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Despite numerous advances in the field, the exact mechanism behind neural communica-
tion remains elusive. This work is an attempt to answer the question of whether the prop-
agation of an action potential along a neuron axon involves a localised phase transition of
the neuron membrane. The work consists of the development of optical techniques for
the study of supported lipid bilayers asmodels for the cell membrane. The final aim of the
work was to perform simultaneous optical and electrophysiological measurements on the
membranes of living neurons in order to answer the aforementioned question.

Wefirst present the scientific theory required tounderstand thiswork, aswell as a brief
summary of cell membrane biology. We then describe in detail the Hodgkin-Huxley and
Heimburg-Jackson models of action potential propagation and examine how well each
model is able to explain the vast body of experimental findings of mechanical, optical,
thermodynamic and chemical phenomena concomitant with the action potential. From
this examination we determine the properties required of a technique capable of observ-
ing action potentials in a way which can determine whether or not they involve a phase
transition of the cell membrane. Two such techniques are inferferometric reflectometry
and stimulated Raman scattering. We then describe the procedures which were used to
prepare the samples we performed experiments on, as well as the optical and electrophys-
iological experimental setups and methodology we used in our experiments. Afterwards,
we explain the theoretical work we have done for interferometric reflectometry, followed
by our attempts at reducing experimental noise and a discussion of our experimental re-
sults with this technique and of electrophysiology experiments. We finally describe our
data analysis procedure for stimulated Raman scattering microscopy and discuss our re-
sults with this technique.
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The question of how neurons communicate with each other and with the rest of the body
has preoccupied scientists for centuries. From Galvani’s first investigations into bioelec-
tricity in the 1700s to experiments still being carried out today, scientists have attempted
to understand the mechanisms involved and have proposed multiple models to explain
their observations, yet no model has been able to provide a complete description of neu-
ral communication consistent with the results of all the relevant experiments.

The best-known of these models was proposed by A L Hodgkin and A F Huxley in
1952. Inspired by evidence that neural activity involved travelling electric potentials —
called “action potentials”— across the cell membrane, this model viewed the membrane
and its surrounding medium as an RC circuit with variable resistance. For decades it was
hailed as the answer biophysicists were looking for, and even today it is widely accepted,
yet it fails to correctly account formany of the non-electrical phenomena observed during
action potential propagation.

In the last decade, a newmodel was proposed by T RHeimburg and AD Jackson. This
model is thermodynamic rather than electrical, suggesting a travelling phase transition in
the cell membrane is responsible for the wide variety of phenomena caused by neural ac-
tivity, one of which is the action potential. While this model appears to bemore complete
than the Hodgkin-Huxley model (in the sense that it can explain some of the findings the
previous model cannot), it has received little attention from the scientific community, so
whether a phase transition is indeed the mechanism of neural activity remains unknown.
This problem is what motivates this work; the work is an attempt to answer the ques-
tion of whether or not the cell membrane undergoes a phase transition during an action
potential.

Cells are very complicated objects, and neurons are no exception. The membrane is
full of embedded proteins and other molecules, both the interior and the exterior contain
positive and negative ions, and the interior is packed with an actin skeleton and many
different kinds of organelles. Furthermore, they are living things, which means they can
die in the course of an experiment.

Depending on what an experiment’s goals are, sometimes it is appropriate to study a

v
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simplified system instead; if chosen carefully, such amodel systemcan removemanyof the
complications associated with working with living cells without invalidating the results.
One example of a model which is often used in lieu of a cell membrane is a supported
lipid bilayer, an artificial membrane without any of the ions, organelles and embedded
molecules. This can be used to study phase transitions in lipid membranes, for example,
but not, of course, travelling electric potentials.

Chapter 1 of this work first presents the knowledge —separated by field: thermo-
dynamics, electronics, optics, and membrane biology— necessary to understand the re-
mainder of the work, after which it describes theHodgkin-Huxley andHeimburg-Jackson
models for the action potential in detail.

Chapter 2 is a review of the results of some of themost important experiments carried
out in the last century related to the action potential and of howwell each of themodels is
able to explain said results. It concludes by determining the traits which a measurement
technique suitable for optical imaging of action potentials should have if the technique
is to shed light on the question of the presence or absence of an action-potential-related
membrane phase transition.

Chapter 3 describes the methodology employed by the author of this work to study
both supported lipid bilayers and live cells. These methods were not developed as part of
this work. The chapter begins with the preparation of the samples to be studied and then
describes the different experimental setups used: quantitative differential interference
contrast, interferometric reflectometry, stimulated Raman scattering and electrophysiol-
ogy. The theory and analysis procedure for interferometric reflectometry and part of the
analysis process for stimulated Raman scattering data, which N<I< developed as part of
this work, are not included, as they are the subject matter of later chapters.

Chapter 4 presents the interferometric reflectometry theory, starting with the sim-
plest case —that of light reflected by a single layer of a homogeneous material at an angle
of 0 ◦ with respect to the direction of propagation of the light— and then generalising it to
the case of oblique incidence. After this mathematical description of the total reflection
coefficient of such a system and the signal detected by the interferometric reflectometry
setup described in chapter 3, the various attempts at dealingwith noise and the results ob-
tained after data analysis are presented and discussed. It was hoped the technique could
be used to study action potential propagation in live axons, but the issues generated by the
extremely low signal-to-noise ratio of the data prevented this. Chapter 4 also contains the
results of the preliminary electrophysiology experiments conducted. These served both
to create familiarity with electrophysiological techniques and to determine the optimal
properties of the cells and the cell-medium evaporation rate. Electrophysiological mea-
surements of action potentials must be undertaken simultaneously with the (new) optical
measurements if the latter are to be confirmed as indeed being appropriate for action
potential imaging, since electrophysiology remains the established technique to observe
action potentials.

Chapter 5 describes the data analysis procedure employed for the stimulated Raman
scattering data, as well as the results obtained. It shows how stimulated Raman scattering
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microscopy can be employed to distinguish different lipid bilayer phases even when the
signal-to-noise ratio is low due to the small thickness of a single lipid bilayer. The chapter
concludes with a discussion of the significance of the results presented therein and their
relation to other results which have been obtained in the field.

Finally, chapter 6 provides a brief summary of this work and discusses future plans
to continue working towards a better understanding of the cell membrane and whether
phase transitions play a role in neural communication.
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Scientists have been fascinated by how the nervous systemworks for centuries. Luigi Gal-
vani discovered in the late eighteenth century that frog nerves reacted to electrical cur-
rents even after the frog’s death, which led him to conclude that nerve activity involves
travelling electricity.1 His studies of nerve electricitywere followed by those of EmilHein-
rich duBois-Reymond, who half a century later discovered that such electrical activity was
in the form of transient changes in the electric potential of the nerve,2 which are today
known as action potentials. A few decades later, Santiago Ramón y Cajal showed that
nerves are made of individual cells3 (neurons).

In the beginning of the twentieth century, Julius Bernstein proposed that the action
potential occurred due to an exchange of ions through the cell membrane due to changes
inmembrane permeability.4 This later served as the basis for Alan LloydHodgkin and An-
drew Fielding Huxley’s theory of 1952,5 which modelled the cell membrane and the ion
channels embedded in it as an electric circuit. Though it invokesmysterious “gating parti-
cles” which by turns activate and inactivate different ion channels but have never actually
been detected, and though and it contains numerous parameters which can be freely ad-
justed to fit experimental observations, the model was a breakthrough in the scientific
understanding of neural activity: there was now a quantitative, if largely phenomenolog-
ical, description of the action potential and its propagation along a neuron’s axon.

Throughout the twentieth century, scientists conducted experiments of increasing
complexity to elucidate the nature of the action potential: the mechanical, optical and
thermodynamic changes the cell undergoes during activity. The objects of these exper-
iments ranged from single cells to nerve bundles and from tiny myelinated mammalian
neurons to the giant axons of crustaceans and cephalopods. Some of the articles pub-
lished after 1952 attempted to explain the results presented in them under the light of
the Hodgkin-Huxley model to varying degrees of success. It eventually became clear that
the model suffered from several shortcomings in its ability to explain many of these find-
ings, particularly the mechanical and thermodynamic ones.

The year 2005 saw the emergence of an alternative model to explain action potential
propagation. This theory, proposed by Thomas Rainer Heimburg and Andrew D Jack-

1
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son,6 views the cell membrane as a thermodynamic system near a phase transition; this
(localised) transition drives a pressure pulse which, together with the action potential (the
electric potential change), travels in a solitonic fashion down the axon; the action poten-
tial is seen asmerely part of a broader phenomenonwith thermodynamic, mechanical and
electrical components.

In the fourteen years since its appearance, the thermodynamic model has received lit-
tle attention from scientists outside of Heimburg and Jackson’s research group. Perhaps
this is due to itsmultidisciplinary nature or to its increasedmathematical complexity com-
pared to the Hodgkin-Huxley model; perhaps it is merely a consequence of the electrical
model having been well established for decades among the biomedical community. Nev-
ertheless, it is considerably more robust than its older counterpart in terms of being able
to explain the wide variety of non-electrical experimental results of the previous century
— but it is far from perfect, as there remain observations the model cannot account for.

Consequently, although our understanding of action potentials has come a long way
since Galvani’s experiments, there is still much work to be done. More-refined experi-
ments would have the potential to elucidate more of the mechanism of neural activity,
shed light on the limits of applicability of the Hodgkin-Huxley and Heimburg-Jackson
theories, and ultimately, perhaps, allow us to construct a theory that is closer to the truth.

Chapter 2will explore the ability of each of the twomodels to explain themore impor-
tant experimental findings related to the action potential and outline the characteristics
an experiment should have in order to provide the missing information alluded to in the
above paragraph; the remainder of this work will deal with two such experiments. In or-
der to fully understand all of this, however, some scientific background is necessary. That
is the purpose of this chapter. The background theory will be presented by discipline:
thermodynamics, electronics, optics and membrane biology. The models will then be de-
scribed in detail.


�
� .?<IDF;PE8D@:J


�
�
� �@ēLJ@FE

The diffusion equation, derived by Adolf Fick in 1855,7 describes the diffusion of some
quantity as a function of time and distance when there is an imbalance of said quantity
between two regions; for example, it can describe the change in the temperature of a cylin-
der or the varying local density of a fluid in a chamber. For one-dimensional systems, it
is

∂L
∂K

= �
∂2L
∂O2

,

where L is the density of a quantity, K is time, O is distance, and� is the diffusion coefficient
of whatever is quantified by L and has units of distance2/time. � is dependent on both
what is quantified by L and what the medium in which it diffuses is.
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Consider a systemwith internal energy/onwhich someamount ofworkd1 is performed
by an external agent and/or into which some amount of heat d+ enters. The first law of
thermodynamics states that the change of internal energy of the system is8

d/ = d1+ d+.

Thus, a positive work (i.e. work performed on the system, as opposed to work performed
by the system on its surroundings, which would be negative) causes a positive change of
energy, as does a “flow” of heat into the system.

The nature of the work performed on the system is unimportant for the above rela-
tionship but depends on the macroscopic variables which describe the system. Thus, the
work can be mechanical, electrical, chemical, and so on. The variables relevant to the
mechanical case depend on the number of affected dimensions: the work to change the
volume M of the system is

d1 = −*dM,

where * is the bulk pressure on the system; the work to change its surface area � is

d1 = −Πd�,

where Π is the lateral pressure on the system; and the work to change the length C of a
spring is

d1 = −=dC,

where = is the force on the spring along the direction in which the spring expands and
contracts. An example of an electrostatic case is the work to charge a capacitor,

d1 = 0dH,

where 0 is the voltage difference between the capacitor’s plates and dH is the change in the
capacitor’s charge.

A useful quantity in thermodynamics is the entropy - of a system, which characterises
the amount of disorder in the system. It is, like volume and charge, an extensive variable,
meaning that its total value for a system is equal to the sum of the values for any set of
partitions of the system; contrast this with the intensive variables (such as pressure and
voltage), which do not depend on the size of the system or how it is partitioned.

The second law of thermodynamics states that the entropy change in any spontaneous
process is non-negative:

d- ! 0.
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Many processes in biology, however, decrease the entropy of an organism — at the cost
of increasing that of its surroundings. The entropy is related to the temperature . of a
system and to the amount of heat that enters it by9

d+ = .d-.

We thus have, for a three-dimensional system,

d/ = −*dM+ 0dH+ . . .+ .d-, (1.1)

where the ellipsis denotes any other contributions to d1. In general, we may write

d/ =
∑

A

OAdPA,

where the OA are the intensive variables of the systemwith the appropriate sign (in the case
of pressure, for instance, O = −*) and the PA are their associated extensive variables.

.?<IDF;PE8D@: GFK<EK@8CJ

/ is an example of a function called a thermodynamic potential. Other such functions
are the enthalpy ", the Helmholtz free energy  and the Gibbs free energy !, which are
defined as8

" = /+ *M,

 = /− 0H− .-,

! = /+ *M− 0H− .- =  + *M.

Thus,

d" = d/+ *dM+ Md* = Md*+ 0dH+ . . .+ .d-,

d = d/− 0dH− Hd0− .d-− -d. = −*dM− Hd0+ . . .− -d.,

d! = d + *dM+ Md* = Md*− Hd0+ . . .− -d..

The Gibbs free energy is particularly important because it is the energy available to the
system to do work on its surroundings at constant pressure and temperature.

�@C8K@FE 8E; :FDGI<JJ@FE

If we think of the volume of a substance as dependent on pressure and temperature, then
its differential is

dM =
∂M
∂*
d*+

∂M
∂.
d..

The quantities

κ = −1
M
∂M
∂*
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and

β =
1
M
∂M
∂.

are called, respectively, the substance’s isothermal compressibility and dilation coefficient;
they quantify the decrease in the substance’s volume if pressure is applied to it and the
increase in its volume if the temperature is increased, respectively. Formost liquids, these
vary slowly with pressure and temperature, so they may usually be taken to be constant
when used to describe a liquid. With this assumption, wemay divide dM by M and integrate
to obtain a useful equation of state for liquids:

ln
(
M2
M1

)
= −κ(*2 − *1) + β(.2 − .1), (1.2)

where the subindices 1 and 2 refer to two equilibrium states of the liquid.


�
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A phase is a homogeneous constituent of a system. What is meant by “homogeneous”
here is that the (macroscopic) physical properties of the constituent are uniform; another
way of saying this is that the intensive variables describing the constituent (such as tem-
perature, pressure, voltage and chemical potential — the latter of which depends on the
particles’ chemical composition) change continuously.10,11 For example, a salt dissolved
in a homogeneous liquid forms a single phase, two inmiscible liquids in a container form
two different phases, and a single substance which is solid in some regions and liquid in
others also forms two phases. The physical properties of a phase, then, depend only on
the intensive variables.12

Two phases can be in thermodynamic equilibriumwith each other only if their inten-
sive variables have the same values. Some derivatives of the Gibbs and Helmholtz free en-
ergies with respect to temperature and/or pressuremay be discontinuous at the boundary
between the two phases; if this is the case, the transition is called an Eth-order phase tran-
sition, where E is the order of the lowest-order discontinuous derivative; if the derivatives
are all continuous, it is instead called a continuous phase transition.13 Phase transitions
such as melting and vaporisation are first-order transitions.14

A phase transition can occur at multiple combinations of the values of the intensive
variables describing the system. Thus, there is a region of dimension(−1 in the system’s
phase space —where ( is the number of extensive/intensive variable pairs (pressure and
volume, temperature and entropy, and so on) describing the system— inwhich two phases
can coexist in the same system. A well-known example of this phase coexistence is water
at a pressure of 1 atm and a temperature of 0 ◦C; liquid water and ice can coexist, and,
unless there is a temperature or pressure fluctuation, neither phase (liquid or solid) will
undergo a transition to the other phase.
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According to the second law of thermodynamics, any spontaneous process either in-
creases the entropy of a system or does not alter it. Thus, equilibrium—the state in which
the systemundergoes no further changes—occurswhen entropy has reached amaximum.
At equilibrium, the variables describing the systemdonot change, so their derivativeswith
respect to time are all zero; therefore, the differentials of /, ",  and ! are also zero: the
thermodynamic potentials and the entropy reach their extremal points concomitantly.
Because the free energies are proportional to −-, when the entropy reaches a maximum
they reach a minimum.

The fact that at equilibrium ! reaches its minimum means that two phases can only
coexist in equilibrium if their Gibbs free energies are equal (otherwise only the phase with
lower Gibbs free energy would exist).

Consider a change (brought about, for example, by some external agent) from a state
in the phase-coexistence region with pressure *, voltage 0, temperature . and Gibbs free
energy !(*,0,.) to another state in the coexistence region with pressure *+∆*, voltage
0+∆0, temperature .+∆. and Gibbs free energy!(*,0,.)+∆!. If∆*,∆0 and∆. are
small,∆! will be correspondingly small, so we may expand it to first order about zero:

∆! ≈ ∆*
∂!
∂*

∣∣∣∣
∆*=∆0=∆.=0

+∆0
∂!
∂0

∣∣∣∣
∆*=∆0=∆.=0

+∆.
∂!
∂.

∣∣∣∣
∆*=∆0=∆.=0

.

Let us now recall that
∂!
∂*

= M,

∂!
∂0

= −H,

∂!
∂.

= −-.

Substituting this into the first-order expansion of∆! yields

∆! ≈ M∆* − H∆0 − -∆..

Now,∆! is the same for both phases; using the subscripts 1 and 2 to differentiate between
the phases, we may write

M1∆* − H1∆0 − -1∆. = M2∆* − H2∆0 − -2∆..

Holding any one of the intensive variables constant and reducing our changes in the other
two to infinitesimal ones, we obtain the slope of the coexistence curve on the correspond-
ing two-dimensional phase diagram:

∂*
∂0

=
H2 − H1
M2 − M1

,

∂*
∂.

=
-2 − -1
M2 − M1

,

∂0
∂.

= −-2 − -1
H2 − H1

.
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The second of these equations is called the Clausius-Clapeyron relation; wemight call the
other two “Clausius-Clapeyron-type relations”.
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The electric current flowing through a resistor is

#R =
0R
,
,

where 0R is the voltage across the resistor and , is its resistance; this is known as Ohm’s
law. The current flowing through a capacitor is

#C =
dH
dK

= �
d0C
dK

,

where H is (as in section 1.1) the capacitor’s charge, � is its capacitance (here assumed con-
stant) and 0C is the voltage across it. Kirchhoff’s law states that the total current leaving
any given point in any circuit —taken, by convention, as positive current— equals the to-
tal current entering that point— taken as negative current;15 in other words, it states that
charge is conserved in the circuit.

Two resistorswith resistances,1 and,2 connected in parallel are equivalent to a single
resistorwith effective resistance,eff. According toOhm’s law, the current flowing through
,A is

#A =
0R
,A

with A ∈ {1, 2}. By Kirchhoff’s law, the total current flowing from one side of the two-
resistor system to its other side is # = #1 + #2. However, by replacing the two resistors in
parallel with the single resistor ,eff, we obtain

# =
0R
,eff

.

CR

VC

Figure 1.1: An RC circuit.



✐
✐

“NahmadRohenA-PhDthesis” — 2020/2/29 — 5:04 — page 8 — #22 ✐
✐

✐
✐

✐
✐
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Thus,

1
,eff

=
1
,1

+
1
,2

.

Similarly, two capacitors connected in parallel are equivalent to a single capacitor with
effective capacitance �eff. As before, we have

#A = �A
d0C
dK

and # = #1+ #2; on the other hand, replacing the two capacitors in parallel with the single
capacitor �eff,

# = �eff
d0C
dK

.

Hence,

�eff = �1 + �2.

,� :@I:L@KJ N@K?FLK 8 MFCK8>< JFLI:<

An RC circuit (figure 1.1) is a circuit formed by a resistor and a capacitor connected in
series without any external current sources. Using Kirchhoff’s law for a point between
the resistor and the capacitor and noting that 0R = 0C, we have

0C
,

+ �
d0C
dK

= 0,

which has the solution

0C = 00<−
K
,� ,

where 00 = 0C(K = 0) is the capacitor’s initial charge. This means that the voltage across
the capacitor takes a time τ = ,� to reach 1/< times its original value. τ is called the time
constant of the RC circuit, as it determines how quickly the capacitor’s plates are charged.

C

R VC

Vr

Figure 1.2: An RC circuit with a voltage source.
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If the circuit has a source of constant voltage 0r connected in series to the resistor (fig-
ure 1.2), we have 0r + 0R = 0C and

0C − 0r
,

+ �
d0C
dK

= 0.

Making the substitution 0 = 0C − 0r = 0R, we obtain

0
,
+ �

d0
dK

= 0,

which is identical to the equation for an RC circuit without a voltage source; thus, the
solution is

0C = 0r + 00<−
K
,� ,

where00 is now the excess of0C with respect to0r at time K = 0. If the capacitor is initially
charged to a voltage greater than 0r, it will discharge down to 0r; otherwise, it will charge
up to 0r; in the special case in which it is initially discharged, 00 = −0r. Note that the
time constant of the capacitor has remained the same.

*I<JJLI< FE K?< GC8K<J F= 8 :?8I><; :8G8:@KFI

The charge on the plates of a capacitor produces an electric field �⃗ between them. If the
surface area � of the plates is much greater than the distance between them, wemay con-
sider the plates to be infinite in extent when performing calculations; in this approxi-
mation, the electric field is perpendicular to the plates everywhere. Taking a cylindrical
surfaceS of base area∆� and height 2∆Q surrounding an area∆� of one plate (figure 1.3)
and using Gauss’s law in its integral form,16 we have

∆H

ϵ
=

∫

S
�⃗·d�⃗ = 2∆��,

where ϵ = E2ϵ0 is the electric permittivity of the (dielectric) material between the plates,
E is the material’s refractive index, ϵ0 is the permittivity of vacuum and ∆H is the charge

∆A

∆z
σ

Figure 1.3: An imaginary cylindrical surface (yellow) surrounding a portion of a plate with uniform
charge density σ.
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–σ

σ

Figure 1.4: The electric fields produced by the top (yellow arrows) and bottom (orange arrows)
plates of a capacitor.

of the enclosed portion of the plate (S is assumed to be small enough for � to be ap-
proximately constant throughout it). Note that this does not depend on the height ofS,
indicating that � is indeed uniform on either side of the plate and we could have taken an
arbitrarily sized cylindrical surface.

The electric field due to a single charged plate, then, is

� =
∆H

2∆�E2ϵ0
=

σ

2E2ϵ0
,

where σ is the charge density. Now, a capacitor consists of two plates with opposite
charges, so the second plate produces a field −�⃗ (figure 1.4). Note that the fields outside
the capacitor cancel each other out and the fields inside the capacitor add up, yielding

� =
σ

E2ϵ0

between the plates and � = 0 everywhere else.
Because the capacitor’s plates are charged, this electric field exerts a force on them.

Each plate thus feels an attractive force equal to its charge multiplied by the other plate’s
electric field:

 =
σH
2E2ϵ0

=
σ2�
2E2ϵ0

.

Hence, the electrostatic pressure on each plate is

* =
σ2

2E2ϵ0
. (1.3)

For example, suppose a capacitor of 1 µF whose plates have an area of 0.3 cm2 and are
separated by a dielectric of refractive index 1.5 is charged to 100 mV. The charge on each
plate is then 10−7 C,meaning that the charge density is 3.33×10−3 C/m2. This generates
a pressure of about 2.79× 105 Pa or 2.75 atm.
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Suppose we have a circuit formed by two identical units, each of which is an RC circuit
like that of figure 1.2, connected in parallel (figure 1.5, left); we will assume that 0r is
constant. Thévenin’s theorem states that any circuit formed by two terminals (the volt-
age across which we are interested) and any number of resistors, voltage sources and/or
current sources is equivalent to a circuit formed by the same two terminals with a single
voltage source and a single resistor connected in series between them;15 can we do the
same for a circuit formed by resistors, capacitors and voltage sources (figure 1.5, right)?

To show that we can, we take into consideration the currents flowing through each
loop of the circuit (figure 1.6, left) and of a circuit formed by exchanging the positions of
the second resistor and the first capacitor-voltage subunit (figure 1.6, right).

In the former case, we have

0C + 0r
,

= #1 = −#2 + #3,

�
d0C
dK

= #1 − #2 = #3,

whereby #2 = 0 and #1 = #3. Each resistor, then, has a current #3 flowing through it, as
does each capacitor and each voltage source. Because #2 = 0, this circuit is equivalent to
two isolated RC circuits with time constant τ = ,�.

In the latter case, we have

0C + 0r
,

= #1 = #2 − #1,

�
d0C
dK

= #2 − #3 = #3,

whereby #2 = 2#1 = 2#3. Each component still has a current #3 flowing through it. Now,
as we saw at the beginning of section 1.2.1, this circuit is equivalent to a single RC circuit
like the one on the right side of figure 1.5 with ,eff = ,/2 and �eff = 2� (to see that the
capacitor-voltage subunits in parallel are equivalent to a single capacitor-voltage subunit,
we note that, because the two capacitors are connected to identical voltage sources, we

VC + Vr

CR
Vr

C
Vr

R CeffReff
Veff

~

VC + Vr

Figure 1.5: A circuit formedby two identical RC circuits in parallel and a possible equivalent circuit.
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can replace the two subunits with a single voltage source 0r connected in series with two
capacitors � in parallel with each other). For said circuit, we have

# =
0C + 0r
,eff

= �eff
d0C
dK

,

which leads to ,eff# = ,#1 and

#
�eff

=
#1
�
.

Thus,

,
,eff

=
�eff
�

,

which finally yields τeff = ,eff�eff = ,� = τ .

'8EP ,� LE@KJ

By showing that the time constants and the current through each of the components of
the two circuits on figure 1.6 are the same, we have proven that the circuits are equivalent
to each other and thus that the equivalence of figure 1.5 holds. In what follows we will
prove that, if the same is true for a circuit formed by an arbitrary number ( of RC units,
it is also true for one formed by (+ 1 units.

If the equivalence holds for ( units, we can rearrange the resistors and the capacitor-
voltage subunits of the first ( units so that all the resistors are together and all the
capacitor-voltage subunits are together (figure 1.7, centre). We thennote that this is equiv-
alent to a circuit formed by only two units, one of which has a resistor ,/( and a capacitor

VC + Vr

CR
Vr

C
Vr

R

VC + Vr

CR
Vr

C
Vr

R

VC + Vr VC + Vr

I1 I2 I3 I1 I2 I3

Figure 1.6: A circuit formed by two identical RC circuits in parallel and a circuit with the resistors
and the capacitor-voltage subunits rearranged.
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(� and the other ofwhich has a resistor, and a capacitor� (figure 1.7, bottom). As before,
we look at the current in each loop.

In the case shown at the bottom of figure 1.7, we have

0C − 0r
,

=
#1
(

= −#2 + #3,

�
d0C
dK

=
#1 − #2
(

= #3,

which implies that once again #2 = 0 and that #1 = (#3. Thus, the resistor ,/( and
the capacitor (� have a current (#3 flowing through them while the resistor , and the
capacitor�have a current #3 flowing through them. The time constants of the two isolated
RC circuits (to which this circuit is again equivalent on account of #2 being equal to zero)
are τ = ,�, as before.

In the case analogous to the one shown on the right of figure 1.6 (obtained by exchang-
ing the two central columns of the former case with each other), we have

0C − 0r
,

=
#1
(

= #2 − #1,

�
d0C
dK

=
#2 − #3
(

= #3,

VC + Vr

NC
Vr

C
Vr

R
R
N

VC + Vr

CR
Vr

C
Vr

R C
Vr

R C
Vr

R

VC + Vr

R C
Vr

RR C
Vr

RC
Vr

C
Vr

Figure 1.7: A circuit formed by ( + 1 identical RC circuits (top), a rearrangement of the first (
units (centre) and an equivalent circuit of the rearrangement (bottom).
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whereby

#2 =
(+ 1
(

#1 = ((+ 1)#3

and again #1 = (#3. Once again, the resistor ,/( and the capacitor (� have a current
equal to (#3 while the resistor , and the capacitor � have a current equal to #3 flowing
through them. As before, this circuit is equivalent to a single RC circuit with

1
,eff

=
(
,
+
1
,
,

which yields ,eff = ,/((+ 1), and �eff = (�+� = ((+ 1)�. The time constant is then
τeff = ,eff�eff = ,� = τ .

This proves that the equivalence remains true for any number of RC units.

�FEK@ELFLJ C@D@K

In the limit in which ( → ∞ with finite ,eff and �eff, it is useful to use the conductance
!, defined as

! =
1
,
,

instead of the resistance; in this case, we can define a conductance per unit length (or
per unit area if the array is two-dimensional) and a capacitance per unit length or unit
area; these are called the specific conductance (denoted by >) and the specific capacitance
(denoted by :). Note that the specific resistance I, defined as the inverse of >, has units of
resistance times length. Note also that τ = ,� = I:.


��� )GK@:J
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When an electromagnetic field �⃗ passes through a material, it polarises its constituent
atoms, thereby forming small dipoles which create an electric field in the opposite direc-
tion as �⃗. If the material has permittivity ϵ, then the degree to which this polarisation
occurs is characterised by the electric displacement vector17 �⃗ = ϵ�⃗.

In the preceding section, ϵ was treated as a scalar. In general, however, it is a non-
singular symmetric 3-dimensional tensor,18

ϵ =

⎛

⎝
ϵ11 ϵ12 ϵ13
ϵ12 ϵ22 ϵ23
ϵ13 ϵ23 ϵ33

⎞

⎠ ,
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and the components of the electric displacement vector are given by

�A =
3∑

B=1

ϵAB�B.

Because ϵ is symmetric, there always exists a coordinate system in which it is diago-
nal. The axes in this coordinate system are called the material’s optic axes. Throughout
this section, we shall only use such coordinate systems and write the components of the
diagonal of ϵ as ϵO = ϵ11, ϵP = ϵ22 and ϵQ = ϵ33. If ϵO = ϵP = ϵQ, then ϵ is a scalar. Materials
for which this is not so are called birefringent. Birefringence is a consequence of a mate-
rial being polarisable (meaning its positive and negative centres of charge are displaced)
to different degrees in different directions, which itself is due to an anisotropic molecular
structure. Examples of birefringent materials are non-cubic crystals;18 biological mem-
branes;19 DNA;20 and colloids formed by non-spherical particles oriented non-randomly
in a homogeneous liquid, such as blood.21

Let us consider a material with ϵO ̸= ϵP = ϵQ. We write ϵe = ϵO and ϵo = ϵP. The
equality of the P and Q components of ϵmeans that a rotation by any angle ψ about the O
axis will leave ϵ invariant:

⎛

⎝
1 0 0
0 cos(ψ) −sin(ψ)
0 sin(ψ) cos(ψ)

⎞

⎠

⎛

⎝
ϵe 0 0
0 ϵo 0
0 0 ϵo

⎞

⎠

⎛

⎝
1 0 0
0 cos(ψ) sin(ψ)
0 −sin(ψ) cos(ψ)

⎞

⎠ =

⎛

⎝
ϵe 0 0
0 ϵo 0
0 0 ϵo

⎞

⎠ .

This means that the material only has one optic axis, which is the O axis. Such materials
are called uniaxial.

In section 1.2 we assumed that the materials the circuit components were made of
were non-magnetic (i.e. that µ ≈ µ0) and thus their permittivities and refractive indices
were related by ϵ = E2ϵ0. We shall make the same assumption here and, indeed, through-
out this work, as biological materials are in general non-magnetic.22

The fact that ϵ is a tensor means that a birefringent material will have different re-
fractive indices for different polarisations of the electric field: the O component of �⃗ (that
parallel to the material’s optic axis) will “see” a refractive index

Ee =

√
ϵe
ϵ0
,

while any component perpendicular to the optic axis will “see” a refractive index

Eo =

√
ϵo
ϵ0
.

The subscripts e and o stand for “extraordinary” and “ordinary”, respectively. The quantity
∆E = Ee − Eo is called the birefringence of the material.
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Consider a planewave travelling in the Q direction through amaterial with refractive index
E. The electric field �⃗ of this wave is then contained in the OP plane. The polarisation
of �⃗ depends on the relative phase ϕ between its components; for example, ϕ = ±ć/2
corresponds to circular polarisation if the O and P components have the same magnitude.
If the wave travels a distance 8 through the material, its polarisation remains unchanged,
as the phases of both components evolve in the same way.

If the material is birefringent and its optic axis lies on the OP plane (for simplicity, let
us assume it is the O axis), then the relative phase changes by an amount∆ϕ = (BO − BP)8,
where BO is the wave number of �O and similarly for the P component. The reasonϕ—and
thus the polarisation— changes is that BO and BP are different: BO = EeB0 and BP = EoB0,
where B0 is the wave number of �⃗ in vacuum. We may thus rewrite the change of relative
phase as

∆ϕ =
2ć∆E8
λ

,

where λ is the wavelength of �⃗ in vacuum.
If the material’s optic axis is the Q axis, both components of the polarisation see the

same refractive index and there is again no phase change.


����� ,8D8E J:8KK<I@E>
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A material’s polarisation density, which to first order is given by

*⃗ = (ϵ− ϵ0)�⃗ = ϵ0χ1�⃗,

describes its reaction to an external electric field �⃗. Here, χ1 is the material’s first-order
electric susceptibility, which, like the permittivity, is a 3-dimensional tensor acting on �⃗.
An oscillating electric field

�⃗ = �⃗0<@(⃗B·⃗I−ωK)

will induce a phonon —a localised vibration wave— of amplitude �0, wave vector 8⃗ and
frequency ω0 < ω in a material it is incident on. This oscillation may be written as

� = �0
(
<@(⃗8·⃗I−ω0K) + <−@(⃗8·⃗I−ω0K)

)
.

The material’s susceptibility is a function of �.23 For small � (which occurs if �⃗ is suffi-
ciently weaker than the fields holding the nuclei of the material’s molecules together24),
we may expand χ1(�) to first order about χ1(0):

χ1(�) ≈ χ1(0) +
dχ1
d�

∣∣∣∣
�=0

�.
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Putting all of this together, we obtain

*⃗ ≈ ϵ0χ1(0)�⃗0<@(⃗B·⃗I−ωK)

+ϵ0�0
dχ1
d�

∣∣∣∣
�=0

�⃗0<
@
(
(⃗B−8⃗)·⃗I−(ω−ω0)K

)

+ϵ0�0
dχ1
d�

∣∣∣∣
�=0

�⃗0<
@
(
(⃗B+8⃗)·⃗I−(ω+ω0)K

)

.

This shows that *⃗ has three components: one with the original angular frequency ω,
one with angular frequency ω−ω0 and one with angular frequency ω+ω0. The material
may release the energy acquired in its interaction with �⃗ by emitting light of any of these
frequencies.

To find the value of ω0, it is necessary to view the interaction between the material
and the electric field from a microscopic perspective.

The energy of an electron in an atom or molecule is quantised, which means it can
only have certain values. The same is true for atomic nuclei in molecules. The energies
in the electronic case are related to the orbitals the electrons occupy, while those in the
nuclear case are related to the vibrational and rotational modes of the nuclei with respect
to each other. The lowest-energy state of an atom or molecule is called the ground state,
and all other states are called excited states. In the case of the excitation of a phonon
in the material by �⃗, the material’s molecules are undergoing transitions from one vibra-
tional mode or state to another. Thus, ω0?̄must equal the energy difference between two
vibrational states.

If �⃗ comes from incident light, the emitted light with angular frequency ω ∓ ω0 is
the result of inelastic scattering of the incident light (figure 1.8). This type of inelastic
light scattering is called Raman scattering in honour of Chandrasekhara Venkata Raman,
who reported the phenomenon in 1928,25 about four and a half years after its prediction
by Adolf Smekal.26 If the energy difference between a scattered photon and an incident
photon is∆/ = ?̄(ωr − ωi) < 0, where ωr is the angular frequency of the scattered light
and ωi is that of the incident light, it is called Stokes Raman scattering; this is in honour

ground state
excited vibrational state

ΔU

virtual state

ωrωi

Figure 1.8: Diagram of spontaneous Stokes Raman scattering. An incident beam excites the tran-
sition between vibrational energy states separated by an energy ∆/ and is inelastically scattered,
producing a scattered beam with angular frequency ωr = ωi −∆//̄?.
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of George Gabriel Stokes, who in 1852 extensively described fluorescence,27 which also
consists of a shift to a lower frequency; if ∆/ > 0, it is accordingly called anti-Stokes
Raman scattering.28

By measuring and graphing the amount of photons of each frequency which are scat-
tered by a material, a Raman spectrum of the material can be constructed. The fact that
each type of molecule has a unique collection of vibrational energy levels —and thus a
unique Raman spectrum—makes Raman scattering a powerful tool for noninvasively de-
termining the chemical composition of a sample.

Stokes Raman scattering has a higher probability of occurring than anti-Stokes Raman
scattering because of the energy distribution of molecules. The probability that a given
molecule in a sample will be in a state with energy/ is proportional to <−//BB., where BB is
Boltzmann’s constant and . is the temperature of the sample;29 therefore, given two en-
ergy states separated by an energy difference∆/ > 0, the ratio of molecules in the higher
state tomolecules in the lower state is <−∆//BB. < 1. As a result, while the positions of the
peaks in any Raman spectrum are symmetric about∆/ = 0 (because photons scattered on
the Stokes side and those scattered on the anti-Stokes side correspond to the same transi-
tions betweenmolecular vibrational states), the Stokes-side peaks are usually stronger and
give a better signal in practice. However, using the Stokes-side signal makes Raman scat-
tering and fluorescence (which is also Stokes-side, but it involves a transition to a higher
energy state followed by a multi-step return to the lower-energy state, while Raman scat-
tering involves a transition to a “virtual” higher energy state followed by a transition to
a state different from the one the molecule started at) difficult to separate experimen-
tally without post-detection data processing. This problem is diminished by the fact that,
while what matters in fluorescence is the wavelength of the incident light, what matters
in Raman scattering is the energy difference between the scattered light and the incident
light.

Raman shifts —that is, the energy differences between the scattered photons and the
incident ones— are usually calculated as

∆B =
1
λr

− 1
λi
,

where λr is the wavelength of the scattered light and λi is that of the incident light (the
factor of 2ć is omitted out of convention), and are measured in cm−1. For example, if
the incident light has a wavelength of 550.0 nm, then scattered light with a wavelength of
652.2 nm corresponds to a Raman peak at about 2,850 cm−1 on the Stokes side.

In spontaneous Raman scattering, the vibrations (and thus the scattered light) are cre-
ated by a combination of the external field and the material itself; because the material’s
molecules vibrate thermally (that is, incoherently), the resulting vibrations are incoherent.

Let us write the electric field of the light scattered by a single molecule in some direc-
tion as � = �0<@ϕ. The intensity of the light scattered by that molecule is proportional
to |�|2 = � 2

0 . The total intensity of the light scattered by ( identical molecules in that
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direction is then

# =
ϵ0:
2

∣∣∣∣∣∣

(∑

A=1

�A

∣∣∣∣∣∣

2

=
ϵ0:� 2

0
2

(∑

A=1

⎛

⎝1+
∑

ℓ ̸=A

<@(ϕA−ϕℓ)

⎞

⎠ .

For large (,

(∑

A=1

∑

ℓ ̸=A

<@(ϕA−ϕℓ) ≈ 0

because themolecules scatter light incoherently (i.e. theϕA are randomly distributed). The
intensity is thus

# =
ϵ0:(� 2

0
2

∼ (.

�F?<I<EK 8EK@
-KFB<J ,8D8E J:8KK<I@E>

For stronger electric fields, the first-order expression for the polarisation density is no
longer valid. We write

*⃗ = ϵ0
∑

A

χA�⃗ A =
∑

A

*A,

where each χA is a tensor which acts on A vectors (hence the exponent of �⃗). For a given A,
χA is called the Ath-order electric susceptibility of the material. The second-order suscep-
tibility of centrally symmetric materials is zero, so we shall focus on the first universally-
nonzero nonlinear term,χ3. Whenχ2 is not zero, it is generally of the order of 10−12 m/V;
χ3 is generally of the order of 10−24χ1 m2/V2.30

Let us now consider two high-power incident fields

�⃗p =
1
2
�⃗p0
(
<@(⃗Bp ·⃗I−ωpK) + <−@(⃗Bp ·⃗I−ωpK)

)
,

�⃗s =
1
2
�⃗s0
(
<@(⃗Bs ·⃗I−ωsK) + <−@(⃗Bs ·⃗I−ωsK)

)

ground state
excited vibrational state

ΔU

virtual state

ωsωp

virtual state

ωaωp

ΔU

Figure 1.9: Diagram of coherent anti-Stokes Raman scattering. The anti-Stokes beam, with angu-
lar frequency ωa = 2ωp − ωs, is detected.
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with ωs < ωp; in the context of light waves, �⃗p is called the pump beam and �⃗s is called the
Stokes beam because it is Stokes-shifted with respect to �⃗p (i.e. it has a lower frequency
than �⃗p). The total field is then �⃗ = �⃗p + �⃗s. Because χ3 is a tensor which acts on the
electric field three times, *3 is proportional to �3:

*3 =
ϵ0χ3
8

(
�p0
(
<@(⃗Bp ·⃗I−ωpK) + <−@(⃗Bp ·⃗I−ωpK)

)
+ �s0

(
<@(⃗Bs ·⃗I−ωsK) + <−@(⃗Bs ·⃗I−ωsK)

))3
.

*3 therefore has, in addition to the original frequencies ωp and ωs, six combination fre-
quencies: 3ωp, 2ωp−ωs, 2ωp+ωs, 2ωs−ωp, 2ωs+ωp and 3ωs. In particular, ωa = 2ωp−ωs
is called the anti-Stokes frequency because it is shifted from ωp in the anti-Stokes direc-
tion by the same amount as the Stokes beam (figure 1.9); the ωa term of *3 has amplitude
3ϵ0χ3� 2

p0
�s0 .

This time, in contrast to spontaneous Raman scattering, the vibrations are driven by
the two incident fields, which are coherent with each other. The vibrations are thus co-
herent with the incident fields, and so is the scattered light — hence the name “coherent
anti-Stokes Raman scattering”, or CARS. If ωp − ωs corresponds to the energy difference
between two vibrational states of the material, the molecules vibrate resonantly and the
amount of scattered light is greatly increased.

The CARS intensity generated by ( identical molecules is

# ∼ |χ3|2(2� 4
p0

� 2
s0 ∼ (2

because the scattering is coherent and thus all the ϕA are equal.

-K@DLC8K<; ,8D8E J:8KK<I@E>

If, instead of detecting light at the anti-Stokes frequency, we detect light at the Stokes
frequency ωs or at the pump frequency ωp, we note that the coherent Raman scattering
process results in a net decrease in the number of photons of frequency ωp and a net in-
crease in the number of photons of frequency ωs because the Stokes-side process is more
efficient (occurs more often) than the anti-Stokes-side process: the pump beam intensity

ground state
excited vibrational state

ΔU

virtual state

ωsωp ωpωs

Figure 1.10: Diagram of stimulated Raman scattering. The higher efficiency of Stokes-side scatter-
ing compared to anti-Stokes-side scattering results in a net increase in the Stokes beam intensity
and a corresponding decrease in the pump beam intensity.
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decreases, while the Stokes beam intensity increases (figure 1.10). This process is called
“stimulated Raman scattering”, or SRS, because the Stokes beam stimulates the conver-
sion from ωp to ωs.

This is still a nonlinear process driven by two beams which can be coherent with each
other, so it provides, like CARS, a signal orders of magnitude stronger than spontaneous
Raman scattering does. At the same time, it only involves two frequencies rather than
three, so, while the signal (which is proportional to |χ3|( instead of to |χ3|2(2)31 is typi-
cally weaker than that of CARS, it does not suffer from a non-resonant background.32,33
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According to the fluid mosaic model proposed by Seymour Jonathan Singer and Garth
Nicolson in 1972, the cell membrane comprises a lipid bilayer with embedded proteins.34

The bilayer is typically 4–6 nm thick and, considering most cells have a radius between a
few hundred nanometres and a fewmicrons, has an area of the order of 106–108 nm2.35,36

The area can thus be considered infinite compared to the thickness formost purposes (for
example, because of its great area compared to its thickness and because membranes are
closed surfaces, one may ignore edge effects when considering the electric properties of
the membrane).

&@G@;J

Membrane lipids consist of a large hydrophilic head group and one or two hydrophobic
hydrocarbon tails (figure 1.11). Therefore, they are amphiphilic and have cylindrical or
conical shapes depending on the relative sizes of the head and tail groups and the relative
orientation of the tail groups in the case in which there are two. Their amphiphilic nature
causes them to form ordered structures, such as bilayers, when immersed in an aqueous
medium37 (see also section 3.1.1). Under physiological conditions, their tails are nearly
fully extended.36

The head group and tail(s) of a lipid molecule have different sizes, and the relation-
ship between these sizes determines the overall shape of the molecule. Cell membranes
are asymmetric in that their exterior and interior compositions are different, leading to
differences in the shapes of the lipid molecules and thus their orientations relative to ad-
jacent molecules. In general, this causes the membrane to be curved,37 which in turn
contributes to the fact that the voltage 0m across it is nonzero. The other contribution
to the membrane voltage comes from differences in the concentrations of the ions which
exist in the intracellular and extracellular media. Sections 1.4.2 and 1.4.3, respectively,
will discuss these two contributions to 0m in further detail.

Individual lipidmolecules have a large lateral diffusion rate (i.e. they are highlymobile
within the membrane plane), making the membrane fluid. Lateral movement consists of
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Figure 1.11: Chemical structure of dipalmitoylphosphatidylcholine (DPPC), an important lipid in
some cell membranes.

alternating brownianmotion and large jumps with a period of the order of 10ms.36 Ther-
modynamic variables such as temperature, pressure, pH and chemical structure affect the
phase of themembrane;37 cooling or an increase in pressure, for example, produce a phase
transition from the physiological liquid state (called the liquid-disordered state) to a gel-
like solid state (called the solid-ordered state) where the hydrocarbon tails are completely
extended.36 In this state, the tails are tilted with respect to the direction perpendicular to
the membrane plane; the tilt increases as the concentration of water around the bilayer
increases. In the solid-ordered state the lateral diffusion rate of the lipids decreases.37 The
melting temperature .m of the lipid bilayer grows with tail length and saturation and is
normally about 15 ◦C below body temperature,8 which, as mentioned earlier, means that
under physiological conditions the membrane is in the liquid-disordered state; as their
body temperature changes, some organisms are capable of modifying the composition of
their cell membranes in such a way that fluidity is maintained.36

In addition to lateral diffusion, lipid molecules are capable of undergoing rotations
about their axes. In contrast, however, they very rarely move from one layer of the mem-
brane to the other.36 This means that asymmetry —and thus also 0m— is maintained.

Most membranes are made of at least two different types of lipid; a single eukaryotic
cell can have more than a thousand different kinds of lipid.38 These types have an in-
homogeneous lateral distribution and are believed to sometimes organise themselves in
homogeneous domains called lipid rafts.39,40

'<D9I8E< GIFK<@EJ 8E; @FEJ

Membrane proteins are much larger than lipid molecules. Like lipids, they are am-
phiphilic; their hydrophobic part is embedded in the membrane, and their hydrophilic
part(s) is/are exposed to one or the other surface of the membrane. Also like lipids, they
can move laterally unless they are bound to cellular components, though their lateral dif-
fusion rate drops as temperature decreases. Different proteins have different diffusion
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rates, and some proteins occur only in certain membranes and only on one side of the
membrane (if embedded in themembrane) or in one orientationwith respect to themem-
brane (if spanning the entire membrane and exposed to both sides), suggesting they play
an important part in very specific interactions;36 however, the extent of their functional
role is still debated (see sections 1.5 and 1.6).

Biological membranes are selectively permeable to different ions and molecules, and
this selective permeability changes depending on various factors.36 They are also flanked
by several layers of ordered water.41
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Materials are made of molecules, and thus on a microscopic level matter is discrete and
consists of electric charges. A lipid bilayer is made of lipids with inhomogeneous charge
distributions and can thus be thought of as a collection of electric dipoles with dipolemo-
ment G⃗A. If the bilayer is flat and symmetric with respect to the interlayer plane (i.e. one
layer is the mirror image of the other), these electric dipoles cancel each other out and
the net polarisation per unit length is zero. If, on the other hand, the membrane is asym-
metric, the dipoles may not exactly cancel each other out and there will be a net electric
potential between the layers; this will cause the dipoles to move, which will result in the
membrane curving if there is no lipid exchange with the surrounding medium. Similarly,
if the membrane is not flat, then the dipoles will be rearranged (figure 1.12), resulting in
different surface charge densities on the two layers and thus a nonzero potential between
the layers. The latter phenomenon is known as converse flexoelectricity or electrostric-
tion; the former is known as direct flexoelectricity (we will simply refer to it as flexoelec-

R

Figure 1.12: Membrane curvature leads to a change in the dipole moments of the membrane’s
constituent molecules.
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tricity here).42
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For a membrane with radius of curvature ,, the flexoelectric coefficient = is defined ac-
cording to43

* =
=
,
,

where* is themagnitude of *⃗. Because*has units of charge/distance, =has units of charge.
Measurements of = in artificial neutral lipid bilayers44 have been of the order of 10−20 C;
in charged lipid bilayers (and, in particular, in biological membranes),45 = can be of the
order of 10−19 C and sometimes even 10−18 C.

 C<OF<C<:KI@: MFCK8><

The voltage across a membraneM which has curvature

κ =
1
,

and is surrounded on both sides by conductive media is

0m =
1
ϵ�

∫

M
* d� = − =

ϵ
⟨κ⟩M, (1.4)

where ϵ is the membrane’s permittivity, � is its area and

⟨κ⟩M =
1
�

∫

M
κ d�

is the average membrane curvature.43

For example, taking = = 10−18 C, a cylindrical biological membrane with a radius of
curvature of 50 µm has a curvature-induced transmembrane voltage of−1 mV.
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The chemical potential µ (see section 1.1.2) of a system is the energy required to add one
particle to the system. Given a molar concentration � of a solute in a solution at temper-
ature ., the solute’s chemical potential is36

µ = ,. ln(�) ,

where , = BB(A is the ideal gas constant, BB is the Boltzmann constant and (A is
Avogadro’s number. In the case of a cell membrane inside of which an electrically neutral
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solute has a concentration �i and outside of which that same solute has a concentration
�o, the chemical potential difference across the membrane is

∆µ = ,. ln
(
�i
�o

)
.

A negative chemical potential difference thus occurs when �i < �o and causes some of
the solute to travel through themembrane from the cell’s exterior to its interior (assuming
the membrane is permeable to the solute), whereas a positive chemical potential differ-
ence leads to the solute travelling in the opposite direction. In this case, the direction of
flow of the solute depends solely on the relative concentrations on opposite sides of the
membrane.

.?< (<IEJK GFK<EK@8C

If the solute is charged, however, a concentration difference across the membrane will
lead to a transmembrane potential 0m when the system formed by themembrane and the
solutes is in equilibrium. In this case, the internal energy difference across the membrane
is (recall equation 1.1)

∆/ = ,. ln
(
�i
�o

)
+ H(A0m = ,. ln

(
�i
�o

)
+

H
He

 0m,

where H is the solute’s charge, He is the absolute value of the charge of an electron and
 = He(A is Faraday’s constant. Here, we have assumed that both sides of the membrane
are at the same pressure.

From this expression it follows that, for positive univalent ions (i.e. H = He) and in
thermodynamic equilibrium (i.e. when∆/ = 0),

0m = −,.
 
ln
(
�i
�o

)
.

This is called theNernst equation afterWaltherHermannNernst’s work in 1888.46 In this
case, 0m is called the Nernst potential of the ion in question and is equal to the electric
potential necessary to counteract the chemical potential and thus prevent transport of the
ion across the membrane.47
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A biological membrane of thickness ; has different permeabilities to different ions. A gen-
eralisation of the chemical potential difference to several solutes is36

∆µ = ,. ln

⎛

⎜⎜⎜⎝

∑

A,+

PA�iA +
∑

A,−
PA�oA

∑

A,+

PA�oA +
∑

A,−
PA�iA

⎞

⎟⎟⎟⎠
,
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where the subscripts + and − in the sums indicate that the sums are over the positive
and negative solutes (respectively), PA = �A/; is the membrane’s permeability coefficient
for the Ath solute and �A is the Ath solute’s diffusion coefficient (section 1.1.1). The Nernst
equation thus becomes

0m = −,.
 
ln

⎛

⎜⎜⎜⎝

∑

A,+

PA�iA +
∑

A,−
PA�oA

∑

A,+

PA�oA +
∑

A,−
PA�iA

⎞

⎟⎟⎟⎠
.

This is known as the Goldman-Hodgkin-Katz equation; it was proposed by Alan Lloyd
Hodgkin and Bernard Katz in 194948 following the work of David E Goldman in 1943.49

As an example, the concentrations of potassium (K+), sodium (Na+) and chlorine (Cl−)
ions inside and outside of mammalian nerve cells and squid giant axons are presented
on the table below (other ions are comparatively unimportant for the purposes of neural
communication, as will be seen in section 1.5.2).50 Mammalian nerve cells are about 2
times as permeable to Cl− as to Na+ and about 50 times as permeable to K+ as to Cl−,36

which leads to a transmembrane equilibrium potential of about−87mV at 37 ◦C or about
−82 mV at 20 ◦C. The squid giant axon’s permeability to Cl−, on the other hand, is about
0.45 times its permeability to K+, which is about 25 times its permeability to Na+; this
yields a transmembrane potential between −62 mV and −46 mV (depending on the in-
tracellular Cl− concentration) at 20 ◦C. It is clear that flexoelectricity (equation 1.4) con-
tributes very little to the total transmembrane potential in the case of the squid giant axon,
which can have a radius of several hundredmicrons;51 in the case ofmammalian neurons,
which aremuch smaller, the flexoelectric contributionmay be comparable to the chemical
contribution.

