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EXTREME DIAGONALLY AND ANTIDIAGONALLY SYMMETRIC

ALTERNATING SIGN MATRICES OF ODD ORDER

ARVIND AYYER, ROGER E. BEHREND, AND ILSE FISCHER

Abstract. For each α ∈ {0, 1,−1}, we count diagonally and antidiagonally symmetric alternating
sign matrices (DASASMs) of fixed odd order with a maximal number of α’s along the diagonal and the
antidiagonal, as well as DASASMs of fixed odd order with a minimal number of 0’s along the diagonal
and the antidiagonal. In these enumerations, we encounter product formulas that have previously
appeared in plane partition or alternating sign matrix counting, namely for the number of all alternating
sign matrices, the number of cyclically symmetric plane partitions in a given box, and the number of
vertically and horizontally symmetric ASMs. We also prove several refinements. For instance, in the
case of DASASMs with a maximal number of −1’s along the diagonal and the antidiagonal, these
considerations lead naturally to the definition of alternating sign triangles. These are new objects
that are equinumerous with ASMs, and we are able to prove a two parameter refinement of this fact,
involving the number of −1’s and the inversion number on the ASM side. To prove our results, we
extend techniques to deal with triangular six-vertex configurations that have recently successfully been
applied to settle Robbins’ conjecture on the number of all DASASMs of odd order. Importantly, we
use a general solution of the reflection equation to prove the symmetry of the partition function in the
spectral parameters. In all of our cases, we derive determinant or Pfaffian formulas for the partition
functions, which we then specialize in order to obtain the product formulas for the various classes of
extreme odd DASASMs under consideration.

1. Introduction

An alternating sign matrix (ASM) is a square matrix with entries 0, 1 or −1 such that along each
row and each column the non-zero entries alternate and add up to 1. An example is given next.




0 0 1 0 0 0 0
0 1 −1 0 1 0 0
1 −1 0 1 −1 1 0
0 0 1 −1 1 0 0
0 1 −1 1 0 −1 1
0 0 1 0 −1 1 0
0 0 0 0 1 0 0




(1.1)

(The coloring of the entries is explained shortly.) The story of ASMs began in the early 1980’s
when Mills, Robbins and Rumsey [MRR82, MRR83] defined them in the course of generalizing the
determinant and conjectured that the number of n×n ASMs is given by the following simple product
formula.

n−1∏

i=0

(3i+ 1)!

(n+ i)!
(1.2)
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It was more than ten years later when Zeilberger [Zei96a] finally succeeded in providing the first proof
of this formula in an 84 page paper. Kuperberg [Kup96] then used six-vertex model techniques to give
a shorter proof.

As early as the 1980’s, as discussed by Robbins [Rob91, Rob00, p.18, p. 2], Stanley suggested
systematically studying symmetry classes of ASMs, which led Robbins to numerous conjectures, see
[Rob00]. In particular, several symmetry classes of ASMs were conjectured to be enumerated by
beautiful product formulas similar to (1.2). The program of proving these product formulas was
recently completed in [BFK17], in which ASMs of odd order that are invariant under the reflections in
the diagonal and in the antidiagonal, usually referred to as diagonally and antidiagonally symmetric

ASMs (DASASMs), were enumerated. The example in (1.1) belongs to this symmetry class. About
half of Robbins’ other conjectured product formulas for symmetry classes of ASMs were proven by
Kuperberg in [Kup02], namely those for vertically symmetric ASMs, half-turn symmetric ASMs of
even order and quarter-turn symmetric ASMs of even order. Razumov and Stroganov proved the odd
order cases for half-turn symmetric ASMs [RS06a] and for quarter-turn symmetric ASMs [RS06b],
and Okada enumerated vertically and horizontally symmetric ASMs [Oka06].

In addition to symmetry classes of ASMs, various closely-related classes of ASMs have also been
studied. Of relevance for this paper are off-diagonally symmetric ASMs (OSASMs), and off-diagonally

and off-antidiagonally symmetric ASMs (OOSASMs), as introduced by Kuperberg [Kup02]. OSASMs
are even order diagonally symmetric ASMs in which each entry on the diagonal is 0, while OOSASMs
are DASASMs of order 4n in which each entry on the diagonal and antidiagonal is 0. A product
formula for the number of OSASMs (which is identical to that for odd order vertically symmetric
ASMs) was obtained by Kuperberg [Kup02], but no formula for the enumeration of OOSASMs is
currently known. For further information regarding symmetry classes and related classes of ASMs,
see, for example, [BFK17, Secs. 1.2–1.3], and references therein.

