
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/13 1 2 6 4/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Cr e e t h ,  H.  D. J. a n d  John,  R. M. 2 0 2 0.  The  pl ac e n t al  p ro g r a m min g  hypo t h e sis:

plac e n t al  e n doc rin e  insufficie ncy a n d  t h e  co-occ u r r e nc e  of low bi r t h  w eig h t  a n d

m a t e r n al m oo d  diso r d e r s .  Pl ac e n t a  9 8  , p p .  5 2-5 9.  1 0.10 1 6/j.place n t a .20 2 0.0 3.0 11  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.10 1 6/j.plac e n t a .2 02 0.03.01 1  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



 1 

The Placental Programming Hypothesis: Placental endocrine insufficiency and the co-1 

occurrence of low birth weight and maternal mood disorders 2 

Creeth, HDJ and John, RM*. 3 

 4 

Biomedicine Division, School of Biosciences, Cardiff University, Cardiff, UK, CF10 3AX, UK. 5 

*Corresponding author: JohnRM@cf.ac.uk 6 

 7 

 8 

Abstract 9 

Polypeptide hormones and steroid hormones, either expressed by the placenta or dependant 10 

on the placenta for their synthesis, are key to driving adaptations in the mother during 11 

pregnancy that support growth in utero. These adaptations include changes in maternal 12 

behaviour that take place in pregnancy and after the birth  to ensure that offspring receive 13 

appropriate care and nutrition. Placentally-derived hormones implicated in the programming 14 

of maternal caregiving in rodents include prolactin-related hormones and steroid hormones. 15 

Neuromodulators produced by the placenta may act directly on the fetus to support brain 16 

development. A number of imprinted genes function antagonistically in the placenta to regulate 17 

the development of key placental endocrine lineages expressing these hormones. Gain-in-18 

expression of the normally maternally expressed gene Phlda2 or loss-of-function of the 19 

normally paternally expressed gene Peg3 results in fewer endocrine cells in the placenta, and 20 

pups are born low birth weight. Importantly, wild type dams carrying these genetically altered 21 

pups display alterations in their behaviour with decreased focus on nurturing (Phlda2) or 22 

heightened anxiety (Peg3). These same genes may regulate placental hormones in human 23 

pregnancies, with the potential to influence birth weight and maternal mood. Consequently, 24 

the aberrant expression of imprinted genes in the placenta may underlie the reported co-25 

occurrence of low birth weight with maternal prenatal depression. 26 
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Introduction 38 

Women are at high risk of developing mood symptoms in pregnancy with one in seven women 39 

reporting clinically concerning symptoms of depression [1-3]. Depression in pregnancy is 40 

commonly comorbid with anxiety [4] and these mood disorders have both been linked to a 41 

higher risk of low birth weight and difficulties in infant development including emotional and 42 

behavioural problems, cognitive impairment and psychopathology [5]. Despite considerable 43 

epidemiological data reporting links between these exposures and outcomes, the 44 

underpinning biological mechanisms are unknown nor can we currently predict specific 45 

outcomes. Progress is hampered because the causes and consequences of maternal mood 46 

disorders are complex. There are multiple environmental and genetic components, exposure 47 

can be prenatal and/or postnatal, and many studies rely on questionnaires completed by 48 

mothers whose perceptions may be impacted by depression [6, 7]. The prevalent explanation 49 

for the co-occurrence of mood disorders in pregnancy and adverse outcomes for children is 50 

that the mood disorders drive changes in the fetus altering the health trajectory of the child, 51 

known as “fetal programming” [8]. However, we suggest an alternative mechanism, supported 52 

by recent data from our experimental animal studies [9, 10], which is that placental endocrine 53 

insufficiency alone causes both the mood disorder and the adverse outcomes – which we refer 54 

to as the “placental programming hypothesis”  (FIG 1). This hypothesis fits some aspects of 55 

the epidemiology of pregnancy, but has not been directly tested in clinical studies. Importantly, 56 

this placental mechanism does not exclude the possibility of changes to the fetus driven by 57 

other adversities or indeed by placental endocrine insufficiency.  58 

 59 

Maternal behaviour 60 

The placenta is a fetally-derived organ fundamental to pregnancy [11, 12]. In addition to 61 

transporting nutrients and moderating fetal exposure to maternal factors, the placenta is a 62 

