
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/131318/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Qin, Yugen, Xia, Qiufen, Xu, Zichuan, Zhou, Pan, Galis, Alex, Rana, Omer F. , Ren, Jiankang and Wu,
Guowei 2020. Enabling multicast slices in edge networks. IEEE Internet of Things 7 (9) , pp. 8485-8501.

10.1109/JIOT.2020.2991107

Publishers page: http://dx.doi.org/10.1109/JIOT.2020.2991107

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

1

Enabling Multicast Slices in Edge Networks
Yugen Qin, Qiufen Xia∗, Member, IEEE, Zichuan Xu, Member, IEEE, Pan Zhou, Member, IEEE,

Alex Galis, Member, IEEE, Omer F. Rana, Senior Member, IEEE, Jiankang Ren, Member, IEEE,

Guowei Wu.

Abstract—Telecommunication networks are undergoing

a disruptive transition towards distributed mobile edge net-

works with virtualized network functions (VNFs) (e.g., fire-

walls, Intrusion Detection Systems (IDSs), and transcoders)

within the proximity of users. This transition will enable

network services, especially IoT applications, to be provi-

sioned as network slices with sequences of VNFs, in order to

guarantee the performance and security of their continuous

data and control flows. In this paper we study the problems

of delay-aware network slicing for multicasting traffic of

IoT applications in edge networks. We first propose exact

solutions by formulating the problems into Integer Linear

Programs (ILPs). We further devise an approximation

algorithm with an approximation ratio for the problem

of delay-aware network slicing for a single multicast slice,

with the objective to minimize the implementation cost of

the network slice subject to its delay requirement constraint.

Given multiple multicast slicing requests, we also propose

an efficient heuristic that admits as many user requests

as possible, through exploring the impact of a non-trivial

interplay of the total computing resource demand and

Y. Qin, Z. Xu, and G. Wu are with the School of Software, Q. Xia is
with the International School of Information Science and Engineering,
Dalian University of Technology, and the Key Laboratory for Ubiquitous
Network and Service Software of Liaoning Province, China, 116621. E-
mails: qyg@mail.dlut.edu.cn, z.xu@dlut.edu.cn, wgwdut@dlut.edu.cn,
qiufenxia@dlut.edu.cn

P. Zhou is with Hubei Engineering Research Center on Big Data
Security, School of Cyber Science and Engineering, Huazhong Uni-
versity of Science & Technology, Wuhan, 430074, China. Email:
panzhou@hust.edu.cn.

A. Galis is with Department of Electronic and Electrical Engineer-
ing, Torrington Place, London WC1E 7JE, United Kingdom. Email:
a.galis@ucl.ac.uk.

J. Ren is with the School of Computer Science and Technology,
Dalian University of Technology, Dalian, Liaoning, China, 116024.
Email: rjk@dlut.edu.cn.

O. F. Rana is with the Cardiff University, United Kingdom. Email:
RanaOF@cardiff.ac.uk.

* Corresponding author: Qiufen Xia. Email: qiufenxia@dlut.edu.cn.

delay requirements. We then investigate the problem of

delay-oriented network slicing with given levels of delay

guarantees, considering that different types of IoT applica-

tions have different levels of delay requirements, for which

we propose an efficient heuristic based on Reinforcement

Learning (RL). We finally evaluate the performance of

the proposed algorithms through both simulations and

implementations in a real test-bed. Experimental results

demonstrate that the proposed algorithms is promising.

Index Terms—Network slicing; multicasting; Internet of

Things; network function virtualization; throughput maxi-

mization; cost minimization; approximation algorithms.

I. INTRODUCTION

With the development of the Internet of Things

(IoT) technique, IoT applications (eg., automatic driving

applications, smart home applications, and mobile phones

applications) are emerging as the major services of mobile

users. One fundamental functionality of IoT applications

is multicast that transfers data from a source node to a

given set of destinations [20], [36]. For example, a power

distribution company in Australia, Energy Queensland,

has a system that reduces peak demand for power by

remotely turning off consumers’ hot water systems via a

small device installed in their meter box and controlled

over their network [20]. On one hand, the data collected

by such meter boxes need to be multicasted to different

control stations for processing and decision. On the other

hand, the control commands needs to be multicasted to

many meter boxes. In addition, in virtual reality(VR)

2

games, multiple VR headsets may need to transfer their

data to a nearby 5G base station for processing and the

processed data (or gaming data) need to be multicasted

to multiple players.

To guarantee the security and performance of multicast-

ing for IoT applications, a variety of intermediary network

functions, e.g., firewalls, Intrusion Detection Systems

(IDSs), proxies, and WAN optimizers, are deployed in

the network. For example, video processing applications

usually need various network functions, e.g., video

decoding, motion detection, video frame enhancement,

object detection shadow network, and object recognition

deep network, to process the videos before multicasting

them to users [37], [40]. Such a sequence of network

functions can be considered as a network service chain.

Conventional network functions are usually implemented

in dedicated hardware, making it very expensive and

inflexibly to achieve the benefits of network functions.

Network Function Virtualization (NFV) [3], [4], [13],

[29], [48], [49] is emerging as a promising paradigm that

provides inexpensive and flexible network services, by

implementing network functions as software running in

Virtual Machines (VMs) or containers. In this paper,

we consider the implementation of network services

for multicast applications in an edge network, where

each multicast request requires to process its traffic by

a network slice consisting of a sequence of Virtualized

Network Functions (VNFs) before reaching its set of

destinations.

There are many challenges of slicing the edge network

for multicast requests in IoT applications, which are

referred to as multicast slices in edge networks [2], [8].

First, users of IoT applications have end-to-end delay

requirements to guarantee that their traffic reaches their

destinations in almost real-time. The experienced delay

of multicast requests depends on the locations that host

network slices. Naive placement of multicast slices into

edge locations that are far away from its multicast group

members may incur a prohibitive long delay. Second, each

multicast slice has multiple VNFs to process its traffic,

and such VNFs can be placed into multiple cloudlets for a

better delay or lower implementation cost. This brings the

difficulties of multicast slicing into a new dimension, as

different combinations of the VNFs in a multicast slice

can increase the solution space dramatically. Specific

challenges include (1) how to jointly find one or multiple

cloudlets to implement the VNFs of a network slice and a

multicast tree for each incoming multicast request, subject

to the computing demands and delay requirements of

requests, (2) how to smartly determine the combinations

of VNFs of a multicast slice that can be placed together

into a single cloudlet, such that the cost of implementing

the request is minimized while its delay requirement

is met, (3) given a set of multicast groups without the

knowledge of the multicast requests in each group, how

to smartly determine the number of slices of different

delay-guarantees is a key problem in the edge network,

and (4) how to devise an approximation algorithm with

a provable approximation ratio to minimize the cost of

implementing each admitted multicast request, such that

the distance of the approximate solution to the optimal

one is bounded.

Most studies on multicasting in conventional networks

or software-defined networks do not consider the service

chain requirement of each user request [18], [19], [56],

[57]. The solutions of these studies thus cannot be directly

applied to NFV-enabled multicasting, due to the lack of

efficient methods of jointly finding locations for VNFs

and multicast trees. There are a few recent studies on

NFV-enabled multicasting problem. For example, Zhang

et al. [56], [57] investigated the NFV-enabled multicast

problem by assuming that there are sufficient computing

and bandwidth resources in an SDN to accommodate

a multicast request. Xu et al. [50] investigated the

3

problem of NFV-enabled multicasting, by devising an

approximation algorithm with a provable approximation

ratio for realizing a single NFV-enabled multicast request

and an online algorithm with a guaranteed competitive

ratio for the online NFV-enabled multicasting problem.

They however do not consider the delay requirements of

multicast requests. Although Ren, Xu, and Yu et al. con-

sidered the delay-aware NFV-enabled multicasting [54],

[43], [53], dynamic provisions of multicast slices with

different delay guarantees for different multicast groups

is ignored.

To the best of our knowledge, we are the first to

consider the problems of delay-aware network slicing

for multicast requests in edge networks with the aim

to either minimize its implementation cost or maximize

the network throughput. The major contributions of this

paper are summarized as follows.

• We give optimal solutions to the delay-aware net-

work slicing problems by formulating them into

Integer Linear Programs (ILPs).

• We then devise the very first approximation al-

gorithm with an approximation ratio of 1 + ε

for minimizing the implementation cost of the

request, where ε is an accuracy in the approximation

algorithm that finds the delay-constraint shortest

path in a graph [25]. We also propose an efficient

heuristic for the delay-aware network slicing for

multicast in an edge network, if the cloudlets have

limited computing resource to implement the VNFs

of a given set of multicast requests arrived in the

system.

• Given a set of multicast groups without the knowl-

edge of their future requests, we consider the delay-

oriented network slicing problem with a set of given

levels of delay guarantees. We propose a dynamic

framework and a learning-based algorithm to dy-

namically adjust the number of different multicast

slices with different delay-guarantees in the system.

The rest of the paper is organized as follows. Section II

reviews the related work. Section III introduces the system

model, notations, and problem definitions. Section IV

proposes exact solutions for the delay-aware network

slicing problems. Section V devises an approximation

algorithm for the delay-aware network slicing for a single

multicast request without resource capacity constraints.

Section VI develops an efficient heuristic algorithm for

the delay-aware network slicing problem for multiple

multicast requests with resource constraints of cloudlets

in an IoT edge network. Section VII proposes a learning-

based heuristic for the delay-oriented network slicing

problem with levels of delay requirements in an IoT

edge network without the knowledge of future arrivals

of requests. Section VIII and Section IX evaluate the

performance of the proposed algorithms by both experi-

mental simulations and implementations in a real test-bed,

respectively. Section X concludes the paper and future

work.

II. RELATED WORK

Service chaining has gained much attention in the past

few years, it however still remains the most challenging

problems in the deployment and management of NFV-

enabled Software-Defined Networks (SDNs). In service

chaining, one fundamental question is how to chain

various instances of VNFs together to offer services for

users and how to route traffic among the VNFs. Therefore,

NFV-enabled routing and traffic steering have attracted

much attention from the literature [3], [4], [16], [17],

[19], [24], [27], [33], [49], [50], [55]. These studies can

be classified into two categories: (1) unicasting, and (2)

multicasting. For the investigations on unicasting, most

of them focus on hybrid networks with both hardware

and software network functions [33], online algorithm

4

design for dynamic networks [12], [24], [27], and delay-

awareness [22], by proposing exact solutions [24], ap-

proximation solutions [4], [52], heuristics [33], [49],

[52], online algorithms [19], or game theory based

solutions [6].