The focus of the current paper is the study of odd order DASASMs with a certain extreme behavior
along the union of the diagonal and the antidiagonal. Observe that a DASASM (ai,j)1≤i,j≤2n+1 of order
2n+1 is determined by its entries in the fundamental triangle {(i, j)|1 ≤ i ≤ n+1, i ≤ j ≤ 2n+2−i}—
in the example (1.1) marked with red. For a given odd-order DASASM A and α ∈ {0, 1,−1}, let

Nα(A) = # of α’s along the portions of the diagonals of A that lie in the fundamental triangle,

where here and in the following “diagonals” refers to the union of the (main) diagonal and the (main)
antidiagonal. In the example (1.1), N−1(A) = 2, N1(A) = 1 and N0(A) = 4. We have the following
bounds for these statistics. (The proof of the proposition is provided in Subsection 2.2.)

Proposition 1.1. For any (2n + 1)× (2n + 1) DASASM A, the statistics Nα(A) lie in the following

intervals.

(1) 0 ≤ N−1(A) ≤ n
(2) 0 ≤ N1(A) ≤ n+ 1
(3) n ≤ N0(A) ≤ 2n

All inequalities are sharp.

The research presented in this paper started out with numerical data providing evidence that for
four out of the six inequalities in the proposition we have the following phenomenon: The number
of DASASMs where equality is attained is round and in fact equal to numbers that have previously
appeared in plane partition or alternating sign matrix counting. (For the two other inequalities, the
numbers are not even round.) It is the primary objective of this paper to prove all these empirical
observations. A number of generalizations including determinant or Pfaffian formulas for certain
generating functions that are known as partition functions in a physics context are also provided.
Next we state the main results.
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1.1. Case N−1(A) = n: Order 2n+1 DASASMs A with N−1(A) = n are proven to be equinumerous
with n×n ASMs. It is remarkable that this now establishes a new class of objects with this property.
The two other currently-known classes are totally symmetric self-complementary plane partitions in an
2n×2n×2n box (which were introduced by Stanley [Sta86] and enumerated by Andrews [And94], and
for which the equinumeracy with ASMs was first conjectured by Mills, Robbins and Rumsey [MRR86])
and descending plane partitions (DPPs) with parts no greater than n (which were introduced and
enumerated by Andrews [And79], and for which equinumeracy with ASMs was first conjectured by
Mills, Robbins and Rumsey [MRR82, MRR83]).

We are also able to identify statistics that have the same distribution: For an ASM A, let

µ(A) = # of −1’s in A,

and, for an order 2n+ 1 DASASM A, let

µ∇(A) = (# of −1’s in the fundamental triangle of A)− n.

We will consider µ∇(A) only for A ∈ DASASM(2n+ 1) with N−1(A) = n, in which case it is just the
number of −1’s in the interior of the fundamental triangle. Throughout the paper, the sets of order n
ASMs and order n DASASMs are denoted by ASM(n) and DASASM(n), respectively.

Theorem 1.2. The distribution of the statistic µ on the set ASM(n) is equal to the distribution of the

statistic µ∇ on the set of A ∈ DASASM(2n + 1) with N−1(A) = n, i.e., for all non-negative integers

m,n we have

|{A ∈ ASM(n) | µ(A) = m}| = |{A ∈ DASASM(2n+ 1) | N−1(A) = n, µ∇(A) = m}|.

A corresponding result—with the set of A ∈ DASASM(2n + 1) such that N−1(A) = n replaced
by the set of DPPs with parts no greater than n and µ∇ replaced by the number of special parts
in the DPP—was conjectured by Mills, Robbins and Rumsey [MRR83] and proven by Behrend, Di
Francesco and Zinn-Justin [BDFZJ12]. In fact, they have proven a refinement (also conjectured by
Mills, Robbins and Rumsey) that involves two additional statistics. On the ASM side, these are the
inversion number and the position of the unique 1 in the top row. (This was further generalized in
[BDFZJ13], where they also included the position of the unique 1 in the bottom row.) In Section 5,
we define an inversion number inv∇ on the set of A ∈ DASASM(2n + 1) with N−1(A) = n such
that the joint distribution of µ and inv on ASM(n) is equal to the joint distribution of µ∇ and inv∇
on this subset of DASASM(2n + 1) (Theorem 5.5), thus establishing a refinement of Theorem 1.2.
Other generalizations of Theorem 1.2 in terms of partition functions for certain triangular six-vertex
configurations are provided in Theorems 5.1 and 5.3, and in Corollary 5.2.

