheaf of the image of the support.



4.4. A skein triangulated action of GBr3: generators 69

Since π13 is an embedding restricted to E ×E E ×E D, we conclude that the
Fourier-Mukai kernel associated to R21

111 is isomorphic to

OD×EE(D, 0)[−1].

The same argument applies to iB∗ ◦ π∗A for showing that the Fourier-Mukai asso-
ciated to R12

111 is isomorphic to

OB×AA(B, 0)[−1].

Definition 4.4.5. We define the third and fourth forks

F 12
3 := iP2∗ ◦ π∗pt1 : Db(pt)→ Db(A), F 21

3 := iP2∨∗ ◦ π∗pt2 : Db(pt)→ Db(E)

and the third and fourth merges

R3
12 = πpt1∗ ◦ i!P2 : Db(A)→ Db(pt), R3

21 = πpt2∗ ◦ i!P2∨ : Db(E)→ Db(pt).

F 12
3 := iP2∗ ◦ π∗pt1 F 21

3 := iP2∨∗ ◦ π∗pt2

Figure 4.12: Third and fourth forks

R3
12 = πpt1∗ ◦ i!P2 R3

21 = πpt2∗ ◦ i!P2∨

Figure 4.13: Third and fourth merges

Remark 4.4.6. The functor F 12
3 (and similarly for the functor F 21

3 ) can be also
described as the functor that maps the 1-dimensional vector space to OP2 and its
right adjoint R3

12 is the functor RHom(OP2 ,−).

F 111
21 is represented by the Fourier-Mukai kernel OE×ED.

R12
111 is represented by the Fourier-Mukai kernel OB×AA(B, 0)[−1].
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Proposition 4.4.7. The Fourier-Mukai kernel associated to R12
111F

111
21 is OZ1⊗V∗1⊗

(Λ2V2)2[−1], where

Z1 :=

 0 ⊂ V2

α

��
⊂ C3

α

��

×
 0 ⊂ V1

α

��
⊂ C3

α

��


is a line bundle over Fl3 and it is also the blow up of A or E along their zero sections.

Proof. Let π12, π23, π13 be the natural projections

E × C ×A

E × C E ×A C ×A

π12 π13
π23

.

By Proposition 3.2.3, the composition is represented by the convolution of their
Fourier-Mukai kernels, thus the kernel of R12

111F
111
21 is isomorphic to

π13∗(π
∗
12OE×ED⊗π

∗
23OB×AA(B, 0)[−1]) = π13∗(OE×ED×A⊗OE×B×AA(0, B, 0))[−1]

The subvariety E ×E D × A is of codimension 5 inside E × C × A; the same
codimension is the one of E ×B ×A A in E × C ×A.

Their intersection (E×ED×A)∩ (E×B×AA) = E×E (D∩B)×AA is smooth
and of codimension 10, therefore E×ED×A and E×B×AA intersect transversally
in E × C ×A.

By Corollary 3.9.4,

OE×ED×A ⊗OE×B×AA ' OE×E(D∩B)×AA

The subvariety E ×E (D ∩B)×A A can be described as the space 0 ⊂ V2

α

��
⊂ C3

α

��

×
 0 ⊂ V1 ⊂ V2

α

��
⊂ C3

α

^^

×
 0 ⊂ V1

α

��
⊂ C3

α

��

 .

It is the clear that π13 : E ×E (D ∩B)×A A→ E ×A is an embedding.
The image Z1 of E ×E (D ∩B)×A A under π13 is of the form

Z1 =

 0 ⊂ V2

α

��
⊂ C3

α

��

×
 0 ⊂ V1

α

��
⊂ C3

α

��

 .
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Notice that by 3.10.3 OZ1(0, B, 0) ' V∗1 ⊗ (Λ2V2)2, so the Fourier-Mukai kernel
of R12

111F
111
21 is isomorphic to

OZ1 ⊗ V∗1 ⊗ (Λ2V2)2[−1].

The single crossings are the autoequivalences Ti of section 3.10 that induces the
Khovanov-Thomas braid group action on Db(C) of Theorem 3.10.4.

Remark 4.4.8. The simple crossing functors T 111
1̄1̄1

T 111
11̄1̄

are

T 111
1̄1̄1 = Cone

(
F 111

21 R21
111[−1]

tr−→ Id111

)
,

T 111
11̄1̄ = Cone

(
F 111

12 R12
111[−1]

tr−→ Id111

)
,

where tr is the counit of the adjunction.

Proposition 4.4.9. The Furier-Mukai kernel associated to T 111
1̄1̄1

is the sheaf

O(C×CC)∪(D×ED)(D, 0).

The Furier-Mukai kernel associated to T 111
1̄1̄1

is the sheaf O(C×CC)∪(B×AB)(B, 0).

Proof. Proposition 4.4 in [32].

4.5 A skein triangulated action of GBr3: main theorem

In this section, we prove the main theorem of the thesis verify assumptions for a
skein triangulated action of GBr3 on Db(T ∗ Fl3(̄i)).

Lemma 4.5.1. The following isomomorphism holds

F 111
21 F 21

3 ' F 111
12 F 12

3

'
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Proof. The Fourier-Mukai kernel representing F 111
21 F 21

3 is isomorphic to

π13∗(π
∗
12(Opt×ptA)⊗ π∗23(OA×AB))

' π13∗(Opt×ptP2∨×C ⊗Opt×A×AB)

' π13∗(Opt×ptP2∨×P2Fl3
) ' Opt×Fl3

(4.50)

Similarly the Fourier-Mukai kernel associated to F 111
12 F 12

3 is isomorphic to

Opt×Fl3 .

Remark 4.5.2. From Remark 4.4.6, Lemma 4.5.1 can be also proved showing that
functors F 111

21 F 21
3 and F 111

12 F 12
3 both map the 1-dimensional vector space to OFl3.

Lemma 4.5.3. The mapping cone of the morphism

R12
111F

111
21 R21

111F
111
12

tr[−2]−−−−→ Id[−2]

is isomorphic to
Cone(tr[−2]) ' F 12

3 R3
12. (4.51)

−→−→ [−2]

Proof. The Fourier-Mukai kernel representing F 12
3 R3

12 is isomorphic to

π13∗(π
∗
12(OA×ptpt)⊗ π∗23(Opt×ptA(0,P2))[−1] '

' π∗12(OP2×pt×A)⊗OA×pt×P2(0, 0,P2))[−1] '

π13∗(OP2×pt×P2(0, 0,P2)[−1] ' OP2×P2(0,P2)[−1].

The Fourier-Mukai kernel representing R12
111F

111
21 R21

111F
111
12 is isomorphic, by the

proof of Lemma 4.4.7, to

π15∗(OA×A(B∩D)×EE×C×A(0, D, 0, 0, 0)⊗OA×C×E×E(B∩D)×AA(0, 0, 0, B, 0))[−2].