Most studies on QoS-aware multicasting focus on the

traffic steering in conventional wired or wireless networks,

and there exist many excellent solutions [1], [18], [19],

[32]. Recently, with the emerging of new networking

technologies such as SDN and NFV, multicasting has

re-gained the attention of many researchers, as the

application of traditional multicasting solutions is not a

straightforward process. Specifically, there are several

studies that focused on multicasting in SDNs [18],

[19]. Huang et al. [19] studied the online multicasting

in software-defined networks with both node and link

capacity constraints, by devising the very first online

algorithms with provable competitive ratios. Huang et

al. [18] studied the scalability problem of multicasting

in SDNs, by proposing an efficient algorithm to find

a branch-aware Steiner Tree (BST) for each multicast

request. These solutions however cannot be directly

applied to the problem of NFV-enabled multicasting in

cloud networks, because they ignore the service chain

requirements of multicast requests. Simple application of

these solutions may cause the traffic of multicast requests

being forwarded to destinations without being processed

by their service chains.

Studies that investigated network slicing and NFV-

enabled multicasting include the ones due to Leconte et

al. [23], Zhang et al. [56], [57], Xu et al [50], Soni

et al. [45], Ren et al. [41], [42], and Yu et al. [54].

Specifically, Leconte et al. proposed a resource allo-

cation framework for network slicing. Multicasting is

not considered in the paper. Zhang et al. [56], [57]

investigated the NFV-enabled multicasting problem in

an SDN without considering resource capacities in the

SDN. They assumed that data traffic of each multicast

request can only be processed by one server. Xu et

al. [50] considered the NFV multicasting problem by

assuming the traffic of each request can be processed by

multiple servers , as long as the implementation cost can

be improved. Approximation and online algorithms are

proposed. They however do not consider the chaining of

VNFs by assuming the VNFs in each service chain is

consolidated into a single cloudlet. Later, Xu et al. [53]

studied the problem of NFV-enabled multicasting by

considering the resource sharing among requests. Ren et

al. [41], [42] investigated the problem of embedding a

service graph that consisting instances of VNFs into the

substrate network. Soni et al. [45] proposed a scalable

multicast group management scheme and a load balancing

method for the routing of best-effort traffic and bandwidth-

guaranteed traffic. These studies however do not consider

the delay requirements of multicast requests.

III. PRELIMINARIES

In this section, we first introduce the system model,

notations and notions. We then define the problems

precisely.

A. System model

We consider an edge network G = (V,E) with a set

V of switches and cloudlets that are deployed within the

proximity of IoT service users. There is a set of cloudlets

in G that can implement various VNFs running on its

commodity servers, and a set E of links between switches

and the cloudlets. Let VCL (⊆ V) be the subset of

switches attached with cloudlets. Due to space limitation

of the places that deploy cloudlets, each cloudlet usually

has a computing capacity. Denote by Cv the computing

capacity of the cloudlet attached to switch v ∈ VCL.

There is a transmission delay in each link e ∈ E when

user traffic is transmitted via it. Let de be the delay of

5

transmitting a unit data traffic via link e ∈ E. Fig. 1 is an

example of the edge network for IoT applications, where

two multicast slices with delay guarantees are deployed

in G.

Fig. 1. An IoT edge network G and a multicast slice.

B. Multicast slices, multicast groups, and multicast

requests

We consider multicast requests that require to transfer

their traffic from a source node to a given set of

destinations. Each multicast request requires a network

slice to process its data traffic. Denote by rk a NFV-

enabled multicast request rk that can be represented by a

quadruple rk = (sk, Dk; bk, NSk), where sk ∈ V is the

source, Dk is the set of destinations Dk ⊆ V , bk is the

size of data that needs to be transferred to its destinations,

and NSk is the multicast slice of rk that consists of a

sequence of VNFs. We also consider the set of nodes

in sk ∪ {Dk} as a multicast group, denoted by G. Each

multicast group may have multiple multicast requests

with each having a member multicasting its traffic to the

rest members.

Assume that there are Lk VNFs in multicast slice

NSk of request rk, where 1 ≤ l ≤ Lk for each NSk.

To implement rk, its multicast slice NSk enforces every

message from source sk of rk to go through each VNF

fl ∈ NSk in the specified order prior to reaching

destinations in Dk, as illustrated in Fig. 1. To this end, the

VNFs of NSk must be assigned to cloudlets and chained

together. We assume that the VNFs of NSk may be

placed into multiple cloudlets, because a single cloudlet

may not have enough computing resource to implement

all VNFs of NSk. Denote by Cv(fl) the amount of

computing resource demanded by VNF fl to process

unit data traffic in cloudlet v ∈ VCL. The computing

resource demand of fl ∈ NSk thus is bk · Cv(fl), and

the total computing resource demand of request rk is

the accumulative resource demand of all the network

functions in its network slice NSk. To implement each

rk with NSk, its traffic needs to be transferred from

source sk to the placed VNFs of multicast slice NSk

and then multicasted to its destinations in Dk. Following

the study by Xu et al. [50], we adopt the concept of

a pseudo-multicast tree to refer to such a tree for each

multicast request rk. The reason is that the pre-processing

traffic and post-processing traffic of rk may share the

same links or switches. Such a tree is actually not a

traditional multicast tree. The pseudo-multicast tree is

used to describe the multicast tree that first transfers the

traffic from its source to the VNFs for processing and

then transfers the processed traffic to its destinations. In

the rest of the paper, we call a tree by either multicast

or pseudo-multicast tree, if no confusions arise.

C. Delay requirements of multicast requests

Multicast request rk requires to transfer an amount

bk of data to its destinations in Dk within a given

delay requirement. We here consider an end-to-end delay

of rk that is defined as the delay experienced by it

from its source sk to its destinations Dk, consisting

of the processing delay in each VNF fl ∈ NSk and

the transmission delays along the paths that transfer the

traffic from its source to the destinations. Let Tk be the

pseudo-multicast tree that transfers the data traffic.

6

For the processing delay, considering that the VNFs

in NSk may be placed into multiple cloudlets, the traffic

of rk will be forwarded to its destinations in Dk after

being processed by the final VNF in NSk, i.e., fLk
. Let

yk,l,v be a binary decision variable that shows whether

VNF fl ∈ NSk of rk is assigned to cloudlet v ∈ VCL
for processing. The processing delay dpk experienced by

request rk is

dpk =
∑

fl∈NSk

∑
v∈VCL

yk,l,v · dp(v, fl) · bk, (1)

where dp(v, fl) is the delay of processing a unit amount

of data by VNF fl in cloudlet v ∈ VCL.

The transmission delay in Tk is the delay from the

start of transmission until all destinations in Dk finish

receiving the data. Let dt,mk be the transmission delay of

request rk from sk to one of its destinations tm.

The delay experienced by rk thus is

dk = dpk + arg max
tm∈Dk

dt,mk , (2)

which needs to be no greater than its specified delay

requirement dreqk , i.e.,

dk ≤ dreqk . (3)

D. Cost models

As the network operator of G charges each admitted

multicast request based on its resource usage, the major

concern of the operator is its operational cost that is

defined as the sum of the costs of its computing and

bandwidth resource consumptions for the multicast slices

used to implement multicast requests. Let c(e) and

c(v) be the costs of using one unit of bandwidth and

computing resources at link e ∈ E and cloudlet v ∈ VCL,

respectively. Denote by qpree,k by an indicator variable that

indicates whether link e ∈ E transfers the pre-processed

traffic by VNF f1 ∈ NSk of rk. Recall that the traffic

may be forwarded to multiple locations for processing

if VNFs in NSk is placed into multiple locations. The

traffic between two consecutive VNFs in NSk may need

to be transferred along the edges in G. Thus, denote by

qproe,k,l an indicator variable that shows whether edge e

is used to transfer the processed traffic by fl ∈ NSk.

Denote by P a set of all possible paths from cloudlets

in VCL to the destinations in Dk, which could be pre-

computed in the network planning stage. The operational

cost due to implementing rk thus is

ck =
∑

fl∈NSk

∑
v∈VCL

yk,l,v · c(v) · bk +
∑
e∈E

qpree,k · c(e) · bk+

Lk−1∑
l=1

∑
e∈E

qproe,k,l · c(e) · bk +
∑
p∈P

zpostv,m

∑
e∈p

ce · bk

(4)

E. Problem definitions

Given an edge network G = (V,E) for IoT applica-

tions with a set VCL of cloudlets and a multicast request

rk (= (sk, Tk; bk, NSk)), we consider the following three

delay-aware network slicing problems.

Problem 1: Assuming that the computing resource

in each cloudlet is abundant to implement a multicast

request rk, the delay-aware network slicing problem for

a single multicast request without computing resource

capacity in IoT edge network G for a single NFV-enabled

multicast request rk is to create a network slice for rk by

jointly placing the VNFs of service chain NSk of rk to

cloudlets in VCL and finding routing paths for rk, such

that the implementation cost of multicast request rk in

the created network slice is minimized, if the VNFs in its

network slice NSk can be assigned to multiple cloudlets,

subject to its delay requirement dreqk .

Problem 2: Assume that the computing resource in

each cloudlet v ∈ VCL of G is capacitated for a given

set R of multicast requests. For each multicast request in

R, the IoT edge network may or may not have enough

resources at that moment to create a network slice for it.

We here define the delay-aware network slicing problem

7

for multiple multicast requests in an IoT edge network

G = (V,E) for a given set R of requests, which is

to create a number of network slices with the aim to

admit as many requests as possible while minimizing

the operational cost due to network slice creation, by

jointly placing the VNFs of each network slice NSk and

finding a multicast tree in G for each admitted multicast

request rk, subject to computing capacity constraints

on cloudlets of G and delay requirement constraints of

multicast requests.

Problem 3: So far we assumed that user requests have

their specified delay requirements, some users however

may not know how to determine a specific delay require-

ment. In most cases, network service providers provide

a set of network slices with different levels of delay

guarantees, such that each user can select a slice with its

preferred delay guarantee. For example, network slices

for vehicular applications may share the same level of

delay requirements, e.g., response within 50 milliseconds.

On the other hand, VR services are extremely sensitive to

network latency. Users may experience dizziness if their

viewing experience is repeatedly hindered by excessive

latency. Therefore, it is essential to keep the motion-to-

photon latency to less than 20 milliseconds. The network

slices with 20 ms delay guarantee can be considered as

the first level of delay guarantees, while the network

slices within 50 ms delay guarantees are the second

level of delay guarantee. We may also have another level

of delay guarantee of 100 to 500 ms. Therefore, given

a set of multicast slices that are already serving user

requests in the network G, the network operator needs to

decide the number of slices to be created in the next time

slot. Assuming that time is divided into equal slots, the

current time slot is denoted by t. Let O be the number

of levels of delay guarantees, and dreq,o be the oth delay

guarantees with 1 ≤ o ≤ O. Specifically, we assume that

each of such delay guarantee is for a unit amount of

data traffic. Users could select their preferred multicast

slice according to their data traffic. The delay-oriented

network slicing problem with levels of delay requirements

is to dynamically adjust the number of multicast slices

for each level of delay guarantees, such that as many

user requests are admitted while meeting the capacity

constraints of cloudlets, by allowing users to select their

preferred network slice with a level of guaranteed delay.