1.2. Case N1(A) = n+1: In the second theorem, cyclically symmetric plane partitions (CSPPs) make
an appearance. They were enumerated by Andrews [And79].

Theorem 1.3. The number of A ∈ DASASM(2n + 1) with N1(A) = n + 1 is equal to the number of

CSPPs in an n× n× n box.

The number of CSPPs has previously appeared in the program of enumerating symmetry classes
of ASMs: Robbins conjectured [Rob00] and Kuperberg [Kup02, Theorem 2] proved that the number
of 2n× 2n half-turn symmetric alternating sign matrices is the product of the total number of n× n
ASMs and the number of CSPPs in an n× n× n box.

Generalizations of Theorem 1.3 in terms of partition functions are provided in Theorems 6.1 and
6.3, and in Corollary 6.2.
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1.3. Case N0(A) = n: For the lower bound of N0, we again have the total number of ASMs turning
up. This is one of the few exceptional cases in this field that can easily be proven by establishing a
bijection with other objects that are known to be enumerated by these numbers, in this particular
case with A ∈ DASASM(2n+3) satisfying N−1(A) = n+1 (which also appear in Theorem 1.2 and are
shown to be equinumerous with ASMs of order n + 1). This bijection is provided in Subsection 2.4.
As it is always the situation in such a case in this area so far, the bijection is almost trivial, which is
the reason why the following result can be viewed as a corollary of Theorem 1.2.

Corollary 1.4. The number of A ∈ DASASM(2n + 1) with N0(A) = n is equal to the number of

ASMs of order n+ 1.

1.4. Case N0(A) = 2n: In the case of the upper bound of N0, the number of vertically and horizontally

symmetric alternating sign matrices (VHSASMs) appears.

Theorem 1.5. The number of A ∈ DASASM(2n + 1) with N0(A) = 2n is equal to the number of

order 2n+ 3 VHSASMs.

The DASASMs A of order 2n + 1 with N0(A) = 2n can be regarded as odd order versions of
OOSASMs, and so we denote this subset of DASASM(2n + 1) by OOSASM(2n + 1). Indeed, as the
central entry of an odd order DASASM is always non-zero, all other entries on the diagonals of such
a DASASM are zero and thus this is for odd order as close as one can get to Kuperberg’s original
OOSASMs.1 Interestingly, vertically symmetric OOSASMs of odd order have been enumerated by
Okada [Oka06, (B2) and (B3) of Theorem 1.3]. (There they are referred to as VOSASMs, since the
vertical symmetry and the diagonal symmetry implies the antidiagonal symmetry.)

Generalizations of Theorem 1.5 in terms of partition functions are provided in Theorems 7.1 and
7.2.

1.5. Outline of the paper. In Section 2, we provide several basic observations: We prove Propo-
sition 1.1, and, already for this purpose, it is useful to translate our problems into the counting of
certain orientations of triangular regions of the square grid (triangular six-vertex configurations). In
this section, we also present a simple bijection between the order n DASASM objects of Theorem 1.2
and the order n− 1 DASASM objects of Corollary 1.4 that consists merely of manipulations close to
the diagonal and the antidiagonal. In Section 3, we introduce the vertex weights and some of their
properties (Yang–Baxter equation, reflection equations), and use these weights to define the partition

function, i.e., a multiparameter generating function of the objects we want to count. There we also
introduce several specializations of this partition function that are used to prove our theorems. The
partition function is a Laurent polynomial in the so-called spectral parameters, and, in Section 4, we
provide characterizations of this partition function that are used later on. In Sections 5 – 7, we then
employ all these preparations to prove Theorems 1.2, 1.3 and 1.5, respectively. Finally, in Appendix A
we provide an ad-hoc counting of alternating sign triangles with a single −1.

1Note that the central entry c of an A ∈ OOSASM(2n + 1) is (−1)n: The sum of entries in A is certainly 2n + 1,
however it is also 4s + c, where s is the sum of entries in the fundamental domain of A without c.
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2. Basics: Proof of Proposition 1.1, characterization of extreme configurations and

Theorem 1.2 implies Corollary 1.4

2.1. Triangular six-vertex configurations. Let A = (ai,j)1≤i,j≤2n+1 be a DASASM of order 2n+1.
Its restriction to the fundamental triangle (ai,j)1≤i≤n+1,i≤j≤2n+2−i is said to be an odd DASASM-

triangle of order n. An example of an odd DASASM-triangle of order 6 is given next.