The subvarieties A×A (B∩D)×EE×C×A and A×C×E×E (B∩D)×AA are
both of codimension 10 in A×C ×E ×C ×A. Their intersection A×A (B ∩D)×E
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E × (B ∩D)×A A is of codimesion 20 in A×C ×E ×C ×A therefore by Corollary
3.9.4 the Fourier-Mukai kernel representing R12

111F
111
21 R21

111F
111
12 is isomorphic to

π15∗(OA×A(B∩D)×EE×E(B∩D)×AA(0, D, 0, B, 0))[−2]

whose support is isomorphic to (B ∩D)×E (B ∩D).
The variety (B ∩ D) ×E (B ∩ D) has two irreducible components, one of them

X1 is isomorphic to Z1 of Proposition 4.4.7, and the other one X2 is the blow up of
P2 × P2 along the diagonal.

The intersection X1 ∩ X2 of the two components is isomorphic to Fl3 which is
the exceptional divisor inside X2.

Thus, by 4.42 we have the following short exact sequence

0→ OX2(−(X1 ∩X2))→ OX1∪X2 → OX1 → 0

hence we have the isomorphism

OX1∪X2 ' Cone(OX1 [1]→ OX2(−(X1 ∩X1)))

and therefore in Db(A×C×E×C×A) OA×A(B∩D)×EE×E(B∩D)×AA(0, D, 0, B, 0)

is isomorphic to

Cone(OY1 [1]→ OY2(−(Y1 ∩ Y1)))⊗O(0, D, 0, B, 0).

When we project via π∗ to A × A the first component X1, it surjects onto the
diagonal, while the second component X2 surjects onto P2×P2. Since both maps are
blow-downs, the projection is an isomorphism except over the diagonal in P2 × P2

where it is a P1-bundle.
Thus, taking the derived pushforward π15∗ of Cone(OY1 [1]→ OY2(−(Y1∩Y1)))⊗

O(0, D, 0, B, 0) and applying Corollary 4.5 of [3] to the map

R12
3 F

3
12 → R12

111F
111
21 R21

111F
111
12

we have that
F 12

3 R3
12 → R12

111F
111
21 R21

111F
111
12 → IdA[−2]

is a distinguished triangle.

The following Lemma holds in a more general context.

Lemma 4.5.4. Let X be smooth projective variety over k, π : X → Spec k be the
structure morphism, and ι : X ↪→ T ∗ (X) be the embedding of the zero section:

X T ∗(X)

pt.

ι

π (4.52)
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Let P ∗ and P∗ be the standard Fourier-Mukai kernels of the exact functors

π∗ : D(pt)→ D(X),

π∗ : D(X)→ D(pt),

and let I∗ and I ! be the standard Fourier-Mukai kernels of the exact functors

ι∗ : D(X)→ D(T ∗X),

ι! : D(T ∗X)→ D(X).

See [7], Section 2.6.2 for the details on the standard kernels.
Then we have an isomorphism in D(pt):

P∗I
!I∗P

∗ ' ∆∗H
∗(X, k).

Proof. By Lemma 2.19 of [7], we have

P∗I
!I∗P

∗ ' (π × π)∗I
!I∗. (4.53)

By Proposition 7.8 of [7], the object I !I∗ ∈ D(X ×X) has the cohomology sheaves:

H i(I !I∗) ' ∆∗ ∧i NX/T ∗X ,

in degrees 0 ≤ i ≤ n and 0 elsewhere.
Moreover, by Theorem 1.8(6) of [9], the object I !I∗ is formal, and hence

I !I∗ '
n⊕
i=0

∆∗ ∧i NX/T ∗X .

Since NX/T ∗X ' Ω1
X/k, we conclude that

I !I∗ ' ∆∗

(
n⊕
i=0

Ωi
X/k

)
.

Thus we have

P∗I
!I∗P

∗ ' (π × π)∗I
!I∗ ' (π × π)∗∆∗

(
n⊕
i=0

Ωi
X/k

)
' ∆∗π∗

(
n⊕
i=0

Ωi
X/k

)
.

Since π∗ is isomorphic to the derived global section functor R Γ(−), the assertion of
the lemma follows by the degeneration of the Hodge-de-Rham spectral sequence.

The main theorem of the thesis is the following:

Theorem 4.5.5. Assume that Conjecture 4.2.1 holds; then the assignment of:

1. the partition (111) to the category Db(T* Fl3);
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2. the partition (12) to the category Db(T* P2);

3. the partition (21) to the category Db(T* P2∨);

4. the partition (3) to the category Db(pt);

and the assignment of:

1. the fork f111
21 to the functor F 111

21 ;

2. the fork f111
12 to the functor F 111

12 ;

3. the fork f21
3 to the functor F 21

3 ;

4. the fork f12
3 to the functor F 12

3 ;

define a skein triangulated representation of GBr3 on T* Fl3(̄i).

Proof. By Examples 3.5.6 and 3.7.5, F 111
21 and F 111

12 are split spherical functors with
cotwist [−2], while F 21

3 and F 12
3 are split P2 functors with H = [−2].

As a consequence of Lemma 4.5.1, there exists a multifork isomorphism.
By Lemma 4.5.4, there exists an isomorphism

R3
12R

12
111F

111
12 F 12

3 ' Id3⊕[−2]⊕ [−2]⊕ [−4]⊕ [−4]⊕ [−6] ' R3
21R

21
111F

111
21 F 21

3

and moreover, from Theorem 7.2 of [7] , it identifies together with the P2 functor
structure of F 21

3 and F 12
3 the maps 4.8, 4.9 with

Id3⊕[−2]⊕ [−4]→ Id3⊕[−2]⊕ [−2]⊕ [−4]⊕ [−4]⊕ [−6].

Finally, by Lemma 4.5.3, the following two diagrams can be completed to two
distinguished triangles

F 12
3 R3

12 → R12
111F

111
21 R21

111F
111
12 → Id12[−2],

F 21
3 R3

21 → R21
111F

111
12 R12

111F
111
21 → Id21[−2].

Thus, by Theorem 4.2.3 such assignment define a categorical action of GBr3 on
T* Fl3(i).

Remark 4.5.6. From Remark 4.2.2, a categorical action of GBr2 needs only to
satisfy relation 4.2.

Therefore, it is a case already covered by Theorem 3.10.4 of Section 3.10.
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4.6 Further developments

As a continuation of the results of the previous section, the long term research plan
is to generalise our theory to the GBrn case.

In this section we present some computations that we expect to be helpful to
understand how to generalise Theorem 4.5.5 in arbitrary dimensions.

In particular, for computing higher dimensional multiple crossings we use the
invariance of the generalised braids under isotopies and an induction on the con-
struction of figure 4.14.

...

...

n− 1

◦ '

...

...

nn

...

...

nn

...

...

...

n− 2

n− 2

Figure 4.14: Higher dimensional induction

The idea behind this computation is a conjectural program which allows us to
inductively compute the multiple crossing functors in higher dimensions and obtain
equivalences of type (pq)− (qp).

To motivate the general argument, in this thesis we provide the case n = 3.
Therefore, we construct the functor T 12

21 as the difference

T 12
21 ◦R12

111F
111
12 ' R21

111T
111
11̄1̄ T

111
1̄1̄1F

111
12 . (4.54)

We first compute the loop functor R21
111F

111
21

R21
111 is represented by the Fourier-Mukai kernel OD×DE(D, 0)[−1].

F 21
111 is represented by the Fourier-Mukai kernel OE×ED.

