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We present new constraints on anisotropic birefringence of the cosmic microwave background
polarization using two seasons of data from the Atacama Cosmology Telescope covering 456 square
degrees of sky. The birefringence power spectrum, measured using a curved-sky quadratic estimator, is
consistent with zero. Our results provide the tightest current constraint on birefringence over a range of
angular scales between 5 arc minutes and 9°. We improve previous upper limits on the amplitude of a scale-
invariant birefringence power spectrum by a factor of between 2 and 3. Assuming a nearly massless axion
field during inflation, our result is equivalent to a 2σ upper limit on the Chern-Simons coupling constant
between axions and photons of gαγ < 4.0 × 10−2=HI , where HI is the inflationary Hubble scale.

DOI: 10.1103/PhysRevD.101.083527

I. INTRODUCTION

The Atacama Cosmology Telescope (ACT) experiment,
a 6-m-diameter millimeter-band telescope located in the
Atacama Desert in Chile, has completed several seasons of
cosmic microwave background (CMB) polarization obser-
vations [1]. These observations have been used to derive a
variety of scientific results—for example, via measure-
ments of the CMB power spectrum [2] and gravitational
lensing by large-scale structure [3,4]. Beyond these observ-
ables, ACT’s CMB polarization data can be used to test for
new physics by searching for a rotation of linear polari-
zation as the CMB photons propagate to us from the surface
of last scattering. This phenomenon, which is absent in the
Standard Model, is referred to as cosmic birefringence.
Several types of beyond-the-Standard-Model physics

can source cosmic birefringence. In particular, birefrin-
gence of CMB photons can be generated by axionlike
particles within a mass range of 10−33 ≲ma ≲ 10−28 eV
that couple to photons through a so-called Chern-Simons
term (see, e.g., Refs. [5–9] and a review, Ref. [10]).1 The
existence of such axionlike particles is a generic prediction
of string theory. In addition, birefringence-inducing pseu-
doscalar fields could be candidates for an early dark energy

mechanism to resolve the current Hubble parameter tension
[12]. Cosmic birefringence can be used as a probe of, e.g.,
the axion string network [13], axion dark matter [14], and
also more general Lorentz-violating physics in the context
of Standard Model extensions [15]. Finally, cosmic bire-
fringence can also be generated by primordial magnetic
fields (PMFs) through Faraday rotation of the CMB
polarization (e.g., Refs. [16–21]). The PMF-induced cos-
mic birefringence has frequency dependence and can be
distinguished from that induced by axionlike particles [22].
If the source of the cosmic birefringence is spatially
varying, the polarization rotation will be anisotropic (i.e.,
have different values in different directions in the sky);
indeed, anisotropies in the cosmic birefringence are pro-
duced naturally by many of the types of beyond-the-
Standard-Model physics listed previously (see, e.g.,
Refs. [5,15,23–26]). For example, quintessence models
predict both isotropic and anisotropic cosmic birefringence
[25]. In addition, the cosmic birefringence induced by some
massless scalar fields does not necessarily produce iso-
tropic cosmic birefringence, and a measurement of the
anisotropic birefringence is crucial to constraining such
scenarios [27]. Measurements of, or tight constraints on,
the relevant pseudoscalar fields and other phenomena can
hence provide valuable insights into fundamental physics.
Both isotropic and anisotropic cosmic birefringence have

been constrained by several CMB experiments, although
the observational effects on the CMB and the methodology
to measure these two types of birefringence are different.
The presence of isotropic cosmic birefringence can be
detected in CMB observations because the polarization

*Corresponding author.
tn334@cam.ac.uk

1Axionlike particles within a mass range of 10−22 ≲ma ≲
10−18 eV also introduce a time variation of the polarization angle
rotation whose oscillation period is from hours to years, and can
be tightly constrained by current and future CMB experiments, as
discussed in Ref. [11].
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rotation transfers part of the CMBE-mode polarization to B
modes and thus creates nonzero odd-parity EB power
spectra. Such odd-parity EB power spectra are zero in
the standard cosmological model and have hence been used
for constraining isotropic cosmic birefringence [28–31].
However, odd-parity power spectra have systematic uncer-
tainties from the global polarization angle calibration
[32–36]; in fact, odd-parity spectra are often used to
calibrate the global polarization angle rather than for
measuring cosmological signals [37,38]. Galactic fore-
ground components in the observed odd-parity spectra
can be used to partially break degeneracies between the
global polarization angle error and cosmic birefringence
effects [39], although the signal-to-noise ratio can decrease
somewhat in this process.
On the other hand, if the cosmic birefringence is aniso-

tropic, we canmeasure it not only using CMB power spectra
[7] but also by using the fact that the EB correlation varies
with direction, which is characteristic of statistical
anisotropy [40]. Variations of the polarization rotation angle
on angular scale L will mix together E and B modes of
different scales, leading to nonzero expectation values in the
off-diagonal (l ≠ l0) elements of the CMB covariance [see
Eq. (5) below].2 We can, therefore, reconstruct the anisot-
ropies of the cosmic birefringence by measuring these off-
diagonal correlations, in a manner similar to CMB lensing
reconstruction [41]. Other pairs of CMB anisotropies such
as temperature and B modes are also correlated, but such
correlations generally give lower signal-to-noise ratios for
reconstructing birefringence [42].Wewill therefore focus on
birefringence reconstruction from EB correlations in this
paper. Note that the cosmic birefringence and lensing can be
estimated separately by using their distinct effects on
polarization maps in terms of parity [40]; birefringence
introduces rotations with determinate directions, and the
resulting map is not parity symmetric, whereas lensing
arising from the scalar density field has even parity (see
Sec. III for details).
Multiple publications have presented constraints on