#FE
'8DD8C@8E E<IM< -HL@; >@8EK 8OFE
�i (mM) �o (mM) �i (mM) �o (mM)

K+ 139 4 400 20
Na+ 12 145 50 440
Cl− 4 116 40–150 560
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The most well-known description of action potential generation and propagation was
proposed in 1952 by Alan Lloyd Hodgkin and Andrew Fielding Huxley.5 It is purely elec-
trical in nature; it essentially consists ofmodelling the axonmembrane as a charged capac-
itor in parallel with a resistor and a voltage source and looking at how the voltage across
it changes when an ionic current is present.
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As mentioned in section 1.4, there is an electric potential difference across the cell mem-
brane. This is given by 0m = 0i − 0e, where 0i is the potential inside the cell and 0e is
the potential outside it. At rest, 0m is negative for most cells47 and takes values between
−90mV and−30mV for axons.52 In addition, cell membranes have a specific capacitance
of the order of 1 µF/cm.53

Hodgkin and Huxley’s model begins by modelling the cell membrane as an electric
circuit. A membrane segment is modelled as a capacitor with specific capacitance :m, and
an ion channel protein is modelled as a resistor with resistance ,cp (figure 1.13). A whole
cell consists of an array of many such units in parallel (figure 1.14); if the cell’s area is �,
then the total membrane capacitance is �m = �:m; if there are ( ion channel proteins
with resistances {,A}, then the membrane resistance is given by

1
,m

=
(∑

A=1

1
,A
.

In the absence of net current (i.e. at rest), themembrane potential is0r, as is the voltage
across the capacitor. The membrane thus has a charge H = �m0r. This resting potential
is a consequence of the curvature and of the differences in the concentrations of different
ions on either side of the membrane, as explained in section 1.4.

.?< D<D9I8E< <HL8K@FE

Suppose a current #m flows through the membrane. Unlike Hodgkin and Huxley, we shall
take the convention that a positive current flows outwards. This current will change the
membrane voltage 0m to something different from 0r.

Let us simplify calculations bywriting them in terms of the excessmembrane potential
(with respect to the resting potential),∆0 = 0m − 0r. The current through the capacitor

Rcp
cm

Vr

Ve

Vi

~

Figure 1.13: Equivalent circuit of a cell membrane segment (grey) with a protein channel (orange)
embedded in it.
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~
Rm

Cm
Vr

Ve

Vi

Rcpcm
Vr

Figure 1.14: Equivalent circuit of the membrane of a whole cell; the equivalence was shown to be
true in section 1.2.2.

is

#C = �m
d0m
dK

= �m
d∆0

dK
.

By Kirchhoff’s law, #m = #C + #R. Thus,5

�m
d∆0

dK
+ #R − #m = 0, (1.5)

We will call equation 1.5 the membrane equation. Its solution depends on #m.
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The most important ions for neural communication are potassium (K+), sodium (Na+)
and chlorine (Cl−); other ions, such as calcium (Ca++) and Magnesium (Mg++), are also
present in neurons and their surroundings, but their concentrations are so low that they
donot play important roles.50 In its resting state, the cellmembrane is permeable to potas-
sium and chlorine but not to sodium.54 As themembrane’s permeability to potassium and
sodium varies, the flow of these ions across the membrane changes, generating an ionic
current which is ultimately responsible for the action potential, as we shall see later.

In Hodgkin and Huxley’s model, the ion channel proteins are mutually independent,
voltage-dependent resistances ,K and ,Na; the membrane lacks chlorine channels, so its
resistance to chlorine ion transport is merely the membrane resistance, ,m (figure 1.15).
We may thus write #R = #K + #Na + #Cl. The individual ionic currents are given by

#A =
∆0 − 0A

,A

with A ∈ {K,Na,Cl} and 0A = 0NA − 0r, where the 0NA are the potassium, sodium and
chlorine ions’ Nernst potentials (section 1.4.3).5 ,K and ,Na depend on both∆0 and K.
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Hodgkin andHuxley employed the idea that “gating particles” control the degree towhich
the channels specific to each ion type are open (i.e. allow ions to pass through). No physi-
cal mechanism was given for these particles’ action on the proteins, nor was their physic-
ochemical nature hinted at, but these particles are at the heart of the model.

We begin by defining,A∨ = min
(
,A
)
, wheremin(=) is theminimumvalue of a function

= over the domain of its argument, which for the ,A is the membrane potential. We also
associate probability functions E,D, ? ∈ [0, 1]with the ion channels, where E andD refer
to the probability that a potassium and sodium (respectively) channel is open and ? refers
to the probability that a sodium inactivating particle is not inhibiting the transport of
sodium through a channel.

To avoid modelling their data for the time evolution of ,K as a fourth-order polyno-
mial, Hodgkin andHuxley postulated that conduction of potassium ions through a potas-
sium channel protein requires four potassium gating particles to be bound to the channel
simultaneously,5 so we have

#K =
∆0 − 0K
,K∨

E4.

They further proposed first-order kinetics for the gating transition between the open and
closed states of the potassium channel protein:

dE
dK

= αn(1− E)− βnE,

where αn and βn are the (voltage-dependent) transfer rates of the potassium channel’s
gating particles. The solution to the above differential equation is

E = αnτn +
(
(αnτn)|∆0=0 − αnτn

)
<−

K
τn ,

where τn = 1/(αn + βn) is the time constant of the potassium gating particles and K = 0
corresponds to the beginning of the potassium-channel activation process. For the squid

RK
Cm

VNK

Ve

Vi

RNa

VNNa

Rm

VNCl

Figure 1.15: Equivalent circuit of an axon or dendrite in the Hodgkin-Huxley model. 0K and 0Na
are the Nernst potentials for potassium and sodium ions, respectively.
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giant axon, which they primarily worked with, Hodgkin and Huxley used52

αn =
01 −∆0

01K1

(
<
01−∆0

01 − 1
) ,

βn =
<−

∆0
02

K2
,

where 01 = 10 mV, 02 = 80 mV, K1 = 10 ms and K2 = 8 ms.
The case of the sodium channels is slightly more complicated. In this case, for a sim-

ilar reason, three sodium gating particles and one sodium deactivating particle were pro-
posed:5

#Na =
∆0 − 0Na
,Na∨

D3?.

As in the case of E, we have

dD
dK

= αm(1−D)− βmD,

d?
dK

= αh(1− ?)− βh?;

the solutions are

D = αmτm +
(
(αmτm)|∆0=0 − αmτm

)
<−

K
τm ,

? = αhτh +
(
(αhτh)|∆0=0 − αhτh

)
<−

K
τh ,

−40 0 40 80 120

2

4

6

8

∆0 (mV)

time constants (ms)
τn
τm
τh

Figure 1.16: The time constants of the gating particles as functions of excess membrane voltage.
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where

τm =
1

αm + βm
,

τh =
1

αh + βh
.

Hodgkin and Huxley’s data led them to write

αm =
03 −∆0

04K1

(
<
03−∆0

01 − 1
) ,

βm =
1
K3

<−
∆0
05

for the activating particles and

αh =
1
K4

<−
∆0
06 ,

βh =
1

K5
(
<
07−∆0

01 + 1
)

for the inactivating particle, where 03 = 25 mV, 04 = 1 mV, 05 = 18 mV, 06 = 20 mV,
07 = 30 mV, K3 = 0.25 ms, K4 = 14.3 ms and K5 = 1 ms.

Comparison of the time constants (figure 1.16) reveals that the maximum of τh is
nearly 20 times that of τm. This means that the sodium deactivating particle takes much
longer to relax than the activating particle. On the other hand, the maximum of τn is of
the same order of magnitude as that of τm: the sodium and potassium activating particles
have similar relaxation times.

.?< 8:K@FE GFK<EK@8C 8E; K?< I<=I8:KFIP G<I@F;

With all these considerations, wemaywrite the total ionic current through themembrane
(figure 1.17) as

#R =
∆0 − 0K
,K∨

E4 +
∆0 − 0Na
,Na∨

D3?+
∆0 − 0r

,m
.

At rest (∆0 = 0), the total ionic current is zero. If the membrane is hyperpolarised
(i.e. the voltage is reduced, so∆0 < 0; recall that 0r < 0), an inward (negative) ionic cur-
rent passes through themembrane andmakes the cell interiormore positive, which coun-
teracts this hyperpolarisation (see figure 1.17). If the membrane is slightly depolarised
(0 < ∆0 < 6.9 mV), an outward ionic current again counteracts the voltage change.

If the depolarisation is strong enough, however, an inward current contributes to the
depolarisation and initiates a positive feedback loop which gives rise to a voltage pulse
which can travel along the axon — an action potential (see section 1.5.4). There is thus a
threshold voltage below which the axon is not excited.
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The loop is eventually interrupted by a delayed increase in ?, which leads to an over-
compensation (a slight hyperpolarisation with respect to the resting potential), since

dE
dK

≪ dD
dK

(i.e. the potassium channels close much more slowly than the sodium channels and thus
there is still some outward potassium current for a time after the sodium channels have
closed). This means that the action potential is followed by a short period of time during
which the axon is considerably more difficult to excite (the threshold voltage increases to
more than 20 times its original value); this period of relative inexcitability is called the
refractory period.52

The above expressions for the transfer rates of the sodium and potassium channels
were obtained by Hodgkin and Huxley assuming the axon was at a temperature of 6.3 ◦C.
If we instead assume it is at 20 ◦C, the transfer rates all increase by a factor of about 4.5.5

This merely means that E, D and ? change 4.5 times more quickly, which in turn means
that the whole event lasts 4.5 times less. In other words, the only effect of a decrease in
temperature on the action potential is to slow it down.
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Let us now take into account a small length of axon, which includes the cytoplasm inside
the membrane. If the cytoplasm and the extracellular medium are homogeneous and the
latter is considered to be much more conductive than the former, the axon or dendrite
has a relatively simple equivalent circuit (figure 1.18).52

−4 −2 2 4 6 8

−5

5

10

∆0 (mV)

currents (µA)

#K
#Na
#Cl
#R

Figure 1.17: The total ionic current and its constituents at K = 2.5 ms.
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Ohm’s law for a small patch of membrane is

∂0m
∂Q

= Ii#i,

where Ii is the cytoplasm’s resistance per unit length and #i is the current flowing through
the cytoplasm. The change in the current flowing through the cytoplasm is

@i =
∂#i
∂Q

=
1
Ii
∂20m
∂Q2

=
1
Ii
∂2∆0

∂Q2
.

We may think of a small length of axon as a ring (of radius 8) formed by many small
patches ofmembrane (with their adjacent cytoplasm). The current density Am through the
membrane is then equal to @i divided by the axon circumference:

Am =
@i
2ć8

.

Similarly, the capacitance and resistance per unit length of the membrane are given by

:m = 2ć8�m,

Im =
,m
2ć8

,

where �m and ,m are the membrane’s specific capacitance and resistance and have units
of capacitance divided by area and resistance times area, respectively. On the other hand,
the cytoplasmic part of a small length of axon is a solid disk. Thus, the resistance per unit
length of the cytoplasm is given by

Ii =
,i
ć82

,

where ,i is the cytoplasm’s specific resistance and has units of resistance times length.
With these considerations, we may write the membrane current density as

Am =
8
2,i

∂2∆0

∂Q2
.

cm

Ve

Vi

cmcm

ri ri ii

Figure 1.18: Equivalent circuit of a homogeneous membrane and the cytoplasm adjacent to it.
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If we write the membrane equation in terms of the membrane current density and the
membrane’s specific capacitance and resistance (dividing the latter into the ionic specific
resistances ,K, ,Na and ,m), we obtain

�m
∂∆0

∂K
+

∆0 − 0K
,K∨

E4 +
∆0 − 0Na
,Na∨

D3?+
∆0 − 0r

,m
− Am = 0.

Substituting the expressionwe have just found for Am and rearranging terms, this becomes

�m
∂∆0

∂K
+

∆0 − 0K
,K∨

E4 +
∆0 − 0Na
,Na∨

D3?+
∆0 − 0r

,m
=

8
2,i

∂2∆0

∂Q2
. (1.6)

This is Hodgkin and Huxley’s membrane equation.5

An important consequence of equation 1.6 is that, like all differential equations which
are of first order in the time derivative and of second order in the spatial derivative (see
section 1.1.1), it involves dissipation. This means that some current “leaks” through the
membrane as it travels along the axon or dendrite.5 Another consequence is that it does
not have wavelike solutions with constant propagation speed.52
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Despite equation 1.6 resembling a diffusion equation, Hodgkin and Huxley postulated
that5

∂2∆0

∂Q2
=

1
L2

∂2∆0

∂K2
;

in other words, they postulated a wavelike solution propagating at constant speed L. Sub-
stituting this into equation 1.6 to turn it into an ordinary differential equation in K and

0.5 1 1.5 2 2.5 3 3.5 4 4.5

−50

0

50

100

K (ms)

∆0 (mV)

Figure 1.19: The typical shape of an action potential.



✐
✐

“NahmadRohenA-PhDthesis” — 2020/2/29 — 5:04 — page 35 — #49 ✐
✐

✐
✐

✐
✐

The Heimburg-Jackson model 35

simplifying the ionic current, we obtain

8
2,iL2

∂2∆0

∂K2
− �m

∂∆0

∂K
− #R = 0. (1.7)

The only term in equation 1.7 which depends on the axon radius is the first one, and
,i is independent of the radius; thus, in order for the equation to hold, L2 must be pro-
portional to 8: the propagation speed of an action potential scales as the square root of
the axon radius and is thus an increasing function of 8 (this is true only for nonmyeli-
nated axons, but a mathematical treatment of myelinated axons is beyond the scope of
this work).

Hodgkin and Huxley’s numerical solution of equation 1.7 (figure 1.19) accurately
reproduces the shapes of the action potentials they observed in the squid giant axon.
They obtained L = 18.8 m/s, and the experimentally measured propagation speed was
L = 21.2 m/s, meaning their model yields a value of L which has an error of only 11%.5
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Since theHodgkin-Huxleymodel was proposed, studies on individual axons and on entire
nerve fibres have revealed many phenomena connected to action potentials: decreases in
birefringence and light scattering, changes in axon temperature, and thickening followed
by narrowing of the axon, tomention a few. Many of these findings disagree with a purely
electrical model based on a dissipation equation (see chapter 2).

Already in 1966 Ling Yun Wei proposed a new model for action potential formation
and propagation.55 Thismodel viewed the axon exterior, membrane and interior as a PNP
junction and suggested that the molecular dipoles in the membrane changed orientation
during action potential propagation.56 Although it was still electrical in nature, it accom-
modated some of the optical and thermodynamic phenomena observed during action po-
tential propagation. Two years later, J V Howarth, R D Keynes and J M Ritchie suggested
that depolarisation leads to a reduction of entropy.53 In 1971, Yonosuke Kobataki, Ichiji
Tasaki and Akira Watanabe proposed a phase transition model for the action potential in
another attempt to explain some of the thermodynamic and optical phenomena that had

Figure 1.20: The action potential is generated by a propagating region where the membrane lipids
are in a different thermodynamic phase (orange) than the lipids in the rest of the membrane (yel-
low).
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been discovered, though their phase transitionwas onewhere only the chemical potential
and electrostatic properties of the membrane changed.57

Developing neurons have been found to mechanically sense the physical properties
of their surroundings and grow in one direction or another depending on this informa-
tion.58 It is thus natural to assume neurons can also communicate mechanically. In 2005,
Thomas Rainer Heimburg and Andrew Dumont Jackson developed a thermodynamic
model for action potentials.6 Rather than seeing the action potential as a purely elec-
trical phenomenon, they proposed that neurons communicate via localised phase tran-
sitions of the membrane lipids which travel along the membrane in a soliton-like fashion
(i.e. without distortion or attenuation); in this model, the voltage change is merely one of
a number of concomitant phenomena which are all associated with this phase transition
(figure 1.20).
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Lipid bilayers at low temperature are not exactly solids; rather, they resemble gels. They
possess a considerable degree of order, however, so this phase is often called the solid-
ordered (SO) phase (figure 1.21, top). This phase is characterised by the lipid molecules
having their hydrocarbon tails completely or almost completely expanded. When the bi-
layer melts, its order decreases, so its high-temperature phase is often called the liquid-
disordered (LD) phase (figure 1.21, bottom), and “kinks” appear in the hydrocarbon tails.59

Thus, a lipid membrane in the SO phase is thicker than one in the LD phase. Lateral den-
sity, however, decreases as temperature increases, as in most materials.

&@G@; D<CK@E>

Membrane lipids at body temperature (or growth temperature in the case of single-celled
organisms) are typically about 15 ◦C above their melting temperature.8 As mentioned

Figure 1.21: Solid-ordered (top) and liquid-disordered (bottom) phases of a lipid bilayer.



✐
✐

“NahmadRohenA-PhDthesis” — 2020/2/29 — 5:04 — page 37 — #51 ✐
✐

✐
✐

✐
✐

The Heimburg-Jackson model 37
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Figure 1.22: The specific heat capacity of escherichia coli membranes purified by centrifugation as
measured in a calorimeter by Heimburg and Jackson.6 The peaks correspond to the phase transi-
tions of the membrane components — those at temperatures above 37 ◦C correspond to protein
unfolding, whereas the peak near 20 ◦C corresponds to lipid melting.

in section 1.1, phase transitions are accompanied by maxima in several thermodynamic
quantities, including the specific heat capacity :p (figure 1.22).6

As does any phase transition, the transition from the LD phase to the SO phase (as
occurs during an action potential according to the Heimburg-Jackson model) has several
effects on lipid membranes. Some of these are lateral compression, changes in elasticity
and compressibility, curvature changes, decreases in forward- and high-angle-scattered
light, changes in birefringence, and heat release. All of these changes have been found to
accompany action potentials6 and will be discussed in detail in chapter 2.
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A soundwave is a change of densitywhich propagates inwavelike form through amedium.
The equation for sound propagation in one dimension along a 2-dimensional material
(such as a hollow cylinder) is6

∂2∆ρ

∂K2
=

∂

∂Q

(
1
κaρ

∂∆ρ

∂Q

)
,

where ρ is the (local) area density of the material the sound wave is propagating through,
∆ρ = ρ − ρ0 is the propagating density change (with respect to the material’s resting
density ρ0) and κa is the area compressibility of the material.

If the amplitude of the sound wave is small (i.e.∆ρ ≪ ρ0) and κa is not a function of
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position, this reduces to the wave equation

∂2∆ρ

∂K2
≈ : 20

∂2∆ρ

∂Q2
,

where

:(ρ) =

√
1
κaρ

is the speed of the sound wave and :0 = :(ρ0).

(FEC@E<8I@KP

For linear materials, : is not a function of ρ. Real materials, however, are nonlinear and
have : = :(ρ) = :(∆ρ). For a small-amplitude sound wave (and taking into account that
κa is, in general, a function of ρ), we have

:2 =
∞∑

A=0

∆ A
ρ

A!
dA(:2)
dρ A

∣∣∣∣∣
ρ=ρ0

≈ : 20

(
1+

81
ρ0

∆ρ +
82
ρ 2
0

∆ 2
ρ

)

with

81 = −1− ρ0
κa

∂κa
∂ρ

∣∣∣∣
ρ=ρ0

,

82 = −81 +
ρ 2
0
κ 2
a

(
∂κa
∂ρ

∣∣∣∣
ρ=ρ0

)2
−
ρ 2
0
2κa

∂2κa
∂ρ2

∣∣∣∣
ρ=ρ0

and 81 < 0 < 82.60

�@JG<IJ@FE

To take into account dispersion, Heimburg and Jackson added a fourth-order term to the
sound equation:6

∂2∆ρ

∂K2
=

∂

∂Q

(
:2
∂∆ρ

∂Q

)
− ?

∂4∆ρ

∂Q4
, (1.8)

where : is as before and ? quantifies the dispersion.


����� .?< 8:K@FE GFK<EK@8C @E K?< "<@D9LI>
$8:BJFE DF;<C

.?< JFC@K8IP
N8M< <HL8K@FE

We are interested in solutions to the sound equation with some constant propagation
speed L, so we assume that∆ρ is only a function of Q−LK. We define ζ = Q−LK and, using
the second-order Taylor expansion of :2 calculated above, rewrite equation 1.8 as

L2
d2∆ρ

dζ2
= : 20

d
dζ

((
1+

81
ρ0

∆ρ +
82
ρ 2
0

∆ 2
ρ

)
d∆ρ

dζ

)
− ?

d4∆ρ

dζ4
.
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This equation contains no terms with ζ , indicating that the solution must be symmetric
with respect to ζ = 0.60 Integrating both sides of the equationwith respect to ζ , we obtain

L2
d∆ρ

dζ
= : 20

(
1+

81
ρ0

∆ρ +
82
ρ 2
0

∆ 2
ρ

)
d∆ρ

dζ
− ?

d3∆ρ

dζ3
+ %1,

where %1 is an integration constant. Integrating again and rearranging terms, this be-
comes

?
d2∆ρ

dζ2
= %2 + (: 20 − L2)∆ρ +

81: 20
2ρ0

∆ 2
ρ +

82: 20
3ρ 2
0

∆ 3
ρ + %1ζ,

where %2 is another integration constant. In order to preserve the aforementioned sym-
metry, %1 must equal zero. If we nowmultiply this by the derivative of∆ρ with respect to
ζ and integrate with respect to ζ once more, we finally arrive at

?
(
d∆ρ

dζ

)2
= −%3 + 2%2∆ρ + (: 20 − L2)∆ 2

ρ +
81: 20
3ρ0

∆ 3
ρ +

82: 20
6ρ 2
0

∆ 4
ρ , (1.9)

where %3 is yet another integration constant and we have made use of the fact that

d2∆ρ

dζ2
d∆ρ

dζ
=

1
2
d
dζ

((
d∆ρ

dζ

)2)
.

As was mentioned earlier,∆ρ is a function of ζ but not explicitly of K or Q. This means
that the shape of∆ρ ismaintained as the pulse travels along themedium; in otherwords, it
is soliton-like.8 The fact that this soliton-like compression wave must be localised (i.e.∆ρ

approaches zero as ζ approaches infinity) means that L " :0.60

Equation 1.9 ismathematically identical to the one-dimensionalmechanical equation
of motion

D
2

(
dO
dK

)2
+ V(O) = U

with∆ρ playing the role of O, ζ playing the role of K, U = −%3 playing the role of the total
energy,

V = −2%2∆ρ − (: 20 − L2)∆ 2
ρ −

81: 20
3ρ0

∆ 3
ρ −

82: 20
6ρ 2
0

∆ 4
ρ

playing the role of the potential energy, and ? = D/2 > 0. We may therefore apply some
of our knowledge from classical mechanics.

Changing the value of %3 is equivalent to adding a constant to V , so %3 is unimportant
and is assumed to equal zero in the following. On the other hand, changing%2 will directly
affect the shape of V , so its value must affect the solution to equation 1.9.

The “potential energy” V is a fourth-order polynomial of ∆ρ with a negative fourth-
order term (recall that 82 > 0). Therefore, it has two maxima and one minimum. As in
classical mechanics, stable solutions for∆ρmust lie between the maxima but also require
V < 0 and∆ρ ! 0.60
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*IFG8>8K@FE JG<<; F= K?< 8:K@FE GFK<EK@8C

For %2 = 0, the roots of V take on the fairly simple forms

∆ρ ∈

⎧
⎨

⎩0,−
81
82
ρ0 ∓

√
8 2
1 : 40 − 682: 20 (: 20 − L2)

82: 20
ρ0

⎫
⎬

⎭

(recall that 81 < 0). Obviously, then, V < 0 for all positive∆ρ smaller than the smallest of
the two nonzero roots of V — that with the negative square root. This means that, when
%2 = 0, there exist stable solutions to equation 1.9 with 0 < ∆ρ < ∆ρ∧ with

∆ρ∧ = −81
82
ρ0 −

√
8 2
1 : 40 − 682: 20 (: 20 − L2)

82: 20
ρ0.

Because ∆ρ∧ , which is the amplitude of the sound wave, is the maximum possible value
of∆ρ, it is the value of∆ρ for which the right side of equation 1.9 equals zero. It is worth
noting that it is independent of ?.

The two nonzero roots of V become degenerate when

8 2
1 : 40 − 682: 20 (: 20 − L2) = 0

or L = L∨ with

L∨ =

√

1−
8 2
1
682

:0.

When this happens,

∆ρ∧ = −81
82
ρ0.

Because L2 has a positive sign in the argument of the square root in the expression
for the roots of V , setting L > L∨ will make the argument of the square root positive and
setting L < L∨ will make it negative; the latter situation results in the two nonzero roots
of V being complex, which means that equation 1.9 has no non-trivial solution, so L∨ is
the lowest possible propagation speed of a solitary compression wave.

The negative sign of the square root in the expression for∆ρ∧ means that as L grows
∆ρ∧ becomes smaller. Thus, stronger action potentials travel more slowly. The mini-
mum possible amplitude occurs at L = :0 and the maximum possible amplitude occurs at
L = L∨.

Note that, in this model, the propagation speed does not depend on the axon radius,
but rather on the amplitude of the action potential. This is in direct contradiction to the
Hodgkin-Huxley model.
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.?< I<=I8:KFIP G<I@F;

Negative values of %2 or large positive values of %2 result in no stable solutions to equa-
tion 1.9; a small positive value of%2 leads to periodic (and therefore non-solitary) solutions
with a separation determined by %2.60 Twowaves cannot be separated by a ζ smaller than
this separation; this is the refractory period.

.?< 8:K@FE GFK<EK@8C

Given a propagation speed L, the general solution to equation 1.9 is8 (figure 1.23)

∆ρ = −
81

(
1− L2 − L 2

∨
: 20 − L 2

∨

)

82 + 82

(
1+ 2

√
L2 − L 2

∨
: 20 − L 2

∨

)
cosh

(
:0√
?

√

1− L2

: 20
ζ

) ρ0. (1.10)

In Heimburg and Jackson’s view, the region near the maximum of∆ρ is a propagating
region in which the membrane lipids have undergone a transition to the SO phase (see
figure 1.20).6

The amount of dispersion (quantified by ?) has no bearing on the soliton amplitude;
instead, it controls the soliton width, with larger values of ? leading to wider solitons (see
equation 1.10). It is clear from this and from the mathematical analysis of section 1.6.2
that dispersion is necessary for the solitons to exist. The propagation speed L similarly
controls the soliton width, with smaller values of L leading to wider solitons.

Lateral compression of an asymmetrically charged membrane will necessarily change
the membrane potential 0m (see sections 1.1.2, 1.1.3, 1.4.2 and 1.4.3). Thus, the
Heimburg-Jackson model is consistent with the observation of changes in the membrane
potential associated with neural activity.

ζ

∆ρ

Figure 1.23: The general solution to equation 1.9.
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As mentioned at the beginning of chapter 1 and will be repeatedly seen throughout this
chapter, neithermodel is fully consistentwith the vast body of experimental results gener-
ated over the course of the twentieth century. Inwhat follows, wewill review these results,
estimate the models’ relevant predictions, and compare the experimental and predicted
effects.

In order to gauge the full extent of applicability of each model and resolve the occa-
sionally conflicting fragments of evidence, experiments more sophisticated than the ones
performed thus far will be necessary. The last part of this chapter, section 2.6, will ex-
amine the requirements such experiments will need to satisfy if they are indeed to probe
deeper into the mysteries of neural activity.
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One of the earliest experiments in which changes in the radius of axons were recorded
was performed in 1950 by D K Hill.1 Hill extracted cuttlefish giant axons 90–125 µm in
radius, placed each axon so its edgewas visible as a division between bright (axon edge) and
dark (exterior) regions in a narrow slit under a microscope, and measured the intensity of
the light passing through the microscope eyepiece (figure 2.1). He excited the axon at 15–
20 ◦Cwith square voltagewaves at 100–200Hz for 1min and took light-intensity readings
every 15 s before, during and after stimulation; an increase in intensity corresponded to
the axon growing and occupying a larger fraction of the field of view. In this way, Hill
observed an increase of 50–170 nm in the axon radius, which corresponds to an increase
of 0.039%–0.139%. The swelling persisted for 15–75 s after stimulation ceased; this great
variability in the duration of the swelling occurred even whenmultiple experiments were
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Figure 2.1: Diagram of D KHill’s 1950 experiment. The axon edge is partially visible in a slit under
the microscope (top). The edge is bright, so expansion of the axon or movement in the direction
in whichmore of the axon is visible (upwards in the figure) results in an increase in the intensity of
the light passing through themicroscope eyepiece, while contraction ormovement in the opposite
direction results in an intensity decrease. The axon edge is brighter than the axon interior, so
changing the field of view to be completely within the axon (bottom) results in a decrease of light
intensity if the axon expands ormoves upwards and an increase of intensity if the opposite occurs.

carried out on the same axon. In some cases the axon radius returned to normal after a
few minutes, but in other cases the axon remained swollen. The amount of swelling did
not depend on axon size. Stimulation of an inexcitable axon by as much as 20 times the
threshold voltage produced no visible radius change, indicating the swelling was related
to the action potential even if it did not follow exactly the same time course. Moving the
axon so the field of view included the bright axon edge and a darker region farther into
the axon caused the light intensity to decrease, rather than increase, when the axon was
stimulated, indicating that the change in intensity was due tomovement of the axon edge
relative to the field of view and not due to any optical changes (but see section 2.2 for
further discussion on optical changes in the axon associated with the action potential).

Hill first attempted to explain his findings on the basis of water molecules crossing
themembrane alongwith the ions exchanged during the action potential process. Sodium
has a smaller atomic radius than potassium, whichmeans that the bond between a sodium
ion and its hydration shell (the watermolecules forming a shell around the ion) is stronger
than that between a potassium ion and its hydration shell. This in turn means that the
hydration number of sodium (the number of water molecules forming a shell around the
ion) is greater than that of potassium.2 Assuming an ion’s hydration shell is capable of fol-
lowing the ion as it crosses the membrane (which seems unlikely in the Hodgkin-Huxley
model due to the high specificity of the ion channels), then, water molecules indeed enter
the axon during the action potential. Hill assumed the exchange of one potassium ion for
one sodium ion caused, on average, a net increase of 3.2 molecules of water in the axon
interior. He also claimed that an action potential involves the exchange of about 1012
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ions/cm2, which corresponds to about 1013 water molecules entering the axon. Assum-
ing atmospheric pressure, this is about 2.6 × 10−10 ml/cm2, which would cause a radius
increase of about 2.6 pm in an axon 100 µm in radius—more than 42,000 times less than
observed on average. Even if one were to adopt Hill’s view that the swelling was cumula-
tive (which detailed analysis of his data shows no clear sign of) and that each square pulse
generated an action potential, the 6,000–12,000 stimulations each axon received would
only amount to 14%–28% of the average radius increase observed by him.

Flexoelectricity (equation 1.4) might appear to be amore likely explanation. However,
a voltage change of 100 mV would cause a curvature change of 2 × 106 or 2 × 107 m−1,
depending on whether the membrane’s flexoelectric coefficient is 10−18 C or 10−19 C,
respectively. This would translate into a radius change of about 20–200mm, which is 5–6
orders of magnitude too large (it is even larger than the axon itself). Thus, this cannot
explain Hill’s findings.

As was discussed in section 1.2.1, the charge in a capacitor’s plates pulls the plates
togetherwith a pressure proportional to said charge (equation 1.3). The discharging of the
capacitor relieves that pressure, which is mathematically equivalent to the appearance of
an outwards pressure of the samemagnitude. An experiment by SusumuTerakawa (which
will be discussed shortly) found that the action potential leads to an outwards pressure
of about 500 µPa; experiments by Kunihiko Iwasa and Ichiji Tasaki (also to be discussed
shortly) found a radius increase of the order of 1 nm in the excited axon. If these numbers
are to be believed, a pressure of 279 kPa (see section 1.2.1)would cause the axon to increase
its radius by about 56 cm, which is again unrealistic. Of course, the 279 kPa calculated
previously assumes that the insulator between the capacitor plates is immensely elastic
and/or not attached to the plates and that nothing is holding the plates together; a real
axon has an actin skeleton holding the membrane in place, which makes it difficult to
relate pressure to swelling quantitatively.

The membrane molecules undergoing a phase transition could potentially explain
the swelling. As was mentioned in section 1.6.1, the transition of membrane lipids from
liquid-disordered to solid-ordered involves the complete or near-complete stretching of
the lipids’ hydrocarbon tails. These tails normally have 14–24 carbon atoms3 which are
separated by a distance of about 0.15 nm and, in unstretched tails, form angles of about
55 ◦.4 This means that an unstretched tail is 0.92–1.63 nm long and a stretched one is
1.99–3.53 nm long. Because a membrane is a lipid bilayer, lipid tail stretching can ac-
count for a radius increase of 2.15–3.80 nm. This is two orders of magnitude smaller
than the changes observed by Hill, but it is much closer than the other possible expla-
nations. However, experiments with supported lipid bilayers5 have observed changes of
about 1 nm during a phase transition (see also chapter 5), indicating that the lipid tails do
not become fully stretched in the solid-ordered phase.

It is clear that neither theory is well equipped to explain Hill’s findings. Flexoelec-
tricity and capacitor pressure predict unrealistically large changes and are thus severely
inappropriate, while hydration has a negligible effect and lipid tail stretching can account
for only a small percentage of the observed radius change. Motion of the axon could po-
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tentially explain these findings, although it would be odd for the axon to move always in
the same direction when stimulated and back some time after stimulation ceased; the rel-
ative regularity of Hill’s observations of brightness increase suggest mechanical changes,
rather than motion, are responsible.
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In 1980, in one of their multiple experiments over the course of several decades, Iwasa
and Tasaki explored the swelling of the squid giant axon.6 They extracted the axon and
placed it in a seawater-filled chamber at 23 ◦C. The axonwas excited electrically at one end
with an extracellular electrode pair, and its voltage response was recorded at the other
end. Gold particles were placed on top of the axon, and the intensity of light reflected
from the particles was detected by an optic fibre connected to an amplifier; the detected
intensity was used to determine the amount of swelling the axon underwent during the
action potential. Theymeasured a radius increase of about 0.5 nmwith a profile and time
course identical to those of the action potential.

Two years later, they performed a similar experiment7 in which they excited a squid
giant axon at 19–21 ◦C with variable series of electrical pulses at 200–333 Hz during sev-
eral tens of milliseconds. They recorded the action potential both extracellularly (as be-
fore) and intracellularly with a 25-µm-radius silver wire introduced longitudinally in the
axon. They recorded the mechanical changes in the axon using gold particles. This time,
they measured an increase of 1.0–2.5 nm in the axon radius. The axon then became nar-
rower by a similar amount, and this was followed by alternating swelling and narrowing
phases with decreasing amplitude, as in a damped oscillation. This oscillation lasted for
about 2 ms. No cumulative effects were observed. Chemical stimulation (by reducing the
concentration of Ca++ ions outside the axon) resulted in a similar phenomenon with an
initial amplitude of about 0.7 nm and a duration of about 4 ms. Although this did not
follow the profile or time course of the action potential, it is possible that the change in
the exterior calcium concentration could change the action potential properties in the
Hodgkin-Huxley model or the lipid density in the Heimburg-Jackson model.

The possible explanations for these results are as previously. Tasaki and Iwasa did not
give indications of the dimensions of their axons, but squid giant axons tend to be 250–
500 µm in radius. The hydration explanation yields a radius increase of about 2.6 pm,
which is now a larger percentage of the observed change but still orders of magnitude too
small. The predictions of the capacitor plate pressure and flexoelectricity explanations
are about an order of magnitude larger than for the somewhat smaller cuttlefish axon, so
this explanation is even less viable than before. On the other hand, the lipid stretching
explanation, as mentioned before, yields a radius increase of around 1 nm, in line with
Iwasa and Tasaki’s findings.

.8J8B@ 8E; #N8J8� E8EFD<KI@: C<E>K? ;<:I<8J< @E :I89 :C8N E<IM<

In another experiment,8 Tasaki and Iwasa extracted and desheathed crab claw nerves
35mm in length andmeasured the diameter of single axons to be 2–20 µm on an electron
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microscope (in a separate experiment). They placed one nerve bundle at a time vertically
in a seawater-filled chamber. The lower end of the nerve was held in place by a thread
tied to the bottom of the chamber (nerve has a lower density than seawater), and the up-
per end hung by a thread from a reflective lever. A small weight on the opposite side of
the lever caused the nerve to be stretched prior to excitation in order to have some initial
tension. They excited the nerve electrically at one end and recorded the voltage change
at the other end. The stretching or contraction of the nerve was recorded by measuring
the intensity of light reflected from the lever. They recorded a shortening of the nerve
by 5–10 nm for about 20 ms, which is longer than the action potential (Tasaki and Iwasa
suggested that this delay was due to inertia of the lever).

Volume conservation can be used as an explanation if we assume that the axon density
does not change. Wemust first recall that the action potential lasts about 1ms and travels
at a speed of a few tens of metres per second,9 which implies that the active region of the
axon (or axons) is a few centimetres long (this is enormous by cellular standards and is a
fact apparently unappreciated by many researchers studying action potentials). This, in
turn, means that, at the peak of the shortening, the entire length of the nerve studied by
Tasaki and Iwasa underwent the structural changes associated with the action potential.
Thus, wemaymodel the nerve as a homogeneous cylinder. Assuming a radius of 1–10 µm
per axon and a radius increase of 0.5 nm per axon (for the sake of consistency with previ-
ous experiments by Tasaki and Iwasa), the required peak shortening for the volume to be
conserved is 3.5–35 µm, which is between 350 and 7,000 times the observed shortening.

Another possible explanation is the change in membrane density which occurs in the
activated region according to the Heimburg-Jackson model. The observed shortening re-
quires an increase of 0.000014%–0.000029% in the average membrane density. Accord-
ing to theHeimburg-Jacksonmodel, however, the transition from liquid to solid involves a
maximumdensity increase of 20%–25%,10 which is about amillion times larger (although
other sources11 give density increases as small as 4%); such a large change in densitywould
have caused the nerve to shorten by about 5 mm.

It is possible that the lever and weight exhibited a large resistance to movement, and
Tasaki and Iwasa assumed that the threads they used to fasten the nerve to the bottom of
the chamber and to the lever were inelastic, which might not be true, but it is difficult to
imagine that such experimental issues could account for such a large discrepancy between
the order of magnitude of the observed changes and that of the theoretically predicted
changes. On the other hand, the physiological relevance of these findings is question-
able because nerves cannot realistically contract more than the size of a molecule without
disrupting the neural network they are part of.
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Terakawa’s experiment in 1983 to measure pressure changes12 involved extracting squid
giant axons and placing them horizontally on top of electrodes within a seawater-filled
chamber. The axon radius was 250–325 µm, and the experiments were performed at a
temperature of (21.0±0.5) ◦Cand a pHof 8.1. He inserted a buffer-filled glass pipette lon-
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gitudinally into the axon at one end such that part of the pipette remained out of the axon;
the buffer formed a convex surface at the end of the pipette which was outside the axon
and held the intracellular pressure at 40–100 Pa. The axon was stimulated extracellularly
by 50-µs voltage pulses at 10 Hz, and the action potential was recorded extracellularly.
The shape of the buffer surface was measured by reflection of light off it; the intensity in-
creased as the surface became flatter. Movement of the surface towards or away from the
detector (which was in the direction of the pipette and axon) was not taken into account
even though a change in the radius or length of the axon would have caused such a move-
ment of the buffer surface if the cytoplasm and buffer are assumed to be incompressible.
Terakawa’s results showed an increase in intracellular pressure followed by a decrease; the
time course was roughly the same as that of the action potential, although the pressure
peak lagged slightly behind the action potential peak (Terakawa attributed this to the fact
that the conduction speed of the pressure wave in the pipette was finite; this was tested
by using a longer pipette, which indeed resulted in a longer delay). The amplitude of the
pressure wave varied between axons but was about 500 µPa for most of them; the ampli-
tude of the decrease was at least the same as that of the increase and sometimes reached
7 times that, although there was great variability even in the same axon. Terakawa used
sub-threshold voltages to stimulate axons and also tried stimulating anaesthetised axons
with super-threshold voltages, both ofwhich producedno pressure changes; this indicates
that these changes were related to the action potential. The amount by which the pres-
sure changed was otherwise independent of stimulus strength, further indicating that it
is closely linked to the action potential.

We may recall equation 1.2, which relates the change in volume of a liquid
which undergoes changes in pressure and temperature to the liquid’s dilation coeffi-
cient β and isothermal compressibility κ. For water,13 which cytoplasm is similar to,
β = 2.07 × 10−4 K−1 and κ = 4.59 × 10−10 Pa−1 at 20 ◦C. In order to produce an
increase in intracellular pressure of 500 µPa, the action potential would have had to cause
the axon volume to decrease by 0.31% assuming the temperature decreases by 15 ◦C dur-
ing the action potential (consistently with the Heimburg-Jackson model); neglecting any
changes in the axon length, this corresponds to a cytoplasm radius decrease of 0.155% or
400–500 nm. This is only slightly larger than the early observations of Hill but consider-
ably larger than the results of the much more refined experiments by Iwasa and Tasaki.

If we instead assume the cytoplasm remains at constant volume, we may attempt to
explain the increase in pressure using the hydration hypothesis of Hill. Because the squid
giant axon is larger than the cuttlefish giant axon, we must scale the number of ion chan-
nels (and thus the number of ion exchanges during a single action potential). An axonwith
a radius of 250–325 µm has 2.50–3.25 times the surface area of a 100-µm axon; assuming
the ion channel density is the same for both axons and Hill’s remark about the number of
ions exchanged is correct, this amounts to between 6.5× 10−10 and 8.4× 10−10 ml/cm2
of water. Now, an axon with a radius of 250–325 µm and a surface area of 1 cm2 has a
volume of 12.5–16.3 µl. Adding the amount of water calculated previously while keeping
the volume constant requires increasing the density of water by about 0.000005%, which
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translates to an increase in pressure of 2–5 µPa, two orders of magnitude smaller than
observed.

Neither of these attempts at an explanation addresses Terakawa’s observation that the
reduction in intracellular pressure often exceeded the initial pressure increase.
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In 1971, Camillo Peracchia and J David Robertson observed axon membranes under an
electron microscope during action potential propagation.14 They exposed crayfish circ-
umesophageal connectives (the circumesophageal connective is the portion of the ventral
nerve cord, where the giant axon is located, which lies between the brain and the first
ganglion; see section 3.1.3 for more on lobster anatomy, which is essentially identical to
crayfish anatomy) and excited them externally with platinum electrodes for 30–1,800 s at
room temperature. The excitation pulses were square waves with an amplitude of 1–5 V
and a duration of 100–500 µs at 2–60 Hz. They fixed the crayfish by injecting a fixative
which had a pH of 7.4 (slightly more acidic than seawater normally is15) into the sternal
artery. Theymeasured the electrical activity of the nerves with external electrodes before,
during and after fixation; activity ceased after a certain amount of fixative had entered the
crayfish sternal artery. They then extracted the nerves, placed them in the same fixative,

1 µm 250 nm

200 nm

50 nm

Figure 2.2: Control axon (left) and stimulated axon (right) inCamillo Peracchia and JDavidRobert-
son’s 1971 experiment. The inset in the left image and the large circular structure in the right
image are mitochondria. The mitochondrion in the stimulated axon appears thicker and darker
than the one in the control axon. The same is true of the axon membranes near the mitochondria
(above the mitochondrion, marked with an arrow, in the left image; above and to the right of the
mitochondrion in the right image. Modified from figures 3 (left) and 8 (right) in the original14 to
add scale bars based on the original figure captions.
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washed them with saltwater (also at a pH of 7.4) and refixed them with a different fixa-
tive (also with the same pH). They finally cut 50-nm-thick sections of nerve and observed
themunder an electronmicroscope. They saw an increase in thickness to 12–15 nm (indi-
cating that the thickness increased by 8–11 nm) in not only the axon membrane, but also
the endoplasmic reticulum and mitochondrion membranes (figure 2.2. The membrane
thickness increase only occurred in axons which were fixed during activity; axons fixed
while at rest showed no such changes.

That several different membranes in the axon underwent the same changes during
action potential propagation indicates that the physical phenomenon underlying the ac-
tion potential is one that affects lipid bilayers universally rather than affecting different
membrane types in different ways; so does the fact that the changes in giant axons were
of the same magnitude as those in smaller axons.

While recent experimentswould seem to indicate thatmitochondria and endoplasmic
reticula have voltage-gated potassium channels in theirmembranes,16,17 they are thought
to regulate intracellular voltage rather than playing an active role in action potential gen-
eration and propagation;18 in addition, said experiments have been electrical in nature, so
their results can be explained by theHeimburg-Jacksonmodel without invoking ion chan-
nels, just as Hodgkin and Huxley’s results can be explained without ion channels. Even if
wewere to assume the ion channels in themitochondria and endoplasmic reticula play an
active role in the action potential, the exchange of ions through their membranes would
compensate the cell-membrane exchange at least partially, reducing the membrane volt-
age change and counteracting the action potential.

Conversely, the Heimburg-Jackson model —whose results are more general and thus
applicable, in principle, to any lipid membrane— is better equipped to explain Peracchia
and Robertson’s findings. Themodel’s prediction of amembrane thickness increase of the
order of 1 nm does fall somewhat short of these findings. It is possible that more than one
physical mechanism is at work during the action potential, although our previous calcu-
lations indicate that flexoelectricity and capacitor pressure cannot explain the observed
membrane swelling and that hydration produces a negligible increase inmembrane thick-
ness; the fixation agent could have somehow contributed to the thickness change if it can
somehow enter the membrane only during activity, but a quantitative treatment of this
possibility is beyond the scope of this work.
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It is known that mechanical stimuli can generate action potentials. One experiment
showing this was performed by Fred J Julian and David E Goldman in 1962.19 In it, seg-
ments of lobster giant axons with radii of about 50 µm and lengths of 3–4 cm were ex-
tracted and placed in a seawater-filled lucite chamber at room temperature. The axons
were excited at one end either by rectangular voltage pulses smaller than 2 mV at 200 Hz
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or by pressing a stylus tip 500 µm in radius against the central section of the axon. In the
case of the mechanical excitation, the stylus was placed such that it made contact with
the resting axon but did not press it; the stylus was then lowered by less than 15 µm at
speeds of up to 50 µm/ms and raised again at most 10 ms later at the same speed. Frog
sciatic nerves, each with a radius of about 5 µm and containing 5–6 axons, received the
same treatment, but the stylus displacement was at most 5 µm. The electrical response
was recorded by electrodes placed on the central portion of the axon. Julian and Goldman
observed an action-potential-like voltage response caused by the mechanical stimulation.
The stylus displacement required to produce the stimulation was 2–5 µm for frog nerve
and 10–15 µm for lobster giant axon, indicating that there was a threshold below which
the axons were not excited, as in the electrical case. The speed of the depolarisation phase
of the responsewas proportional to the stylus speed, and extremely slow stylusmovement
did not produce a response. In addition, sub-threshold electrical stimulation initiated at
the peak of sub-threshold mechanical stimulation did elicit a response. In the case of
mechanical excitation of the lobster giant axon, repolarisation and axon-shape recovery
occurred several seconds after the depolarisation phase, so the time course of the changes
in the axon was different for each type of stimulation. In addition, there was no post-
action-potential hyperpolarisation.

Julian and Goldman concluded that the membrane resistance decreased due to the
mechanical stimuli, a conclusion supported by their observation that removing all the
sodium in the seawater inwhich the axonwas bathed greatly reduced the amplitude of the
depolarisation caused by the mechanical stimuli. However, they did not offer a possible
mechanism for this decrease in resistance.

A more formal case can be made for a pressure-induced phase transition. A circular
surface 500 µm in radius pressed 10–15 µm down against a lobster axon 50 µm in radius
and 3–4 cm in length reduces the axon’s volume by 0.13%–0.31%. Using equation 1.2
and a cytoplasm isothermal compressibility of 4.59 × 10−10 Pa−1, this corresponds to a
pressure increase of 2.84–6.84 MPa. If the same pressure is felt by the membrane, this is
about one order of magnitude higher than the calculation made in section 1.2.1. In the
case of a frog sciatic nerve 5 µm in radius, the volumedecreases by 0.36%–1.67% (assuming
a length of 3–4 cm), which corresponds to a pressure increase of 7.77–36.62 MPa. This
is between one and two orders of magnitude higher than the calculation of section 1.2.1.
In both cases, the pressure is 10–11 orders of magnitude larger than the action-potential-
produced pressure changes observed by Terakawa, but this assumes that the membrane
and the cytoplasm feel the samepressure changes. It is also unclearwhy pressures 10 times
smaller did not produce action potentials in Julian and Goldman’s experiment.

Flexoelectricity might be initially thought of as another possible explanation, but a
closer inspection of equation 1.4 reveals that it actually acts 8>8@EJK depolarisation. When
the axon is compressed by the stylus, the average curvature in the direction of the axon’s
axis remains zero because there are both regions of positive curvature and regions of nega-
tive curvature; conversely, the curvature in the lateral direction increases, which decreases
themembrane voltage (i.e. it hyperpolarises themembrane). A quick estimate of the order
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of magnitude of this hyperpolarisation can be obtained by assuming the axon becomes el-
liptical. In the case of the lobster giant axon, the ellipse’s major semiaxis is 50 µm and its
minor semiaxis is 42.5–45 µm, which results in an average curvature of 21.1–21.8mm−1.
The curvature of the resting (circular) axon is 20.0 mm−1, meaning the curvature change
is 1.1–1.8mm−1. This corresponds to a decrease inmembrane potential of 0.24–2.46mV.
In the case of the frog nerve, the resting curvature is 200 mm−1 and the compressed
nerve’s average curvature is 226–308 mm−1. This translates into a curvature change of
26–108 mm−1 and a voltage decrease of 2.55–30.48 mV, resulting in hyperpolarisation of
the membrane.
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In 1960, S Solomon and Julian M Tobias published their results on axon opacity changes
concomitant with action potentials.20 They extracted a giant axon from a squid, placed it
on a slot in a slide and covered it with glass, creating what they called a “moist chamber”.
They then inserted one end of a quartz needlewith a radius of 40–50 µm into the axon and
shone light through the other end of the needle, which consisted of a quartz rod 5 mm in
diameter with the exterior painted black to prevent additional ambient light from enter-
ing the axon. They detected the light transmitted through the cytoplasm and membrane
of the axon with a photomultiplier tube. They then electrically stimulated the axon, and
recorded the induced action potentials, extracellularly using electrodes upstream from
the point where the needle entered the axon; the stimulating signal was a train of 200-µs
voltage pulses at 175 Hz lasting for 80–150 s; the stimulating voltage was 250–740 mV.
They observed a decrease of 2%–5% in the intensity of the detected light in 72% of cases,
a small increase of light in 1% of cases and no change in the remaining cases when an ac-
tion potential was detected. There was a delay of 2–20 s from the onset of stimulation to
the change in the optical signal, and the optical changes outlasted the stimulation by an
unspecified amount of time which appears to have been several seconds. In 94% of the
cases in which the intensity of the light passing through the axon decreased after stimu-
lation began, the intensity eventually recovered after stimulation ceased. Sub-threshold
stimulation produced no changes in the axon’s optical transmission, indicating that the
observed changes were associated with activity. The same conclusions can be drawn from
their measurements on non-conductive axons, which also failed to measure a change in
the transmitted light.

Several possible explanations were offered by Solomon and Tobias: a photochemical
reaction causing the axon to becomemore opaque, an increase in the transmittivity of the
cytoplasm resulting in less light being scattered sideways and reaching (and subsequently
passing through) the membrane, an increase in the extinction of light by the membrane,
a change in the refractive index of the cytoplasm leading to a change in the directional
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distribution of refracted light (resulting in a similar effect as in the case of the change in
cytoplasm transmittivity) and a decrease in the eccentricity of the axon leading to light
being refracted more obliquely and less light reaching the photomultiplier.

A change in the shape of the axon or the properties of the membrane seems unlikely,
as it would have had a time course similar to that of the action potentials and there would
have been little or no delay; there certainly would not have been a delay of several sec-
onds, as this would mean that the first few hundred or thousand stimuli did not cause
an action potential while the remainder did, which seems unlikely. While the rest of the
proposed explanations seems reasonable and any of those effects could have occurred,
whichever effect (or combination thereof) occurred does not appear to be related to the
action potential, as the time course it followed was very different from that of the action
potentials and there was a considerable delay in the appearance of this effect. Unfortu-
nately, Solomon and Tobias did not provide information related to the delay between the
onset of the increased opacity and the start of illumination, so, while we know that there
was great variability in the delay between the start of electrical stimulation and the opacity
changes, we cannot know the delay between a possible photochemical reaction and the
observed opacity changes.

It is clear that the observed changes cannot be the result of an increase in extinction
by the axon membrane due to the action potentials making the membrane, and thus the
distance the light must travel before exiting the axon, thicker; if this were the case, they
would have had a time profile identical to that of the action potentials, and all excitable
axons would have displayed them.

It is difficult, then, to imagine what could be causing these changes. One possibil-
ity, given that non-conductive axons did not exhibit changes in opacity, is that structural
changes in the axon are indeed to blame but they are not a direct result of an action poten-
tial; rather, the axon could have become exhausted after extended stimulation, leading to
said changes. This would explain the difference in time courses of the optical effects and
the action potentials, the variability in the delay of the onset of the optical effects, and the
delays themselves of the beginning and end of the optical effects.
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The cellmembrane exhibits a small amount of birefringence20–22 due to the orientation of
its lipid molecules. Several researchers have observed changes in the birefringence of the
axon during neural activity. Here we discuss their experiments and results. TheHodgkin-
Huxleymodel cannot account for any of the birefringence-related observations, while the
Heimburg-Jackson model, as will be seen, can explain them qualitatively; however, with-
out knowing the exact contributions to birefringence made by the cytoplasm and both
phases of themembrane, whichwould require knowing their exact composition andmak-
ing measurements which are, unfortunately, unavailable, it is impossible to give a quanti-
tative prediction of the birefringence change using the model.
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In 1951, Samuel N Shaw and Julian M Tobias extracted squid giant axons and mounted
them in an oil-filled plastic chamber with seawater-soaked electrodes on the bottom.23

They applied 15 V extracellularly through these electrodes; they did not specify whether
this was a continuous voltage (i.e. DC) or not, so we assume it was. They recorded the
action potentials extracellularly, and they also measured changes in the birefringence of
the nerve by using a compensator crystal (figure 2.3). They found that the birefringence
∆E (given by the difference between the extraordinary and ordinary refractive indices, as
explained in section 1.3.1) decreased from its resting value of 1.64×10−4; the magnitude
of the decrease was 4.6 × 10−6. They did not continue measuring after the stimulation
ceased, so it is unknown whether or not the birefringence change they observed was re-
versible.