super-endocrine organ involved in manufacturing vast quantities of polypeptide and steroid 63 

hormones to induce and maintain maternal adaptations in pregnancy, and prepare the mother 64 

for her role in caring for her infant [12]. In rodents, maternal adaptations during pregnancy 65 

include changes in behaviour such as increased appetite, increased anxiety and altered nest 66 

building and grooming. The greatest changes take place after birth with mothers focused on 67 

nurturing their offspring, providing food, warmth, shelter and protection [13]. Both virgin 68 

females and male rodents can assume parental behaviour but this response requires several 69 

days of exposure to the pups in order to be initiated. In contrast, new mothers are already 70 

primed by hormonal exposures during pregnancy to respond immediately to the presence of 71 

their offspring. Inappropriate maternal behaviour may result from intrinsic deficiencies in the 72 

mother, as has been reported in many genetically modified mouse models, or as a 73 

consequence of placental endocrine insufficiency [9, 10].  74 
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 75 

Placental hormones implicated in the induction of maternal behaviour 76 

Key hormones involved in pregnancy-associated behaviours are the lactogenic hormones 77 

pituitary prolactin and prolactin-related hormones manufactured by the placenta, sometimes 78 

referred to as placental lactogens (see later). Prolactin is secreted from the pituitary to act 79 

locally on the maternal brain whereas the placentally-derived lactogenic hormones are thought 80 

to gain access to the maternal brain via the cerebrospinal fluid [14]. Key studies in rodents 81 

have experimentally demonstrated the importance of lactogenic signalling for maternal 82 

behaviour. These studies involved the infusion of prolactin or placental lactogen directly into 83 

the brains of non-pregnant animals which resulted in the stimulation of aspects postpartum 84 

maternal behaviour such as pup retrieval [14-19]. Conversely, experimentally-induced low 85 

levels of prolactin in pregnancy have been linked to increased postpartum anxiety and 86 

decreased pup retrieval [20]. Lactogenic hormones are thought to mediate their activity, at 87 

least in part, via the maternal prolactin receptor (Prlr) [21]. Loss of function of Prlr in mice was 88 

shown to result in a deficit in maternal behaviour [22, 23] and, more precisely, loss of function 89 

of Prlr restricted to the medial preoptic area of the brain [24]. Signalling via Prlr is also required 90 

for the pregnancy-related increases in neurogenesis that take place within the subventricular 91 

zone, one of three regions of the brain where neurogenesis persists in adults [23, 25]. 92 

Lactogenic activity may impact pregnancy-related changes in neurogenesis in the subgranular 93 

zone located within the hippocampus [26, 27] but it is not known whether these hormones 94 

stimulate neurogenesis in the hypothalamus during pregnancy [28, 29]. Prolactin-related 95 

hormones expressed by the placenta are known to stimulate the production of the steroid 96 

hormones progesterone and oestrogens, which in mice requires steroidogenic enzymes 97 

expressed in the ovary [30, 31]. Steroid hormones are expressed throughout pregnancy and 98 

their combined action at term is critical in priming maternal caregiving [32]. The mouse 99 

placenta is potentially a direct source of neuromodulators implicated in maternal behaviour 100 

including dopamine [33-35], oxytocin [36-38], vasopressin [39] and serotonin [40]. These 101 

hormones are either directly expressed in the placenta or components of their synthesis 102 

pathways are expressed in the placenta [10]. The levels of expression are uniformly low [10]. 103 

However, placentally-derived serotonin has been shown to functionally impact fetal brain 104 

development [41-44] which suggests these hormones could target the offspring’s brain rather 105 

than the mother’s.  106 

 107 

Sites of placental hormone production in the placenta 108 

In mice there are 22 prolactin-related hormones expressed primarily from the placenta [45]. 109 

The considerable variation in expression levels of these placental hormones in the mature 110 

mouse placenta suggests some likely only function locally whereas others function as 111 
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endocrine signals to the mother, and potentially also the fetus although this has not been 112 

demonstrated experimentally. Many prolactin-related hormones are not formally considered 113 

to have lactogenic activity (placental lactogens) as they do not appear to have the ability to 114 

bind Prlr. Only prolactin family 3, subfamily d, members 1-3 (Prl3d1-3 aka PL-I) and prolactin 115 

family 3, subfamily b, member 1 (Prl3b1 aka PL-II) are known to signal via Prlr [21]. The major 116 

source of placental lactogenic activity in the first half of pregnancy are the primary and 117 

secondary parietal trophoblast giant cells (P-TGCs) [45] (FIG 2A). Primary P-TGCs arise 118 

directly from trophectoderm cells located opposite to the inner cell mass at the time of 119 

implantation whereas secondary P-TGCs arise from a region called the ectoplacental cone 120 

which is  derived from the layer of trophectoderm located over the inner cell mass [46, 47]. 121 