0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 1 0 0 0 0

0 1 0 0 0 −1 0 1 0
−1 1 0 0 0 0 −1

−1 1 0 0 0
−1 0 1

1

(2.1)

In fact, a triangular array (ai,j)1≤i≤n+1,i≤j≤2n+2−i of this form, in which each entry is 0, 1 or −1, is
an odd DASASM-triangle of order n if and only if, for each j ∈ {1, 2, . . . , n+ 1}, the non-zero entries
in the following sequence alternate—read from top left to the top right—and add up to 1.

a1,j a1,2n+2−j

a2,j a2,2n+2−j

↓ ...
... ↑

aj−1,j aj−1,2n+2−j

aj,j aj,j+1 . . . aj,2n+1−j aj,2n+2−j

→

(2.2)

(In the example (2.1), this sequence is indicated in red for j = 4.) Let us clarify that in the special
case j = n+ 1, we require that the sequence

a1,n+1, a2,n+1, . . . , an,n+1, an+1,n+1, an,n+1, . . . , a1,n+1

has this property, and this is satisfied if and only if the non-zero entries of a1,n+1, a2,n+1, . . . , an+1,n+1

alternate, the first non-zero entry in this sequence is 1, and an+1,n+1 6= 0. For an odd DASASM-
triangle A, we define Nα(A) = Nα(A

′), where A′ is the DASASM corresponding to A.
In the six-vertex model, these triangular arrays correspond to orientations of a triangular region of

the square grid with n+ 2 centered rows as indicated in Figure 1, where

• the degree 4 vertices (bulk vertices) have two incoming and two outgoing edges, and
• the top vertical edges point up.

Rows 2, 3, . . . , n+2 in the grid will correspond to rows 1, 2, . . . , n+1 of the DASASM-triangle, respec-
tively. The term six-vertex is derived from the fact that there are

(4
2

)
= 6 possible local configurations

around a bulk vertex. The underlying undirected graph is denoted by Tn in the following.
The triangular six-vertex configuration of an odd DASASM-triangle can be obtained by restricting

the standard six-vertex configuration on a square of the respective DASASM to the fundamental
triangle. More concretely, each vertex of Tn, except for the degree 1 vertices at the top, corresponds
to an entry of the associated odd DASASM-triangle of order n. As usual, a bulk vertex whose two

incident vertical edges are outgoing ( ), respectively incoming ( ), corresponds to a 1, respectively
−1, in the odd DASASM-triangle, while all other bulk vertices correspond to zeros. Left boundary

vertices and right boundary vertices are the degree 2 vertices on the left and right boundary, and such
a vertex corresponds to a 1 (resp. −1) if and only if the local configuration around the vertex is the
restriction of the local bulk configuration corresponding to a 1 (resp. −1). This also applies to the
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Figure 1. Triangular six-vertex configuration of order 6

bottom vertex. That is,

, , , ↔ 1, , , , ↔ −1 and , , , , , , , ↔ 0.

The configuration in Figure 1 is the six-vertex configuration of the odd DASASM-triangle in (2.1). Note
that when restricting the six-vertex configuration of an odd DASASM to the fundamental triangle,

the local configuration on the left-boundary must originate from , and thus corresponds to 1,

because the only other local configuration with this restriction, i.e., , cannot appear on the diagonal

of a six-vertex configuration of a DASASM. We have a similar situation for , , .

2.2. Proof of Proposition 1.1. In order to derive the crucial identity (2.3), we employ the fact
that, in a directed graph, the sum of all outdegrees is equal to the sum of all indegrees. The bulk
vertices of a triangular six-vertex configuration as well as the vertices on the left and right boundary
that correspond to ±1’s are balanced in the sense that the outdegree is equal to the indegree, and so
these vertices do not contribute to this identity.