The authors did not offer an explanation for their findings. However, in 1973,
J M Ritchie22 proposed a possible explanation for a later experiment by Lawrence B Co-
hen and his colleagues (which will be discussed below). Ritchie suggested that the cellular
activity caused changes in the orientation of the membrane lipids, which in turn caused
the observed birefringence changes. This explanation is consistent with the Heimburg-
Jackson model given what we now know about lipid bilayers (see section 3.1.1): a phase
transition to the solid-ordered phasewould have straightened the lipid tails and decreased
the angular deviation of the lipids from a radial configuration (lipids in a bilayer are not
perpendicular to the bilayer plane, but rather have a small slant), changing the birefrin-
gence. The change in birefringence which Shaw and Tobias detected is only about 3% of
the resting birefringence; however, most of this birefringence probably comes from the
cytoplasm, which, although it contributes much less birefringence per unit length than
the membrane, is much more abundant than the membrane (for a squid giant axon, light
passing through the centre of the axon travels through approximately 100,000more cyto-

~ 200 µm
~ 4 nm

~ 4 nm

linear polariser

linear polariser

Figure 2.3: Diagram showing the geometry of Samuel N Shaw and Julian M Tobias’s 1951 exper-
iment. The horizontal grey rectangle is the axon, and the orange arrow indicates the direction of
propagation of the light. The membrane constitutes an extremely small fraction of the distance
travelled by the light within the axon.
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plasm than membrane, as shown in figure 2.3), so the change in the birefringence of the
membrane itself must have been much greater than 3%.
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Ichiji Tasaki’s experiments were not limited to mechanical findings. In 1968, he and his
collaborators studied the optical effects of the action potential.24 They extracted crab and
lobster leg nerves and squid fin nerves. The nerves were placed in an acrylic chamber filled
with seawater at 19 ◦C and stimulated extracellularly with a platinum electrode. A second
platinum electrode recorded the action potentials, also extracellularly. The researchers
used different filters to make the light incident on the nerves “monochromatic” (they did
not specify a bandwidth or even the wavelengths they used) and measured changes in the
nerves’ birefringence by placing the chamber between crossed polarisers in such a way
that the nerve was at a 45-◦ angle with respect to the polarisers’ axes. They saw a decrease
in the intensity of light by a factor of about 10−3 in crab and lobster nerve and 10−6 in
squid nerve when the nerve was stimulated. Because the birefringence and its change are
very small, we may approximate the amplitude of the detected electromagnetic field as a
linear function of the birefringence. A change in the detected intensity by a factor of 10−3

translates into a change in the amplitude by a factor of about 0.03, or 3%, which implies a
change in birefringence by about the same amount. This is the same change observed by
Shaw and Tobias in squid giant axon. Strangely, however, the birefringence decrease was
0.1% in the squid nerve.

Tasaki’s group reported that there was no significant dependence of the birefringence
change on the wavelength of the light and that the time course of the decrease was very
similar to that of the action potential. Both of these findings are consistent with what
we would expect from a change in the membrane lipids’ orientation and straightness and
thus with the Heimburg-Jackson model of the action potential.
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In the same year, Lawrence B Cohen, R D Keynes and their group initiated a long series of
experiments which tested the birefringence of and scattering by axons and nerves.

In one such experiment, they extracted crab walking nerves and squid giant axons and
placed them in seawater at 4.5 ◦C.25 They illuminated a length of 1–3mmof axon or nerve
with white light and measured the birefringence in the same way as Tasaki and his group.
With the crab nerve, they observed a decrease in intensity by a factor of (1–9) × 10−4,
which implies a decrease in birefringence of 1%–3% (calculated as in the case of Tasaki
et al’s experiment), consistent with previous findings; however, this was over the course
of several hundred milliseconds. With the squid giant axon; the birefringence decrease
was again smaller, merely 0.05%–0.15%, although the time course was the same as the
action potential’s. These figures are all consistent with Tasaki et al’s findings. Further
tests revealed that the birefringence has a radial optic axis.

Two years later, Cohen and his group conducted a similar experiment26 (carried out
at several different temperatures between 5 ◦C and 22 ◦C, and with the added difference
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that the excitation was intracellular) where they saw a decrease in birefringence of about
0.15% in both squid giant axon and crab nerve which followed the same time course as
the action potential, including a slight overshot during the return phase. There was no
significant dependence on temperature or wavelength.

It is difficult to explain the former study’s findings in crab nerve, given the great dif-
ference between the time courses of the birefringence change and the action potential.
Perhaps Cohen et al saw the compound effect of the many axons in the nerve, and the
effect of any changes caused by the action potential on the nerve sheath are unknown, so
we cannot offer any insight into whether it contributed part of the observed change.

Conversely, their observations with squid giant axon are the same, and thus can be ex-
plained in the sameway, as Tasaki et al’s findings. That themembrane is solely responsible
for the changes is made more apparent by their finding that the birefringence effect re-
mained essentially unchanged when the cytoplasm was replaced with buffer solution and
by the radial direction of the axon’s optic axis; that the changes were caused by the ac-
tion potential is shown by their binary nature (increasing the stimulation strength above
the excitation threshold did not increase the change in birefringence) and by their ces-
sation when nerve activity was blocked with tetrodotoxin (a powerful anaesthetic) or by
changing the ions present in the seawater.

In addition to conformational changes, the authors suggested the changes might be
caused by attraction of the two leaflets of the membrane (as between the plates of a ca-
pacitor). However, this would require a compression of the membrane, which is in direct
opposition to the observations reported in section 2.1.
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In their 1982 study,7 Tasaki and Iwasa found a decrease in the intensity of the light trans-
mitted by the squid giant axon and detected using the same method as before (placing
the axon at 45 ◦ between crossed polarisers) by a factor of 4 × 10−5, which constitutes a
birefringence change of 0.63%. This change again had the same time course as the action
potential. The explanation is as for the other reported experiments.
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Several of the experiments which examined the birefringence of an axon or a nerve also
looked at changes in the light scattered by it. As before, these results imply important con-
formational changes in the axon, which suggests that a phase transition might be respon-
sible. Also as in the case of the changes in birefringence, it is difficult to give a quantitative
explanation of the observations without knowing the scattering-amplitude matrix of an
axon, but attempts at explaining the results qualitatively have been made.
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Tasaki et al’s 1968 experiment24 also saw changes in the light scattered at 90 ◦ (in the di-
rection perpendicular to both the axon axis and the direction of propagation of the light)
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for different wavelengths in the near-ultraviolet and visible spectra. The intensity of the
scattered light increased by a factor of (0.8–5.7) × 10−5 (crab), (1.0–7.6) × 10−5 (lob-
ster) and (0.9–5.8) × 10−5 (squid). These changes did not significantly depend on the
wavelength or polarisation of the light.

As with the birefringence, changes in the straightness and angle of the membrane
lipids seems to be the most likely reason for these changes.
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Cohen et al’s study of the same year25 also looked at scattering changes. Like Tasaki and
his colleagues, they saw an increase by a factor of (2–9)× 10−5 in the case of crab nerve.
However, this change occurred over several hundred milliseconds, like the birefringence
change. Therefore, wemay attempt to explain this in the sameway; it is possible thatwhat
Cohen et al sawwas the compound effect ofmany actionpotentials occurring out of phase.
They also detected a decrease in the scattering at 30 ◦ and 45 ◦, but they failed to specify
the amount by which the scattering at these angles decreased. With squid giant axon, on
the other hand, they saw a decrease in scattering by a factor of about 3.8 × 10−6 which
followed the time course of the action potential (with a delay of 0.25 ms) but overshot
and did not return to the baseline over extended periods. This change occurred only at
45 ◦; these was no observable change at 90 ◦, in contrast to Tasaki’s results. In all cases,
changing the ions in the seawater or adding tetrodotoxin to block the action potentials
made these scattering changes disappear, indicating that they were related to cell activity.

A later study by Cohen et al focussed on crab nerves, which were placed in chambers
divided into three sections.27 The central section was filled with seawater, and the other
two sections were filled with oil. The nerves were excited extracellularly with electrodes
at 10 Hz, and action potential detection was also extracellular; excitation and recording
took place in the oil-filled sections. Light scattered by the central section was detected in
a 50-◦ arc centred at 35 ◦ or 90 ◦. Cohen and his colleagues found that the light scattered
at 90 ◦ decreased by a factor of (3.0 ± 0.1) × 10−5, contrary to their previous results
and to Tasaki et al’s experiment, but also that this decrease was occasionally preceded by
a small increase (by a factor of less than 2 × 10−6). This was the result of integrating
the scattered light over a relatively long period (about 300 ms); when they looked at the
effect with increased temporal resolution, they found that the scattering increased by a
factor of (4.9±2.1)×10−5 before decreasing and overshooting to produce a net decrease
of about the same magnitude (to within a factor of 2) as detected earlier. The authors
concluded that in the integrated measurements they were seeing only the longer-term
effect of this binary change. At 35 ◦, the sign of the changes was reversed: a short-lived
decrease in scattering was followed by a net increase. However, the authors noted that,
due to the density of molecules in the axon (and particularly in the membrane), it is likely
thatmultiple scattering took place, which casts uncertainty on the angles. As before, there
was no wavelength dependence.

The authors suggested that an increase in the size of the nerve could be the cause of
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the decrease in scattering, basing their guess on their observation that the scattering of
light by erythrocytes decreased as the erythrocytes’ size increased. While the size of the
axons does increase slightly during action potentials, it is more likely that the scattering
changes are due to conformational changes in the membrane lipids. For objects larger
than the wavelength of light, such as axons in the case of visible light, the amplitude of
the scattered field is proportional to the volume;28 this means that an increase in radius
by a factor between 10−5 (for giant axons some 100 µm in radius) and 10−3 (for axons
only 1 µm in radius) would produce an increase in the scattered amplitude by a factor of
0.02 − −0.10, which translates into an increase in the scattered intensity by a factor of
4.6×10−4−−1.0×10−2. Even the lowest of these values is an order ofmagnitude higher
than the increase observed by Cohen et al.

A final study by Cohen’s group looked at squid giant axons only.29 The axons were
perfused with buffer solution and kept at (12 ± 1) ◦C, and a 4-mm length of axon was
illuminated. The light scattered at several different angles between 10 ◦ and 120 ◦ was
detected. The scattered intensity saw a decrease at angles smaller than 45 ◦ by a factor
of 7.5 × 10−6, no change at 45 ◦ and an increase at angles larger than 45 ◦ by a similar
factor (1.94 × 10−5). These changes were also biphasic, following the action potential’s
time course closely; interestingly, however, they returned to the baseline about 0.25 ms
before the voltage did (and then overshot, as with the crab nerves in the group’s previous
experiment). The overshoot at small angles had the samemagnitude as the initial change,
while the overshoot at large angles was small and eventually returned to the baseline over
a long period. Increasing the temperature of the axons decreased the magnitude of the
scattering change at small angles but not at high angles.

As with the crab nerves, the biphasic nature of these changes strongly suggests that
they are ultimately caused by the action potential. The slow return to the baseline after
overshooting seen at large angles is more difficult to explain; it may be the result of nerve
fatigue due to repeated stimulation or of some long-term change in the cytoplasm.
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As early as 1916, Archibald Vivian Hill observed heat release during activity.30 He ex-
tracted about 80mgof frog sciatic nerve. Stimulation of the nerve at 140Hz and recording
of the response were extracellular. At the same time, the heat released by the nerve was
measured by a thermopile, though it is unclear exactly where the thermopile was placed.
“Immediately” after stimulation began, Hill detected a release of 24 µcal/g, which he cal-
culated to be 7–10 ncal/g per action potential. Considering the nervemass he used, this is
560–800 pcal per action potential. Unfortunately, Hill did not mention whether the heat
release was reversible or not. He did assume it was cumulative, which suggests he believed
it was irreversible. He believed the heat was necessarily linked to the action potentials
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because nerve warming by the stimulating current would have been delayed rather than
immediate. Indeed, he did detect such a delayed warming in addition to the immediate
heat release. Unfortunately, it is unknown whether his measurements had the temporal
sensitivity required for him to observe whether the time course of the thermal changes
followed that of the action potentials.

Since the Hodgkin-Huxley model is purely electrical, this heat release must be ex-
plained in terms of dissipation by the circuit resistance. The heat dissipated by a resistor
of resistance , is + = ,#2 = 0#, where # is the current flowing through the resistor and 0
is the voltage across it. We know that 0 ≈ −70 mV; we must thus determine #.

The frog sciatic nerve is myelinated and, like all myelinated nerves, has small sections
(only 1–2 µm in length) not covered by myelin, called nodes of Ranvier; the density of ion
channel proteins in the nodes is much higher than in the internodal regions, but the sheer
size difference between the two region types means that the total number of internodal
channels is greater than the total number of nodal channels; for frog sciatic nerve the
number of internodal channels has been found to be approximately 40 times the number
of nodal channels.31 The internodal distance in frog sciatic nerve is about 2.2mmon aver-
age, and the total current at a node has beenmeasured as−2.15 nA.32 Since the nodes are
tiny compared to the internodal distance, we may ignore their size and make the approx-
imation that there are 41 times the number of nodal channels in every 2.2-mm stretch of
nerve. The current through a single ion channel33 is between−12 pA and−10 pA, so we
calculate the total number of channel proteins per 2.2 mm of nerve as 7,346–8,815.

Now, a frog sciatic nerve has 1,000–100,000 axons which are 1–6 µm in radius.34 The
density of a cell membrane35,36 is 1.04–1.21 g/ml, while the cytoplasm density is approxi-
mately the density of water because cytoplasm is mostly water. Finally, the ratio between
the inner and outer radii of the myelin sheath is 0.8–0.9 for most myelinated nerves.37

Using these values, approximating the axons and nerve as tubes and assuming optimal
packing of the axons in the space surrounded by the myelin (which means that the frac-
tion of space occupied by the axons is ć/2

√
3 ≈ 0.9069), we can calculate the volume

fractions of all the components and, considering myelin is also made of stacked lipid bi-
layers and assuming the interaxonal material has the same density as lipid, estimate the
radius and average density of the nerve. With this, we can calculate the total length of the
nerves studied by Hill.

We can use these calculations to estimate that the total number of ion channel pro-
teins in a nerve was between 1.4× 104 and 8.6× 107. Using this and the current passing
through a single channel, we finally obtain a figure for the total heat dissipated by the
nerve: between 2.80 × 10−18 cal and 1.44 × 10−14 cal. It is clear that this cannot be the
explanation.

In the Heimburg-Jackson model, most of the heat comes from a phase transition (and
lowering of the axon temperature) and is fully reversible; a small amount is dissipated by
the ion channels. The heat released in the cooling of the axonmembrane is+c = D�p∆.,
where D is the mass of the axons, �p is the specific heat of the axon membrane and
∆. ≈ −15 ◦C is the temperature change. To calculate the latent heat +l of the liquid-
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gel phase transition, we use the Clausius-Clapeyron relation,

∂*
∂.

=
∆-

∆M
,

where ∆- is the entropy change in the phase transition and ∆M is the volume change of
the membrane, and the equation relating entropy and heat,

+l = .∆-,

to obtain38

+l =
∂*
∂.

.∆M.

The value of ∂*/∂. for a lipid membrane has been found to be 46 kbar/K, and its
specific heat is approximately 25 cal/kg K close to the gel-liquid phase transition.38 Hill
did not specify the temperature atwhichhe conducted his experiments, sowemay assume
theywere conducted at roomtemperature (293.15K); at any rate, any reasonable deviation
from this value (e.g. conducting the experiments at 0 ◦C, or 273.15K)will result in an error
of less than 10% in our calculation of the latent heat. Making the same assumptions as
before and again taking cytoplasm to be equivalent to water (meaning it has a specific
heat equal to that of water, 1,000 cal/kg K), we can thus calculate the volume change of
the membrane (recall that its thickness increases by about 1 nm) and thus obtain a value
of 0.03 pcal for+c and a range of 0.6–3.5 pcal for+l. The total heat released by the nerve,
then, was about 100 times the amount of heat the Heimburg-Jackson model can account
for.
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Half a century later, in 1968, J V Howarth, R D Keynes and J M Ritchie saw partially re-
versible heat release.39 They extracted rabbit vagus nerves 70–80 mm in length, removed
the myelin sheath and mounted them on a device consising of a thermopile and eleven
electrodes. The nerve being studied was submerged in saline solution at a temperature
close to 5 ◦C. It was stimulated by a single 2-ms pulse at a time, but the voltage was not
specified by the authors; they merely claimed it was “sufficient to excite all the fibres in
the nerve”. Recording and stimulation were both extracellular. The thermopile detected
a slow increase of 4.2× 10−6 ◦C over 206 ms; the authors calculated that this was equiv-
alent to 7.20 µcal/g. This was followed by a decrease in temperature at the thermopile
of 2.9 × 10−6 over 380 ms, a reabsorption of 4.90 µcal/g. Oddly, when the nerves were
made inexcitable, therewas only an increase, which followed exactly the same time course
as the partially reversible increase seen with excitable nerves but then continued until it
reached a total of 5.0× 10−6 ◦C (8.14 µcal/g).

It is difficult to explain these findings using either model. The rabbit vagus nerve con-
tains approximately 40,000 axons, each about 1.5 µm in radius on average.40 Howarth et
al reported that the area of membrane in 1 g of rabbit vagus nerve is 6,000 cm2, which we
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can use, along with the same assumptions as before, to calculate the necessary parameters
for the Hodgkin-Huxley and Heimburg-Jackson calculations.

If we assume that the channel density and internodal distance (even though the nerves
were desheathed by the researchers, they were originally myelinated, so the ion channel
distribution was obviously that of a myelinated nerve) are the same for rabbit vagus nerve
as for frog sciatic nerve, we can calculate the number of channels in the nerve and obtain
a value of about 2.36 × 10−18 cal/g using the Hodgkin-Huxley model. Conversely, the
authors claimed the heat release predicted by the Hodgkin-Huxley model is 750 ncal/g,
but they assumed a resting membrane voltage of −34 mV; using −70 mV, this would be
3.18 µcal/g. Their calculation would require the rabbit vagus nerve to have about 1012

times more ion channels than the frog sciatic nerve, which is unrealistic; it is unknown
how they reached this value. At any rate, the model cannot explain the heat reabsorption
which followed the release.

Using the same values as before for the thermodynamic variables, which seems reason-
able because these refer to the lipid membrane itself and not to species-specific details of
nerve anatomy, the Heimburg-Jackson model can account for a total release of 0.82 pcal
(which amounts to 37 pcal/g). This is about 105 times smaller than the experimental ob-
servation. This release should be almost fully reversible, however. In any case, the time
course of the heat release is around 100 times longer than an action potential’s duration.

Neither model can explain why the inexcitable nerves also produced heat. It seems
likely, given the slow time course of the heat changes and the results with excitable and
inexcitable nerves, that what was detected by Howarth et al was heating of the nerve tis-
sue due to the current applied and that the reversibility seen with excitable nerves was
(relatively slow) regulation of the axon temperature by the axons themselves simply as a
result of them being alive.
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In 1961, Constantine S Spyropoulos extracted the nerves connected to the sartorius and
semitendinosus muscles of the toad and carried out some heating and cooling experi-
ments on them.41 In each experiment, he stimulated them extracellularly with 5 pulses
at a time with a frequency of 0.1 Hz and recorded the electrical response at the nodes of
Ranvier also extracellularly. Either Ni++, NiCl2 or NaCl was added to the solution sur-
rounding the nerve, which initially at a temperature of 2–5 ◦C; the addition of these ions
or compounds to the solution and the low temperature of the system served to prolong
the cells’ electrical activity to several seconds. In one of his experiments, the nerve was
surrounded by a NiCr or wolfram 0.1-Ω coil 0.3 mm in diameter through which a 3-A
current pulse lasting 2–5 ms travelled; this current heated the wire, which heated the so-
lution and the nerve by conduction. The temperature of the wire was measured with a
thermocouple or a thermistor in contact with the coil, and it was assumed that the du-
ration of the experiment was enough for the nerve, solution and wire to reach thermal
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equilibrium. In another experiment, he heated the nerve at the node with a stream of hot
solution shot from a syringe. In this case, the temperature change was calculated by Spy-
ropoulos using the heat dissipated by the current (as mentioned previously, this is equal
to ,#2). In both experiments, he observed that electrical activity was interrupted (with
an occasional delay) by a rise of 2–5 ◦C. He did not quantify the delay, so it is impossible
to analyse it rigorously, but we may speculate that it was due to the finite time required
by heat dissipation, as indeed suggested by Spyropoulos himself. However, he did state
that the temperature rise required depended on factors such as the initial temperature of
the nerve, the rate of temperature change, the delay between the onset of activity and the
current pulse and the duration of the electrical activity itself.

These findings can be easily explained by invoking the phase transition model; as
stated before, the phase transition of the membrane occurs about 15 ◦C below the mem-
brane’s normal temperature, and activity probably does not involve amuch greater cooling
than required, so heating the cells during activity brings them above the transition tem-
perature and back into the liquid-disordered phase.

Explaining the observed effect of mid-activity heat under the Hodgkin-Huxley model
requires extrapolation. Spyropoulos remarked that another experiment had seen an in-
crease of the restingmembrane voltage of the squid giant axon with cooling. By assuming
the opposite temperature change causes the opposite voltage effect, wemay speculate that
a sudden rise in temperature hyperpolarises the membrane, terminating the activity.

A change in initial temperature will affect how far the transition temperature is and
thus how easy it is to reach it (and also how easy it is to return above the transition temper-
ature, assuming the change is 15 ◦C irrespective of how much change would be actually
needed); this can serve as an explanation for the initial-temperature dependence of the
temperature change required to terminate activity, but only if we assume the membrane
composition does not change to adapt to the reduction in resting temperature. On the
other hand, recalling the effect of reducing the resting temperature on themembrane po-
tential and assuming the action potential has the same amplitude regardless of the resting
membrane potential, wemay see how the voltage (and thus temperature) change required
to terminate activity increases or decreases depending on the cells’ initial temperature.

There is no reason in theHeimburg-Jacksonmodel for there to be a significant change
in how much heating is required depending on what fraction of the action potential has
occurred. The transition is binary, meaning that once a given region of themembrane has
undergone the phase transition it remains in the solid-ordered phase until the action po-
tentialmoves beyond that region and it returns to the liquid-disordered phase; it shouldn’t
matter howmuch time has elspsed since that particular region underwent the transition.
In the Hodgkin-Huxleymodel, however, themembrane potential is directly related to the
elapsed time, so the voltage (and thus temperature) change required to bring the voltage
back to its resting value changes with time.

Conversely, the rate of temperature change, as long as it remains quicker than the
action potential, should have no bearing on the required magnitude of the change in an
electric model, but it makes sense to think that it does have an effect in a thermodynamic
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model— if this rate is sufficiently high, themembranewill not be in thermodynamic equi-
libriumwhile the temperature changes, meaning there might be a concomitant change in
other variables (such as pressure) which acts together with or against the heating, modi-
fying the required magnitude.
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Spyropoulos’s 1961 experiments41 also looked at the effect of cooling on the cells’ activity.
In an inversion of the experiment where he used solution blasts from a syringe, he used
cold blasts and observed that sufficient cooling could initiate activity. It is rather unfor-
tunate that he does not mention how much cooling was necessary for this effect to be
seen. In another experiment, he greatly reduced the amount of solution around a node of
Ranvier and cooled it with an air flow during activity; here he saw that cooling resulted in
a lengthening of the activity by a factor of more than 3.

The initiation of activity by cooling is consistent with the Heimburg-Jacksonmodel if
and only if the magnitude of the cooling was enough to bring the axons below the tran-
sition temperature. It is consistent with the Hodgkin-Huxley model if we once again in-
voke the finding in squid giant axon that lowering the temperature depolarises the axon,
although one would have to assume that this effect continues far enough to bring the
membrane potential above zero, which is not known.

The slowing of activity by decreasing temperature is an effect already seen and ex-
ploited by Hodgkin and Huxley and other researchers. For example, in a 1982 experi-
ment similar to the one they made in 1980 where they measured a shortening of the axon
during the action potential, Tasaki and Iwasa observed7 that action potentials in squid
giant axons lasted about twice as long at 6 ◦C as at 20–22 ◦C. Unless cooling changes
the time constants of the gating particles, however, it cannot be easily explained with the
Hodgkin-Huxley model. The Heimburg-Jackson model can partially explain it by recall-
ing the sound equation from section 1.6.2: a temperature decrease results in a density
increase, which in turn results in a decrease in the speed of sound. However, a lengthen-
ing by a factore of at least 3 (as seen by Spyropoulos) and up to 5 (as seen by Hodgkin and
Huxley) would require at least a 9-fold increase, and up to a 25-fold increase, in density,
which is unrealistic. It could be that other properties of the cell are altered when the tem-
perature is lowered, changing some other aspect of the nature of the action potential and
not merely the speed of sound.

���� �?<D@:8C 8JG<:KJ F= 8:K@FE GFK<EK@8CJ

����
� �:K@FE F= 8E8<JK?<K@:J 8E; GF@JFEJ

It was discovered by Hans Horst Meyer in 189942 and independently by Charles Ernest
Overton in 190143 that the median effective dose of an anaesthetic (the concentration of
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an anaesthetic that must be present in the body to produce a narcotic effect in half of a
population, denoted by ED50) is inversely proportional to the anaesthetic’s solubility in
vegetable oil. This is true for a wide variety of anaesthetics, including noble gases such
as xenon, inorganic molecules such as N2O, small organic molecules such as chloroform
(CHCl3) and diethylether, and larger organic molecules such as octanol and procaine, all
of which have very different chemical properties. Further, it seems to hold independently
of the animal in question.44 This discovery, now known as the Meyer-Overton rule, has
been widely assumed by the scientific community to imply that an anaesthetic’s ED50 is
inversely proportional to its solubility in cell membranes as well.

In 2007, Heimburg and Jackson measured the transition temperature of pure di-
palmitoylphosphatidylcholine (DPPC), an important and common lipid present in cellular
membranes, as well as that of various mixtures of DPPC and the anaesthetic octanol.44

They found that the melting temperature decreased by an amount proportional to the
octanol concentration in the lipid with a coefficient of determination (I2) of 0.9989.

The Meyer-Overton rule strongly suggests a thermodynamic origin for the action of
anaesthetics. Indeed, if all anaesthetics act the way octanol does (i.e. if they all lower the
transition temperature), their action is fully consistentwith theHeimburg-Jacksonmodel.
In fact, Heimburg and Jackson went as far as reformulating theMeyer-Overton rule to say
that all anaesthetics lower themelting temperature of the membrane by an equal amount
at ED50.44

Defenders of theHodgkin-Huxleymodel have longheld that anaesthetics act by block-
ing ion channels. While the activity of some proteins in their purified form, such as lu-
ciferase, is indeed inhibited by 50% by approximately ED50 doses of various different kinds
of anaesthetics,45 for this to be auniversal anaestheticmechanism these proteinswould all
need to have binding sites for an incredibly wide variety of chemical substances, includ-
ing noble gases, given the seemingly universal applicability of the Meyer-Overton rule.
This unrealistic requirement has been recognised by the scientific community, and it has
been proposed46 that anaesthetics act on proteins not by specific chemical binding, but
by increasing the lateral pressure of themembrane at the hydrophilic edges, which in turn
alters the structure of the ion channels in such a way that they cannot act normally. This
is a Hodgkin-Huxley-consistent explanation for the correlation between anaesthetic po-
tency and anaesthetic solubility in lipid membranes. However, it has been observed that
a drastic increase in hydrostatic pressure both increases the melting temperature of lipids
and counters the effect of anaesthetics on lipid membranes (though, notably, not on lu-
ciferase).44,48 This is consistent with the Heimburg-Jackson explanation of anaesthetic
action and counter to the lateral-density-increase explanation.

While some poisons, such as tetrodotoxin, do not seem to affect the cell membrane47

and do seem to act by inhibiting proteins according to computer simulations,49 which
is consistent with the Hodgkin-Huxley picture of neural activity, there is no reason to
believe poisons should act in the same way as anaesthetics. While the Heimburg-Jackson
model does not require proteins to explain action potential propagation along the axon, it
says nothing about how action potentials are generated in the first place; if ion channels
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are involved in the @E@K@8C GIF;L:K@FE of the action potential, any molecule that inhibits
themwill act as a poison regardless ofwhat themechanismof action potential GIFG8>8K@FE
is. This is also true for anaesthetics that target luciferase or other proteins; the existence
of narcotics and poisons which act by inhibiting activity-related proteins is not mutually
exclusive with the existence of narcotics which act by lowering the melting temperature
of the membrane.
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In 2008, Takahiro Ueno et al studied the effects of pH reduction and peroxyni-
trite (NO3−) on the interaction between artificial lipid bilayers and certain anaes-
thetics.50 They prepared supported lipid bilayers (commonly used as a model for cell
membranes; see chapter 3) from palmitoyloleoylphosphatidylcholine (POPC), palmi-
toyloleoylphosphatidylethanolamine (POPE), palmitoyloleoylphosphatidylserine (POPS),
sphingomyelin and cholesterol, all major lipids in the membranes of peripheral neurons.
The bilayers were labelled with diphenylhexatriene (DPH), a fluorescent molecule which
emits light which is more strongly polarised the less fluid its surrounding medium is. The
bilayers were treated with either lignocaine, prilocaine or bupivacaine, all of which are
charged anaesthetics,51–53 at clinical concentrations. Since drugs interacting with a lipid
membrane increase its fluidity, the degree to which the anaesthetics interacted with the
bilayers was determined bymeasuring the fluorescence polarisation of DPH; a decrease of
polarisation indicated that the membrane fluidity had increased, which in turn was an in-
dicator of anaesthetic interaction. The experimentswere carried out at a pHof 7.4, similar
to physiological conditions. Ueno et al observed very similar polarisation effects with the
three anaesthetics: compared to the fluorescence polarisation in control measurements
(bilayers without an anaesthetic), the polarisation in the presence of an anaesthetic was
reduced by roughly the same amount by all three drugs. This reductionwas decreased (i.e.
the polarisation was less reduced compared to the control) when the pH was reduced to
6.4, suggesting the interaction between the bilayer and the anaesthetic is weaker at lower
pH; the reduction at a pH of 6.4 was about 70% of the reduction at a pH of 7.4. The au-
thors then added peroxynitrite to the bilayers. At both pH values, the effect of this was to
decrease the polarisation reduction by about 50% (compared to the polarisation reduction
at the corresponding pH without peroxynitrite).

As a possible explanation, the authors examined A Punnia-Moorthy’s 1987 proposal54

that inflammation reduces pH. Punnia-Moorthy found this by injecting rats with various
inflammatory agents (carrageenan, dextran and the bacterium staphylococcus aureus) and
measuring the pH of the rats’ tissue at the site of injection and of the injected solution,
as well as the concentration of leukocytes in the solution, at different time intervals from
4 hr to 48 hr after injection; there was a correlation between inflammation (gauged by
the leukocyte count) and pH decrease in dextran and staphylococcus (though not in car-
rageenan), leading Punnia-Moorthy to conclude that inflammation caused a decrease in
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the pH of the inflamed tissue by 0.15–0.49. While a decrease in pH did result in a weaker
interaction between the membrane and the anaesthetics in Ueno et al’s experiment, the
authors rejected pH decrease as the mechanism for the reduction in anaesthetic potency.
One of their reasons to reject it was that the same experiment with liposomes resulted in
the polarisation reduction at a pH of 6.4 being only about 30% of the reduction at a pH
of 7.4 when the liposomes were made of DPPC, POPC and cholesterol, POPE and choles-
terol, or sphingomyelin and cholesterol (notably, liposomesmade of POPS and cholesterol
exhibited practically no pH dependence of the polarisation reduction, which the authors
attributed to the fact that POPS is a charged lipid and charged drugs have a much higher
affinity for charged lipids), which means that the decrease in pH had an effect more than
twice as strong for these liposomes than for the model neuron membrane. Their other
reason was their suggestion that in live organisms there exist physiological mechanisms
related to inflammationwhich can result in the removal of anaesthetics from the inflamed
site or compensate the reduction of pH. Instead, they proposed that peroxynitrite itself
binds to the anaesthetics and reduces their efficacy; this conclusion is supported by the
fact that peroxynitrite is more reactive at lower pH.

Two important remarks must be made about this experiment in order to properly es-
timate its significance in the matter of the mechanism behind neural activity.

One is that their experiment did not involve any proteins. Their sample was a lipid
membrane representative of the membranes of certain neurons. This is once again
strongly suggestive of a thermodynamicmechanism for neural activitywhere the lipids are
the responsible constituents. It is known that, for pH values between 5 and 9, decreasing
the pH by 1 results in an increase of themelting temperature of the escherichia coli mem-
brane by almost 2 ◦C.44 If the effect is linear, this means that a decrease by 0.5, as found by
Punnia-Moorthy with carrageenan, raises the melting temperature of the membrane by
about 1 ◦C, directly counteracting the effect of anaesthetics; Heimburg and Jackson have
suggested that this is sufficient to compensate the effect of anaesthetics, which lower the
transition temperature by 0.6 ◦C.44

The other remark is more cautionary. While Ueno et al’s results are certainly sug-
gestive, both they and Punnia-Moorthy’s findings used by Heimburg and Jackson to es-
timate the effect of pH on lipid melting temperature must be taken with reserve. First,
Punnia-Moorthy only found a correlation between inflammation and pH change for two
of the three anaesthetics studied, and it was precisely carrageenan, where the largest pH
decrease was observed, that did not display this correlation. Second, the pH reduction
induced by dextran and staphylococcus was markedly smaller, only 0.15–0.27. Third, the
lower pH value studied by Ueno et al, 6.4, is outside the pH range Punnia-Moorthy’s ex-
periments took place; the effect of inflammation might be considerably smaller than the
effect seen by Ueno et al, since it produces a pH decrease smaller than the one studied by
them. Fourth, Ueno et al’s experiment is a rather indirect study with considerable extrap-
olation to the living case: it was performed on artificial bilayerswithout proteins, meaning
no control for the possible interaction of anaesthetics with proteins was included (provid-
ing such a control was, of course, not the authors’ intention, as they weremerely studying
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the relationship between inflammation and pH reduction, but it does make conclusions
concerning themechanism of anaesthetics as related to lipids and proteins less definitive),
and it involved a fluorescent label, whichmay havemodified the behaviour of the bilayer.5

Fifth, while peroxynitrite is highly toxic and is produced by inflammatory cells,55,56 this
does not mean that it :8LJ<J inflammation; Ueno et al’s use of this ion to simulate in-
flammation may have been misguided and, in fact, not representative of the effects of
inflammation’s effect on lipid membranes and their interaction with anaesthetics.
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In their 1982 experiment, Tasaki and Iwasa also observed generation of action potentials
by external calcium depletion.7 They immersed a squid giant axon in medium containing
only 2-mMCa++ and observed generation of action potentials without the need for elec-
trical or mechanical stimulation. These action potentials occurred with a frequency of
100–150Hz. They did not, in fact, attempt to record any electrical activity during this ex-
periment, but they observed mechanical and optical responses essentially identical to the
ones they had seen with electrical stimulation, so they concluded what they were seeing
was a train of action potentials.

The interior and exterior Ca++ concentrations are normally 300 nM and 10 mM, re-
spectively, for the squid giant axon.57 Both of these concentrations are tiny compared to
those of the monovalent ions (K+, Na+ and Cl−), with the exception of the exterior K+

concentration, which is only twice the external Ca++ concentration, asmentioned in sec-
tion 1.4.3. Furthermore, the permeability of the squid giant axon membrane to Ca++ is
only about 0.009 times its permeability to K+.58,59 This is countered to some extent by
the fact that Ca++ contributes twice as much charge per ion as the monovalent ions, but
this effect is not enough to compensate the low concentrations of and permeability to
the divalent ion. Generalising the Goldman-Hodgkin-Katz equation to include divalent
ions58,60 and taking the values from section 1.4.3 for the monovalent ions, one can see
that Ca++ contributes less than 1 mV to the membrane potential, so a depletion of 80%
of the exterior Ca++ concentration cannot produce an effect strong enough to depolarise
the membrane beyond the threshold voltage.

The mechanism behind the generation of action potentials by calcium activity, then,
must lie elsewhere. Changing the ion concentration on either side of the membrane will
alter the pH, which, as we saw earlier in this section, changes the melting temperature of
themembrane, but the effect of this is unlikely to be of sufficientmagnitude given the low
calcium concentration — and, even if the concentration were high enough for depletion
to produce a significant pH change, this alone would be insufficient to generate action
potentials, since the melting temperature would have to be increased by 10–15 ◦C. In a
reversal of the causal relationship neurophysiologists usually take for granted, Tasaki and
Iwasa suggested a swelling of the membrane caused by the calcium depletion might be
responsible for the generation of action potentials. While it is unclear why the partial
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depletion of an ion which occurs in such a low concentration compared to the univalent
ions would cause swelling, this remains the most likely explanation.

It is possible that the response Tasaki and Iwasa saw was not due to action potentials,
though this is unlikely given the time course and shape of the mechanical and optical re-
sponses, which correspond to the time course and shape of the mechanical and optical
effects they observed when they electrically recorded action potentials generated by elec-
trical stimulation.
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There is a vast body of experimental results which at first glance have shed some light on
the mechanism behind neural activity. However, on second inspection it is evident that
there remains much confusion, in large part because neither the Hodgkin-Huxley model
nor the Heimburg-Jacksonmodel offers an entirely adequate explanation of all the obser-
vations and in part because these observations occasionally contradict each other. A large
fraction of the reason these issues have not yet been resolved is that no experiments have
yet been designed specifically for the purpose of directly detecting the presence or absence
of a phase transition in the axonmembrane associatedwith activity; all of the experiments
we have reviewed here either were undertaken with other goals in mind or obtained re-
sults which can be explained both with and without invoking phase transitions.

Neither of themodels is verywell equipped to explain themechanical aspects of the ac-
tion potential. The Heimburg-Jackson model’s prediction of membrane swelling by lipid
tail stretching is closer to the experimental findings in all cases but sometimes falls short
by an order of magnitude; this model is also the only one which can acceptably explain
Peracchia’s findings of mechanical changes in multiple membranes. Conversely, all of the
Hodgkin-Huxley predictions are several orders of magnitude above or below the exper-
imental observations. Furthermore, flexoelectricity offers a rather poor explanation of
the observed mechanical phenomena, in some cases predicting unphysical changes in the
axon and in other cases predicting changes with the wrong sign. Treating the cytoplasm
as an ideal liquid and assuming the membrane experiences the same pressure changes as
it is also inappropriate.

The optical aspects of the action potential seem, in general, particularly consistent
with the Heimburg-Jackson model; every fragment of evidence suggests the cause of all
of the observed changes is a reversible conformational change in the membrane lipids,
which is precisely what a phase transition in the membrane would cause. That said, it is
beyond the scope of this work, and perhaps impossible with current knowledge, to offer a
quantitative explanation of the observed changes in scattering, birefringence and opacity,
as mentioned earlier. It is also difficult to explain some of the observations on nerves
without assuming the behaviour of the axons is blurred by superposition of all the axons’
poorly coordinated activity, but this is merely an explanation of why the results of the
experiments on nerves are strange and sometimes mutually inconsistent rather than an
adequate explanation of which changes are occurring in the nerve.
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As in themechanical and optical cases, there is evidently a large gap in our understand-
ing of the thermodynamic aspects of the action potential and a need for more-sensitive
experiments to fill this gap. Neither model can adequately explain the observed heat re-
lease. Given the enormousmagnitude of this release compared to themodels’ predictions,
it is likely that some other phenomenon, such as heating of the nerves by the current sup-
plied to them, is responsible for the experimental observations and completely masks the
effects predicted by themodels. If we accept this, then it is possible that bothmodelsmake
correct predictions but these have been thus far too small to detect. The effects of temper-
ature on cell activity are variously consistent with one model or the other, but rarely with
both, casting confusion on the matter of which model, if any, is more complete. Activity
initiation by cooling and termination by heating is precisely what the Heimburg-Jackson
model predicts, while the Hodgkin-Huxley model must resort to invoking a poorly un-
derstood and characterised depolarisation caused by cooling and assuming the inverse of
this effect is also true in order to explain this. Likewise, thermodynamics may explain
why the rate, as well as the magnitude, of the temperature change is important, while the
Hodgkin-Huxleymodel has no in-built explanation for this. Conversely, observations like
the slowing of the action potential with cooling and the temporal variation of the thresh-
old temperature change required for action potential termination are consistent with the
electric model but difficult to explain with the Heimburg-Jackson model.

While the Heimburg-Jackson theory offers a particularly elegant way to describe the
mechanism of anaesthetics and explain the generality of the Meyer-Overton rule, both
theories are largely consistent with the observations related to anaesthetics, and elegance
alone does not constitute a valid reason to choose one theory over another. Of the chem-
ical findings discussed in this chapter, the pressure and pH reversal of anaesthetic action
is alone in being consistent with only the Heimburg-Jacksonmodel, although the pH case
must be taken with caution due to the somewhat dubious nature of the experiments lead-
ing to this observation. Excitation by calcium depletion remains mysterious under either
theory.

It is frequently seen that the results obtained with one species are different from, and
sometimes opposite to, those obtainedwith another. Whether this is due to differences in
experimental configurations or to actual differences in the animals’ nerve cells is presently
unknown. This, together with the fact that several of these studies were on artificially in-
duced, long-lived voltage changes rather than induced or spontaneous action potentials,
increases the difficulty of understanding exactly what happens to the cell during activity
and developing a theoretical model to explain it. Any explanation that invokesmembrane
proteins must necessarily consider the fact that these proteins vary somewhat between
species, while thus far it has been the norm to assume they all function in much the same
way. Conversely, it would be difficult to imagine such a general phenomenon as a phase
transition is species-specific; if it occurs, a thermodynamic model would be truly univer-
sal without requiring every individual species to be studies separately. Put simply, while
biochemistry is different in each species, thermodynamics is not. That said, a phase tran-
sition has never been directly observed and thermodynamicmodels of neural activity have
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received comparatively little attention.
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It is now clear that much work remains to be done in this field. While the Heimburg-
Jackson model offers a multidisciplinary perspective on action potentials and enjoys a
somewhat greater degree of compatibility with experimental findings than the Hodgkin-
Huxley model, it remains incapable of explaining some of these findings; furthermore,
while the electrical behaviour of the axon membrane is well characterised (if not neces-
sarily well understood), there is conflicting evidence of some of the non-electrical aspects
of neural activity. Despite the evidence agreeing better with a phase-transition model
than with cable theory, whether themembrane undergoes a phase transition or not is still
unknown.

Practically all experimental work on action potentials has so far been electrophysio-
logical. Voltage recording has become the standard way to observe neural activity, with
other techniques being subject to electrophysiological confirmation that whatever signal
is detected is concomitant with an action potential. However, electrophysiology is neces-
sarily an extremely invasive technique which often involves rather artisanal methods and
invariably results in disturbance to the cellular environment and, in the case of internal
recording (and/or stimulation when it is required), the death of the cell.

Unfortunately, electrophysiology remains the gold standard even today, nearly a cen-
tury after its earliest use in the field.61 This means that, in order to one day reach the ideal
of noninvasive recording of action potentials, we must first transition through a phase of
confirmation of some noninvasive technique using electrophysiology until such a time as
action potential recording with said technique is well established.

This establishes the first two characteristics our hypothetical better technique: itmust
be noninvasive, and it must be possible to use it simultaneously with electrophysiology.
Of course, it must also be capable of distinguishing signals coming from phase transitions
from other types of signals.

There are countless options when it comes to sample type. Giant axons are visible by
eye (see chapter 3) and relatively easy to handle, but they must be stimulated, duplicating
the difficulty of the electrophysiological component of the experiment; conversely, cul-
tured neurons often display spontaneous activity, but they are microscopic and fragile.
The experimental setupmust be capable of solving one of these two problems. In the case
of cultured neurons, mammalian ones are the most relevant to us as humans. In all cases,
the axon radius is well above the typical spatial resolution of standard microscopy using
visible light, which is a few hundred nanometres; the problem lies not in resolving the
axon, but in manipulating it.

The action potential lasts around 1 ms at body temperature and can be stretched to
a few milliseconds by working at lower temperatures. This means that the Nyquist limit
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for acquisition frequency is between about 500 Hz and 2 kHz; desirable acquisition fre-
quencies are 10 kHz or more.

The requirement for noninvasiveness all but restricts the hypothetical technique to
optical sensing. Mechanical, electrical and thermal probes (such as atomic force mi-
croscopy, electrophysiology and temperature sensing via a thermocouple, respectively) all
require the sensor to be in contact with the sample and often with the cell itself. Elec-
tron microscopy provides a strong contrast and unprecedented spatial resolution, but it
is highly destructive and requires fixing the sample somehow, making it incompatible
with in-vivo measurements. In contrast, optical techniques can be noninvasive, do not
always require a contrast agent, and involve low enough power not to cause photodam-
age or thermal damage to the sample. These requirements themselves rule out optical
techniques such as fluorescence microscopy and staining, which require the addition of
a contrast agent to the sample; x-ray scattering microscopy, which requires averaging the
signal of multiple acquisitions and can thus not provide real-time information; and trans-
mission microscopy techniques such as phase miscroscopy and differential interference
contrast, which are not quantitative and do not have enough axial resolution to observe
1-nm thickness changes (it will be seen in chapter 3 that differential interference contrast
can be made quantitative and sensitive enough to resolve these changes, but that requires
taking two successive images, which renders it incapable of providing a signal in real time).

Interferometric reflectometry and coherent Raman scattering microscopy, on the
other hand, satisfy these constraints. They are both noninvasive and, as will be seen in
chapters 4 and 5, capable of discriminating between different phases of a material with
high temporal resolution.

It will be seen in chapter 4 that the reflectometry signal corresponding to a 1-nm in-
crease in lipid bilayer thickness is approximately 0.1% of the bilayer signal in amplitude
(a change from 99.8% of the glass-water reflection coefficient for 4 nm to 99.7% for 5 nm
assuming the refractive index does not change appreciably, as would be the case if there is
no phase transition; if it does (whichwould be the case if there @J a transition),11,62 itmight
go from about 1.440 to about 1.487, in which case the signal change would be reduced to
about 0.025%) but up to 30% of it in phase (a change from about 0.8 rad to about 1.1 rad).
We will see whether the sensitivity of interferometric reflectometry is high enough to de-
tect such signal differences; if it can resolve at least the higher-signal non-transition case,
it will allow us to determine whether such a transition takes place during cell activity.

The difference in coherent-Raman signal depends heavily on thewave number but can
easily reach 50% in some cases. This technique has been used in the past to distinguish
between lipid types and phases in bulk lipid (see chapter 5); we will see whether this can
also be done with single lipid bilayers.
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Cells are extremely complicated objects. A cell houses densely packed organelles, proteins,
aminoacids and small molecules in its interior; its membrane is comprised of hundreds,
or sometimes over a thousand, different kinds of lipids, as mentioned in section 1.4.1,
and contains many embedded proteins; and it is surrounded by ions, connective tissue
and other cells. Furthermore, cells capable of showing electrical activity are alive and
thus capable of reacting to experimental conditions. Finally, since no two cells are ex-
actly identical in terms of size, shape, developmental stage, health, access to nutrients,
nutrient storage and intercellular connections, often two cells of the same type will react
somewhat differently to identical experimental conditions. All of this introduces a large
number of factors which complicate experimentation on live cells.

While experiments seeking to record action potentialsmust necessarily be undertaken
on cells which are alive and healthy, some simpler experiments, such as attempting to
observe the optical signal caused by a phase transition in a lipid membrane or determine
a membrane’s composition, are best undertaken on simpler systems which replicate the
aspects of the cell which are important to the experiment but dispose of the unwanted
complexity.

When modelling parts of a complex system using a simpler system (called a model
system), it is important to choose the simpler system’s properties carefully. Since we wish
to observe phase transitions in lipid bilayers (so we may later determine whether or not
they take place in the context of neural activity), the model systemmust be a lipid bilayer
formed either by lipids whose melting temperature can be crossed during the experiment
or by a mixture of lipids which are in different phases at the experimental temperature.
Since the phase transition we are interested in involves only the lipids, our model sys-
tem can be protein-free. Because we wish to undertake noninvasive experiments, the bi-
layer must contain no fluorophores, nanoparticles or other labels. Thus, for experiments
wherewemerelywish to determinewhether our equipment is capable of detecting a phase
transition or distinguishing between lipid phases but we do not need to perform electro-
physiology, a supported lipid bilayer made of lipids with the aforementioned transition
temperatures is an adequate model system.
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82 3. Methods

This chapter will describe the procedures followed when preparing themodel and live
samples (section 3.1) which were used in the experiments whose results are discussed in
chapters 4 and ��, as well as the experiments themselves (sections 3.2–3.5).

��
� -8DGC< GI<G8I8K@FE

None of the samples used were prepared by the author of this work, with the exception of
the lobster samples (section 3.1.3).

��
�
� -LGGFIK<; C@G@; 9@C8P<IJ

�FM<IJC@G <K:?@E>

Lipidmolecules are amphiphilic (i.e. they have a hydrophobic part and a hydrophilic part).
Therefore, when submerged in water or a water-like substance they form structures with
a hydrophilic exterior and a hydrophobic interior. One such structure is a lipid bilayer, a
(relatively) flat double layer of lipid molecules with the hydrophobic tails of each layer
pointing at the other layer and the hydrophilic heads pointing outwards1 (figure 3.1).
Thus, in order for a lipid bilayer to properly adhere to a substrate, the substrate must
be hydrophilic. Untreated glass is not sufficiently hydrophilic, so it must be made so (for
example, by acid etching2).

Glass coverslips to be used were first washed with acetone to remove inorganic con-
taminants and then submerged in 60ml of sulphuric acid. This was then placed in a water
bath at 95 ◦C. After several minutes (so the acid had had time to warm up to the water
bath temperature), 20 ml of hydrogen peroxide were added to the sulphuric acid. The

Figure 3.1: Diagram of some of the structures formed by lipids: a micelle (top) and a bilayer (bot-
tom). These structures are formed when the lipid is submerged in a hydrophilic medium, such
as water; both leave the hydrophilic heads pointing outwards, in contact with the surrounding
medium, and the hydrophobic tails sequestered inside the structure.



✐
✐

“NahmadRohenA-PhDthesis” — 2020/2/29 — 5:04 — page 83 — #97 ✐
✐

✐
✐

✐
✐

Sample preparation 83

coverslips were allowed to sit in the mixture for 1 hr, after which they were washed with
distilled water and dried under a stream of nitrogen gas. The etching process also served
to remove organic contaminants.

While waiting to be used, etched coverslips were stored in nitrogen gas at 4–6 ◦C so
their hydrophilicity would be preserved, as exposure to air would have resulted in oxida-
tion and thus a decrease in the hydrophilicity of the glass.

&@G@; JFCLK@FE GI<G8I8K@FE

Lipid solutions were prepared by mixing dioleoylphosphatidylcholine (DOPC, Avanti Po-
lar Lipids), chicken egg sphingomyelin (sm, Avanti Polar Lipids) and cholesterol (ch, Avanti
Polar Lipids) in the following concentrations (molar ratio, DOPC:sm:ch) in glass vials:
1:0:0 (pure DOPC); 0:7:3 (sm+ch); and 3:5:2, 2:2:1 and 11:5:4 (ternary mixtures). A pure-
dipentadecanoylphosphatidylcholine (DC15PC, Avanti Polar Lipids) solutionwas also pre-
pared. The vials were heated to 50 ◦C on a hot plate, and the lipids were agitated by a
weak flow of nitrogen gas so they would mix properly. The vials were then placed inside
a desiccator for 1 hr to remove any trace solvent present in the mixture. After desicca-
tion, the lipid solutions were finally diluted in solvent to achieve a concentration of 0.8–
1mg/ml, whichwas previously found to be the optimal range of concentrations formostly
unilamellar (single-bilayer) lipid patches to form over part of the coverslip with the spin-
coating procedure used; for reasons which will become clear in section 5.1, each sample
needed to have only partial coverage of the coverslip. The solvent used for the DOPC
sample was 95% chloroform and 5% acetonitrile (by volume), and that used for the other
samples was isopropanol.

The lipid solutions were stored at−20 ◦C while not used.

&@G@; 9@C8P<I =FID8K@FE

As mentioned in section 1.6.1, bilayers are partially ordered but can still be fluid; they can
be in a gel-like phase called the solid-ordered (SO) phase, or they can be in a liquid state
where the ordering of the molecules decreases considerably, called the liquid-disordered
(LD) phase3,4 (figure 3.2, top and bottom). Themelting temperatures of DOPC bilayers3,5

and sphingomyelin bilayers3,6,7 —that is, the temperatures below which the bilayers are
in the SO state and abovewhich they are in the LD state— are−16.5 ◦C and 37 ◦C, respec-
tively. Cholesterol doesn’t form bilayers on its own, but whenmixedwith other lipids that
do it interacts with the hydrocarbon tails of those lipids, influencing their structure and
giving rise to the liquid-ordered (LO) phase, which is still liquid but has a molecular or-
der intermediate between those of the LD and SO phases3,4 (figure 3.2, centre). At room
temperature, then, a DOPC bilayer is in the LD phase and a sphingomyelin-cholesterol
mixture containing between 30% and 50% cholesterol is in the LO phase7,8 (see also fig-
ure 3.3). Cholesterol exhibits a higher affinity for saturated lipids, such as sphingomyelin,
than for unsaturated ones, such asDOPC.4,9,10 Therefore, a ternarymixture of these three
lipids segregates into LO domainsmade of sphingomyelin and cholesterol in a 17:10 ratio
and LD domains made of DOPC mixed with the small remaining amount of cholesterol
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in the mixture.7,9,11

Planar lipid bilayers were formed on the etched coverslips by either rupturing of elec-
troformed giant unilamellar vesicles (2:2:1 mixture) or spin-coating (all other samples).
The procedures are described below. Which technique was used for which lipid solution
was guided by observations ofwhichmethodproducedmore desirable results in each case;
the parameters evaluated were lipid coverage, regularity of the lipid patches and cleanli-
ness of the regions without lipid.