Lemma 4.6.1. The Fourier-Mukai kernel associated to R21
111F

111
21 is isomorphic to

π13∗(E) where the cohomologies of E are

Hr(E) =


OE×ED×EE(0, D, 0), if r = 0;

OE×ED×EE , if r = −1;

0, otherwise.
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and where π13 is the natural projection π13 : A× C ×A→ A×A.

Proof. Let π12, π23, π13 be the natural projections

A× C ×A

A× C A×A C ×A

π12 π13
π23

. (4.55)

By the standard technique of Proposition 3.2.3, the Fourier-Mukai kernel of the
composition R21

111F
111
21 is isomorphic to

π13∗(π
∗
12OE×ED ⊗ π

∗
23OD×ED(D, 0)[−1]) '

' π13∗(OE×ED×E ⊗OE×D×EE(0, D, 0))[−1].

We observe that the the supports E ×E D × E and E ×D ×E E of the sheaves
involved in the derived tensor product are both of codimesion 5 inside E × C × E.

The intersection E ×E D×E E = (E ×E D×A) ∩ (E ×D×E D) is smooth and
codimension 9 inside E × C × E, therefore with a rank 1 excess bundle E .

The excess line bundle E is equal to O(0,−D, 0); this follows from the adjuction
formula and by fact that E is of rank 1. By Proposition 3.9.2 the cohomologies of
OE×ED×E ⊗OE×D×EE(0, D, 0) are therefore

Hr(OE×ED×E ⊗OE×D×EE(0, D, 0)) =


OE×ED×EE(0, D, 0), if r = 0,

OE×ED×EE , if r = −1;

0, otherwise.

The following Lemma holds for general varieties and vector bundles.

Lemma 4.6.2. Let Y be a variety and let E → Y be a vector bundle. If X = P(E) is
the projectivisation of E and is the projection π : X = P(E)→ Y then π∗(Ωk

X/Y ) =

OY [k] .

Proof. Consider the short exact sequence

0→ ΩX/Y → π∗(E∨)(−1)→ OX → 0 (4.56)

which is the dual of the Euler sequence.
If we apply the functor π∗ to (4.56) we obtain the short exact sequence

0→ π∗(ΩX/Y )→ 0→ OY → 0 (4.57)

indeed, since X is a projective bundle, π∗OX = OY and π∗F(−1) = 0.
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Thus, from the long exact sequence associated to (4.57) we get

π∗(Ω
k
X/Y ) ' OY [k].

Lemma 4.6.3. π13∗(OE×ED×E ⊗OE×D×EE(0, D, 0))[−1] is formal in E × E.

Proof. From the adjunction (4.43) we have the distinguished triangle

id→ R21
111F

111
21 → id[−2]

which at level of Fourier-Mukai kernels correspond to the distinguished triangle

∆∗OE → X → ∆∗OE [−2] (4.58)

where ∆ : E → E × E is diagonal embedding and X is the Fourier-Mukai kernel of
R21

111F
111
21 . he abelian group of equivalence classes of distinguished triangles of the

form
OE×EE → Y → OE×EE [−2]

with Y ∈ Db(E × E) is isomorphic to the group

Ext1(OE×EE [−2],OE×EE) ' Ext3(OE×EE ,OE×EE).

Therefore, in order to prove that π13∗(OE×ED×E⊗OE×D×EE(0, D, 0))[−1] is for-
mal in E×E, it is sufficient to prove that the distinguished triangle (4.58) correspond
to the zero class in Ext3(OE×EE ,OE×EE).

The functor F 111
21 R21

111F
111
21 is a retract, so it correspond to the zero class of

Ext1(F 111
21 [−2], F 111

21 )

Let π12, π23, π13 be the natural projections

E × E × C

E × E E × C E × C

π12 π13
π23

. (4.59)

The Fourier-Mukai kernel of F 111
21 R21

111F
111
21 is then by Proposition 3.2.3 by base

change around the commutative square

E ×D E × E × C

D E × C

π2

(id,π,i)

π23

(π,i)

(4.60)



4.6. Further developments 79

isomorphic to

π13∗(π
∗
12X ⊗ π∗23(π, i)∗OD) ' π13∗(π

∗
12X ⊗ π∗23(id, π, i)∗OE×D)

by projection formula we have the isomophism

π13∗(π
∗
12X ⊗ π∗23(id, π, i)∗OE×D) ' π13(id, π, i)∗(id, π, i)∗π

∗
12X.

Moreover, since
π13∗(id, π, i)∗ = (π13 ◦ (id, π, i))∗ = (π, i)∗

and
(id, π, i)∗π∗12 = (π12 ◦ (id, π, i))∗ = (id, π)∗

we have the isomorphism

π13(id, π, i)∗(id, π, i)∗π
∗
12X ' (π, i)∗(id, π)∗X.

Consider now the following commutative diagram

Ext3A×B((π, id)∗OD, (π, id)∗OD)

Ext3A×C((π, i)∗OD, (π, i)∗OD) Ext3C(i∗OD, i∗OD)

i∗◦π2∗g

h

(4.61)

The zero element 0A×C ∈ Ext3A×C((π, i)∗OD, (π, i)∗OD) is sent by h to the zero
element of Ext3C(i∗OD, i∗OD); showing that the homomorphism (π, i)∗ is injective
proves therefore that g is injective and that g−1(0A×C) = 0A×B.

Indeed, since π∗2i∗π2∗(π, id)∗ = π∗2i
∗i∗, we have the isomorphism,

π∗2i
∗i∗π2∗(π, id)∗OD ' π∗2i∗i∗OD

but i : D ↪→ C is a divisorial inclusion, hence i∗i∗OD = OD ⊕OD(D)[1] and

π∗2i
∗i∗OD ' π∗2(OD ⊕OD(D)[1])

which correspond to the zero element as it splits and therefore i∗π2∗ is injective.
Since (π, i)∗OE×D ' OE×EE , because D

π−→ E is P1-bundle, and (id, π)∗ is fully
faithful, we have that under the isomorphism

f : Ext3(∆∗OE ,∆∗OE)
'−→ Ext3((π, id)∗OD, (π, id)∗OD)

the Fourier-Mukai the element 0A×C ∈ Ext3A×C((π, i)∗OD, (π, i)∗OD) that cor-
respond to the Fourier-Mukai kernel representing F 111

21 R21
111F

111
21 has preimage under

f ◦ g the zero element of Ext3(∆∗OE ,∆∗OE) and therefore X is formal.
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Proposition 4.6.4. The Fourier-Mukai kernel associated to R21
111F

111
21 is OE×EE ⊕

OE×EE [−2]

Proof. Consider the projections π12, π23, π13 as in (4.66).
By Lemma 4.6.1 the non-zero cohomologies of OE×ED×E ⊗ OE×D×EE(0, D, 0)

are OE×ED×EE(0, D, 0) in degree -1 and OE×ED×EE in degree zero.
We have π13∗OE×ED×EE ' OE×EE since E×ED×EE

π13−−→ E×EE is a P1 bundle,
while by Lemma 4.6 we have that π13∗OE×ED×EE(0, D, 0)[−1] ' OE×EE [−2].

Finally by Lemma 4.6.3 we conclude that F1R1 ' OE×EE ⊕OE×EE [−2].