For an odd DASASM-triangle A, we denote the number of boundary zeros with indegree 2 in the
corresponding triangular six-vertex configuration by N0,in(A), and number of boundary zeros with
outdegree 2 by N0,out(A). In the example in Figure 1, we have N0,in(A) = 0 and N0,out(A) = 6. Now,
since all 2n + 1 top vertices have indegree 1, the sum of all outdegrees is 2N0,out(A) + [an+1,n+1 = 1]
(where we use the Iverson bracket, i.e., [statement] = 1 if the statement is true, and 0 otherwise), while
the sum of all indegrees is 2N0,in(A)+2n+1+[an+1,n+1 = −1], and, since [an+1,n+1 = 1]− [an+1,n+1 =
−1] = an+1,n+1, we can conclude that

2N0,out(A) + an+1,n+1 − (2N0,in(A) + 2n+ 1) = 0. (2.3)

The lower bounds for N±1(A) are trivial and the upper bound for N0(A) follows because the central
entry of a DASASM is always non-zero.

An example of a DASASM in which the upper bound of N0 is attained is the matrix where every
other entry of the restriction of the superdiagonal (i.e., the secondary diagonal immediately above the
main diagonal) to the fundamental triangle is 1, the central entry is (−1)n and all other entries of
the fundamental triangle are 0. The corresponding odd DASASM-triangles of order 4 and 5 are the
following:

0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 1 0 0 0
0 0 0

1

0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0
0 0 0 0 0

0 1 0
−1
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As we will see below that N−1(A) = n implies N1(A) = 0, and N1(A) = n + 1 implies N−1(A) = 0,
the fact that the two trivial inequalities are sharp follows from the fact that the upper bounds of N±1

are sharp. The latter facts are shown below.
Inequality N−1(A) ≤ n: Using N1(A)+N−1(A)+N0,out(A)+N0,in(A) = 2n+1 and (2.3), we deduce

N−1(A) = 2n + 1−N1(A)−N0,out(A)−N0,in(A)

= n+
1

2
−N1(A)− 2N0,in(A) +

an+1,n+1

2
≤ n.

We have equality iff N0,in(A) = N1(A) = 0 and an+1,n+1 = −1, or else N0,in(A) = 0 and N1(A) =
an+1,n+1 = 1. However, the latter possibility cannot occur since then the bottom bulk vertex in the
central column would have three incoming edges—the left (resp. right) boundary vertex adjacent to
it is of type or (resp. or )—and this is impossible.

An order 2n+ 1 DASASM with N−1(A) = n is

A =




0 1 0 · · · · · · · · · · · · 0

1 −1 1 0
...

0 1 −1 1 0
...

0 0 1 −1 1 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 1 −1 1 0
... 0 1 −1 1
0 · · · · · · · · · · · · 0 1 0




.

Inequality N1(A) ≤ n+ 1: Here we have

N1(A) = n+
1

2
−N−1(A)− 2N0,in(A) +

an+1,n+1

2
≤ n+ 1,

and equality is attained iff N0,in(A) = 0, N−1(A) = 0 and an+1,n+1 = 1. The identity matrix is a
matrix where equality is attained.

Inequality N0(A) ≥ n: From (2.3), it follows

N0(A) = N0,out(A) + N0,in(A) ≥ N0,out(A)−N0,in(A) = n+
1

2
− an+1,n+1

2
≥ n,

and so we have equality iff N0,in(A) = 0 and an+1,n+1 = 1. Since N1(A) = n + 1 implies N0(A) = n,
this inequality is sharp too.

2.3. Characterization of extreme configurations. The proof of Proposition 1.1 implies immedi-
ately the following characterization.

Corollary 2.1. Let A be an odd DASASM-triangle of order n.

(1) We have N−1(A) = n if and only if, for each row except the bottom row, the sum of entries

is 1 when disregarding the left and right boundary entries. In the six-vertex configuration, this

is fulfilled if and only if, in each row, the leftmost horizontal edge points to the right and the

rightmost horizontal edge points to the left.

(2) We have N1(A) = n + 1 if and only if the sum of entries in each row is 1. In the six-vertex

configuration, this is fulfilled if and only if, in each row, the leftmost vertical edge and the

rightmost vertical edge point upwards.

(3) We have N0(A) = n if and only if, for each row, one of the following is true.

(a) The sum of entries is 1.
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Figure 2. Illustration of the proof that Theorem 1.2 implies Corollary 1.4

(b) The sum of entries with the left or right boundary entry excluded from the sum is 1.
(c) The sum of entries with both boundary entries excluded from the sum is 1.

Remark 2.2. (1) Odd DASASM-triangles A of order n with N−1(A) = n are precisely the odd
DASASM-triangles of order n in which the sum of entries is minimal. Indeed, the characteri-
zation in Corollary 2.1 (1) implies the following different characterization: An odd DASASM-
triangle A of order n satisfies N−1(A) = n if and only if each column sum is 0. In order to
see this, also recall that the bottom entry of such an A is −1. Now the sum of entries in an
odd DASASM-triangle is at least 0 (since each column sum is at least 0), and the minimum is
attained if and only if each column sum is 0.