Both primary and secondary TGCs express Prl3d1-3, with highest expression from embryonic 122 

day (E) 6.5 to E9.5 [45].  The mature mouse placenta, which forms at around E9.5, is 123 

organised into three histological distinct regions: the maternally-derived decidual component, 124 

and the fetally-derived junctional and the labyrinth zones (FIG 2B). Placental hormones are 125 

expressed from seven distinct and identifiable lineages which include the glycogen cell lineage 126 

and spongiotrophoblast lineage which form the bulk of the junctional zone, and five TGC 127 

subtype (parietal-, canal-, channel-, spiral artery- and sinusoidal-) located in close contact with 128 

maternal cells [48-51]. Prl3b1 is expressed from all of these lineages except the glycogen cell 129 

lineage and the spiral artery-TGCs [45]. The spongiotrophoblast lineage is the most  130 

substantial endocrine lineage to express Prl3b1 in terms of cell number with an estimated 6.23 131 

× 106 cells present by E16.5 [52]. In addition to prolactin-related hormones, the 132 

spongiotrophoblast lineage expresses pregnancy specific glycoproteins (Psgs), a multigene 133 

gene family that contribute to the protection of the semiallotypic fetus from the maternal 134 

immune system and are involved in remodelling placental and maternal vasculature [53]. The 135 

spongiotrophoblast is therefore the major endocrine lineage of the mouse placenta. 136 

 137 

Regulation of placental hormone production by imprinted genes 138 

Individual placental hormones have been genetically targeted to study their function in the 139 

placenta. Targeted deletion of the prolactin-related genes Prl4a1 [54] and Prl7b1 [55] have 140 

minor effects on the placenta under normal conditions but major effects in response to 141 

stressors such as hypoxia. Targeted deletion of Prl7d1 results in a reduction of the labyrinth 142 

and gain in the junctional zone with a sex specific increase in the number of glycogen cells in 143 

the male placenta [56]. Placental hormone levels can be manipulated en mass through the 144 

genetic modification of imprinted genes which regulate the number of placental cells 145 

expressing hormones [57]. Genomic imprinting describes genes expressed only from one 146 

parental allele as a consequence of epigenetic marks acquired in the germline [58]. Imprinting 147 

is thought to have evolved in mammals in response to the conflict imposed by pregnancy and 148 
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lactation, with maternal contributions to offspring significantly exceeding paternal contributions 149 

[59]. Given the function of placental hormones in ensuring nutrient allocation to the fetus, it is 150 

not surprising that genomic imprinting has influenced the expression of these hormones. 151 

Placental hormones can be directly imprinted, as is the case for one prolactin-related gene 152 

expressed in the placenta of the new world mouse, Peromyscus [60]. Expression of placental 153 

hormones is also indirectly regulated by imprinting because several genes controlling the 154 

development of the placental endocrine lineages are imprinted [57]. One of these genes is the 155 

maternally expressed/paternally silenced Pleckstrin Homology-Like Domain, Family A, 156 

Member 2 (Phlda2) gene. Loss-of-imprinting of Phlda2 (two-fold increased expression) 157 

reduces the contribution of the spongiotrophoblast lineage to the mature placenta by ~50% 158 

[61, 62]. Loss-of-expression of Phlda2 results in a two-fold expansion of this lineage [62]. As 159 

the spongiotrophoblast lineage expresses a number of prolactin-related hormones [45, 48], 160 

these manipulations decrease or increase, respectively, all the genes expressed from this 161 

lineage, which include Prl3b1 [62]. The maternally expressed/paternally silenced Achaete-162 

scute complex homolog 2 (Ascl2 aka Mash2) is required for the proper formation of placental 163 

endocrine lineages [63, 64] and overexpression of this gene functions to restrict the expansion 164 

of both the P-TGCs and the spongiotrophoblast [65]. A third maternally expressed/paternally 165 