All the defined problems are NP-hard, as even their

special case – the traditional multicast problem without

the network slicing requirement is NP-hard [9]. Since the

problems are NP-Hard, we aim to devise approximation

algorithms with a guarantee of the distance from the

optimal solution and efficient heuristics that smartly

implement the multicast requests. Given a value γ ≥ 1,

a γ-approximation algorithm for a minimization problem

P1 is a polynomial time algorithm A that outputs a

solution whose value is no more than γ times the value

of an optimal solution for any instance I of P1, where

γ is the approximation ratio of algorithm A.

For the sake of clarity, we summarize the symbols

used in this paper in the Table II.

IV. INTEGER LINEAR PROGRAMS FOR THE

DELAY-AWARE NETWORK SLICING PROBLEMS

We here propose optimal solutions for the delay-aware

network slicing problem for a single multicast request

without computing resource capacity and the delay-aware

network slicing problem via integer linear programs.

A. ILP for the delay-aware network slicing problem for

a single multicast request

The delay-aware network slicing problem without

computing resource capacity deals with a single multicast

request rk and aims to minimize the implementation

cost of the multicast request rk. Recall that we use a

binary variable yk,l,v to show whether VNF fl ∈ NSk

8

TABLE I
SYMBOLS

Symbols Meaning
G = (V,E) a software-defined network (SDN) with a set V of SDN-enabled switches and a set E of link that interconnect the switches
VCL a set of switches, each of which has a cloudlet being attached
v v ∈ VCL or V
e and de a link e ∈ E and the delay of transmitting a unit data traffic via link e ∈ E
rk = (sk, Dk; bk, NSk) a NFV-enabled multicast request, with a source node sk ∈ V , a set Dk of destinations, an amount bk of data that needs

to be transferred to its destinations in Dk , and network slice NSk

Lk and fl the number of VNFs in network slice NSk and its lth network function
Cv(fl) the amount of computing resource demanded by network function fl to process unit data traffic in cloudlet v ∈ VCL

Tk the multicast tree that transfers the data traffic of request rk
dpk the processing delay experienced by request rk
dp(v, fl) the delay of processing a unit amount of data by VNF fl in cloudlet v ∈ VCL

zpree,k,m and zposte,k,m binary indicator variables that shows whether link e ∈ E is used to transfer rk’s pre- and post- processed traffic by the
final VNF fLk

∈ NSk

dt,mk the transmission delay experienced by request rk from sk to tm (∈ Dk) of request rk
dk the delay experienced by multicast request rk
dreqk the specified delay requirement of multicast request rk
c(e) and c(v) the usage costs of one unit of bandwidth and computing resources at link e ∈ E and server v ∈ VS , respectively
qpree,k and qposte,k binary indicator variables that indicate whether link e ∈ E transfers the pre-processed and post-processed traffic by VNF

fLk
∈ NSk of multicast request rk

yk,l,v a binary indicator variable that shows whether VNF fl ∈ NSk of multicast request rk is assigned to the cloudlet that is
attached to v ∈ VCL for processing

ck the implementation cost of multicast request rk in the created network slice
pprev,k and ppostv,k binary indicator variables that show whether switch v ∈ V is used to forward the pre- and post-processed traffic of rk . Let

δ(v) denote the incident edges of switch node v ∈ V
G′ = (V ′, E′) an auxiliary graph constructed based on the original network G.
v′k,l and v′′k,l a pair of virtual cloudlets in the auxiliary graph for each cloudlet v ∈ VCL

OPT ′ the optimal solution to the delay-constraint shortest path in auxiliary graph G′
OPT the optimal solution to the delay-aware NFV-enabled multicasting problem without computing capacity
Pri(rk) the priority of admitting a multicast request rk
t a time slot
R and Rt a set of multicast requests and a set of multicast requests in time slot t
rtk = (stk, D

t
k; b

t
k, NS

t
k) a NFV-enabled multicast request in time slot t, with a source node stk ∈ V , a set Dt

k of destinations, an amount btk of
data that needs to be transferred to its destinations in Dt

k , and network slice NSt
k in time slot t

dtk the processing delay experienced by request rtk
ϑ and θ the request admit rate and a threshold of the acceptable request admit rate
st and at the state of reinforcement learning (RL) algorithm in time slot t and the action of RL algorithm in time slot t
Q(st, at) and rwd(st) the Q-value of reinforcement learning algorithm with state st and action at, and the reward of the reinforcement learning

algorithm with state st.

of multicast request rk is assigned to cloudlet v ∈ VCL.

Let qpree,k denote whether link e ∈ E transfers the pre-

processed traffic of rk. We further let zprev,k be binary

indicator variable that shows whether switch v ∈ V is

used to forward the pre-processed traffic of rk. Similarly,

we use zprov,k,l to show whether switch v is used to forward

the traffic processed by fl ∈ NSk, where 1 ≤ l ≤ Lk−1.

Let zpostp,m be binary indicator variables that show whether

path p ∈ P is used to forward the post-processed traffic

of rk from cloudlet v ∈ VCL to tm. Let δ(v) denote the

incident edges of switch node v ∈ V , respectively. The

objective of the ILP thus is

ILP1 : min ck (5)

subject to the following constraints.∑
v∈VCL

yk,l,v = 1, for each of fl ∈ NSk

(6)∑
e∈δ(sk)

qpree,k = 1 (7)∑
e∈δ(v)

qpree,k ≥ z
pre
v,k , for each switch v ∈ V

(8)

9

∑
e∈δ(v)

qpree,k ≤ 2 · zprev,k , for each switch v ∈ V

(9)∑
v∈VCL

yk,1,v
∑
e∈δ(v)

qpree,k = 1 (10)

∑
v∈VCL

yk,l,v
∑
e∈δ(v)

qproe,k,l = 1 (11)

∑
e∈δ(v)

qproe,k,l ≥ z
pro
v,k,l, v ∈ V and 1 ≤ l ≤ Lk − 1

(12)∑
e∈δ(v)

qproe,k,l ≤ 2 · zprov,k,l, v ∈ V and 1 ≤ l ≤ Lk − 1

(13)∑
v∈VCL

yk,l+1,v

∑
e∈δ(v)

qproe,k,l+1 = 1, 1 ≤ l ≤ Lk − 1

(14)∑
e∈δ(v)

qproe,k,l ≥ yk,l,v, v ∈ VCL and 1 ≤ l ≤ Lk − 1

(15)∑
p∈P

zpostp,m = 1, for each v ∈ VCL and each tm ∈ Dk

(16)∑
fl∈NSk

∑
v∈VCL

yk,l,v · dp(v) · bk +
∑
e∈E

zpree,k,m · de · bk+

∑
p∈P

zpostv,m

∑
e∈p

de · bk ≤ dreqk , for each tm ∈ Dk

(17)

yk,l,v, q
pre
e,k , q

pro
e,k,l, z

pre
v,k , z

pro
v,k,l, z

post
p,m ∈ {0, 1}. (18)

Constraint (6) indicates that each of the VNF in NSk

can only be assigned to a cloudlet to process the traffic of

rk. Constraint (7) shows that there has to be one link that

routes the traffic of rk out of its source sk. Constraints (8)

and (9) jointly show that if a switch is used to forward

the pre-processed traffic by f1 ∈ NSk of rk, there has to

be at least one and at most two of the incident edges that

are used to route the traffic in and out of switch v ∈ V .

Constraint (10) says that the pre-processed traffic by f1

has to go to a cloudlet v ∈ VCL, if f1 is placed into v

(i.e., yk,1,v = 1 for v ∈ VCL). Similarly, constraint (11)

guarantees that the traffic processed by fl has to start with

the assigned cloudlet of fl; that is, there has to be an edge

of v ∈ VCL routing the processed traffic of fl to the next

network function if yk,l,v = 1. Constraints (12), (13), and

(14) have the same meanings as those of constraints (8)

(9), and (10). The only difference is that constraints (12),

(13), and (14) are enforced on the traffic processed by

function fl ∈ NSk. Constraint (15) makes sure that if

VNF fl of NSk is placed to cloudlet v ∈ VCL, there will

be at least one of its incident edges that are used to route

the traffic to/from the cloudlet. Constraint (16) shows

that one of the paths from cloudlets to destinations in

Dk have to be selected to route the post-processed traffic

of rk. Constraint (17) enforces the delay requirement

of multicast request rk. Constraint (18) makes sure that

each of the decision variables is an indicator variable

with its value being either 1 or 0.

B. ILP for the delay-aware network slicing problem

The objective of the delay-aware network slicing

problem is to maximize the number of multicast requests

that can be admitted, given the capacity constraints of

cloudlets. We thus introduce a binary indicator variable

xk to indicate whether request rk is admitted or not. The

objective of the problem thus is

ILP2 : max
rk∈R

xk, (19)

subject to constraints (6), (7), (8), (9), (10), (11), (12),

(13), (14), (15), (16), (17), (18), and the following

additional constraints.∑
v∈VCL

yk,l,v = xk (20)

10

∑
rk∈R

(∑
fl∈NSk

∑
v∈VCL

yk,l,v · c(v) · bk +
∑
e∈E

qpree,k · c(e) · bk+

Lk−1∑
l=1

∑
e∈E

qproe,k,l · c(e) · bk +
∑
p∈P

zpostv,m

∑
e∈p

ce · bk
)
≤ B

(21)∑
rk∈R

∑
fl∈NSk

yk,l,v · bk · Cv(fl) ≤ Cv (22)

xk ∈ {0, 1}, (23)

where constraint (20) says that each of the VNF in NSk

can only be assigned to a cloudlet to process the traffic

of rk if rk is admitted. Since we aim to maximize the

number of admitted requests while minimizing the total

implementation cost of all admitted requests, we use

constraint (21) to make sure that the total implementation

cost of admitted multicast requests is no greater than

a given budget. As long as the budget B is small

enough, the cost of implementing admitted multicast

requests can be minimized. Constraint (22) guarantees

that the computing capacity of each cloudlet v ∈ VCL is

no greater than the accumulative allocated computing

resources to its its assigned VNFs of the admitted

requests.

V. AN APPROXIMATION ALGORITHM FOR THE

DELAY-AWARE NETWORK SLICING PROBLEM FOR A

SINGLE MULTICAST REQUEST

In this section we deal with the delay-aware network

slicing problem for a single multicast request without

computing resource capacity constraints, by devising an

efficient approximation algorithm with an approximation

ratio.

A. Overview

The most challenging part of devising an approxima-

tion algorithm for the problem is how to jointly place the

VNFs in each network slice NSk into several cloudlets if

necessary and find the routing paths for the request such

as its delay requirement is met. We address this challenge

by proposing a smart construction of an auxiliary graph

G′ = (V ′, E′) based on the original network G = (V,E),

and the original problem is transferred to a problem of

finding a delay-constraint shortest path in the auxiliary

graph G′.