anisotropies of the cosmic birefringence using reconstru-
ction methods; these have made use of the WMAP temper-
ature and B modes [27], or the polarization data of the
POLARBEAR [43], BICEP2/Keck Array [44], and Planck
[45] experiments. The use of the reconstructed cosmic
birefringence power spectrum is the most powerful current
method for measuring the anisotropies of the cosmic
birefringence and indeed gives the best current constraints
[44,45]. However, we note that several other publications
[14,30,31,46–49] also place constraints on anisotropic
birefringence by analyzing CMB polarization power
spectra.

In this paper, we reconstruct the cosmic birefringence
(rotation) field from the CMB polarization using a quad-
ratic estimator analogous to those commonly used in
measuring the cosmic deflection field due to gravitational
lensing. The estimator includes the effect of sky curvature,
which will become increasingly important as low-noise and
high-resolution polarization maps extend over larger sky
regions. We focus on frequency-independent cosmic bire-
fringence and apply this estimator to data from the Atacama
Cosmology Telescope Polarimeter (ACTPol), finding a
rotation field consistent with zero within measurement
uncertainties. Our limits on polarization rotation are the
strongest to date over a wide range of scales.
In Sec. II, we describe our data and simulations for the

cosmic birefringence reconstruction. In Sec. III, we explain
our reconstruction methodology, and in Sec. IV we explore
potential systematic errors that are relevant for the cosmic
birefringence analysis. Section V shows our results for the
reconstructed spectrum and the resulting constraint on the
scale-invariant birefringence spectrum. We discuss impli-
cations for axionlike particles in Sec. VI.

II. DATA AND SIMULATIONS

We analyze ACTPol nighttime polarization data col-
lected from two seasons of observations taken in 2014 and
2015. These data are described in Ref. [2]. In this paper, the
constraints on cosmic birefringence anisotropies are
derived using data from one region of the sky, which we
label D56. D56 spans 456 deg2 of the sky with the aspect
ratio of 1∶4 observed in both the 2014 and 2015 seasons at
150 GHz, and in the 2015 season at 90 GHz [2,50,51]; the
map has an effective noise level of 14 μK-arcmin for
polarization. In addition to D56, we also use another
region of the sky for a (swap-patch) null test: the region
is called BOSS-N; this field was observed during the 2015
season and covers 1633 deg2 of the sky with an effective
noise level of roughly 30 μK-arcmin in polarization. Since
the statistical error of the reconstructed cosmic birefrin-
gence spectrum from the BOSS-N region is roughly 4–5
times larger than that from D56, the improvement of the
cosmic birefringence constraint by adding BOSS-N is
roughly ≲3%.3 Thus, we use the BOSS-N data only for
a null test. For each region (D56 and BOSS-N), the
Fourier-space combined E and B maps are produced from

2In this paper, we use L to denote the multipole of the
reconstructed rotation angle and l to denote the multipole of
CMB anisotropies.

3The noise spectrum of the reconstructed cosmic birefringence
fields scales as the fourth power of the CMB map noise if the
CMB maps are noise dominant. In BOSS-N, even the EE
spectrum is not signal dominant, and the reconstructed noise
spectrum is roughly an order of magnitude larger than that of
D56. Taking into account the sky coverage, the statistical error of
the reconstructed spectrum is 4–5 times larger than that of D56.
The expected improvement on the signal-to-noise ratio of the
birefringence spectrum is thus negligible,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1=4Þ2

p
∼ 3%.

ATACAMA COSMOLOGY TELESCOPE: CONSTRAINTS ON … PHYS. REV. D 101, 083527 (2020)

083527-3



the maps in each frequency, each detector array, and
season [52].
We use Monte Carlo simulations for the standard ΛCDM

cosmology4 to test our pipeline, compute the biases in the
power spectrum measurement, perform null tests, and
calculate the covariance matrix for the χ2 PTE and like-
lihood. The simulation includes lensing and realistic effects
to mimic the data such as beams and inhomogeneous noise
(see Refs. [2,51] for the details). Hereafter, we call this
simulation the standard simulation. Additional simulations
including scale-invariant rotation anisotropies with varying
amplitudes ACB (see Sec. V for the definition) are used for
pipeline tests and to compute the transfer function for the
reconstructed spectrum. To assess the impact of the global
polarization angle error on our measurements, we also
generate a simulation with an offset in the global polari-
zation angle (see Sec. IV). We obtain a candidate dust map
by appropriately scaling the Galactic dust simulation of
Ref. [54], which provides a non-Gaussian full-sky dust
Q=U map at 353 GHz.