silenced gene, Cyclin dependent kinase inhibitor 1c (Cdkn1c), functions to prevent over 166 

proliferation of a number of placental lineages [66] and is specifically required for the proper 167 

differentiation of the spongiotrophoblast and the S-TGCs [67]. While maternally 168 

expressed/paternally silenced genes primarily act to constrain the production of placental 169 

hormones, paternally expressed/maternally silenced genes appear to function antagonistically 170 

to promote placental signalling. Loss-of-imprinting (two-fold expression) of the paternally 171 

expressed/maternally silenced Insulin-like growth factor 2 (Igf2) gene results in a larger 172 

labyrinth region with double the number of glycogen cells and more than double the number 173 

of P-TGCs, although with no effect on the spongiotrophoblast [68]. Loss-of-expression of 174 

Paternally expressed gene 3 (Peg3) results in 50% fewer spongiotrophoblast cells and 40% 175 

fewer glycogen cells in male mutant placenta with female mutant placenta having a 176 

significantly attenuated placental lineage phenotype, with fewer overall changes in the 177 

expression levels of individual placental hormones [69]. Peg3 is known to function as a 178 

transcriptional repressor of a subset of placental hormone genes with loss of function resulting 179 

in increased expression in the brain [70]. As Peg3 encodes a positive regulator of placental 180 

lineage development and a negative regulator of a subset of placental hormones, loss-of-181 

expression of Peg3 in the placenta simultaneously decreases in the number of cells 182 

expressing hormones and increases the expression of a subset of hormones from the 183 

remaining cells [69]. Because of this sexual dimorphism, the more severe loss of placental 184 

cells in the male placenta is not counterbalanced by increased expression of some hormones 185 
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whereas in the female placenta fewer cells are lost and some hormones are expressed overall 186 

at higher than normal levels. As previously reviewed, there are a number of other genes 187 

paternally silenced by virtue of their location on the paternally inactivated X chromosome that 188 

regulate placental endocrine lineages [12]. The finding that several imprinted genes control 189 

the production of placental hormones by modulating the number of endocrine cells in the 190 

placenta has provided a tool to experimentally assess the function of placental hormones in 191 

inducing maternal behaviour, predicted by many indirect experiments.  192 

 193 

Impact of different doses of Phlda2 in the placenta on the behaviour of wild type dams 194 

Phlda2 is considered a negative rheostat for placental hormones because two-fold expression 195 

of Phlda2 results in a 50% loss of the spongiotrophoblast lineage whereas loss-of-expression 196 

of Phlda2 (maternal inheritance of Phlda2 targeted allele) results in a substantial 200% 197 

increase in the spongiotrophoblast lineage [62]. This rheostat function provided a system to 198 

test the behavioural consequences on dams after exposure to different levels of 199 

spongiotrophoblast-expressed placental hormones [10]. In this study, embryos expressing 200 

different doses of Phlda2, obtained by mating genetically modified parents, were surgically 201 

transferred into pseudopregnant wild type female mice (recipient transfer) to generate 202 

genetically wild type dams carrying offspring with either two active alleles (loss-of-imprinting; 203 

low hormone levels), one active allele (normal imprint; normal hormone levels) or no active 204 

allele (loss of maternal allele; high hormone levels) of Phlda2. Dams exposed to either 205 

abnormally low or abnormally high levels of placental hormones showed gene changes in the 206 

hypothalamus, important for the onset, maintenance and regulation of maternal behaviour, 207 

and the hippocampus, important for memory, learning and responses to fear and stress [71]. 208 

Alterations in G protein-coupled receptors (GPCR) pathways, olfactory transduction pathways 209 

and the gonadotropin-releasing hormone signalling pathway were consistent with the maternal 210 

brain responding to the different levels of placental hormones. Importantly, these changes 211 

were present before the dams gave birth. After birth, dams were able to care for their 212 

newborns, effectively make nests and gather their pups within the nest, and all pups gained 213 

weight indicative of adequate maternal caregiving. However, when the dams were challenged 214 

with either a pup retrieval task or a nest building task, those exposed to the highest levels of 215 

placental hormones in pregnancy performed less well than either the control group or the 216 

dams exposed to the lowest levels of hormones. In the disturbed situation (nest building task) 217 

dams exposed to the lowest levels of placental hormones prioritised nest building, neglecting 218 

their pups and themselves. In contrast, dams exposed to the highest levels of placental 219 

hormones prioritised caring for their pups and self-directed nurturing over the nest building. 220 

