This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/131341/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Publishers page: http://dx.doi.org/10.1001/jamapsychiatry.2020.0527

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
IMPORTANCE Adult mood disorders are often preceded by behavioral and emotional problems in childhood. It is yet unclear what explains the associations between childhood psychopathology and adult traits.

OBJECTIVE To investigate whether genetic risk for adult mood disorders and associated traits is associated with childhood disorders.

DESIGN, SETTING, AND PARTICIPANTS This meta-analysis examined data from 7 ongoing longitudinal birth and childhood cohorts from the UK, the Netherlands, Sweden, Norway, and Finland. Starting points of data collection ranged from July 1985 to April 2002. Participants were repeatedly assessed for childhood psychopathology from ages 6 to 17 years. Data analysis occurred from September 2017 to May 2019.

EXPOSURES Individual polygenic scores (PGS) were constructed in children based on genome-wide association studies of adult major depression, bipolar disorder, subjective well-being, neuroticism, insomnia, educational attainment, and body mass index (BMI).

MAIN OUTCOMES AND MEASURES Regression meta-analyses were used to test associations between PGS and attention-deficit/hyperactivity disorder (ADHD) symptoms and internalizing and social problems measured repeatedly across childhood and adolescence and whether these associations depended on childhood phenotype, age, and rater.

RESULTS The sample included 42,998 participants aged 6 to 17 years. Male participants varied from 43.0% (1040 of 2417 participants) to 53.1% (2434 of 4583 participants) by age and across all cohorts. The PGS of adult major depression, neuroticism, BMI, and insomnia were positively associated with childhood psychopathology (β estimate range, 0.023-0.042 [95% CI, 0.017–0.049]), while associations with PGS of subjective well-being and educational attainment were negative (β, −0.026 to −0.046 [95% CI, −0.020 to −0.057]). There was no moderation of age, type of childhood phenotype, or rater with the associations. The exceptions were stronger associations between educational attainment PGS and ADHD compared with internalizing problems (Δβ, 0.0561 [Δ 95% CI, 0.0318-0.0804]; ΔSE, 0.0124) and social problems (Δβ, 0.0528 [Δ95% CI, 0.0282-0.0775]; ΔSE, 0.0126), and between BMI PGS and ADHD and social problems (Δβ, −0.0001 [Δ95% CI, −0.0102 to 0.0100]; ΔSE, 0.0052), compared with internalizing problems (Δβ, −0.0310 [Δ95% CI, −0.0456 to −0.0164]; ΔSE, 0.0074). Furthermore, the association between educational attainment PGS and ADHD increased with age (Δβ, −0.0032 [Δ95% CI, −0.0048 to −0.0017]; ΔSE, 0.0008).

CONCLUSIONS AND RELEVANCE Results from this study suggest the existence of a set of genetic factors influencing a range of traits across the life span with stable associations present throughout childhood. Knowledge of underlying mechanisms may affect treatment and long-term outcomes of individuals with psychopathology.

Published online April 15, 2020.
Longitudinal studies indicate that the onset of mood disorders in adulthood, including depression and bipolar disorder (BD), is often preceded by childhood problems. These include not only internalizing problems, such as depression and anxiety, but also externalizing traits, such as attention-deficit/hyperactivity disorder (ADHD) and aggression. Moreover, both in prospective and retrospective studies, behavioral and emotional problems during childhood and adolescence have been associated with other adult outcomes that are associated with adult mood disorders, including educational attainment (EA), insomnia, subjective well-being (SWB), personality, and body mass index (BMI; calculated as weight in kilograms divided by height in meters squared).

Both twin/family and molecular genetic studies have reported heritability and stability over time. Studies of BD in high-risk families also show that children of parents with BD are susceptible to psychiatric disorders and symptoms in childhood, adolescence, and early adulthood. These results suggest that genetic factors may underlie the persistence of symptoms or the transition from one disorder to another between childhood and adulthood.

Polygenic score (PGS) analyses enable the examination of the association between childhood and adult psychiatric traits (EA, insomnia, SWB, neuroticism, and BMI). For complex (ie, polygenic) traits influenced by many genetic variants, PGS summarize genetic risk across loci that are not individually significant in a GWAS. A statistically significant association between measured traits and PGS based on another trait suggests a shared genetic etiology. Results of studies using PGS to investigate the association of childhood psychopathology with mood disorders and associated traits vary. Analyses investigating depression and BD PGS have found no evidence of associations with emotional and behavior problems during childhood and adolescence, although there is evidence of association between depression PGS and emotional problems in adulthood. Associations between PGS of EA and ADHD or attention problems have been more consistent, with multiple studies showing strong genetic associations between EA and ADHD or attention problems in childhood and adolescence.

The last 2 years have seen ever-larger GWAS for traits, including major depression (MD), BD, EA, insomnia, SWB, neuroticism, and BMI, consequently increasing accuracy of PGS. Combined with the substantial increase in individuals genotyped in large longitudinal childhood cohorts that assess psychopathology, this provides an opportunity to rigorously investigate whether genetic factors underlie the associations between childhood psychopathology and adult mood disorders and associated nonpsychiatric traits (EA, insomnia, SWB, neuroticism, and BMI) and determine whether this association depends on age. Using childhood population-based cohorts, we studied 42 998 individuals with repeated measures of ADHD symptoms, internalizing, and social problems. We performed meta-analyses to test whether PGS of adult traits are associated with childhood and adolescent psychopathology and whether this association depends on various factors, including age, type of psychopathology, type of scale used to measure psychopathology, and the informant.

Methods

Participants and Measures

We obtained self-rated or maternal-rated measures of ADHD symptoms, internalizing, and social problems from 7 population-based cohorts (Table 1). Data collection was approved by each cohort’s local institutional review or ethics board, waiving the need for informed consent for this study. The starting points of data collection varied, ranging from July 1985 to April 2002. Data analysis was performed from September 2017 to May 2019. Cohort descriptions can be found in the eAppendix 2 in the Supplement.

Genotyping and Polygenic Scores

Genotyping and quality control were performed by each cohort, following common standards (eAppendix 2 in the Supplement). In each cohort, PGS were constructed for the following adult traits: MD, BD, SWB, EA, insomnia, neuroticism, EA, BMI, and BMI. Height was included as a control phenotype (eTable 1 in the Supplement contains the GWAS discovery sample size for each trait). To avoid overlap between discovery and target samples, summary statistics omitting the target cohort or cohorts were used. Analyses were limited to individuals of European ancestry.