In the giant unilamellar vesicle (GUV) rupturing method,12,13 20 µl of the lipid solu-
tion are deposited on a pair of tantalum electrodes under a weak flow of nitrogen gas.
The lipid is deposited only in the lower half of the electrodes, and only a few droplets at a
time to allow the solution to be dried by the nitrogen flow. The electrodes are then placed
in vacuum for 1 hr in order to remove any remaining solvent. Once this is done, 1.2 ml
of distilled water are poured into a microcentrifuge tube, degassed for 5 min in vacuum
and finally warmed to 70 ◦C. The lipid-coated ends of the electrodes are submerged in the
hot water, and the dry ends of the electrodes are connected to a function generator. The
generator provides first a square voltage wave with a peak-to-peak amplitude of 1.2 V and
a frequency of 10 Hz for 1 hr and then a 1.5-V sinusoidal wave with variable frequency:

Figure 3.2: Lateral (left) and top-down (right) diagrams of three of the phases lipid bilayers can be
in: the SO phase (top), the LO phase (centre) and the LD phase (bottom). In the SO phase, the
lateral structure is crystalline and the lipid tails are stretched. In contrast, the LD phase is charac-
terised by a disordered lateral packing of the lipid molecules and “kinks” in the tails which cause
the bilayer to be thinner. The LO phase is formed by some lipids in the presence of cholesterol
(shown in yellow), which nestles among the tails, causing them to be straight, as in the SO phase,
but disrupting the lateral packing of the bilayer lipids.
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5 Hz for 30 min, then 2 Hz for 15 min and finally 1 Hz for 15 min. The voltage results
in the formation of GUVs. A 120-µm-thick, 13-mm-diameter adhesive imaging gasket is
then adhered to an etched coverslip to create a shallow well into which 260 µl of the GUV
solution are deposited; the solution is placed 65 µl at a time with a temporal spacing of
5–10 min so the GUVs can sink to the bottom of the well. 0.750–1.365 ml of phosphate-
buffered saline (PBS) are degassed for 5 min to prevent air bubbles from forming in the
sample. 65 µl of degassed PBS are added to the well. The sample is finally diluted to
the desired concentration by repeatedly adding another 65 µl of PBS and pipetting out
an equal volume of the GUV-water-PBS mixture in the well; depending on the desired
concentration, this step is performed a total of 10–20 times. The pipetting takes approx-
imately 1 min and thus does not allow enough time for the PBS to mix with air, which
would counteract the degassing.

In bilayer spin-coating,14 150 µl of the mixture are deposited on the centre of an
etched coverslip, which is then spun at 3,000 rpm for 42 s on a spin-coater. The spin-
coater provides a 6-s constant acceleration at the beginning of the 42-s period and a 6-s
constant deceleration at the end of it, so the coverslip only rotates at constant speed for
the central 30 s. The coverslip is then placed in a centrifuge tube with a small piece of
wet tissue so the lipid can absorb some of the moisture and later, when PBS is added to
the sample, the lipid is already hydrated and does not absorb a large amount of liquid in
a short period of time, which could destroy the structure of the sample. The tube is filled
with nitrogen gas to prevent lipid oxidation, sealed and incubated at 37 ◦C for 1 hr in an

cholesterol

DOPC sphingomyelin

15 20 25 30 35 40 45 50
T (°C)

Figure 3.3: Phase diagram of a DOPC+sm+chmixture. The miscibility temperature of a lipid mix-
ture is the temperature above which separate lipid domains no longer coexist and the mixture
melts into a single phase. Here, black circles denote mixtures where lipid segregation into liquid-
ordered (LO) and liquid-disordered (LD) domains has been observed, the coloured surface is an
interpolation of the miscibility temperature measured at the points represented by the black cir-
cles, white circles denote measurements where either no miscibility temperature is observed or it
is lower than 10 ◦C, and grey squares denotemixtures where lipid segregation occurs but there are
solid-ordered (SO) domains instead of LO domains. Modified from the original.8
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oven. A shallow well is created on the lipid-coated side of the coverslip by placing an ad-
hesive imaging gasket with the same specifications as in the GUV rupturing procedure.
The well is finally filled with degassed PBS.

Regardless of bilayer formation method, a glass microscope slide was washed with
acetone and adhered to the top of the gasket to close the cylindrical well. In the case of
the ternary mixture, slides were stored at 4 ◦C for at least a few hours prior to imaging so
the LO and LD domains would have enough time to form.

Multilamellar (multiple-bilayer) versions of the sm+ch and DOPC samples were also
prepared. The entire procedure was the same as for the unilamellar samples except for
the fact that 20 times more lipid was present in the lipid solution.
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Glass coverslips 13mm in diameter (Agar Scientific, AGL46R13-1) were coated with poly-
L-lysine (Sigma-Aldrich) in preparation for neuron culture.

A hippocampal neuron suspension was prepared by extracting and triturating the
hippocampi (see figure 3.415) of 18-day-old mouse foetuses and treating them with
trypsin (Worthington Biochemical Corporation) and deoxyribonuclease (Roche Applied
Science).16

The neurons were then placed on the coated coverslips at densities of 18,000 and
25,000 cells/coverslip (approximately 13,600 and 18,800 cells/cm2, respectively). Each
coverslip was placed in a 35-mm plastic well with a mixture of 98% neurobasal A medium
(Invitrogen) and 2%B27medium (Invitrogen)17 with 60 µg/ml of penicillin and 100 µg/ml
of streptomycin (Gibco); this way, a single coverslip at a time could be manipulated with-

cortex
olfactory 

bulb

basolateral 
complex

striatum
lateral 

geniculate 
nucleus

cerebellum

hippocampus

Figure 3.4: Diagram of a mouse brain showing several different sections, including the hippocam-
pus (near top centre). Copied from the original. 15
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out disturbing the other coverslips. 0.5-mM GlutaMAX I (Invitrogen) was added to half
of the coverslips.

The cultures were incubated at 37◦C. The air inside the incubator had 5% CO2. The
culture medium was replaced twice a week.

The neurons were used for electrophysiology experiments from 8 days old since cul-
turing (8 days in vitro, or DIV-8) to 16 days old since culturing (DIV-16), although each
individual culture was only used once. Cells lasted about 2 hours under the microscope
(see section 3.5). At DIV-16, the cells were heavily degraded; at DIV-17, they were dead.
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The work described in this section (3.1.3), as well as that described in sections 3.5.3
and 4.4.1, was performed during a visit to Thomas Rainer Heimburg’s laboratory at the
University of Copenhagen, Denmark.

This section contains photographs of dissected lobsters which may not be suitable for
every reader.

-8C@E< JFCLK@FE

Saline solution was prepared by mixing 462-mM sodium chloride (NaCl), 16-mM
potassium chloride (KCl), 26-mM calcium chloride (CaCl2), 8-mM magnesium chloride
(MgCl2), 11-mM glucose and 10-mM tris(hydroxymethyl)aminomethane in water in a
glass flask. This solution had a pH of approximately 10, which was adjusted to 7.6 with
hydrogen chloride (HCl); approximately 0.08% HCl by volume was required for this.18,19

&F9JK<I ;@JJ<:K@FE

Figure 3.5 shows a diagram of a lobster with some of the body parts labelled.20

Each lobster was purchased at a food market and stored at approximately −20 ◦C for
30 min in order to anaesthetise it. Afterwards, it was held upside-down and its eyes were
covered with tissue paper so it would relax; once relaxed, the lobster would extend its
legs and uncurl its tail, which made the remainder of the procedure easier. Once this
had occurred, the lobster was placed right-side-up on a dissecting table and the dissection
began. The thoracic and abdominal cords (which together comprise the lobster’s ventral
cord, its central nervous system) and the leg nerve bundles were extracted in the following
way.19

All walking legs, including the chelipeds, were severed as close to the body as possible
using a large kitchen knife. The chelipeds were set apart for cooking, while the other
walking legs were stored in an open container with saline solution in a refrigerator at
approximately 4 ◦C until such a time as the nerves were to be extracted. All antennae
were severed as close to the body as possible using large scissors.

The abdomen was then separated from the thorax just behind where the carapace
ended, again using the large kitchen knife. The thorax and headwere placed upside-down
on a petri dish large enough to hold them, and the dish was filled with saline solution.
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For extraction of the thoracic cord, the carapace was cut from below on both sides
with large scissors and removed to expose the internal organs (figure 3.6, top). The heart,
intestine and stomach were removed, and the thorax was cleaned. The thoracic mus-
cles were cut off, and the internal skeleton was cut longitudinally down the centre using
medium-sized scissors, maintaining the scissors as horizontal as possible at all times (fig-
ure 3.6, upper centre). The two halves of the skeleton were then pried apart slightly to
expose the cord, and the cord was gently lifted with small tweezers to avoid damaging it
(figure 3.6, lower centre and bottom). The connections between the cord ganglia and the
muscles were cut with small shears, as were the parts of the subesophageal ganglion (the
brain) that were attached to the lobster’s head; care was taken to save asmuch brain tissue
as possible.
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Figure 3.5: Diagrams of a lobster from the top (top) and from the side (bottom, copied from the
original20) showing different body parts, including those mentioned in this section.
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Figure 3.6: Internal organs of the thoracic cavity of the lobster (top) with some organs labelled.
Longitudinal cut of the internal skeleton after cleaning of the thoracic cavity (upper centre). Skele-
ton after longitudinal cut and separation of the halves (lower centre). The ventral cord has been
extracted from the skeletal cavity. The subesophageal ganglion is still attached to the inside of the
head. Pulling the cord from the skeleton requires patience and care (bottom).
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Figure 3.7: Longitudinal cuts down the sides of the abdomen (top) and peeling of the internal
skeleton (bottom) to reveal the abdominal section of the ventral cord.

For extraction of the abdominal cord, the swimmers were cut from the abdomen.
When this was done, care had to be taken to maintain the fingers away from the under-
side of the abdomen to prevent them frombeing trapped by the abdominal carapace in the
event that the abdominal flexor muscle contracted and the tail curled up. The carapace
was then cut on both sides longitudinally from the front of the abdomen to the uropod
using large scissors (figure 3.7, top). The skeleton was then lifted slightly on the front
side, and the muscle tissue was cut where it had been joined with the thorax in order to
separate it from the skeleton. The skeleton was peeled off (figure 3.7, bottom); this was
done very gently to avoid damaging the abdominal cord, which can be adhered to either
the skeleton or the muscle. The rest of the abdomen, like the chelipeds, was set apart for
cooking.

The extracted parts of the ventral cord were placed in petri dishes with saline solution
and stored at 4 ◦C. They remained excitable for 2 days.
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The ventral cord is a collection of ganglia joined by a pair of parallel nerve bundles which
are surrounded by a thin sheath. Four giant axons run down each cord from brain to tail:
two lateral giant axons and two median giant axons. Figure 3.8 shows a diagram of the
complete ventral cord, including a transverse cut where the giant axons can be seen. The
lateral giant axons have a larger diameter and are thus easier to isolate and manipulate.
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Figure 3.8: Diagram of the complete ventral cord of a lobster (top). The nerve terminals con-
necting the ganglia to other body parts are shown as protrusions from the ganglia, including the
subesophageal ganglion. A transverse cut of the connective (bottom) reveals the internal structure.
The exterior cover is a sheath that runs down the connective and protects the nerve bundle from
the exterior. The nerve bundle consists of many regular axons and four giant axons. The lateral
giant axons are larger than the median ones.

The thoracic ventral cord was cut transversally just below the first thoracic ganglion,
leaving only said ganglion, the brain and the two connectives joining them (see figure 3.8).
This was for ease of manipulation; this length of giant axon was sufficient for stimula-
tion. The brain, connectives and first ganglion were placed on a petri dish with silicone
elastomer, and saline solution was added to the dish to maintain the cells alive during
extraction of the giant axon; they were placed upside-down to expose the nerve ends for
better visibility. The brain and ganglion were cut in half longitudinally to separate the
connectives, taking care not to cut the nerve ends, and one connective was set aside. The
remaining brain hemisphere and half-ganglion were pinned right-side-up to the silicone
elastomer with either small metallic pins or glass pipette tips (see section 3.5.1 for pipette
tip preparation); since the giant axons are on the bottom of the connective, this configu-
ration made it less likely that they would be damaged during removal of the sheath. The
petri dish was then placed under a microscope with a low-magnification objective; in this
case, a 20× objective was used.

Looking at the connective under the microscope, the sheath surrounding the nerve
bundle was very gently cut longitudinally with small shears, taking care not to damage
the bundle itself. Once a cut from brain to ganglion had been made, a transversal cut was
made on the sheath just above the ganglion, any axons attached to the sheath were gently
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Figure 3.9: Connective as seen under a microscope (top left) and with the naked eye (top right)
after partial removal of the sheath. The sheath can be seen as a wrinkled white mass extending
away from the brain, which is pinned to the silicone elastomer substrate, in an arc in the top-
right photograph. Isolated lateral giant axon as seen with the naked eye (bottom left) and under
a microscope (bottom right). The axon is so thick that it can be seen with the naked eye despite
being clear.

separated, and the sheath was slowly peeled in the direction of the brain (figure 3.9, top
left).

With the sheath removed and the axons exposed, the brain and ganglion were un-
pinned, turned upside-down so the giant axons would be at the top, and pinned to the
silicone elastomer once again. A glass pipette tip was used to gently separate the axons by
running the tip longitudinally down the bundle. When one of the lateral giant axons was
located, a length of it was separated and the rest of the nerve bundle was held apart from
it with pins or pipette tips (figure 3.9, top right). Thus isolated, the giant axon—which, as
mentioned in chapter 1, typically has a diameter of a few hundred microns— was visible
with the naked eye (figure 3.9, bottom).

The abdominal cord has been used by others19 but was not used in our case.
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Extraction of the leg nerves was considerably easier than extraction of the giant axons.
First, any one of the refrigerated walking legs was placed on a petri dish with silicone
elastomer and saline solution, and the top end of the leg was pinned to the silicone. The
skin was lifted with small tweezers, and any muscles adhered to it were cut with small
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Figure 3.10: Opened leg and its nerves (left). The three nerves, once extracted (right), show pro-
nounced differences in thickness. Each consists of multiple axons.

shears.
The leg has three nerve bundles: a large one, a medium one and a small one (fig-

ure 3.10). The nerves were separated from each other using a knife and cut at the joint.
Theywere then placed in a separate petri dish filledwith saline solution and stored at 4 ◦C.
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Unused lobster parts were disposed of as foodwaste. Surfaces and tools were cleanedwith
ethanol.
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Differential interference contrast (DIC) microscopy works by taking advantage of the
phase shift a sample causes when light passes through it.

In the simplest form of the technique, light passes through a linear polariser followed
by a Nomarski prism, which spatially separates its polarisation components. If we denote
by H⃗ (horizontal) and V⃗ (vertical) the polarisations into which the prism separates the
incident beam, then the polarisation of the light prior to the prism should be at an angle
of 45 ◦ with respect to H⃗ in order for the two beams separated by the prism to have the
same amplitude. These beams, which have mutually orthogonal linear polarisations, are
focussed by the condenser onto slightly different positions in the sample, separated by a
distance I0; this distance, called the shear, depends on the prism. After passing through
the sample and being collimated by the objective, they are incident on another Nomarski
prism and recombined. The light is finally transmitted through a linear polariser with its
axis perpendicular to the original polarisation of the light, behind which is a detector.

If the beams are incident on the sample at positions I⃗± I⃗0/2 and the sample introduces
a position-dependent phaseϕ in the light that passes through it, then there will be a phase
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shift

∆ϕ = ϕ

(
I⃗+

I⃗0
2

)
− ϕ

(
I⃗− I⃗0

2

)

between the two orthogonal polarisations. If the sample’s optical thickness (the prod-
uct between its thickness and its refractive index) is the same at the two positions, then
∆ϕ = 0 and no light reaches the detector. On the other hand, if the optical thickness is
different at the two positions, then ∆ϕ ̸= 0, which converts the original linear polarisa-
tion of the light into elliptical polarisation, and some light reaches the detector (unless the
difference is such that∆ϕ = 2(ć for some integer(, so the technique is appropriate only
for samples with relatively small optical thicknesses). This results in an image which only
shows the contours of the structures of the sample, where the sample’s optical thickness
changes. The name of the technique comes from the fact that the image is produced by
the interference of the two orthogonally polarised beams when they are recombined, as
well as the fact that these beams come from different points in the sample, which means
the contrast is created by differences in the optical thickness of the sample across a small
distance; in this sense, the image can be thought of as an approximation of the derivative
of the optical thickness in the direction of I⃗0. (This means that the image contains no
information of optical thickness changes in the direction orthogonal to I⃗0.)

An alternative setup (shown in figure 3.11) is to place a quarter-wave plate with its fast
axis at 45 ◦ immediately after the first linear polariser; this is the configuration often used

linear polariser
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de Sénarmont 
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Nomarski prism

linear polariser
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Figure 3.11: Experimental setup used for quantitative DIC imaging. The quarter-wave plate rota-
tionwas initially donemanually but was eventually controlled by amotor which provided rotation
angles between−40 ◦ and 40 ◦.
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in commercial DIC setups. This combination of linear polariser and quarter-wave plate is
called a de Sénarmont compensator. The first polariser can be rotated about the optical
axis. The wave plate introduces a phase shift between the polarisations equal to twice the
polariser rotation angle ψ, as can be shown by some simple Jones calculus, which consists
of writing the polarisation of the beam as a (normalised) 2-dimensional vector (whose
components are the complex amplitudes of the polarisation components of the beam)
and the effect of each optical component on this polarisation vector as a 2× 2 matrix.

If we denote the Jones matrix of the quarter-wave plate by Mλ/4 and the Jones vector
of the beam after it has passed through the linear polariser (which, as has beenmentioned,
is at an angle ψ + 45 ◦) by �⃗i, we have21

Mλ/4 =
1√
2

(
1 −@
−@ 1

)
,

�⃗i =

(
cos(ψ + ć/4)
sin(ψ + ć/4)

)
.

The Jones vector of the beam after it has passed through the wave plate is then

�⃗ = Mλ/4�⃗i =
<−@ ć4
√
2

(
<−@ψ

<@ψ

)
∼ 1√

2

(
1
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)
,

where the omission of the global phase factor <−@( ć
4+ψ) is due to the fact that global phases

do not affect the polarisation.
If the H⃗ and V⃗ beams are incident on the sample at I⃗+ I⃗0/2 and I⃗− I⃗0/2, then the Jones

vector of the light after the beams have been recombined by the second Nomarski prism
is
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The Jones matrix of a polariser orthogonal to the first polariser (i.e. at−45 ◦) is

M−45 ◦ =
1
2

(
1 −1
−1 1

)
.

Therefore, the Jones vector of the light that reaches the detector is
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and the detected intensity is
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✐
✐

“NahmadRohenA-PhDthesis” — 2020/2/29 — 5:04 — page 96 — #110 ✐
✐

✐
✐

✐
✐

96 3. Methods

−3ć
32

−2ć
32

− ć
32

0 ć
32

2ć
32

3ć
32

0.1

0.2

∆ϕ

#
#s

ψ = 0
ψ = ć/32
ψ = ć/8

Figure 3.12: Normalised DIC intensity as a function of ∆ϕ for different values of ψ. For ψ = 0
(red curve), the intensity carries no information about the sign of ∆ϕ. If the maximum of |∆ϕ|
is, for example, ć/8, then ψ < ć/16 (orange curve) results in the intensity being degenerate for
some values of ∆ϕ. If ψ is equal to or greater than this maximum phase (yellow curve), then the
intensity takes a different value for each value of∆ϕ throughout the range of∆ϕ.

where #s is the intensity of the beam after it leaves the sample.
The purpose of thewave plate nowbecomes clear. Ifψ = 0, there is no retardation and

the contrast depends solely on ∆ϕ; however, the intensity carries no information about
the sign of ∆ϕ. If, on the other hand, ψ is an angle between 0 and ć/4, then # will be
nonzero for∆ϕ = 0, will increase for negative values of∆ϕ and will decrease for positive
values of ∆ϕ (figures 3.12 and 3.13). Of course, in order for there to be a one-to-one
relationship between # and ∆ϕ, we must set ψ to a value such that 0 " 2ψ −∆ϕ " ć/2
for all∆ϕ in the field of view.

Our setup (figure 3.11) consisted of an invertedmicroscope (NikonTi-U)with awater-
immersion 60× objective with numerical aperture 1.27 and a 1.5× tube lens. Images
were taken by a PCO.edge 5.5 digital camera capable of taking images 2,560 px wide and
2,160 px tall; the pixel size was 6.5 µm, which corresponds to 72.22 nm at the sample with
the magnification. Exposure times were 50 ms, and images were averaged either 128 or
256 times to increase the signal-to-noise ratio. The condenser lamp emitted white light
which passed through a green interference filter, which resulted in the mean wavelength
being 530 nm and the full width at half maximum being 70 nm. The Nomarski prisms
(Nikon N2) provided a shear of (238± 10) nm.22 The quarter-wave plate was initially ro-
tated by hand, but it was eventually motorised, providing rotation angles between −40 ◦

and 40 ◦; when the rotation was manual, one image (either #(ψ) or #(−ψ), depending on
the last angle used) was taken, the average number of electrons per pixel was recorded,
and the quarter-wave plate was rotated to an angle with the opposite sign until the aver-
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I(ψ)
22,65217,836

I(–ψ)
23,39517,441

30 µm

Figure 3.13: Differential interference contrast images of a supportedDC15PC bilayer. The quarter-
wave plate rotation angle is ψ = 12.9 ◦. The shear direction is from top left to bottom right. The
grey range (in electrons) has been reduced in both images to increase the contrast; the full ranges
are 6,960–27,895 for #(ψ) (left) and 4,149–30,528 for #(−ψ) (right). Ideally, the range would be the
same for the two images; the small deviation from this ideal situation was due to the fact that the
average number of electrons per pixel, not the maximum signal, was used to determine when the
negative rotation angle was equal in magnitude to the positive rotation angle (see section 3.2.2).

age number of electrons per pixel was equal to the recorded number to within about 30
electrons. Typical average electrons per pixel were around 20,000. Images taken before
the motor was installed used ψ = 12.9 ◦, and images taken after it was installed used
ψ = 15 ◦.
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DIC microscopy is not quantitative because #s is unknown; this is due to spatial inhomo-
geneities in the illumination intensity and detector efficiency, as well as to spatial artefacts
caused by slight misalignment or imperfections of the optical components of the setup.
To make it quantitative, we must remove the contribution of #s to #.

This can be done by imaging the sample with a quarter-wave plate rotation angle−ψ
as well (figure 3.13). We may then calculate the contrast

#c =
#(ψ)− #(−ψ)
#(ψ) + #(−ψ) .

Using equation 3.1, this can be written in terms of ψ and∆ϕ:

#c =
cos(2ψ +∆ϕ)− cos(2ψ −∆ϕ)

2− cos(2ψ +∆ϕ)− cos(2ψ −∆ϕ)
= − sin(2ψ) sin(∆ϕ)

1− cos(2ψ) cos(∆ϕ)
.
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Solving for∆ϕ, we obtain

∆ϕ = −arcsin

⎛

⎝#csin(2ψ)
1±

√
1− sin2(2ψ)− #c2cos2(2ψ)

sin2(2ψ) + #c2cos2(2ψ)

⎞

⎠ . (3.2)
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Recall that DIC gives an approximation of the derivative of the sample’s optical thickness.
Therefore, it is natural to think of integrating the intensity to retrieve the optical thickness
itself at each point on an image.

To recover the phaseϕ at each point of the image, we first note that∆ϕ can be written
as the convolution of ϕ(⃗I) with two Dirac delta “functions” δ, one centred at I⃗+ I⃗0/2 and
the other centred at I⃗− I⃗0/2:

∆ϕ = ϕ

(
I⃗+

I⃗0
2

)
− ϕ

(
I⃗− I⃗0

2

)

=

∫
ϕ(ρ⃗) δ

(
ρ⃗− I⃗− I⃗0

2

)
dρ⃗ −

∫
ϕ(ρ⃗) δ

(
ρ⃗− I⃗+

I⃗0
2

)
dρ⃗

=

∫
ϕ(ρ⃗) δ

(
I⃗+

I⃗0
2
− ρ⃗

)
dρ⃗ −

∫
ϕ(ρ⃗) δ

(
I⃗− I⃗0

2
− ρ⃗

)
dρ⃗

= ϕ(⃗I) ∗
(
δ

(
I⃗+

I⃗0
2

)
− δ

(
I⃗− I⃗0

2

))
,

where ∗ denotes the convolution of two functions and we have used the evenness of δ for
the third equality. The Fourier transform of this is

F [∆ϕ] =
(
<@ćξ⃗·⃗I0 − <−@ćξ⃗·⃗I0

)
F [ϕ] = 2@sin

(
ćξ⃗ · I⃗0

)
F [ϕ],

where ξ⃗ is the spatial frequency of the image.
For (discrete and finite-sized) experimental data, we must take the discrete Fourier

transform or the fast Fourier transform. One drawback of this is that the transform as-
sumes the data is periodic, which is not the case. This results in artefacts, in part due to
discontinuities at the edges of the image. To address this problem and reduce the edge
artefacts, the images are subjected to two procedures.

In the first one, a second-order polynomial is fitted to each image and subtracted from
it. This sets the signal where there is no contrast to zero.

In the second one,23 each image is padded with arrays of the same size of the image
in both O and P to triple its dimensions, after which the enlarged image is apodised as fol-
lows. The value of the pixel at each corner of the original image is extended outwards
in the O and P directions all the way to the edge corresponding edges of the enlarged im-
age. The remainder of the edge pixels are extended outwards in the direction perpendic-
ular to the corresponding edge, and this extended data is convolved with a normalised
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gaussian function. The gaussian’s standard deviation σ is equal to NJ
(
8ln(2)

)−1/2, where
N is the distance from the edge of the original image and J is a smoothing factor. This
blurs the top, bottom, left and right sections of the enlarged image increasingly with dis-
tance from the original image. For each corner section, the value at each (O, P) is given
by cos2(θ)2 + sin2(θ) 3, where 2 is the value of the edge pixel of the vertically adjacent
section whose horizontal coordinate is O, 3 is the value of the edge pixels of the horizon-
tally adjacent section whose vertical coordinate is P, and θ is the angular coordinate of the
point (O, P) taking the origin as the point the corner section shares with the original image
and with θ increasing from the vertical edge (θ = 0) to the horizontal edge (θ = ć/2); see
figure 3.14 for a diagram of these quantities. Finally, the array ismultiplied by a broad cos2

function of the distance from the centre, resulting in the central image being unaffected
and the outer edges of the extended image becoming zero, as well as their first derivative.
This effectively serves to push the edges much farther out, confining any edge artefacts
(which should be small anyway because the intensity at the edges of the enlarged image is
zero) to a region far from the original image.

Dividing by

% = 2@sin
(
ćξ⃗ · I⃗0

)

and taking the inverse Fourier transform of the result would yieldϕ, which is the quantity

Y

X

(x,y)
θθ

Y

X

(x,y)

w

w

Figure 3.14: Diagram illustrating the meaning of the various quantities used in the apodisation
process. The yellow section is the original image. Together with the original image, the grey sec-
tions (which have the same dimensions as the original image) form the extended image. For the
top, bottom, left and right sections, N is the distance from the nearest edge of the original im-
age (indicated here for points in the bottom and right sections). For the corner sections, given a
position (O, P), 2 and 3 are the values of the edge pixels of the adjacent sections which share a co-
ordinate with that position, and θ is the position’s angular coordinate measured from the vertical
edge of the corresponding adjacent section (indicated here for points in the top-left and top-right
sections).
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30 µm

0.1820–0.0716
∆φ (rad)

Figure 3.15: Integrated phase (∆ϕ) image after Wiener deconvolution. The bilayer appears as a
dark, fractal-like structure, while lighter regions are empty (these regions will henceforth be re-
ferred to as “no-layer regions”). There are artefacts in the form of lines parallel to the shear; these
are the result of the lack of information about the sample in the direction perpendicular to the
shear.

we seek, but % = 0 when ξ⃗ · I⃗0 ∈ Z. Instead, we multiply F [∆ϕ] by the Wiener filter
function23

1 =
1

%+
1
κ%∗

,

where κ is the estimated signal-to-noise ratio of the image and serves to limit the ampli-
fication of any noise in the resulting image.23 Only after multiplying F [∆ϕ] by1 do we
take the inverse Fourier transform to retrieveϕ (figure 3.15). This process is calledWiener
deconvolution.24

After Wiener deconvolution, the padding is removed, leaving only the original image.
The sample’s optical thickness is the product of its thickness ; and its refractive index

Es. If the light’s wavelength is λ, then the sample’s optical thickness at any position I⃗ is

;Es =
λϕ(⃗I)
2ć

. (3.3)
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The experimental setup used for interferometric reflectometry is shown in figure 3.16 and
described below. The theory is described in chapter 4.

A 100-fs pulsed 820-nm titanium-sapphire laser (Spectra-Physics Mai Tai, not shown
in the figure) excites an optical parametric oscillator (OPO, Inspire Radiantis), which emits
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550-nm150-fs pulseswith an approximately gaussian temporal profile at a rate of 80MHz.
The polarisation is initially horizontal (H⃗). The beam enters an acousto-optic modulator
(AOM); only the zeroth- and first-order diffracted beams are of interest here.

The first-order beam passes through a quarter-wave plate and a half-wave plate before
entering the inverted microscope (Nikon Ti-U) and being reflected towards the objective
and the sample by total internal reflection in a prism. Since total internal reflection in the
prism changes the relative phase between the polarisation components of the beam and
the last mirror before the microscope is actually a dichroic beam splitter (the transmitted
light is used for alignment), which also changes the relative phase, this combination of
wave plates is used to ensure that the polarisation is left circular (⃗L) at the sample. The
reflected beam, which (assuming the sample is not birefringent) has right circular (R⃗) po-
larisation, travels back through the same components, which turn its polarisation into
vertical (V⃗). Because this beam interacts with the sample, we call it the probe beam and
denote its field by �⃗p. The power at the sample is typically 10–100 µW. The tube lens
provided a 1.5×magnification, and the objective (Nikon CFI Plan Apo) was a 60× water-
immersion objective with a numerical aperture of 1.27.

The zeroth-order beam travels down a long path (in order to compensate for the ex-

AOM OPO

microscope

polariser

Wollaston

detectors

BS

λ/4

λ/2

glass

glass

pinhole

reference beam

sample

objective

probe beam

Figure 3.16: Simplified schematic of the experimental setup used for interferometric reflectometry
(top view). Not shownare the exciting laser, filters andbeamexpanders used. The inset on the right
(side view) shows the beam being reflected upwards by a prism and focussed onto the sample by
the microscope objective. Not shown is the tube lens of the microscope.
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Figure 3.17: Schematic of aWollaston prism (top) and its effect on imaging when inserted close to
the objective’s back focal plane (bottom). AWollaston prism consists of two birefringent triangular
prisms adhered to each other so they form a rectangular prism. The optic axes of the two triangular
halves are perpendicular with respect to each other. When used in such a way that the direction of
propagation of a light beam is perpendicular to both halves’ optic axes (and so the axes are parallel
to the two polarisation components of the beam), refraction at the boundary between the prisms
results in a spatial separation of the two polarisation components. This, in turn, results in two
orthogonally polarised beams being incident on the sample at positions (represented by red circles)
symmetric about the position (represented by a yellow circle) at which the beamwould be incident
on the sample if the Wollaston prism were not there, creating a double image. The image is of a
ternary lipid bilayer (DOPC:sm:ch = 11:5:4).

tended path followed by the probe beam). The glass blocks in the beam path match the
chirp of this beam to that of the probe beam, which is caused by the glass components
of the microscope (see section 3.4.1). The beam passes through a linear polariser, which
turns its polarisation into linear at 45 ◦, before recombiningwith the reflected probe beam
at a non-polarising beam splitter. Because this beam does not interact with the sample,
we call it the reference beam and denote its field by �⃗r.

Before reaching the detectors, the combined beams pass through a Wollaston prism.
The effect of this is to spatially separate the horizontal and vertical polarisation compo-
nents of the interfering fields. We finally have four detectors, two for each linear polari-
sation, arranged in a square configuration; the detectors are balanced photodiodes con-
nected to a lock-in amplifier (Zurich Instruments HF2). The beam splitter introduces a
phase shift of ć/2 in the reflected components of the beams, which for one of the detec-
tors corresponding to each polarisation is the probe beam and for the other detector is
the reference beam, resulting in a total difference of ć between the components in the
two detectors. This allows the detector pair corresponding to each polarisation (H⃗ and V⃗)
to use the beam interference to obtain the amplitude and phase, rather than merely the
intensity, of the reflected field.

Where an additional Wollaston prism was placed in the probe beam’s path (see fig-
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ure 3.17) for referencing (see section 4.2.2), it was placed close to the back focal plane of
the objective. Three prisms with different shear angles (0.25 ◦, 0.5 ◦ and 1 ◦) were avail-
able. Ultimately, only the 0.5-◦ prism was used. The shear distance of this prism with the
60× objective was measured to be approximately 35 µm. The shear of the 0.25-◦ prism
was measured as 12 µm, which was too close to the size of many of the imaged features
and was thus too small to be useful, and the shear of the 1-◦ prism was calculated to be
about 70 µm, which was approximately the image size and was thus too large to be useful.
The prisms were set into gears attached to rotating motors controllable through a com-
puter, and the gears and motors were mounted on custom-built sliders compatible with
the microscope’s objective slider slots normally used for DIC imaging.

������ �<K<:K@FE

In addition to modulating the amplitude of the probe and reference beams, the AOM
increases the optical frequency of the probe beam by 82MHz. The lock-in amplifier is set
to 2MHz, the difference between the laser pulse rate and the AOMupshift, so it amplifies
the interference of the probe and reference beams and filters out any detected signal at
other frequencies, which is merely noise; in this way, most noise is discarded.25,26

Due to the aforementioned relative phase shift of ć introduced by the beam splitter,
the signals -1 and -2 at the two detectors corresponding to each polarisation are

-1 ∼
∣∣∣∣
�r + �p√

2

∣∣∣∣
2

and

-2 ∼
∣∣∣∣
�r − �p√

2

∣∣∣∣
2

.

The balanced detector combines these signals into -1 − -2 = �p�∗r + �∗p�r = 2Re
(
�p�∗r

)

and provides this signal to the lock-in amplifier, from which the amplitude and phase of
the probe beam can be obtained given that the amplitude and phase of the reference beam
are known. This way, we have both amplitude and phase for each polarisation.

������ #D8>< 8:HL@J@K@FE

At any given time, only the light reflected by the region of the sample which is being illu-
minated by the laser is detected; this is not a wide-field imaging technique. The confocal
nature of the setup means that either the sample or the laser must be scanned in order to
produce an image. In our case, the sample stage, which was motorised, was scanned.

Each pixel corresponds to roughly 108 nm in every image we took; this pixel size was
selected in order to have two points per resolution, which was λ/2NA ≈ 217 nm. The
acquisition time was 200 µs per pixel. Images were square and between 50 µm and 80 µm
on a side. The acquisition time was thus 43–110 s per image.
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Immediately before each reflectometry imagewas taken, the region of interest was im-
aged using quantitativeDIC. This allowed comparisons between the reflectometry images
and an already established technique andmade it easier to determine what each region in
an image corresponded to (e.g. different domains in a lipid bilayer).

������ ,<>LC8I@J8K@FE

Because the position of the scanning stage is not perfectly accurate, the reflectometry data
was improved via a process called regularisation. For each pixel of an image, the actual
position I⃗ ′ of the stage was recorded, along with the time K since the start of the scan; the
nominal position of the stage, I⃗, was taken as the centre of the corresponding pixel. Then,
for every point I⃗, the signal -(⃗I) was calculated as

-(⃗I) =
∑

K′
-′(K′)1

(
|⃗I− I⃗ ′|

)
,

where -′(K′) is the detected signal at time K′, 1 is a weighting function which could be
a gaussian function or a step function, and the sum was taken over all the time points
K′ such that |⃗I(K) − I⃗ ′(K′)| was smaller than twice the size of one pixel (in the case of the
step function) or twice the standard deviation (in the case of the gaussian function; see
figure 3.18). In our case,1 was a gaussian function:

1
(
|⃗I− I⃗ ′|

)
= <−

|⃗I−⃗I ′|2

δ2 ,

where δ is the spatial pixel size.

Figure 3.18: Schematic illustrating the principle of regularisation in the case in which the weight-
ing function1 is a gaussian. Each square is a pixel. The yellow circles, which lie at the centre of
their pixels, indicate the nominal coordinates I⃗ = (O, P) of the corresponding pixel. The red circles
are the actual coordinates I⃗ ′ of the points of the measurement. The measured signal at the red
points within the dashed circumference is used in the calculation of the signal value at the pixel
the circumference is centred on; the shading in the circle represents the weight.



✐
✐

“NahmadRohenA-PhDthesis” — 2020/2/29 — 5:04 — page 105 — #119 ✐
✐

✐
✐

✐
✐

Coherent Raman scattering microscopy 105

���� �F?<I<EK ,8D8E J:8KK<I@E> D@:IFJ:FGP

����
� '@:IFJ:FG< 8E; FGK@:J

As in the case of reflectometry, the experimental setup used for coherent Raman scat-
tering1 (figure 3.19) employed a pulsed titanium-sapphire laser emitting 820-nm, 150-fs
pulses at 80MHz. In this case, thiswas used both to pump theOPOand as the pumpbeam
for SRS and CARS; the OPO idler beam was used as the Stokes beam. The Stokes beam,
whichwas tunable, was set to 1,070 nm, and a spectral range of 2,700–3,100 cm−1 was ob-
tainable through spectral focussing,28–30 which was achieved by chirping the beams with
glass blocks so the pulse duration increased to 1–2 ps; the spectral resolutionwas 30 cm−1.
The amplitude of the Stokes beam was modulated by an acousto-optic modulator with a
2.5-MHz square wave.

Chirping is created by dispersion. A pulsewith a finite duration is notmonochromatic,

OPO

microscope
condenser

sample

objective

photomultiplier

photodiode

Stokes beam

pump beam

AOM glass

dichroic mirror

glass

filters
dichroic 

beam splitter

Figure 3.19: Simplified schematic of the experimental setup used for coherent Raman scattering
microscopy (top view). Not shown are the exciting laser and beam expanders used, as well as wave
plates to fine-tune the pump beam polarisation. The inset on the right (side view) shows the beam
being reflected upwards by a prism and focussed onto the sample by themicroscope objective. The
coherent Raman signals are collected in the forward direction; they are separated by a dichroic
beam splitter, since the CARS signal (detected by a photomultiplier tube) is on the anti-Stokes side
and the SRS signal (detected by a photodiode) is detected as pump loss. Not shown is the tube lens
of the microscope and the lenses required to image the back focal plane of the condenser onto the
detectors.
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K

ν

Figure 3.20: Illustration of the effect of chirping. Dispersion from amaterial (such as glass) causes
each spectral component of a pulse to arrive at any given point in the optical path at a different
time (red line) instead of all of them arriving at the same time (black line).

but has a spectral width inversely proportional to the pulse duration. Since the refractive
index of any material depends on the wavelength, the different spectral components of
a pulse will travel at different speeds inside the material. This is called dispersion. Most
materials have a refractive index which is a decreasing function of wavelength, so higher-
frequency components travel more slowly. This causes a temporal delay at the material’s
output which is a function of the frequency ν = :/λ (figure 3.20), where : is the speed of
light in vacuum. This is called chirping. In coherent Raman microscopy, the pump and
Stokes beams need to be equally chirped in order for the frequency difference between
them to be the same throughout the pulse; therefore, glass blocks are used to compensate
the different chirp caused by the glass components of the setup.

The sample was mounted on the same inverted microscope used for reflectometry
and quantitative DIC, and simultaneous SRS (measured as stimulated Raman loss, which
is a decrease in the pump intensity; see section 1.3.2) and CARS imaging was performed at
room temperature. Themicroscope optics, as before, consisted of a 60×water-immersion
objective whose numerical aperture was 1.27 and a 1.5× tube lens. At the sample, the
pump and Stokes powers were, respectively, 4.6 mW and 11.3 mW.
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15-µm square regions were imaged by raster-scanning the pump and Stokes beams via a
galvanometric scanning mirror and detecting the signal in the forward direction. Pixel
exposure time was 1 ms, and the spatial step size was 108 nm. The wave number was
varied by delaying one of the beamswith respect to the other; since theywere chirped, this
delay resulted in a change in the energy difference between the pump and Stokes spectral
components arriving at the sample at any given time. The spectral range was a 200-cm−1

range which was centred in the CH2 stretch region around 2,850 cm−1, and the spectral
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step size was 5 cm−1; the acquisition of a full hyperspectral image took around 13 min.
As in the case of interferometric reflectometry, the region of interest was imaged with

quantitative DIC immediately before each SRS imagewas acquired. In this case, the quan-
titativeDIC images served as confirmation for the conclusions drawn from the SRS images
(see chapter 5).

Also as with reflectometry, the images were regularised. Further image processingwas
developed as part of this work and is described in section 5.1.
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150-mm glass pipettes with an outer diameter of 1 mm and an inner diameter of 0.6 mm
were used. Amicroelectrode puller (Narishige PP-830) was used to pull the pipettes in the
2-step configuration. The heat setting was 78.2 for the first step and 62 for the second
step. Pipettes were not placed symmetrically in the puller, but rather such that the two
resulting pipette tips had a length ratio of 3:1; the smaller pipette tips were discarded.
Pipette tips were not polished.
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Intracellular solution is an attempt at matching the composition of cytoplasm.
It was prepared by mixing 10-mM NaCl, 117-mM KCl, 2-mM MgCl2, 1-mM
CaCl2 (Sigma-Aldrich), 2-mM adenosine triphosphate disodium salt (Na2-ATP, Sigma-
Aldrich), 2-mM guanosine triphosphate sodium salt (Na-GTP, Sigma-Aldrich), 1.2-mM
Na2-phosphocreatine (Sigma-Aldrich), 11-mM ethyleneglycol-bis(β-aminoethylether)-
N,N,N’,N’-tetraacetic acid (EGTA, Fisher Scientific) and 11-mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES, VWR International) in distilled water. The pH of
the solution was adjusted to 7.2 by adding a small amount of potassium hydroxide (KOH,
Fisher Scientific).

The solution was sterilised by passing it through a 0.45-µm filter inside a fume cup-
board.

When not in use, intracellular solution was stored at−20 ◦C, which is below its freez-
ing temperature. A small amount of solution was thawed immediately before use.

�OKI8:<CCLC8I JFCLK@FE

Extracellular solution was prepared bymixing 135-mMNaCl, 5-mMKCl, 1.2-mMMgCl2,
1.25-mMCaCl2, 10-mMD-glucose (Fisher Scientific) and 5-mMHEPES in distilledwater.

When not in use, extracellular solution was stored at−4 ◦C.
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Figure 3.21: Two different chambers employed for extracellular electrophysiology on lobster leg
nerve.

������ &F9JK<I M<EKI8C E<IM< :FI;

There was insufficient time to perform electrophysiology experiments on individual lob-
ster giant axons. However, a preliminary experiment was performed on a whole lobster
connective section running from just below the brain to the first ganglion.

The chamber used for lobster nerve electrophysiology (figure 3.21, left) consisted of
two stacked microscope glass slides glued to each other in such a way that their longest
sideswere perpendicular to each other. The top slide had awide groove inwhich the nerve
bundle could be placed, as well as two cylindrical tunnels drilled through the centre from
end to end. A steel pin, used as the stimulating electrode, was passed through one of these
tunnels and glued in place; the glue also sealed the tunnel. Through the other tunnel was
passed a glass pipette tip with a silver or platinum wire inserted through it; this was used
as the recording electrode. The chamber was filled with extracellular solution, and the
nerve bundle was placed in the wide groove in such a way that the end away from the gan-
glion was touching the mouth of the pipette tip. The chamber was placed in a cylindrical
metallic box, which acted both as Faraday cage and as ground (the ground electrode was
connected to the cage). The electrodes were connected to an amplifier and function gen-
erator via alligator cables. The pipette tip was filled with extracellular solution and passed
through amicromanipulator head piece (see section 3.5.4); the head port of the head piece
was connected to a screw onto which the recording electrode alligator cable was clamped,
while the side port was connected via a flexible plastic tube to a syringe partially filledwith
air. The nerve was gently sucked into the pipette tip (figure 3.21, right) with the syringe
to create a better contact; the amount sucked in was enough for the nerve section at the
pipette tip mouth to have the same diameter as the mouth, creating a watertight seal.

������ 'FLJ< E<LIFEJ

Coverslips withmouse neurons weremounted on a CSC-13 chamber for round coverslips
(Bioscience Tools). This is a circular chamber with an annular metallic base and a silicone
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ring clampeddownby a secondmetallic ring to forma seal at the edge of the coverslip. The
chamberwasmountedon a custom-built annular platformwith rectangular shelveswhich
were screwed to the microscope sample stage in place of the usual square platform for
rectangular slides. This construction allowed the samemicroscope which was used for all
the other techniques to be used for electrophysiology. The chamberwas filledwith culture
medium, whichwas replenished periodically to counteract evaporation (see section 4.4.2).

Two micromanipulators (Scientifica PatchStar) were mounted on the microscope
stage, one on either side of themicroscope (figure 3.22). These were controlled by a single
control cube capable of moving one micromanipulator at a time; the precision of the po-
sitioning was about 1 µm, and the cube had an OPQmode (where the three directions were
independently controllable via three knobs on the cube; here, Q is vertical and P is per-
pendicular to the plane in which the axis of the pipette tip is contained) and an approach
mode (where the O direction was replaced by movement in the direction on the OQ plane
parallel to the pipette tip; each micromanipulator contains a sensor which automatically
detects its inclination angle and provides the correct approach angle). The micromanip-
ulators andmicroscope stage were grounded to the optical table. The micromanipulators
were connected to an amplifier (Scientifica MultiClamp 700B). A long-working-distance
condenser, a 20× dry objective with a numerical aperture of 0.75 and the same 1.5× tube
lens as before were employed. Due to the geometry of the setup, pipette tips had to be
made about 1.5 times longer than normal so they would reach the sample, since the mi-
croscope condenser did not allow themicromanipulators to approach the sample enough
if standard-length pipette tips were used (hence the 3:1 ratio used in the pipette pulling).

Each electrode was made by cutting about 9 cm of silver wire with a diameter of
0.25 mm (Goodfellow) and submerging it in bleach. The bleach created an AgCl coat-
ing around the wire, preventing Ag+ ions from contaminating the intracellular solution,
which would have been toxic to the cells.31 A suitable coating was created within 25 min,
but, since AgCl is photosensitive, in practice several 9-cmwires were kept in a bleach bath
from one day before measurement to the last day of measurement. A wire typically lasted

Figure 3.22: Arrangement of the two micromanipulators at the side of the microscope.
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3–5dayswith theAgCl coating in good condition, afterwhich itwas returned to the bleach
bath.

Chlorinatedwires were inserted into themicromanipulator heads, after which pipette
tips filled with intracellular solutionwere inserted in the heads in such a way that the wire
was inside the pipette tip and partially submerged in the intracellular solution. A 1-ml
syringe partially filled with air was connected to the side port of one of the micromanip-
ulators via a 3-way valve (figure 3.23).

A cylindrical plastic incubator cover with a circular glass window on the top section
(Bioscience Tools TC-I) was available for heated experiments (figure 3.24). Wound around
the cylinder was a poorly conducting wire connected to a power source which provided
4.5 V; this allowed heating of the cover and, by conduction, the space inside it. One of the
ports on the incubator cover was connected to a plastic centrifuge tube filled with water.
Two holes were made in the lid of this tube, one for the tube connecting to the incubator
chamber and one for a second tube connected to a CO2 flow unit, itself connected to a
tank which supplied CO2 at a pressure of about 25 bar. The centrifuge tube was kept in a
polystyrene cube with a cylindrical hole made so the tube would fit snugly, and wrapped
around the tube was an objective heater (Bioscience Tools MTC-HLS-025) connected to

Figure 3.23: Diagram showing the tubing of the pipette tip, syringe and mouthpiece. The pipette
tip andmicromanipulator head are shown at the top left. A plastic tube connects the pipette tip to
a 3-way valve through the micromanipulator head. This valve is also connected to a syringe (top
right) and a mouthpiece (bottom left).
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one channel of a 2-channel heating control unit (Bioscience Tools TC2-80-150-C). The
second port of the incubator cover was left open to act as an air output, allowing the at-
mosphere inside the incubator chamber to be continually recycled. The other channel of
the heating control unit was connected to a second objective heater wound around the
microscope objective. This setup permitted the incubator chamber to have a controlled
atmosphere with humidified air with a CO2 concentration of about 5% and a temperature
of 37 ◦C. In order for the pipette tips to have access to the sample, two small holes were
drilled on the sides of the incubator lid; the CO2 loss caused by these additional holes was
deemed acceptable, and both the power supply voltage and the temperature setting of the
objective channel of the heating control unit could be raised to compensate the additional
cooling due to multiple outputs. However, the holes were too small and severely limited
the movement of the pipette tips, and larger holes would have resulted in very high CO2
and temperature losses, so this part of the setup was abandoned; all experiments were
carried out at room temperature (about 20 ◦C). The controlled atmosphere in the incuba-
tor would have lengthened the lifespan of the neurons mounted on the microscope, but
without it their lifespan was about 2 hr, which was long enough to conduct experiments.

The voltage and current, which were controlled by the MultiClamp software, were
set to voltage-clamp mode, which monitors the resistance at the tip of the electrode and
controls the current in order to maintain the voltage at a constant level; both electrodes
were set to 0 mV.

A small positive pressure was applied to one of the pipette tips, whose electrode we
call the recording electrode because it is the one which was in contact with the cells, by
injecting about 0.2 ml of air with the syringe; this was to push away any debris floating
in the culture medium and prevent them from attaching to the mouth of the pipette tip.

4.5 V

CO2 
flow 
unit

H2O
sample

heated 
chamber

heater

Figure 3.24: Diagram of the incubator cover and its connections. The incubator cover (shown in
yellow and labelled “heate chamber”) has two holes, one on either side, as well as a glass window on
the top side. One of the holes is open, while the other is connected via a plastic tube to a centrifuge
tube containing water (shown on the left). This centrifuge tube is heated by an objective heater
(shown in yellow) and connected via a second plastic tube to a CO2 flow chamber, which is itself
connected to a CO2 tank (not shown). The incubator cover is heated by a pooly conducting wire
wrapped around it and connected to a 4.5-V power source (shown on the right).
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The syringe valve was then closed.
The pipette tips were submerged in the culture medium and located under themicro-

scope; in order to reduce the likelihood of the pipette tip, which was very fragile, crashing
against the coverslip and shattering, the condenser aperture was closed to increase the
depth of view and the focal plane was set about 100 µm above the cells. The voltage at
the two electrodes was monitored with an oscilloscope. When the pipette tips were sub-
merged, a periodic 15-ms voltage step appeared on both channels of the oscilloscope. The
resistance was displayed byMultiClamp; a resistance over 5MΩ indicated that something
was blocking the mouth of the pipette tip, while a resistance of less than 3 MΩ indicated
that the mouth was too wide, usually because it was broken. In either of these cases, the
pipette tip had to be replaced.

Once the tips were located (figure 3.25, top), the one not connected to the syringe,
whose electrode we call the reference electrode, was brought into focus; this remained
100 µm above the cells throughout the recording and allowed us to determine whether
any signal detected by the recording electrode came from the cells or from some external
fluctuation.

A voltage offset was applied to the pipette tips with MultiClamp in order to maintain
the baseline at 0 mV. The recording electrode was also brought into focus, and it and the

Figure 3.25: Pipette tips out of focus (top, visible as shadows on the left and right sides) and at the
recording positions (bottom). The tip on the left contained the reference electrode, and the one of
the right contained the recording electrode. Recording was done at the soma due to the increased
ease of access compared to the axon; recording at the axonwas occasionally attempted, but a good
seal could not be created in any case.
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focal plane were then slowly and simultaneously lowered until the cells became visible.
At this point, a plane slightly above the cells was brought into focus while the pipette tip
remained stationary, and a cell was selected. The pipette tip was moved in the O direction
until, horizontally, it sat just off the edge of the cell of interest. It then continued to be
lowered until it once again came into focus. The micromanipulator control cube was
switched to approachmode, and the cell’s somawas very slowly approached by the pipette
tip until they touched and the cell membrane was slightly deformed. At this point, the
voltage step on the oscilloscope decreased in amplitude.

The recording electrode offset was reset so the baseline would be at 0 mV. The pres-
sure was released by turning the syringe valve so the pipette tip was connected to the
valve output which was not attached to the syringe; it was attached to a mouthpiece (fig-
ure 3.23). The fast capacitance compensation option of MultiClamp was activated, and a
seal between the cell and the pipette tip was then created.

To create the seal, short bursts of negative pressure were applied to the cell membrane
by using the mouth to briefly but strongly suck air through the mouthpiece in an attempt
to tear a small hole in the membrane; this hole must occupy the membrane section sur-
rounded by the mouth of the pipette tip, but it must not extend beyond this area if the
cell is to remain alive. It normally took several attempts to create the seal, sometimes a
few dozen, and often no seal could be created. When it could, however, the cell interior
was directly connected to the electrode through the (electrically conducting) intracellular
solution and cytoplasm, allowing intracellular recording of activity.

When a seal was correctly created (figure 3.25, bottom), the resistance at the pipette
tip became about 1 GΩ. However, MultiClamp proved not to be very accurate in its resis-
tance measurement, which fluctuated violently between about 500 MΩ and about 5 GΩ.
Instead, the disappearance of the voltage step on the corresponding channel of the oscil-
loscope was used as a reference to know when the seal was created.

The slow capacitance compensation andwhole-cell compensation options of the soft-
ware were then sequentially used, after which the recording electrode was set to current-
clampmode, whichmaintains the current through themembranehole at a constant value;
this value, in our case, was zero, since stimulation was not required. After this, simulta-
neous voltage recording at both electrodes began. The voltage was recorded every 100 µs
for 100 s with a gain of 100 in the recording electrode and 10 in the reference electrode.
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As discussed at the end of chapter 2, interferometric reflectometry is a technique suitable
for the sort of measurements we wish to make, although it requires extremely sensitive
measurements.

This chapter begins by deriving the theory of interferometric reflectometry as applied
to the experimental configuration described in section 3.3. It then presents our experi-
mental results along with a discussion of possible courses of action to increase the signal-
to-noise ratio and reduce the phase drift in the data. Finally, the results of our electro-
physiology experiments are presented.

��
� #EK<I=<IFD<KI@: I<¼<:KFD<KIP K?<FIP

Reflectometry is a technique that uses the light reflected by a sample to determine prop-
erties of the sample. Interferometric reflectometry uses interference between two beams,
one of which is incident on—and reflected back by— a sample and one of which is not, to
obtain the complex electric field rather than merely its intensity. Since this interference
allows one to retrieve an increased amount of information about the light, it also allows
one to obtain more information about the sample, such as the thickness and refractive
index of a thin film.

Below is the theory developed as part of thiswork for the interferometric reflectometry
technique.