(2) The characterization in Corollary 2.1 (2) implies that odd DASASM-triangles A of order n
with N1(A) = n + 1 are precisely the odd DASASM-triangles of order n in which the sum of
entries is maximal. This is because the sum of entries in an odd DASASM-triangle of order
n is at most n+ 1, since each of the n + 1 rows has row sum at most 1, and the maximum is
attained if and only if each row has sum 1.

2.4. Theorem 1.2 implies Corollary 1.4. This is best understood in terms of the six-vertex model.
As noted in the proof of Proposition 1.1, the triangular six-vertex configurations equivalent to the
objects from Corollary 1.4 are characterized by the two facts that there is no left or right boundary
vertex with indegree 2 and the bottom vertical edge points upwards.

To transform an order n configuration of Corollary 1.4 into an order n + 1 configuration of The-
orem 1.2, add vertices left of each left boundary vertex and connect the new vertices to their right
neighbors by an edge that is directed to the right, see Figure 2 for an example. Add similar vertices
and edges on the right boundary, where the new horizontal edges are directed to the left.

Also add a new vertex below the bottom central vertex and introduce vertical edges that connect
the 2n + 3 added vertices to their top neighbors (for the two new top boundary vertices add vertices
above them and two vertical edges that are directed upwards). Since the indegree of each former
boundary vertex was either 0 or 1 (and is currently either 1 or 2) and the former bottom vertex had
indegree 0 (and has currently indegree 2), there is a unique way to orient the new vertical edges such
that the former boundary and bottom vertices (now bulk vertices) are balanced. By Corollary 2.1,
this produces an object with the desired properties.

To reverse the transformation, simply delete left and right boundary vertices of an order n + 1
configuration of Theorem 1.2 as well as the bottom vertex, and all edges incident with these vertices.
None of the new left or right boundary vertices can have indegree 2, since, before the deletion of the
vertices and edges, the leftmost vertical edge in each row was pointing to the right, while the rightmost
vertical edge in each row was pointing to the left. This also implies that the bottom bulk vertex in the

central column was of type before the deletion, and thus the new bottom vertex points upwards.

2.5. Alternating sign triangles. If we delete the diagonals of an odd DASASM-triangle A of order
n with N−1(A) = n, then, by Corollary 2.1, we obtain an object of the following type.
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Definition 2.1. An alternating sign triangle (AST) of order n is a triangular array (ai,j)1≤i≤n,i≤j≤2n−i

in which each entry is 0, 1 or −1 and the following conditions are fulfilled.

(1) The non-zero entries alternate in each row and each column.
(2) All row sums are 1.
(3) The topmost non-zero entry of each column is 1 (if it exists).

The set of order n ASTs is denoted by AST(n).

Here is a list of all ASTs of order 3.

1 0 0 0 0
1 0 0

1

∣∣∣∣∣∣

0 0 0 1 0
1 0 0

1

∣∣∣∣∣∣

0 0 0 0 1
1 0 0

1

∣∣∣∣∣∣

1 0 0 0 0
0 0 1

1

0 1 0 0 0
0 0 1

1

∣∣∣∣∣∣

0 0 0 0 1
0 0 1

1

∣∣∣∣∣∣

0 0 1 0 0
1 −1 1

1

In fact, order n ASTs are in bijection with order 2n+1 DASASMs with N−1(A) = n as the diagonals
can be reconstructed as follows:

Place a −1 below each column of the AST whose entries add up to 1, and place a 0 otherwise.

The resulting triangle is surely an odd DASASM-triangle A′ of order n, as the non-zero entries of all
sequences as given in (2.2) are alternating and add up to 1; furthermore, it is the unique way of adding
entries in these positions to achieve that. Moreover, we have N−1(A

′) = n as an AST has precisely
n columns that add up to 1. This is because the total sum of all entries in an order n AST is n (by
property (2) in the definition) and each of the 2n − 1 column sums is either 0 or 1 (by properties (1)
and (3)).

Theorem 1.2 states that, for all non-negative integers n,m, the number of n × n ASMs with m
occurrences of −1 is equal to the number of ASTs of order n with m occurrences of −1.