Polygenic scores were estimated using LDpred, a method that takes into account the level of linkage disequilibrium between measured single-nucleotide variants (SNVs; often called single-nucleotide polymorphisms) to avoid inflation of effect sizes. The method LDpred requires the inclusion of prior probabilities corresponding to the fraction of SNVs thought to be causal, which allows for testing varying proportions of SNVs associated with the outcome of interest. We thus tested a range of priors (0.75, 0.50, 0.30, 0.10, and 0.03) to assess the prior at which assessment was optimal. We restricted analyses to common variants, using SNV inclusion criteria of minor allele frequency greater than 5% and imputation quality of R^2 greater than 0.90.
Table 1. Sample Characteristics

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Approximate Age Groups, y</th>
<th>Scale(s)</th>
<th>Phenotype(s) Measured</th>
<th>Rater</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avon Longitudinal Study of Parents and Children</td>
<td>7, 10, 12, 14, 16</td>
<td>Strength and Difficulties Questionnaire</td>
<td>ADHD symptoms, internalizing problems, social problems</td>
<td>Maternal</td>
<td>6502</td>
</tr>
<tr>
<td>Child and Adolescent Twin Study in Sweden</td>
<td>9, 12, 15</td>
<td>Autism-Tics, ADHD and Other Comorbidities Inventory, Screen for Child Anxiety Related Emotional Disorders, Short Mood and Feelings Questionnaire, Strength and Difficulties Questionnaire</td>
<td>ADHD symptoms, internalizing problems, social problems</td>
<td>Maternal, self</td>
<td>11039</td>
</tr>
<tr>
<td>Generation R</td>
<td>6, 10</td>
<td>Achenbach System of Empirically Based Assessment (Child Behavior Checklist)</td>
<td>ADHD symptoms, internalizing problems, social problems</td>
<td>Maternal</td>
<td>2438</td>
</tr>
<tr>
<td>Norwegian Mother and Child Cohort Study</td>
<td>8</td>
<td>Screen for Child Anxiety Related Emotional Disorders, Short Mood and Feelings Questionnaire, Rating Scale for Disruptive Behavior Disorders</td>
<td>ADHD symptoms, internalizing problems</td>
<td>Maternal</td>
<td>4583</td>
</tr>
<tr>
<td>Northern Finland Birth Cohort of 1986</td>
<td>16</td>
<td>Achenbach System of Empirically Based Assessment (Youth Self Report)</td>
<td>ADHD symptoms, internalizing problems, social problems</td>
<td>Self</td>
<td>3409</td>
</tr>
<tr>
<td>Twins Early Development Study</td>
<td>7, 8, 9, 12, 14, 16</td>
<td>Strength and Difficulties Questionnaire, Conners' Parent Rating Scale</td>
<td>ADHD symptoms, internalizing problems, social problems</td>
<td>Maternal, self</td>
<td>9526</td>
</tr>
</tbody>
</table>

Cohort-Specific Association Analyses
In each cohort, associations between childhood psychopathology and adult traits were estimated by regressing each outcome measure (ie, ADHD symptoms, internalizing, and social problems) stratified by age and rater, on the calculated PGS of the 8 adult traits at the 5 priors. A wide variety of surveys were used to further characterize the cohort.44-50

Where cohorts included related individuals, regressions were performed using the exchangeable model in generalized estimating equations to correct for relatedness in samples.52 Scales were coded such that higher scores reflected more childhood problems. Both childhood psychopathology scores and PGS were standardized to a mean of 0 and an SD of 1, allowing for comparable βs across cohorts. Sex, age, batch effects, and genetic principal components (which correct for population stratification) were included as covariates in the regression (Appendix 2 in the Supplement).

Multivariate Meta-analyses
Meta-analyses were performed using the metafor package in R version 3.6.0 (R Foundation for Statistical Computing).52 To obtain the prior that provided the strongest estimate of the association with overall childhood psychopathology, we performed a random-effects meta-analysis for each of the 5 priors for each adult-trait PGS. Specifying random effects accounts for heterogeneity in the true associations attributable to factors that contribute to sample variation across cohorts, such as differences in measurements and sample characteristics. Subsequent analyses for each adult trait were conducted based on the selected prior from the previous analysis (ie, the one that provided the highest estimate of the association). As a sensitivity check, we repeated all analyses using a prior of 0.50 and compared these results to those using the prior with the highest estimate. We selected the prior of 0.50, because it represents a reasonable estimation of the proportion of associated SNVs across the different types of complex traits we tested.

To correct for dependency in the outcome variables attributable to repeated measures of the same individuals over time, we specified the variance-covariance matrix between their sampling errors. Because errors were assumed to be independent between cohorts, we combined variance-covariance matrices across cohorts by setting correlations between cohorts to 0 in the matrix, further accounting for differences between cohorts.53 To test whether the error covariance matrix alone suitably accounted for differences between cohorts, we applied for each adult trait an analysis of variance (ANOVA) test to compare models with the random effects dropped with those where they were specified along with the full model (random effects plus error covariance matrix).
We also tested the association between the PGS and each individual childhood psychopathology measure.

Because both the childhood outcomes, and PGS measures are correlated, we estimated the effective number of tests between both sets of variables under the assumption that they are nonindependent.54,55 We corrected the meta-analysis results for multiple testing by applying Bonferroni correction ($P = 0.05/\text{number of tests}$) to the effective number of tests (2015.04 effective tests; $\alpha = 2.48 \times 10^{-5}$) (eTable 2 in the Supplement).

Multimodel Inference Analyses to Identify Moderators
To ascertain whether the variables age, type of childhood psychopathology (ie, ADHD symptoms, internalizing problems, or social problems), measurement instrument (eg, Strength and Difficulties Questionnaire,44 Achenbach System of Empirically Based Assessment46) and rater (ie, maternal or self) moderated association between childhood psychopathology and adult-trait PGS, we performed multimodel inference analyses using the glmulti package in R version 3.6.0.56 The glmulti package allows the definition of a function that takes into account all potential moderators and generates all possible models for the association of interest, returning the best models based on a specified information criterion; in our study, this was Akaika information criterion.57 Furthermore, it provides parameter estimates based on all possible models, rather than a single-top model, while considering the relative importance of each potential moderator by weighting them. The averaged model avoids relying too strongly on a single best model.