B. Approximation algorithm

We now describe the approximation algorithm by first

constructing the auxiliary graph G′ and then elaborate

on the algorithm.

Minimizing the implementation cost of each multicast

request is to jointly minimize both the processing and

transmission costs. Also, VNFs in NSk can be placed into

several cloudlets to make sure they are close to both the

source and destinations, thereby increasing the probability

of meeting the delay requirement of multicast request rk.

On the other hand, several of them can be placed together

to save the transmission cost incurred on edges. To reflect

such properties, the basic motivation of the construction

of auxiliary graph is to jointly consider the processing,

transmission costs of a NFV-enabled multicast request,

and the service chaining requirement of the request. To

jointly consider the processing and transmission costs,

we create a pair of virtual nodes in the auxiliary graph

for each cloudlet of the original network. We then move

the processing costs to the edges of the auxiliary graph,

and uniformly consider processing and transmission costs

as “edge costs” in the edges of the auxiliary graph. For

the service chaining requirement, we duplicate cloudlets

in the original network for each VNF in a network slice,

and connect those cloudlets according to connections in

the original network.

We construct the auxiliary graph as follows.

We first add auxiliary nodes into the auxiliary graph

G′. Specifically, we create Lk pairs of virtual cloudlets

for each cloudlet v ∈ VCL, each pair representing the

11

lth VNF in NSk is placed in cloudlet v. Let v′k,l and

v′′k,l be such a pair of virtual cloudlets for the lth VNF

and cloudlet v, and we add them into node set V ′ of

the auxiliary graph G′, i.e., V ′ ← V ′ ∪ {v′k,l, v′′k,l}. The

source node sk of rk is also added into the node set V ′

of auxiliary graph G′. The set of destination nodes in

Dk is considered as a single virtual sink and added into

set V ′, i.e., V ′ ← V ′ ∪ {sk, Dk}.

We then connect the nodes in G′ as follows.

• First, to make sure the processing and transmission

costs are considered jointly. We move the the

processing costs into edge weights in auxiliary graph

G′. Specifically, for each VNF fl in NSk, we add

an edge from v′k,l to v′′k,l and set its weight as the

processing cost of a unit data by VNF fl in cloudlet

v ∈ VCL, i.e., c(v). Therefore, if the data of rk is

processed by VNF fl in cloudlet v, its traffic will

traverse edge 〈v′k,l, v′′k,l〉 in auxiliary graph G′;

• Second, VNFs in NSk can be assigned to different

cloudlets. To reflect this case in the auxiliary graph,

we here connect the nodes in V ′. Specifically, for

each l with 1 ≤ l ≤ Lk − 1 and each pair of

cloudlets v and u, there is an edge in E′ from v′′k,l

to u′k′,l+1, i.e., 〈v′′k,l, u′k′,l+1〉. Its cost and delay are

set to the transmission cost and delay of the amount

bk of data from cloudlet v to u in network G, i.e.,∑
e∈pv,uc(e)·bk and

∑
e∈pv,ude·bk ;

• Third, to allow some of the VNFs of each network

slice NSk being consolidated into a single cloudlet

to save transmission cost, we connect the nodes

that represent the same cloudlet. Specifically, we

connect the virtual cloudlets of each cloudlet v ∈

VCL. There is an edge 〈v′′k,l, v′k,l+1〉 from node v′′k,l

to node v′k,l+1 for each l with 1 ≤ l ≤ Lk− 1. This

means that VNFs fl and fl+1 will both be placed

to cloudlet v ∈ V , if the traffic of rk traverses edge

〈v′′k,l, v′k,l+1〉. Since VNFs fl and fl+1 are placed

into the same cloudlet, there is no transmission cost

and delay incurred in links of the network G, we

set the cost and delay of edge 〈v′′k,l, v′k,l+1〉 to zero;

• We finally connect the source node, virtual cloudlet

nodes, and the virtual sink. There is an edge from the

source sk of multicast request rk to the set of virtual

cloudlets that represent the first VNF f1 ∈ NSk,

i.e., {v′k,1 | 1 ≤ k ≤ |VCL|}. That is, there is an

edge 〈sk, v′k,1〉 for each k with 1 ≤ k ≤ |VCL|.

This edge denotes the shortest path from source sk

to cloudlet v in the original network G. Its cost is

set to the accumulative cost of all the edges in the

shortest path, and the delay is the total transfer delay

of amount bk of data along the path. In addition,

the processed traffic only will be forwarded to the

destinations in Dk after being processed by the final

VNF fLk
in NSk. We thus add an edge from each

v′′k,Lk
to node Dk. The cost of edge 〈v′′k,Lk

, Dk〉 is

set to the total weight of all edges in the Steiner

tree that spans the nodes in {v}∪Dk of the original

network G, and the delay along this edge is the

maximum delay of a branch of the Steiner tree that

transfers the data of rk to one of its destinations.

An example of the constructed auxiliary graph for the

problem of finding a multicast tree for a multicast request

is shown in Fig. 2. The delay-aware network slicing

problem for a single multicast request without computing

capacity constraint thus is transferred to the problem of

finding a delay-constraint shortest path from node sk to

node Dk in the auxiliary graph G′. The feasible solution

to the later will return a feasible solution to the original

problem.

Let p′ be the delay-constraint shortest path from sk

to Dk in G′. We now construct the multicast tree Tk in

G for multicast request rk. Specifically, we replace each

12

Fig. 2. An example of the auxiliary graph G′ = (V ′, E′). Note that
an edge 〈v′k,l, v

′′
k,l〉 represents the processing of request rk’s data

by the lth VNF of the request in cloudlet v, and its weight is set to
the processing cost. Similarly, an edge 〈v′′k,l, u

′
k,l+1〉 denotes that the

lth and l + 1th VNF of request rk are placed to cloudlets v and u,
respectively.

edge in p′ with its corresponding shortest path in the

original network G. For example, edge 〈sk, v′k,1〉 for each

cloudlet v is replaced by the shortest path from source sk

to cloudlet v in G. Edge 〈v′′k,l, u′k,l+1〉 is replaced by the

shortest path from cloudlet v to cloudlet u. In addition,

edge 〈v′′k,Lk
, Dk〉 is replaced by the Steiner tree in G

that spans the nodes in {v} ∪Dk. The detailed steps of

the proposed approximation algorithm are illustrated in

Algorithm 1.

Algorithm 1 Appro_Multicast
Input: G = (V,E), VCL, Ce for each e ∈ E, Cv for each v ∈ VCL,

and a multicast request rk = (sk, Dk; bk, NSk).
Output: The locations for the VNFs in network slice NSk of multicast

request rk and the multicast tree Tk to transfer the data of rk .
1: For each cloudlet v ∈ VCL, find a minimum-cost Steiner tree in

network G that spans nodes in {v}∪Dk , and let T ′k be the found
Steiner tree;

2: Construct an auxiliary graph G′ = (V,E), by creating Lk pairs
of virtual cloudlets for each cloudlet v ∈ VCL, adding the source
node sk and the destination node Dk into V ′, connecting the
nodes in V ′, and setting the edge costs and delays, as illustrated
in Fig. 2.

3: Find a delay constraint shortest path p′ from node sk to node Dk

in the auxiliary graph G′, by invoking the algorithm in [25].
4: Replace each edge 〈sk, v′k,1〉 for each cloudlet v by the shortest

path from source sk to cloudlet v in network G;
5: Replace each edge 〈v′′k,l, u

′
k,l+1〉 by the shortest path from cloudlet

v to cloudlet u;
6: Replace edge 〈v′′k,Lk

, Dk〉 by the Steiner tree in G that spans the
nodes in {v} ∪Dk;

7: Merge each pair of nodes v′k,l and v′′k,l and delete edge 〈v′k,l, v
′′
k,l〉;

8: Merge all virtual cloudlets of each cloudlet v ∈ VCL;
9: Return the final multicast tree Tk;

C. Algorithm analysis

We first show the feasibility of the solution by Algo-

rithm 1 and then derive the approximation ratio of the

proposed approximation algorithm as follows.

Lemma 1: The solution obtained by Algorithm 1

is a feasible solution to the delay-aware network slic-

ing problem for a single multicast request rk, assum-

ing that the delay requirement dreqk is larger than

max{argmaxe∈E ξe, argmaxv∈VCL
ξv} · c(T), where T

is a multicast tree that implements request rk.

Proof To show the feasibility of the solution, we need

to show that (1) a shortest path from node sk to node

Dk in auxiliary graph G′ corresponds to a multicast

tree in the original network G, and within the multicast

tree the traffic of rk will be processed by all the VNFs

in its network slice NSk before being forwarded to its

destinations in Dk; and (2) the delay requirement dreqk
is met.

We first show there always exists a delay con-

straint shortest path in G′. This is due to the

fact we consider the scenarios that dreqk is larger

than max{argmaxe∈E ξe, argmaxv∈VCL
ξv}·c(T). This

means that for each edge e ∈ E and each cloudlet

v ∈ VCL, we adopt the lowest tolerance level of delay

requirement violation by setting ξe = argmaxe∈E ξe and

ξv = argmaxv∈VCL
. This is realistic in real scenarios,

because network service providers can specify their

targeted delay requirements for users in the network

deployment stage. Users usually select a level of end-

to-end delay requirements from the ones offered by the

network service providers.

We then show the shortest path p′ from sk to Dk in G′

corresponds to a multicast tree in G that forwards its data

to VNFs in NSk for processing before transferring the

data to its destinations. It is clear that the source node sk

of rk is connected to the virtual cloudlets v′k,1 for each

13

v ∈ VCL and the first VNF f1 ∈ NSk. Also, starting

from such virtual cloudlets the traffic can be forwarded to

virtual cloudlets that represent other cloudlets. However,

the sequence of traversed VNFs strictly follows the

sequence in NSk, because there is an edge between v′′k,l

to v′k,l+1 for all l with 1 ≤ l ≤ Lk. Finally, after being

processed by the final VNF fLk
in NSk, i.e., the path

includes some nodes v′′k,Lk
, the processed data will be

transferred to the destinations in Dk through the Steiner

tree that is represented by edge 〈v′′k,Lk
, Dk〉 in G′.

Since the found delay-constraint shortest path p′

has a delay that is no greater than dreqk and path p′

represents the NFV-enabled multicasting of data of rk to

its destinations, it is clear that the delay requirement of

request rk is met by the multicast tree Tk derived from

p′.

Theorem 1: Given a network G = (V,E), a set VCL

of switches that are attached with cloudlets, a multicast

request rk = (sk, Dk; bk, NSk) that needs to transfer an

amount bk of data from its source sk to its destinations

in Dk within delay requirement of dreqk , its network slice

NSk that guarantees the traffic being processed by the

sequence of VNFs in NSk before being forwarded to its

destinations, there is an approximation algorithm for the

delay-aware NFV-enabled multicasting problem without

computing resource capacity, i.e. Algorithm 1, which

delivers an approximate solution with an approximation

ratio of 1+ε in O((Lk)
3·(VCL)2·(log logLk ·VCL+1/ε))

time, where ε is an accuracy parameter in the algorithm

for delay-constraint shortest path problem [25].