By Proposition 4.6.4 we know that the Fourier Mukai kernel associated to the
functor R12

111F
111
12 is OE×EE ⊕OE×EE [−2]. While R21

111T
111
11̄1̄

T 111
1̄1̄1

F 111
12 is by definition

of T 111
11̄1̄

and T 111
1̄1̄1

isomorphic to

R21
111T

111
11̄1̄ T

111
1̄1̄1F

111
12 ' R21

111Cone(F
111
12 R12

111
tr2−−→ id)Cone(F 111

21 R21
111

tr1−−→ id)F 111
12

(4.62)
where T 111

11̄1̄
= Cone(F 111

12 R12
111

tr−→ Id) and tr is the counit of the adjunction
F 111

12 a R12
111.

Therefore the functor R21
111T

111
11̄1̄

T 111
1̄1̄1

F 111
12 is the convolution of the diagram

R12
111F

111
21 R21

111IdF 111
21

R12
111F

111
21 R21

111F
111
12 R12

111F
111
21

⊕
R12

111F
111
21

R12
111IdF 111

12 R12
111F

111
21

tr1tr2

tr1 tr2

(4.63)
Notice that by Lemma 4.6.3 we have the following the isomorphisms

R12
111F

111
21 R21

111F
111
21 ' R12

111F
111
21 ⊕R12

111F
111
21 [−2]

and similarly for R12
111F

111
12 R12

111F
111
21

R12
111F

111
12 R12

111F
111
21 ' R12

111F
111
21 ⊕R12

111F
111
21 [−2].

Thus, the convolution of diagram (4.63) is isomorphic to the convolution of dia-
gram

R12
111F

111
21 ⊕R12

111F
111
21 [−2]

R12
111F

111
21 R21

111F
111
12 R12

111F
111
21

⊕
R12

111F
111
21

R12
111F

111
21 ⊕R12

111F
111
21 [−2]

tr1tr2

tr1 tr2

(4.64)
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Thus, to compute the double crossing functor T 12
21 we have the following recipe:

1. Compute the Fourier-Mukai transform associated to

R12
111F

111
21 R21

111F
111
12 R12

111F
111
21 .

2. Determine the Fourier-Mukai kernel of R21
111T2T

111
1̄1̄1

F 111
12 as a convolution of

diagram (4.64).

3. Define the double crossing functor T 12
21 using the isomorphism (4.54).

STEP 1: the Fourier Mukai kernel of R12
111F

111
21 R21

111F
111
12 R12

111F
111
21

The first step of the recipe for the computation of the double crossing T 12
21 is to

compute the Fourier-Mukai transform associated to R12
111F

111
21 R21

111F
111
12 R12

111F
111
21 .

F 21
111 is represented by the Fourier-Mukai kernel OE×ED.

R111
12 is represented by the Fourier-Mukai kernel OB×AA(B, 0)[−1].

F 12
111 is represented by the Fourier-Mukai kernel OA×AB.

R111
21 is represented by the Fourier-Mukai kernel OD×DE(D, 0)[−1].

F 21
111 is represented by the Fourier-Mukai kernel OE×ED.

R111
12 is represented by the Fourier-Mukai kernel OB×AA(B, 0)[−1].

Figure 4.15: The functor R12
111F

111
21 R21

111F
111
12 R12

111F
111
21

We begin by spitting the big composition in smaller ones in order make it more
accessible.

Lemma 4.6.5. The Fourier-Mukai kernel associated to R21
111F

111
21 and R12

111F
111
21 are

respectively OD×ED(D, 0)[−1] and OB×AB(B, 0)[−1].

R111
21 is represented by the Fourier-Mukai kernel OD×DE(D, 0)[−1].

F 21
111 is represented by the Fourier-Mukai kernel OE×ED.
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Proof. Let π12, π23, π13 be the natural projections

C × E × C

C × E E × E E × C

π12 π13
π23

. (4.65)

The Fourier-Mukai kernel associated to R21
111F

111
21 is by Proposition 3.2.3

π13∗(π
∗
12OD×EE(D, 0)[−1]⊗ π∗23OE×ED) = π13∗(OD×EE×C(D, 0)⊗OC×E×ED)[−1]

Let us compare the codimensions of the supports of the sheaves involved in the
derived tensor product: it easy to see that D ×E E × C and C × E ×E D are both
of codimension 5 inside C × E × C.

Their intersection (C×E×ED)∩ (D×E E×C) = D×E E×ED is smooth and
of codimension 10, therefore their intersection is tranverse and we can use Lemma
3.9.4 and obtain the isomorphism

OD×EE×C(D, 0)⊗OC×E×ED ' OD×EE×ED(D, 0, 0).

Notice that the morphism π13 : D×E E×ED → C×C is an embedding. Indeed
is is easy to see that the space D ×E E ×E D 0 ⊂ V1 ⊂ V2

α

��
⊂ C3

α

��

×
 0 ⊂ V2

α

��
⊂ C3

α

��

×
 0 ⊂ V ′1 ⊂ V2

α

��
⊂ C3

α

��


is naturally embedded into C × C

C × C =

 0 ⊂ V ′1 ⊂

α

		
V ′2

α

��
⊂ C3

α

��

×
 0 ⊂ V1 ⊂

β

		
V2

β

��
⊂ C3

β

��


and the image π13(D ×E E ×D) = D ×E D.

In conclusion, the Fourier-Mukai kernel associated to R21
111F

111
21 is isomorphic to

π13∗(OD×EE×ED(D, 0))[−1] ' OD×ED(D, 0)[−1].

The same argument shows that the kernel of R12
111F

111
12 is isomorphic to

OB×AB(B, 0)[−1].
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Lemma 4.6.6. The Fourier-Mukai kernel associated to F 111
21 R21

111F
111
12 R12

111 is iso-
morphic to OZ3(D, 0)[−2] where

Z3 =

 0 ⊂ V1 ⊂

α

		
V ′2

α

��
⊂ C3

α

��

×
 0 ⊂ V ′1 ⊂

α

		
V2

α

��
⊂ C3

α

��

 .

Proof. Let π12, π23, π13 be the natural projections

C × C × C

C × C C × C C × C

π12 π13
π23

. (4.66)

Denote by F1R1F2R2 the Fourier-Mukai kernel of F 111
21 R21

111F
111
21 R12

111.
By Proposition 3.2.3 and by the previous Lemma 4.6.5 F1R1F2R2 is isomorphic

in Db(C × C) to

F1R1F2R2 ' π13∗(π
∗
12OB×AB(B, 0)[−1]⊗ π∗23OD×ED(D, 0)[−1]) =

= π13∗(OB×AB×C(B, 0, 0)⊗OC×D×ED(0, D, 0))[−2]

The supports of OB×AB×C(B, 0, 0) and OC×D×ED(0, D, 0) are both of codimen-
sion 5 inside C × C × C, their intersection D ×E (B ∩D)×A B = (B ×A B × C) ∩
(C ×D ×E D) is smooth and of codimension 10.

OB×AB×C(B, 0, 0)⊗OC×D×ED(0, D, 0)) ' OD×E(B∩D)×AB(B,D, 0)

The projection π13 : D ×E (B ∩D)×A B → C × C is an embedding.
Indeed, B ×A (B ∩D)×E D is isomorphic to

 0 ⊂ V1 ⊂

α

		
V ′2 ⊂ C3

α

��

×
 0 ⊂ V1 ⊂ V2

α

��
⊂ C3

α

^^

×
 0 ⊂ V ′1 ⊂ V2 ⊂

α

��
C3

α

		


and therefore id a P1 × P1-bundle over the D ∩B copy in the central component.