In summary, for each adult-trait PGS, we selected the prior that provide the strongest estimate of its association with childhood psychopathology by performing random-effects meta-analyses at each prior. This was followed by ANOVA tests to determine whether our error covariance matrix suitably accounted for differences between cohorts (ANOVA results, eTable 18 in the Supplement). Subsequent meta-analyses of the association between PGS of each adult trait and overall childhood psychopathology (all 3 childhood measures in the same model) showed that the directions of associations were as expected (Figure 1). Significant positive associations were observed for PGS of MD (β, 0.042 [95% CI, 0.036-0.049]; SE, 0.003; $P = 2.48 \times 10^{-17}; R^2$, 0.002), neuroticism ($\beta$, 0.035 [95% CI, 0.029-0.042]; SE, 0.003; $P = 1.22 \times 10^{-26}; R^2$, 0.001), insomnia ($\beta$, 0.023 [95% CI, 0.017-0.030]; SE, 0.003; $P = 2.36 \times 10^{-12}; R^2$, 0.0005), and BMI ($\beta$, 0.035 [95% CI, 0.025-0.046]; SE, 0.005; $P = 2.23 \times 10^{-11}; R^2$, 0.001), while associations for SWB (β, ~ 0.026 [95% CI, ~ 0.020 to ~ 0.033]; SE, 0.003; $P = 1.92 \times 10^{-15}; R^2$, 0.0006) and EA ($\beta$, ~ 0.046 [95% CI, ~ 0.035 to ~ 0.057]; SE, 0.006; $P = 6.74 \times 10^{-17}; R^2$, 0.002) were negative. There was no evidence for association with BD PGS (β, 0.005 [95% CI, ~ 0.001 to 0.012]; SE, 0.003; $P = .11; R^2$, 2.50×10^{-5}). No associations were found with the PGS of height.

Moderators
Using model averaging, we considered the effect of 4 moderators (ie, outcome, age, measurement instrument, and rater) across all possible models. Using a P value threshold of .0125 ($\alpha = 0.05/\text{number of moderators}$), we found evidence of moderation for EA and BMI PGS (Table 2). The association between EA PGS and childhood psychopathology varied as a function of outcome, rater, and age. The EA PGS were associated with ADHD symptoms but not internalizing problems ($\Delta \beta$, 0.0561 [95% CI, 0.0318-0.0804]; ΔSE, 0.0124) or social problems ($\Delta \beta$, 0.0528 [95% CI, 0.0282-0.0775]; ΔSE, 0.0126; Figure 1). Additionally, the association between ADHD symptoms and EA PGS increased with age ($\Delta \beta$, ~ 0.0032 [Δ 95% CI, ~ 0.0048 to ~ 0.0017]; ΔSE, 0.0008) in maternal ratings, while self-ratings showed the opposite ($\Delta \beta$, 0.0463 [95% CI, 0.0315-0.0611]; ΔSE, 0.0075). However, the influence of rater on the associations appears to be driven by a single outlier aged around 17 years in the self-reported data (Figure 2). The association between BMI PGS and childhood psychopathology also varied across outcomes.

Results
The 7 included cohorts combined participants from the Netherlands, UK, Sweden, Norway, and Finland in a combined sample of 42 998 unique participants aged 6 to 17 years old. The percentage of male participants ranged from 43.0% (1040 of 2417 participants) to 53.1% (2434 of 4583 participants) by age and across all cohorts.

Cohort-Specific Association Analyses
Cohort-specific descriptive statistics and correlation matrices of the 3 psychopathology measures, ADHD symptoms, internalizing problems, and social problems are described in eTables 3, 4, 5, 6, 7, 8, and 9 in the Supplement. Correlation matrices show the observed variability or stability of childhood psychopathology over time. Based on cohorts with multiple or consistent measures of psychopathology across development, we observed moderate correlations across different ages. Estimates were highest for measurements of the same trait at adjacent ages, around 0.50, and lowest between self-rated and maternally rated measures, around 0.20. The results of the univariate analyses in each cohort are displayed in eTables 10, 11, 12, 13, 14, 15, and 16 in the Supplement.

Meta-analyses
Random-effects meta-analyses corresponding to the 5 priors showed that the prior that provided the strongest association estimates were 0.75 for EA and BMI; 0.50 for MD, insomnia, and height; 0.30 for neuroticism; 0.10 for BD; and 0.03 for SWB (eTable 17 in the Supplement). A reduced model (error matrix alone) was used in the multivariate and subsequent analyses for all traits except for the EA and BMI PGS, for which we used the full model (random effect plus the error covariance matrix). This was because ANOVA tests comparing the full model with the reduced model suggested that the error covariance matrix alone insufficiently accounted for differences between cohorts (ANOVA results, eTable 18 in the Supplement).

Subsequent meta-analyses of the association between PGS of each adult trait and overall childhood psychopathology (all 3 childhood measures in the same model) showed that the directions of associations were as expected (Figure 1). Significant positive associations were observed for PGS of MD (β, 0.042 [95% CI, 0.036-0.049]; SE, 0.003; $P = 2.48 \times 10^{-17}; R^2$, 0.002), neuroticism ($\beta$, 0.035 [95% CI, 0.029-0.042]; SE, 0.003; $P = 1.22 \times 10^{-26}; R^2$, 0.001), insomnia ($\beta$, 0.023 [95% CI, 0.017-0.030]; SE, 0.003; $P = 2.36 \times 10^{-12}; R^2$, 0.0005), and BMI ($\beta$, 0.035 [95% CI, 0.025-0.046]; SE, 0.005; $P = 2.23 \times 10^{-11}; R^2$, 0.001), while associations for SWB (β, ~ 0.026 [95% CI, ~ 0.020 to ~ 0.033]; SE, 0.003; $P = 1.92 \times 10^{-15}; R^2$, 0.0006) and EA ($\beta$, ~ 0.046 [95% CI, ~ 0.035 to ~ 0.057]; SE, 0.006; $P = 6.74 \times 10^{-17}; R^2$, 0.002) were negative. There was no evidence for association with BD PGS (β, 0.005 [95% CI, ~ 0.001 to 0.012]; SE, 0.003; $P = .11; R^2$, 2.50×10^{-5}). No associations were found with the PGS of height.
Associations were strongest with ADHD and social problems ($\Delta \beta$, -0.0102 [Δ95%CI, -0.0120 to -0.0100]; ΔSE, 0.0052), compared with internalizing problems ($\Delta \beta$, -0.0310 [Δ95%CI, -0.0456 to -0.0164]; ΔSE, 0.0074). Moderators did not influence associations between the other adult-trait PGS and childhood psychopathology (eTable 19 in the Supplement).