For m = 0, this is easy to see: ASMs without −1 are permutation matrices. There are also n!
ASTs of order n: Each row contains precisely one 1 and we build up the AST by placing in each row
a 1, starting with the bottom row. For the 1 in the bottom row, there is one choice, for the 1 in the
penultimate row there are in principle 3 possible columns, but one is already taken by the 1 in the
bottom row and thus there are 2 actual choices. In general, in the i-th row counted from the bottom,
there are 2i− 1 columns, but i− 1 are already occupied by 1’s that are situated in rows below. This
leaves us with i possibilities. In total, there are 1 · 2 · 3 · · ·n ASTs with n rows and no −1.

In order to give an indication as to why it is probably not easy to construct a bijection between
ASMs and ASTs, we elaborate on the m = 1 case in Appendix A.

As a further comment that is also related to the previous subsection, observe that in order to
transform an odd DASASM-triangle A of order n with N0(A) = n into the corresponding AST of
order n+ 1, one simply has to replace all −1’s along the left and right boundary by 0’s.

2.6. Dual alternating sign triangles and quasi alternating sign triangles. If we delete the
diagonals of an odd DASASM-triangle of order n with N1(A) = n + 1, then, by Corollary 2.1, we
obtain triangular arrays of the following type.

Definition 2.2. A dual alternating sign triangle (DAST) of order n is a triangular array (ai,j)1≤i≤n,i≤j≤2n−i

in which each entry is 0, 1 or −1 and the following conditions are fulfilled.

(1) The non-zero entries alternate in each row and each column.
(2) All column sums are 0.
(3) The topmost non-zero entry of each column is 1 (if it exists).

The set of order n DASTs is denoted by DAST(n).
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Next we display all order 3 DASTs.

0 0 0 0 0
0 0 0

0

∣∣∣∣∣∣

0 1 0 0 0
−1 0 0

0

∣∣∣∣∣∣

0 0 0 1 0
0 0 −1

0

∣∣∣∣∣∣

0 0 1 0 0
0 −1 0

0

0 0 1 0 0
0 0 0

−1

∣∣∣∣∣∣

0 0 0 0 0
0 1 0

−1

∣∣∣∣∣∣

0 1 0 0 0
−1 1 0

−1

∣∣∣∣∣∣

0 0 0 1 0
0 1 −1

−1

It is possible to reconstruct the deleted diagonal entries, except for the rows that contain only zeros
(referred to as 0-rows), in the following way:

• Add a 1 below the bottom entry.
• If the leftmost non-zero entry of a row is −1 (resp. 1), place a 1 (resp. 0) left of the leftmost
entry of that row.

• If the rightmost non-zero entry of a row is −1 (resp. 1), place a 1 (resp. 0) right of the rightmost
entry of that row.

• In the case of 0-rows, there are two choices of placing a 1 on one end and a 0 on the other.

Therefore,

|{A ∈ DASASM(2n + 1) | N1(A) = n+ 1}| =
∑

A∈DAST(n)

2#of 0-rows of A. (2.4)

The DASTs listed above correspond to 8, 2, 2, 2, 2, 2, 1, 1 DASASMs of order 7 with N1(A) = 4, re-
spectively. This is in accordance with Theorem 1.3 as there are 20 CSPPs in a 3× 3× 3 box.

We now introduce another set of triangular arrays that is, on the one hand, equinumerous with the
set of A ∈ DASASM(2n + 1) such that N1(A) = n+ 1, and, on the other, contains all ASTs of order
n.

Definition 2.3. A quasi alternating sign triangle (QAST) of order n is a triangular array (ai,j)1≤i≤n,i≤j≤2n−i

in which each entry is 0, 1 or −1 and the following conditions are fulfilled.

(1) The non-zero entries alternate in each row and column.
(2) The row sums are 1 for rows 1, 2, . . . , n− 1, and 0 or 1 for row n.
(3) The topmost non-zero entry in each column is 1 (if it exists).

The set of order n QASTs is denoted by QAST(n).

To construct a bijection between QAST(n) and {A ∈ DASASM(2n+1) | N1(A) = n+1}, recall from
Corollary 2.1 (2) that the objects in the latter set correspond to triangular six-vertex configurations
on Tn such that, in each row, the leftmost and the rightmost vertical edge point upwards. Now we
perform the following operations on such configurations:

(1) For the second vertex of each row (excluding the first and the last row, which contain only de-
gree 1 vertices), we interchange the orientation of the bottom vertical edge with the orientation
of the left horizontal edge incident with this vertex.