��
�
� ,<¼<:K@FE 9P 8 K?@E C8P<I

Suppose a sample consists of a thin layer of a homogeneous material of thickness ; and
refractive index Es which does not cover the entirety of a flat glass surface of refractive
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index Eg and is submerged in water, which has a refractive index Ew (figure 4.1).
For normal incidence, the Fresnel reflection coefficient at the interface between ama-

terial with refractive index EA (through which a light beam travels) and a material with
refractive index EB (which reflects the beam) is

IAB =
EA − EB
EA + EB

and the Fresnel transmission coefficient at that interface is

KAB =
2EA

EA + EB
.

The reflection coefficient of a region of the sample where there is nomaterial between
the glass and the water, then, is simply

Igw =
Eg − Ew
Eg + Ew

.

For a region where there is a layer of material, some of the light will be reflected at the
glass-material interface and some of it will be transmitted. The transmitted light might
then be transmitted at the material-water interface, or it may be reflected any number ℓ
of times at said interface and either be reflected ℓ − 1 times at the material-glass inter-
face and eventually transmitted back through this interface or be reflected ℓ times at the
material-glass interface and eventually transmitted through the material-water interface.
For reflection, we are interested in the first case only. Therefore, the reflection coefficient
of such a region is

J = Igs + KgsKsg
∞∑

ℓ=1

Isgℓ−1Iswℓ<2ℓ@B;Es = Igs +
KgsKsg
Isg

∞∑

ℓ=1

(
IsgIsw<2@B;Es

)ℓ
,

where the first term corresponds to reflection at the glass-material interface and the ex-
ponential in the sum is due to the fact that light reflected ℓ times at the material-water
interface and ℓ− 1 times at the material-glass interface travels 2ℓ times through the ma-
terial. Here, B is the wave vector of the light in vacuum. Because |IsgIsw<2@B;Es | < 1, this is

ng
nsnw

Figure 4.1: Reflection from a thin sample.
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equal to

J = Igs +
KgsIswKsg<2@B;Es

1− IsgIsw<2@B;Es

=
(Eg + Es)(Es − Ew)<2@B;Es + (Eg − Es)(Es + Ew)
(Eg − Es)(Es − Ew)<2@B;Es + (Eg + Es)(Es + Ew)

. (4.1)

If ; = 0 or Es = Ew, this reduces to Igw. If Es = Eg, it instead reduces to <2@B;EgIgw due
to the fact that the light must still travel an additional distance 2; through material with
refractive index Eg.
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Figure 4.2: Density graphs of |J/Igw| (top) and arg(J) (bottom) as functions of ; and Es for normal
incidence with Ew = 1.333, Eg = 1.518 and λ = 550 nm.
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Here, we have assumed that the sample does not change the polarisation of the beam
(i.e. it is not birefringent) and thus J is a scalar. If it has in-plane birefringence, J is in-
stead a 2× 2 matrix and equation 4.1 is no longer appropriate; if it presents out-of-plane
birefringence, the calculation of J can become truly complicated. It should be noted that
the type of sample we are interested in here, a lipid bilayer, consists of a 2-dimensional
array of lipid molecules with their tails approximately perpendicular to said array and can
thus be considered approximately isotropic for light travelling parallel (or approximately
parallel) to the lipid tails; indeed, the birefringence of a lipid bilayer is negligible for our
purposes. We will therefore ignore the effects of birefringence in what follows.
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Figure 4.3: Density graphs of |J/Igw| (top) and arg(J) (bottom) as functions of ; and Es for normal
incidence with a reduced ; range and with Ew = 1.333, Eg = 1.518 and λ = 550 nm.
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Figure 4.2 shows graphs of |J| and arg(J) for ; between 0 nm and 600 nm,
Ew = 1.333 " Es " 1.518 = Eg, and λ = 2ć/B = 550 nm. These values for the refractive
indices were chosen because they correspond to water1 and the glass which microscope
slides and coverslips are typically made of;2 the refractive index of a lipid bilayer typically
falls between these values.3,4 The thickness range was chosen to show three periods of J.
It is interesting to note the existence of a value of Es below which arg(J) may only take
values between −ć/2 and ć/2, meaning the reflection coefficient has a positive real part
(see appendix A). Note also that, for Ew " Es " Eg, we have |J| " Igw regardless of the
value of ;, meaning that the presence of the layer either reduces the amount of reflected
light (by spatially distributing the refractive index step from Eg to Ew and giving rise to an
interference which is not fully constructive) or does not affect it.

Figure 4.3 shows the same graphs as figure 4.2, but for ; between 0 nmand 10 nmonly.
This range of ; covers the thickness one would expect from a lipid bilayer, for example,
which is about 4 nm thick. Note that |J| changes very little in this region— the difference
between no layer and a 4-nm layer is only about 0.5% for Es ≈ 1.425 and even less for
other values of Es (the variation in arg(J) is also reduced, but much less so — it is a few
percent even for intermediate values of Es). This is due to the fact that the sample is very
thin; a small value of ; will result in a small value of 2B;Es, which in turn means that the
first few reflections of the beam within the sample interfere mostly constructively; by the
time the number of reflections is large enough for the interference to be destructive, the
amplitude of the beam is so small (due to the fact that |Isw|, |Isg| < 1) that it contributes
very little to the reflected field �s. In fact, if we only take the first reflection into account,
the reflection coefficient becomes

J ≈ Igs + KgsIswKsg<2@B;Es .

The difference between this and the complete reflection coefficient given by equation 4.1
is less than about 0.06% throughout the range considered, as might be expected by noting
that the denominator of the second term in the first line of equation 4.1 is approximately
equal to 1 because IsgIsw < Igw2 ≈ 0.0042. Thus, taking only one reflection into account
is an acceptable approximation.

��
��� )9K8@E@E> K?@:BE<JJ 8E; I<=I8:K@M< @E;<O =IFD K?< I<¼<:K@FE :F<ğ:@<EK

To obtain the thickness of the sample, we rewrite equation 4.1 as

<2@B;Es = −Es + Ew
Es − Ew

Eg − Es − (Eg + Es)J
Eg + Es − (Eg − Es)J

,

whereby

; =
@

2BEs
log
(
−Es − Ew
Es + Ew

Eg + Es − (Eg − Es)J
Eg − Es − (Eg + Es)J

)
, (4.2)

where log denotes the complex logarithm. It is now evident that this expression has an
infinite number of values and that choosing one equates to choosing a logarithm branch.
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122 4. Towards standalone optical measurement of neural activity with reflectometry

This is why the pattern seen in figure 4.2 is periodic in ;; its period is 2ć/2BEs, as is evident
from equation 4.2.

To obtain the refractive index of the sample, we note that the imaginary part of ; is

Im(;) =
1
2BEs

ln
(∣∣∣∣

Es − Ew
Es + Ew

Eg + Es − (Eg − Es)J
Eg − Es − (Eg + Es)J

∣∣∣∣

)
.

But ; is the thickness of the sample and must thus be a real number. Therefore,

(
Es − Ew
Es + Ew

)2 Eg + Es − (Eg − Es)J
Eg − Es − (Eg + Es)J

Eg + Es − (Eg − Es)J∗

Eg − Es − (Eg + Es)J∗
= 1.
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Figure 4.4: Density graphs of the first period of ; (top) and Es (bottom) as functions of the real and
imaginary parts of J for normal incidence with Ew = 1.333, Eg = 1.518 and λ = 550 nm.
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From this expression we finally obtain

Es =

√

EwEg
Eg − Ew − 2EgRe(J) + (Eg + Ew)|J|2
Eg − Ew − 2EwRe(J)− (Eg + Ew)|J|2

. (4.3)

As noted in section 4.1.1, |J/Igw| " 1 as long as Ew " Es " Eg. This is expected
because in this refractive index range the difference between Eg and Ew is greater than
the difference between Eg and Es, which results in the glass-water interface being more
reflective than the glass-material interface. Taking this into account, we may graph ; and
Es in the unit circle of the Re

(
J/Igw

)
× Im

(
J/Igw

)
plane (figure 4.4).

��
��� (FE
EFID8C @E:@;<E:<

For non-normal incidence, the Fresnel reflection and transmission coefficients are

I ✄✄
AB =

EAcos
(
θA
)
− EBcos(θB)

EAcos
(
θA
)
+ EBcos(θB)

,

K ✄✄AB =
2EAcos

(
θA
)

EAcos
(
θA
)
+ EBcos(θB)

for light polarised parallel to the plane of incidence and

I⊥AB =
EBcos

(
θA
)
− EAcos(θB)

EBcos
(
θA
)
+ EAcos(θB)

,

K⊥AB =
2EAcos

(
θA
)

EBcos
(
θA
)
+ EAcos(θB)

for light polarised perpendicular to the plane of incidence, where θA is the angle of inci-
dence and

θB = arcsin
(
EB
EA
sin
(
θA
))

is the angle of transmission, given by Snell’s law. Obviously, then, J is a function of the
angle of incidence as well as of ; and Es. Wewill henceforth assume that θA is small enough
and EB is close enough to EA to avoid total internal reflection when EA > EB.

If the incident light is circularly polarised, as in the case of our experimental setup (see
section 3.3), the parallel and perpendicular components have equal amplitude, so we have

J =
J ✄✄ + J⊥
2

.

For a distribution P(θ,ϕ) of angles of incidence, the reflectometry signal -, which is
given by the interference between the probe and reference beams and thus contains the
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angular distribution of both beams,must be averaged over all possible angles. This average
is given by

- =
1
2ć

∫ 2ć

0

∫ θmax

0
P(θ,ϕ) J(;, Es, θ) cos(θ) sin(θ) dθ dϕ,

where θmax is the maximum angle of incidence of the light incident on the sample; if θmax
is determined by the numerical aperture NA of the microscope objective, for instance,
then

θmax = arcsin
(
NA
Eg

)
.

The cosine in the integral comes from assuming an aplanatic objective is used; the pro-
jection of an area element d� of the incident interfered beams onto the aplanatic lens
reference sphere is d�/cos(θ) (figure 4.5).5

It should be noted that the critical angle, the angle at which total internal reflection
occurs, is

θc = arcsin
(
Ew
Eg

)
= 61.42 ◦

for the glass-water interface and even higher for the glass-layer and layer-water interfaces
if the layer has a refractive index between Ew and Eg. For an objective with a numerical
aperture of 1.27, θmax = 56.79 ◦, so total internal reflection is not a problem at the glass-
layer and glass-water interfaces. Light travelling through the glass at an angle θ " θmax
will be transmitted into the layer at an angle

θs = arcsin
(
Eg
Es
sin(θ)

)
,

so at the layer-interface we have

θs − θc = arcsin
(
Eg
Es
sin(θ)

)
− arcsin

(
Ew
Es

)
,

θ

dA dA/cos(θ )

θ

Figure 4.5: The projection of an area element d� of the incident beam onto the reference sphere
of an aplanatic objective is d�/cos(θ).
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which is a monotonically increasing function of both Es and θ but is negative even for
the highest value of Es we are considering, Eg; therefore, there will be no total internal
reflection at the layer-water interface either.

Since both beams are gaussian and have the same angular distribution, the angular
dependence of the detected signal is a function of only θ and is given by5

P(θ) = <
−ζ2 sin2(θ)

sin2(θmax) ,
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Figure 4.6: Density graphs of |-/-gw| (top) and arg(-) (bottom) as functions of ; and Es for the
case in which both beams are gaussian, the probe beam emerges from (and is then reflected back
through) an objective with numerical aperture 1.27 and fill factor 1, and Ew = 1.333, Eg = 1.518
and λ = 550 nm.
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where ζ is the objective fill factor. This turns the signal into

- =

∫ θmax

0
<
−ζ2 sin2(θ)

sin2(θmax)
J ✄✄ + J⊥
2

cos(θ) sin(θ) dθ. (4.4)

In this case, the expression for -(;, Es) can no longer be solved analytically.
Figure 4.6 shows the amplitude and phase of the reflectometry signal, -, normalised

with respect to the no-layer signal, -gw (given by replacing J with Igw in equation 4.4), for
gaussian beams, an objective with a numerical aperture of 1.27 and a fill factor of 1, and
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Figure 4.7: Density graphs of |-/-gw| (top) and arg(-) (bottom) as functions of ; and Es for the
case in which both beams are gaussian, the probe beam emerges from (and is then reflected back
through) an objective with numerical aperture 1.27 and fill factor 1, and Ew = 1.333, Eg = 1.518
and λ = 550 nm with a reduced ; range.
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all other parameters as before. With these parameters, -gw ≈ −0.0063. Figure 4.7 is as
figure 4.6 for ; from 0 to 10 nm.

For a small value of θmax (i.e. for a small NA), the relative reflection coefficient is only
slightly deformed with respect to that observed for normal incidence; for larger values of
θmax, the pattern is no longer periodic (although it retains a partially repetitive behaviour)
and its deformation becomes more evident (compare figures 4.2 and 4.6). For single bi-
layers, the change is small compared to the normal-incidence case (compare figures 4.3
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Figure 4.8: Density graphs of the first repetition of ; (top) and Es (bottom) as functions of the
real and imaginary parts of -/-gw for the case in which both beams are gaussian, the probe beam
emerges from (and is then reflected back through) an objective with numerical aperture 1.27 and
fill factor 1, and Ew = 1.333, Eg = 1.518 and λ = 550 nm. The irregularly coloured section in the
fourth quadrant of the Es graph is an artefact caused by part of the second repetition having been
included in the calculation of Es, which occurred because a rectangular section of (;, Es) space was
taken and the repetitions are not rectangular.
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and 4.7).
It is immediately evident that |-/-gw| " 1 as long as Ew " Es " Eg. Wemay thus graph

; and Es in the unit circle of the Re
(
-/-gw

)
× Im

(
-/-gw

)
plane. To do so, we must take

into account only one repetition (as mentioned earlier, the behaviour of - for non-normal
incidence is still partially repetitive, although the values of Es for which - reaches the same
value in different repetitions are different from each other).

Figure 4.8 shows ; and Es as functions of Re
(
-/-gw

)
and Im

(
-/-gw

)
for a gaus-

sian beam emerging from an objective with a numerical aperture of 1.27 and a fill fac-
tor of 1. Comparing this to figure 4.4, it is immediately evident that, while the entire(
|-/-gw|, arg(-)

)
∈ [0, 1]× [−ć,ć] space yields values of Es between Ew and Eg in the case

of normal incidence, this is not so in the case of large numerical aperture, as expected from
careful examination of the bottom, left and top borders of figures 4.2 and 4.6: whereas in
the case of normal incidence arg(-) takes all possible values between−ć and ć along the
top border (where Es = Eg and |-/-gw| = 1), a non-zero numerical aperture causes |-/-gw|
to no longer equal 1 along the top border, which is the only one of these borders along
which arg(-) takes non-zero values; for a non-zero numerical aperture, arg(-) = 0 all
along the left (; = 0) and bottom (Es = Ew) borders, which are the only places where
|-/-gw| = 1; this translates into figure 4.8 as the white region where |-/-gw| # 1 and
arg(-) ̸= 0 simultaneously.

To create figures 4.6 and 4.7, we first numerically calculated - using equation 4.4 for a
fine-enough partition of the ;×Es space and performed a third-order interpolation of the
resulting table to obtain a continuous function -(;, Es). To create figure 4.8, we did this
for one repetition in ; and then numerically inverted the interpolated function by finding
the zeros of -− -A for different -A obtained by finely partitioning the Re(-)× Im(-) space
(constrained by |-| " -gw), after which we performed third-order interpolations to obtain
;(-) and Es(-).

���� �<8C@E> N@K? EF@J<

Because the reflection coefficient is not very sensitive to changes in thickness and re-
fractive index in the range we are interested in (recall the discussion at the end of sec-
tion 4.1.1), a very high signal-to-noise ratio, preferably at least 2,000 (so that 0.5% changes
in signal are still an order of magnitude stronger than the noise), is required when mea-
suring the light reflected by the sample. As will be seen shortly, the signal-to-noise ratio
of interferometric reflectometry images of lipid bilayers is rather small, often lower than
1. Thus, strategies to reduce the noise to an acceptable level must be implemented before
the images are analysed.

Sources of noise include fluctuations in the intensity and polarisation of the incident
light, variations in the relative phases of the probe and reference beamsdue to themhaving
separate beam paths (i.e. any changes in the optical path length of only one of the beams,
such as those caused by vibrations of the sample stage), dark noise of the detectors and
shot noise. The first of these noise sources will affect both the amplitude and the phase
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of the reflected field, while the second will affect only the phase and the third and fourth
will affect only the amplitude.

����
� *?8J< �CK<I@E>

One way to deal with noise is to use a filter to remove certain frequencies in the data.
Since the phase noise dominated the images and the amplitude noise was comparatively
low, this was primarily done with the phase of the data. This must be done on the raw
time traces (i.e. before regularisation).

This method consists of taking the Fourier transform of the data and removing (by
multiplying by 1 − =(ν), where = is a gaussian function of the frequency ν; the amplitude
of = is 1) frequencies unrelated to the structures in the sample (figure 4.9) before taking
the inverse Fourier transform.

At the very least, frequencies under 5 Hz, as well as 15 harmonics of the fast-axis scan
frequency, were filtered out. Because adjacent rows of an image were obtained by scan-
ning the sample stage in alternating directions along the fast axis (the O axis), the fast-
axis scan period is 2(OKexp, where (O is the number of pixels in the fast scan axis and Kexp
is the pixel dwell time; the fast-axis scan frequency is thus 1/2(OKexp. There was also a
collection of frequency peaks around 10 Hz present in all images; these peaks were also
filtered out in every case. Several versions of the images, each with a different degree of
additional phase filtering, were analysed; these ranged from no additional filtering (only
the aforementioned frequencies were removed) to severe (any peaks visible in the Fourier
transform were removed), with several intermediate versions.

0 10 20 30 40 50 60 70
10−5

10−4

10−3

10−2

10−1

100

ν (Hz)

amplitude (V s)

original

filtered

Figure 4.9: Frequencies of the phase of the co-polarised channel of a typical image of a DC15PC
bilayer (seen in figure 4.10) before and after filtering. Only a small frequency range is shown. The
sharp, equally spaced peaks are the harmonics of about 5.4 Hz, the fast-axis scan frequency in this
particular image.
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Phase filtering removed the enormous phase drift and some of the noise, though it
was found to be impossible to remove all of the noise without also destroying some struc-
tural information about the sample, since often it was difficult to discriminate between
noise and signal in the frequency domain. In general, any filtering other than the weak-
est version resulted in blurred structure edges and loss of information about the sample
(see figure 4.10), so in the end only the aforementioned frequencies were removed. This
meant thatmuch noise remained, making it impossible to accurately determine the thick-
ness and refractive index at each pixel of each image.

Despite the small amount of filtering it was possible to do without loss of information
and the high amount of noise that remained as a result, it was possible to observe not
only single bilayers, as evidenced in figure 4.10, but also the coexistence between differ-
ent phases of the lipid in ternary mixtures (DOPC:sm:ch = 11:5:4, figure 4.11). These
appeared as faint changes in reflected signal (the thicker LO domains reflected less light
than the thinner LD domains). Figure 4.11 shows the reflectometry amplitude and phase
signal from three images from the same ternary sample alongside quantitative DIC im-
ages of the same sample. The boundaries between the LD and LO domains are visible as
slight changes in amplitude, although the phase remains almost the same; they aremarked
with arrows in the figure so it is easier to see them. They correspond to precisely the sig-
nal changes observed in the quantitative DIC images. The change in thickness between

0.066

0.090

–0.167

0.122

–0.265

0.237

–π

π

20 µm

–0.026

0.023

Figure 4.10: Top centre: Amplitude of the co-polarised channel of the image from figure 4.9. Bot-
tom centre and right: Phase of the co-polarised channel of the same image: unfiltered (top right);
with frequencies below 5 Hz, 15 harmonics of the fast-axis scan frequency and the collection of
peaks around 10 Hz filtered out (bottom centre); and with all frequencies below 300 Hz filtered
out (bottom right). The image on the bottom right is overfiltered, resulting in loss of information.
Left: Quantitative DIC image of the same field of view. In all cases, the dark patches are lipid bi-
layers (typically a few µm across) and the lighter regions contain no lipid. The dark structure at
the top-right corner of each image is an irregular multilamellar lipid patch. Greyscale ranges are
in radians for the phase and quantitative DIC images and in volts for the amplitude image.
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–0.0081
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0.1107

–0.0481
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–0.1878
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35 µm
–0.0462

0.0031

Figure 4.11: Amplitude (centre) and phase (right) of three interferometric reflectometry images of
the same ternary sample alongside quantitative DIC (left) images of the same fields of view. The
composition (DOPC:sphingomyelin:cholesterol) of the sample is 11:5:4. Boundaries between the
LD and LO domains can be seen as faint changes in quantitative DIC signal and reflectometry
amplitude but not reflectometry phase; they are marked with white arrows. The bottom image
shows no domain segregation; the lipid in it is homogeneous. In the other two images, it is evident
that LD domains prefer being at the bilayer edge over being completely surrounded by LO lipid.
All the images have the same size and scale. Greyscale ranges are in radians for the phase and
quantitative DIC images and in volts for the amplitude images.

an LD domain and an LO domain is about 0.9 nm, so interferometric reflectometry can
resolve sub-nanometre structures in the axial direction.

������ ,<=<I<E:@E>

All of the sources of noise listed at the beginning of section 4.2, with the exception of dark
noise and shot noise, which we will ignore because they are much smaller than the other
sources of noise, can be removed with a technique called referencing, which consists of
comparing two sets of data with either identical noise or identical signal (but not both).

One way to achieve this is to place a Wollaston prism in the probe beam’s path before
it reaches the sample. Recall that the probe beam is otherwise circularly polarised at the
sample; aWollaston prism converts this into two linearly polarised beamswith orthogonal
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polarisations (H⃗ and V⃗) and slightly different beam paths. The two beams are incident on
slightly different points on the sample, which we may call I⃗H and I⃗V, and then reflected
back into the prism, where they recombine into a single beam before being detected. At
the point of recombination, both H⃗ and V⃗ carry information of the sample at I⃗H and I⃗V
(figure 4.12, left), so this information must be separated (figure 4.12, right). Once it has
been separated, however, it is suitable for referencing. If the (complex) noiseless signal
from point I⃗A would be -A, then the detected quantity is σA-A. Because H⃗ and V⃗ come from
the same source, are incident on the sample at the same time and are detected at the same
time by the same detectors, the noise on one is identical to that on the other: σH = σV.
By dividing one detected quantity by the other, then, we can get rid of the noise. If we
know, for example, what -V should be (for instance, because we know exactly the sample
thickness and refractive index at I⃗V), we may retrieve -H and thus know what the sample
thickness and refractive index at I⃗H are; this is easily achieved by ensuring that there is
no material (and thus J = Igw) at I⃗V. It is important to note that, since we no longer have
circular polarisation, equation 4.4 needs to bemodified to turn the average of J for the two
polarisations into the corresponding linear polarisation.

This solution introduces the problem of separating the two polarisation components.
The problem would be trivial (due to the simple relationship between circular and linear
polarisations) were it not for the fact that the beams are incident on different points of

5 µm

Figure 4.12: Amplitude of an interferometric reflectometry image takenwith aWollaston prism for
referencing (left). Note that all structures appear twice and that the shear (the separation distance
and direction between a structure and its copy) is constant throughout the image. In this case, the
shear is approximately vertical. The use of a Wollaston prism introduces the problem of needing
to separate the information from the two polarisations. Here, approximately separated amplitude
images are shown (right); unfortunately, the corresponding phase images (not shown) were not
separated at all (the separated amplitude images are shown for illustrative purposes only).
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the sample and the fact that one beam travels a somewhat longer optical distance within
the Wollaston prism than the other due to the refractive index difference, which makes
it acquire a phase, and might have a slightly different amplitude due to the Fresnel coeffi-
cients at the prism’s surfaces being different. We thus have the problem of separating two
components from a linear combination of them where we do not know the coefficients.

We know that the measured data sets D1 and D2 are linear combinations of the true
orthogonally polarised images -H and -V:

D1 = 81-H + 82-V,

D2 = 83-H + 84-V,

where we have ignored the noise terms for clarity. We also know, as explained previously,
that the effect of the polarisation information combination on the amplitude is very small,
which means that |81| ≈ |82| ≈ |83| ≈ |84|. Furthermore, since we wish to divide one
image by the other once they are separated and we know the glass-water reflection coef-
ficient, it does not matter if after separation we are left with multiples of the -A instead of
with the -A themselves. The number of variables is thus reduced from 4 to 3. However,

Re
(
:A
)

Im
(
:A
)

Figure 4.13: Narrow ring (shaded region) composed of the values each of the :A can take, which lie
close to the unit circle on the complex plane. The 6-dimensional space inhabited by the solution
we seek consists of the outer product of three such rings, one for each of the :A.
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Figure 4.14: An example of simulated data: amplitude (top left) and phase (rest of images) of the
reflection coefficient J a 4-nm-thick layer ofmaterial with refractive index 1.44would have for nor-
mal incidence. The parameters used in the calculation (Ew, Eg and λ) are the same as in all previous
figures. The phase shown here has different amounts of gaussian noise of amplitude 8 and stan-
dard deviation σ = Im(J): 8 = 0 (top right), 8 = 2,000 Im(J) (bottom left) and 8 = 10,000 Im(J)
(bottom right).

since they are complex, the problem is 6-dimensional. The space occupied by the param-
eters we seek is the outer product of three narrow rings on the complex plane with inner
and outer radii close to 1 and centred at (0, 0) (figure 4.13).

We may calculate the following linear combinations of the measured quantities:

A1 = D1 + :1D2, (4.5a)

A2 = :3 (:2D1 +D2) , (4.5b)

where :1, :2 and :3 are unknown complex numbers. If we obtain the correct coefficients
:A, then the �A will be multiples of the -A.

We have attempted to achieve separation with a correlation method (appendix B), a
gradient descent algorithm (appendix C) and a genetic algorithm (appendix D), in all three
cases treating this as a minimisation problem; these, as well as the obtained results, will
be discussed below. In all cases, the computer code of the algorithm was written by the
author of this work in its entirety.

The methods described here were tested on both simulated and experimental data.
The simulated data consisted of an array of(O×(P = 40×40 pixels divided into two types
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of homogeneous sections. For one section type, the reflection coefficient Jwas calculated
for a 4-nm-thick bilayer with refractive index 1.44 using equation 4.1; for the other type,
Igw was used. Noisy data was also simulated. In order to simulate the noise observed in
experimental images, a 1×(O(P array of gaussian white noise with amplitude 8, mean 0
and standard deviation σ = Im(J)was created, low-pass-filtered, wrapped into an(O×(P

array and added to the phase of the simulated data. Figure 4.14 shows an example of
simulated data with different noise amplitudes: 8 = 0, 8 = 2,000σ and 8 = 10,000σ. The
latter case approximates the amount of noise observed in experimental data.

�FII<C8K@FE

The correlationmethod consists ofminimising thenormalised cross-correlation ofA1 and
A2 at zero displacement, (A1 ⋆ A2)(0), where

(A1 ⋆ A2)(⃗I) =

(
A1(0)− ⟨A1⟩

)∗ (A2(⃗I)− ⟨A2⟩
)

S var(A1) var(A2)
; (4.6)
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Figure 4.15: Amplitude (centre) and phase (right) of the co- (top) and cross-polarised (bottom)
components of the signal of a ternary (DOPC:sm:ch = 11:5:4) bilayer detected using a Wollas-
ton prism for referencing. The bilayer composition (DOPC:sm:ch) is 11:5:4. The shear direction
is approximately horizontal; the combination of polarisations is visible as a duplication of every
feature in the direction of the shear (some features are only visible once because their copies lie
outside the field of view). The phase has been minimally filtered as described in section 4.2.1 to
remove the phase drift of several radians, which completely obscured the features, and the fast-
axis scan frequency (3.858 Hz), but most of the noise remains because excessive filtering results in
loss of information. A quantitative DIC image of the same field of view (without the displacement
induced by the Wollaston prism) is shown on the left.
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here, I⃗ is the displacement, ⟨AA⟩ is the average of AA over the overlap region of the image, S
is the overlap area between the images (which for I⃗ = 0 is the entire image) and var is the
variance of a data set; the product is the sum of the pixel-by-pixel product of the images
over the overlap region. The method relies on the fact that, since the AA will contain two
copies of every structure at the same positions unless the :A are the correct ones for image
separation (in which case each AA will contain a single copy of every structure at a different
position), the cross-correlation at zero displacement has a minimum at the correct values
of the :A in (:1, :2, :3) space (recall figure 4.12).

The data was minimally phase-filtered as described in section 4.2.1 prior to the cor-
relation analysis so the phase drift would not completely overwhelm the spatial features.
Figure 4.15 shows an example of a phase-filtered image of a ternary lipid bilayer. Features
are duplicated along the shear direction (approximately horizontal) due to the presence
of the Wollaston prism.

Since extended structures can contribute to the cross-correlation at zero displacement
even in the case in which the images are completely separated, we actually calculated the
AA using sufficiently high-pass-filtered versions of the DA for only the edges of structures
to remain. Figure 4.16 shows the result of such a high-pass filtering of the DA, obtained by
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Figure 4.16: Amplitude (left) and phase (right) of the co- (top) and cross-polarised (bottom) com-
ponents of the signal after applying a gaussian high-pass filter to the data with a “cutoff” frequency
(the frequency at which the amplitude of the gaussian is 1/

√
<) of 0.02 px−1. The noise is strong,

particularly in the cross-polarised data, but the edges of the lipid features can still be seen.
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taking the Fourier transformof theDA, multiplying it by a functionwhich is approximately
1 for high frequencies and close to 0 for low frequencies, and taking the inverse Fourier
transform of the result; in this case, the filtered data is

(DA)f = F−1

[(
1− <−

ξ2+η2

2σ2

)
F [DA]

]
,

where F is the Fourier transform, ξ and η are the O- and P-direction spatial frequencies
(respectively), and σ = 0.4 px−1.

Figure 4.17 shows several projections into 2-dimensional space of the correlation of
(A1)f and (A2)f, which are as A1 and A2 from equations 4.5 but using the (DA)f instead of
theDA, at zero displacement: I⃗ = (0, 0). Although the range of the |:A| in the figure is [0, 2],
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Figure 4.17: Several 2-dimensional projections of the correlation at zero displacement of the (A1)f
and (A2)f (setting :3 = 1) from the experimental data shown in previous figures in this appendix.
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Figure 4.18: Amplitude (left) andphase (right) of the two linear combinations ofD1 andD2 with the
coefficients :A obtained by minimising the correlation at zero displacement. The separation at the
minimum-correlation point is imperfect, indicating that the correlation approach is inappropriate
due to the DA being complex.

the range they can realistically occupy is much smaller, but those boundaries were chosen
to avoid having to guess how small the range could realistically be.

For this set of data, the minimum correlation is about 3.31 × 104 and is reached at
(:1, :2, :3) = (−0.64+1.89@, 0.20+0.87@, 1). Figure 4.18 shows the result of substituting
these coefficients and the DA (EFK the (DA)f; these are only used to prevent contributions
from spatially extended features to the correlation) into equations 4.5. Although in the co-
polarised images (top) the left copy of each feature is much stronger than the right copy
and in the cross-polarised images (bottom) the reverse is true, both copies are still present
in all images, indicating that the separation is imperfect. It should also be noted that
|:1| = 2 and |:2| = 0.90; while the latter might be reasonably close to 1 (without knowing
how much light is lost by reflection at the Wollaston prism’s surfaces, it is impossible to
estimate how close to 1 the magnitudes of the :A can realistically be), the former is clearly
not.

The correlation algorithm was tried on multiple experimental data sets with similar
results. In every case, the separation achieved at the lowest-correlation point was imper-
fect.

Because the AA are complex, for certain combinations of the :A there can be negative
contributions to the cross-correlation even when the images are not separated. This can
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result in a situation where there is no minimum at the position in (:1, :2, :3) space where
perfect separation would be achieved. Indeed, the cross-correlation method was unable
to locate the correct values of the :A even with simulated data (see appendix B). Experi-
mental data brings the additional complication that noise in the data results in noise in
the correlation. This explains the difficulties encountered with this method.

!I8;@<EK ;<J:<EK

The gradient descent and genetic algorithms both rely on a differentmethod of determin-
ing whether the images are properly separated or not. This method consists of comparing
the original data sets with reconstructed data sets created under the assumption that the
images are separated and then changing the parameters used in the reconstruction to at-
tempt to improve it.

First, the AA are calculated from the DA and the :A as before. Since the two separated
images should be identical (up to a multiplicative constant) but displaced with respect to
each other by the Wollaston prism shear, it is assumed this is the case for the AA and a
single A is calculated as the average of the AA, each displaced by half the shear towards the
other:

A(⃗I) =

A1

(
I⃗+

I⃗0
2

)
+ A2

(
I⃗− I⃗0

2

)

2
,

where I⃗0 is the shear vector. If the :A are the correct ones and the polarisations are indeed
properly separated, A will have a single copy of every structure at the centre of where the
two copies are in the DA (figure 4.19, left); otherwise, it will have three copies of every
structure (figure 4.19, right). Then, a reconstruction of the original data sets is attempted

a b

Figure 4.19: Construction of A from A1 and A2 in the cases of perfect (a) and imperfect (b) separa-
tion. In the former case, a single image is formed; in the latter case, three copies of the image are
present.
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using A:

D′
1(⃗I) =

:3A
(
I⃗− I⃗0

2

)
− :1A

(
I⃗+

I⃗0
2

)

(1− :1:2):3
,

D′
2(⃗I) =

A
(
I⃗+

I⃗0
2

)
− :2:3A

(
I⃗− I⃗0

2

)

(1− :1:2):3
.

Finally, the images are compared and the error, which quantifies the difference between
the original and reconstructed images and is denoted here by E, is calculated as

E =
∑

I⃗

Re2
(
log
(
D1
D′
1

))
+ Re2

(
log
(
D2
D′
2

))

σI

+
∑

I⃗

Im2
(
log
(
D1
D′
1

))
+ Im2

(
log
(
D2
D′
2

))

σϕ
, (4.7)

where 1/σI and 1/σϕ are weights added to the sum of the real parts and the sum of the
imaginary parts, respectively, of the logarithms; recall that the real part of a logarithm is
related to the argument’s amplitude and the imaginary part of a logarithm is related to the
argument’s phase. In our case, these weights are calculated simply as the average of the
amplitude and phase of the original data sets in the regions containing no layer and serve
to take into account differences in the amplitude and phase noise levels; for simulated
data, σI = σϕ = 1.

Since the information outside the image is unknown, the values at the edge of A (and
thus those at the edge of the reconstructed images D′

A) are unknown. Therefore, the edge
of the DA is ignored when comparing the original and reconstructed images.

After calculating E, the gradient descent algorithm approximates its gradient,∇E, by
calculating E at small positive and negative displacements in each of the six parameters
—the |:A| and the arg

(
:A
)
— individually. It then moves the vector :⃗ = (:1, :2, :3) a step of

size αγ in the direction opposite to this gradient:

(:1, :2, :3)(+1 = (:1, :2, :3)( − α(γ(∇E|(:1,:2,:3)( .

Finally, it calculates E at this new point. If it is smaller, it assumes an improvement has
been made; otherwise, it discards the attempt and retries with a smaller step size. The
value of γ on the (-th iteration, γ(, is calculated using the Barzilai-Borwein method6

unless this results in an increase in step size (in which case it simply equals γ(−1):

γ( =
|(⃗:( − :⃗(−1)ᵀ · (∇E( −∇E(−1)|

|∇E( −∇E(+1|2
,
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where :⃗( is :⃗ on the (-th iteration, ᵀ indicates the transpose of a vector or matrix, and
E( = E(⃗:(). α is a parameter which tells the algorithm when to stop; α(+1 = 2

1−D
2 α(

(where D is the number of failed, or discarded, attempts at improvement on the current
iteration), and the algorithm stops when α < αth for some threshold αth. Changing the
value of α allows the algorithm to dynamically increase the step size if it improves on
its first try on an iteration, which means it has yet to reach the minimum of E but it is
moving in the right direction, and to decrease it if it has trouble making an improvement,
which means it is taking steps which are too large, in turn potentially signifying that the
algorithm is close to the minimum, where it is easy to overshoot. The algorithm stops
when it has failed tomake an improvement with an extremely small step size. In our case,
we set α0 = 1 and αth = 10−9.

Here we present an example of the gradient descent algorithm applied to experimen-
tal data. Figure 4.20 shows the data, which, as previously, was minimally phase-filtered
before undergoing the gradient descent analysis in order to remove the phase drift, which
completely occluded most of the spatial features. This time, the shear was approximately
vertical; it was found to be 4 pixels horizontally and 218 pixels vertically.

Like the correlation between the (AA)f, the error E is a function of 6 variables: the am-
plitudes and phases of the :A. Figure 4.21 shows projections of E, calculated using equa-
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Figure 4.20: Amplitude (centre) and phase (right) of the co- (top) and cross-polarised (bottom)
components of the signal of a ternary (DOPC:sm:ch = 11:5:4) bilayer detected using a Wollas-
ton prism for referencing. The bilayer composition (DOPC:sm:ch) is 11:5:4. The shear direction
is approximately vertical. The phase has been minimally filtered as described in section 4.2.1 to
remove the phase drift and the fast-axis scan frequency (3.858 Hz), but most of the noise remains.
A quantitative DIC image of the same field of view is shown on the left.
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tion 4.7, into various 2-dimensional subspaces of (:1, :2, :3) space. These projections are
the same as those shown infigure 4.17. In this case, there appears to be aminimumaround
(−@,−2@, 1).

The main drawback of gradient descent algorithms is that they can become trapped
in local minima, as often happened with our data. Unlike that of the correlation anal-
ysis, which is completely deterministic, the result of the gradient descent analysis de-
pends on the starting point (:1, :2, :3)0, so it may need to be run several times for the
global minimum of E to be found. Figure 4.22 shows the evolution of E and of the six
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Figure 4.21: Several projections of the data reconstruction error in the gradient de-
scent method with the experimental data shown in previous figures in this appendix. In
(|:1|, arg(:1) , |:2|, arg(:2) , |:3|, arg(:3)) space, the projections are as follows:
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With the exception of (1, arg(:1) , 1, arg(:2) , 1, 0), the projections look qualitatively similar to the
same projections for simulated data (figure C.2), but the error is much greater for experimental
data, partly because the images are almost 227 times larger by area and partly because the noise
present in the data makes the reconstruction less perfect.
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Figure 4.22: Evolution of the error E (top) and the parameters (centre and bottom) in four differ-
ent runs with the same simulated data. The starting points were random. In runs 1 and 2, the
parameters started with |:1|, |:3| ∈ [0.8, 1.2]; in run 1, |:2| started in the same range, while in run 2
it started in the range [1.8, 2.2]; in run 1, the starting point had arg

(
:A
)
∈ [ć/2−0.2, ć/2+0.2] for

all A, while in run 2 it had arg(:1) , arg(:2) ∈ [3ć/2− 0.2, 3ć/2+ 0.2] and arg(:3) ∈ [−0.2, 0.2]. In
runs 3 and 4, the starting points had |:A| ∈ [0, 2] and arg

(
:A
)
∈ [0, 2ć] for all A. Ironically, in runs 1

and 2 |:1| and |:3| reached unrealistically large values for numbers which are meant to be candi-
dates for the correct amplitudes of the parameters; it is expected that these are much closer to 1.
All runs were stopped after approximately 5,000 iterations. In neither case was perfect separation
achieved (see figure 4.23). The black dashed lines in the centre and bottom graphsmark the values
1, ć/2 and 3ć/2.
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Figure 4.23: Amplitude (left) and phase (right) of A1 (top) and A2 (bottom) calculated using equa-
tion 4.5 and the final parameters of run 4. The imperfect separation of the polarisations indicates
that the algorithm became trapped in a local minimum of the error. The fact that this happened
on all runs with all experimental data indicates that this approach is also unsuitable.

parameters in four runs of the algorithm on the same experimental data. The starting
point of the first run had |:A| ∈ [0.8, 1.2] and arg(:$) ∈ [ć/2 − 0.2,ć/2 + 0.2] for all
A. The starting point of the the second run had |:1|, |:3| ∈ [0.8, 1.2]; |:2| ∈ [1.8, 2.2];
arg(:1) , arg(:2) ∈ [3ć/2 − 0.2, 3ć/2 + 0.2]; and arg(:3) ∈ [−0.2, 0.2]. The third
and fourth runs had starting points in the extended region defined by |:A| ∈ [0, 2] and
arg
(
:A
)
∈ [0, 2ć]. All runs were stopped after approximately 5,000 iterations, as the er-

ror had ceased to decrease; the |:A| had not yet converged, but it seemed unlikely that they
would— letting the algorithm run for 40,000 iterations did not result in the error reaching
lower values than about 850, and separation was not achieved.

Figure 4.23 shows the final result of run 4 fromfigure 4.22. As can be seen in the figure,
separation was not achieved. As with the example shown for the correlation method, this
is representative of all runs attempted with all experimental data sets; perfect separation
was never achieved with any data set.

Asmentioned earlier, gradient descent algorithms are vulnerable to becoming trapped
in a localminimumof the function to beminimised and consequently being unable to find
the global minimum. The fact that we did not know which region of (:1, :2, :3) space the
starting point of a run should be in (i.e. which region the global minimum was in) made
the problemworse, as starting closer to a local minimum than to the global minimum has
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a high chance of resulting in the algorithm falling into the local minimum. With no way
to properly visualise E as a function of all 6 variables, it is impossible to know how many
local minima exist and where they are.

!<E<K@: 8C>FI@K?D

One way to overcome the problem of local minima is to have multiple starting points and
repeat the algorithm for each of them, hoping at least one of them will reach the global
minimum. Anotherway is to use an algorithm that is less vulnerable to localminima, such
as a genetic algorithm.

Instead of taking a single initial point, the genetic algorithm requires a fairly large
collection of them (250 were used in our case). They could be chosen randomly, as in
the gradient descent algorithm, but, because the genetic algorithm is less vulnerable to
local minima, it can instead use said local minima as starting points, making convergence
faster. In the case of simulated data (see appendix D), the algorithm partitions a region
in (:1, :2, :3) space and finds the local minima of the error in the partition, then takes the
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Figure 4.24: Amplitude (left) and phase (right) of the two polarisation components of the signal
from a sample which was measured using the Wollaston prism for referencing. The sample is
the same as that shown in figures 4.15, 4.16 and 4.18, but this is a different measurement with
approximately vertical, instead of horizontal, shear. As before, the combination of polarisations is
visible as a duplication of every feature in the direction of the shear (some features are only visible
once because their copies lie outside the field of view). The phase has been minimally filtered to
remove the phase drift of several radians, which completely obscured the features, and the fast-
axis scan frequency (3.858 Hz), but most of the noise remains because excessive filtering results in
loss of information.
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250 best local minima (or, if there are ( < 250 local minima in the partitioned region, it
takes all( and then the 250−( next-best points in the partition) as the initial population.
For experimental data, the starting population is selected at random, since the position
of the global minimum of E is unknown and partitioning the (:1, :2, :3) space to find the
approximate positions of the local minima would take an excessive amount of time.

A genetic algorithm receives its name from the way it simulates a living population
and its genetics. Members of the population “reproduce” and “die”, with some selection
mechanism ensuring that only the fittest members survive. The children’s traits are com-
binations of their parents’ traits and can make them fitter or less fit. Fitter individuals
have a higher chance to reproduce and a lower chance to die than individuals which are
less fit.

Each member of the initial population of points in (:1, :2, :3) space, which we call the
parent generation, has a fitness. In our case, if E is the error (given by equation 4.7, as in
the case of the gradient descent procedure) of the point in question, its fitness is given by
F = −log10(E).

After determining the parent population’s fitness, a number of reproduction events
(in our case, 1; we also tried having 10 reproduction events per generation, but the re-
sults were similar) takes place. A reproduction event results in two individuals of the par-
ent generation combining their genetic material to produce one or more children (in this
case, we have a single child, each of whose coordinates in (:1, :2, :3) space is a random lin-
ear combination of the parents’ corresponding coordinates, meaning the child can be any
point in the hyper-cuboid whose opposite vertices are the child’s two parents); a number
of members of the parent generation equal to the number of children produced then dies.
The likelihood *r that an individual with fitness F will reproduce in each reproduction
event is

*r =
F− Fmin

250∑

A=1

(
FA − Fmin

)
,

where the FA are the fitnesses of the parents and Fmin is the fitness of the least-fit individ-
ual; the least-fit individual thus has no chance of reproducing. The likelihood *d that an
individual with fitness F will die after a reproduction event is

*d =
Fmax − F

250∑

A=1

(
Fmax − FA

)
,

where Fmax is the fitness of the fittest individual; the fittest individual thus has no chance
of dying, which ensures that each generation is at least as good as the previous one (us-
ing the fitness of the fittest individual as a metric, since we only need to reach the global
minimum of E once).
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After the desired number of reproduction events has occurred, the surviving parents
and all the children form the new parent generation. In this way, every generation has the
same number of members.

It is also possible to introduce mutations. This serves to diversify the population and
make it more resistant to becoming trapped in a small space around a local minimum.
Mutations occur when a child is created, before the individual who dies to make place for
it is determined; in this way, a particularly unfit child has itself a chance to die, rendering
that particular reproduction event void. A mutation is a change from the point the child
would have been to a random point and occurs with probability *m = min

(
1, *0<−αδ

)
,

where *0 and α are positive numbers and δ is the cartesian distance between the “pro-
posed” mutation and the point the child would be if unchanged. Parents are immune to
mutations; only children can mutate, and only at the moment of creation.

The algorithm stopped after 100,000 consecutive iterations without improvement.
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Figure 4.25: Evolution of the error E in seven different runs with the same experimental data
shown in figure 4.24. The initial population was randomly selected and was different in each run
due to the vast amount of time computing the 250 best local minima would have taken (unless the
partition of (:1, :2, :3) space were very coarse, which would defeat the purpose of partitioning it
anyway). In this case, run 2 resulted in the lowerst error; the result of that run (the AA calculated
with the point obtained in that run) is not properly separated, as shown in figure 4.26.
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Figure 4.24 shows an example of experimental data, whichwas againminimally phase-
filtered. The shear was approximately vertical.

The random nature of reproduction and mutation means that different runs of the
algorithm on the same data with the same initial population (i.e. the same 250 points in
the first generation) can produce different results. Figure 4.25 shows the results of 7 runs
of the genetic algorithm on the same data. Most runs took between 150,000 and 300,000
iterations and reached errors just under 10−3, similar to the best results reached with the
gradient descent analysis. Similar errors were obtained with other data sets.

Figure 4.26 shows the amplitude and phase of the AA calculated using the result from
run 2 with equation 4.5. Unfortunately, the polarisations are not adequately separated;
the residual structures with the wrong polarisation information have an amplitude of
about 0.079 and 0.036 (a difference from the no-layer amplitude of 3.5% and 11.7% of
the no-layer amplitude) in A1 and A2, respectively. This lack of adequate separation of the
polarisations was the case with all the experimental data analysed.

Our genetic algorithm was, therefore, also unable to separate the polarisations. It
would reach a generation where improvement, defined as an increase in the highest fit-
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Figure 4.26: Amplitude (left) and phase (right) of the AA obtained from the result of run 2 from
figure 4.25. The polarisation is imperfectly separated; the residual error from the structures cor-
responding to the wrong polarisation in A1 (top) is 0.002643, which constitutes about 3.5% of the
no-layer amplitude (i.e. it will produce an error of about 3.5% in any future calculations this data
is used for), while that in A2 is 0.004808, or about 11.7% of the no-layer amplitude.
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ness out of all the individuals in the generation, was difficult, and the maximum number
of iterations without improvement would elapse. Increasing this number threefold, from
100,000 to 300,000, did not help, and increasing it any further would have made the al-
gorithm take way too long to run.

This is believed to have happened due either to failing to reach the global minimumof
the error (where the images are perfectly separated) or to the minimum not correspond-
ing to the point where the polarisations are separated (it is possible that the presence of
strong noise, which is complex and predominantly affects the phase, caused the error to
increase unevenly at all points in (:1, :2, :3) space, resulting in the point where separation
would be achieved no longer having the smallest error; if this is the case, the selection
criterion in the algorithm would have favoured the deletion of the separation point from
the population, making it impossible to attain separation). In truth, because this doesn’t
happen for simulated data and the separation point is unknown for experimental data, it
is not possible to know for certain what the reason is.

There was no appreciable difference between the results of running the genetic algo-
rithm in cartesian coordinates and those of working in polar coordinates.

���� &@E< KI8:< 8E8CPJ@J

Unfortunately, the failure of all three methods at disentangling the polarisations meant
the referencing approach was unviable. Similarly, the noise remaining after an adequate
amount of phase filtering caused very large artefactual spatial variations in the measured
thickness and refractive index of the sample. The idea of a 2-dimensionalmapof thickness
and refractive index had to be abandoned in favour of a more modest approach, that of
line traces.

After phase filtering, the data was regularised, and the real and imaginary parts of the
co-polarised channel were saved for line trace analysis.

In general, the phase noise observed is low-frequency noise. Therefore, the noise is
much less along the fast scan axis. 61-pixel line traces perpendicular to bilayer edges were
selected, ensuring that roughly half of each trace lay in a region without bilayer and half
passed through a bilayer (figure 4.27). In principle, at the centre of each line trace should
be a step in both amplitude and phase. Bilayer edges are frequently lined by vesicles or
debris, as can be seen, for example, in the amplitude image in figure 4.10 (they are visible
as dark spots and are prominent along the edge of the bilayer at the top-left corner of the
image); when present, these result in a dip in the signal on the lipid side of the step. The
function

Θ(O) =
8
2
tanh

(
O− 9
:

)
+ ;O+ <+

=
2
sech

(
O− >
:

)

was fitted to the(p central pixels of the amplitude and phase traces simultaneously, with
(p varying between 21 and 51 in steps of 2 and the optimal (p for each line trace then
being selected by least-squares error of the fit. All of the traces were oriented so they
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started (O = 0 px) within the bilayer and ended (O = 60 px) in the no-bilayer region
in order to ensure 8 > 0 for both amplitude and phase. The hyperbolic tangent in the
step function Θ above models the step itself, while the hyperbolic secant models the dip
caused by edge vesicles. The spatial parameters of the hyperbolic functions (9, : and >)
were shared between the amplitude fit and the phase fit of any given trace, since the step
due to the bilayer edge and the dip caused by any present edge vesicles should be at the
same positions and have the same shapes in the amplitude and phase data. The linear
term represents slow drift due to low-frequency noise or the sample not being perfectly
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Figure 4.27: Interferometric reflectometry amplitude (left) and quantitative DIC phase (right) im-
ages of one of the DC15PC measurements (top). The images are repeated below with red lines
indicating the positions and approximate lengths of the line traces taken. Because the reflectome-
try traces had to be parallel to the slow scan axis and the quantitative DIC traces had to be parallel
to the DIC shear, the traces were not parallel between the two techniques; however, the position
of the lipid bilayer stepwas preserved as closely as possible between the techniques. The grey value
of the reflectometry images is in volts. The top images are included so the structure at the trace
positions is clear and to facilitate comparison between reflectometry and quantitative DIC data.
Structures, including vesicles and bilayer steps, are identically visible in both imaging modalities;
in both cases, darker regions are thicker ones, with the lightest regions being the no-layer regions.
However, in reflectometry large vesicles or otherwise non-planar objects are sometimes visible as
alternating light and dark regions, while in quantitative DIC they are homogeneous (see, for exam-
ple, the medium-sized structure at top-centre, left of the large patch which is partially unilamellar
and partially bilamellar); this is likely because the non-planar structures reflect light at angles dif-
ferent from the angle of incidencewith respect to the focal plane, resulting in interference patterns.
Because the reflectometry model presented in section 4.1.1 and appendix A assumes the sample
consists of planar layers, no attempt has been made to characterise these features.
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flat against the mounting stage of the microscope. In the case of the phase traces, the
constant term, <, takes care of any offset present; wewere only interested in the step height
8 because -gw ∈ R. In the case of the amplitude traces, <was used alongside 8 to reference
the no-bilayer signal to -gw in order to obtain the relative amplitude of the normalised
reflectometry signal at the bilayer:

∣∣∣∣
-
-gw

∣∣∣∣= 1−
8

<+ 8/2
.

This enabled the full determination of J at the bilayer (figure 4.28).
The [0 nm, 30 nm] × [Ew, Eg] region of the (;, Es) space was partitioned in steps of

0.1 nm in ; and 0.001 in Es. -was calculated using equation 4.4 at each point of the parti-
tion. The |-/-gw| and arg(-) values calculated as described above were then compared to
the partition, and the ; and Es corresponding to the closest partition point were assigned
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Figure 4.28: Example of a line trace. I is shown at the top, andϕ is shown at the bottom, each with
its step function fitΘ.
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to that line trace. The computer code used for the analysis can be found in appendix E;
like the codes in the other appendices, it was written entirely by the author of this work.

Line traces from seven different images were analysed; the images takenwith theWol-
laston prismwere, of course, unsuitable for line trace analysis for the reasons described in
section 4.2. Four of the images were from a pure DC15PC supported lipid bilayer, while
the other three were from a sample consisting of a ternary mixture of DOPC, egg sphin-
gomyelin and cholesterol in an 11:5:4 ratio. The refractive index ofDC15PC is3 1.440, and
that of the LD domains of a DOPC+sphingomyelin+cholesterol mixture (which are sim-
ply DOPC; see also chapter 5) is4 1.445. Using these values for the refractive indices, the
thicknesses of DC15PC and DOPC bilayers have been measured with quantitative DIC to
be (5.3±0.1) nm and (4.1±0.03) nm, respectively7 (uncertainties are the standard error).
Samples were imaged at room temperature, about 20 ◦C. All line traces were parallel to
the fast scan axis; in the case of the ternary sample, care was taken to ensure the traces did
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Figure 4.29: Results from the DC15PC sample. Each point is an individual measurement (i.e. the
result of a single line trace). The results show great variability in both thickness and refractive in-
dex. There seems to be some correlation between ; and 1/Es. The red circle indicates the nominal
thickness and refractive index asmeasured by quantitativeDIC by others;7 the error bar (±0.1 nm)
is too small to be seen at the scale shown.
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not cross LO domains. Any line traces where the sum of the squares of the residuals of the
fit was greater than 0.01 were discarded; this almost always coincided with the fits which
resulted in very large thicknesses and very small refractive indices. Line traces where it
was difficult to see the step clearly by eye in both the amplitude data and the phase data
were also discarded.