Sensitivity Analyses
Using a prior of 0.50 sensitivity analyses showed similar results to the main analyses, except for the moderation of outcome on the association with BMI PGS (intercept: β, 0.0439; SE, 0.0087 [95% CI, 0.0269 to 0.0609]; internalizing problems: $\Delta \beta$, -0.0257; ΔSE, 0.0130 [Δ95% CI, -0.0512 to -0.0003]; social problems: $\Delta \beta$, -0.0018; ΔSE, 0.0055 [Δ95% CI, -0.0126 to 0.0089]; eFigure in the Supplement). While this was nominally significant ($P = .047$), it did not remain after adjusting for the 4 moderators tested ($\alpha = .0125$; eTable 20 in the Supplement). Results from the main analyses also remained the same when all meta-analyses included random effects.

Discussion
We investigated genetic associations between childhood psychopathology and adult mood disorders and associated traits over time. Using results of well-powered GWAS meta-analyses of adult traits, we calculated PGS in what is, to our knowledge, the largest childhood target sample to date for this type of study ($N = 42,998$). We revealed strong evidence of associations of PGS for adult MD, SWB, neuroticism, insomnia, ADHD indicates attention-deficit/hyperactivity disorder. *Indicates significance after correction for multiple testing ($\alpha = 2.48 \times 10^{-5}$).
EA, and BMI with childhood ADHD symptoms, internalizing problems, and social problems. We found no evidence of associations between BD PGS and childhood psychopathology. In addition, we found no evidence of the moderators age, outcome, measurement instrument, and rater on these associations, except for EA PGS and BMI PGS. While EA PGS was more strongly associated with ADHD symptoms compared with the 2 other outcomes, BMI PGS was more strongly associated with ADHD symptoms and social problems than with internalizing problems. The association between EA PGS and ADHD symptoms increased with age and was stronger for maternal-rated ADHD symptoms compared with self-rated ADHD symptoms.

Our results indicate a consistent pattern of genetic associations between PGS of adult depression and associated traits and childhood psychopathology across age. This has not been observed previously, which is likely partly attributable to the increased power of our larger discovery and target samples observed previously, which is likely partly attributable to the increased power of our larger discovery and target samples. Moreover, previous studies focused on separate childhood phenotypes as opposed to our approach of simultaneously analyzing multiple childhood problems at different ages. Consistent genetic associations across age suggest a set of genetic variants that influence a range of traits across the life span.

The exceptions to these consistent associations were EA and BMI PGS, which showed moderation on the associations.

Table 2. Model-Averaged Moderator Effects for Educational Attainment and Body Mass Index