Proof According to Lemma 1, the solution obtained by

Algorithm 1 is a feasible solution. In the following, we

only need to show the approximation ratio and the running

time of the algorithm.

We first show the approximation ratio of the proposed

approximation algorithm, which is to show that the

accumulative cost of the derived multicast tree Tk is

no more than 1 + ε times of the optimal cost OPT . Let

OPT ′ be the optimal solution to the delay-constraint

shortest path in auxiliary graph G′. Denote by c the

approximate solution obtained by Algorithm 1. Clearly,

we have

c ≤ (1 + ε)OPT ′, (24)

due to the result in [25]. To show the approximation

ratio of the proposed algorithm, we need the relation

between OPT and OPT ′. To this end, we show that

the optimal solution to the delay constraint shortest path

problem in G′ cannot be improved to a better solution

to the delay-aware network slicing problem for a single

multicast request in the original network G. We divide

the implementation cost of request rk due to Algorithm 1

into two parts: (1) the cost incurred by transferring the

data of rk from its source sk to the final VNF fLk
in

NSk and the cost due to the processing in VNFs, let

psk,Lk
be such a path; and (2) the cost due to multicasting

the processed data from the location for the final VNF

fLk
in NSk to its destinations in Dk. For (1), it can

be seen that the replacement of any edge in path psk,Lk

by an alternative edge in E will increase the total cost

of psk,Lk
, since each edge in the auxiliary graph either

represents a shortest path in the original network or data

transfer among VNFs in the same cloudlet. For (2), since

we do not consider the delay requirement in the finding

of the Steiner tree to transfer the processed data to the

destinations of multicast request rk, the replacement of

any edge in the Steiner tree will also increase the cost

of the tree. Therefore, we have OPT ′ = OPT .

As we use the algorithm due to the algorithm in [25]

to find a delay-constraint shortest path in G′, the approx-

imation solution has the following approximation ratio

shown in inequality 24. Also, since OPT = OPT ′, we

14

have

c ≤ (1 + ε)OPT ′ = (1 + ε) ·OPT, (25)

which means that the approximation ratio (i.e., c
OPT) of

Algorithm 1 is 1 + ε.

We finally show the running time of the proposed

approximation algorithm. It can be seen that the most

time consuming part of the algorithm is the finding of

delay constraint shortest path in auxiliary graph, which

takes O(m · n(log log n + 1/ε)) time, where m and n

denote the number of edges and nodes in G′. From the

construction of the auxiliary graph, we can see that there

are O(Lk ·VCL) nodes and O((Lk)
2 · |VCL|) edges. This

means the running time of Algorithm 1 is O((Lk)
3 ·

(VCL)
2 · (log logLk · VCL + 1/ε)).

VI. AN EFFICIENT HEURISTIC FOR THE

DELAY-AWARE NETWORK SLICING PROBLEM

We here consider the delay-aware network slicing prob-

lem, by admitting as many as requests in a given set R of

multicast requests while minimizing the implementation

cost of the admitted requests, subject to the capacity

constraints of the cloudlets and the delay requirements

of admitted multicast requests.

A. Algorithm

The basic idea of the proposed solution is to propose

a flexible model to characterize the priority of admitting

a request, such that the system throughput is maximized.

Intuitively, to maximize throughput, we usually favor

the requests with small resource demands. That is, the

multicast requests that transfer less data and require less

VNFs in its service functions. In addition, the requests

with larger delay requirements usually can be admitted

more easily, as there are more choices to select cloudlets

with enough computing resources. Therefore, we use the

following priority model to capture the priority Pri(rk)

of admitting a multicast request,

Pri(rk) =
1

bk ·
∑
fl∈NSk

Cv(fl)
+ λ · dreqk , (26)

where λ is a tuning parameter that denotes the importance

of the impact of delay requirements on the priority of

the requests. This model means that the multicast with a

less computing resource demand and a higher delay will

have a higher priority to be considered for admitting.

Given the priorities of all multicast requests in R, we

rank the requests into a decreasing order in terms of their

priorities, and then admit the multicast requests one-by-

one by an algorithm that is a slightly modified version of

Algorithm 1. Specifically, some cloudlets in VCL may

not have enough computing resource to implement the

VNFs in NSk of the current considered multicast request

rk. We thus prune the network G by excluding such

cloudlets and their incident links in E. Notice that the

VNFs of NSk may be placed to multiple cloudlets. We

remove the cloudlets that do not have enough computing

resource to implement the VNF that has the minimum

resource demand, i.e., argminfl∈NSk
Cv(fl). Based on

the pruned network, we then invoke Algorithm 1 to

find the multicast tree of multicast request rk. The

procedure continues until no more multicast requests can

be admitted. The detailed steps of the proposed algorithm

are illustrated in Algorithm 2, which is referred to as

algorithm Heu_Multicast.

B. Discussion on considering other slicing criteria

Network slicing is proposed to allow the network being

sliced according to multiple criteria. In this paper we

consider the slicing of networks according to the delay

requirements of users. In particular, in the delay-oriented

network slicing problem with levels of delay requirements,

we slice the network according to different levels of delay

requirements. Other criteria of slicing networks may be

15

Algorithm 2 Heu_Multicast
Input: G = (V,E), VCL, Ce for each e ∈ E, Cv for each v ∈ VCL,

and a set of multicast requests with each multicast request being
denoted by rk = (sk, Dk; bk, NSk).

Output: The number of admitted multicast requests in R.

1: Rank the multicast requests in R according to their total computing
resource demand and delay requirements, i.e., into a decreasing
order of Eq. (26);

2: Num Admitted← 0;
3: for each multicast request rk in the ranked sequence do
4: Prune network G, by removing the cloudlets that do not have

enough computing resource to implement the VNF that has the
minimum resource demand, i.e., argminfl∈NSk

Cv(fl), and
their incident links;

5: Invoke Algorithm 1 to find a multicast tree for Tk;
6: if Tk = ∅ then
7: Reject multicast request rk;
8: Continue;
9: Num Admitted← Num Admitted+ 1;

10: return Num Admitted← Num Admitted+ 1;

the types of services, security levels, quality of services,

and etc. It must be mentioned that any slicing criteria

for multicasting is basically the implementing of the

VNFs of each multicast request in cloudlets that meet the

criteria. Our solution can be easily extended to consider

the security and service type criteria of network slicing.

Specifically, assuming that each cloudlet has a level of

security guarantee, we can extend the proposed solutions

by adding a new constraint of when to select a cloudlet for

each VNF (in building the auxiliary graph of algorithm

Appro_Multicast).

C. Algorithm analysis

We now show the feasibility and performance of the

proposed Algorithm 2 in the following theorem.

Theorem 2: Given a network G = (V,E), a set

VCL of switches that are attached with cloudlets, the

computing resource capacities of the cloudlets in VCL,

a set of multicast requests with each multicast request

rk = (sk, Dk; bk, NSk) requiring to transfer an amount

bk of data from its source sk to its destinations in

Dk within delay requirement of dreqk , its network slice

requirement NSk that guarantees the traffic being pro-

cessed by the sequence of VNFs in NSk before being

forwarded to its destinations, there is an approximation

algorithm for the delay-aware network slicing problem

for a single multicast request, i.e. Algorithm 1, which

delivers a feasible solution to the problem in time

O(|R| · (Lk)3 · (VCL)2 · (log logLk ·VCL+1/ε)), where

ε is an accuracy parameter in the algorithm for the delay-

constraint shortest path problem [25].

Proof To show the feasibility of the solution obtained

by Algorithm 2, we need to show that the computing

capacity is not violated and the delay requirement of

each admitted request is met. Obviously, no computing

resource capacity is violated since we have pruned the

network G before invoking Algorithm 1 for each request,

by deleting the cloudlets that cannot meet the minimum

computing resource demand of the VNFs in the network

slice of a request. In addition, the delay requirement is

guaranteed by Algorithm 1, as shown in Theorem 1.

For the running time of the heuristic algorithm, the

ranking takes O(|R|) time. Since the admission of each re-

quest invokes Algorithm 1, the admission of all requests

in R takes O(|R|·(Lk)3 ·(VCL)2 ·(log logLk ·VCL+1/ε))

time. The theorem holds.

VII. A LEARNING-BASED ALGORITHM FOR THE

DELAY-ORIENTED NETWORK SLICING PROBLEM

We now investigate the problem of delay-oriented

network slicing problem with levels of delay requirements.

Given a set of multicast slices with different levels of

delay guarantees, we answer the question of how many

each type of multicast slices should be provided in the

future to meet user demands.

A. An optimization framework

The IoT service provider of the edge network G

needs to strategically create network slices to admit

a maximal number of user requests in future. Notice

16

that user requests are allowed to select their preferable

multicast slices created by the IoT service provider. Their

decisions have a vital role in deciding the number of to-

be-created multicast slices in the network G. The IoT

service provider of G may not know how the users make

such decisions. How to jointly predict user decisions

and optimize the placement of network slices thus is the

primary focus of the IoT service provider.

To tackle the afore-mentioned challenge of an IoT

service provider, we design an optimization framework

that combines Reinforcement Learning (RL) and com-

binatorial optimization methods. Namely, we assume

that there is an agent serving as a coordinator between

user requests and the IoT service provider. The agent

learns the interaction between user requests and the IoT

service provider, by suggesting how many instances of

multicast slices of each level of delay guarantees to create

in the next time slot. The IoT service provider then

adopts the suggestion of the agent and invokes algo-

rithm Heu_Multicast to create the multicast slices.

Fig. 3 shows an example of the proposed optimization

framework.

As there is no enough data to train a useful deep

learning model in IoT edge computing, Reinforcement

Learning becomes a widely used online learning category

for VNF allocation in edge computing. Sarsa algorithm is

a representative learning method based on Reinforcement

Learning [14], [44]. By using the Sarsa algorithm, we

can find an acceptable prediction of the number of

multicast slices that should be created in a short time,

while minimizing the computing cost c(v) on the cloudlet

meanwhile meeting the delay guarantee dreqk of the users

requests.

B. The Reinforcement Learning procedure

We now describe the details of proposed algorithm

based on a Reinforcement Learning (RL) process.

Fig. 3. The proposed RL-based optimization framework.

In each time slot t, the total number of requests is Rt.