III. ANALYSIS

The rotation angle field, αðn̂Þ, can be reconstructed from
the off-diagonal mode-mode covariance within and
between the E and B modes [40]. An estimator of αðn̂Þ
has a quadratic form similar to the lensing estimator. The
power spectrum of the anisotropic rotation angleCαα

L can be
obtained by squaring the rotation estimator and subtracting
relevant biases. We use the curved-sky quadratic estimator
to extract the large-scale birefringence anisotropies which
are important to constrain the scale-invariant spectrum
described later. Verification of the method to measure
the cosmic birefringence spectrum applied in this paper
is described in Ref. [55] for a flat-sky analysis. In the
extension described here, the estimator in a full-sky
formalism employs spherical harmonic transformations
instead of Fourier transforms.5

In order to account for ground and atmospheric noise, we
begin by filtering out the Fourier modes jlxj < 90 and
jlyj < 50 of the E and B maps produced by combining
seasons, frequencies, and arrays in Fourier space [52]. This
is the same filter as is applied for the CMB power spectrum
and lensing reconstruction analysis [2,3]. This process is
performed using a flat-sky Fourier transform. After trans-
forming back to position space, we assign the filtered E and
B maps to the Healpix grids and compute the harmonic
coefficients of the E and B modes. Note that the polari-
zation maps are provided at each patch, which take into
account the curved-sky geometry. The harmonic

coefficients computed from these maps thus do not have
any distortion due to ignoring the curved-sky geometry. In
fact, if such distortion is significant, we need additional
filtering processes in computing X̄lm, or additional cor-
rection to the estimator normalization. As we discus below,
however, we found that the mismatch between the input
birefringence spectrum and cross spectrum between input
and reconstructed birefringence fields is very small, and the
above distortion is negligible.
The presence of the cosmic birefringence effect rotates

the primordial Stokes parameters as [27,40]

Q0ðn̂Þ � iU0ðn̂Þ ¼ ½Qðn̂Þ � iUðn̂Þ�e�2iαðn̂Þ: ð1Þ

Consequently, the rotation angle modifies the CMB E and
Bmodes. The E and Bmodes are obtained by transforming
Q andU maps with the spin-2 spherical harmonics, Y�2

lm, as
[56,57]

Elm � iBlm ¼ −
Z

d2n̂ðY�2
lmÞ�½Qðn̂Þ � iUðn̂Þ�: ð2Þ

Thus, the E and B modes in the presence of an anisotropic
rotation angle are derived by substituting Eq. (1) into the
above equation, and are given up to linear order in α by
[40,58]

E0
lm � iB0

lm

¼ Elm � iBlm þ
X

LMl0m0
ð−1Þm

�
l L l0

−m M m0

�
W�

lLl0

× ½El0m0 � iBl0m0 �αLM; ð3Þ

with

W�
l1l2l3

¼ �2ζ∓p∓
l1l2l3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

−2 0 2

�
: ð4Þ

Here, ζþ¼1, ζ−¼ i, and p�
l1l2l3

¼ ½1� ð−1Þl1þl2þl3 �=2
is a parity indicator. The ending parentheses denote the
Wigner 3j symbol. The off-diagonal elements of the
covariance induced by the anisotropies of the rotation
angle are given by [58]

hE0
lmB

0
l0m0 iCMB ¼

X
LM

�
l l0 L

m m0 M

�
fαlLl0α�LM; ð5Þ

where l ≠ l0, m ≠ −m0, and the operator h� � �iCMB denotes
an ensemble average over the realizations of CMB and noise
with a fixed realization of αðn̂Þ. The weight function is

fαlLl0 ¼ −W−
l0LlC̃

EE
l ; ð6Þ

4The standard cosmology in this paper is the flat ΛCDMmodel
parametrized by the six cosmological parameters with values
close to the best-fit 2015 Planck parameters [53].

5The code used for reconstructing the cosmic birefringence in
full sky is based on https://toshiyan.github.io/clpdoc/html/.
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where C̃EE
l is the lensed E-mode power spectrum. The term

originating from the lensing B mode is ignored, since the
improvement of the sensitivity to the polarization rotation
anisotropies by the inclusion of this term is negligible [43].
Similar to the lensing reconstruction, the unnormali-
zed quadratic estimator of α is constructed as a convolu-
tion of the E and B modes with the weight function of
Eq. (6) [58]:

ᾱ�LM ¼
X

ll0mm0

�
l l0 L

m m0 M

�
fαlLl0ĒlmB̄l0m0 : ð7Þ

Here, Ēlm and B̄lm are the observed multipoles filtered by
their inverse variance. We use diagonal filtering, X̄lm ¼
X̂lm=Ĉ

XX
l , where X is either E or B and ĈXX

l is the power
spectrum of the observed multipoles, X̂lm. The CMB
multipoles at 200 ≤ l ≤ 2048 are used for our baseline
reconstruction, although we also perform the reconstruction
for other multipole ranges as a test of the analysis in Sec. IV.
Finally, we correct for the mean-field bias, hᾱLMi, and
normalize to obtain the rotation angle:

α̂LM ¼ ALðᾱLM − hᾱLMiÞ: ð8Þ

The normalization AL is given by

AL ¼ 1

2Lþ 1

X
ll0

ðfαlLl0 Þ2
ĈEE
l ĈBB

l0
: ð9Þ

We compute Eqs. (7) and (9) with a computationally
efficient method, as described in Appendix A. The mean-
field bias could be nonzero due to, for example, survey
boundary and beam asymmetry effects [59] (see also
Appendix B). We evaluate the mean-field bias by averaging
over the standard simulations, finding that the bias is less
than 0.5% of the 1σ statistical error of the cosmic birefrin-
gence spectrum over the scales relevant to our analysis.
Mean-field bias is also induced by the global polarization
angle error, which is not included in the standard simu-
lations. We evaluate this effect in Sec. IV and discuss its
origin in Appendix B.
We note that the quadratic estimator for the cosmic

birefringence anisotropies given above is the same as that
for the CMB lensing potential, ϕ, but with a different
weight function. In the case of CMB lensing, the off-
diagonal covariance of Eq. (5) is given by [41]

hẼlmB̃l0m0 iCMB ¼
X
LM

�
l l0 L

m m0 M

�
fϕlLl0ϕ

�
LM; ð10Þ

where Ẽ and B̃ are the lensed E and B modes, respectively,
and fϕ is defined as [41]

fϕlLl0 ¼ −ip−
lLl0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2Lþ 1Þð2l0 þ 1Þ

16π

r
× ½LðLþ 1Þ þ lðlþ 1Þ − l0ðl0 þ 1Þ�

×

�
l0 L l

2 0 −2

�
C̃EE
l : ð11Þ

Here, p−
lþLþl0 ¼ ½1 − ð−1ÞlþLþl0 �=2 is the parity indicator.

The estimator for the CMB lensing potential is then
obtained in the same form as Eq. (7), but replacing f with
fϕ. The normalization is also obtained in the sameway. The
main difference between the properties of fα and fϕ is that
fα and fϕ are only nonzero when lþ Lþ l0 is even for
fα and odd for fϕ [40]. This property comes from the
difference of the parity symmetry between the lensing
potential and cosmic birefringence anisotropies. With this
property of fα and fϕ, our standard estimators can
completely separate the cosmic birefringence and lensing
potential contributions to the off-diagonal elements of the
EB correlation, similar to the lensing potential and curl
mode decomposition [60].
From the reconstructed α, the cosmic birefringence

spectrum is also estimated in the same way as the CMB
lensing power spectrum [3,61], but with a few modifica-
tions. The power spectrum of the estimator defined in
Eq. (8) is a four-point function and has a disconnected (or
Gaussian) bias, N0

L, which is simply due to the original,
unrotated CMB anisotropies and is nonzero even in the
absence of birefringence [41,55,62]. We construct an

estimator of the disconnected bias, N̂0
L, using a realiza-

tion-dependent algorithm [59], and subtract it from the
power spectrum of the estimator to extract the cosmic
birefringence spectrum. For simulations, for convenience

we subtract the ensemble average, hcN0
Li, instead of cN0

L,
which makes less than 1% difference in the χ2 PTE of the
reconstructed cosmic birefringence spectrum and the con-
straints on the scale-invariant spectrum. Using a realization-
dependent bias subtraction makes our measurement of the
birefringence spectrum robust to possible mismatches
between simulation and data. The lensing bias and N1
bias as shown in Ref. [55] are evaluated using simulation
from the standard and nonzero birefringence simulations,
respectively. The lensing bias is subtracted from the
reconstructed birefringence spectrum, and the N1 bias is
included in modeling the signal spectrum of the cosmic
birefringence. They are, however, negligible compared to
the 1σ statistical error of the reconstructed birefringence
spectrum.
Using a simulation with nonzero birefringence, we

confirm that the cross spectrum between the input and
reconstructed birefringence anisotropies agrees with the
input spectrum to within 0.3% for multipoles L ≥ 20, and
so we do not apply a transfer function to correct the
normalization of the reconstructed spectrum.
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In this paper, we compute the cosmic birefringence
power spectrum up to L ≤ 2048. At larger L values, the
statistical uncertainties of the reconstructed spectrum start
to increase significantly. The minimum multipole of the
reconstructed spectrum is chosen so that the mean-field
bias from the global polarization angle uncertainties is
negligible (see Sec. IV).

IV. POTENTIAL SYSTEMATICS

The ACT polarization data have been tested for possible
systematic errors in several published or forthcoming
papers focusing on the CMB power spectrum [2], lensing
]3 ], and cross spectra with galaxy surveys [52]. Here, we
further test for potential systematic contamination which
could specifically bias the measured cosmic birefringence
spectrum. Here and in the following sections, we use 200
realizations of the simulations to evaluate the band-power
covariance matrix for the cosmic birefringence spectrum, as
well as the chi-squared probability to exceed (PTE).

A. Uncertainties in polarization angle measurement

Global polarization angle errors induce nonzero
odd-parity power spectra [34,37]. We estimate a constant
global rotation angle ψ as follows: Assuming jψ j ≪ 1,
the global rotation angle is related to the polarization
spectra as ψ ¼ CEB

b =2ðCEE
b − CBB

b Þ≡ ab at each multipole
bin b [34]. We compute the angle by minimizingP

bb0 ðψ − âbÞCov−1bb0 ðψ − âb0 Þ, where âb is the observed
value of ab and Cov is the covariance of ab computed from
200 realizations of the standard simulation. With the
polarization spectra at 200 ≤ l ≤ 2048, we find that
ψ ¼ 0.12°� 0.06°. The 1σ uncertainty of the global
rotation angle introduces a significant mean-field bias at
very large scales (see Appendix B for the origin of the bias).
The mean-field bias only becomes close to the 1σ statistical
error of the cosmic birefringence spectrum at L ≪ 20. We
therefore exclude the large-scale cosmic birefringence
spectrum, L < 20, from our analysis. Note that this scale
roughly corresponds to the fundamental mode determined
by our patch size. The measured spectrum below this
multipole does not have much information on cosmic
birefringence signals.
An additional possible concern is the variation of