For the DC15PC sample, the measured thickness was (8.6 ± 3.4) nm and the mea-
sured refractive index was 1.428± 0.041 (46 traces, figure 4.29). For the ternary mixture,
the thickness was measured as (12.4 ± 3.0) nm and the refractive index was measured
as 1.429 ± 0.030 (36 traces, figure 4.30). Errors reported are the standard deviation. In
both cases, the results are roughly what would be expected from a bilamellar or trilamel-
lar lipid instead of a unilamellar one, which quantitative DIC measurements suggest the
samples were. As mentioned earlier, a unilamellar DC15PC sample should have a thick-
ness of 5.3 nm (assuming a refractive index of 1.440) and the LD domains of a unilamellar
ternary sample with the aforementioned composition should have a thickness of 4.1 nm
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Figure 4.30: Results from the ternary sample. As in the case of theDC15PC sample, the results show
great variability in both thickness and refractive index. The red circle indicates the nominal thick-
ness and refractive index as measured by quantitative DIC by others;7 the error bar (±0.03 nm) is
too small to be seen at the scale shown.
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(assuming a refractive index of 1.445).

Two tests were carried out to determine whether the error was due to the noise or
there was some systematic error causing the measured thicknesses to be too large.

The first of these tests was to compare the results with similar results for simulated
data. Data was constructed as described in section 4.2.2, 50 line traces were taken parallel
to what would have been the slow scan axis had the data been experimentally obtained,
and the functionΘ described above was fitted to the traces with the same constraints and
procedure as before; the only differences were that the traces were 41 pixels in length and
(p was varied between 21 and 31. This was done for both noiseless and noisy simulated
data. It was observed (figure 4.31) that without noise (figure 4.14, top right) the thickness
was (4.1 ± 0.1) nm and the refractive index was 1.443 ± 0.002, with noise about 10% as
strong as seen experimentally (figure 4.14, bottom left) the thickness was (4.1± 0.1) nm
and the refractive index was 1.442 ± 0.007, and with noise of similar strength as the ex-
perimental noise (figure 4.14, bottom right) the thickness was (4.7 ± 1.4) nm and the
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Figure 4.31: Results from simulated data without noise (black), with 10% phase noise (dark grey)
and with 100% phase noise (light grey), where the noise percentage refers to the approximate
strength of the experimentally observed noise. The red circle indicates the correct thickness and
refractive index.
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refractive index was 1.437±0.049 (one point was discarded in this last case because it fell
outside the range described previously). These values are all much closer to the nominal
values than in the case of the two sets of experimental data, but the spread of the results
becomes larger, the average thickness increases and the average refractive index decreases
with increasing noise, as seen in the experimental case. The smaller deviation from the
nominal result and the smaller standard deviation in the simulated data could be due to
the simulated noise not representing the experimental noise perfectly; to begin with, the
experimental noise is certainly not gaussian. Nevertheless, this result suggests that the
large standard deviation and inaccuracy of the experimental results stem at least partially
from the noise.

The second test consisted of comparing the reflectometry results to quantitative DIC
results. To do this, quantitative DICmeasurements of the same fields of view of the same
two samples were taken and line traces were taken in such a way that they crossed from a
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Figure 4.32: Interferometric reflectometry (solid circles) and quantitative DIC (hollow circles) re-
sults of one of the DC15PC images. Each line joins the reflectometry and quantitative DIC results
from the line traces at the same position. There does not seem to be a correlation between the
magnitudes of the reflectometry inaccuracies and those of the corresponding quantitative DIC
inaccuracies. The red circle indicates the nominal thickness and refractive index as measured by
quantitative DIC by others;7 the error bar (±0.1 nm) is too small to be seen at the scale shown.
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Figure 4.33: Weighted cartesian distances between the experimental and nominal results with
interferometric reflectometry and quantitative DIC for the DC15PC sample. The correlation coef-
ficient is very low.

lipid bilayer to a water-only region, as with the interferometric reflectometry line traces;
the function Θ shown previously was fitted to them to determine the step height. The
quantitative DIC line traces were centred as close to the centres of the reflectometry line
traces as possible given that they had to be taken parallel to the DIC shear direction,
which was at 45 ◦ with respect to the reflectometry traces. This resulted in a thickness
of (6.9 ± 1.9) nm for the DC15PC sample and (5.6 ± 1.6) nm for the LD domains of the
ternary sample. This is about 31% too large for the DC15PC sample and 38% too large
for the ternary sample due to a presently uncharacterised systematic error in the quanti-
tative DIC measurements taken with the microscope with which reflectometry imaging
was done. Assuming the quantitative DIC results are self-consistent despite this system-
atic error, a high correlation coefficient between the accuracy of the result of each quan-
titative DIC line trace and the accuracy of the result of the corresponding interferometric
reflectometry line trace would indicate that some systematic error is responsible for the
inaccuracy of the reflectometry measurements, while a low correlation coefficient would
indicate that the inaccuracies are due to noise, which is different for reflectometry and
DIC. Figure 4.32 shows the interferometric reflectometry and quantitative DIC results for
one of the DC15PC images; reflectometry results are marked by solid circles, quantitative
DIC results are marked by hollow circles, and a line joins the reflectometry result of each
line tracewith the quantitativeDIC result of the corresponding line trace. The correlation
coefficient8 is calculated as

ρ =

∑

A

(
δiRef,A − ⟨δiRef⟩

)(
δqDIC,A − ⟨δqDIC⟩

)

√∑

A

(
δiRef,A − ⟨δiRef⟩

)2
√∑

A

(
δqDIC,A − ⟨δqDIC⟩

)2
;
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the sums in the above expression are taken over all the line traces except those which
were discarded from the calculation of the mean and standard deviation for the reasons
explained in section 4.3, ⟨δ⟩ denotes the average of δ over all A, and δℓ,A is the weighted
cartesian distance between result A obtained with technique ℓ and the nominally correct
(;, Es) and is given by

δℓ,A =
√
σ;(;ℓ,A − 5.282 nm)2 + σEs(Esℓ,A − 1.44)2.

The weights σ; and σEs ensure that the thickness and refractive index differences, which
are of different orders of magnitude, have similar bearing on the calculation of δ; if σ; and
σEs were equal in magnitude, the inaccuracies in the refractive index would be negligible
compared to the inaccuracies in the thickness. σ; = 0.05 nm−1 and σEs = 1/(Eg − Ew)
were chosen here. Taking into account all images, the correlation coefficient was 0.258
for the DC15PC sample (figure 4.33) and −0.087 for the ternary sample, which is low in
both cases and thus suggests, once again, that the reflectometry inaccuracies are caused
by noise.

���� �C<:KIFG?PJ@FCF>P
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As mentioned in chapter 3, the work on lobster ventral nerve cord was performed during
a stay in Thomas Heimburg’s laboratory in Denmark.

The lobster nerve was stimulated at room temperature with 5-V steps programmed
using the MultiClamp software (Molecular Devices), and the nerve’s response was visu-
alised in the Axon pClamp software (Molecular Devices). The noise was about 0.95 µV,
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Figure 4.34: Action potential recorded extracellularly with lobster ventral cord. The amplitude of
this particular action potential was 16.5 µV.
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and action potentials (see figure 4.34), which lasted about 1.25 ms and occurred at an av-
erage rate of one every 120 ms, had an average amplitude of 17.0 µV (recall that this was
extracellular recording).

������ 'FLJ< E<LIFEJ

�M8GFI8K@FE <OG<I@D<EK

Since the incubator chamber could not be used (see section 3.5.4), an experiment to deter-
mine how quickly the culture medium evaporated (and thus at which rate it needed to be
replenished) was undertaken. This consisted of placing an empty coverslip in the CSC-13
chamber and filling the chamber with culture medium. One of the pipette tips was low-
ered until it just touched the water, which caused a change in contrast in the microscope
eyepiece. Thiswas repeated every 10min, recording the position of themicromanipulator
each time using the LinLab (Scientifica) software, which could also control the microma-
nipulators but was discarded in favour of manual control. The volume of the evaporated
liquid was then calculated.

An evaporation rate of 132 µl/hr was obtained; this was the average of four measure-
ments, two of them lasting 120 min and the other two lasting 170 min. Therefore, the
culturemediumof the cell sampleswas replenished approximately every 30min by adding
65 µl of fresh medium.

�C<:KIFG?PJ@FCF>P <OG<I@D<EKJ

Of the36mouseneuron samples studied, spontaneousneural activitywas only detected in
one: DIV-15 with GlutaMAX and a cell density of 25,000 cells/coverslip (18,800 cells/cm2)
at the moment of plating (figure 4.35). It is likely that cell cultures with similar parame-
ters (e.g. DIV-14 at the same cell density or DIV-15 at a lower cell density) also displayed
spontaneous activity but it was not detected due to electrophysiology techniques being
difficult to master for non-electrophysiologists. The voltage trace recorded by the refer-
ence electrode was filtered to remove slow drift, after which it was determined that the
noise was about 0.3 mV.

Due to the time required to learn the electrophysiology techniques employed (sec-
tion 3.5), establish the interferometric reflectometry theory (section 4.1.3), become famil-
iarwith the interferometric reflectometry equipment and experimental setup (section 3.3)
and attempt to deal with the noise in the reflectometry measurements (section 4.2), the
latter of which was not satisfactorily achieved due to the extremely low signal-to-noise
ratio of single lipid bilayers, there was insufficient time remaining in this project to carry
out the intended simultaneous electrophysiological and optical experiments. This means
that our final objective, attempting to observe action potentials optically and determine
whether or not they involve a phase transition of the cell membrane, was not realised.
Nevertheless, future work might be able to achieve this once the signal-to-noise ratio of
interferometric reflectometrymeasurements on single lipid bilayers is increased to at least
2,000.
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Figure 4.35: First 10 s of spontaneous activity recorded from one of the cells in the DIV-15 sam-
ple with GlutaMAX and a cell density of 25,000 cells/coverslip (top) and a 400-ms period of the
same recording showing an action potential (bottom). The reference-electrode voltage, filtered to
remove drift, is also shown. The voltages shown here have been divided by the gain to retrieve the
actual values. The cell had a membrane resting potential of −68 mV. After the action potential
at 5.44 s, there are several voltage peaks which do not cross the 0 = 0 threshold and are thus
not true action potentials. Action potentials continued until about 20 s, although the fraction of
peaks which did not reach 0 = 0 became larger; after 20 s, no action potentials were recorded
and the peaks began to decrease in amplitude until they were only able to reach about−30mV (an
amplitude of about 40 mV). Further recordings on the same cell resulted in very small peaks for a
few seconds followed by cessation of activity. This was likely due to the degradation and eventual
death of the cell.

���� �FE:CLJ@FEJ

We have presented a complete model for the reflection of light by an isotropic, homo-
geneous layer placed between two semi-infinite materials. The model, which is based on
Fresnel’s expressions for reflection and transmission at an interface, takes into account not
only the light reflected at the layer’s first interface, but also the interference of the light
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that enters the layer and is reflected at its interfaces any number of times. This theory is
not new; it has been used, for example, for coating films or interferometers.9 We showed
how the reflection coefficient J, which is a complex quantity, changes as a function of the
thickness ; and refractive index Es of the layer; we also showed that it is periodic in ; for
any given value of Es (with a period inversely proportional to Es). More importantly, we
showed how to compute ; and Es from a known value of J.

The model was generalised to the case of non-normal incidence and to the case of an
angular distribution. An exact expression for the signal detected by the interferometric
reflectometry imaging setup described in section 3.3, which employs a “reference” beam
that never interactswith the sample but interfereswith the light reflected from the layer at
a collection of detectors (two for each polarisation component of the detected light) in or-
der to allow independent measurement of the amplitude and phase of the reflected light,
was obtained. The model here makes the assumptions that the layer’s refractive index is
intermediate between the refractive indices of the surrounding media, that incidence oc-
curs from the high-refractive-index side, and that the maximum angle of incidence is not
large enough for total internal reflection at any of the interfaces. In this case, the media
on either side of the layer no longer need to be semi-infinite, merely large enough for the
focal volume to fall entirely within them. We showed how the detected signal changes in
the specific case of a distibution of angles of incidence corresponding to gaussian beams
and an aplanatic objective of numerical aperture 1.27, as employed in the experimental
setup.

Themodel can be generalised to an arbitrary number of layers (appendix A), againwith
the conditions that all the refractive indices of the layers be between those of the external
media. In this case, the mathematical expressions quickly become unwieldy, but taking
only one reflection per layer into account is an acceptable approximation resulting in an
error smaller than 0.1%. Since interference is employed to measure the amplitude and
phase of the reflected light, any two quantities (two thicknesses, two refractive indices, or
one of each where one does not necessarily belong to the same layer as the other) can be
determined from the signal as long as all the others are known.

Two different techniques for dealing with noise were shown, since the changes in the
signal causedby changes in ; and/orEs are of the order of a fewpercent and thus very clean,
high-precisionmeasurements are required to detect phase changes in single lipid bilayers.
If the noise can be reduced enough, interferometric reflectometry offers the opportunity
to detect such changes in a noninvasive manner, contrary to other techniques such as
fluorescence and atomic force microscopy, and with enough time resolution, contrary to
techniques like quantitative DIC (which requires two separate measurements to be taken
with different polariser angles and can thus not achieve the required imaging speed).

One of these, called referencing, involves using a Wollaston prism placed before the
microscope to split the incident beam into two spatially separated, orthogonally polarised
beams which nevertheless have approximately identical noise; the images, each contain-
ing the signal corresponding to light of one polarisation, are then to be divided by each
other in order to remove most of the noise. The problem this introduces is that each
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image does not contain the signal from one of the polarisations, but rather combined in-
formation from both; they thus need to be separated before division. Since each image is
a linear combination of the “true” (separated) images, the inverse is also true: each sepa-
rated image is a linear combination of the measured images. We showed how finding the
parameters for these linear combinations is a 6-dimensionalminimisation problemwhich
can theoretically be solved in a variety of ways. In practice, however, this is not necessarily
true. We presented three approaches to the minimisation problem —an approach which
used the cross-correlation between the images for different values of the parameters to
attempt to find the correct values, an algorithm which attempted to combine the images
and then reconstruct them and used gradient descent to minimise the error caused by
using the wrong coefficients for the combination and reconstruction, and a genetic algo-
rithm which attempted to minimise the same error without becoming trapped in local
minima— and demonstrated the results obtained with them for both simulated data (in
appendices B–D) and experimental data (in this chapter); unfortunately, even though the
results of the second and third approaches with simulated data were promising, their re-
sults with experimental data were inadequate. Possible reasons for this inadequacy were
suggested.

The second technique consists of filtering out spatial frequencies in the data which
correspond to noise and to phase drift in an attempt to reduce the noise. This worked
as expected until a certain point, after which removing more frequencies resulted in loss
of information, so not all of the noise could be removed. This meant that, since images
consisted of hundreds of thousands of pixels and the noise and residual phase drift in
them were considerable, it was impossible to accurately determine ; and Es at each pixel.

Nevertheless, it was shown that our interferometric reflectometry setup is sensitive
enough to detect variations in thickness of less than half a nanometre, which occur at the
boundaries between LO and LD domains in unilamellar ternary lipid mixtures.

Line traces were also taken from the phase-filtered data and individually analysed.
Each trace was taken parallel to the fast-scan axis to further decrease the noise along the
trace, and each one was taken at the edge of a bilayer. The amplitude and phase data
from each trace were simultaneously fittedwith a step functionwhose height was allowed
to change between the amplitude data and the phase data but whose spatial parameters
were not. The height of the amplitude and phase steps gave the relative change in the
reflectometry signal, while the absolute value of the amplitude in the region without a
bilayer was used to normalise this relative change and obtain ; and Es.

Our results indicate that the noise remains too large for such small structures. While
it is possible to see extremely small changes in the images, quantitatively computing the
thickness and refractive index of the bilayer from such noisy data cannot be done with
high accuracy. The measured thickness of a DC15PC bilayer was (8.6± 3.4) nm, while its
nominal thickness is 5.3 nm; for a DOPC bilayer (the LD domain of a ternary mixture of
DOPC, sphingomyelin and cholesterol), the measured thickness was (12.4± 3.0) nm and
the nominal thickness is 4.1 nm. The reflectometry measurements, then, are 2–3 times
larger than they should be. Tests we made with simulated data and with quantitative
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DIC measurements of experimental data from the same positions of the same samples
indicate that these errors are due to the residual noise and not to a systematic error in the
measurement or analysis procedure of the interferometric reflectometry technique.

Interferometric reflectometry has previously been used to measure snow depth from
satellites.10 A similar technique, imaging ellipsometry (which uses changes in the polar-
isation of the reflected light), has been used to measure the thickness of artificial lipid
bilayers and detect thickness differences between different thermodynamic phases of the
lipid;11 however, this requires previous knowledge of the refractive index of the lipid and
the assumption that it does not change from one phase to another, which we have seen
is not generally true. To our knowledge, this is the first time imaging of layers only about
5 nm in thickness and measurement of nanometric thickness differences have been at-
tempted using interferometric reflectometry.

Spontaneous neural activity was measured electrophysiologically in cultured mouse
hippocampal neurons, indicating that these neurons provide an adequate system for the
study of action potentials. However, optical observation of action potentials was not
achieved because it would have required the interferometric reflectometrymeasurements
to accurately provide quantitative information of the thickness and refractive index (the
latter of which can be used as a measure of lateral density) of lipid bilayers. Since the
characteristics the neurons must possess have been determined and the interferometric
reflectometry theory has been developed for the special case of the experimental configu-
ration described in chapter 3, this is the only obstacle remaining between the current state
of affairs and an attempt to observe action potentials with reflectometry. Other than the
low signal-to-noise ratio, this technique is adequate for the problem; it can measure at a
rate of 5,000 Hz, higher than the minimum rate of 2,000 required for Nyquist sampling
of millisecond-long action potentials, and it is noninvasive.

In future, we plan to attempt themeasurement of the thickness and refractive index of
thicker samples, where the contrast between the layer and no-layer regions is stronger and
thus the signal-to-noise ratio is higher. If the inaccuracies in themeasurements presented
here are indeed due to the noise, as we believe they are, then the retrieval of ; and Es for
a sufficiently thicker sample (of the order of several tens of nanometres) should be much
more accurate.
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The imaging equipment and configuration used for for SRS were described in section 3.4;
this chapter will describe the post-acquisition analysis and discuss the results obtained.

��
� �8K8 8E8CPJ@J

The SRS signal of a single lipid bilayer is very low; after all, it is the nonlinear response of
a mere 4–5 nm of material. A typical regularised (section 3.3.4) SRS image (figure 5.1) has
very little contrast and a low signal-to-noise ratio. The impedance of the detector used
is approximately 10 µΩ, and the DC signal impedance is 36 Ω.1 The DC signal is of the
order of 100 mV, but the SRS signal is only about 0.5 mV (see, for example, figure 5.1),
which means that the relative modulation of the transmission is about 1.8× 10−6.

This section describes the development of the data analysis procedure we used to ex-
tract information of the phases of lipid bilayers from such low-signal images.

��
�
� -G<:KI8C =8:KFI@J8K@FE

Factorisation into spectra and concentrations of chemical components2 (FSC3) was per-
formed on the denoised, gradient-corrected SRS images from the ternary mixture. This
procedure consists of finding matrices C, S and E such that D = CS+ E and |�|2,the sum
of the squares of the elements of E, is minimised. Here, D is the data, C is a non-negative
matrix containing the component concentration distributions, S is a non-negative matrix
containing the spectral components and E is the residual (or error) matrix. The algorithm
can be guided by one or more existing locked spectra, which means incorporating the
locked spectra into S, or it can be unguided. In both cases, the number of spectra to be
used is given to the algorithm, and the remaining spectral components are all treated as
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166 5. Lipid domain discrimination by stimulated Raman scattering microscopy

a systematic error in the factorisation. Guiding the algorithm with a number of locked
spectra equal to the number of spectra to be used simply gives the spatial distribution of
the guide spectra and the residual.

Each hyperspectral image was subjected to unguided FSC3 with 5 components. Fig-
ure 5.2 shows the results of FSC3 of the images shown in figure 5.1. One component was
assigned to lipid and one was assigned to PBS; the assignment was based on the spatial
distribution of the components and on prior knowledge of which regions consist of lipid
and which have no lipid, and this prior knowledge itself came from the quantitative DIC
images. The lipid component is shown in red, while the PBS component is shown in blue.
The images in figure 5.2 show the spatial distribution of these two components. The re-
maining three components were generally systematic noise; they invariably had spatial
distributions which looked like either white noise or a gradient rather than reflecting the
spatial distribution of the sample’s components. One of them is shown in green in each of
the images. The colours of the spectra on the graphs on the right correspond to those of
the components shown in the corresponding images; the two spectral components whose
spatial distributions are not shown in each image are also omitted from the corresponding
graph. The full results with all five components are shown in appendix F.
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Figure 5.1: SRS images of three ternary samples: DOPC:sm:ch = 3:5:2 (top), DOPC:sm:ch = 1:2:1
(centre) and DOPC:sm:ch = 11:5:4 (bottom). The SRS data is hyperspectral and is shown at
three different wave numbers: 2,800 cm−1 (centre-left), 2,850 cm−1 (centre-right) and 2,900 cm−1

(right). Quantitative DIC phase images of the same fields of view (left) are also shown. The scale
is in radians for the quantitative DIC images and in mV for the SRS images.
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Figure 5.2: Quantitative DIC images (left), FSC3 images (centre) and FSC3 spectra of the regions
shown infigure 5.1. The composition (DOPC:sm:ch) of the samples is 3:5:2 (top), 1:2:1 (centre) and
11:5:4 (bottom). The scale bars are in radians for the quantitativeDIC images and in concentration
for the colour components of the FSC3 images.

Unlike in the SRS images (figure 5.1), the structures in the sample can be seen fairly
clearly in the FSC3 images, especially in those of the 3:5:2 and 11:5:4 samples. However,
the different lipid domains (LO and LD) cannot be resolved; only one lipid component has
been factorised in the case of each sample, meaning the two lipid components have SRS
spectra too similar to discriminate by this method.

The vesicle seen inside the circular feature at the centre of the image of the 11:5:4
sample (seen as a large black spot in the quantitative DIC image and as a bright spot in the
2,850-cm−1 and 2,900-cm−1 SRS images) moved between the acquisition of the quanti-
tative DIC and SRS images, which implies it was not attached to the lipid underneath.

Attempts to improve the spectral retrieval to the point where the LO and LD domains
can be distinguished from each other are described in in the remainder of section 5.1.
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The thickness of the layer of lipidwas negligible compared to the focal depth (about 1 µm),
and the lower half of the focal volume was occupied by the coverslip glass. Therefore, the
volume occupied by PBSwas approximately half of the focal volume, some 100 timesmore
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168 5. Lipid domain discrimination by stimulated Raman scattering microscopy

than the volume occupied by the lipid layerwithin the focal volume. The spectrum at each
point of an image thus had a very significant contribution from the spectrum of PBS de-
spite PBS having an Im(χ3) of only 0.01–0.1 in thewave number range studied (compared
to as much as 5 for lipid3), masking any differences in the spectra of the domains.

To overcome this, the spectrum of PBS was subtracted from each image prior to FSC3.
Since this spectrum (which is very similar to that of water) is non-resonant at the wave
numbers studied, it was deemed sufficient to subtract a constant from the spectrum at
each pixel of the image. In order to obtain this offset for each pixel, the portion of the
spectrum from 2,650 cm−1 to 2,670 cm−1 at the corresponding pixel was averaged.

��
��� *LDG
-KFB<J FM<IC8G :FII<:K@FE

The overlap of the pump and Stokes beams varied over the spectral scan range, resulting
in the signal having a bell-shaped envelope, which shows the SRS spectra at two different
points of an SRS image of a ternary sample.

The CARS intensity4 is proportional to |χ3|2|�p|4|�s|2, where �p is the amplitude of
the pump beam and �s is that of the Stokes beam. The SRS intensity,4,5 on the other hand,
is proportional to |Im(χ3)||�p|2|�s|. |χ3| is dominated by the non-resonant response of the
material in the sample, which is approximately constant. Therefore, the strength of the
lipid signal relative to the background is much smaller for CARS images than for SRS im-
ages. TheCARS imageswere thusmuchmore uniform; while structure could occasionally
be seen very faintly, the images were dominated by the PBS.

Since PBS, like water, is mostly non-resonant at wave numbers smaller than
3,000 cm−1,6 the shape of the CARS and SRS spectra in the studied region corresponded
almost exactly to the overlap between the pump and Stokes pulses, with the lipid having

3 µm

8,793,292

1,498,384
2,800 2,850 2,900 2,950 3,000

0

2
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∆B (cm−1)

spectrum (×106 electrons)

Figure 5.3: Spatially averaged CARS spectrum of an image from one of the ternary samples
(DOPC:sm:ch = 11:5:4). This spectrum is enveloped by the pump-Stokes overlap but is other-
wise approximately uniform. The image to the left shows the CARS signal from the same image at
2,850 cm−1; the greyscale range is in electrons.
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only a very small contribution, especially in the CARS images for the reason explained
above. This fact was used to compensate for the spectral unevenness of the pulse overlap.
The CARS spectrum of each image was averaged over the entire image (figure 5.3), and
the SRS spectra of each image were divided by the square root of the average CARS spec-
trum of the image (the square root was used because, as mentioned previously, the CARS
intensity is proportional to |χ3|2 and the SRS intensity is proportional to |Im(χ3)|).

With this correction and the PBS spectrum subtraction, the structures were slightly
more visible in the SRS images evenwithout spectral factorisation (figure 5.4). The noise is
also visibly reduced, since the noise caused by laser fluctuations (which is present in both
the CARS signal and the SRS signal) is divided by itself. Additionally, while the struc-
ture remains faint, the different domains are now visible as different signal intensities at
2,850 cm−1, although the LD domains are difficult to distinguish from PBS.

The improvement is also visible after spectral factorisation (figure 5.5). While the fac-
torisation can still not distinguish the lipid domains from each other very well (the green
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Figure 5.4: SRS images of the samples shown in figure 5.1 after subtraction of the PBS signal using
the (2,650–2,670)-cm−1 range and after pump-Stokes overlap correction. The images are shown
in the same order and at the same wave numbers as in figure 5.1; the composition (DOPC:sm:ch)
of the samples is 3:5:2 (top), 1:2:1 (centre) and 11:5:4 (bottom). The SRS data is shown at the
samewave numbers as before: 2,800 cm−1 (centre-left), 2,850 cm−1 (centre-right) and 2,900 cm−1

(right). Also as before, quantitative DIC phase images of the same fields of view (left) are shown.
The scale is in radians for the quantitative DIC images and in nV electrons1/2 for the SRS images,
since the CARS signal was detected with a photomultiplier tube and the CARS spectrum thus has
units of electrons.
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Figure 5.5: Quantitative DIC images (left), FSC3 images (centre) and FSC3 spectra of the regions
shown in figure 5.4. The composition (DOPC:sm:ch) of the samples is 3:5:2 (top), 1:2:1 (centre)
and 11:5:4 (bottom). The FSC3 was performed after the PBS signal was subtracted from the SRS
spectra and the uneven pump-Stokes overlap was corrected by dividing the SRS spectrum of each
image by the square root of the average CARS spectrum of the same image. The scale bars are in
radians for the quantitative DIC images and in concentration for the FSC3 images.

component is still noise, as are the two componentswhich are not shown), the features are
more visible than without the PBS and overlap correction (compare figures 5.2 and 5.5).
Additionally, the spectrum of the PBS component is more reminiscent of the spectrum of
water (or PBS) at the wave numbers shown in figure 5.5 than it is in figure 5.2. As before,
the full results are shown in appendix F. The second field of view was only subjected to
3-component FSC3 because using more components resulted in some of the components
being different spectral halves of the same component: theywould have the same concen-
tration map, the spectrum of one would be zero from about 2,850 cm−1 to 2,950 cm−1,
and the spectrum of the other would be zero from 2,750 cm−1 to about 2,850 cm−1.
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In order to remove the contribution of PBSmore effectively from the SRS data and further
improve the SRS spectra (bywhich ismeant further highlight the differences in thedomain
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spectra by reducing other contributions to the SRS spectrum of the images), the spectrum
of PBS, rather than a constant number, was subtracted from the SRS spectra.

This SRS spectrum (figure 5.6) was obtained from an image of a pure DOPC sample.
The spectrum at each point of the subregion of theDOPC imagewhich contained no lipid
(which once again was determined with the aid of the quantitative DIC image of the same
field of view of the same sample) was averaged, and this average spectrumwas used as the
PBS spectrum. This, instead of a constant number, was subtracted from the SRS spectra
of the images of the ternary samples.

The remainder of the procedure was the same as before, although there is one ex-
ception: the pump-Stokes overlap’s unevenness was corrected after spectral factorisation
rather than before. This was done because this unevenness does not affect factorisation,
merely the shape of the resulting spectra, and because the factorisation assumes the data
has white noise and, as seen earlier, this correction affects the noise.

Figure 5.7 shows the SRS images after PBS spectrum subtraction. The contrast is im-
proved with respect to figure 5.1, though the noise remains; dividing by the square root of
the average CARS spectrum removes the noise which comes from fluctuations in the laser
intensity, so the noise in figure 5.7 is the same as that in figure 5.1. However, the noise is
not strong enough to obscure the features completely.

It is now possible to distinguish the LD domain from PBS at 2,850 cm−1. With the
exception of vesicles (which appear as very bright spots along the diagonal from bottom-
left to top-right in the top image, near the bottom-left corner in the central image and
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0.00

0.20
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Figure 5.6: PBS spectrum from a pure-DOPC sample after division by the square root of the spa-
tially averaged CARS spectrum of the same image from which the PBS spectrum was taken. The
spectrumwas obtained by spatially averaging the spectrum of the regions of the image which con-
tained no lipid. Note that the PBS spectrumwas subtracted from the images of the ternary samples
prior to sivision by the square root of the CARS spectrum.
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172 5. Lipid domain discrimination by stimulated Raman scattering microscopy

inside the circular LD domain at the centre of the bottom image), the brightest regions
are LO domains. Meanwhile, the intermediate regions (for example, the top-left third of
the top image and the top-right corner and circular feature in the bottom image) are LD
domains and the darkest regions (the bottom-right third of the top image and the small
regions at the top-left and centre-right of the bottom image)) are PBS.

Figure 5.8 shows the results of FSC3 of the SRS images after subtraction of the PBS
spectrum. It is immediately evident that the image of the 3:5:2 sample has a horizontal
feature near the topwhich is the result of a fluctuation of the laser intensity. However, the
factorisation is better in that it now retrieves two lipid components (with the exception of
the image of the 1:2:1 sample), even if they are not properly separated. These two compo-
nents, shown in red and green in the 3:5:2 and 11:5:4 images, are spatially separated from
the PBS component, shown in blue in all images. While the images are grainy, the lipid
is now properly separated from the PBS and there are sometimes two lipid components.
Once again, the full results are shown in appendix F. For the same reason as before, the
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Figure 5.7: SRS images of the samples shown in figure 5.1 after subtraction of the PBS spectrum.
The images are shown in the same order and at the same wave numbers as in previous figures;
the composition (DOPC:sm:ch) of the samples is 3:5:2 (top), 1:2:1 (centre) and 11:5:4 (bottom).
The SRS data is shown at the same wave numbers as before: 2,800 cm−1 (centre-left), 2,850 cm−1

(centre-right) and 2,900 cm−1 (right). Also as before, quantitative DIC phase images of the same
fields of view (left) are shown. The scale is in radians for the quantitative DIC images and inmV for
the SRS images. The subtracted PBS spectrum was obtained by averaging the spectrum of a pure
DOPC sample over the region which contained no lipid.
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Figure 5.8: Quantitative DIC images (left), FSC3 images (centre) and FSC3 spectra of the regions
shown in figure 5.7. The composition (DOPC:sm:ch) of the samples is 3:5:2 (top), 1:2:1 (centre)
and 11:5:4 (bottom). The FSC3 was performed after the PBS spectrum (taken from a DOPC-only
sample) was subtracted from the SRS spectra. The scale bars are in radians for the quantitative
DIC images and in concentration for the colour components of the FSC3 images.

second field of view was only subjected to 4-component FSC3.
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Due to noise and to variations in the exact amount of PBS in the focal volume across
different images, the spectrum which needs to be subtracted in order to remove the con-
tribution of the PBS is not necessarily the same for all images. This is evident in the fact
that some PBS remains in the images.

Rather than attempt to scale the PBS spectrum individually for each image, which is
a process which is not straightforward and prone to error, the local PBS spectrum was
obtained in the same way as described above: the SRS spectrum was averaged over the
PBS-only regions, but this was done for each image; the average PBS spectrum of each
image was subtracted from that image.

It is obvious that this can only be done if there is at least one PBS-only region in the
image, and it soon became evident that it only yields good results if the PBS-only re-
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gion(s) amount to a fairly large fraction of the total image. Thus, a new set of images of a
new ternary (DOPC:sm:ch = 11:5:4) sample was acquired and care was taken to include
enough PBS-only area in each image.
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In order to reduce the noise present in the images and obtain better FSC3 results, the
images were subjected to a 4×4 spatial binning in both the O direction and the P direction.
(O×(P binning consists of partitioning the image into rectangular regions(O pixels long
in the O direction and(P pixels long in the P direction and then averaging the signal across
all pixels in each of these rectangular regions, turning each rectangle into a single pixel.
This results in a smaller, less-smooth image, but one with less noise.
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Figure 5.9: SRS images of the samples shown in figure 5.1 after subtraction of the local PBS spec-
trumand 4×4 spatial binning. The images are shown in the sameorder and at the samewave num-
bers as in previous figures; the composition (DOPC:sm:ch) of the samples is 3:5:2 (top), 1:2:1 (cen-
tre) and 11:5:4 (bottom). The SRS data is shown at the same wave numbers as before: 2,800 cm−1

(centre-left), 2,850 cm−1 (centre-right) and 2,900 cm−1 (right). Also as before, quantitative DIC
phase images of the same fields of view (left) are shown. The scale is in radians for the quantitative
DIC images and in mV for the SRS images. The PBS spectrum subtracted from each image was
obtained by averaging the spectrum of the PBS-only region(s) of the same image.
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Figure 5.10: Quantitative DIC images (left), FSC3 images (centre) and FSC3 spectra of the regions
shown in figure 5.9. The composition (DOPC:sm:ch) of the samples is 3:5:2 (top), 1:2:1 (centre)
and 11:5:4 (bottom). The FSC3 was performed after the local PBS spectrum was subtracted from
the SRS spectra and the images were binned to reduce noise. The scale bars are in radians for the
quantitative DIC images and in concentration for the colour components of the FSC3 images.
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Since the composition of the LO and LD domains is expected to be approximately equal
for all images (see section 3.1.1), 3-component FSC3 was performed simultaneously on
the images of the 3:5:2 and 1:2:1 samples and the first 11:5:4 sample. This means that the
spectra retrieved by the factorisation algorithm are the same for all the images. The same
was done for the images of the second 11:5:4 sample.

Figure 5.9 shows the SRS images of the 3:5:2 and 1:2:1 samples and the first 11:5:4
sample after local PBS spectrum subtraction and spatial binning. Even in the image of the
1:2:1 sample, the spatial features of the sample are now visible at all three wave numbers
and especially at the higher two wave numbers.

Figure 5.10 shows the result of simultaneous FSC3 of all the images shown in fig-
ure 5.9. The spectra shown on the graphs have been divided by the square root of the aver-
age CARS spectrum of all the images. The red and green components correspond to lipid,
while the blue component is the residual PBS. The images appear black in the PBS-only
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176 5. Lipid domain discrimination by stimulated Raman scattering microscopy

regions, indicating that the vast majority of the PBS’s contribution has been subtracted.
The LO domains are clearly visible in red, but the LD domains are visible as dark-red re-
gions with some green scattered across them, meaning the separation is imperfect; the
red spectrum is the spectrum of the LO domains, but the green spectrum is the difference
between the spectrum of the LD domains and the red spectrum, such that the spectrum
of the LD domains is some linear combination of the red and green spectra.

Figure 5.11 shows the SRS images of the second11:5:4 sample after local PBS spectrum
subtraction and spatial binning. The quantitative DIC images clearly show the existence
ofmultilamellar patches in addition to unilamellar LO and LD domains. The bottomfield
of view contains no LDdomains. The SRS images of the top field of view are dominated by
the extremely strong signal of the multilamellar patches, which obscures the boundaries
between the unilamellar domains.

Figure 5.12 shows the result of simultaneous FSC3 of all the images shown in fig-
ure 5.11. While the red component has the same spatial distribution as the LO domains
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Figure 5.11: SRS images of a new ternary sample after subtraction of the local PBS spectrum and
4 × 4 spatial binning. The composition (DOPC:sm:ch) of the sample is 11:5:4. The images show
different fields of view, all of which contain large PBS-only regions. The SRS data is shown at the
samewave numbers as in figures 5.1, 5.4, 5.7 and 5.9: 2,800 cm−1 (centre-left), 2,850 cm−1 (centre-
right) and 2,900 cm−1 (right). Also as in those figures, quantitative DIC phase images of the same
fields of view (left) are shown. The scale is in radians for the quantitative DIC images and in mV
for the SRS images. The PBS spectrum subtracted from each image was obtained by averaging the
spectrum of the PBS-only region(s) of the same image.
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Figure 5.12: Quantitative DIC images (left), FSC3 images (centre) and FSC3 spectra of the regions
shown in figure 5.11. The composition (DOPC:sm:ch) of the sample is 11:5:4; the top, central and
bottom rows show different fields of view of the same sample. The FSC3 was performed after the
local PBS spectrum was subtracted from the SRS spectra and the images were binned to reduce
noise. The scale bars are in radians for the quantitative DIC images and in concentration for the
colour components of the FSC3 images.

seen in the quantitative DIC images, the green and blue components seem to be the result
of the strong gradients along the P direction visible in the SRS images shown in figure 5.11,
particularly the central and bottom images. This gradient is addressed in section 5.1.9.
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Away to reduce noisewithout binning is to performa singular-value decomposition (SVD)
of the spectral components and discarding all components which were not seen to con-
tribute to the spatial structures in the image (figure 5.13).

Singular-value decomposition consists of finding matrices U, C and S such that the
data D can be written as D = UCS. If D is an (s × (B matrix, where (s is the number
of spatial points and (B is the number of spectral points, then U is a unitary (s × (s
matrix which contains the spectral components, C is a non-negative diagonal (s × (s
matrix which contains the component concentrations, and S is an (s × (B matrix which
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Figure 5.13: First six SVD components of one of the SRS images of the 2:2:1 sample. The first four
components display varying degrees of spatial structure and were thus kept; all of the remaining
components, as exemplified by the fifth and sixth ones in this figure, have no spatial structure and
were thus discarded as noise. The greyscale ranges are in mV.

contains the spectral components’ spatial distributions.
Figure 5.13 shows the first six SVD components of an image of a ternary sample

(DOPC:sm:ch = 2:2:1). In this case, the first four SVD components show spatial struc-
ture, indicating that they contribute to the signal from the sample, and all remaining SVD
components (including the fifth and sixth ones) do not, indicating that they contribute
only to the noise. All components from the fifth one were discarded to reduce the noise.
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Thermal drift of the focal plane during image acquisition resulted in the amount of PBS
in the focal volume changing as a function of time (and thus of the position on the image),
which in turn resulted in a gradient along the slow scan axis, which we call the P axis
(figure 5.14). This gradient was very pronounced in some of the images (see, for example,
figure 5.11) and influenced the spectral factorisation.

In addition, small spatial variations in the overlap of the pump and Stokes beams often
resulted in a correspondingly small gradient across the image.

The PBS signal and both gradients were simultaneously removed from the SRS images
by obtaining a linear fit of the PBS-only regions and subtracting the fitted function from
the entire image for eachwave number; like denoising, this was done individually for each
image, since each image had a different gradient. The function was independent for each
wave number, so, in fact, one linear function per wave number was fitted and subtracted
from the data at the correspondingwave number. This resulted in the PBS spectrumeffec-
tively being subtracted as well. This was done instead of local PBS spectrum subtraction.

Like the subtraction of the local PBS spectrum, this can best be done on images which
have large PBS-only regions.

Figure 5.15 shows the SRS images of the second 11:5:4 sample after the data was de-
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noised via SVDand the gradientswere removed by fitting and subtracting a linear function
of P to the PBS-only regions. A weak gradient remains in the central image, probably due
to the PBS-only region being too small for the fit to be very accurate, but the features of
the samples are more visible than in figure 5.11. Nevertheless, the images remain dom-
inated by the multilamellar features, so the contrast remains too low for the domains in
the top image to be visible.

The images were subjected to 2-component FSC3 independently of each other. Only
two components were used because the samples were not expected to have more than
this amount (one for each lipid phase; the PBS had been removed by the subtraction of
the linear function).

Figure 5.16 shows the result of FSC3 of the images from figure 5.15.
The top image remains dominated by the multilamellar features, so the factorisation

resulted in these features being separated from the rest of the sample; therefore, the spec-
tra are not representative of the LO and LD spectra and the two domains could not be
separated in this case.

The central image, as mentioned previously, still had a gradient, which is represented
here by the green component; the gradient was strong enough for the factorisation to
favour isolation of it rather than of the LD domains, so, while the red component corre-
sponds to the LOdomains, the green component does not correspond to the LD domains.

The field of view seen in the bottom image, as mentioned previously, does not contain
any LD domains. Therefore, the factorisation resulted in two components with different
spectra but the same spatial distribution. The weaker of these components is shown in
grey, while the stronger one is shown in red. It is believed that the factorisation algorithm

5 µm
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Figure 5.14: An SRS image from one of the ternary samples (DOPC:sm:ch = 2:2:1). The image
has a gradient along both spatial axes. The graph on the right shows the spectra at one point in
the upper section of the image and one point in the lower section. The red and black circles on
the image indicate where the spectra were taken. The spectrum at the point in the upper section
is considerably stronger than that at the point in the lower section, revealing the presence of the
gradient.
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split the spectrum of the same component into two complementary spectra, since two
factorisation components were used, so the actual spectrum of the regions shown in red
in the FSC3 image is the sum of the two spectra shown; this has been seen previously,
and more dramatically, with images with several different chemical components which
are subjected to FSC3 with more spectra than there are components in the sample.
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It can be concluded, then, that this procedure (SVD denoising followed by fitting and sub-
traction of the PBS and gradients) increases the signal-to-noise ratio to the point where it
is realistic to expect FSC3 to be able to separate the LO and LD domains from each other.

However, it must be cautioned that this requires the absence (or masking to remove
from the analysis) of multilamellar or other high-contrast features in the images (so they
do not obscure themore subtle differences between the spectra of the two phases) and the
presence of a large PBS-only region (in order for the fitting to be accurate).

In the following section, the results of the analysis of new images from several sam-
ples —pure-LO (DOPC:sm:ch = 0:7:3), pure-DOPC (DOPC:sm:ch = 1:0:0) and ternary

2,800 cm–1 2,850 cm–1 2,900 cm–1

2,800 cm–1 2,850 cm–1 2,900 cm–1

0.332

–0.049

2,800 cm–1 2,850 cm–1 2,900 cm–1

0.329

–0.068

mV

–0.010

–0.051

0.003

–0.049

–0.001

–0.051

11:5:4

11:5:4

11:5:4

5 µm

0.228

–0.074

Figure 5.15: SRS images of the second 11:5:4 sample after SVD denoising and after a linear func-
tion of the P coordinate of the position was fitted to the PBS-only regions and subtracted from the
images. The images are shown in the same order and at the same wave numbers as in figure 5.11;
the composition (DOPC:sm:ch) of the sample is 11:5:4. As before, quantitative DIC phase images
of the same fields of view (left) are shown. The scale is in radians for the quantitative DIC images
and in mV for the SRS images.
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Figure 5.16: Quantitative DIC images (left), FSC3 images (centre) and FSC3 spectra of the regions
shown in figure 5.15. The composition (DOPC:sm:ch) of the sample is 11:5:4. The top, central
and bottom rows show different fields of view of the sample. The FSC3 was performed after the
images were denoised via SVD and after a linear function in P was fitted to the PBS-only regions
and subtracted from the images. The scale bars are in radians for the quantitative DIC images and
in concentration for the colour components of the FSC3 images.

(DOPC:sm:ch = 2:2:1)—will be shown. These imageswere taken in order to allow the re-
quirements established in the preceding paragraph to be satisfied and increase the chances
of FSC3 being able to separate the two components.
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SRS images of unilamellar and multilamellar sphingomyelin+cholesterol (sm+ch) and
DOPC supported bilayers and unilamellar ternary (DOPC:sm:ch = 2:2:1) supported bi-
layers were taken. As with the samples discussed in section 5.1, CARS images were taken
simultaneously and quantitativeDIC images of the same regions of the same sampleswere
taken immediately before the SRS and CARS images.

All images acquired were denoised by SVD. Gradients from thermal drift and from
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spatial variations of the pump-Stokes overlap, as well as the contribution of PBS, were re-
moved from the SRS images of the unilamellar samples by linear fitting and subtraction
of the PBS-only regions; the fitted function was sometimes a function of P only and some-
times a function of both O and P (see appendix G). Noise and gradients also existed in the
images from the multilamellar samples, but they were not significant because the large
amount of lipid in the focal volume gave a signal strong enough to continue with the
analysis as described below without background correction. Additionally, the PBS-only
regions in these images were too few and too small for the fitting to be accurate.
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In the case of the sm+ch and DOPC samples, the lipid SRS spectrum was obtained by
simply averaging the spectrum of the regions containing a lipid bilayer in the denoised,
gradient-corrected SRS images, avoiding regions with multiple bilayers (in the case of the
unilamellar samples) or changes in the number of bilayers (in the case of themultilamellar
samples), as well as vesicles and debris. This was possible because these samples exhibited
a single lipid phase. For the multilamellar samples, the region with the largest number
of bilayers in each image was selected in order to maximise the SRS signal (and thus the
signal-to-noise ratio).

Each image from the ternary sample was subjected to unguided FSC3 with 2 and 3
components. For each image, the result showing the clearest segregation of lipid domains
was selected and the other result was discarded; the selected result was usually the one of
the 2-component FSC3 (see appendix G).
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The spectra obtained as described above were scaled using the value of Im(χ3) for a single
lipid bilayer, obtained previously using CARS imaging.3 This allowed the determination
of Im(χ3) as a function of wave number for each lipid component.

The subtraction of the linear function introduces a small error in the retrieved spectra.
If the thickness of a lipid bilayer is ;, then the thickness of the PBS layer above the lipid is
thinner by an amount ; than the thickness of the PBS layer in the PBS-only regions. Since
the SRS spectrum at the PBS-only regions was used to calculate the linear function sub-
tracted from the entire image to correct for the gradient, the spectrum at the lipid regions
is not truly the spectrum of the lipid, but the spectrum of the lipid minus the spectrum of
a layer of PBS of thickness ;. Therefore, to retrieve the lipid spectra, this had to be com-
pensated. The spontaneous-Raman spectrum of a layer of PBS with thickness ; (equal to
4.96 nm for the LO domains and 4.08 nm for the LD domains7) was added to the FSC3

SRS spectra in order to compensate for the initial background subtraction. Spontaneous
Ramanmicroscopy was used to obtain the spectrum of PBS because it was less noisy than
the SRS spectrum. However, this meant the scale was different, so the Raman spectrum
of PBS was scaled to the corresponding SRS signal amplitude. This was then rescaled to
the Im(χ3) of a layer of PBS of thickness ; by multiplying it by the derivative of the SRS
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signal of PBS with respect to the distance Q between the sample and the focal plane, which
itself was normalised to the SRS signal of PBS at Q = 0, all at the central wave number of
the SRS scan (figure 5.17).

The resulting SRS spectrum, then, is given by

Im
(
χ(lipid)3

)
= Im

(
χ(PBS)3

)∣∣∣
∆(centre)

B

-FSC3
2 -FSC3

∣∣
∆(centre)

B

√
⟨-CARS⟩

⟨-CARS⟩|∆(centre)
B

+
-(PBS)Raman

-(PBS)Raman

∣∣∣
∆(centre)

B

-(PBS)
FSC3

∣∣∣
∆(centre)

B

2 -(PBS)
FSC3

∣∣∣
∆(centre)

B ,Q=0

⎛

⎜⎝
∂ -(PBS)

FSC3

∣∣∣
∆(centre)

B

∂Q

⎞

⎟⎠

∣∣∣∣∣∣∣
Q=0

;,

where -FSC3 is the SRS FSC
3 signal prior to scaling, -CARS is the CARS signal, -Raman is the

spontaneous Raman signal and∆(centre)
B is the central wave number of the SRS scan.
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Figures 5.18 and 5.19 show the unilamellar and multilamellar spectra of the sm+ch and
DOPC samples, respectively. In the case of the unilamellar samples, the average spectra
shown (continuous curves) are the averages of the individual spatially averaged spectra of
the images of each sample.

In the case of the multilamellar sm+ch sample, since each image was taken at a dif-
ferent field of view and the number of bilayers was different in each of them, the spectra
were scaled down to single-bilayer strength before being averaged. In order to do this,
the peak of the SRS spectrum of each image of the multilamellar sample was divided by
the average of the peaks of the spatially averaged SRS spectra of the unilamellar images
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Figure 5.17: Q dependence of the strength of the SRS signal in a PBS-only region.
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(this average of the unilamellar spectra is shown in red on the top graph of figure 5.18; the
individual spectra are shown as black dashed curves) and the resulting number, rounded
to the nearest integer, was taken to be the number of bilayers.

In the case of the multilamellar DOPC sample, the spatially averaged spectrum of the
most uniform image was kept and the other image was discarded, since the image’s lack
of uniformity greatly affected the averaged spectrum. This lack of uniformity came from
the DOPC being locally heated by the lasers to the extent that bubbles appeared in the
lipid, altering the signal significantly. These bubbles, which can be seen in figure 5.19,
were avoided in the spatial averaging of the spectrum. The spectrum was scaled down to
single-bilayer strength in the same way as the spectra of the multilamellar sm+ch sample.
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Figure 5.18: SRS images and spectra of the unilamellar (top) and multilamellar (bottom) sm+ch
samples. Dark regions in the images are PBS-only regions, and light regions are lipid regions. Black
dashed curves are the individual spectra, and continuous red curves are the average spectra. The
multilamellar spectra have been scaled to single-bilayer strength. The grey ranges are, from top
to bottom and left to right and in millivolts, (−0.070, 1.290), (−0.170, 3.720), (−0.106, 0.777),
(−0.185, 1.190), (−0.299, 7.346), (−0.213, 3.900) and (−4.863, 11.625). All images are shown at
the centre wave number.
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Figure 5.19: SRS image(s) and spectra of the unilamellar (top) and multilamellar (bottom) DOPC
samples. As in figure 5.18, dark regions in the images are PBS-only regions and light regions are
lipid regions. Black dashed curves are the individual spectra of the unilamellar sample images,
and the continuous green curve in the top graph is the average spectrum; the graph on the bottom
shows the spectrumof the only imagewhichwas considered for analysis, avoiding the lipid bubbles
(visible as lighter circular regions), which formed due to local heating of the sample by the imaging
lasers. Themultilamellar spectrum has been scaled to single-bilayer strength. The grey ranges are,
from top to bottom and inmillivolts, (−0.178, 4.322), (−5.203, 10.470) and (−1.908, 31.178). All
images are shown at the centre wave number.

Although the multilamellar spectra have some contribution from the PBS (as can be
seen by the gradual increase of the base signal towards higher wave numbers when com-
pared with the unilamellar spectra), these provide a good measure of the Im(χ3) of a sph-
ingomyelin+cholesterol bilayer and a DOPC bilayer.

Concerning the sm+ch case, it is important to note that the composition (sm:ch) of the
LO domains of a ternary mixture is not exactly 7:3. However, given that the relative con-
centration of sphingomyelin to cholesterol is only 26% higher in the 7:3 mixture than in
the LO regions of a ternary mixture (see section 3.1.1), this remains a reasonably accurate
measure of the Im(χ3) of this type of lipid domain, both qualitatively and quantitatively.
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Of the nine images acquired from the ternary sample, only eight featured domains of both
kinds; the remaining one had only a large patch of LD lipid. Of those eight, two had only
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Figure 5.20: Quantitative DIC (left) and FSC3 (centre) images of different regions of the 2:2:1
sample. In the SRS images, the red regions are the LO domains and the green regions are the LD
domains. The SRS spectra (right), obtained by unguided FSC3, follow the same colour code.
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unilamellar LD domains coexisting with multilamellar regions which may have consisted
of a combination of LO bilayers and LD bilayers; this made analysis difficult. Of the six
remaining images, one had very strong gradients and not a large enough PBS-only region
for the background fit to be accurate enough to remove the gradient; as with the second
field of view shown in figure 5.16, the residual gradient caused the FSC3 algorithm to
separate the image into components which did not correspond to the spatial distribution
of the domains. Therefore, in the following discussion of the results of the ternary sample
we will only consider the remaining five images.

Figure 5.20 shows the FSC3 images next to quantitative DIC images of the same fields
of view. The figure also shows the spectra of the two domain types in each image, obtained
by unguided FSC3. Since the LO domains were expected to be purely sphingomyelin and
cholesterol and the LD domains were expected to be mostly DOPC (see section 3.1.1),
the colours were chosen to match those used for the sm+ch and DOPC samples shown in
figures 5.18 and 5.19.

The domain boundaries are visible in both the quantitative DIC images and the SRS
images. Although there is some discrepancy in the exact shapes of the spectra from image
to image, the general features of the LO and LD spectra are consistent between images;
as in the case of figure 5.18, the LO spectrum has two peaks between 2,850 cm−1 and
2,900 cm−1, which correspond to CH2 stretching,8 and then falls gradually as the wave
number increases, while, as in the case of themultilamellar spectrum infigure 5.19, the LD
spectrum features multiple peaks from 2,850 cm−1 to around 2,950 cm−1, corresponding
to both CH2 stretching and CH stretching,8 before falling abruptly; DOPC has twice as
many double carbon bonds than sphingomyelin, so it contains twice as many CH bonds.
The identification of which spectrum corresponds to the LO regions and which one cor-
responds to the LD regions was, in this case, based on a comparison with the sm+ch and
DOPC spectra and is consistent with the determination of the phase of each domain by
quantitative DIC.