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate (SE)</th>
<th>95% CI</th>
<th>z value</th>
<th>P value</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational attainment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>−0.0770 (0.0092)</td>
<td>−0.0950 to −0.0591</td>
<td>−8.4072</td>
<td>4.20 × 10⁻¹⁷b</td>
<td>1.0000</td>
</tr>
<tr>
<td>Self-rating</td>
<td>0.0463 (0.0075)</td>
<td>0.0315 to 0.0611</td>
<td>6.1370</td>
<td>8.41 × 10⁻¹⁰b</td>
<td>1.0000</td>
</tr>
<tr>
<td>Age</td>
<td>−0.0032 (0.0008)</td>
<td>−0.0048 to −0.0017</td>
<td>−4.0563</td>
<td>4.99 × 10⁻⁵b</td>
<td>0.9896</td>
</tr>
<tr>
<td>Outcome measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internalizing problems</td>
<td>0.0561 (0.0124)</td>
<td>0.0318 to 0.0804</td>
<td>4.5239</td>
<td>6.07 × 10⁻⁵b</td>
<td>0.9606</td>
</tr>
<tr>
<td>Social problems</td>
<td>0.0528 (0.0126)</td>
<td>0.0282 to 0.0775</td>
<td>4.2076</td>
<td>2.58 × 10⁻⁵b</td>
<td>0.9606</td>
</tr>
<tr>
<td>Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-TAC</td>
<td>0.0008 (0.0016)</td>
<td>−0.0023 to 0.0039</td>
<td>0.4956</td>
<td>0.6202</td>
<td>0.0194</td>
</tr>
<tr>
<td>Conners’ Parent Rating Scale</td>
<td>0.0008 (0.0016)</td>
<td>−0.0023 to 0.0039</td>
<td>0.4898</td>
<td>0.6243</td>
<td>0.0194</td>
</tr>
<tr>
<td>RS-DBD</td>
<td>0.0007 (0.0015)</td>
<td>−0.0022 to 0.0037</td>
<td>0.4737</td>
<td>0.6357</td>
<td>0.0194</td>
</tr>
<tr>
<td>SCARED</td>
<td>0.0001 (0.0004)</td>
<td>−0.0007 to 0.0008</td>
<td>0.1861</td>
<td>0.8524</td>
<td>0.0194</td>
</tr>
<tr>
<td>SDQ</td>
<td>−0.0002 (0.0004)</td>
<td>−0.0010 to 0.0007</td>
<td>−0.4316</td>
<td>0.6660</td>
<td>0.0194</td>
</tr>
<tr>
<td>SMFQ</td>
<td>−0.0008 (0.0016)</td>
<td>−0.0038 to 0.0023</td>
<td>−0.4923</td>
<td>0.6225</td>
<td>0.0194</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.0468 (0.0064)</td>
<td>0.0343 to 0.0593</td>
<td>7.3531</td>
<td>1.94 × 10⁻¹³b</td>
<td>1.0000</td>
</tr>
<tr>
<td>Outcome measure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internalizing problems</td>
<td>−0.0310 (0.0074)</td>
<td>−0.0456 to −0.0164</td>
<td>−4.1744</td>
<td>2.99 × 10⁻⁵b</td>
<td>0.9374</td>
</tr>
<tr>
<td>Social problems</td>
<td>−0.0001 (0.0052)</td>
<td>−0.0102 to 0.0100</td>
<td>−0.0192</td>
<td>0.9847</td>
<td>0.0194</td>
</tr>
<tr>
<td>Self-rated</td>
<td>−0.0011 (0.0022)</td>
<td>−0.0055 to 0.0033</td>
<td>−0.5068</td>
<td>0.6123</td>
<td>0.0194</td>
</tr>
<tr>
<td>Age</td>
<td>7.48 × 10⁻⁶ (2.32 × 10⁻⁸)</td>
<td>−3.80 × 10⁻⁵ to 0.0001</td>
<td>0.3223</td>
<td>0.7473</td>
<td>0.0195</td>
</tr>
<tr>
<td>Scale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-TAC</td>
<td>−1.42 × 10⁻⁹ (3.35 × 10⁻⁹)</td>
<td>−7.99 × 10⁻⁹ to 5.14 × 10⁻⁹</td>
<td>−0.4241</td>
<td>0.6715</td>
<td>8.21 × 10⁻⁸</td>
</tr>
<tr>
<td>Conners’ Parent Rating Scale</td>
<td>2.77 × 10⁻¹² (1.62 × 10⁻¹⁰)</td>
<td>−3.18 × 10⁻⁹ to 3.19 × 10⁻⁹</td>
<td>0.0017</td>
<td>0.9986</td>
<td>8.21 × 10⁻⁸</td>
</tr>
<tr>
<td>RS-DBD</td>
<td>−1.03 × 10⁻⁹ (3.12 × 10⁻¹⁰)</td>
<td>−7.15 × 10⁻⁹ to 5.09 × 10⁻⁹</td>
<td>−0.3290</td>
<td>0.7422</td>
<td>8.21 × 10⁻⁸</td>
</tr>
<tr>
<td>SCARED</td>
<td>−3.32 × 10⁻⁹ (6.90 × 10⁻¹⁰)</td>
<td>−1.68 × 10⁻⁹ to 1.02 × 10⁻⁹</td>
<td>−0.4809</td>
<td>0.6306</td>
<td>8.21 × 10⁻⁸</td>
</tr>
<tr>
<td>SDQ</td>
<td>−1.05 × 10⁻⁹ (2.47 × 10⁻¹⁰)</td>
<td>−5.90 × 10⁻⁹ to 3.80 × 10⁻⁹</td>
<td>−0.4260</td>
<td>0.6701</td>
<td>8.21 × 10⁻⁸</td>
</tr>
<tr>
<td>SMFQ</td>
<td>2.69 × 10⁻¹⁰ (1.67 × 10⁻¹⁰)</td>
<td>−3.00 × 10⁻⁹ to 3.54 × 10⁻⁹</td>
<td>0.1612</td>
<td>0.8720</td>
<td>8.21 × 10⁻⁸</td>
</tr>
</tbody>
</table>

Abbreviations: A-TAC, Autism-Tics; ADHD, and Other Comorbidities Inventory; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); RS-DBD, Rating Scale for Disruptive Behavior Disorders; SCARED, Screen for Child Anxiety Related Emotional Disorders; SDQ, Strength and Difficulties Questionnaire; SMFQ, Short Mood and Feelings Questionnaire.

a The intercept estimate contains information from the reference variable of each moderator, selected in alphabetical order or with the lowest value, in the case of numerical moderators. Hence the intercept reflects the association estimate between educational attainment or BMI and Achenbach System of Empirically Based Assessment measured, maternally rated attention problems at approximately age 6 years. The other estimates show the change in association estimates depending on the moderator variable. The importance value for each moderator represents their overall support across all models. Moderators present in multiple models with large weights will have higher importance, and the closer this value is to 1, the more important the moderator is for the association being considered.

b Values were significant when adjusted for 4 moderators (α = .05/4 = .0125).
by the different types of childhood outcome. While both were genetically associated with ADHD in accordance with previous research,30,33,34,58 they were not associated with internalizing problems, or social problems, in the case of EA. The lack of association with internalizing problems was somewhat unexpected, given genetic correlations previously found for BMI and EA with adult MD.35,36 These results suggest that genetic associations between EA and BMI and MD may become more apparent after adolescence, while they are already present for childhood ADHD and social problems (for BMI).

We did not identify associations between BD PGS and childhood psychopathology. This is intriguing because moderate genetic correlations with BD have been observed for MD and ADHD, as well as other behavioral-cognitive phenotypes, such as SWB and EA.21 However, previous analyses of BD PGS also found no associations with continuous measures of psychopathology in childhood32,66 or adolescence.67 These results may be explained by less powerful BD GWAS compared with MD and other traits, which might result in underpowered PGS. Nevertheless, the lack of association with BD PGS may also suggest that genetic risk for BD does not manifest until later in development, but given the higher prevalence rates of childhood psychopathology in offspring of parents with BD, this seems less likely.28,62,63 It will be interesting to see if the observation holds as more powerful GWAS become available for BD.

Limitations
A limitation of our study is that analyses are limited to European ancestry, and therefore results are not generalizable to populations of differing ancestry. Second, associations between PGS and childhood psychopathology measures may be confounded by unaccounted passive gene-environment correlations, an association between a child’s genotype and familial environment resulting from parents providing environments that are influenced by their own (parental) genotypes.64,65 Consequently, associations observed with adult PGS may be the result of both direct and indirect (environmentally-mediated) genetic effects. Third, dropout may have influenced our results. Previous analyses in longitudinal cohorts have reported negative associations between PGS for schizophrenia, ADHD, and depression and participation in childhood and adolescence.66,67 Nonparticipation in adolescence is also associated with higher psychopathology scores at earlier ages.53 These results suggest that individuals with higher genetic risk for psychiatric disorders and higher childhood psychopathology are more likely to drop out of longitudinal studies. Genetic associations and the magnitude of associations reported may therefore be underestimated. Finally, because we combined data from different cohorts, we introduced heterogeneity in the assessment of childhood psychopathology. However, the meta-regression showed in general, consistent effect sizes across scales and raters. Moreover, combining multiple cohorts resulted in a large sample size, increasing statistical power compared with previous studies, which is a strength of this study.

