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A. Additional Implementation Details
Generator. Our generator consists of several SEAN Res-
Blks. Each of them is followed by a nearest neighbor up-
sampling layer. Note that we only inject the style codes ST
into the first 6 SEAN ResBlks. The other inputs are injected
to all SEAN ResBlks. The architecture of our generator is
shown in Figure 1.
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Figure 1: SEAN Generator. The style codes ST and seg-
mentation mask are passed to the generator through the pro-
posed SEAN ResBlks. The number of feature map channels
is shown in the parenthesis after each SEAN ResBlk. To
better illustrate the architecture, we omit the learnable noise
inputs and per-style Conv layers in this figure. These details
are shown in Fig.3 of the main paper (see Aij and Bij).

Discriminator. Following SPADE [9] and Pix2PixHD [12],
we employed two multi-scale discriminators with instance
normalization (IN) [11] and Leaky ReLU (LReLU). Similar

to SPADE, we apply spectral normalization [8] to all the
convolutional layers of the discriminator. The architecture
of our discriminator is shown in Figure 2.
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Figure 2: Following SPADE and Pix2PixHD, our discrim-
inator takes the concatenation of a segmentation mask and
a style image as inputs. The loss is calculated in the same
way as PatchGAN [3].

Style Encoder. Our style encoder consists of a “bottle-
neck” convolutional neural network and a region-wise aver-
age pooling layer (Figure 4). The inputs are the style image
and the corresponding segmentation mask, while the out-
puts are the style codes ST.

Loss function. The design of our loss function is inspired
by those of SPADE and Pix2PixHD which contains three
components:

(1) Adversarial loss. Let E be the style encoder, G be the
SEAN generator, D1 and D2 be two discriminators at dif-
ferent scales [12], R be a given style image, M be the cor-
responding segmentation mask of R, we formulate the con-
ditional adversarial learning part of our loss function as:

min
E,G

max
D1,D2

∑
k=1,2

LGAN (E,G,Dk) (1)
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Figure 3: Detailed usage of the SEAN-level encoder and the ResBlk-level encoder within a SEAN ResBlk.
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Figure 4: Our style encoder takes the style image and the
segmentation mask as inputs to generate the style codes ST.

Specifically, LGAN is built with the Hinge loss that:

LGAN = E [max(0, 1−Dk(R,M))]

+ E [max(0, 1 +Dk(G(ST,M) ,M))]
(2)

where ST is the style codes of R extracted by E under the
guidance of M:

ST = E (R,M) (3)

(2) Feature matching loss [12]. Let T be the total number
of layers in discriminator Dk, D(i)

k and Ni be the output
feature maps and the number of elements of the i-th layer of
Dk respectively, we denote the feature matching loss term
LFM as:

LFM = E
T∑

i=1

1

Ni

[∥∥∥D(i)
k (R,M)−D(i)

k (G(ST,M),M)
∥∥∥
1

]
(4)

(3) Perceptual loss [4]. Let N be the total number of layers
used to calculate the perceptual loss, F (i) be the output fea-
ture maps of the i-th layer of the VGG network [10], Mi be
the number of elements of F (i), we denote the perceptual
loss Lpercept as:

Lpercept = E
N∑
i=1

1

Mi

[∥∥∥F (i) (R)− F (i) (G(ST,M))
∥∥∥
1

]
(5)

The final loss function used in our experiment is made
up of the above-mentioned three loss terms as:

min
E,G

((
max
D1,D2

∑
k=1,2

LGAN

)
+λ1

∑
k=1,2

LFM+λ2Lpercept

)
(6)

Following SPADE and Pix2PixHD, we set λ1 = λ2 = 10
in our experiments.

Training details. We perform 50 epochs of training on all
the datasets mentioned in the main paper. During training,
all input images are resized to a resolution of 256×256, ex-
cept for the CityScapes dataset [1] whose images are resized
to 512 × 256. We use Glorot initialization [2] to initialize
our network weights.

B. Additional Experimental Details
Table 3 (main paper). Supplementing row 5 and 6 in Table
3 of the main paper, Figure 3 shows how the two variants of
style encoders (i.e. the SEAN-level encoder and the ResBlk-
level encoder) are used in a SEAN ResBlk. Specifically, the
SEAN-level encoders extract different style codes for each
SEAN block while the same style codes extracted by the
ResBlk-level encoder are used by all SEAN blocks within a
SEAN ResBlk.

Figure 6 (main paper). We used the Ground Truth (second
column in Figure 6 of the main paper) as the style input for
all methods. For Pix2pixHD, we generate the results by: (i)
encoding the style image into a style vector; (ii) broadcast-
ing the style vector and concatenating it to the mask input
of the generator.