Before elaborating on the algorithm, we first define the

request admit rate ϑ as

ϑ =

∑
dtk≤d

req
k ,rtk∈Rt rtk∑
rtk∈Rt rtk

, (27)

where rtk is a request of Rt in time slot t and dtk ≤ d
req
k

means that the delay requirement of multicast request rtk

is met. Also we define a constant θ as the acceptable

request admit rate of the system. In time slot t, if the

request admit rate ϑ ≥ θ, we do nothing but proceed

to the time slot t+ 1; otherwise, we run RL procedure

to decide whether to initialize new multicast slices in

network, or shutdown all the multicast slices and restart

the initialize process on which condition there are not

enough resources for new slices. Specifically, at the

beginning of each time slot t, the agent of the network

service provider observes the state st of the system, and

it is asked to choose an action at according to the Q-

table. Following the action, the state of the environment

transitions its state from st to st+1 and the agent receives

17

a reward rwd(st). According to reward rwd(st), we

update Q-table. Here we define the details.

• State space: The state of the system consists of

currently admitted users’ requests and the computing

cost of the multicast slices.

• Action space: The agent needs to decide whether

to increase or decrease the number of multicast

slices of each level of delay guarantees. Thus,

the action taken for the agent can be modeled as

{−1, 0, 1}o, where −1 means that the agent wishes

to increase the number of multicast slices with oth

level delay guarantee, 0 indicates that the agent

wants to maintain the current number, and 1 implies

that the agent wants to decrease the number. We

assume that the number is increased or decreased

by a fixed percentage.

• Reward: The reward is defined in Table II. As

shown in the table, we divide the reward into four

levels: (1) the decrease of computing cost and the

increase of admit request rate, which is the best case

we expect to see. We set the reward of this case as

2; (2) When the computing cost increases while the

request admit rate increases, we set this reward to 1;

(3) If the computing cost decreases while the admit

rate drops, we set the reward to -1; and (4) the case

that computing cost increases and request admit rate

drops is the least case we expect, we thus set the

reward of this case to -2.

TABLE II
REWARD

ϑ / Computing cost Increase Decrease
Decrease -2 -1
Increase 1 2

And we update the Q-value by

Q(st, at) =

Q(st, at) + α[rwd(st+1) + γQ(st+1, a)−Q(st, at)],
(28)

where γ is attenuation value, α is the learning rate,

Q(st, at) is the Q-value of the RL algorithm with

state st and action at, and rwd(st) is the reward of

RL algorithm under state st of the system.

• Objective: Recall that the objective of the delay-

oriented network slicing problem with levels of delay

guarantees is to maximize the accumulated number

of user requests that can be admitted by the IoT

edge network G. The objective of the RL procedure

thus adopts the same objective.

The detailed steps of the proposed algorithm is

shown in Algorithm 3, which is referred to as

Learning_Multicast for simplicity.

Algorithm 3 Learning_Multicast

Input: A set of multicast requests rt−1
k =

(st−1
k , Dt−1

k ; bt−1
k , NSt−1

k) and its experienced delay
dt−1
k in time slot t− 1.

Output: The new initialized multicast slices in each time slot.

1: for t← 1 · · · t do
2: Calculate request admit rate ϑ. If ϑ ≥ θ, start next time slot

t+ 1, otherwise turn to next step;
3: Run the algorithm 1 to get new multicast slices and run the

algorithm 2 with the requests in the previous time slot.;
4: Update Q(st, at);
5: If the Q(st, at) never changes in the previous m iterators or

the Q(st,at) comes to zero, shutdown all multicast slices and
restart; otherwise turn to next step;

6: Calculate the computing cost and delay experienced by the new
multicast slices with the requests of previous time slot. If the
new request admit rate ϑ′ ≥ θ, start next time slot t+1 to run
the algorithm 2, otherwise turn to step 3;

VIII. SIMULATIONS

In this section we evaluate the performance of the

proposed algorithms through experimental simulation.

A. Environment settings

We consider an edge network consisting of from 50

to 250 nodes, where each network is generated using

GT-ITM [11]. The number of servers in each network is

set to 10% of the network size, and they are randomly

co-located with switches in the network. We also use

real network topologies, i.e., GÉANT [10] and an ISP

18

network from [46]. There are nine cloudlets for the

GÉANT topology as set in [13] and the number of

cloudlets in the ISP networks are provided by [38]. The

computing capacity of each cloudlet varies from 40,000 to

120,000 MHz [15] (cloudlets with around tens of servers).

Five types of network functions, i.e., Firewall, Proxy,

NAT, IDS, and Load Balancing, are considered, and their

computing demands are adopted from [13], [28]. The

source and destination nodes of each multicast request is

randomly generated, the ratio of the maximum number

Dmax of destinations of a multicast request to the network

size |V | is randomly drawn in the range of [0.05, 0.2]. The

data of each request is randomly drawn from [10, 200]

Megabyte, and the delay requirement of transferring

such data is randomly generated from [0.05, 5] seconds.

Notice that the transfer of larger amount of data can be

divided into smaller amounts and transferred by multiple

multicast requests. The running time of each algorithm

is obtained based on a machine with a 3.70GHz Intel

i7 Hexa-core CPU and 16 GiB RAM. Unless otherwise

specified, these parameters will be adopted in the default

setting.

Benchmark algorithm: Since this study is the very

first to study the delay-aware NFV-enabled multicasting

problem in a cloud network by assuming that the VNFs in

each network slice can be placed into multiple cloudlets,

there is no existing algorithms that deal with the exact

same problem. We however use the following benchmark

algorithms to investigate the performance of the proposed

algorithms.

• We first compare the performance of the proposed

approximation and heuristic algorithms with the

algorithm in [50], [51] that consolidates all VNFs

in each network slice into a single cloudlet. For

simplicity, the algorithm is referred to as algo-

rithm Consolidated

• We also compare the performance of the proposed

approximation and heuristic algorithms with a

greedy approach. The algorithm greedily selects the

locations for each VNF in network slice NSk of

each multicast request rk. Specifically, the algorithm

finds the cloudlet that is closest to source node

sk, and then packs as many VNFs in NSk to the

cloudlet until no computing resource available. If

there are still VNFs in NSk that are not assigned,

we find the next cloudlet that is the closest to

the found cloudlets. After all VNFs in NSk have

been placed, the greedy approach finds the Steiner

tree that connects the location for the final VNF

in NSk and the destinations in Dk. For the sake

of simplicity, we denote this greedy algorithm as

algorithm Greedy.

B. Performance evaluation

We first investigate the performance of algorithms

Appro_Multicast, Consolidated, and Greedy

in terms of the average cost of implementing a multicast

request, the average delay experienced by a multicast

request, and the running time in different networks, by

varying the network size from 50 to 200. The results

are shown in Fig. 4. From Fig. 4 (a) and (b), it can

be seen that algorithm Appro_Multicast admits

each multicast request at the lowest cost and delay

among the three algorithms. The rationale behind is

that algorithm Appro_Multicast jointly finds the

paths from source nodes to cloudlets and the Steiner

tree from the cloudlet to destination nodes, via the

construction of the auxiliary graph G′. Furthermore,

algorithm Appro_Multicast allows the VNFs in

each network slice to be assigned to multiple cloudlets,

thereby realizing a fine-grained trade-off between VNF

implementation cost and the transmission cost. In addition,

algorithm Appro_Multicast takes a bit more time

19

(a) Average cost of implementing a
single multicast request.

(b) Average delay experienced by a
single multicast request.

(c) The running time of each al-
gorithm for processing a single
multicast request.

Fig. 4. The performance of algorithms Appro_Multicast, Consolidated and Greedy in different synthetic networks with sizes varying
from 50 to 200.

(a) The number of admitted multi-
cast requests.

(b) The total cost of implementing
multiple admitted requests.

(c) The average delay experienced
by each admitted multicast request.

(d) The running time of each algo-
rithm for processing multiple multi-
cast requests.

Fig. 5. The performance of algorithms Heu_Multicast, Consolidated and Greedy in different synthetic networks with sizes varying
from 50 to 200.

to deliver a solution than that by algorithm Greedy.

Notice that the exact solution due to ILP1 is not scalable

for large problem sizes, because the number of variables

increases exponentially with the increase of problem sizes.

We implemented ILP1 by LP Solve [26], and it takes very

long time to deliver an optimal solution for a network

with 10 nodes. This makes the result meaningless, and

we do not present the results of exact solutions in the

rest of this paper.

We then study the performance of the proposed heuris-

tic algorithm Heu_Multicast in terms of the number

of admitted requests, the total cost of implementing admit-

ted requests, the average cost of implementing each ad-

mitted multicast request, and the running time, by varying

the network size from 50 to 200. Fig. 5 shows the results.

From Fig. 5 (a), we can see that the proposed heuristic

outperforms algorithms Consolidated and Greedy.

The reason is that algorithm Heu_Multicast explores

a fine-grained trade-off between the delay requirement

and the computing resource demand of each request.

However, algorithm Consolidated assigns the VNFs

in each network slice into a single cloudlet. This prevents

some network slices being admitted by any cloudlet in the

network, since there is no cloudlet with enough computing

20

resource for them. Similarly, algorithm Greedy may

allow requests with high resource demands to occupy the

computing resource in cloudlets, so other requests may

not be able to be admitted due to lack of resource. In

addition, algorithm Greedy greedily selects cloudlets

that are close to the VNFs of each multicast request,

without considering the impact of delay in the selection

of cloudlet. This may lead to requests cannot be admitted

due to the violation of their delay requirements. From

Fig. 5 (b), we can also see algorithm Heu_Multicast

achieves a higher implementation cost than that of al-

gorithm Greedy, because algorithm Heu_Multicast

admits more requests than algorithm Greedy. It can be

seen in Fig. 5 (c), algorithm Heu_Multicast has a

lower average cost of implementing each request than that

by algorithm Greedy. Algorithm Heu_Multicast

takes more time to deliver a solution to the problem than

algorithm Greedy.

We finally evaluate the performance of algorithm

Learning_Multicast against that of algorithm

Heu_Multicast in network GÉANT in a finite time

horizon of 100 minutes, by assuming that there are

200 multicast requests in each time slot and the per-

centage of new requests of each time slot is 20%.

The admit rate ϑ is set to 95%. Note that algorithms

Learning_Multicast and Heu_Multicast deal

with different delay settings. To compare their perfor-

mance, we assume that algorithm Heu_Multicast

knows all delay requirement levels of the requests.

Fig. 6 shows the evaluation results, from which we

can see that algorithm Learning_Multicast has

a slightly higher average cost than that of algo-

rithm Heu_Multicast. The reason is that algorithm

Learning_Multicast assumes the delay require-

ment of requests are not known, this may lead to the

creation of some multicast slices that are not matched by

any requests.

(a) Average cost of implementing
each admitted multicast request.

(b) The running time of each al-
gorithm for processing a multicast
request.

Fig. 6. The performance of algorithms Heu_Multicast and
Learning_Multicast.

IX. IMPLEMENTATIONS IN A TEST-BED

In this section, we evaluate the performance of the

proposed algorithms on a real test-bed.