Conclusions
The general lack of an influence of age and type of childhood psychopathology on our identified associations supports evidence of a common genetic psychopathology factor that remains stable across development.68 Polygenic scores by themselves are not sufficient to identify individual children at high risk for persistence (they explain <1% of the variance in childhood psychopathology in this study). Nevertheless, these findings are of major importance because the individuals who are affected across the life span with consequences on other outcomes, such as EA and BMI, should be the focus of attention for targeted treatment. Furthermore, PGS could be combined with other risk factors for risk assessment in clinical samples, as was recently done for psychosis risk using schizophrenia PGS.69 Future studies focusing on samples from high-risk populations are warranted to investigate whether PGS for adult traits, together with other variables, can be used to build risk profiles with reasonable accuracy. These may allow for the stratification of children into high-risk and low-risk groups for persistence, as well as test whether early intervention or more intense treatments for the former group can prevent poor outcomes.70

In conclusion, we demonstrate the power of combining genetic longitudinal population data to elucidate developmental patterns in psychopathology. Our study provides novel evidence for the presence of shared genetic factors between childhood psychopathology and depression and associated adult traits, as well as their stability across development. Insight into these associations may aid identification of children at risk for a relatively chronic course of illness, ultimately facilitating targeted treatment to this vulnerable group.
ARTICLE INFORMATION
Accepted for Publication: February 17, 2020.
Published Online: April 15, 2020.
Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2020 Akingbuwa WA et al. JAMA Psychiatry.

Author Affiliations: Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands (Akingbuwa, Hammerschlag, Jami, Baselmans, Hagenbeek, Hottenga, Mbaere, van Beijsterveldt, Boomsma, Nivard, Bartels, Middeldorp); Amsterdam Public Health Research Institute, Amsterdam, the Netherlands (Akingbuwa, Hammerschlag, Jami, Hagenbeek, Boomsma, Bartels); Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia (Hammerschlag, Middeldorp); Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom (Allegri, Bren, Lewis, Rimfeld, Plomin); Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom (Karhunen, Jarvelin); University of Bristol Medical School, University of Bristol, Bristol, United Kingdom (Sallis, Munafò); ERC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom (Sallis, Havdahl, Munafò); Centre for Academic Ethics Law and Mental Health, Gillberg Neuropsychiatry Centre, University of Gothenburg, Gothenburg, Sweden (Lundstrom); National Institute of Health Research Biomedical Research Centre, University Hospitals Bristol National Health Services Foundation Trust, University of Bristol, Bristol, United Kingdom (Munafo); Department of Social and Behavioral Science, Harvard T. H. Chan School of Medicine, Boston, Massachusetts (Tieiemier); Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Services, Brisbane, Queensland, Australia (Middeldorp).

Conflict of Interest Disclosures: Ms Akingbuwa, Jami, and Hagenbeek have reported grants from the European Union Horizon 2020 research and innovation programme, Netherlands Organisation for Scientific Research (NWO), Netherlands Organisation for Health Research and Development (ZONMW), Biobanking and Biomolecular Resources Research Infrastructure, European Union FP7, European Research Council, National Institute of Health (NIH), and the National Institute of Mental Health (NIMH). Mr Allegri reports receiving grants from European Union's Horizon 2020 research and innovation programme, Marie Skłodowska Curie Actions (MSCA-ITN-2016; Innovative Training Networks grant 721567). Dr Askeland reports grants from Research Council of Norway during the conduct of the study. Dr Bartels reports grants from Eli Lilly and Company Training Grant and the European Research Council consolidator grant. Dr Lewis reports grants from NIH during the conduct of the study and sits on the Scientific Advisory Board of Myriad Neuroscience outside the submitted work. Dr Middeldorp reports grants from NWO, the European Union, the NIH, and the Avera Institute of Human Genetics. Dr Nivard reports grants from ZonMW and NWO. No other disclosures were reported.

Funding/Support: This project has received funding from the European Union’s Horizon 2020 research and innovation programme, Marie Skłodowska Curie Actions (MSCA-ITN-2016) Innovative Training Networks (grant 721567; Ms Akingbuwa, Dr Jami, Mrs Askeland, Mrs Ms Akingbuwa, Dr Jami, Mrs Askeland, Mrs Askeland, Mrs Askeland). The Psychiatric Genomics Consortium has received major funding from the US National Institute of Mental Health and the US National Institute of Drug Abuse (grants U01 MH109528 and U01 MH1095320). Dr Hammerschlag is supported by the Children’s Health Foundation and University of Queensland strategic funding. Dr Sallis is a member of the MRC Integrative Epidemiology Unit at the University of Bristol (grant MC_UU_00117/7). Ms Askeland is supported by the Research Council of Norway (grant 274611). Dr Havdahl is supported by the South-Eastern Norway Regional Health Authority (grant 2018059) and is a member of the MRC Integrative Epidemiology Unit at the University of Bristol (grant MC_UU_00117/7). Dr Thapar is supported by the Wellcome Trust and MRC. Dr Boomsma is supported by Koninklijke Nederlandse Akademie van Wetenschappen Academy Professor Award (grant PH4/6635). Dr Reichborn-Kjennerud is supported by the Research Council of Norway (grant 274611). Dr Magnus is supported by the Research Council of Norway (grant 262700). Dr Rimfeld is funded by a Sir Henry Wellcome Postdoctoral Fellowship. Dr Ystrom is supported by the Research Council of Norway (grants 262777 and 288083). Mr Lundstrom is funded by the Child and Adolescent Twin Study in Sweden is supported by Swedish Research Council (Medicine, Humanities and Social Science, and SIMSAM). Funds under the ALF agreement, and the Swedish Research Council for Health, Working Life and Welfare (FORTE). Dr Munafò is a member of the MRC Integrative Epidemiology Unit at the University of Bristol (grant MC_UU_00117/7). Dr Plomin is supported by a Medical Research Council Professorship award (grant O19/2). Dr Tiemeier received funding from the Netherlands Organisation for Health Research and Development (grant O16.VICI.170.200). Dr Nivard is supported by ZonMW (grants 31003014 and 849200011). Dr Bartels is funded by an ERC Consolidator Grant (WELL-BEING, grant 77057).