polarization angle errors over the field. Variations in
relative polarization angles between detectors are calibrated
based on optical modeling of the telescope and instrument
[63]. In order to obtain variation of polarization angle errors
over the field at a significant level, one would require that
(i) different detectors have significantly different polariza-
tion angle errors; (ii) the relative weights of different
detectors vary strongly over the map (since otherwise
differential detector angle errors would be absorbed into
the mean); and (iii) such an effect not be significantly
reduced by averaging from repeated scanning (which it

should be, as the main driver of the relative detector weight
is the atmospheric loading and thermal environment in the
telescope, not which sky direction is being observed).
Another potential source of the variation of polarization
angle in the field is due to our mapmaking process. In the
coordinate transformation from focal plane to horizontal
plane for each map obtained from each season, frequency,
and array, we corrected the coordinate rotation using the
angle estimated by the EB spectrum, instead of the exact
value of the rotation angle, for computational convenience.
We checked that the resulting angle corrections using this
method and with the exact coordinate rotation angle agree
with each other, but this process could lead to small angle
errors depending on the elevation of our scan. Since all of
these effects are individually unlikely to be large, the
likelihood of all these taking place at a significant level
is very small, and we therefore neglect such effects. (This is
further motivated by the fact that potential upper limits are
not degraded by any such systematic, since the systematic
is not correlated with a true birefringence signal. As both
birefringence and polarization angle error spectra must give
strictly positive contributions to the estimated birefringence
power spectrum, the presence of such a systematic would,
in fact, imply stronger constraints on cosmological bire-
fringence from a data-derived upper limit.)

B. Galactic foregrounds

The large-scale B modes are significantly contaminated
by Galactic foregrounds, and in principle, non-Gaussian
polarized foregrounds could also bias the measured bire-
fringence spectrum. We expect minimal direct contamina-
tion from the Galactic foregrounds since our analysis
removes multipoles below l ¼ 200 from the maps before
reconstructing the cosmic birefringence anisotropies. For
an accurate estimate of any bias to the cosmic birefringence
anisotropies, however, we further test the Galactic fore-
ground contributions to our measurement by adding a
simulation of Galactic dust to our standard simulation. In
particular, we use 20 different realizations of the Galactic
dust simulation provided by Ref. [54] in the D56 region for
this purpose. We scale the dust polarization maps to our
observing frequencies following Refs. [64,65]; we assume
a modified blackbody spectrum for dust and use the dust
spectral index and temperature of Ref. [65]. We then add
the scaled polarization maps to 20 realizations of the input
of our standard CMB simulation to produce a set of 20
simulations including dust. Figure 1 shows the difference
spectrum between the simulations including dust and the
standard simulations averaged over 20 realizations. The
spectrum is further normalized by the 1σ statistical error of
the cosmic birefringence spectrum obtained from 200
realizations of the standard simulation. Although we do
not yet have sufficient multifrequency data to fully exclude
any impact of Galactic foregrounds, we find that the impact
of the dust contribution estimated from our simulations is
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approximately less than 10% of the 1σ statistical uncer-
tainty at each multipole bin.

C. Null tests

As a null test, we compute the cross spectrum of the
reconstructed α obtained from the D56 and BOSS-N fields.
The reconstructed cosmic birefringence anisotropies on
these two patches should not be correlated, and so the cross
spectrum should be zero. Following the same procedures as
applied to the D56 field, the harmonic coefficients of the
cosmic birefringence anisotropies from BOSS-N are recon-
structed using the curved-sky quadratic estimator described
in Sec. III and are then cross-correlated with the birefrin-
gence map from D56. This null spectrum can serve as a
valuable test of whether our error bars are correct. Figure 2
shows the cross spectrum; we find that the χ2 PTE of the
cross spectrum is within 2σ range, and the spectrum is
consistent with null.

For additional null tests, we compute the difference
between the baseline analysis and cases with different
choices of CMB multipole ranges used for the rotation
angle reconstruction. Figure 2 shows the difference spectra.
We calculate the χ2 PTE for the difference spectra as shown
in the figure, finding that the difference spectra are
consistent with the null hypothesis, irrespective of the
choice of the CMB multipole range.

V. RECONSTRUCTED SPECTRUM

After passing the swap-patch and difference spectrum
null tests in Sec. IV, we unblinded the reconstructed cosmic
birefringence spectrum. Figure 3 shows the cosmic bire-
fringence spectrum from ACTPol data with errors obtained
from the standard simulation. For comparison, the figure
also shows the cosmic birefringence power spectra mea-
sured from other recent CMB experiments: the BICEP2/
Keck Array [44], POLARBEAR [43], and Planck [45].
Compared to other experiments, ACTPol provides the
tightest constraint on the cosmic birefringence spectrum
at 20 ≤ L ≤ 2048. We compute the χ2 PTE of our mea-
sured spectrum including covariance obtained from simu-
lation, and the value is found to be 0.99; this is in good
agreement with zero signal. We note that the off-diagonal
elements of the correlation matrix for this measurement
become ∼0.5 at L > 1000, while at lower L, off-diagonal
band-power correlations are negligible.
The χ2 PTE is close to unity; to investigate this further

(and test whether this result indicates an overestimate of our
error bars), we check the dependency of the χ2 PTE on
analysis choices and summarize in Table I, finding that the
value is typically less than 0.95. Note that the values in
Table I are not statistically independent from the baseline
value, since we only modify the analyzed data by a small
amount by changing Lmin (and changing the number of
multipole bins does not introduce any new data). However,

FIG. 1. The difference of the cosmic birefringence spectra
between the standard plus Galactic dust and standard simulations.
Each value has been divided by the 1σ statistical uncertainty in
the standard cosmic birefringence spectrum.