Importantly, the domains are distinguishable without guidance even though the sam-
ple was unilamellar (which meant that the signal was rather low) and even though the
spectra are fairly similar to each other (especially at the lower end of the wave number
range shown). This means that, even for a mixture of unknown composition, as long as
the spectra are different enough from each other in at least part of the spectral range and
as long as enough of the image consists of PBS-only regions to perform the background
correction with, the phases will be distinguishable with our technique (as long as the con-
siderations discussed in section 5.1.10 are taken into account).

������ ,<JLCKJ =IFD J<C=
>L@;<; 8E8CPJ@J F= K?< K<IE8IP J8DGC<

The LO and LD regions of the images from the ternary sample were determined with
the aid of the quantitative DIC images, after which the LO and LD spectra of each im-
age were obtained by averaging over the regions which were in the corresponding phase.
These spectra were used as guides for guided FSC3 of the images. The guidance was local,
meaning that the LO and LD spectra from each image were used as guides for that image
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only.

Figure 5.21 shows the FSC3 and quantitative DIC images next to the spectra obtained
by guided FSC3.
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Figure 5.21: Quantitative DIC (left) and FSC3 (centre) images of different regions of the 2:2:1 sam-
ple. Colour coding is as in figure 5.20. In this case, the SRS spectra are from guided FSC3 and are
likely more representative of the actual spectra of the domains. The guide spectra used for each
image came from that same image.
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The separation into phases in the FSC3 images is somewhat clearer than in the un-
guided case, especially for the second and fifth fields of view; the boundaries between the
domains are sharper. Additionally, the domains themselves are visibly less noisy; this can
be appreciated especially in the images of the first, third and fifth fields of view. These re-
sults were expected, as the algorithmno longer had to guess how to factorise the spectrum
and partition the image.

The spectra, although still not quite identical to each other, are more consistent from
image to image. In particular, the LD spectrum is flatter in the range between 2,850 cm−1

and 2,950 cm−1 except in the image of the fifth field of view. They are consistent with
the spectra of sphingomyelin9 and DOPC9,10 layers reported in the literature; the sm+ch
spectrum shows two strong peaks between 2,850 and 2,900 cm−1 before decreasing grad-
ually, as well as a small shoulder around 2,950 cm−1, while the spectrum of DOPC has
multiple peaks of approximately the same amplitude between 2,850 and 2,950 cm−1.

It is important to recall that the guide spectra used for each image came from that same
image. The fact that it is possible to obtain such consistent results with self-guidance re-
moves the need for additional measurements of samples with the same composition as
the different domains, as well as the need for prior knowledge of the sample composi-
tion; as long as the domains are distinguishable by the strength of the signal at some wave
number and their spectra are different enough from each other, it should be possible to
observe domain segregation using only SRS, and it should be possible to retrieve the SRS
spectra of the domains if one has the spectrum of the surrounding medium and knows
the thickness of each domain type.

������ �FD8@E :FDGFJ@K@FE JKL;@<J

Following the FSC3 analysis of the images of the ternary sample, we tried to discern the
amount of each type of lipid present in each of the domains using the average of the
scaled-down spectra of the multilamellar sm+ch sample (shown in red at the bottom of
figure 5.18, and henceforth -sm+ch) and the scaled-down spectrum of the multilamellar
DOPC sample (shown at the bottom of figure 5.19, and henceforth -DOPC). Each of the
two spectra from each imagewasmodelled as a linear combination of the aforementioned
multilamellar spectra, - = α-DOPC+β-sm+ch, and then the coefficients of the linear com-
bination (α and β) were normalised to their sum. Since the spectra resulting from guided
FSC3 are considered to be more representative of the true spectra of the domains, this
analysis was only done on said spectra. The linear combination was unconstrained; how-
ever, as with the FSC3 and the background gradient fitting, wave numbers where the sig-
nal displayed a strong, unexpected change that was clearly the result of a fluctuation in
the laser intensity, such as 2,940 cm−1 in the fourth image of the ternary sample, were
removed from the linear-combination fitting.

A composition of DOPC:(sm+ch) = −0.016:1.016 ± 0.130 was obtained for the LO
domains and a composition of 1.002:−0.002 ± 0.085 was obtained for the LD domains;
uncertainties are standard errors.

Recalling the expected partitioning of lipids (DOPC:sm:ch = 0:17:10 for the LO do-
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190 5. Lipid domain discrimination by stimulated Raman scattering microscopy

mains and all theDOPCwith the remaining cholesterol for the LDdomains) and the com-
position of the ternary sample used here (2:2:1), we would expect the composition to be
close to DOPC:(sm+ch) = 0:1 for the LO domains and 1:0 to the LD domains. However,
a few things complicate the matter. First, there was insufficient cholesterol in the sample
for the LO domains to have a composition DOPC:sm:ch = 0:17:10 and the LD domains
to have no sphingomyelin; either the LD domains had a small amount of sphingomyelin,
the LO domains had less cholesterol than in a 0:17:10 ratio, or both. Second, the sm+ch
sample had a composition 0:7:3 = 0:23:10, which is close, but not equal, to 0:17:10; there-
fore, whatever the composition of the LO domains (which was likely 0:2:1 = 0:20:10), the
sm+ch spectrum was not exactly the same as the spectrum of the LO domains, and it is
possible (if the LD domains had some sphingomyelin) that the DOPC spectrum was not
exactly the same as the LD spectrum either. Third, any local variations in the relative
abundance of the three types of lipid would have caused local variations in the LO and/or
LD compositions and thus in the LO and/or LD spectra, which might account for the dis-
crepancies observed in the spectra of the different images. Fourth, the sm+ch and DOPC
spectra have no significant differences at wave numbers below about 2,900 cm−1, so only
the highest few wavenumbers of the scan range contribute to the determination of the
domain compositions.

Despite all of these complications, the compositions of the LO and LD domains are
within error of DOPC:(sm+ch) = 0:1 and 1:0, respectively. However, individual linear
combinations sometimes had either a negative α or a negative β (and, correspondingly,
the positive coefficient was greater than 1), which is not physically meaningful. This is
probably due to a combination of the factors described in the previous paragraph and the
presence of residual noise even after denoising and background correction.

As a sanity check, the same fitting was done on the individual sm+ch and DOPC spec-
tra. The average compositionswere−0.973:1.973±0.148 for the unilamellar sm+ch spec-
tra, 0.000:1.000 ± 0.045 for the multilamellar sm+ch spectra, −0.205:1.205 ± 0.035 for
the unilamellar DOPC spectra, and 1.000:0.000 for the multilamellar DOPC spectrum.
The unilamellar spectra clearly have too much noise at high wave numbers for accurate
fitting. The multilamellar samples are, naturally, extremely close to the ideal concentra-
tions of 0:1 and 1:0, since they were used for the fitting in the first place and they have
much less noise relative to the signal.

���� �FE:CLJ@FEJ

Single lipid bilayers are extremely thin (only 4–5 nm thick) and thus produce a very small
SRS signal (a relative modulation of the order of 10−6 with our setup). Here, we have de-
scribed a data analysis method for SRS images of single lipid bilayers so that the individual
lipid domains are visible and can be separated into different spectral components with-
out the need for guidance. While unlabelled multilamellar vesicles11 and cells12,13 and
deuterium-labelled cells14,15 and organelles16 have been imaged using SRS, this is, to our
knowledge, the first time this has been achieved with unlabelled single bilayers. SRS pro-
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vides a much stronger signal than does spontaneous Raman scattering, as does CARS. At
the same time, the analysis of SRS images ismuchmore straightforward than that of CARS
images, requiring no PBS/glass correction, and SRS affords a higher contrast than CARS.
Finally, unlike techniques like surface-enhanced Raman scattering, it is noninvasive. For
these reasons, SRS was selected over the aforementioned alternatives.

Our technique consists of denoising the data via singular-value decomposition, re-
moving background gradients due to spatial pulse-overlap inhomogeneities and focus
drift, factorising the hyperspectral images into individual spectra with different spatial
distributions, correcting for the spectral pulse-overlap inhomogeneities by using CARS
images acquired simultaneously with the SRS images, and finally correcting for the PBS
spectrum subtraction incurred in the background-correction step. The acquisition of
CARS data does not require any additional optics beyond a dichroic beam splitter, a filter
and a detector; does not require additional alignment, since it employs the same beams
used for SRS; and does not require additional imaging time, since the CARS and SRS ac-
quisitions are simultaneous. Background correction does require PBS-only regions to be
present, large enough and distributed widely enough in the sample to give an accurate
background gradient fitting.

Further to discrimination between domains, we were able to obtain the SRS spectra
of said domains by guiding the spectral factorisation. These spectra are consistent with
those reported in the literature. The guidance was local, meaning only the data from an
imagewas used to guide the factorisation of that image; therefore, no additionalmeasure-
ments on reference samples are required, and no knowledge of the domain composition is
required either. When we compared the spectra retrieved from the locally guided factori-
sation of the ternary sample with the spectra of such reference samples, we obtained re-
sults consistent with previous knowledge about the segregation of sphingomyelin, DOPC
and cholesterol into LO and LD domains whenmixed at room temperature in such a way
that there is between 2 and 2.5 times as much sphingomyelin as cholesterol, namely that
these two lipids form LO domains with little or no DOPC and that the DOPC forms LD
domains by itself (see chapter 3).

One of themain benefits of this technique is that it is quantitative and, unlike surface-
enhanced Raman scattering or fluorescence, noninvasive. This means that the lipid do-
main segregation behaviour we have seen is likely to bemore representative of that which
occurs in physiological conditions than the behaviourwhichwould be observedwith these
other techniques, which require inserting particles into the sample. Furthermore, this
proves lipid phases can be observed with a noninvasive optical technique in single lipid
bilayers, which is in line with our main goal of imaging a phase transition (or absence
thereof) in live neurons.

Nevertheless, there remain challenges to be addressed. Domain discrimination re-
quires hyperspectral measurements, as well as spatially distributedmeasurements for PBS
subtraction. Since the pixel dwell time is 1 ms, which is already too slow to resolve an ac-
tion potential, this renders the technique inappropriate for action potential imaging in
its current state. Given the extremely low signal-to-noise ratio of unprocessed images,



✐
✐

“NahmadRohenA-PhDthesis” — 2020/2/29 — 5:04 — page 192 — #206 ✐
✐

✐
✐

✐
✐

192 5. Lipid domain discrimination by stimulated Raman scattering microscopy

it is unlikely that the dwell time can be reduced further. Even if cells were kept at room
temperature (if mammalian) or close to 4 ◦C (if lobster giant axons) so action potentials
lasted about 5 ms instead of 1 ms, the signal for at least two wave numbers would need
to be measured for lipid and for the surrounding medium, requiring 4 ms, still well above
the maximum acquisition time required to Nyquist-sample the action potential.

Heating of the cell (and the damage this would cause) is unlikely to be a problem. We
observed heating and bubble formation in themultilamellarDOPC samples but not in any
unilamellar sample. Since the portion of an axon which would lie inside the focal volume
is a unilamellar object surrounded on both sides by substances which are non-resonant
at the studied wave numbers (much like the unilamellar supported lipid bilayers studied
in this work), the heating caused by the laser is likely negligible. However, a systematic
study of how much the laser power can be increased (which would reduce the required
exposure time) is required in order to determine the extent to which the sampling rate
can be increased without the cell being damaged.
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Our initial objective was to attempt to observe action potentials with a noninvasive, real-
time optical measurement technique and ultimately determine whether action potentials
involve a phase transition, as proposed by T R Heimburg and A D Jackson in 2005.

To do so, we first summarised the Heimburg-Jackson model and the traditionally ac-
cepted Hodgkin-Huxley model for action potential propagation in chapter 1.

TheHodgkin-Huxley model views the cell membrane as a capacitor and the ion chan-
nel proteins embedded in it as variable resistors in an RC circuit. It postulates that the
voltage across the membrane changes due to an exchange of potassium and sodium ions
between the cell exterior and interior through the ion channels, which are activated (and,
in the case of the sodium channels, also deactivated) by “gating particles”. While these
particles seemmore a mathematical device than a biophysical mechanism and have never
been detected, the model does accurately predict the time course of the action potential,
in part thanks to it having a large number of parameters which could be adjusted to fit
experimental data.

The Heimburg-Jacksonmodel model predicts that a phase transition in the cell mem-
brane, from liquid-disordered to solid-ordered, is responsible for the action potential. Us-
ing a dispersion equation, it shows how this phase transition can propagate along the axon
in a solitonic fashion without the need for ion exchange or gating particles. This isn’t to
say that ion exchange doesn’t occur, merely that themechanism responsible for the action
potential is a phase transition and not the ions themselves.

This prediction implies important changes to the cell membrane during activity, and
it can be experimentally tested in order to discern how complete themodel is. It currently
seems to bemore complete than theHodgkin-Huxleymodel given that it explainsmany of
the phenomena concomitantwith the action potential better than its counterpart. Armed
with themathematical description of the twomodels, we studied almost a century’s worth
of experiments involving actionpotentials and the aforementionedphenomena; this is the
content of chapter 2.

These phenomena include an increase in the thickness of, and pressure in, the axon.
While the Hodgkin-Huxley model would require such changes to be caused by elec-
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trostriction or by the movement of water molecules attached to the ions, calculations
assuming this is the case do not arrive at the observed values or even at the correct or-
ders of magnitude. In contrast, the Heimburg-Jackson model explains these changes as a
direct result of the membrane phase transition; studies have shown that lipid bilayers in
the ordered phases are thicker than bilayers in the liquid-disordered phase by an amount
consistent with the aforementioned observations in axons.

Other phenomena are opacity, scattering and birefringence changes in the axon,
which further studies have shown are due to the membrane only and not the cytoplasm.
This is consistent with bothmodels, which focus on changes in themembrane properties.
That said, the Hodgkin-Huxley model does not provide an explanation that is more than
guesswork; it provides no mechanism by which the membrane might undergo the struc-
tural changes required to cause such optical effects. The Heimburg-Jackson model, on
the other hand, predicts precisely the type of structural change which would cause these
effects.

Release of heat from the axon has been reported together with the action potential.
Both models offer plausible explanations for this —heat dissipation by the resistors in
the Hodgkin-Huxley model and the latent heat of the phase transition in the Heimburg-
Jackson model— but fall short of the observed release by many orders of magnitude; fur-
thermore, while the qualitative nature of the heat release predicted by each model is dif-
ferent (irreversible in the Hodgkin-Huxley model and fully reversible in the Heimburg-
Jackson model), the qualitative nature of the experimentally detected heat falls precisely
in between (only partially reversible).

Finally, the Heimburg-Jackson model, being a purely thermodynamic model, is fully
consistent with the Meyer-Overton rule, the finding that the potency of an anaesthetic
is proportional to its solubility in lipid. In contrast, the Hodgkin-Huxley model requires
anaesthetics to possess a degree of chemical specificity for ion channel proteins which is
not always observed (for example, xenon is chemically inert, yet it functions as an anaes-
thetic).

From this study came two important results. The first is the conclusion that current
knowledge of the physical mechanism behind action potential propagation is too nebu-
lous to determine the extent to which each model accurately describes this mechanism.
The second is a set of conditions which an imaging technique must have if it is to be non-
invasive, be sensitive enough to resolve a phase transition in a single 4-nm lipid bilayer,
and have a temporal resolution better than 1 ms.

With these conclusions in mind, electrophysiology techniques were learnt with the
hope of being able to conduct an experiment which could clarify the nature of the action
potential, an optical technique called interferometric reflectometry was theoretically de-
veloped and experimentally tested, and the data analysis procedure for stimulated Raman
scattering (SRS) microscopy data was improved to make the technique sensitive to differ-
ent thermodynamic phases in single lipid bilayers. The optical work was done on sup-
ported lipid bilayers, which are an appropriate model to study phase transitions in the cell
membrane without the complications which arise from working with live cells, but the
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aim was to ultimately move to live-cell imaging, as stated before.

The reflectometry theory, described in chapter 4, allows the independent determina-
tion of the thickness and refractive index of a thin layer from the layer’s reflection coeffi-
cient, which includes multiple reflections inside the layer and is thus a complex quantity.
It also takes into account the possibility of multiple layers with different thicknesses and
refractive indices being stacked on each other and the finite numerical aperture of real
microscope optics.

Such thin layers as a lipid bilayer produce a very small signal, however, meaning any
reflectometrymeasurements on single lipid bilayers must have very little noise in order to
have a signal-to-noise ratio high enough to accurately determine the bilayers’ properties.
Two possible strategies to reduce noise were presented: phase filtering and referencing.
However, each brings its own problems. Phase filtering reduces noise at the cost of loss of
information and blurring of the edges of the structures in the sample, and the amount of
filtering which could be done without sacrificing sample information was insufficient to
reduce to the noise enough for accurate measurements. Referencing, on the other hand,
causes an image to contain information from two orthogonally polarised light beams inci-
dent on the sample at different positions, which means that the information correspond-
ing to each polarisation must be separated. Three algorithms—one based on minimising
the cross-correlation of the images, one based on combining the images and then min-
imising via gradient descent the error of a reconstruction of the original images using
the combination, and one which used a genetic algorithm in place of gradient descent—
were employed to attempt to separate the polarisations, but ultimately they were unable
to achieve this; the reconstruction algorithms were successful only with simulated data,
but the noise present in experimental data was too much for separation to be achieved,
while the correlation algorithm was inadequate due to the data being complex.

Ultimately, the height of signal steps at bilayer edges was used to attempt to calculate
the thickness and refractive index of the sample — not as an entire image, but only at
the edges of the lipid bilayers. This yielded results which were 2–3 times too large in
the thickness and slightly too small in the refractive index given what is known about the
properties of a lipid bilayer, indicating that, as before, the noisewas too strong for accurate
measurements. Nevertheless, that the measured thicknesses were of the correct order of
magnitude when the signal was so small is an indication that, while more work must still
be done, interferometric reflectometry is close to the required sensitivity. Not only this,
it was shown that, while the noise affects quantitative measurements, the technique is
sensitive enough to distinguish between liquid-ordered and liquid-disordered domains
— even with the current level of noise, it is capable of reaching sub-nanometre resolution
in the axial direction, though it presently has insufficient accuracy.

SRS, together with our data analysis procedure, was more successful. This procedure,
as well as its evolution throughout this work, is described in chapter 5. By using regions
without lipid to correct for background gradients and singular-value decomposition to re-
duce the noise in the data, we were able tomake the technique sensitive enough to distin-
guish lipid domains fromeachotherwithout any external guidance. By simultaneously ac-
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quiring coherent anti-Stokes Raman scattering images of the samefield of view, it was pos-
sible to correct for the uneven pulse overlap as a function of wave number and ultimately
obtain spectra consistent with the scientific literature. By comparing the domain spectra
obtained with locally guided spectral factorisation with the spectra of pure DOPC and a
mixture of sphingomyelin and cholesterol, it was determined that the lipids were fully
segregated into DOPC liquid-disordered domains and sphingomyelin+cholesterol liquid-
ordered domains, which is also consistent with the literature. Local guidance means that
no external references other than PBS (or water) are necessary to retrieve the correct do-
main spectra.

Nevertheless, our SRS technique presently lacks the temporal resolution required for
action potential observation. The pixel acquisition time employed is precisely the dura-
tion of an action potential, so, even if action potentials were slowed fivefold by cell cooling
and only two spectral pointswere obtained, the temporal resolutionwould be insufficient.
Because the signal from a single lipid bilayer is so low, decreasing the acquisition time suf-
ficiently to Nyquist-sample action potentials while preserving the laser power would re-
duce the signal-to-noise ratio to a point where different thermodynamic phases would be
undistinguishable, and increasing the laser power would risk damage to the cells. How-
ever, itmust be said that a rigorous study of howmuch the acquisition time can be reduced
without losing sensitivity to phase differences and howmuch the power can be increased
without damaging the sample was not performed.

Two cell types were studied electrophysiologically: lobster nerves —which it was
hoped would eventually lead to lobster giant axons, themselves selected for the ease of
handling due to their large size— and mouse hippocampal neurons — selected because
they are mammalian cells (which makes them more relevant to us as humans) and be-
cause they display spontaneous activity. Ultimately, this last trait, spontaneous neural
activity, determined that mouse neurons were to be used going forwards.

Unfortunately, there was insufficient time remaining in the project to conduct all the
experiments we wanted to conduct. Our electrophysiology experiments were limited to
the preliminary stage of learning how to reliably use the equipment andwhich cell culture
conditions resulted in active cells in the case of mouse hippocampal neurons. The optical
and electrophysiological measurement techniques were not combined, although that was
the next planned stage.

Future work will consist of attempting to increase the accuracy of our interferomet-
ric reflectometry setup so it can be used with single bilayers and, ultimately, combining
electrophysiology measurements with single-point reflectometry or two-point SRS mea-
surements on cultured mouse neurons to try to shed more light on the mechanisms un-
derlying neural activity.
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Substituting J = 0 in equation 4.3, we see immediately that the zeros of J occur at
Es =

√EwEg.
Substituting Es =

√EwEg and J = 0 in equation 4.1, rearranging terms and writing <@ψ

as cos(ψ) + @ sin(ψ), we obtain

cos
(
2B;

√
EwEg

)
+ @ sin

(
2B;

√
EwEg

)
= −

√EwEg − Ew
√EwEg + Ew

Eg +
√EwEg

Eg −
√EwEg

= −1,

whereby

; =
(2(− 1)ć
2B√EwEg

with( ∈ N. Thismeans that the zeros occur at the value of ;which is exactly at the centre
of each period of J.

Thus, ; = (2(−1)λ/4√EwEg and Es =
√EwEg are the conditions the layer must have

in order to constitute a perfect antireflective coating for light ofwavelengthλ. Conversely,
having ; = (λ/2Es for any value of Es is, in terms of reflectivity, equivalent to not having
a layer at all.

Let us now recall that there is a value of Es below which Re(J) > 0. To find this value,
we first multiply and divide J in equation 4.1 by the conjugate of the denominator of the
right-hand-term to obtain

J =
2(Eg2 − Es2)(Es2 + Ew2) + 2(Es2 − Ew2)

(
(Eg2 + Es2)cos(ψ) + 2@EgEssin(ψ)

)

(Eg − Es)2(Es − Ew)2 + (Eg + Es)2(Es + Ew)2 + 2(Eg2 − Es2)(Es2 − Ew2)cos(ψ)
,

where ψ = 2B;Es.

199



✐
✐

“NahmadRohenA-PhDthesis” — 2020/2/29 — 5:04 — page 200 — #214 ✐
✐

✐
✐

✐
✐
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The denominator is always positive because it is the product of a non-zero complex
number and its conjugate, so the values of Es for which the real part of the numerator is
negative are exactly those values for which Re(J) < 0. We thus have the condition

cos(2B;Es) < −
(Eg2 − Es2)(Es2 + Ew2)
(Eg2 + Es2)(Es2 − Ew2)

,

which requires

(Eg2 − Es2)(Es2 + Ew2)
(Eg2 + Es2)(Es2 − Ew2)

< 1.

Now, this is a monotonically decreasing function of Es in the range Ew < Es < Eg, as
shown by the fact that

∂

∂Es

(
(Eg2 − Es2)(Es2 + Ew2)
(Eg2 + Es2)(Es2 − Ew2)

)
= −4Es

(Eg2 − Ew2)(Ew2Eg2 + Es4)
(Eg2 + Es2)2(Es2 − Ew2)2

< 0.

Therefore, the value of Es for which

(Eg2 − Es2)(Es2 + Ew2)
(Eg2 + Es2)(Es2 − Ew2)

= 1

is the value of Es below which Re(J) is necessarily non-negative. If we write Es =
√EwEg,

we obtain

(Eg2 − Es2)(Es2 + Ew2)
(Eg2 + Es2)(Es2 − Ew2)

=
EwEg(Eg2 − Ew2)
EwEg(Eg2 − Ew2)

= 1,

so√EwEg is the value we seek (figure A.1), as already suggested by figure 4.2.
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Figure A.1: The effect of Es on the range of arg(J). If Es <
√EwEg (red curve), arg(J) can only take

small values; if Es =
√EwEg (orange curve), arg(J) can take all values between −ć/2 and ć/2; if

Es >
√EwEg (yellow curve), arg(J) can take any value. Here, Ew, Eg anad λ are as in previous figures.
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The model described in section 4.1.1 can be generalised to an arbitrary number of layers,
as already mentioned in chapter 4.

����
� .NF C8P<IJ

If the sample consists of two layers, each with its own thickness and refractive index (fig-
ure A.2), the situation becomes more complicated. Let the angle of incidence be denoted
by θ, as before, and let θ1 and θ2 be the transmission angles in the first and second layers,
respectively, given by Snell’s law. Let us further denote the properties of the materials by
;1, E1, ;2 and E2. We now have the following possibilities:

The light may be reflected at the interface between the glass and the first material and
never enter the sample, as before. This contributes a term J0 = Ig1.

The transmitted light may enter the first material and then be reflected any number
ℓ + 1 of times at the interface between the two materials and ℓ times at the interface
between the first material and the glass before finally being transmitted back through the
glass. This contributes a term similar to the one in the 1-layer case:

J1 = Kg1I12K1g<
2@B ;1E1

cos(θ1)
∞∑

ℓ=0

I1gℓI12ℓ<
2ℓ@B ;1E1

cos(θ1) .

Finally, the light may be transmitted through the interface between the twomaterials
and enter the second layer (after any number of reflections within the first layer). This
light can be either transmitted into the water, in which case it does not contribute to the
reflection coefficient, or reflected back into the second layer and then transmitted back
through the first layer and into the glass (after any number of reflections within either
material or within both materials). Since we have different kinds of reflections, there are
multiple ways of ordering them, so a multiplicity factor must be included in the two-layer
term. If we have A reflections within the first bilayer, ℓ reflections within both bilayers
andD reflections within the second bilayer, there are (A+ ℓ+D)!/A!ℓ!D! different ways of

nw n1
n2

ng

Figure A.2: Reflection from a thin sample consisting of two layers of different materials.
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ordering them. The term contributed by this case is then

J2 = Kg1K12I2wK21K1g<
2@B

(
;1E1
cos(θ1)

+
;2E2
cos(θ2)

)

×

×
∞∑

A=0

∞∑

ℓ=0

∞∑

D=0

(A+ ℓ+D)!

A!ℓ!D!
I1gAI12A<

2A@B ;1E1
cos(θ1) ×

× I1gℓK12ℓI2wℓK21ℓ<
2ℓ@B

(
;1E1
cos(θ1)

+
;2E2
cos(θ2)

)

I21DI2wD<
2D@B ;2E2

cos(θ2) .

The total reflection coefficient is, of course, J = J0 + J1 + J2, which simplifies to

J = Ig1 +
Kg1I12K1g<

2@B ;1E1
cos(θ1)

1− I1gI12<
2@B ;1E1

cos(θ1)

+
Kg1K12I2wK21K1g<

2@B
(

;1E1
cos(θ1)

+
;2E2
cos(θ2)

)

1− I1gI12<
2@B ;1E1

cos(θ1) − I1gK12I2wK21<
2@B

(
;1E1
cos(θ1)

+
;2E2
cos(θ2)

)

− I21I2w<
2@B ;2E2

cos(θ2)

. (A.1)

As a sanity check, we may set E2 = E1 (which will turn the Fresnel coefficients for the
interface between the two layers into I12 = I21 = 0 and K12 = K21 = 1). This yields

J = Ig1 +
Kg1I1wK1g<

2@B (;1+;2)E1
cos(θ1)

1− I1gI1w<
2@B (;1+;2)E1

cos(θ1)

,

which (except for the cosines, which arise fromnon-normal incidence) is identical to equa-
tion 4.1 with ; = ;1 + ;2 and Es = E1, as is expected. Similarly, substituting E2 = Ew
results in I2w = 0 and thus

J = Ig1 +
Kg1I1wK1g<

2@B ;1E1
cos(θ1)

1− I1gI1w<
2@B ;1E1

cos(θ1)

,

which is again equation 4.1 with ; = ;1 and Es = E1. Notably, substituting ;2 = 0 does
not reduce equation A.1 to the 1-layer case; this is because I1w (which would be the new
reflection coefficient at the top of the first layer) is not necessarily equal to K12I2wK21.

In the single-reflection approximation, equation A.1 becomes

J ≈ Ig1 + Kg1I12K1g<
2@B ;1E1

cos(θ1) + Kg1K12I2wK21K1g<
2@B

(
;1E1
cos(θ1)

+
;2E2
cos(θ2)

)

.
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For( layerswith thicknesses ;1, . . . , ;( and refractive indices E1, . . . , E(, wemay separate
the problem into(+1 partial reflection coefficients J0, . . . , J(, each taking onemore layer
than the previous one, as we did for the 1-layer case and the 2-layer case. Wemay obtain a
generalisable expression if we assign the index 0 to the glass slide and and the index(+1
to the water.

We first define the operator Ξ, which we will use to denote nested sums, as follows:

H,+

Ξ
ℓ,D,'

≡
'∑

ℓH,H=D

'∑

ℓH,H+1=D

· · ·
'∑

ℓH,+=D

'∑

ℓH+1,H+1=D

· · ·
'∑

ℓH+1,+=D

· · ·
'∑

ℓ+,+=D

.

Here, the first index of ℓ runs from H to + and the second one runs from the first one’s
value to +, so there are (+− H+ 1)(+− H+ 2)/2 sums. For example, ifD = 0,' = ∞,
H = 1 and + = 3, then, for any function =,

1,3

Ξ
ℓ,0,∞

=({ℓ}) =
∞∑

ℓ1,1=0

∞∑

ℓ1,2=0

∞∑

ℓ1,3=0

∞∑

ℓ2,2=0

∞∑

ℓ2,3=0

∞∑

ℓ3,3=0

=(ℓ1,1, ℓ1,2, ℓ1,3, ℓ2,2, ℓ2,3, ℓ3,3).

Now that we have defined the nested-sum operator, we may calculate the reflection
coefficient of a collection of ( parallel layers.

The A-th partial reflection coefficient is the combination of all possible reflections
within each of the first A layers, each pair of adjacent layers (with the corresponding trans-
mission coefficients) within the first A layers, and so on, taking all sets of ℓ adjacent layers
with 1 " ℓ " A and remembering to write the multiplicity factor for each combination of
reflections:

JA = IA,A+1

⎛

⎝
A∏

ℓ=1

Kℓ−1,ℓKℓ,ℓ−1

⎞

⎠<
2@B

A∑
ℓ=1

;ℓEℓ
cos(θℓ) ×

×
1,A

Ξ
D,0,∞

⎛

⎜⎜⎜⎜⎝

(
A∑

G=1

A∑
H=G

DG,H

)
!

A∏
G=1

A∏
H=G

DG,H!

A∏

G=1

A∏

H=G

IG,G−1DG,H IH,H+1DG,H<
2DG,H@B

H∑
ℓ=G

;ℓEℓ
cos(θℓ)×

×
H∏

ℓ=G+1

Kℓ−1,ℓDG,H Kℓ,ℓ−1DG,H

⎞

⎟⎟⎟⎟⎠
.



✐
✐

“NahmadRohenA-PhDthesis” — 2020/2/29 — 5:04 — page 204 — #218 ✐
✐

✐
✐

✐
✐

204 A. Additional reflectometry theory

The total reflection coefficient is thus

J =
(∑

A=0

IA,A+1

⎛

⎝
A∏

ℓ=1

Kℓ−1,ℓKℓ,ℓ−1

⎞

⎠<
2@B

A∑
ℓ=1

;ℓEℓ
cos(θℓ) ×

×
1,A

Ξ
D,0,∞

⎛

⎜⎜⎜⎜⎝

(
A∑

G=1

A∑
H=G

DG,H

)
!

A∏
G=1

A∏
H=G

DG,H!

A∏

G=1

A∏

H=G

IG,G−1DG,H IH,H+1DG,H<
2DG,H@B

H∑
ℓ=G

;ℓEℓ
cos(θℓ)×

×
H∏

ℓ=G+1

Kℓ−1,ℓDG,H Kℓ,ℓ−1DG,H

⎞

⎟⎟⎟⎟⎠
(A.2)

with the understanding that, if H > +, then

+∑

ℓ=H

= = 0,

+∏

ℓ=H

= = 1,

H,+

Ξ
ℓ,D,'

= = 1

for any function =.
Substitution of ( = 0, ( = 1 or ( = 2 into equation A.2 turns J into the glass-water

reflection coefficient (Igw), the 1-layer reflection coefficient (equation 4.1) or the 2-layer
reflection coefficient (equation A.1), respectively.

In the single-reflection approximation, equation A.2 becomes

J ≈
(∑

A=0

IA,A+1

⎛

⎝
A∏

ℓ=1

Kℓ−1,ℓKℓ,ℓ−1

⎞

⎠ <
2@B

A∑
ℓ=1

;ℓEℓ
cos(θℓ) .

Again, setting ( = 0, ( = 1 or ( = 2 turns this into Igw or the 1- or 2-layer single-
reflection approximations, respectively.
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Reproduced below is the code for the correlation programme. It was written and tested
on Mathematica 10.

(* clear all variables *)

Clear[Evaluate[Context[]<>"*"]];

(* set export directory to notebook directory *)

SetDirectory[NotebookDirectory[]];

(* read data from files *)

(* assumes data is contained in six files: real part of D_j in files

called Djx, imaginary part in Djy, amplitude in Djr, where j=1 or

j=2 *)

D1xf=SystemDialogInput["FileOpen"];

D1x=ReadList[D1xf,Number,RecordLists->True];

D1yf=SystemDialogInput["FileOpen",DirectoryName@D1xf];

D1y=ReadList[D1yf,Number,RecordLists->True];

D1rf=SystemDialogInput["FileOpen",DirectoryName@D1yf];

D1r=ReadList[D1rf,Number,RecordLists->True];

D2xf=SystemDialogInput["FileOpen",DirectoryName@D1rf];

D2x=ReadList[D2xf,Number,RecordLists->True];

D2yf=SystemDialogInput["FileOpen",DirectoryName@D2xf];

D2y=ReadList[D2yf,Number,RecordLists->True];

D2rf=SystemDialogInput["FileOpen",DirectoryName@D2yf];

D2r=ReadList[D2rf,Number,RecordLists->True];

205



✐
✐

“NahmadRohenA-PhDthesis” — 2020/2/29 — 5:04 — page 206 — #220 ✐
✐

✐
✐

✐
✐

206 B. Correlation algorithm for interferometric reflectometry

(* rescale Re & Im data using amplitude *)

x=Sqrt[D1r^2/(D1x^2+D1y^2)]D1x;

y=Sqrt[D1r^2/(D1x^2+D1y^2)]D1y;

D1x=x;

D1y=y;

Clear[x,y];

D1=D1x+I*D1y;

x=Sqrt[D2r^2/(D2x^2+D2y^2)]D2x;

y=Sqrt[D2r^2/(D2x^2+D2y^2)]D2y;

D2x=x;

D2y=y;

Clear[x,y];

D2=D2x+I*D2y;

(* calculate data amplitude & phase *)

D1r=Abs[D1];

D1p=Arg[D1];

D2r=Abs[D2];

D2p=Arg[D2];

(* determine image dimensions *)

rows=Length[D1];

cols=Length[Transpose[D1]];

(* apply high-pass filter to images *)

sigma=(rows+cols)/10; (* this value was found to be appropriate for the

tested data *)

D1hpf=InverseFourier[Fourier[D1]

*ParallelTable[1-Exp[-(x^2+y^2)/(2sigma^2)],

{y,1,rows},{x,1,cols}]

*ParallelTable[1-Exp[-((x-cols)^2+y^2)/(2sigma^2)],

{y,1,rows},{x,1,cols}]

*ParallelTable[1-Exp[-(x^2+(y-rows)^2)/(2sigma^2)],

{y,1,rows},{x,1,cols}]

*ParallelTable[1-Exp[-((x-cols)^2+(y-cols)^2)

/(2sigma^2)],

{y,1,rows},{x,1,cols}]];

D2hpf=InverseFourier[Fourier[D2]

*ParallelTable[1-Exp[-(x^2+y^2)/(2sigma^2)],

{y,1,rows},{x,1,cols}]

*ParallelTable[1-Exp[-((x-cols)^2+y^2)/(2sigma^2)],

{y,1,rows},{x,1,cols}]
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*ParallelTable[1-Exp[-(x^2+(y-rows)^2)/(2sigma^2)],

{y,1,rows},{x,1,cols}]

*ParallelTable[1-Exp[-((x-cols)^2+(y-cols)^2)

/(2sigma^2)],

{y,1,rows},{x,1,cols}]];

(* correlation function *)

(* calculates normalised correlation of d1 & d2 at a displacement

(cn,rn) *)

corr[d1_,d2_,rn_,cn_]:=Flatten[Conjugate[d1[[Max[1,1+rn];;

Min[rows,rows+rn],

Max[1,1+cn];;

Min[cols,cols+cn]]]

-Mean[Flatten[d1]]]]

.Flatten[d2[[Max[1,1-rn];;

Min[rows,rows-rn],

Max[1,1-cn];;

Min[cols,cols-cn]]]

-Mean[Flatten[d2]]]

/((rows-Abs[rn])*(cols-Abs[cn])

*Variance[Flatten[d1]]*Variance[Flatten[d2]]);

(* partition parameters *)

wstart=0.5;

wend=2;

astart=0;

aend=2Pi;

steps=100;

wstep=(wend-wstart)/steps;

astep=(aend-astart)/steps;

(* partition the (w1,a1,w2,a2,w3,a3) space & calculate the correlation at

each point in the partition *)

partition=ParallelTable[w1=wstart+wstep*x1;

a1=astart+astep*y1;

c1=w1*Exp[I*a1];

Clear[w1,a1];

w2=wstart+wstep*x2;

a2=astart+astep*y2;

c2=w2*Exp[I*a2];

Clear[w2,a2];

w3=wstart+wstep*x3;
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208 B. Correlation algorithm for interferometric reflectometry

a3=astart+astep*y3;

c3=w3*Exp[I*a3];

Clear[w3,a3];

Abs[corr[D1+c1*D2,c3(c2*D1+D2),0,0]],

{x1,0,steps},{y1,0,steps},{x2,0,steps},

{y2,0,steps},{x3,0,steps},{y3,0,steps}];

(* interpolate calculated values *)

index=Table[{j1,j2,j3,j4,j5,j6},

{j1,1,steps+1},{j2,1,steps+1},{j3,1,steps+1},

{j4,1,steps+1},{j5,1,steps+1},{j6,1,steps+1}];

intcorr=Interpolation[Flatten[Table[{index[[j1,j2,j3,j4,j5,j6]],

partition[[j1,j2,j3,j4,j5,j6]]},

{j1,1,steps+1},{j2,1,steps+1},

{j3,1,steps+1},{j4,1,steps+1},

{j5,1,steps+1},{j6,1,steps+1}],3],

Method->"Spline",InterpolationOrder->3];

min=FindMinimum[{intcorr[w1,a1,w2,a2,w3,a3],

wstart<w1<wend&&wstart<w2<wend&&wstart<w3<wend

&&0<=a1<=2Pi&&0<=a2<=2Pi&&0<=a3<=2Pi},

{w1,0.5},{a1,0},{w2,0.5},{a2,0},{w3,0.5},{a3,0}];

(* perform linear combination with optimal parameters *)

w1=w1/.min[[2]];

a1=a1/.min[[2]];

c1=w1*Exp[I*a1];

w2=w2/.min[[2]];

a2=a2/.min[[2]];

c2=w2*Exp[I*a2];

w3=w3/.min[[2]];

a3=a3/.min[[2]];

c3=w3*Exp[I*a3];

A1=D1+c1*D2;

A2=c3(c2*D1+D2);

(* display separated images *)

Print[{ListDensityPlot[Abs[A1],

ColorFunction->"Rainbow",

FrameLabel->{Row[{x," (px)"}],Row[{y," (px)"}]},

PlotLabel->Style[Row[{"|","A"Subscript[1],"|"}],

Large],

PlotRange->Full,PlotRangePadding->0,
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LabelStyle->FontFamily->"Calluna",

PlotLegends->Placed[Automatic,Right],

ImageSize->Small,AspectRatio->rows/cols],

ListDensityPlot[Arg[A1],

ColorFunction->"Rainbow",

FrameLabel->{Row[{x," (px)"}],Row[{y," (px)"}]},

PlotLabel->Style[Row[{"arg(","A"Subscript[1],

")"}],

Large],

PlotRange->Full,PlotRangePadding->0,

LabelStyle->FontFamily->"Calluna",

PlotLegends->Placed[Automatic,Right],

ImageSize->Small,AspectRatio->rows/cols],

ListDensityPlot[Abs[A2],

ColorFunction->"Rainbow",

FrameLabel->{Row[{x," (px)"}],Row[{y," (px)"}]},

PlotLabel->Style[Row[{"|","A"Subscript[2],"|"}],

Large],

PlotRange->Full,PlotRangePadding->0,

LabelStyle->FontFamily->"Calluna",

PlotLegends->Placed[Automatic,Right],

ImageSize->Small,AspectRatio->rows/cols],

ListDensityPlot[Arg[A2],

ColorFunction->"Rainbow",

FrameLabel->{Row[{x," (px)"}],Row[{y," (px)"}]},

PlotLabel->Style[Row[{"arg(","A"Subscript[2],

")"}],

Large],

PlotRange->Full,PlotRangePadding->0,

LabelStyle->FontFamily->"Calluna",

PlotLegends->Placed[Automatic,Right],

ImageSize->Small,AspectRatio->rows/cols]}];

���� ,<JLCKJ N@K? J@DLC8K<; ;8K8

Figure B.1 shows the amplitude and phase of the reflection coefficient J of a simulated
sample consisting of a single 4-nm layer of material with refractive index 1.44 for each of
the two orthogonal linear polarisations; the spatial shift, or shear, simulates the effect of
a Wollaston prism on the incident beam. The simulated data is noiseless, and the values
were calculated assuming normal incidence (equation 4.1) and the already familiar param-
eters used in previous examples (Ew = 1.333, Eg = 1.518, λ = 550 nm). Figure B.2 shows
what would be detected in this case assuming perfect detectors and assuming the beam is
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circularly polarised before reaching theWollaston prism; at each position I⃗, the simulated
data shown (D1 and D2) was calculated as

D1(⃗I) =
JH(⃗I)√
2

+ @
JV(⃗I)√
2
,

D2(⃗I) = @
JH(⃗I)√
2

+
JV(⃗I)√
2
,

where JA(⃗I) is the reflection coefficient of the sample at I⃗ (about 0.6466+0.003595@ if there
is part of the layer at I⃗ and Igw = 0.06489 otherwise) for polarisation A and it is assumed
that the images on the top row of figure B.1 correspond to the H⃗ polarisation and those on
the bottomrowcorrespond to the V⃗ polarisation. By construction, the linear-combination
parameters we expect to find using the correlation method are :1 = :2 = ±@ and :3 = 1,
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Figure B.1: Simulated amplitude (left) and phase (right) of the reflection coefficient of 4-nm sample
with refractive index 1.44 as would be seen by the co- (top) and cross-polarised (bottom) compo-
nents of a probe beam after passing through a Wollaston prism. The shear induced by the hypo-
thetical Wollaston prism is 6 pixels in the horizontal direction. No noise has been added to this
particular simulation.
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since

D1 − @D2 =
JH + @ JV√

2
− @

@ JH + JV√
2

=
√
2 JH,

−@D1 +D2 = −@
JH + @ JV√

2
+

@ JH + JV√
2

=
√
2 JV

and

D1 + @D2 =
JH + @ JV√

2
+ @

@ JH + JV√
2

=
√
2@ JV,

@D1 +D2 = @
JH + @ JV√

2
+

@ JH + JV√
2

=
√
2@ JH

(recall that obtaining a multiple of the original images is acceptable).
In this case, the high-pass-filtered data (figure B.3) was calculated as

(DA)f = F−1
[
1− <−

ξ2+η2

2σ2 F [DA]

]

with σ = 0.02 px−1.
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Figure B.2: Simulated amplitude (left) and phase (right) of the signal that would be detected by the
interferometric reflectometry setup, denoted by DA and calculated as linear combinations of the
data shown on figure B.1.
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Figure B.4 shows the correlation of the simulated (D1)f and (D2)f, given by equa-
tion 4.6, as a function of the displacement I⃗ = (IO, IP) for IO, IP ∈ [−15 px, 15 px]; the
projections are the same as those in section 4.2.2. A small peak is visible at I⃗ = (0, 0), and
very strong peaks are visible at (±6 px, 0), which corresponds to the shear.

It should be noted at this point that maximising either of the lateral correlation peaks
would be an equally valid approach. We have chosen to minimise the correlation peak
at (0, 0) because, although the calculation of the correlation is somewhat more compu-
tationally expensive (because the overlap area is the entire image and is thus larger), it is
simpler to code and it does not require finding the shear (which for experimental data is
not necessarily parallel to one of the scan axes and may even be a fractional number of
pixels) and shifting one of the images.

Figure B.5 shows projections of the correlation of the (AA)f (calculated using equa-
tions 4.5 with the high-pass-filtered data) setting :3 = 1. The correlation as a function
of any two variables in the 4-dimensional space that results from fixing :3 is qualitatively
similar to that of experimental data (figure 4.17), but the range (the difference between
the correlation’s maximum andminimum values) is reduced in the experimental data due
to noise; here it is much greater.

Since the data is complex, the magnitude of the product of two images with high spa-
tial correspondence of the structures they show is not necessarily greater than that of two
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Figure B.3: Amplitude (left) and phase (right) of the simulated data fromfigure B.2 after a high-pass
filter has been applied to the data.
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images with less spatial correspondence, as was seen in the correlation graphs for simu-
lated data in section 4.2.2. Additionally, noise in the data can translate into noise in the
correlation.
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Figure B.4: Correlation of (D1)f and (D2)f from figure B.3 for different values of the displacement
I⃗. There are two peaks at positions symmetric about the origin; said positions correspond to the
shear introduced by the hypothetical Wollaston prism in the simulation. There is also a much
weaker peak at the origin.
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Figure B.5: Several 2-dimensional projections of the correlation at zero displacement of the sim-
ulated (A1)f and (A2)f for :3 = 1. In (|:1|, arg(:1) , |:2|, arg(:2) , |:3|, arg(:3)) space, the projections
are as follows: (

|:1|, arg(:1) , 1,
3ć
2
, 1, 0
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(1, arg(:1) , 1, arg(:2) , 1, 0)

(
1,
3ć
2
, |:2|, arg(:2) , 1, 0

) (
|:1|,

3ć
2
, |:2|,

3ć
2
, 1, 0

)

The projections look qualitatively similar to the same projections for experimental data, but the
correlation range is enlarged here. Notably, there is nominimum at (1, 3ć/2, 1, 3ć/2, 1, 0), which
corresponds to (:1, :2, :3) = (−@,−@, 1), one of the points at which the polarisations would be
perfectly separated.
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Reproduced below is the code for the comparison programme using a gradient descent
algorithm. It was written and tested on MATLAB 2017b and tested on MATLAB 2018b.
The code includes a section for the generation of test data because it was tested more
extensively with simulated data than with experimental data.

% global variables

global rows cols shearx sheary sigmar sigmap D1 D2 delta

% build test data

rows=40;

cols=40;

s=0.06466+0.003595i; % one lipid bilayer

w=0.06489; % no layer

I1=w*ones(rows,cols);

I2=I1;

shearx=6;

sheary=0;

num=randi([1,3])+randi([1,3])+randi([1,3])+randi([1,3])+randi([1,3]);

sizeavg=randi([1,3])+randi([1,3]);

size=random('Normal',sizeavg,0.5,1,num);

posx=randi([1,cols],1,num);

posy=randi([1,rows],1,num);

for m=1:num

for j=1:rows

for l=1:cols

if abs((j-posy(m)+sheary/2)^2+(l-posx(m)+shearx/2)^2) ...

215
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<=size(m)^2

I1(j,l)=s;

end

if abs((j-posy(m)-sheary/2)^2+(l-posx(m)-shearx/2)^2) ...

<=size(m)^2

I2(j,l)=s;

end

end

end

end

% add noise to data

amp=2000*imag(s); % 2,000 approximately simulates experimentally

% observed noise level

sigma=imag(s);

cutoff=1/10; % this value has been found to be appropriate for the

% tested data

noise=amp*random('Normal',0,sigma,1,rows*cols);

noise=fft(noise);

for m=1:rows*cols

noise(m)=exp(-((m/(2*rows*cols*cutoff)).^2))*noise(m);

end

noise=abs(ifft(noise));

noise=transpose(reshape(noise,cols,rows));

I1=abs(I1).*exp(1i*(atan2(imag(I1),real(I1))+noise));

I2=abs(I2).*exp(1i*(atan2(imag(I2),real(I2))+noise));

% build "measurements" (D1 & D2) as linear combinations of I1 & I2

a1=1/sqrt(2);

a2=1i/sqrt(2);

a3=1i/sqrt(2);

a4=1/sqrt(2);

D1=a1*I1+a2*I2;

D2=a3*I1+a4*I2;

figD=figure('pos',[1,535,560,420]);

subplot(2,2,1)

image(abs(D1),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','data','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('|D_{1}|')
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subplot(2,2,2)

image(atan2(imag(D1),real(D1)),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','data','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('arg(D_{1})')

subplot(2,2,3)

image(abs(D2),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','data','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('|D_{2}|')

subplot(2,2,4)

image(atan2(imag(D2),real(D2)),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','data','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('arg(D_{2})')

% parameters

sigmar=1;

sigmap=1;

delta=0.001;

params(1,:)=[random('Uniform',0.8,1.2), ...

random('Uniform',pi/2-0.2,pi/2+0.2), ...

random('Uniform',0.8,1.2), ...

random('Uniform',pi/2-0.2,pi/2+0.2), ...

random('Uniform',0.8,1.2), ...

random('Uniform',-0.2,0.2)];

gamma=1*10^0;

alpha=1;

% iteratively determine c1, c2 & c3

errorsiter=0;

disp(' ');

tic;

disp('programme start');

disp(' ');

p=1;
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while alpha>10^-9

params=[params;[0,0,0,0,0,0]];

errorsiter(p)=seperror(params(p,1),params(p,2),params(p,3), ...

params(p,4),params(p,5),params(p,6));

if p>=2

gamma=[gamma,0];

gamma(p)=min(gamma(p-1), ...

abs((params(p,:)-params(p-1,:)) ...

*transpose(sepgrad(params(p,1),params(p,2), ...

params(p,3),params(p,4), ...

params(p,5),params(p,6)) ...

-sepgrad(params(p-1,1), ...

params(p-1,2), ...

params(p-1,3), ...

params(p-1,4), ...

params(p-1,5), ...

params(p-1,6))))

/(norm(sepgrad(params(p,1),params(p,2), ...

params(p,3),params(p,4), ...

params(p,5),params(p,6)) ...

-sepgrad(params(p-1,1),params(p-1,2), ...

params(p-1,3),params(p-1,4), ...

params(p-1,5),params(p-1,6)))));

end

params(p+1,:)=params(p,:)-alpha*gamma(p) ...

*sepgrad(params(p,1),params(p,2), ...

params(p,3),params(p,4), ...

params(p,5),params(p,6));

while seperror(params(p+1,1),params(p+1,2),params(p+1,3), ...

params(p+1,4),params(p+1,5),params(p+1,6)) ...

>seperror(params(p,1),params(p,2),params(p,3), ...

params(p,4),params(p,5),params(p,6))

alpha=alpha/sqrt(2);

params(p+1,:)=params(p,:)-alpha*gamma(p) ...

*sepgrad(params(p,1),params(p,2),params(p,3), ...

params(p,4),params(p,5),params(p,6));

end

alpha=alpha*sqrt(2);

X=['iteration ',num2str(p-1),': error=',num2str(errorsiter(p))];

disp(X);

p=p+1;

end
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% display results

disp(' ');

X=['after ',num2str(p-2),' iterations, the error has gone from ', ...

num2str(errorsiter(1)),' to ',num2str(errorsiter(p-1))];

disp(X);

disp(' ');

disp('initial parameters:');

disp(params(1,:));

disp('final parameters:');

disp(params(p,:));

x=0:p-2;

c1=params(p,1)*exp(1i*params(p,2));

c2=params(p,3)*exp(1i*params(p,4));

c3=params(p,5)*exp(1i*params(p,6));

A1=D1+c1.*D2;

A2=c3.*(c2.*D1+D2);

figA=figure('pos',[1,1,891,420]);

subplot(2,3,1)

plot(x,log10(errorsiter(:)),'LineWidth',1,'Color',[1,0,0]), ...

set(gcf,'name','results','numbertitle','off'), ...

xlabel('iteration'),ylabel('log_{10}(error)')

title('error evolution')

subplot(2,3,4)

plot([x,0],params(1:p,1),'LineWidth',1,'Color',[1,0,0]), ...

set(gcf,'name','results','numbertitle','off'), ...

xlabel('iteration'),ylabel('')

hold on

plot([x,0],params(1:p,2),'LineWidth',1,'Color',[1,.6,0]), ...

set(gcf,'name','results','numbertitle','off'), ...

xlabel('iteration'),ylabel('')

plot([x,0],params(1:p,3),'LineWidth',1,'Color',[.9,.8,0]), ...

set(gcf,'name','results','numbertitle','off'), ...

xlabel('iteration'),ylabel('')

plot([x,0],params(1:p,4),'LineWidth',1,'Color',[0,.8,0]), ...

set(gcf,'name','results','numbertitle','off'), ...

xlabel('iteration'),ylabel('')

plot([x,0],params(1:p,5),'LineWidth',1,'Color',[.2,.2,1]), ...

set(gcf,'name','results','numbertitle','off'), ...

xlabel('iteration'),ylabel('')

plot([x,0],params(1:p,6),'LineWidth',1,'Color',[.7,.3,.7]), ...

set(gcf,'name','results','numbertitle','off'), ...
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xlabel('iteration'),ylabel('')

hold off

legend('\it{w}_{1}','\theta_{1}','\it{w}_{2}', ...

'\theta_{2}','\it{w}_{3}','\theta_{3}')

title('parameter evolution')

subplot(2,3,2)

image(abs(A1),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','results','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('|A_{1}|')

subplot(2,3,3)

image(atan2(imag(A1),real(A1)),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','results','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('arg(A_{1})')

subplot(2,3,5)

image(abs(A2),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','results','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('|A_{2}|')

subplot(2,3,6)

image(atan2(imag(A2),real(A2)),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','results','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('arg(A_{2})')

toc;

% export data

dlmwrite('params.txt',params(1:p,:),'delimiter',' ');

dlmwrite('error.txt',errorsiter,'delimiter',' ');

The codemakes use of custom-written functions called seperror and sepgrad for the cal-
culation of the error and the gradient descent algorithm, respectively. These are repro-
duced below.
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function sgrad=sepgrad(w1,q1,w2,q2,w3,q3)

global rows cols shearx sheary sigmar sigmap D1 D2 delta

sgrad=[seperror(w1+delta/2,q1,w2,q2,w3,q3) ...