C. Justification of Encoder Choice

Figure 5 shows that the images generated by the unified
encoder are of better visual quality than those generated by
the SEAN-level encoder, especially for challenging inputs
(e.g. extreme poses, unlabeled regions), which justifies our
choice of unified encoder.

Label Style Image Encoder1 Encoder2

Figure 5: Encoder choice justification. Encoder1 is the
SEAN-level encoder and Encoder2 is the unified encoder.
SEAN-level encoder is more sensitive to the poses and un-
labeled parts of the style image due to the overfitting. Using
unified encoder can get more robust style transfer results.

D. Additional Analysis

ST-branch vs. Mask-branch. The contributions of ST-
branch and mask-branch are determined by a linear com-
bination (parameters αβ and αγ). The resulting parameters
are typically in the range of 0.35 − 0.7 meaning that both
branches are actively contributing to the result. See Fig 6
for one example. It is possible to completely drop the mask-
branch, but the results will get worse. It was our initial intu-
ition that the mask branch provides the rough structure and
the ST-branch additional details. However, in the end, the
interaction is quite complicated and cannot be understood
by just varying the mixing parameter.
Extreme Cases. To further demonstrate SEAN’s power in
texture transfer, we show that highly complex textures from
an artistic image can be transferred to a human face (Fig 7).
In addition, our method is highly flexible that enables users
to paint a semantic region at a spatially unreasonable loca-
tion arbitrarily (Fig 8).
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Figure 6: Contributions of ST-branch and Mask-branch for
each SEAN normalization block. The pie charts and SEAN
normalization blocks are in one-to-one correspondence.

Figure 7: Complex texture transfer.

Figure 8: Spatially-flexible painting. Our method allows
users to put eyes anywhere on a face.

E. User Study
We conducted a user preference study with Amazon Me-

chanical Turk (AMT) to illustrate our superior reconstruc-
tion results against existing methods (Table 1). Specifically,
we created 600 questions for AMT workers to answer. In
the end, our questions are answered by 575 AMT work-
ers. For each question, we show the user a set of 5 im-
ages: a ground truth image, its corresponding segmentation
mask, and 3 reconstruction images obtained by our method,
Pix2PixHD [12] and SPADE [9]. The user is then asked to
select the reconstructed image closest to the ground truth
and with fewest artifacts. To relieve the impact of image or-
ders and make a fair comparison, we picked 100 image sets
randomly and created the 600 questions by enumerating all
the 6 possible orders of the 3 reconstructed images in each
of them.

F. Additional Results
To demonstrate that the proposed per-region style control

method builds the foundation of a highly flexible image-
editing software, we designed an interactive UI for a demo.
Our UI enables high quality image synthesis by transfer-
ring the per-region styles from various images to an arbi-



Pix2PixHD [12] SPADE [9] Ours

Preference (%) 23.17 8.83 68.00

Table 1: User preference study (CelebAMask-HQ dataset).
Our method outperforms Pix2PixHD [12] and SPADE [9]
significantly.

trary segmentation mask. New styles can be created by in-
terpolating existing styles. Please find the recorded videos
of our demo in the supplementary material.

Figure 9 shows additional style transfer results on
CelebAMask-HQ [6, 5, 7] dataset. Figure 10 and Figure 11
show additional style interpolation results on CelebAMask-
HQ and ADE20K datasets.

Figure 12, 13, 14 and 15 show additional im-
age reconstruction results of our method, Pix2PixHD and
SPADE on the CelebAMask-HQ [6, 5, 7], ADE20K [13],
CityScapes [1] and our Façades datasets respectively. It
can be observed that our reconstructions are of much higher
quality than those of Pix2PixHD and SPADE.
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Figure 9: Style transfer on CelebAMask-HQ dataset



Source Image Layout Style1 Style2Interpolated Results

Figure 10: Style interpolation on CelebAMask-HQ dataset
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Figure 11: Style interpolation on ADE20K dataset



Label Ground Truth Pix2PixHD [12] SPADE [9] Ours

Figure 12: Visual comparison of semantic image synthesis results on the CelebAMask-HQ dataset. We compare Pix2PixHD,
SPADE, and our method.



Label Ground Truth Pix2PixHD [12] SPADE [9] Ours

Figure 13: Visual comparison of semantic image synthesis results on the ADE20K dataset. We compare Pix2PixHD, SPADE,
and our method.



Label Ground Truth Pix2PixHD [12] SPADE [9] Ours

Figure 14: Visual comparison of semantic image synthesis results on the ADE20K dataset. We compare Pix2PixHD, SPADE,
and our method.



Label Ground Truth Pix2PixHD [12] SPADE [9] Ours

Figure 15: Visual comparison of semantic image synthesis results on the CityScapes and Façades dataset. We compare
Pix2PixHD, SPADE, and our method.