A. Testbed settings

We build a test-bed consisting of both an underlay with

hardware switches and an overlay with virtual switches,

as shown in Fig. 7. The physical underlay consists of

five switches, i.e., Huawei S5720-32C-HI-24S-AC, H3C

S5560-30S-EI, Ruijie RG-5750C-28Gt4XS-H, CISCO

3750X-24T, and Centec aSW1100-48T4X. It also has five

servers with i7-8700 CPU and 16G RAM. We also use

the Raspberry PI with 1.2GHz CPU and 1GB RAM [39]

to represent the IoT devices that serve as the source

node of each multicast slice. Netconf [7] and SNMP [5]

protocols are used to manage the switches and the links

that interconnect them. VXLAN [30] is used to virtualize

an overlay network with a number of containers. We then

virtualize hundreds of Open vSwitch (OVS) [35] nodes

in the overlay network with real network functions by

using Mininet. The Mininet is a network virtualization

21

(a) The underlay and overlay of the test-bed

(b) The physical deployment
of the hardware switches

(c) The raspberry pi

Fig. 7. A test-bed with both hardware switches and virtual resources.

tool which creates a network of virtual hosts, switches,

controllers, and links [31], [34].

The overlay network is built following the real topology

AS1755 and GÉANT [10]. Its OVS nodes and VMs

are controlled by a Ryu controller [47]. The proposed

algorithms are implemented as Ryu applications. All

the rest settings are the same as the simulations in the

previous subsection.

In the afore-mentioned test-bed, we now study

the performance of algorithms Appro_Multicast,

Consolidated and Greedy in real networks i.e.,

GÉANT and AS1755 [10], by varying the number of

multicast requests from 50 to 1000. Fig. 8 shows the

result, from which we can see that in both networks

the average cost of implementing a multicast request by

algorithm Appro_Multicast is much lower than that

of algorithms Consolidated and Greedy. Also, the

average delay experienced by each admitted multicast

request obtained by algorithm Appro_Multicast is

much lower than that by algorithms Consolidated

and Greedy, in both of the real networks GÉANT[10]

and AS1755 [21].

(a) Average cost of implementing
each admitted multicast request in
network GÉANT.

(b) Average delay experienced
by multicast requests in network
GÉANT

(c) Average cost of implementing
each admitted multicast request in
network AS1755.

(d) Average delay experienced
by multicast requests in network
AS1755

Fig. 8. The performance of algorithms Appro_Multicast,
Consolidated and Greedy in real networks GÉANT and AS1755.

We then investigate the performance of algorithms

Heu_Multicast, Consolidated and Greedy in

networks GÉANT and AS1755, by varying the number

22

(a) The number of admitted multi-
cast requests in network GÉANT.

(b) The average cost of implement-
ing each admitted multicast request
in network GÉANT

(c) The number of admitted multi-
cast requests in network AS1755.

(d) The average cost of implement-
ing each admitted request in network
AS1755

Fig. 9. The performance of algorithms Heu_Multicast,
Consolidated and Greedy in networks GÉANT and AS1755 in
the test-bed.

of multicast requests from 100 to 400. The results on

the testbed are shown is Fig. 9. It can been seen from

Fig. 9(a) and Fig. 9(c), the number of request admitted

by algorithm Appro_Multicast is the highest in

both of the real networks GÉANT and AS1755 [10].

We can also see from Fig. 9(b) and Fig. 9(d), the

average costs of implementing a multicast request by

algorithm Appro_Multicast and Consolidated

are much lower than that of algorithm Greedy, while

the average cost does not too much differ of implement-

ing a multicast by algorithm Appro_Multicast and

Consolidated. The arguments are similar as those in

Fig. 5.

We finally evaluate the performance of algorithms

Learning_Multicast and Heu_Multicast in

the testbed during a monitoring period of 40 minutes,

by setting the length of each time slot as 10 min-

utes, the number of multicast requests in each time

slot as 200, the percentage of new requests of each

time slot as 20%, and the admit rate ϑ as 95%. The

evaluation results are shown in Fig. 10. It can been

seen from Fig. 10(a) that the average cost of algorithm

Learning_Multicast is higher than that of algo-

rithm Heu_Multicast. From Fig. 10 (b), we can see

that algorithm Learning_Multicast stabilizes very

quickly within 10 minutes, and consumes less time than

that by algorithm Heu_Multicast. The reasons are

similar as those in Fig. 6

(a) Average cost of implementing
each admitted multicast request.

(b) Running time for each algo-
rithm for processing a multicast
request.

Fig. 10. The performance of algorithms Heu_Multicast and
Learning_Multicast.

Notice that the advantage of adopting an overlay and

underlay architecture in our test-bed is that it enables fast

implementations of the proposed algorithms in some well-

established controller frameworks. However, the average

delays and running time are highly related to the physical

network, which is the bottleneck in the test-bed. We thus

consider the expansion of the test-bed to support faster

23

communications between the controller and switches as

our future work.

X. CONCLUSION AND FUTURE WORK

In this paper we studied the delay-aware network

slicing problems with and without computing resource

capacity constraint in an IoT edge network consisting

of multiple cloudlets. We first proposed optimal exact

solutions to the problems of the delay-aware network

slicing with a single or multiple requests, by formulating

the problems into ILPs. For the problem with a single

multicast request, we then devised an approximation

algorithm with an approximation ratio for the delay-aware

NFV-enabled multicasting problem without computing re-

source constraint, subject to the delay requirement of each

multicast request. Given multiple multicast requests, we

then propose an efficient heuristic that aims to maximize

the number of multicast requests that can be admitted by

the network, considering that the computing resource at

each cloudlet is limited and the delay requirement needs

to be met. When users have different levels of delay re-

quirements, we considered the problem of delay-oriented

network slicing, for which we designed a learning-based

algorithm based on reinforcement learning. We finally

evaluated the performance of the proposed algorithms by

experimental simulations and implementations in a real

test-bed. Results demonstrate that the proposed algorithms

outperform the other heuristics.

The future potential studies built upon this work

include: (1) this paper considered the slicing of edge

networks for multicast applications according to their

delay requirements. There however are some other slicing

metrics, such as security and service types. One future

direction is to explore the network slicing algorithms

with different slicing metrics and the non-trivial interplay

among the metrics; (2) Another one is to explore the

dynamic scaling in/out of existing multicast slices, con-

sidering the uncertainties of networks, such as uncertain

delays of processing and transmission. The scaling of

multicast slices in the current time slot impacts the

admissions of future multicast requests significantly. We

plan to design online learning algorithms for this problem.

ACKNOWLEDGEMENTS

We would like to thank the three anonymous referees

and the associate editor for their expertise comments and

constructive suggestions, which have helped us improve

the quality and presentation of the paper greatly. The

work of Qiufen Xia, Zichuan Xu, and Guowei Wu

is partially supported by the National Natural Science

Foundation of China (Grant No. 61802047, 61802048,

and 61872053), the fundamental research funds for the

central universities in China (Grant No. DUT19RC(4)035

and DUT19GJ204), DUT-RU Co-Research Center of

Advanced ICT for Active Life, and the “Xinghai Scholar

Program” in Dalian University of Technology, China. The

work by Pan Zhou is supported by the National Natural

Science Foundation of China (Grant No. 61972448). The

work by Jiankang Ren is supported by the National

Science Foundation for Post-doctoral Scientists of China

(Grant No. 2016M591431 and 2018T110221).

REFERENCES

[1] S. M. Banik, S. Radhakrishnan, and C. N. Sekharan. Multicast

routing with delay and delay variation constraints for collaborative

applications on overlay networks. IEEE Transactions on Parallel

and Distributed Systems, Vol. 18, No.3, pp. 421-431, IEEE, 2007.

[2] P. Caballero, A. Banchs, G. D. Veciana, and X. Costa-Pérez.

Network slicing games: enabling customization in multi-tenant

mobile networks. IEEE/ACM Transactions on Networking, Vol. 27,

No. 2, pp. 662-675, IEEE, 2019.

[3] R. Cohen, L. Eytan, J. Naor, and D. Raz. On the effect of forwarding

table size on SDN network utilization. Proc. of INFOCOM, IEEE,

2014.

[4] R. Cohen, L. Eytan, J. Naor, and D. Raz. Near optimal placement

of virtual network functions. Proc. of INFOCOM, IEEE, 2015.

24

[5] J.D. Case, M. Fedor, M.L. Schoffstall, and J. Davin. Simple

Network Management Protocol (SNMP). http://www.hjp.at/doc/

rfc/rfc1098.html, 1989.

[6] S. D’Oro, L. Galluccio, S. Palazzo, and G. Schembra. Exploiting

congestion games to achieve distributed service chaining in

NFV networks. IEEE Journal on Selected Areas in

Communications, Vol, 35, No. 2, pp. 407-420, IEEE, 2017.

[7] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman. Network

configuration protocol (NETCONF). http://www.hjp.at/doc/rfc/

rfc6241.html, 2011.

[8] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina. Network

slicing in 5G: survey and challenges. IEEE Communications

Magazine, Vol. 55, No. 5, pp. 94-100, IEEE, 2017.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability:

A guide to the Theory of NP-Completeness. W.H. Freeman and

Company, NY, 1979.

[10] GÉANT. http://www.geant.net. Accessed in April. 2020.

[11] http://www.cc.gatech.edu/projects/gtitm/. Accessed in April. 2020.

[12] L. Guo, J. Pang, and A. Walid. Joint placement and routing of

network function chains in data centers. Proc. of INFOCOM, IEEE,

2018.

[13] A. Gushchin, A. Walid, and A. Tang. Scalable routing in

SDN-enabled networks with consolidated middleboxes. Proc. of

HotMiddlebox, ACM, 2015.

[14] G. A. Rummery , and M. Niranjan. On-line Q-learning using con-

nectionist systems. Cambridge, England: University of Cambridge,

Department of Engineering, pp. 1-21, 1994.

[15] Hewlett-Packard Development Company. L.P. Servers for en-

terprise – bladeSystem, rack & tower and hyperscale. http:

//www8.hp.com/us/en/products/servers/, 2015.

[16] H. Huang, S. Guo, J. Wu, and J. Li. Service chaining for hybrid

network function. IEEE Transactions on Cloud Computing, Vol. 7,

No. 4, pp. 1082-1094, IEEE, 2019.

[17] H. Huang, P. Li, and S. Guo. Traffic scheduling for deep

packet inspection in software-defined networks. Concurrency and

computation: practice and experience, Vol. 29, No.16, pp. e3967,

Wiley, 2017.

[18] L. Huang, H. Hung, C. Lin, and D. Yang. Scalable steiner

tree for multicast communications in software-defined networking.

Computing Research Repository (CoRR), vol. abs/1404.3454, 2014.

[19] M. Huang, W. Liang, Z. Xu, W. Xu, S. Guo and Y. Xu. Dynamic

routing for network throughput maximization in software-defined

networks. Proc. of INFOCOM, IEEE, 2016.