-seperror(w1-delta/2,q1,w2,q2,w3,q3), ...

seperror(w1,q1+delta/2,w2,q2,w3,q3) ...

-seperror(w1,q1-delta/2,w2,q2,w3,q3), ...

seperror(w1,q1,w2+delta/2,q2,w3,q3) ...

-seperror(w1,q1,w2-delta/2,q2,w3,q3), ...

seperror(w1,q1,w2,q2+delta/2,w3,q3) ...

-seperror(w1,q1,w2,q2-delta/2,w3,q3), ...

seperror(w1,q1,w2,q2,w3+delta/2,q3) ...

-seperror(w1,q1,w2,q2,w3-delta/2,q3), ...

seperror(w1,q1,w2,q2,w3,q3+delta/2) ...

-seperror(w1,q1,w2,q2,w3,q3-delta/2)];

end

function serror=seperror(w1,q1,w2,q2,w3,q3)

global rows cols shearx sheary sigmar sigmap D1 D2 delta

c1=w1*exp(1i*q1);

c2=w2*exp(1i*q2);

c3=w3*exp(1i*q3);

A1=D1+c1.*D2;

A2=c3.*(c2.*D1+D2);

A=zeros(rows,cols);

A(1+abs(sheary)/2:rows-abs(sheary)/2, ...

1+abs(shearx)/2:cols-abs(shearx)/2) ...

=(A1(1+abs(sheary)/2+sheary/2:rows-abs(sheary)/2+sheary/2, ...

1+abs(shearx)/2+shearx/2:cols-abs(shearx)/2+shearx/2) ...

+A2(1+abs(sheary)/2-sheary/2:rows-abs(sheary)/2-sheary/2, ...

1+abs(shearx)/2-shearx/2:cols-abs(shearx)/2-shearx/2))/2;

D1rec=zeros(rows,cols);

D2rec=D1rec;

D1rec(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx)) ...

=(c3*A(1+abs(sheary)-sheary/2:rows-abs(sheary)-sheary/2, ...

1+abs(shearx)-shearx/2:cols-abs(shearx)-shearx/2) ...

-c1*A(1+abs(sheary)+sheary/2:rows-abs(sheary)+sheary/2, ...

1+abs(shearx)+shearx/2:cols-abs(shearx)+shearx/2)) ...

/((1-c1*c2)*c3);

D2rec(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx)) ...

=(A(1+abs(sheary)+sheary/2:rows-abs(sheary)+sheary/2, ...
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1+abs(shearx)+shearx/2:cols-abs(shearx)+shearx/2) ...

-c2*c3*A(1+abs(sheary)-sheary/2:rows-abs(sheary)-sheary/2, ...

1+abs(shearx)-shearx/2 ...

:cols-abs(shearx)-shearx/2))/((1-c1*c2)*c3);

D1crop=D1(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx));

D1reccrop=D1rec(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx));

D2crop=D2(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx));

D2reccrop=D2rec(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx));

error1=log(D1crop./D1reccrop);

error2=log(D2crop./D2reccrop);

serror=sum(sum(((real(error1)).^2+(real(error2)).^2)/sigmar

+((imag(error1)).^2+(imag(error2)).^2)/sigmap));

end
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Figure C.1: Simulated amplitude (left) and phase (right) of the co- (top) and cross-polarised (bot-
tom) components of the reflectometry signal that would be produced by another sample with the
same characteristics as in appendix B. The shear is horizontal and 6 pixels, as before.
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Figure C.1 shows the simulated signal that would be generated by a sample with the same
characteristics as the one in the correlation example. As before, the polarisations are
mixed, simulating what the Wollaston prism would do; again the combination is

D1(⃗I) =
JH(⃗I)√
2

+ @
JV(⃗I)√
2
,

D2(⃗I) = @
JH(⃗I)√
2

+
JV(⃗I)√
2
,

so the coefficients we seek are :1 = :2 = ±@ and :3 = 1.
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Figure C.2: Several 2-dimensional projections of the correlation at zero displacement of the sim-
ulated (A1)f and (A2)f for :3 = 1. In (|:1|, arg(:1) , |:2|, arg(:2) , |:3|, arg(:3)) space, the projections
are as follows: (

|:1|, arg(:1) , 1,
3ć
2
, 1, 0

)
(1, arg(:1) , 1, arg(:2) , 1, 0)

(
1,
3ć
2
, |:2|, arg(:2) , 1, 0

) (
|:1|,

3ć
2
, |:2|,

3ć
2
, 1, 0

)

This time, there does appear to be a minimum at (1, 3ć/2, 1, 3ć/2, 1, 0), which corresponds to
(:1, :2, :3) = (−@,−@, 1), the point at which the polarisations would be perfectly separated.
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Figure C.2 shows several projections of the error E as a function of the :A. The projec-
tions are the same as those shown in figure B.5. It is interesting to note that the structures
displayed by E are similar to those displayed by (A1)f ⋆ (A2)f. This time, however, there
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Figure C.3: Evolution of the error E (top) and the parameters (centre and bottom) in four different
runs with the same simulated data. The starting points were random; in runs 1 and 2 the starting
|:A| were in the range [0.8, 1.2] and the starting arg

(
:A
)
were in the range [ć/2 − 0.2, ć/2 + 0.2];

in runs 3 and 4, the starting |:A| were in the range [0, 2] and the starting arg
(
:A
)
could take any

value between 0 and 2ć. In runs 1 and 2, especially the latter, the algorithm reached a point close
enough to the global minimum at (:1, :2, :3) = (@, @, 1) for the error to be extremely small and for
separation to be nearly perfect (see figures C.4 and C.5). In runs 3 and 4, it failed to reach a low-
error point after 50,000 iterations. The black dashed lines in the centre and bottom graphs mark
the values 1, ć/2 and 3ć/2.
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does appear to be aminimum at (−@,−@, 1), although it is impossible to be certain because
E is a function of 6 variables and cannot be visualised in 2 dimensions.

Figure C.3 shows the results of four runs of the gradient descent algorithm on the
same data, the one shown in figure C.1. The first two runs had random starting points
(:1, :2, :3)0 such that |:A| ∈ [0.8, 1.2] and arg

(
:A
)
∈ [ć/2− 0.2,ć/2+ 0.2] for all A; in these

two runs, the algorithm reached the perfect-separation point (@, @, 1) within acceptable
error after some 25,000 iterations. The third and fourth runs had random starting points
in a much larger region: |:A| ∈ [0, 2] and arg

(
:A
)
∈ [0, 2ć] for all A; in both of them, the

algorithm failed to converge after 50,000 iterations, although, left to run longer, it would
have eventually found aminimum, but likely not the global minimum, judging by the fact
that |:1| and |:2| were moving in the wrong direction in both runs. Letting the algorithm
run for 400,000 iterations using the extended region for the possible starting point did not
result in convergence; in one instance, for example, the difference between the amplitude
of the residual copies of the structures and the amplitude of the no-layer regionwas about
15% of the no-layer amplitude.
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Figure C.4: Final result of the first run shown in figure C.3: amplitude (left) and phase (right) of the
AA calculated using the final parameters of the run with equations 4.5. |A1| (as well as arg(A1) to a
lesser extent) shows imperfect separation of the polarisations; however, a closer look reveals the
separation is good enough: the amplitude of the residual copy of the wrong polarisation is about
0.09340, while that of the no-layer regions is about 0.09344, causing an error of 3.860× 10−5, or
about 0.04%.
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Figure C.4 shows the amplitude and phase of the AA calculated using the final param-
eters of the first run. Although the polarisations are separated in A2 and almost separated
in the phase of A1, they appear not to be very well separated in the amplitude of A1. How-
ever, the residual copies of the features of the wrong polarisation have an amplitude of
about 0.09340, which is only 0.04% lower than the no-layer amplitude of 0.09344; the
error introduced by the imperfect separation is thus only 0.04%. Figure C.5, which shows
the AA calculated with the final parameters of the second run, shows an even better sep-
aration of the polarisations; the residual duplicates of the features have an amplitude of
about 0.09165, only 0.009% higher than the no-layer amplitude, making for an error of
less than 0.01% in any subsequent analysis.

Unfortunately, in the case of our experimental data it was impossible to separate the
polarisations using this algorithm, since a good region in (:1, :2, :3) space for the starting
point could not be determined. This suggests that the gradient descent analysis is, in
general, unable to separate the polarisations so the noise can be reduced by referencing.
As suggested by the results with simulated data presented here, this is likely because the
algorithm only converges at the global minimum if it starts close enough to it to avoid
local minima.
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Figure C.5: Final result of the second run shown in figure C.3: amplitude (left) and phase (right) of
the AA. As suggested by the final value of E, the separation is even better than that achieved in the
first run. This time, the wrong polarisation in |A1| has an amplitude only 7.949 × 10−6, or about
0.009%, larger than the no-layer amplitude.
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Reproduced below is the code for the comparison programme using a genetic algorithm.
It was written and tested on MATLAB 2018b. As in the case of the gradient descent code,
it includes a section for the generation of test data because it was tested more extensively
with simulated data than with experimental data.

% global variables

global rows cols shearx sheary sigmar sigmap D1 D2

% initialise random number generator with random seed

rng('shuffle');

% build test data

disp('Building data...');

tic;

rows=40;

cols=40;

s=0.06466+0.003595i; % one 4-nm lipid bilayer

w=0.06489; % no layer

I1=w*ones(rows,cols);

I2=I1;

shearx=8;

sheary=0;

num=randi([1,3])+randi([1,3])+randi([1,3])+randi([1,3])+randi([1,3]);

sizeavg=randi([1,3])+randi([1,2]);

size=random('Normal',sizeavg,0.5,1,num);

posx=randi([1,cols],1,num);

227
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posy=randi([1,rows],1,num);

for m=1:num

for j=1:rows

for l=1:cols

if abs((j-posy(m)+sheary/2)^2+(l-posx(m)+shearx/2)^2) ...

<=size(m)^2

I1(j,l)=I1(j,l)+s-w;

end

if abs((j-posy(m)-sheary/2)^2+(l-posx(m)-shearx/2)^2) ...

<=size(m)^2

I2(j,l)=I2(j,l)+s-w;

end

end

end

end

disp(' Data built.');

% add noise to data

amp=2000*imag(s); % 2,000 approximately simulates experimentally

% observed noise level

sigma=imag(s);

cutoff=1/10; % this value has been found to be appropriate for the

% tested data

noise=amp*random('Normal',0,sigma,1,rows*cols);

noise=fft(noise);

for m=1:rows*cols

noise(m)=exp(-((m/(2*rows*cols*cutoff)).^2))*noise(m);

end

noise=abs(ifft(noise));

noise=transpose(reshape(noise,cols,rows));

I1=abs(I1).*exp(1i*(atan2(imag(I1),real(I1))+noise));

I2=abs(I2).*exp(1i*(atan2(imag(I2),real(I2))+noise));

disp(' Noise added.');

% build "measurements" (D1 & D2) as linear combinations of I1 & I2

a1=1/sqrt(2);

a2=1i/sqrt(2);

a3=1i/sqrt(2);

a4=1/sqrt(2);

D1=a1*I1+a2*I2;

D2=a3*I1+a4*I2;

figD=figure('pos',[1,535,560,420]);
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subplot(2,2,1)

image(abs(D1),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','data','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('|D_{1}|')

subplot(2,2,2)

image(atan2(imag(D1),real(D1)),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','data','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('arg(D_{1})')

subplot(2,2,3)

image(abs(D2),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','data','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('|D_{2}|')

subplot(2,2,4)

image(atan2(imag(D2),real(D2)),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','data','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('arg(D_{2})')

disp(' Experiment simulated.');

toc;

disp(' ');

% parameters

sigmar=1;

sigmap=1;

Nchrom=250;

Nxover=6;

Nrepr=1;

mutamp=10^0;

alpha=1/5;

Ngenstop=100000;
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% partition & error matrix

disp('Partitioning space...');

tic;

wsteps=0;

wstart=1;

wend=1;

if wsteps==0

wstep=0;

else

wstep=(wend-wstart)/wsteps;

end

qsteps=9;

qstart=0;

qend=2*pi;

if qsteps==0

qstep=0;

else

qstep=(qend-qstart)/qsteps;

end

errorgrid=zeros(wsteps+1,qsteps,wsteps+1,qsteps,wsteps+1,qsteps);

for u1=1:wsteps+1

for v1=1:qsteps

for u2=1:wsteps+1

for v2=1:qsteps

for u3=1:wsteps+1

for v3=1:qsteps

errorgrid(u1,v1,u2,v2,u3,v3) ...

=seperrorwq(wstart+(u1-1)*wstep, ...

qstart+(v1-1)*qstep,

wstart+(u2-1)*wstep,

qstart+(v2-1)*qstep,

wstart+(u3-1)*wstep,

qstart+(v3-1)*qstep);

end

end

end

end

X=[' Building preliminary error matrix (', ...

num2str(100*((u1-1)+v1/qsteps)/(wsteps+1)),'% complete).'];

disp(X);

end

end
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% find local minima

locmin=[];

locminerr=[];

for u1=1:wsteps+1

for v1=1:qsteps

for u2=1:wsteps+1

for v2=1:qsteps

for u3=1:wsteps+1

for v3=1:qsteps

if ((u1==1)|| ...

(errorgrid(u1,v1,u2,v2,u3,v3) ...

<=errorgrid(u1-1,v1,u2,v2,u3,v3))) ...

&&((u1==wsteps+1)|| ...

(errorgrid(u1,v1,u2,v2,u3,v3) ...

<=errorgrid(u1+1,v1,u2,v2,u3,v3))) ...

%%((v1==1)|| ....

(errorgrid(u1,v1,u2,v2,u3,v3) ...

<=errorgrid(u1,v1-1,u2,v2,u3,v3))) ...

%%((v1==qsteps)|| ...

(errorgrid(u1,v1,u2,v2,u3,v3) ...

<=errorgrid(u1,v1+1,u2,v2,u3,v3))) ...

%%((u2==1)|| ...

(errorgrid(u1,v1,u2,v2,u3,v3) ...

<=errorgrid(u1,v1,u2-1,v2,u3,v3))) ...

%%((u2==wsteps+1)|| ...

(errorgrid(u1,v1,u2,v2,u3,v3) ...

<=errorgrid(u1,v1,u2+1,v2,u3,v3))) ...

%%((v2==1)|| ...

(errorgrid(u1,v1,u2,v2,u3,v3) ...

<=errorgrid(u1,v1,u2,v2-1,u3,v3))) ...

%%((v2==qsteps)|| ...

(errorgrid(u1,v1,u2,v2,u3,v3) ...

<=errorgrid(u1,v1,u2,v2+1,u3,v3))) ...

%%((u3==1)|| ...

(errorgrid(u1,v1,u2,v2,u3,v3) ...

<=errorgrid(u1,v1,u2,v2,u3-1,v3))) ...

%%((u3==wsteps+1)|| ...

(errorgrid(u1,v1,u2,v2,u3,v3) ...

<=errorgrid(u1,v1,u2,v2,u3+1,v3))) ...

%%((v3==1)|| ...

(errorgrid(u1,v1,u2,v2,u3,v3) ...
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<=errorgrid(u1,v1,u2,v2,u3,v3-1))) ...

%%((v3==qsteps)|| ...

(errorgrid(u1,v1,u2,v2,u3,v3) ...

<=errorgrid(u1,v1,u2,v2,u3,v3+1)))

locmin=transpose([ ...

transpose(locmin), ...

transpose([wstart+(u1-1)*wstep, ...

qstart+(v1-1)*qstep, ...

wstart+(u2-1)*wstep, ...

qstart+(v2-1)*qstep, ...

wstart+(u3-1)*wstep, ...

qstart+(v3-1)*qstep])]);

locminerr=[locminerr, ...

errorgrid(u1,v1,u2,v2,u3,v3)];

end

end

end

end

end

X=[' Finding local minima (', ...

num2str(100*((u1-1)+v1/qsteps)/(wsteps+1)),'% complete).'];

disp(X);

end

end

Nlocmin=length(locmin);

locminord=zeros([Nlocmin,1]); % vector for ordered local minimum

% positions

for j=1:Nlocmin % order local minima by lowest error

for l=1:Nlocmin

if locminerr(l)==min(locminerr)

locminord(j)=l;

locminerr(l)=max(locminerr)+1; % remove local minimum from

% local minimum ordering

% pool

break;

end

end

end

toc;

disp(' ');

% minimise error
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disp('Calculating linear combination parameters...');

tic;

disp(' Algorithm started.');

Noffspr=2^(6-Nxover); % number of children per reproduction event

pchromwq=zeros([Nchrom,6]); % parent vector

for j=1:min(Nchrom,Nlocmin) % choose best local minima as starting

% points

pchromwq(j,:)=locmin(locminord(j),:);

end

for j=Nlocmin+1:Nchrom % choose remaining partition points with lowest

% errors as remaining starting points

for u1=1:wsteps+1

for v1=1:qsteps

for u2=1:wsteps+1

for v2=1:qsteps

for u3=1:wsteps+1

for v3=1:qsteps

if errorgrid(u1,v1,u2,v2,u3,v3) ...

==min(min(min( ...

min(min(min(errorgrid))))))

pchromwq(j,:)=[wstart+(u1-1)*wstep, ...

qstart+(v1-1)*qstep, ...

wstart+(u2-1)*wstep, ...

qstart+(v2-1)*qstep, ...

wstart+(u3-1)*wstep, ...

qstart+(v3-1)*qstep];

errorgrid(u1,v1,u2,v2,u3,v3) ...

=max(max(max( ...

max(max(max(errorgrid))))))+1;

% remove point from

% lowest-error point pool

end

end

end

end

end

end

end

end

pchrom=zeros([Nchrom,6]); % real-imaginary parent vector

for j=1:Nchrom

pchrom(j,1)=pchromwq(j,1)*cos(pchromwq(j,2));
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pchrom(j,2)=pchromwq(j,1)*sin(pchromwq(j,2));

pchrom(j,3)=pchromwq(j,3)*cos(pchromwq(j,4));

pchrom(j,4)=pchromwq(j,3)*sin(pchromwq(j,4));

pchrom(j,5)=pchromwq(j,5)*cos(pchromwq(j,6));

pchrom(j,6)=pchromwq(j,5)*sin(pchromwq(j,6));

end

fitnessp=zeros([Nchrom,1]); % parent fitness vector

for j=1:Nchrom % determine parent fitness

fitnessp(j)=-log10(seperrorxy(pchrom(j,1),pchrom(j,2), ...

pchrom(j,3),pchrom(j,4), ...

pchrom(j,5),pchrom(j,6)));

end

cchrom=pchrom; % child vector

fitnessc=fitnessp; % child fitness vector

repprob1=zeros([Nchrom,1]); % parent reproduction probability vector

repprob2=repprob1; % temporary vector for second parent

remove=ones([Nrepr*Noffspr,1]); % indices of non-surviving parents

parents=ones([Nrepr,2]); % parents in reproduction events

iter=1;

iterlast=1; % last iteration with improvement

error0=10^-max(fitnessp);

errors=0;

mutations=0;

X=[' Initial error = ',num2str(error0)];

disp(X);

X=[' Target error = ',num2str(seperrorxy(0,1,0,1,1,0)),'.'];

disp(X);

stop=0;

while stop==0

if iter>1

errors=[errors,0];

mutations=[mutations,mutations(iter-1)];

end

cchrom=pchrom; % clone parent generation to child generation

fitnessc=fitnessp; % inherit fitnesses

remprob=(max(fitnessp)-fitnessp)./sum(max(fitnessp)-fitnessp);

% calculate parent removal probabilities

for j=1:Nrepr*Noffspr % determine removed parent in each

% reproduction event

u=random('Uniform',0,sum(remprob));

for l=1:Nchrom

if u>sum(remprob(1:l))
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remove(j)=l+1;

end

end

remprob(remove(j))=0;

end

repprob1=(fitnessp-min(fitnessp))./sum(fitnessp-min(fitnessp));

% calculate parent reproduction probabilities

for j=1:Nrepr % determine first parent in each reproduction event

for l=1:Nchrom

u=random('Uniform',0,1);

if u>sum(repprob1(1:l))

parents(j,1)=l+1;

end

end

end

repprob2=repprob1; % second parent reproduction probabilities

for j=1:Nrepr % determine second parent in each reproduction event

repprob2(parents(j,1))=0; % remove each reproduction event's

% first parent from the reproduction

% pool for that event

u=random('Uniform',0,sum(repprob2));

for l=1:Nchrom

if u>sum(repprob2(1:l))

parents(j,2)=l+1;

end

end

repprob2=repprob1; % reintroduce first parent into reproduction

% pool for future reproduction events

end

for j=1:Nrepr % generate children & calculate their fitnesses

xover=randperm(6,6); % determine crossover traits

for l=1:Noffspr

for m=1:Nxover % cross parent traits over

beta=random('Uniform',0,1);

cchrom(remove((j-1)*Noffspr+l),xover(m)) ...

=beta*pchrom(parents(j,1),xover(m)) ...

+(1-beta)*pchrom(parents(j,2),xover(m));

end

for m=Nxover+1:6 % inherit non-crossover traits from

% parents

cchrom(remove((j-1)*Noffspr+l),xover(m)) ...

=pchrom(parents(j,1.5+0.5*(-1)^ceil(l/2^(6-m))), ...
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xover(m));

end

fitnessc(remove((j-1)*Noffspr+l)) ...

=seperrorxy(cchrom(remove((j-1)*Noffspr+l),1), ...

cchrom(remove((j-1)*Noffspr+l),2), ...

cchrom(remove((j-1)*Noffspr+l),3), ...

cchrom(remove((j-1)*Noffspr+l),4), ...

cchrom(remove((j-1)*Noffspr+l),5), ...

cchrom(remove((j-1)*Noffspr+l),6));

end

end

for j=1:Nrepr*Noffspr % introduce mutations & calculate fitnesses

% of new children

mutationwq=[random('Uniform',0,5),random('Uniform',0,2*pi), ...

random('Uniform',0,5),random('Uniform',0,2*pi), ...

random('Uniform',0,5),random('Uniform',0,2*pi)];

mutation=[mutationwq(1)*cos(mutationwq(2)), ...

mutationwq(1)*sin(mutationwq(2)), ...

mutationwq(3)*cos(mutationwq(4)), ...

mutationwq(3)*sin(mutationwq(4)), ...

mutationwq(5)*cos(mutationwq(6)), ...

mutationwq(5)*sin(mutationwq(6))];

dist=norm(mutation-cchrom(remove(j),:));

mutprob=mutamp*exp(-alpha*dist);

mutparam=random('Uniform',0,1);

if mutparam<mutprob

cchrom(remove(j),:)=mutation;

if iter>1

mutations(iter)=mutations(iter-1)+1;

else

mutations(iter)=1;

end

end

fitnessc(remove(j))=-log10(seperrorxy(cchrom(remove(j),1), ...

cchrom(remove(j),2), ...

cchrom(remove(j),3), ...

cchrom(remove(j),4), ...

cchrom(remove(j),5), ...

cchrom(remove(j),6)));

end

pchrom=cchrom; % turn child generation into new parent generation

fitnessp=fitnessc; % back-inherit fitnesses
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errors(iter)=10^-max(fitnessc); % determine best error of new

% generation

if iter>1 % increase mutation likelihood when error becomes small

if errors(iter)<1&&errors(iter-1)>=1

alpha=alpha/2;

end

end

if iter==1||iter==iterlast+10000||errors(iter)<errlast

X=[' Iteration ',num2str(iter),' error = ', ...

num2str(errors(iter)),'.'];

disp(X);

iterlast=iter;

errlast=errors(iter);

end

if iter>Ngenstop % stop run if target number of generations without

% improvement has been reached

if errors(iter)==errors(iter-Ngenstop)

stop=1;

end

end

for l=1:Nchrom

if fitnessc(l)==max(fitnessc)

bestchrom=cchrom(l,:);

end

end

iter=iter+1;

end

errors=[error0,errors];

X=[' After ',num2str(iter-1), ...

' iterations, the error has gone from ',num2str(errors(1)), ...

' to ',num2str(errors(iter)),'.'];

disp(X);

X=[' Target error = ',num2str(seperrorxy(0,1,0,1,1,0)),'.'];

disp(X);

X=[' Parameters obtained: (c1,c2,c3) = (',num2str(bestchrom(1))];

if bestchrom(2)>=0

X=[X,'+'];

end

X=[X,num2str(bestchrom(2)),'i,',num2str(bestchrom(3))];

if bestchrom(4)>=0

X=[X,'+'];

end
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X=[X,num2str(bestchrom(4)),'i,',num2str(bestchrom(5))];

if bestchrom(6)>=0

X=[X,'+'];

end

X=[X,num2str(bestchrom(6)),'i).'];

disp(X);

% display results

xe=0:iter-1; % x-axis range for error graph

xm=1:iter-1; % x-axis range for mutation graph

c1=bestchrom(1)+1i*bestchrom(2);

c2=bestchrom(3)+1i*bestchrom(4);

c3=bestchrom(5)+1i*bestchrom(6);

A1=D1+c1.*D2;

A2=c3.*(c2.*D1+D2);

figA=figure('pos',[1,1,891,420]);

subplot(2,3,1)

plot(xe,log10(errors(1:iter)),'LineWidth',1,'Color',[1,0,0]), ...

set(gcf,'name','Results','numbertitle','off'), ...

xlabel('iteration'),ylabel('log_{10}(error)')

title('Error evolution')

subplot(2,3,4)

plot(xm,mutations(1:iter-1),

'LineWidth',1,'Color',[0,0.8,0]), ...

set(gcf,'name','Results','numbertitle','off'), ...

xlabel('iteration'),ylabel('total mutations')

title('Mutations')

subplot(2,3,2)

image(abs(A1),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','Results','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('|A_{1}|')

subplot(2,3,3)

image(atan2(imag(A1),real(A1)),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','Results','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('arg(A_{1})')

subplot(2,3,5)
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image(abs(A2),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','Results','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('|A_{2}|')

subplot(2,3,6)

image(atan2(imag(A2),real(A2)),'CDataMapping','scaled'), ...

colormap(jet),colorbar,title(colorbar,''), ...

set(gcf,'name','Results','numbertitle','off'), ...

xlabel('{\it{x}} (px)'),ylabel('{\it{y}} (px)')

pbaspect([1,1,1])

title('arg(A_{2})')

toc;

disp(' ');

% export data

disp('Exporting results...');

tic;

dlmwrite('error.txt',errors,'delimiter',' ');

disp(' Error progression exported as error.txt.');

dlmwrite('mutations.txt',mutations,'delimiter',' ');

disp(' Mutation counter exported as mutations.txt.');

toc;

disp(' ');

The codemakes use of a custom-written function called seperrorxy for the calculation of
the error. It is very similar to the seperror function from the gradient descent algorithm
but takes input in cartesian coordinates instead of polar coordinates. It is reproduced
below.

function serrorxy=seperrorxy(x1,y1,x2,y2,x3,y3)

global rows cols shearx sheary sigmar sigmap D1 D2

c1=x1+1i*y1;

c2=x2+1i*y2;

c3=x3+1i*y3;

A1=D1+c1.*D2;

A2=c3.*(c2.*D1+D2);

A=zeros(rows,cols);

A(1+abs(sheary)/2:rows-abs(sheary)/2, ...

1+abs(shearx)/2:cols-abs(shearx)/2) ...

=(A1(1+abs(sheary)/2+sheary/2:rows-abs(sheary)/2+sheary/2, ...

1+abs(shearx)/2+shearx/2:cols-abs(shearx)/2+shearx/2) ...
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+A2(1+abs(sheary)/2-sheary/2:rows-abs(sheary)/2-sheary/2, ...

1+abs(shearx)/2-shearx/2:cols-abs(shearx)/2-shearx/2))/2;

D1rec=zeros(rows,cols);

D2rec=D1rec;

D1rec(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx)) ...

=(c3*A(1+abs(sheary)-sheary/2:rows-abs(sheary)-sheary/2, ...

1+abs(shearx)-shearx/2:cols-abs(shearx)-shearx/2) ...

-c1*A(1+abs(sheary)+sheary/2:rows-abs(sheary)+sheary/2, ...

1+abs(shearx)+shearx/2:cols-abs(shearx)+shearx/2)) ...

/((1-c1*c2)*c3);

D2rec(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx)) ...

=(A(1+abs(sheary)+sheary/2:rows-abs(sheary)+sheary/2, ...

1+abs(shearx)+shearx/2:cols-abs(shearx)+shearx/2) ...

-c2*c3*A(1+abs(sheary)-sheary/2:rows-abs(sheary)-sheary/2, ...

1+abs(shearx)-shearx/2 ...

:cols-abs(shearx)-shearx/2)) ...

/((1-c1*c2)*c3);

D1crop=D1(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx));

D1reccrop=D1rec(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx));

D2crop=D2(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx));

D2reccrop=D2rec(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx));

error1=log(D1crop./D1reccrop);

error2=log(D2crop./D2reccrop);

serrorxy=sum(sum(((real(error1)).^2+(real(error2)).^2)/sigmar

+((imag(error1)).^2+(imag(error2)).^2)/sigmap));

end

An alternative function to calculate the error, seperrorwq, was also used in order to see
whether the results of the algorithm depended on the coordinate system used. This func-
tion is identical to seperror from the gradient descent algorithm, but it is reproduced
below for completeness.

function serrorwq=seperrorwq(w1,q1,w2,q2,w3,q3)

global rows cols shearx sheary sigmar sigmap D1 D2

c1=w1*exp(1i*q1);

c2=w2*exp(1i*q2);

c3=w3*exp(1i*q3);
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A1=D1+c1.*D2;

A2=c3.*(c2.*D1+D2);

A=zeros(rows,cols);

A(1+abs(sheary)/2:rows-abs(sheary)/2, ...

1+abs(shearx)/2:cols-abs(shearx)/2) ...

=(A1(1+abs(sheary)/2+sheary/2:rows-abs(sheary)/2+sheary/2, ...

1+abs(shearx)/2+shearx/2:cols-abs(shearx)/2+shearx/2) ...

+A2(1+abs(sheary)/2-sheary/2:rows-abs(sheary)/2-sheary/2, ...

1+abs(shearx)/2-shearx/2:cols-abs(shearx)/2-shearx/2))/2;

D1rec=zeros(rows,cols);

D2rec=D1rec;

D1rec(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx)) ...

=(c3*A(1+abs(sheary)-sheary/2:rows-abs(sheary)-sheary/2, ...

1+abs(shearx)-shearx/2:cols-abs(shearx)-shearx/2) ...

-c1*A(1+abs(sheary)+sheary/2:rows-abs(sheary)+sheary/2, ...

1+abs(shearx)+shearx/2:cols-abs(shearx)+shearx/2)) ...

/((1-c1*c2)*c3);

D2rec(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx)) ...

=(A(1+abs(sheary)+sheary/2:rows-abs(sheary)+sheary/2, ...

1+abs(shearx)+shearx/2:cols-abs(shearx)+shearx/2) ...

-c2*c3*A(1+abs(sheary)-sheary/2:rows-abs(sheary)-sheary/2, ...

1+abs(shearx)-shearx/2 ...

:cols-abs(shearx)-shearx/2))/((1-c1*c2)*c3);

D1crop=D1(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx));

D1reccrop=D1rec(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx));

D2crop=D2(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx));

D2reccrop=D2rec(1+abs(sheary):rows-abs(sheary), ...

1+abs(shearx):cols-abs(shearx));

error1=log(D1crop./D1reccrop);

error2=log(D2crop./D2reccrop);

serrorwq=sum(sum(((real(error1)).^2+(real(error2)).^2)/sigmar

+((imag(error1)).^2+(imag(error2)).^2)/sigmap));

end
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Figure D.1 shows data similar to that shown previously, but with added phase noise with
amplitude 8 = 10,000 Im(J) to more accurately simulate experimental data. The error
E is similar to what is shown in figure 4.21; in the case of this particular data set, a total
of 2,771 local minima were found with a 11 × 11 × 11 × 11 × 11 × 11 partition of the
(|:1|, arg(:1) , |:2|, arg(:2) , |:3|, arg(:3)) space.

Figure D.2 shows the evolution of the error E over 7 different runs. A run typ-
ically lasted between 110,000 and 150,000 iterations. Of the runs shown in the fig-
ure, run 1 resulted in the lowest error. The point at which this error was achieved is
(0.139+0.967@, 0.143+0.942@, 0.984+0.006@), which is very close to (@, @, 1); the cartesian
distance between the two points is only about 0.211. Figure D.3 shows the AA calculated
using the aforementioned point with equations 4.5. The images do not appear to be prop-
erly separated, but the amplitude of the error (i.e. the amplitude of the residual copies of
the structures due to imperfect separation) is only about 2.5% for A1 and 0.09% for A2, so
separation was achieved within reasonable error.
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Figure D.1: Simulated amplitude (left) and phase (right) of the reflectometry signal that would be
produced by another sample with the same characteristics as the previous simulated samples. As
before, the co- (top) and cross-polarised (bottom) components have mixed polarisation informa-
tion and the shear is 6 pixels in the horizontal direction. This time, however, the phase has noise
of amplitude 8 = 10,000 Im(J).



✐
✐

“NahmadRohenA-PhDthesis” — 2020/2/29 — 5:04 — page 243 — #257 ✐
✐

✐
✐

✐
✐

Results with experimental data 243

50,000 100,000 150,000
−0.180

−0.179

−0.178

−0.177

−0.176

−0.175

−0.174

−0.173

−0.172

iteration

log(E)

run 1
run 2
run 3
run 4
run 5
run 6
run 7

Figure D.2: Evolution of the error E in seven different runs with the same simulated data. The
initial population, which consisted of the 250 local minima of E with the lowest value of E (which,
notably, did not include the points (:1, :2, :3) = (±@,±@, 1), likely due to the noise in the data
increasing the error of these points slightly more than for other points), was identical in every run,
but the random nature of reproduction and mutation caused every run to be different.

Choosing an initial population entirely at random (with, as before, |:A| ∈ [0, 2] and
arg
(
:A
)
∈ [0, 2ć] for every A) resulted in runs which took longer (typically around 220,000

iterations, but sometimes considerably fewer and occasionally considerably more) and
achieved errors between 0.5% and 2%.

It is not, at present, known why the genetic algorithm was unable to separate the po-
larisations in the case of experimental data. It is possible that the large amount of (com-
plex) noise in the data caused the point of perfect separation to have a larger error than
other points where the separation was imperfect; this would have resulted in the algo-
rithm favouring these other points over the correct one, so even if the correct point had
been reached in any generation it would have had a lower chance of surviving for many
generations and would have eventually been lost. Without knowing which point corre-
sponds to perfect separation, it is impossible to tell whether this was indeed the case. It is
evident from the example shown in this appendix that this is not the case for noisy sim-
ulated data, or at least the effect of noise is not pronounced enough for the algorithm to
favour points where separation is not achieved to within acceptable error.
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Figure D.3: Amplitude (left) and phase (right) of the linear combinations AA of the simulated signal
components using the :A obtained from the first of the runs shown in figure D.2. The amplitude of
the no-sample region is about 0.094251 for A1 and about 0.15682 for A2, while that of the residual
duplicates of the structures is about 0.096592 (an error of about 2.5%) and 0.15695 (an error of
about 0.09%), respectively.
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Reproduced below is the code for the reflectometry line trace analysis. It was written and
tested on Mathematica 11. It is split into three parts: partitioning of part of the (;, Es)
space and calculation of J for every point in the partition, data & parameter reading, and
line trace analysis.

(* clear all variables *)

Clear[Evaluate[Context[]<>"*"]];

(* set export directory to notebook directory *)

SetDirectory[NotebookDirectory[]];

(* calculation parameters *)

nw=1.333;

ng=1.518;

lambda=550;

k=2*Pi/lambda;

NA=1.27;

ff=1;

Deltad=0.1;

dmax=30;

Deltan=0.001;

(* build s(d,n) table *)

s=ParallelTable[NIntegrate[Exp[-(ff^2)*(Sin[theta]/(NA/ng))^2]

*Cos[theta]*Sin[theta]*(1/2)

*((ng*Cos[theta]

-n*Cos[ArcSin[(n/ng)*Sin[theta]]])

/(ng*Cos[theta]

245
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+n*Cos[ArcSin[(n/ng)*Sin[theta]]])

+((2*ng*Cos[theta]

/(ng*Cos[theta]

+n*Cos[ArcSin[(n/ng)*Sin[theta]]]))

*(2*n*Cos[ArcSin[(n/ng)*Sin[theta]]]

/(n*Cos[ArcSin[(n/ng)*Sin[theta]]]

+ng*Cos[theta]))

*((n*Cos[ArcSin[(n/ng)Sin[theta]]]

-nw*Cos[ArcSin[(nw/ng)Sin[theta]]])

/(n*Cos[ArcSin[(n/ng)*Sin[theta]]]

+nw*Cos[ArcSin[(nw/ng)*Sin[theta]]]))

*Exp[2*I*d*n*k

/Cos[ArcSin[(n/ng)*Sin[theta]]]])

/(1-((n*Cos[ArcSin[(n/ng)*Sin[theta]]]

-nw*Cos[ArcSin[(nw/ng)*Sin[theta]]])

*(n*Cos[ArcSin[(n/ng)*Sin[theta]]]

+nw*Cos[ArcSin[(nw/ng)

*Sin[theta]]]))

*((n*Cos[ArcSin[(n/ng)*Sin[theta]]]

-ng*Cos[theta])

/(n*Cos[ArcSin[(n/ng)*Sin[theta]]]

+ng*Cos[theta]))

*Exp[2*I*d*n*k

/Cos[ArcSin[(n/ng)*Sin[theta]]]])

+(n*Cos[theta]

-ng*Cos[ArcSin[(n/ng)*Sin[theta]]])

/(n*Cos[theta]

+ng*Cos[ArcSin[(n/ng)Sin[theta]]])

+((2*ng*Cos[theta]

/(n*Cos[theta]

+ng*Cos[ArcSin[(n/ng)*Sin[theta]]]))

*(2*n*Cos[ArcSin[(n/ng)*Sin[theta]]]

/(ng*Cos[ArcSin[(n/ng)*Sin[theta]]]

+n*Cos[theta]))

*((nw*Cos[ArcSin[(n/ng)*Sin[theta]]]

-n*Cos[ArcSin[(nw/ng)*Sin[theta]]])

/(nw*Cos[ArcSin[(n/ng)*Sin[theta]]]

+n*Cos[ArcSin[(nw/ng)*Sin[theta]]]))

*Exp[2*I*d*k*n

/Cos[ArcSin[(n/ng)*Sin[theta]]]])

/(1-((nw*Cos[ArcSin[(n/ng)*Sin[theta]]]

-n*Cos[ArcSin[(nw/ng)*Sin[theta]]])
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/(nw*Cos[ArcSin[(n/ng)*Sin[theta]]]

+n*Cos[ArcSin[(nw/ng)

*Sin[theta]]]))

*((ng*Cos[ArcSin[(n/ng)*Sin[theta]]]

-n*Cos[theta])

/(ng*Cos[ArcSin[(n/ng)*Sin[theta]]]

+n*Cos[theta]))

*Exp[2*I*d*n*k

/Cos[ArcSin[(n/ng)

*Sin[theta]]]])),

{theta,0,ArcSin[NA/ng]}]

/NIntegrate[Exp[-(ff^2)*(Sin[theta]/(NA/ng))^2]

*Cos[theta]*Sin[theta]*(1/2)

*((ng*Cos[theta]

-nw*Cos[ArcSin[(ng/ng)*Sin[theta]]])

/(ng*Cos[theta]

+nw*Cos[ArcSin[(nw/ng)*Sin[theta]]])

+(nw*Cos[theta]

-ng*Cos[ArcSin[(nw/ng)*Sin[theta]]])

/(nw*Cos[theta]

+ng*Cos[ArcSin[(nw/ng)*Sin[theta]]])),

{theta,0,ArcSin[NA/ng]}],

{n,nw,ng,Deltan},{d,0,dmax,Deltad}];

(* data files *)

(* the parameter files contain the coordinates, lengths and directions

(+x or -x) of all line traces for a given image *)

(* file paths below are incomplete *)

data={{".../Data/20180127_iRef/pf/003_B2x.dat",

".../Data/20180127_iRef/pf/003_B2y.dat",

".../Data/20180127_iRef/pf/003_params_v15.dat"},

{".../Data/20180127_iRef/pf/011_B2x.dat",

".../Data/20180127_iRef/pf/011_B2y.dat",

".../Data/20180127_iRef/pf/011_params_v15.dat"},

{".../Data/20180127_iRef/pf/019_B2x.dat",

".../Data/20180127_iRef/pf/019_B2y.dat",

".../Data/20180127_iRef/pf/019_params_v15.dat"},

{".../Data/20180127_iRef/pf/027_B2x.dat",

".../Data/20180127_iRef/pf/027_B2y.dat",

".../Data/20180127_iRef/pf/027_params_v15.dat"},

{".../Data/20180710_iRef/pf/013_B2x.dat",

".../Data/20180710_iRef/pf/013_B2y.dat",
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".../Data/20180710_iRef/pf/013_params_v15.dat"},

{".../Data/20180710_iRef/pf/028_B2x.dat",

".../Data/20180710_iRef/pf/028_B2y.dat",

".../Data/20180710_iRef/pf/028_params_v15.dat"},

{".../Data/20180710_iRef/pf/043_B2x.dat",

".../Data/20180710_iRef/pf/043_B2y.dat",

".../Data/20180710_iRef/pf/043_params_v15.dat"}}

(* fit steps and obtain d & n *)

For[dn=1,dn<=Length[data],dn++,

D2xf=data[[dn,1]];

D2yf=data[[dn,2]];

D2x=ReadList[D2xf,Number,RecordLists->True];

D2y=ReadList[D2yf,Number,RecordLists->True];

D2=D2x+I*D2y;

rangemin=10;

rangemax=25;

paramsf=data[[dn,3]]; (* line trace parameters *)

params=ReadList[paramsf,Number,RecordLists->True]

results=ConstantArray[0,{Length[params],4}]; (* result vector *)

For[j=1,j<=Length[params],j++,

Print["DATA ",dn,", LINE ",j];

x=params[[j,1]]+1;

y=params[[j,2]]+1;

linelength=params[[j,3]]; (* the sign of the line length

determines the direction of the

line trace *)

xstart=x+Min[0,linelength];

xend=x+Max[0,linelength];

r=Abs[If[linelength>0,

D2[[y,xstart;;xend]],

Reverse[D2[[y,xstart;;xend]]]]];

p=Arg[If[linelength>0,

D2[[y,xtart;;xend]],

Reverse[D2[[y,xstart;;xend]]]]];

Clear[ar,ap,b,c,dr,dp,er,ep,fr,fp,g,rvalue,pvalue,range];

(* clear fit parameters & values *)

r0=Transpose[{Range[Abs[linelength]+1]-1,r}];

p0=Transpose[{Range[Abs[linelength]+1]+Abs[linelength],p}];

d0=Join[r0,p0];

fit=ConstantArray[0,1+rangemax-rangemin];

err=fit;
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For[range=rangemin,range<=rangemax,range++,

fit[[1+range-rangemin]]

=FindFit[

Join[d0[[1+Floor[Abs[linelength]/2,1]-range

;;1+Floor[Abs[linelength]/2,1]+range,

All]],

d0[[2+Floor[Abs[linelength]/2,1]-range

+Abs[linelength]

;;2+Floor[Abs[linelength]/2,1]+range

+Abs[linelength],

All]]],

{If[t<Abs[linelength]+0.5,

(ar/2)*Tanh[(t-b)/c]+dr*t+er

+(fr/2)*Sech[(t-g)/c],

(ap/2)*Tanh[(t-b-Abs[linelength]-1)/c]+dp*t+ep

+(fp/2)*Sech[(t-g-Abs[linelength]-1)/c]],

{Abs[linelength]/3<b<2*Abs[linelength]/3,

1/3<c<3}},

{{ar,Max[r]-Min[r]},{b,Floor[Abs[linelength]/2,1]},

{c,1},{dr},{er,Min[r[[1]],r[[-1]]]},

{fr,Max[r]-Min[r]},{g,Floor[Abs[linelength]/2,1]},

{ap,Max[p]-Min[p]},{dp},{ep,Min[p[[1]],p[[-1]]]},

{fp,Max[p]-Min[p]}},

t];

{ar,b,c,dr,er,fr,g,ap,dp,ep,fp}

={ar,b,c,dr,er,fr,g,ap,dp,ep,fp}

/.fit[[1+range-rangemin]];

dat=Join[d0[[1+Floor[Abs[linelength]/2,1]-range

;;1+Floor[Abs[linelength]/2,1]+range,

All]],

d0[[2+Floor[Abs[linelength]/2,1]-range

+Abs[linelength]

;;2+Floor[Abs[linelength]/2,1]+range

+Abs[linelength],

All]]];

err[[1+range-rangemin]]

=Sum[(1/(4*range+2))*(If[m<range+1.5,

(ar/2)*Tanh[(dat[[m,1]]-b)/c]

+dr*dat[[m,1]]+er

+(fr/2)*Sech[(dat[[m,1]]-g)/c]

-dat[[m,2]],

(ap/2)*Tanh[(dat[[m,1]]-b-1
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-Abs[linelength])

/c]

+dp*dat[[m,1]]+ep

+(fp/2)*Sech[(dat[[m,1]]-g-1

-Abs[linelength])

/c]

-dat[[m,2]]])^2,

{m,1,4*range+2}];

Clear[ar,b,c,dr,er,fr,g,ap,dp,ep,fp];];

{ar,b,c,dr,er,fr,g,ap,dp,ep,fp}

={ar,b,c,dr,er,fr,g,ap,dp,ep,fp}

/.fit[[Max[Flatten[Position[err,Min[err]],1]]]];

(* choose best fit range based on least-squares criterion *)

rvalue=1-Abs[ar]/(er+Abs[ar]/2);

pvalue=Abs[ap];

Deltar=1;

Deltap=1;

dvalue

=Deltad

*Flatten[

Position[

((rvalue-Abs[s])/Deltar)^2

+((pvalue-Arg[s])/Deltap)^2,

Min[Min[((rvalue-Abs[s])/Deltar)^2

+((pvalue-Arg[s])/Deltap)^2]]]][[2]];

nvalue

=nw

+Deltan

*Flatten[

Position[

((rvalue-Abs[s])/Deltar)^2

+((pvalue-Arg[s])/Deltap)^2,

Min[Min[((rvalue-Abs[s])/Deltar)^2

+((pvalue-Arg[s])/Deltap)^2]]]][[1]];

Print[Style["x",Italic]," = ",x];

Print[Style["y",Italic]," = ",y];

Print["line length = ",linelength," px"];

Print[Style["r",Italic]," = ",rvalue];

Print[Style["\[CurlyPhi]",Italic]," = ",pvalue," rad"];

Print[Style["d",Italic]," = ",dvalue," nm"];

Print[Style["n",Italic]," = ",nvalue];

rrange={Min[Min[r],FindMinimum[{(ar/2)*Tanh[(t-b)/c]+dr*t
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+er+(fr/2)*Sech[(t-b)/c],

t>=0,t<=Abs[linelength]},

t][[1]]],

Max[Max[r],-FindMinimum[{-((ar/2)*Tanh[(t-b)/c]+dr*t

+er+(fr/2)*Sech[(t-b)/c]),

t>=0,t<=Abs[linelength]},

t][[1]]]};

prange={Min[Min[p],FindMinimum[{(ap/2)*Tanh[(t-b-1

-Abs[linelength])

/c]

+dr*t+er

+(fr/2)*Sech[(t-b-1

-Abs[linelength])

/c],

t>=0,t<=Abs[linelength]},

t][[1]]],

Max[Max[r],-FindMinimum[{-((ap/2)

*Tanh[(t-b-1-Abs[linelength])

/c]

+dr*t+er

+(fr/2)

*Sech[(t-b-1

-Abs[linelength])

/c]),

t>=0,t<=Abs[linelength]},

t][[1]]]};

Print[Show[{ListPlot[r0,

PlotStyle->Red,

PlotRange->rrange,

LabelStyle->FontFamily->"Calluna",

AxesLabel->{Row[{Style["x",Italic],

" (px)"}],

Row[{Style["r",Italic]}]},

PlotMarkers->Automatic],

Plot[(ar/2)*Tanh[(t-b)/c]+dr*t

+er+(fr/2)*Sech[(t-g)/c],

{t,1,1+Abs[linelength]},

PlotStyle->Red]}]];

Print[Show[{ListPlot[p0,

PlotStyle->Lighter[Orange],

PlotRange->Full,

LabelStyle->FontFamily->"Calluna",
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252 E. Line trace analysis for interferometric reflectometry

AxesLabel->{Row[{Style["x",Italic],

" (px)}],

Row[{Style["\[CurlyPhi]",

Italic]}]},

PlotMarkers->Automatic],

Plot[(ap/2)*Tanh[(t-b-Abs[linelength]-1)/c]

+dp*t+ep

+(fp/2)*Sech[(t-g-Abs[linelength]-1)/c],

{t,1,1+Abs[linelength]},

PlotStyle->Lighter[Orange]]}]];

Print[""];

results[[j]]={rvalue,pvalue,dvalue,nvalue};

(* place results in result vector *)

];

Export["results_"<>ToString[dn]<>".dat",results];

];
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Below are the full results of FSC3 of the images from chapter 5.
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254 F. Full results of FSC3 of SRS images
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Figure 5.8 255
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256 F. Full results of FSC3 of SRS images
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The following table shows the background (PBS-only region) fitting for gradient and PBS
removal and the spectrum retrieval method for all the SRS images shown in figures 5.18–
5.21. The images are listed in the same order of appearance as in the figures.

&8D<CC8I@KP -8DGC< � @D8>< �8:B>IFLE; �K -G<:KILD I<KI@<M8C D<K?F;

Unilamellar

sm+ch 1

Linear in O & P Spatial averaging of spectrum
sm+ch 2
sm+ch 3
sm+ch 4

Multilamellar
sm+ch 5

None Spatial averaging of spectrumsm+ch 6
sm+ch 7

Unilamellar
DOPC 1

Linear in O & P Spatial averaging of spectrum
DOPC 2

Multilamellar DOPC 3 None Spatial averaging of spectrum

Unilamellar

Ternary 1
Linear in O & P Unguided 2-component FSC3

Linear in P Guided 2-component FSC3

Ternary 2
Linear in P Unguided 2-component FSC3

Linear in O & P Guided 2-component FSC3

Ternary 3 Linear in P
Unguided 2-component FSC3

Guided 3-component FSC3

Ternary 4 Linear in P
Unguided 2-component FSC3

Guided 2-component FSC3

Ternary 5 Linear in O & P
Unguided 2-component FSC3

Guided 3-component FSC3
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258 G. Parameters used for background fitting and FSC3
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The following articles are in preparation. The first contains the interferometric reflectom-
etry theory and will contain the results of future reflectometry experiments; the second
contains our SRS results, as well as the results of CARS experiments performed by some of
the other authors before this work began; and the third contains the detailed study of the
Hodgkin-Huxley and Heimburg-Jackson models shows in chapter 2 and a proposal for
experiments to help shed more light on neural communication from a biophysical per-
spective.

1. Nahmad-Rohen A & LangbeinW (2020): �DF;<C =FI K?< :FDGC<O I<¼<:K@FE :F<ğ:@<EK
F= 8 :FCC<:K@FE F= G8I8CC<C C8P<IJ, in preparation

2. Nahmad-Rohen A, Regan D, McPhee C, Masia F, Borri P & Langbein W (2020): )9

J<IM8K@FE F= C@G@; ;FD8@E :F<O@JK<E:< @E J@E>C< C@G@; 9@C8P<IJ LJ@E> -,- 8E; ��,-, in
preparation

3. Nahmad-Rohen A & Langbein W (2020): )LI :LII<EK LE;<IJK8E;@E> F= 8:K@FE GFK<E

K@8CJ 8E; ?FN KF @E:I<8J< @K, in preparation

"��� �FE=<I<E:< GI<J<EK8K@FEJ

Some of the work presented here has been the subject of the following conference pre-
sentations.

1. Nahmad-Rohen A, Langbein W & Borri P (2016): )GK@:8C @D8>@E> F= 8:K@FE GF

K<EK@8CJ @E C@M< 8OFEJ, 1st Physics of Excitable Membranes Workshop, Copenhagen,
Denmark (poster)
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260 H. Publications and conference presentations

2. Nahmad-Rohen A, Regan D, Zoriniants G, LangbeinW& Borri P (2017): -@DLCK8E<

FLJ D<8JLI<D<EK F= K?@:BE<JJ 8E; I<=I8:K@M< @E;<O 9P @EK<I=<IFD<KI@: I<¼<:KFD<KIP, 4th
BioNanoPhotonics Symposium, Cardiff, United Kingdom (poster)

3. Nahmad-Rohen A, Regan D, Borri P & Langbein W (2018): -@DLCK8E<FLJ D<8JLI<

D<EK F= K?@:BE<JJ 8E; I<=I8:K@M< @E;<O 9P @EK<I=<IFD<KI@: I<¼<:KFD<KIP �@,<Ĕ�, 9th Photon
Conference, Birmingham, United Kingdom (talk)

4. Nahmad-Rohen A, Regan D, Borri P & Langbein W (2019): -@DLCK8E<FLJ D<8JLI<

D<EK F= K?@:BE<JJ 8E; I<=I8:K@M< @E;<O F= C@G@; 9@C8P<IJ 9P @EK<I=<IFD<KI@: I<¼<:KFD<KIP,
32nd Focus on Microscopy Conference, London, United Kingdom (poster)

5. Nahmad-Rohen A, Regan D, Borri P & Langbein W (2019): "PG<IJG<:KI8C :F?<I

<EK ,8D8E @D8>@E> F= :F<O@JK@E> ;FD8@EJ @E J@E>C< C@G@; 9@C8P<IJ, 32nd Focus on Mi-
croscopy Conference, London, United Kingdom (talk)

6. Nahmad-Rohen A (2019): .?<FI<K@:8C 8E; <OG<I@D<EK8C JKL;P F= C@G@; 9@C8P<I FGK@:J,
1st Latin-American Research Symposium, Cardiff, United Kingdom (talk)