Its image under π13 is the subvariety Z3 of C × C

Z3 =

 0 ⊂ V1 ⊂

α

		
V ′2

α

��
⊂ C3

α

��

×
 0 ⊂ V ′1 ⊂

α

		
V2

α

��
⊂ C3

α

��
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which is the same P1 × P1 over the B ∩ D viewed as a line bundle over the flag
{0 ⊂ V1 ⊂ V2 ⊂ C3}

B ∩D =

 0 ⊂ V1 ⊂ V2

α

��
⊂ C3

α

^^

 .

Thus, in conclusion we have that the Fourier-Mukai kernel of F 111
21 R21

111F
111
21 R12

111 is

π13∗(OD×E(D∩B)×AB(B,D, 0))[−2] = OZ3(D, 0)[−2].

Before merging all the Fourier-Mukai kernel together, we prove the following
technical Lemma which holds in a more general context.

Lemma 4.6.7. LetW1,W2,W3 be smooth subvarieties of the variety Z. and consider
the following commutative diagram of inclusion maps

W1 ∩W2 W1 ∩W2 ∩W3

W1

W2 W3

Z

p
h

q
r

s

t

i

j

w

. (4.67)

The relative canonical bundle ωW1∩W2∩W3/Z is isomorphic to the sheaf

ωW1∩W2∩W3/Z ' r∗h!OZ ⊗ s∗w!OZ . (4.68)

Proof. By base change, the relative canonical bundle ωW1∩W2/Z is isomorphic to

ωW1∩W2/Z ' q
∗i!OZ ⊗ q!OW 1

' q∗i!OZ ⊗ q!i∗OZ
' q∗i!OZ ⊗ p∗j!OZ .

(4.69)

Similarly we can iterate this argument for the relative canonical bundle on W1 ∩
W2 ∩W3/Z
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ωW1∩W2∩W3/Z ' r
∗h!OZ ⊗ h!OW1∩W2

' r∗h!OZ ⊗ r!h∗OZ
' r∗h!OZ ⊗ s∗w!OZ .

(4.70)

Proposition 4.6.8. The Fourier-Mukai kernel representing

R12
111F

111
21 R21

111F
111
21 R12

111F
111
21

is isomorphic to π15∗(F), where E × C × C × C ×A π15−−→ E ×A and

F ∈ Db(E × C × C × C ×A)

is the derived tensor product of the Fourier-Mukai kernels involved in the composition
with cohomologies

Hr(F) =


OY1∪Y2(0, (1,−2), (−2, 1), (1,−2), 0), if r = 0,

OY1(0, (3,−3), (−3, 0), (0, 0), 0), if r = −1;

0, otherwise.

The subvarieties Y1 and Y2 are the total spaces respectively of the zero section and
the complement of the zero section of E ×E (B ∩D)×A (B ∩D)×E (B ∩D)×A A.

Moreover, the cohomologies of F split under π15∗.

Proof. Let π12, π234, π45 and π15 the natural projections

E × C × C × C ×A E ×A

E × C C × C × C C ×A

π12 π234
π45

π15

.

By Proposition 3.2.3 and the previous Lemmas 4.6.5 and 4.6.6 the Fourier-Mukai
kernel R2F1R1F2R2F1 associated to R12

111F
111
21 R21

111F
111
21 R12

111F
111
21 is isomorphic to

π15∗(π
∗
12OE×ED ⊗ π

∗
234OB×A(D∩B)×ED(B,D, 0))[−2]⊗ π∗45OB×AA(B, 0)[−1])

Let’s deal first with the transverse part of the intersection, since the derived
tensor product is commutative.

As usual we want to use Corollary 3.9.4 in order to obtain the isomorphism

π∗12OE×ED ⊗ π
∗
45OB×AA(B, 0)[−1] '
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' OE×ED×C×C×A ⊗OE×C×C×B×AA(0, 0, 0, B, 0)[−1]

The subvariety E×ED×C×B×AA = (E×ED×C×C×A)∩(E×C×C×B×AA)

is smooth and of codimension 10 in E × C × C × C ×A, while the codimensions of
E ×E D×C ×C ×A and of E ×C ×C ×B ×A A of E ×E D×C ×C ×A are both
of codimension 5.

The Fourier-Mukai kernel R2F1R1F2R2F1 is isomorphic, since the intersection is
transverse, to

π15∗(OE×ED×C×B×AA(0, 0, 0, B, 0)[−1]⊗OE×B×A(D∩B)×ED×A(0, B,D, 0, 0))[−2])

The subvariety E×E D×C ×B×AA is of dimension 16 so is codimension 10 in
E ×C ×C ×C ×A, the subvariety E ×B ×A (D ∩B)×E D×A is of dimension 14
so is codimension 12 in E×C×C×C×A. Their intersection (E×ED×C×B×A
A)∩ (E ×B ×A (D ∩B)×E D×A) = E ×E (B ∩D)×A (B ∩D)×E (B ∩D)×A A
is a reducible variety; indeed

E ×E (B ∩D)×A (B ∩D)×E (B ∩D)×A A = Y1 ∪ Y2

where Y1 is the zero section {α = 0}

Y1 =
{

0 ⊂ V ′2 ⊂ C3
}
×
{

0 ⊂ V1 ⊂ V ′2 ⊂ C3
}
×
{

0 ⊂ V1 ⊂ V2 ⊂ C3
}
×
{

0 ⊂ V ′1 ⊂ V2 ⊂ C3
}
×
{

0 ⊂ V ′1 ⊂ C3
}

which is a P1×P1-bundle over Fl3 and of codimension 21 in E×C×C×C×C×A,
so with one dimensional excess bundle E1;

Y2 is the component outside of the zero section

which is isomorphic to B ∩ D, so smooth and of codimension 22: therefore the
intersection is transverse on this component.

The intersection between the two components of E ×E (B ∩D)×A (B ∩D)×E
(B ∩D)×A A is

Y1 ∩ Y2 =
{

0 ⊂ V2 ⊂ C3
}
×
{

0 ⊂ V1 ⊂ V2 ⊂ C3
}
×
{

0 ⊂ V1 ⊂ V2 ⊂ C3
}
×
{

0 ⊂ V1 ⊂ V2 ⊂ C3
}
×
{

0 ⊂ V1 ⊂ C3
}

so isomorphic to Fl3, hence a Cartier divisor in D ∩B ' Y2.
Thus, by 4.42 we have the following short exact sequence

0→ OY2(−(Y1 ∩ Y1))→ OY1∪Y2 → OY1 → 0

hence we have the isomorphism

OY1∪Y2 ' Cone(OY1 [1]→ OY2(−(Y1 ∩ Y1)))
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therefore inDb(E×C×C×C×A) OE×E(B∩D)×A(B∩D)×E(B∩D)×AA(0, B,D,B, 0)

is isomorphic to

Cone(OY1 [1]→ OY2(−(Y1 ∩ Y1)))⊗O(0, B,D,B, 0).