FIG. 2. The null cosmic birefringence spectra for the swap patch (left) and difference spectra (right) tests, each divided by the
statistical 1σ error of the spectrum. For the swap patch, we show the cross spectrum of the reconstructed cosmic birefringence
anisotropies between two separate patches of sky, D56 and BOSS-N.
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if we had significantly overestimated our error bars, we
would expect that these other scale ranges and binnings
would also have very high PTE values. In addition, as
described previously, we have performed several null tests
where simulations are used to evaluate the scatter, without
finding anomalous PTEs. The high χ2 PTE for the baseline
spectrum therefore is likely due to a statistical fluctuation
rather than an overestimate of the errors. Of course, if in
fact the errors have been slightly overestimated, our limit
on the cosmic birefringence will be somewhat conservative.
The minimum CMB multipole used in the cosmic

birefringence reconstruction is 200, which is lower than

that of the lensing measurement presented in Ref. [3]. In
that lensing analysis, the CMB multipoles below l ¼ 500
are removed, since the simulations are not consistent with
temperature data at these scales due to inaccurate atmos-
pheric noise characterization and transfer function estima-
tion. For this analysis, however, the temperature data are
not used, and the measured polarization noise spectrum is
consistent with simulations for l ≥ 200. In addition, as
demonstrated by our null test in Fig. 2, changing the
minimum multipole used does not produce any spurious
signals. To further test this, we evaluate the χ2 PTE of a
measured spectrum analyzed with lmin ¼ 300, finding that
the value effectively does not change from the case with
lmin ¼ 200; in addition, all our null tests still pass. These
facts indicate that the inclusion of low-lCMB polarization
does not introduce non-negligible systematics into our
measurement.
As an example of the implications of our measurement

for phenomenological models of cosmic birefringence,
we consider a constraint on the amplitude of the scale-
invariant spectrum, Cαα

L ∝ 2π=LðLþ 1Þ, which can be later
translated into, for example, a constraint on the coupling
constant of an axionlike particle. To constrain a scale-
invariant spectrum, we first construct an approximate

FIG. 3. The angular power spectrum of the polarization rotation fields αðn̂Þ measured from ACTPol data over 456 deg2 of sky, with
errors from a standard ΛCDM simulation. The solid line shows a scale-invariant spectrum with the amplitude corresponding to our 2σ
upper bound (see Sec. V). In addition to our work (red), we also show the spectra obtained from POLARBEAR (green) [43], the
BICEP2/Keck Array (blue) [44], and Planck (magenta) [45]. The Planck low-L results are not included due to the error bar size. The
lower panel shows a zoomed-in view of our birefringence power spectrum measurement; we also show, with a blue dotted line,
the potential bias from a global polarization angle systematic error of 0.06°, which is of the same size as the 1σ error from an EB-derived
constraint. Since this is difficult to see, for visualization, we have multiplied this angle error bias by a factor of 10.

TABLE I. The χ2 PTE values for our measured cosmic
birefringence spectrum with variation of the minimum multipole,
Lmin, or the number of multipole bins, Nb. For the baseline
analysis, where Lmin ¼ 20 and Nb ¼ 10, the PTE is 0.99; the
variation seen in this table, given different analysis choices, is
consistent with this high PTE being a fluctuation.

Lmin χ2 PTE Nb χ2 PTE

10 0.85 15 0.77
30 0.94 20 0.88
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likelihood for the reconstructed cosmic birefringence
power spectrum. Although we do not use multipoles at
L < 20, the distribution of the power spectrum in the
largest bin is asymmetric and is not well described by a
Gaussian. Instead, we assume the log-likelihood proposed
by Ref. [66]:

−2 lnLðÂÞ ¼
X
bb0

gðc0bÂbÞ½c1bCf
b�Cov−1bb0 ½c1b0Cf

b0 �gðc0b0Âb0 Þ;

ð12Þ
where Âb ¼ ðĈαα

b þ hN̂0
biÞ=ðCαα

b þ hN̂0
biÞ is the amplitude

of the quadratic-estimator power spectrum relative to that
including the cosmic birefringence signals, Cαα

b , at each
multipole bin, b, and gðxÞ ¼ signðx − 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðx − ln x − 1Þp
for x ≥ 0. Note that Cαα

b is the sum of the scale-invariant
birefringence spectrum and N1 bias evaluated from the
nonzero birefringence simulation. The power spectrum,Cf

b,
and covariance, Covbb0 , are evaluated by the mean and
variance of the quadratic-estimator power spectrum from
the standard simulation, respectively. Note that we further
introduce parameters, c0b; c