The presence of pups is important for the manifestation of maternal behaviour and any 221 

mutation impacting pup characteristics has the potential to result in a secondary effect on 222 
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maternal behaviour [13, 72]. From birth pups begin communicating to their mothers using 223 

clicks and whistles. These ultrasonic vocalisations (USVs) increase in intensity and frequency 224 

when pups are separated from their mothers - hence the alternative and more forlorn term - 225 

“whistles of loneliness”  [73]. USVs are known to induce maternal behaviours such as nest 226 

building, pup retrieval and nursing [74-77]. However, no difference in USVs was noted for the 227 

Phlda2 mutant pups. Moreover, exposed dams continued to exhibit heightened maternal 228 

caregiving when presented with wild type pups taken from a different litter indicating the 229 

prenatal programming of behavioural changes. Together, these data indicate that hormones 230 

expressed from the spongiotrophoblast lineage play an important role in determining the 231 

priorities of the new mother. These experiments did not identify the specific hormone 232 

modulating maternal caregiving. Previous studies suggest that candidate is likely to be Prl3b1 233 

[22, 23], but it is possible that other hormones are involved. Irrespective of the exact hormone, 234 

this was the first physiologically relevant experiment to demonstrate that the integrity of the 235 

placental endocrine compartment is importance for maternal caregiving. In this experiment, 236 

placental endocrine insufficiency was found to result in suboptimal maternal care, at least 237 

during stressful situations. Two-fold expression of Phlda2 has previously been demonstrated 238 

to restrict fetal growth resulting in asymmetric low birth weight [78]. This model therefore 239 

combines placental endocrine insufficiency with low birth weight and suboptimal maternal care 240 

(FIG 3). 241 

 242 

Regulation of Phlda2 243 

Phlda2 is a maternally expressed imprinted gene which is not directly DNA methylated either 244 

in the germline or somatic tissues [79, 80]. Allelic expression is established through a germline 245 

acquired DNA methylation imprint which occurs more that 200 kilobases away from Phlda2 246 

[81] and is maintained by repressive histone modifications [82]. Expression of PHLDA2 in 247 

primary term human trophoblasts is reduced under conditions of hypoxia [83] and potentially 248 

increased in human placenta in relation to smoking [84] and strenuous exercise [85]. In animal 249 

models, increased placental Phlda2 has been reported in response to maternal alcohol [86] 250 

and maternal undernutrition in the form of low protein diet before and during pregnancy [87]. 251 

Consequently, there is potential for expression of Phlda2 to be modulated by environmental 252 

factors that act on the normally active maternal allele or potentially relax silencing of the 253 

paternal allele, to then influence the production of placental hormones. 254 

 255 

Impact of loss-of-expression of Peg3 in the placenta on the behaviour of wild type dams 256 

Peg3 functions antagonistically to Phlda2 as loss-of-expression (paternal inheritance of 257 

Phlda2 targeted allele) results in a substantial 50% decrease in the spongiotrophoblast lineage 258 

[69]. Peg3 is one of many genes where disruption in the dam results in a maternal care deficit 259 
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[88]. However, loss of function of Peg3 in the placenta also appears to have consequences 260 

for maternal behaviour [9]. In this study natural matings were used to generate all wild type 261 

pregnancies and pregnancies where the dam was wild type but all the pups were 262 

heterozygous for paternal loss-of-expression of Peg3. No detectable differences in 263 

transcriptional signature of the maternal hypothalamus or the hippocampus were present four 264 

days before birth, in contrast to the Phlda2 model where wild type dams showed changes in 265 

both these regions of the maternal brain at the same point in pregnancy [10]. During the 266 

pregnancy, there were no differences in nest building, anxiety-related behaviour or locomotor 267 

activity but pregnant dams carrying Peg3 mutant fetuses travelled significantly less distance 268 

when first transferred to a novel environment. After the pups were born, dams caring for 269 

mutant pups were slower to sniff and to retrieve pups. Dams were equally good at making 270 

nests and there were no changes in pup-directed behaviour or self-directed behaviours during 271 

the distracting nest building task. Also, in contrast to the Phlda2 model, dams mothering 272 

mutant Peg3 pups displayed heightened anxiety-related behaviour. Peg3 mutant pups were 273 