[20] R Zagarella. Why multicast will be essential for industrial

IoT. https://www.nnnco.com.au/blog/article/why-multicast-will-be-

essential-for-industrial-iot/, NNN Australia, 2018.

[21] S. Knight et al. The internet topology zoo. IEEE Journal on

Selected Areas in Communications, Vol. 29, No. 9, pp. 1765 - 1775,

IEEE, 2011.

[22] T-W. Kuo, B-H. Liou, K. C. Lin, and M-J Tsai. Deploying chains

of virtual network functions: on the relation between link and

server usage. Proc. of INFOCOM, IEEE, 2016.

[23] M. Leconte, G. S. Paschos, P. Mertikopoulos, and U. C. Kozat.

A resource allocation framework for network slicing. Proc. of

INFOCOM, IEEE, 2018.

[24] Y. Li, L. T. X. Phan, and B. T. Loo. Network functions

virtualization with soft real-time guarantees. Proc. of INFOCOM,

IEEE, 2016.

[25] D. H. Lorenz and D. Raz. A simple efficient approximation

scheme for the restricted shortest path problem. Operations

Research Letters, Vol. 28, pp. 213-219, Elsevier, 2001.

[26] LP Solve. http://lpsolve.sourceforge.net/5.5/, accessed 12/2018.

[27] T. Lukovszki and S. Schmid. Online admission control and

embedding of service chains. Proc. of SIROCCO, Springer, 2015.

[28] J. Martins et al. ClickOS and the art of network function

virtualization. Proc. of NSDI, USENIX, 2014.

[29] L. Mamatas, S. Clayman, and A. Galis. Software-defined

infrastructure. IEEE Communications Magazine, Vol. 53, No. 4,

pp 166-174, IEEE, 2015.

[30] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T.

Sridhar, M. Bursell, and C. Wright. Virtual eXtensible Local

Area Network (VXLAN): A Framework for Overlaying Virtualized

Layer 2 Networks over Layer 3 Networks. https://www.hjp.at/doc/

rfc/rfc7348.html, RFC, 7348, 1-22.

[31] Mininet. http://mininet.org/. Accessed in Jan 2020.

[32] M. Mongiovı́, A. K. Singh, X. Yan, B. Zong, and K. Psounis.

Efficient multicasting for delay tolerant networks using graph

indexing. Proc. of INFOCOM, IEEE, 2012.

[33] H. Moens and F. D. Turck. VNF-P: A model for efficient

placement of virtualized network functions. Proc. of CNSM, IEEE,

2014.

[34] OpenFlow. https://www.opennetworking.org. Accessed in Jan

2020.

[35] Open vSwitch. https://www.openvswitch.org/. Ac-

cessed in Jan 2020.

[36] M. Pan and S. Yang. A lightweight and distributed geographic

multicast routing protocol for IoT applications. Computer Networks,

Vol. 112, pp. 95-107, Elsevier, 2017.

[37] I. Petri, A. Zamani,D. Balouek-Thomert, O. Rana,Y. Rezgui, and

M. Parashar. Ensemble-based network edge processing. Proc. of

UCC, IEEE, 2018.

[38] Z. A. Qazi, C. C. Tu, L. Chiang, R. Miao, V. Sekar, M. Yu.

SIMPLE-fying middlebox policy enforcement using SDN. Proc.

of SIGCOMM, ACM, 2013.

[39] Raspberry Pi 3 Model B. https://www.raspberrypi.org/products/

raspberry-pi-3-model-b/.

[40] O. Rana, M. Shaikh, M. Ali, A. Anjum, and L. Bittencourt.

Vertical workflows: Service orchestration across cloud & edge

25

resources. Proc. of the 6th International Conference on Future

Internet of Things and Cloud (FiCloud), IEEE, 2018.

[41] B. Ren, D. Guo, G. Tang, X. Lin, and Y. Qin. Optimal service

function tree embedding for NFV Enabled multicast. Proc. of

ICDCS, IEEE, 2018.

[42] B. Ren, D. Guo, Y. Shen, G. Tang, and X. Lin. Embedding service

function tree with minimum cost for NFV-enabled multicast. IEEE

Journal on Selected Areas in Communications, Vol. 37, No. 5, pp.

1085-1097, 2019.

[43] H. Ren, Z. Xu, W. Liang, Q. Xia, P. Zhou, O. F. Rana, A. Galis,

and G. Wu. Efficient algorithms for delay-aware NFV-enabled

multicasting in mobile edge clouds with resource sharing. IEEE

Transactions on Parallel and Distributed Systems, Vol. 31, No.9,

pp. 2050-2066, 2020.

[44] R. S. Sutton, and A. G. Barto. Reinforcement learning: An

introduction. MIT press, 2018.

[45] H. Soni, W. Dabbous, T. Turletti, and H. Asaeda. NFV-based

scalable guaranteed-bandwidth multicast service for software-

defined ISP networks. IEEE Transactions on Network and Service

Management, Vol.14, No. 5, pp. 1157-1170, 2017.

[46] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP

topologies with rocketfuel. Proc. of SIGCOMM, ACM, 2002.

[47] Ryu controller https://osrg.github.io/ryu.

[48] Z. Xu, W. Liang, and Q. Xia. Efficient embedding of virtual

networks to distributed clouds via exploring periodic resource

demands. IEEE Transactions on Cloud Computing, Vol.6, No. 3,

pp. 694-707, IEEE, 2018.

[49] Z. Xu, W. Liang, A. Galis, and Y. Ma. Throughput maximization

and resource optimization in NFV-enabled networks. Proc. of

ICC’17, IEEE, 2017.

[50] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis.

Approximation and online algorithms for NFV-enabled multicasting

in SDNs. Proc. of ICDCS, IEEE, 2017.

[51] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis.

Efficient NFV-enabled multicasting in SDNs. IEEE Transactions

on Communications, Vol. 63, No. 7, pp. 2052-2070, IEEE, 2019.

[52] Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao. Task offloading

with network function services in a mobile edge-cloud network.

IEEE Transactions on Mobile Computing, Vol.18, No. 11, pp.

2672-2685, IEEE, 2019.

[53] Z. Xu, Y. Zhang, W. Liang, Q. Xia, O. Rana, A. Galis, G. Wu,

and P. Zhou. NFV-enabled multicasting in mobile edge clouds

with resource sharing. Proc. of ICPP, ACM, 2019.

[54] Y. Ma, W. Liang, J. Wu and Z. Xu. Throughput maximization of

NFV-enabled multicasting in mobile edge cloud networks. IEEE

Transactions on Parallel and Distributed Systems, Vol.31, No.2,

pp. 393-407, IEEE, 2020.

[55] Y. Zhang, N. Beheshti, L. Beliveau, et. al. StEERING: A software-

defined networking for inline service chaining. Proc. of ICNP,

IEEE, 2013.

[56] S. Q. Zhang, Q. Zhang, H. Bannazadeh, and A. L. Garcia. Network

function virtualization enabled multicast routing on SDN. Proc. of

ICC, IEEE, 2015.

[57] S. Q. Zhang, Q. Zhang, H. Bannazadeh, and A. L. Garcia. Routing

algorithms for network function virtualization enabled multicast

topology on SDN. IEEE Transaction on Network and Service

Management, Vol.12, No.4, pp.580–594, IEEE, 2015.

Yugen Qin is working toward the ME degree

in the School of Software, Dalian University

of Technology. His research interests include

mobile edge computing and algorithmic game

theory in SDN.

Qiufen Xia received her PhD degree from

the Australian National University in 2017,

the ME degree and BSc degree from Dalian

University of Technology in China in 2012

and 2009, all in Computer Science. She is

currently a lecturer at the Dalian University

of Technology. Her research interests include

mobile edge computing, query evaluation, big data analytics, big data

management in distributed clouds, and cloud computing.

Zichuan Xu (M’17) received his PhD degree

from the Australian National University in

2016, ME degree and BSc degree from Dalian

University of Technology in China in 2011

and 2008, all in Computer Science. He is

currently a Research Associate at Department

of Electronic and Electrical Engineering, Uni-

versity College London, UK. His research interests include mobile edge

computing, software-defined networking, wireless sensor networks,

routing protocol design for wireless networks, algorithmic game theory,

and optimization problems.

26

Pan Zhou is currently an associate professor

with the Hubei Engineering Research Center

on Big Data Security, School of Cyber Science

and Engineering, Huazhong University of

Science and Technology, Wuhan, China. He

received his Ph.D. in the School of Electrical

and Computer Engineering at the Georgia

Institute of Technology in 2011, Atlanta, USA. He received his B.S.

degree in the Advanced Class and M.S. from school of EIC in HUST

in 2006. He was a senior technical member at Oracle Inc. America

during 2011 to 2013. His research interest includes: network security,

machine learning and big data analysis, information networks.

Alex Galis is a Professor in Networked

and Service Systems at University College

London. He has co-authored 10 research

books and more that 250 publications in the

Future Internet areas: system management,

networks and services, networking clouds, 5G

virtualisation and programmability. He was a

member of the Steering Group of the Future Internet Assembly (FIA)

and he led the Management and Service-aware Networking Architecture

(MANA) working group. He acted as TPC chair of 14 IEEE conferences.

He is also a co-editor of the IEEE Communications Magazine feature

topic on Advances In Networking Software. He acted as a Vice Chair

of the ITU-T SG13 Group on Future Networking. He is involved in

IETF and ITU-T SG13 network slicing activities and he is also involved

in IEEE SDN initiative.

Omer F. Rana received the B.S. degree in

information systems engineering from the

Imperial College of Science, Technology and

Medicine, London, U.K., the M.S. degree in

microelectronics systems design from the Uni-

versity of Southampton, Southampton, U.K.,

and the Ph.D. degree in neural computing

and parallel architectures from the Imperial College of Science,

Technology and Medicine. He is a Professor of performance engineering

with Cardiff University, Cardiff, U.K. His current research interests

include problem solving environments for computational science and

commercial computing, data analysis and management for large-scale

computing, and scalability in high performance agent systems.

Jiankang Ren received the B.Sc., M.E., and

Ph.D. degrees in Computer Science from

Dalian University of Technology in China,

in 2008, 2011, and 2015, respectively. He

was a Visiting Scholar with the Computer and

Information Science Department, University

of Pennsylvania, USA, from September 2013

to September 2014. He is currently an Associate Professor with the

School of Computer Science and Technology at Dalian University

of Technology. His research interests include cyber-physical systems

(CPS), cloud computing, and computational intelligence.

Guowei Wu received his Ph.D degree from

Harbin Engineering University in 2003, China.

He is now a professor at the School of

Software, Dalian University of Technology

(DUT) in China. His research interests include

embedded real-time system, cyber-physical

systems (CPS), and smart edge computing.

He has published over 100 journal and conference papers.