For computing the excess conormal bundle

E1 = (NE×ED×C×B×AA ⊕NE×B×A(D∩B)×ED×A)/NY1
we will use the fact that it is a line bundle, hence det(E1) = E1 and the short exact
sequence

0→ NY1 → NE×ED×C×B×AA ⊕NE×B×A(D∩B)×ED×A → E1 → 0 (4.71)

thus,

E1 = det(NE×ED×C×B×AA)⊗ det(NE×B×A(D∩B)×ED×A)⊗ det(NY1)−1

So the excess bundle will be
E1 = O(0,−D, 0,−B, 0)⊗O(0,−B,−B−D,−D, 0)⊗O(0, ωFl3⊗ω

−1
P2 , ωFl3 , ωFl3⊗

ω−1
P2∨ , 0). Recall that the tautological bundles can be written as O(−1, 0) = V1 and
O(0,−1) = Λ2V2.

The canonical bundles of Fl3,P2,P2∨ are respectively

ωFl3 = O(−3,−3)⊗O(1, 1) = O(−2,−2), ωP2 = O(−3, 0), ωP2∨ = O(0,−3)

The normal bundles of B and D inside C could be written respectively as

O(B) = (Λ2V∗2 )−2 ⊗ V∗1 = O(1,−2), O(D) = Λ2V∗2 ⊗ (V∗1 )−2 = O(−2, 1)

and we have that ωFl3⊗ω
−1
P2 = O(1,−2) = O(B), ωFl3⊗ω

−1
P2∨ = O(−2, 1) = O(D)

Then the excess conormal bundle is E1 = O(0, (2,−1), (−1,−1), (−1, 2), 0)

and if L = O(0, B,D,B, 0) = O(0, (1,−2), (−2, 1), (1,−2), 0) then

E1 ⊗ L = O(0, (3,−3), (−3, 0), (0, 0), 0)

So the cohomologies of the derived tensor product are

Hr(OE×ED×C×B×AA(0, 0, 0, B, 0)⊗OE×B×A(D∩B)×ED×A(0, B,D, 0, 0))) =

=


OY1∪Y2(0, (1,−2), (−2, 1), (1,−2), 0), if r = 0,

OY1(0, (3,−3), (−3, 0), (0, 0), 0), if r = −1;

0, otherwise.

Consider the map
π13 : Y1 −→ E ×A

As Y1 lies inside the zero section of E × C × C × C × A, its image under π13 is
P2 × P2∨. Moreover:



88 Chapter 4. Categorical action of generalised braids

1. If (V ′1 , V
′

2) /∈ Fl3 then V1 is forced to be different from V ′1 , thus V ′2 is determined:
so Y1 is a P1 bundle over the open P2 × P2∨ \ Fl3.

2. If (V ′1 , V
′

2) ∈ Fl3, then

{
V1 6= V ′1 implies V2 = V ′2 ;

V2 6= V ′2 implies V1 = V ′1 ;

This implies that over Fl3 ⊂ P2 × P2∨, Y1 is a P1 ∪ P1-bundle.

The morphism π13 is flat on Y1.
Since flatness is a local open condition, on the open P2×P2∨ \Fl3 is flat because

it is a P1-bundle.
For the closed subvariety (V ′1 , V

′
2) ∈ Fl3 , by definition, the morphism π13 is flat

if and only if OY1,p is a flat OE×A,π13(p)-module.
Choose x, y and α, β to be local coordinates respectively for P2 and for P2∨, so

that
OE×A,π13(p) = C[α, β, x, y](α,β,x,y)

Denote moreover δ, γ and w, z local coordinates for V1 and V2 respectively. In P2∨×P2

we have the following relations that we want to be satisfied

V1 ⊂ V2, V ′1 ⊂ V2, V1 ⊂ V ′2 .

Let’s take the local chart for V ′2 = (1 : α : β), the argument for the other two
charts will be completely specular.

Moreover, since all the linear spaces V1, V
′

1 , V2, V
′

2 lie in the same ambient space
C3, the incidence relations are independent by the action of GL(C, 3); we can then
assume that the point (α, β) correspond to the origin and

V ′2 = (1 : 0 : 0)⊥

If V1 6= V ′1 then V2 = V ′2 , so the local coordinates of V1 and V ′1 can be :

• V ′1 = (0 : 1 : β) , V1 = (0 : 1 : δ) , with β forced to be different from δ; thus,
the local ring is OY1,p ' C[α, β, γ, δ, x, y, w, z](α,δ,x,y)

By symmetry, this case cover also the chart V ′1 = (0 : α : 1) , V1 = (0 : γ : 1)

• V ′1 = (0 : 1 : β) , V1 = (0 : γ : 1) with β and γ are both forced to be different
from 1. Then, the local ring is OY1,p ' C[α, β, γ, δ, x, y, w, z](γ,β,x,y)

By symmetry, this case cover also the chart V ′1 = (0 : α : 1) , V1 = (0 : 1 : δ)

If V1 6= V ′2 then V1 = V ′1 : if we choose as local coordinates of V1 = V ′1 = (0 : 1 : β),
then V2 is forced to have the coordinates V2 = (0 : 1 : −1

β )⊥ with β 6= 0 ( V2 = (0 :

1 : 0)⊥ otherwise) or V2 = (0 : −α : 1)⊥.
Therefore, the local ring OY1,p ' C[α, β, γ, δ, x, y, w, z](−1

β
,β,x,y).

The argument is symmetric in the case we take coordinates V1 = V ′1 = (0 : α : 1).
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Finally, if V ′2 = V2 and V1 = V ′1 then the two charts for V ′1 = V ′1 are (0 : 1 : β) and
(0 : α : 1).
So, OY1,p ' C[α, β, γ, δ, x, y, w, z](β,x,y) and OY1,p ' C[α, β, γ, δ, x, y, w, z](α,x,y)

Since π13 is flat, using base change around the commutative square

Y1,p Y1

p P2∨ × P2∨

v

u

π13

w

(4.72)

The map π13 is flat and the map w is proper, so the commutative square (4.72)
is Tor-independent.
By flat base change theorem w∗ ◦ π13∗ ' v∗ ◦ u∗.
So w∗(π13∗OY1) ' v∗(u∗OY1).

Moreover, we have that
u∗OY1 = OY1,p ,

v∗OY1,p = Γ(Y1,p,OY1,p) = C.

Thus, w∗π13∗OY1 = C, therefore the fibers of π13∗OY1 are one dimensional, so
π13∗OD ∈ Pic(P2∨ × P2).

In particular the the higher dimensional cohomologies of the derived pushforward
π13∗OY1 vanish and

π13∗OY1 ' π13∗OY1 .