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

The Bipolar Disorder Working Group of the Psychiatric Genomics Consortium: Eli A. Stahl,
Mortensen, Aarhus University, Aarhus, Denmark; IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; Bertram Müller-Mykhos, Max Planck Institute of Psychiatry, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; University of Liverpool, Liverpool, UK; Richard M. Myers, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama; Benjamin M. Neale, Broad Institute, Cambridge, Massachusetts and Massachusetts General Hospital, Boston, Massachusetts; Vishwajit Nimgaonkar, University of Pittsburgh, Pennsylvania; Merete Nordenfelt, IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; Bartram, University of Copenhagen, Copenhagen, Denmark; Markus M. Nöthen, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany; Michael C. O’Donovan, Cardiff University, Cardiff, UK; Kjetil O. Odegard, Haukeland Universitetssjukehus, Bergen, Norway; University of Bergen, Bergen, Norway; Alessandro Orsato, University of Edinburgh, Edinburgh, Scotland, UK; Bo Gohara A. Paciga, Pfizer Global Research and Development, Groton, Connecticut; Carlos Pato, SUNY Downstate Medical Center College of Medicine, Brooklyn, New York; Michele T. Pato, SUNY Downstate Medical Center College of Medicine, Brooklyn, New York; Dorothee Vrijie, Universiteit Amsterdam, Amsterdam, the Netherlands, Vrije Universiteit Medical Center, Amsterdam, the Netherlands; Josep Antoni Ramos-Quiroga, Instituto de Salud Carlos III, Biomedical Network Research Centre on Mental Health, Madrid, Spain, Hospital Universitari Vall d’Hebron, Barcelona, Spain; University Autónoma de Barcelona, Barcelona, Spain; Václav Horecký, University of Bonn, Bonn, Germany; University of Lübeck, Lübeck, Germany; Sven Cichon, University of Basel, Basel, Switzerland, Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland; Institute of Neurosciences and Medicine, Research Centre Jülich, Jülich, Germany; Roel A. Ophoff, UMC Utrecht, Hersonscentrum Rudolf Magnus, Utrecht, the Netherlands; University of California Los Angeles, Los Angeles; Laura J. Scott, University of Michigan, Ann Arbor; QIMR Berghof Medical Research Institute, Sydney, Australia; John Kelsoe, University of California San Diego, La Jolla; Pamela Sklar, Icahn School of Medicine at Mount Sinai, New York, New York.

The Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium: Naomi R. Wray, The University of Queensland, Brisbane, Queensland, Australia; Carole Ripke, Broad Institute, Cambridge, Massachusetts, Massachusetts General Hospital, Boston, Massachusetts, Universitätmedizin Berlin Campus Charité Mitte, Berlin, Germany; Manuel Mattheisen, Aarhus University, Aarhus, Denmark; Karolinska Institutet, Stockholm, Sweden; University of Würzburg, Würzburg, Germany; Maciej Trzaskowski, The University of Queensland, Brisbane, Queensland, Australia; Enda M. Byrne, The University of Queensland, Brisbane, Queensland, Australia; Abdel Abdellaoui, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Mark J. Adams, University of Michigan, Ann Arbor; University of Edinburgh, Edinburgh, UK; Siranoush Alborzi, Aarhus University, Aarhus, Denmark; The University of Queensland, Brisbane, Queensland, Australia; Jill F. A. Butterworth, Max Planck Institute of Psychiatry, Munich, Germany; Technical University of Munich, Munich, Germany; Silvia-Alin Bacanu, Virginia Commonwealth University, Richmond, Virginia; Marie Baekvand-Hansen, IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; Tracy M. Air, University of Adelaide, Adelaide, South Australia; Till F. Andlauer, Max Planck Institute of Psychiatry, Munich, Germany; Technical University of Munich, Munich, Germany; Silvia-Alin Bacanu, Virginia Commonwealth University, Richmond, Virginia; Marie Baekvand-Hansen, IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; Thomas F. Hansen, Rigshospitalet, Glostrup, Denmark, Mental Health Research Center; Hans, Copenhagen, Denmark; Thomas F. Hansen, Rigshospitalet, Glostrup, Denmark, Mental Health Research Center; Hans, Copenhagen, Denmark; Stefan Herms, University of Basel, Basel, Switzerland, University of Bonn, Bonn, Germany; Ian B. Hickie, University of Sydney, Sydney, New South Wales, Australia; Per Hoffmann, University of Basel, Basel, Switzerland, University of Bonn, Bonn, Germany; Georg Homuth, University Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Germany; David Horn, F. Hoffmann-La Roche Ltd, Basel, Switzerland; Jouke-Jan Hottenga, Vrije Universiteit Amsterdam, the Netherlands; Valentina Escott-Price, Cardiff University, Cardiff, UK; Michael Gill, Trinity College Dublin, Dublin, Ireland; Andreas J. Forstner, University of Basel, Basel, Switzerland, University of Bonn, Bonn, Germany; University of Marburg, Marburg, Germany; Josef Frank, Heidelberg University, Mannheim, Germany; Hélène A. Gaspar, King’s College London, London, UK; Michael Gill, Trinity College Dublin, Dublin, Ireland; Fernando S. Goes, Johns Hopkins University, Baltimore, Maryland; Scott D. Gordon, QIMR Berghof Medical Research Institute, Brisbane, Queensland, Australia; Jakob Grove, Aarhus University, Aarhus, Denmark; IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; Lynsey S. Hall, Newcastle University, Newcastle upon Tyne, UK; University of Edinburgh, Edinburgh, UK; Christine Sehohm Hansen, IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; Thomas F. Hansen, Rigshospitalet, Glostrup, Denmark, Mental Health Research Center; Hans, Copenhagen, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, IPSYCH, Copenhagen, Denmark; Stefan Herms, University of Basel, Basel, Switzerland, University of Bonn, Bonn, Germany; Ian B. Hickie, University of Sydney, Sydney, New South Wales, Australia; Per Hoffmann, University of Basel, Basel, Switzerland, University of Bonn, Bonn, Germany; Georg Homuth, University Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Germany; David Horn, F. Hoffmann-La Roche Ltd, Basel, Switzerland; Jouke-Jan Hottenga, Vrije Universiteit Amsterdam, the Netherlands; Valentina Escott-Price, Cardiff University, Cardiff, UK; Michael Gill, Trinity College Dublin, Dublin, Ireland; Andreas J. Forstner, University of Basel, Basel, Switzerland, University of Bonn, Bonn, Germany; University of Marburg, Marburg, Germany; Josef Frank, Heidelberg University, Mannheim, Germany; Hélène A. Gaspar, King’s College London, London, UK; Michael Gill, Trinity College Dublin, Dublin, Ireland; Fernando S. Goes, Johns Hopkins University, Baltimore, Maryland; Scott D. Gordon, QIMR Berghof Medical Research Institute, Brisbane, Queensland, Australia; Jakob Grove, Aarhus University, Aarhus, Denmark; IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; Lynsey S. Hall, Newcastle University, Newcastle upon Tyne, UK; University of Edinburgh, Edinburgh, UK; Christine Sehohm Hansen, IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; Thomas F. Hansen, Rigshospitalet, Glostrup, Denmark, Mental Health Research Center; Hans, Copenhagen, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, IPSYCH, Copenhagen, Denmark; Stefan Herms, University of Basel, Basel, Switzerland, University of Bonn, Bonn, Germany; Ian B. Hickie, University of Sydney, Sydney, New South Wales, Australia; Per Hoffmann, University of Basel, Basel, Switzerland, University of Bonn, Bonn, Germany; Georg Homuth, University Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Germany; David Horn, F. Hoffmann-La Roche Ltd, Basel, Switzerland; Jouke-Jan Hottenga, Vrije Universiteit
Amsterdam, Amsterdam, the Netherlands; David M. Howard, University of Edinburgh, Edinburgh, UK; King’s College London, UK; David M. Hodgson, iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark, Statens Serum Institut, Copenhagen, Denmark; Marcus Ising, Max Planck Institute of Psychiatry, Munich, Germany; Rick Jansen, Vrije Universiteit Medical Center and GGZ iN Geest, Amsterdam, the Netherlands; Ian Jones, Cardiff University, Cardiff, UK; Lisa A. Jones, University of Worcester, Worcester, UK; Eric Jorgenson, Kaiser Permanente Northern California, Oakland, California; James A. Knowles, University of Southern California, Los Angeles, California; Isaac S. Kohane, Boston Children’s Hospital, Boston, Massachusetts, Brigham and Women’s Hospital, Boston, Massachusetts, Harvard Medical School, Boston, Massachusetts; Julia Kraft, Universitätmedizin Berlin Campus Charité Mitte, BGZ in Geest, Amsterdam, the Netherlands; University of Oxford, Oxford, UK; Zoltán Kutalik, Swiss Institute of Bioinformatics, Lausanne, Switzerland, University Hospital of Lausanne, Lausanne, VD, Switzerland; Yihan Li, University of Oxford, Oxford, UK; Penelope A. Lind, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; Janus J. Luyxy, Vrije Universiteit Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands, GGenet Mental Health, Apeldoorn, the Netherlands; Donald J. MacIntyre, National Health Services 24, Glasgow, UK, University of Edinburgh, Edinburgh, UK; Dean F. Mackinnon, Johns Hopkins University, Baltimore, Maryland, Robert M. Maier, The University of Queensland, Brisbane, Queensland, Australia; Wolfgang Maier, University of Bonn, Bonn, Germany; Jonathan Marchini, University of Oxford, Oxford, UK; Hamdi Mbaraek, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Patrick McGrath, Columbia University College of Physicians and Surgeons, New York, New York; Peter McGuinness, King’s College London, London, UK; Sarah E. Medland, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia; David Medina, Vrije Universiteit University of Technology, Brisbane, Queensland, Australia, The University of Queensland, Brisbane, Queensland, Australia; Christel M. Middeldorp, Children’s Health Queensland Hospital and Health Service, South Brisbane, Queensland, Australia, University of Queensland, Brisbane, Queensland, Australia; Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Evelin Mihailov, University of Tartu, Tartu, Estonia; Yuri Milaneschi, Vrije Universiteit Medical Center and GGZ iN Geest, Amsterdam, the Netherlands; Johannes H. Smit, Vrije Universiteit Medical Center and GGZ iN Geest, Amsterdam, the Netherlands; Daniel J. Smith, University of Nottingham, Nottingham, UK; Hein Stafanoss, deCODE Genetics/Amgen, Reykjavik, Iceland; Iceland; Stanley Steinberg, deCODE Genetics/Amgen, Reykjavik, Iceland; Fabian Streit, Heidelberg University, Mannheim, Germany; Jana Strohmaier, Heidelberg University, Mannheim, Germany; Katherine E. Tansey, Cardiff University, Cardiff, UK; Henning Teismann, University of Münster, Münster, Germany; Alexander Teumer, Vrije Universiteit Medical Center Freiburg, Freiburg, Germany; Tönu Esko, Broad Institute, Cambridge, Massachusetts, University of Tartu, Tartu, Estonia; Bradley T. F. Hans, iPSYCH, University Medical Center, Leiden, the Netherlands; Albert M. van Hemert, Leiden University Medical Center, Leiden, the Netherlands; Alexander Viktorin, Karolinska Institutet, Stockholm, Sweden; Peter M. Visscher, The University of Queensland, Brisbane, Queensland, Australia; Yunpeng Wang, iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark, Mental Health Center Sct. Hans, Copenhagen, Denmark, Oslo University Hospital, Oslo, Norway; Bradley T. F. Hans, iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark, Mental Health Center Sct. Hans, Copenhagen, Denmark, DeCODE Genetics/Amgen, Reykjavik, Iceland; Iceland; Institute, Stockholm, Sweden; Nicholas G. Martin, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Andrew M. McIntosh, University of Edinburgh, Edinburgh, UK; Andres Metspalu, University of Tartu, Tartu, Estonia; Ole Mors, Aarhus University Hospital, Aarhus, Denmark, iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric
Genetic Associations of Childhood Psychopathology and Adult Depression and Associated Traits in 42,998 Individuals

Original Investigation

JAMA Psychiatry

© 2020 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ by a Cardiff University User on 04/30/2020