1
b, to make the above likelihood

closer to that obtained from the simulation. We compute c0b
and c1b by fitting the histogram of Âb from the simulation
using Eq. (12) at each bin. (We verified that the values of c0b
and c1b only vary by negligible amounts using simulations
containing different levels of birefringence signal.)
Using Eq. (12), we compute the likelihood for the

amplitude of the scale-invariant power spectrum defined
by LðLþ 1ÞCαα

L =2π ¼ ACB × 10−4 ½rad2�. Assuming a
flat prior for ACB ≥ 0, we then obtain the 2σ upper
limit on the amplitude as ACB ≤ 0.10 (which is equiva-
lent to LðLþ 1ÞCαα

L =2π ≤ 0.033 ½deg2�). This constraint
improves the previous best constraints by a factor of
between 2 and 3 [44,45]. Note that, for the scale-invariant
power spectrum, the constraint on its amplitude is mostly
determined by the largest-scale multipole bin; removing
the first multipole bin centered at L ¼ 47 degrades the
constraint considerably.

VI. DISCUSSION

Our measured spectrum can be used to constrain various
models which lead to cosmic birefringence anisotropies. As
an example, we consider the following interaction between
axionlike particles and photons in the Lagrangian [67]:

L ⊃
gaγa

4
FμνF̃μν; ð13Þ

where gαγ is the Chern-Simons coupling constant between
the axionlike particles and photon, a is the axionlike
particle field, Fμν is the electromagnetic field, and F̃μν is
its dual. The presence of axionlike particles produces a
rotation of the polarization angle as [67,68]

α ¼ gaγ
2

Δa; ð14Þ

where Δa is the change in a over the photon trajectory.
Fluctuations in the axionlike particle field lead to the spatial
variation of α. If the axionlike particle is effectively
massless during inflation, the primordial power spectrum
of the fluctuations of the axionlike particle field is scale
invariant. As a result, the cosmic birefringence power
spectrum becomes a scale-invariant spectrum in the
large-scale limit (L≲ 100) [25]:

LðLþ 1ÞCαα
L

2π
¼

�
HIgaγ
4π

�
2

: ð15Þ

Here, HI is the inflationary Hubble parameter and is
related to the tensor-to-scalar ratio, r, as HI ¼
2πMpl

ffiffiffiffiffiffiffiffiffiffiffiffi
Asr=8

p
≃

ffiffiffiffiffi
4r

p
× 1014 GeV, where Mpl ≃ 2 ×

1018 GeV is the reduced Planck mass and As ≃ 2 × 10−9

is the amplitude of the primordial scalar perturbations
(see, e.g., Ref. [69]). An axion string network produces a
similar scale-invariant spectrum as shown by Ref. [13].
Using Eq. (15), our ACB constraint can be translated into
constraints on coupling between axionlike particles and
photons as

gaγ ≤
4.0 × 10−2

HI
¼ 2.0 × 10−16ffiffiffi

r
p GeV−1 ð16Þ

at 10−33 eV≲ma ≲ 10−28 eV. The coupling constant is
related to the decay constant, fa. In string theory models,
typically fa ∼ 1016 GeV, although it could be the Planck
energy scale. Assuming gaγ ∼ 10−3=fa [10], the constraint
in Eq. (16) can be translated into a constraint on fa as
10−6 ≲ fa=HI . A detection of the tensor-to-scalar ratio in a
future CMB experiment, which would determine HI ,
would put a lower bound on fa from the CMB cosmic
birefringence.
The coupling constant of the axionlike particles has been

also constrained in various ways and data from astrophysi-
cal experiments [70]. The isotropic cosmic birefringence
constraint from recent CMB experiments is translated into
the constraint on the coupling constant for the axion dark
matter as gaγ ≲ 1.6 × 10−15ðma=3 × 10−26 eVÞ GeV−1 at
10−27 ≤ ma ≤ 10−24 eV [71]. The interaction described in
Eq. (13) causes axionlike particles and photons to inter-
convert in the presence of a background magnetic field, and
the axionlike particles could introduce localized oscillatory
modulation in the spectra of photon sources passing
through astrophysical magnetic fields. By exploring this
effect in the recent x-ray spectral data, Refs. [72,73] derive
constraints on the coupling constant as gaγ ≲ 10−12 GeV−1

for ma ≲ 10−12 eV. Coherent oscillations of the Bose
condensate of axionlike particles induce periodic changes
in the plane of linear polarization of emission passing
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through the condensate. Analysis of polarization observa-
tions of bright downstream features in the parsec-scale jets
of active galaxies leads to a constraint on the coupling
constant as gaγ ≲ 10−12 GeV−1 for 5 × 10−23 ≲ma ≲
10−21 eV [74]. Compared to the above other constraints
on the lower-mass axionlike particles, our constraint on the
coupling constant is very stringent if a scenario of large-
field inflation models is assumed, r≳ 0.01. To directly
compare our constraints with other probes, however, the
determination of the energy scale of inflation is necessary.
This could be achieved by ongoing and future CMB
experiments.
Our measured spectrum can also be used to constrain

other possible sources of the cosmic birefringence pro-
posed by Refs. [13–15], although constraining these other
sources is beyond the scope of this paper.
Measurements of anisotropic cosmic birefringence can

be of great importance for testing new physical theories of
the early Universe. Future CMB experiments such as the
BICEP Array [75], CMB-S4 [76], LiteBIRD [77], Simons
Observatory [78], and SPT-3G [79] will measure cosmic
birefringence anisotropies even more precisely [80]. In
these experiments, a curved-sky polarization analysis, as
we have presented here, will be necessary to tightly
constrain a scale-invariant spectrum of cosmic birefrin-
gence anisotropies, which is one of the physically best-
motivated spectra.
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APPENDIX A: SEPARABLE FORMS FOR
COMPUTING THE COSMIC BIREFRINGENCE

QUADRATIC ESTIMATOR

Here we describe computationally efficient ways for
calculating the quadratic estimator of cosmic birefringence
implemented in https://toshiyan.github.io/clpdoc/html/.