Since for every point q of E×A, the fiber π−1
13 (q) is compact, then the only regular

functions of π13∗OY1 on an open set U containing q are the constant. Therefore we
have the local isomorphisms (π13∗OY1)q ' C ' (OP2∨×P2)q induced by π#

13.
Thus, we deduce that π13∗OY1 = OP2∨×P2 .
Since π12 : Y2 → E ×A is an embedding, we conclude that

π13∗(OY1∪Y2) ' π13∗Cone(OY1 [1]→ OY2(−(Y1 ∩ Y2)))

' Cone(π13∗OY1 [1]→ π13∗OY2(−(Y1 ∩ Y2)))

' Cone(OP2∨×P2 [1]→ OZ4(−(Fl3)))

(4.73)

where Z4 is the subvariety of E ×A

Z4 =

 0 ⊂ V2

α

��
⊂ C3

α

��

×
 0 ⊂ V1

α

��
⊂ C3

α

��

 .
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Since Fl3 is a Cartier divisor inside Z1 we have the isomorphism

OZ1∪P2×P2∨ ' Cone(OP2∨×P2 [−1]→ OZ1(−(Fl3))),

we conclude that
π13∗(OY1∪Y2) = OZ4∪P2×P2∨

Denote L the line bundle O(0, (1,−2), (−2, 1), (1,−2), 0))

π13∗(OY1∪Y2 ⊗ L) ' π13∗Cone(OY1 ⊗ L[1]→ OY2(−(Y1 ∩ Y2))⊗ L)

' Cone(π13∗OY1 ⊗ L[1]→ π13∗OY2(−(Y1 ∩ Y2))⊗ L)

' Cone(0[1]→ OZ4(−(Fl3)−D))

(4.74)

Indeed π13∗OY1 ⊗ L[1] ' 0: by flat base change theorem around the commutative
square (4.72), the following functors are isomorphic w∗ ◦ π13∗ ' v∗ ◦ u∗.
So w∗(π13∗(OY1 ⊗ L[1])) ' v∗(u∗(OY1 ⊗ L[1])).

Consider the following commutative square

Y1 P2∨ × P2 × P2∨ × P2

P2∨ × P2

p

i

π14 (4.75)

Then by Lemma 4.6.7 , the relative canonical bundle ωY1/P2∨×P2 ' π!
13OP2∨P2 is

isomorphic to

π!
13OP2∨P2 ' i∗p!OP2∨×P 2 ⊗ i!OP2∨×P2×P2∨×P2

' i∗O(0,−3,−3, 0)⊗ i∗O(1, 2, 2, 1)

' i∗O(1,−1,−1, 1)

(4.76)

Recall that
L = O(−2,−1,−1, 1)

So
L = π!

13OP2∨×P2 ⊗ π∗13O(−3, 0)

and therefore

π13∗L ' π13∗(π
!
13OP2∨×P 2 ⊗ π∗13O(−3, 0))

' π13∗Hom(OY1 , π!
13OP2∨×P 2)⊗O(−3, 0)

' π13∗Hom(π13∗OY1 ,OP2∨×P 2)[−1]⊗O(−3, 0)

' O(−3, 0)[−1]

(4.77)

Therefore we have the isomorphisms



4.6. Further developments 91

π13∗(OY1 ⊗ L) ' OP2∨×P2(−3, 0)[−1].

and

π13∗(OY1(0, (3,−3), (−3, 0), (0, 0), 0)[1]) = OP2∨×P2(−3, 0)[1] ' OP2∨×P2(2B +D)[1]

since on the fibers the line bundle is trivial.
The last statement of the proposition follows therefore from relative Bott van-

ishing.

STEP 2: The Fourier Mukai kernel of R12
111T

111
1̄1̄1 T

111
11̄1̄ F

111
21

The second step of the recipe for constructing the double crossing T 12
21 is computing

the Fourier-Mukai kernel of the functor

R21
111T

111
11̄1̄ T

111
1̄1̄1F

111
21 = R21

111(F 111
21 R12

111 → id)(F 111
21 R21

111 → id)F 111
21 (4.78)

as the convolution of diagram

R12
111F

111
21 ⊕R12

111F
111
21 [−2]

R12
111F

111
21 R21

111F
111
21 R12

111F
111
21

⊕
R12

111F
111
21

R12
111F

111
21 ⊕R12

111F
111
21 [−2]

tr1tr2

tr1 tr2

(4.79)
at level of Foirier-Mukai transforms.

Proposition 4.6.9. The cohomologies of the derived tensor product of Fourier-
Mukai kernels involved in the composition of R12

111F
111
21 R21

111 IdF 111
21 before taking the

derived pushforward π15∗ are

Hr(OE×ED×C×B×AA(0, 0, 0, B, 0)⊗OE×D×DD×ED×A(0, 0, D, 0, 0)) =

=


OY3(0, 0, D,B, 0), if r = 0,

OY3(0, 0, 0, B, 0), if r = −1;

0, otherwise.

where
Y3 := (E ×E D ×D D ×E (B ∩D)×A A)

and
π15 : E × C × C × C ×A→ E ×A.
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Proof. Consider the following diagram

E × C E × C × C × C ×A E ×A

C × C C × C C ×A

π12

π23 π34
π45

π15

.

By change base theorem and lemma 4.6.5 the Fourier-Mukai kernel K5 associated
to R12

111F
111
21 R21

111 IdF 111
21 is

K5 ' π15∗(π
∗
12OE×ED ⊗ π

∗
23OC×CC ⊗ π

∗
34OD×ED(D, 0)[−1]⊗ π∗45OB×AA(B, 0)[−1])

' π15∗(OE×ED×C×B×AA(0, 0, 0, B, 0)[−1]⊗OE×D×DD×ED×A(0, 0, D, 0, 0))[−1])

(4.80)

The subvariety E×E D×C ×B×AA is of dimension 16 so is codimension 10 in
E × C × C × C × A while the subavariety E ×D ×D D ×E D × A is of dimension
14 so is codimension 12 in E × C × C × C ×A

Y4 = (E×E D×C ×B×AA)∩ (E×D×DD×E D×A) ' D×E (D∩B) which
is is a P1-bundle over B ∩D and at the same time the blow up Bl{α=0}(D) over the
zero section of D, so it is 5 dimensional and its codimension in E ×C ×C ×C ×A
is 21, so with one dimensional excess bundle E3.

For computing E3 we will use the short exact sequence 4.71 to get the isomorphism

E3 ' det(NE×ED×C×B×AA)⊗ det(NE×D×DD×ED×A)⊗ det(NY4)−1

' E1 = O(0,−D, 0,−B, 0)⊗O(0,−D,+ωD −D,−D, 0)⊗O(0, D,−ωD +D,+B +D, 0)

' O(0,−D, 0, 0, 0)

So by Proposition 3.9.2 the cohomologies of the derived tensor product are

Hr(OE×ED×C×B×AA(0, 0, 0, B, 0)⊗OE×D×DD×ED×A(0, 0, D, 0, 0)) =

=


OY3(0, 0, D,B, 0), if r = 0,

OY3(0, 0, 0, B, 0), if r = −1;

0, otherwise.

Analogously a symmetric proof proves the following
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Proposition 4.6.10. The cohomologies of the derived tensor product of Fourier-
Mukai kernels involved in the composition of R12

111 IdF 111
21 R12

111F
111
21 before taking the

derived pushforward π15∗ are

Hr(OE×ED×C×B×AA(0, 0, 0, B, 0)⊗OE×B×AB×BB×A(0, B, 0, 0, 0)) =

=


OY ′3 (0, B, 0, B, 0), if r = 0,

OY ′3 (0, 0, 0, B, 0), if r = −1;

0, otherwise.

where
Y ′3 := E ×E (B ∩D)×A B ×A B ×A A.

and
π15 : E × C × C × C ×A→ E ×A.

The following Lemma holds in the context of triangulated categories.