found to call less to their mothers, with a significant decrease in USVs. This deficit in 274 

communication may underlie the delay in pup retrieval and potentially also the heightened 275 

anxiety. However, the subtle changes in maternal behaviour that were detectable before the 276 

pups were born indicate some element of prenatal programming by the placenta. More 277 

extreme changes may not have been observed in this model due to the sexually dimorphic 278 

impact of loss of expression of Peg3 in the placenta [69] with the presence of the less impacted 279 

female placentas compensating for the defect in the male placenta. Currently, it is not possible 280 

to test this hypothesis as mouse litters are composed of both males and females. It will also 281 

be important to determine to what extent the placental defect versus the communication deficit 282 

contribute to the altered maternal behaviour after birth.  Nonetheless, this is a second example 283 

where placental endocrine insufficiency [69] is found in combination with low birth weight [88] 284 

and alterations in maternal behaviour (FIG 3). Appropriate expression of Peg3 in the brain and 285 

the placenta is therefore important for maternal behaviour. 286 

 287 

Humans 288 

These studies in mice highlight the functional importance of placental hormones in the 289 

induction of maternal caregiving, and the potential for placental endocrine insufficiency to 290 

contribute to suboptimal maternal care and anxiety, at least in mice. This raises the possibility 291 

that placental endocrine insufficiency could contribute to mood symptoms in a human 292 

pregnancy as a consequence of the mis-priming of the mother’s brain. There are clear and 293 

significant differences between mice and humans in their placentae [89] (FIG2 C). The human 294 

and mouse placenta are both haemochorial with the fetally-derived trophoblast cells in direct 295 

contact with the maternal blood and with cells that invade the maternal uterine wall but they 296 
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do not have the same morphologically equivalent structures [47]. Mouse placenta are 297 

composed of three major regions whereas human placenta possess villi bathed by maternal 298 

blood located in an intervillous space. Villi are composed of a single outermost layer of 299 

syncytiotrophoblast cells over a layer of villous cytotrophoblast cells both of which encase a 300 

core of mesenchymal cells, fetal blood vessels and Hofbauer cells with some similarity to the 301 

mouse labyrinth zone. Cytotrophoblast cell columns protrude from these villi, anchoring them 302 

to the maternal decidua. At the end of these columns there are extravillous cytotrophoblast 303 

cells which are an invasive cell type with potential similarity to mouse spiral artery trophoblast 304 

giant cells. The syncytiotrophoblast layer is the major site of the synthesis and secretion of 305 

placental hormones [90, 91] and recent single cell RNAseq analysis identified the extravillous 306 

cytotrophoblast as another a major site for the production of hormones [92].  307 

 308 

Both the mouse and human placenta express hormones related to prolactin, which shares an 309 

ancestral gene with growth hormone. In mice these are the 22 prolactin family members which 310 

arose from duplication of the prolactin gene whereas in humans four genes expressed in the 311 

placenta arose from duplication of the growth hormone gene which are chorionic 312 

somatomammotropin 1 (CSH1; aka hPL-A), chorionic somatomammotropin 2 (aka hPL-B), 313 

chorionic somatomammotropin like hormone (CSHL; aka hPL-L) and placental growth 314 

hormone (pGH; aka growth hormone variant; GH-V) [93, 94]. References to these hormones 315 

in the literature can be confusing due to the generic term “placental lactogen” which is refers 316 

to hPL-A/B in humans and to Prl3d1-3 or Prl3b1 in rodents, defined by the ability of these 317 

hormones to signal via Prlr. 318 

 319 

In rodents prolactin secretion from the pituitary is stimulated by the act of mating and provides 320 

the major lactogenic activity for the first half of pregnancy [95, 96]. As the placental lineages 321 

develop and expand, prolactin is replaced by Prl3d1-3 and then /Prl3b1 from mid-gestation 322 

until just prior to delivery [45] when there is a second surge in prolactin [97]. In contrast, in a 323 

human pregnancy prolactin and placental lactogen appear to increase linearly throughout 324 

pregnancy [98, 99] albeit with hPL present at higher levels than prolactin in maternal serum at 325 

term (5–7 vs. 0.15–0.18 µg/ml)  [93].  326 

 327 

Like the mouse placenta, the human placenta has the capacity to synthesis neuromodulators 328 