1. Unnormalized quadratic estimator

The unnormalized quadratic estimator is given by

ᾱLM¼
X

ll0mm0

�
l l0 L

m m0 M

�
ð−W−

l0LlÞC̃EE
l ĒlmB̄l0m0 : ðA1Þ

Using the properties of the Wigner 3j symbols and the
relationship between the Wigner 3j symbols and spherical
harmonics, we obtain

−
�
l l0 L

m m0 M

�
W−

l0Ll ¼ ½1þ ð−1Þlþl0þL�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2Lþ 1Þ

4π

r �
l0 L l

−2 0 2

��
l l0 L

m m0 M

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2Lþ 1Þ

4π

r ��
l l0 L

2 −2 0

�
þ
�

l l0 L

−2 2 0

���
l l0 L

m m0 M

�

¼
Z

dn̂YLM½Y2
lmY

−2
l0m0 þ Y−2

lmY
2
l0m0 �: ðA2Þ
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Substituting the above equation into Eq. (A1), we obtain the separable form of the quadratic estimator:

ᾱLM ¼
Z

dn̂Y�
LM

�X
lm

Y2
lmC̃

EE
l Ēlm

X
l0m0

Y−2
l0m0B̄l0m0 þ

X
lm

Y−2
lmC̃

EE
l Ēlm

X
l0m0

Y2
l0m0B̄l0m0

�

¼ i
Z

dn̂Y�
LM½ðQE þ iUEÞðQB − iUBÞ − c:c:�

¼ −2
Z

dn̂Y�
LM½UEQB −QEUB�; ðA3Þ

where we define the real quantities QE, UE, QB, and UB as

QE þ iUE ¼
X
lm

Y2
lmC̃

EE
l Ēlm;

QB þ iUB ¼
X
lm

Y2
lmiB̄lm: ðA4Þ

2. Normalization

The estimator from the previous section must be nor-
malized [see Eq. (8)]. Here we extend the method for

lensing and delensing used in Ref. [84] to cosmic bire-
fringence. The inverse of the normalization is given by

1

AL
¼ 1

2Lþ 1

X
ll0

jW−
l0Llj2albl0 ; ðA5Þ

where we define al ¼ 1=ĈBB
l and bl ¼ ðC̃EE

l Þ2=ĈEE
l .

Using the relation between the Wigner 3j symbols and
the Wigner d function, we obtain

1

AL
¼ π

X
ll0

2lþ 1

4π
al

2l0 þ 1

4π
bl08

��
l L l0

−2 0 2

�
2

þ
�

l L l0

−2 0 2

��
l L l0

2 0 −2

��

¼
Z

1

−1
dμ4π

X
ll0

2lþ 1

4π
al

2l0 þ 1

4π
bl0 ðdl−2;−2dL00dl

0
22 þ dl−2;2d

L
00d

l0
2;−2Þ

¼
Z

1

−1
dμ4πðξa−2;−2ξb22 þ ξa−2;2ξ

b
2;−2ÞdL00; ðA6Þ

where we define

ξamm0 ¼
X
l

2lþ 1

4π
aldlmm0 : ðA7Þ

APPENDIX B: MEAN-FIELD BIAS IN
THE PRESENCE OF A GLOBAL
POLARIZATION ANGLE ERROR

Here we describe how the global polarization angle error
introduces the mean-field bias in the rotation estimator.
Assuming nonzero CEB

l , the off-diagonal elements of the
EB correlation induced by lensing have the following
additional term containing CEB

l :

hĒlmB̄l0m0 iCMB ¼
X
LM

�
l l0 L

m m0 M

�
f̃ϕlLl0ϕ

�
LM; ðB1Þ

where f̃ϕlLl0 is the usual weight function of the EE
quadratic estimator for lensing [41], but replacing the

EE with the EB spectrum. For the finite sky coverage,
the window function also produces off-diagonal correla-
tions as

hĒlmB̄l0m0 iCMB ¼
X
LM

�
l l0 L

m m0 M

�
f̃ϵlLl0ϵ

�
LM; ðB2Þ

where f̃ϵlLl0 is the usual weight function of the EE
quadratic estimator for the window [59], but replacing
the EEwith the EB spectrum. The above equations indicate
that, if CEB

l is nonzero due to a global polarization error, the
lensing and window introduces the following mean-field
bias:

hα̂LMi ¼
AL

2Lþ 1

X
x¼ϕ;ϵ

xLM
X
ll0

fαlLl0 f̃
x
lLl0

ĈEE
l ĈBB

l0
: ðB3Þ

We can construct a bias-hardened estimator for α̂ in a
similar way as Ref. [59]. However, the signal-to-noise ratio
of the bias-hardened estimator is significantly degraded.
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