Lemma 4.6.11. Let the following be a distinguished triangle in a triangulated cate-
gory C

V [−1] W U V............................................ ............
f

............................................................... ............
g

............................................................... ............
h (4.81)

and let γ ∈ Hom0(A[−1], A′) for A′ ∈ T . Let X[1] be the cone of γ ◦ h : C → A′[1]

so that
V ′[−1] W X V ′......................................... ............ ............................................................... ............ ............................................................... ............

γ ◦ h

(4.82)

is a distinguished triangle. Then X ' Cone(V [−1]
f⊕γ−−→W ⊕ V ′)

Proof. Consider the following commutative square

V [−1] W ⊕ V ′

W W

α

f⊕γ

(Id,0)

Id

(4.83)

and complete it to the following commutative diagram

V [−1] W ⊕ V ′ Q

W W 0

U V ′ Q[1]

V W [1]⊕ V ′ Q[1]

α

f⊕γ

(Id,0)

Id 0

γ

γ◦h

(0,Id) Id

f⊕γ

(4.84)
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Since all the rows and all the colums are distinguished triangle we can aplly the
octaedral axiom of triangualate categories in order to obtain the isomorphism X '
Q.

Proposition 4.6.12. The Fourier-Mukai kernel representing the functor

R12
111T

111
1̄1̄1 T

111
11̄1̄F

111
21

is the object OZ1∪(P2∨×P2) ⊕OZ1∪(P2∨×P2)[−2] where

Z1 :=

 0 ⊂ V2

α

��
⊂ C3

α

��

×
 0 ⊂ V1

α

��
⊂ C3

α

��

 .

Proof. By Proposition 4.6.8, Lemmas 4.6.9, 4.6.10 and Proposition 4.4.7, the convo-
lution of diagram (4.64) and therefore the Fourier-Mukai kernel of R12

111T
111
1̄1̄1

T 111
11̄1̄

F 111
21

is the derived pushforward of the projection on E × A of the diagram of the coho-
mologies

OY3(0, 0, 0, B, 0)[−2]⊕OY3(0, 0, D,B, 0)[−1]

OY1(0, (3,−3), (−3, 0), (0, 0), 0)[−3]⊕OY1∪Y2(0, B,D,D, 0)[−2] OE×E(D∩B)×EE(0, D, 0)[−1]

OY ′3 (0, B, 0, B, 0)[−2]⊕OY ′3 (0, 0, 0, B, 0)[−2]

f

g1
g2

h

(4.85)
We want to compute the cone of the subdiagram

OY3(0, 0, D,B)

OY1∪Y2(0, B,D,B, 0)
⊕

OY ′3 (0, B, 0, B, 0)

g2

g1

(4.86)
using Lemma 4.6.11.
The intersection of Y3 with Y1 ∪ Y2 is a divisor in Y3; indeed

Y3 ∩ (Y1 ∪ Y2) = (Y3 ∩ Y1) ∪ (Y3 ∩ Y2)

where
Y3 ∩ Y2 = Y2
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and Y2 is a divisor in Y3, and

Y3 ∩ Y1 = Y3|α=0

so the restriction of Y3 to the zero section, which is a divisor in Y3 and will be denoted
by Ỹ3.

So from 4.42 we have the short exact sequence

0→ OY3(−Ỹ3 − Y2)→ OY1∪Y2∪Y3 → OY1∪Y2 → 0 (4.87)

From Proposition 4.6.8 we have that the zero cohomology of R2F1R1F2R2F1 is

Y1 ∪ Y2 = OE×EB∩D×AB∩D×EB∩D×AA(0, B,D,B, 0)

meanwhile from Lemma 4.6.10 we know that the zero cohomology of R2F1R1 IdF1

is
Y3 = OE×ED×DD×EB∩D×AA(0, 0, D,B, 0)

Their intersection is the reducible variety

Y3 ∩ (Y1 ∪ Y2) = OE×ED∩B×D∩BD∩B×EB∩D×AA(0, 0, D,B, 0)

which is a divisor in Y with conormal bundle N1 = O(0,−B, 0, 0, 0).
So from 4.42, they fit in the short exact sequence

0 → OE×ED×DD×EB∩D×AA(0, 0, D,B, 0)→ OY1∪Y2∪Y3(0, B,D,B, 0)→ OY1∪Y2(0, B,D,B, 0)→ 0

Similarly the zero cohomology of R2 IdF2R2F1

Y ′3 = OE×EB∩D×AB×BB×AA(0, B, 0, B, 0)

the intersection of Y ′3 with Y1 ∪ Y2 is

Y ′3 ∩ (Y1 ∪ Y2) = OE×ED∩B×DD∩B×D∩BB∩D×AA(0, B, 0, B, 0)

which is a Cartier divisor in Y ′3 with conormal bundle N2 = O(0, 0,−D, 0, 0).
As before, the zero cohomologies of the functors fits in the short exact sequence

0 → OE×EB∩D×EB×BB×AA(0, B, 0, B, 0)→ OY1∪Y2∪Y ′3 (0, B,D,B, 0)→ OY1∪Y2(0, B,D,B, 0)→ 0(4.88)

By Lemma 4.6.11 we have that

Cone(g1 ⊕ g2) ' OY1∪Y3∪Y ′3 (0, B,D,B, 0). (4.89)

Similarly f is the Ext1 map coming from the short exact sequence (4.42) which
glues Y1 on top of Y3, while h became the identity after taking the derived pushfor-
ward since both the varieties Y ′3 and E×E (D∩B)×EE are mapped to Z1 under the
projections to E ×A. Using Lemma , the derived pushforward of the cone of (4.85)
and therefore the Fourier-Mukai kernel representing the functor R12

111T
111
1̄1̄1

T 111
11̄1̄

F 111
21

is isomorphic to
OZ1∪(P2∨×P2) ⊕OZ1∪(P2∨×P2)[−2].
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STEP 3: The double crossing functor T 12
21

The last step for the construction of the double crossing functor T 12
21 is to defined it

as the difference of Figure 4.16.

◦ '

.

Figure 4.16: The double crossing functor T 12
21

Theorem 4.6.13. The Fourier-Mukai kernel representing the double crossing func-
tor T 12

21 is OZ1∪(P2∨×P2) where

Z1 :=

 0 ⊂ V2

α

��
⊂ C3

α

��

×
 0 ⊂ V1

α

��
⊂ C3

α

��

 .

Proof. By Proposition 4.6.12 the Fourier-Mukai kernel representing the functor

R12
111T

111
1̄1̄1 T

111
11̄1̄F

111
21

is the object OZ1∪(P2∨×P2)⊕OZ1∪(P2∨×P2)[−2], while by Proposition 4.6.4 the functor
R12

111F
111
21 is represented by OE×EE ⊕OE×EE [−2].

Therefore

X ? (OE×EE ⊕OE×EE [−2]) ' OZ1∪(P2∨×P2) ⊕OZ1∪(P2∨×P2)[−2]. (4.90)

Indeed 4.90 leads to the isomorphism

X ' OZ1∪(P2∨×P2). (4.91)

Remark 4.6.14. The Fourier-Mukai kernel of Theorem 4.90 is the Kawamata-
Namikawa Fourier-Mukai kernel of Theorem 3.8.2.
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