[92]. However, in contrast to the mouse, the human placenta directly synthesise progesterone 329 

and oestrogens through expression of steroidogenic enzymes.  330 

 331 

Evidence for placental endocrine insufficiency in maternal mood disorders 332 
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Maternal serum hPL levels and placental hPL expression have previously been shown to be 333 

significantly reduced in pregnancies complicated by fetal growth restriction [100, 101] which 334 

can co-occur with prenatal depression and anxiety. Similarly, low hPL has been reported in 335 

association with maternal obesity [102, 103] which is a risk factor for depression and anxiety 336 

in pregnancy [104]. We reported significantly lower levels of maternal serum hPL in 337 

pregnancies where mothers gave birth to small for gestational age infants, alongside higher 338 

expression of PHLDA2 in placenta [105] consistent with our observations in the mouse model. 339 

Low levels of maternal serum prolactin have been reported in human mothers with postnatal 340 

depression symptoms [106, 107] and increased levels in mothers with lower anxiety symptoms 341 

during pregnancy [108]. We reported lower placental hPL expression in prenatal depression 342 

[109]. In this study we reported lower placental expression of PEG3 in male infants [109]. More 343 

recently, we have reported that lower serum hPL at term is associated with higher symptoms 344 

of postnatal depression and anxiety exclusively in mothers of girls [110]. In the context of our 345 

findings in mouse models, these data suggest that insufficiency in hPL can contribute to 346 

maternal mood symptoms in a human pregnancy. Higher levels of placental corticotrophin 347 

hormone, which acts via the pituitary to stimulate release of cortisol (stress hormone) from the 348 

maternal adrenal gland, have been associated with postpartum depression [111]. While 349 

evidence for the involvement of steroid hormones in depressive or anxiety mood disorder is 350 

conflicting lower levels of allopregnanolone, a neuroactive metabolite of progesterone, have 351 

been associated with a lower risk of developing postpartum depression [112]. 352 

 353 

Conclusion 354 

In conclusion, studies in mice directly demonstrate that placental endocrine insufficiency can 355 

lead to low birth weight, alterations in maternal behaviours and increased anxiety symptoms.  356 

Indirect evidence suggests the potential for placental endocrine insufficiency to contribute to 357 

low birth weight and mood symptoms in human pregnancies, potentially explaining their 358 

observed co-occurrence. However, only a comprehensive assessment of the full repertoire 359 

of hormone-related genes from pregnancies impacted by prenatal depression and anxiety 360 

will fully address this question. 361 
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FIGURE LEGENDS 675 

 676 

Figure 1. Placental programming hypothesis. Both the fetus and the placenta are exposed 677 

to adversities in pregnancy. Adversities driving changes in the endocrine function of the 678 

placenta may impact fetal growth through reduced nutrient supply resulting in low birth weight. 679 

Placental endocrine insufficiency may also prevent the appropriate adaptations of the 680 

maternal brain required for motherhood manifesting as symptoms of depression and anxiety. 681 

Continued exposure of the offspring to maternal mood symptoms may further contribute to 682 

poor outcomes for children. 683 



 17 

 684 

Figure 2. Placental endocrine lineages. A. In mice, the major source of placental lactogenic 685 

activity between embryonic day (E6.5) and E9.5 is encoded by the prolactin-related Prl3d1-3 686 

genes expressed most highly in the primary and secondary parietal trophoblast giant cells. B. 687 

From E9.5 to term in mice, the major source of lactogenic activity is Prl3b1 expressed in seven 688 

placental lineages including the spongiotrophoblast. C. In human placenta, the major source 689 

of lactogenic hormones are the syncitiotrophoblast and the extravillus cytotrophoblast which 690 

express genes encoding human placental lactogen (CSH1/hPL-A and CSH2/hPL-B) 691 

 692 

Figure 3. Imprinted genes modulate the production of placental hormones. Studies in 693 

mice suggest that the silencing of genes in the male germline may have increased the number 694 
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of cells expressing placental hormones, and increased care provision by the mother to the 695 

offspring.  Conversely, silencing of imprinted genes in the female germline may have limited 696 

the number of cells expressing placental hormones, potentially to preserve maternal resources 697 

for subsequent pregnancies. Placental endocrine insufficiency in mice results in low birth 698 

weight, suboptimal maternal care and maternal anxiety  699 

 700 

 701 
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