(2) For the penultimate vertex of each row (excluding the first and the last row), we interchange
the orientation of the bottom vertical edge with the orientation of the right horizontal edge
incident with this vertex.

This leads to triangular six-vertex configurations of order n such that, in each row, the leftmost
horizontal edge points to the right and the rightmost horizontal edge points to the left with the
exception of the rightmost horizontal edge in the penultimate row. Compare this to the triangular
six-vertex configurations in Corollary 2.1 (1) which were shown to correspond to ASTs of order n.
Similarly, it can be shown that the present configurations correspond to QASTs of order n.
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If we perform only the first operation above, we obtain triangular six-vertex configurations that
are equivalent to the following triangular arrays. These arrays can be seen as a mixture of ASTs and
DASTs.

Definition 2.4. Amixed alternating sign triangle (MAST) of order n is a triangular array (ai,j)1≤i≤n,i≤j≤2n−i

in which each entry is 0, 1 or −1 and the following conditions are fulfilled.

(1) The non-zero entries alternate in each row and column.
(2) The column sums are 0 for columns n+ 1, . . . , 2n − 1.
(3) The first non-zero entry in each row and each column is 1 (if it exists).

Similarly, it can be seen that AST(n) is in bijection with the set of MASTs of order n whose bottom
entry is 1, and also in bijection with the set of MASTs of order n whose n-th column has sum 0.

Here are two related remarks.

• As AST(n) ⊆ QAST(n), and AST(n) is equinumerous with the set of n × n ASMs, while
QAST(n) is equinumerous with the set of CSPPs in an n × n × n box, there should exist a
natural subset of the set of CSPPs in an n × n × n box that has the same cardinality as the
set of order n ASMs.

• The set of order n QASTs can be partitioned according to the entry at the bottom and the
central column sum: (i) the bottom entry is 1, (ii) the bottom entry is 0 and the central column
sum is 0, (iii) the bottom entry is 0 and the central column sum is 1. Each of the first two
sets is actually equinumerous with AST(n). The set of order n QASTs that belong to the first
or third class are equinumerous with odd DASASM-triangles of order n− 1 with the property
that the entries of each row—except for possibly the bottom row—sum to 1, where possibly
either or both of the boundary entries are disregarded. Indeed, such a QAST is bijectively
transformed into such an odd DASASM-triangle by replacing each 0 on the diagonals by −1
if it is contained in a column with sum 1. Compare this to Corollary 2.1 (3) to see that the
set of odd DASASM-triangles A of order n − 1 with N0(A) = n − 1 is a subset of the set of
these DASASM-triangles.

3. Weights, local equations and the partition function

We have seen that the various classes of extreme DASASMs under consideration in Theorems 1.2–
1.5 have an alternative interpretation in terms of certain orientations of triangular regions of the
square grid. The differences between the classes are due to the various conditions along the left, right
and bottom boundary. In this section, we define a universal generating function—in the language of
physics a universal partition function—for all of these orientations of Tn as well as two refinements
according to the orientation of the bottom vertical edge. These generating functions involve boundary

parameters which are sufficiently general such that the generating function of each class of extreme
DASASMs is a specialization of the universal generating function or one of its refinements.

3.1. Weights. We assign a weight W(C) to each triangular six-vertex configuration C. This weight
is the product of the vertex weights, to be defined next. The weight of an individual vertex depends—
besides a global variable q—on the orientations of the surrounding edges, on a label which is assigned
to the vertex, and, for bulk vertices, on the position of the label.

We define

x̄ = x−1 and σ(x) = x− x̄,

and we use this notation throughout the rest of this paper.
The vertex weights are provided in Table 1, with the exception of the degree 1 vertices, which

always have weight 1. The label of the vertex is denoted by u, and we assume in this table that for
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bulk vertices, the label is situated in the south-west corner, as follows.

u

Also elsewhere, if the position of the label of a degree 4 vertex is not indicated, it is assumed to be
in the south-west corner. If the label appears in some other corner, one has to rotate the diagram
until the label is in the south-west corner, and then determine the weight. The left boundary weights
depend on the left boundary constants αL, βL, γL, δL, and the right boundary weights depend on the
right boundary constants αR, βR, γR, δR. For boundary vertices the position of the label does not
matter.

Bulk weights Left boundary weights Right boundary weights Matrix entry

W( , u) = 1 W( , u) = βL qu+γL q̄ū
σ(q2)

W( , u) = βR qū+γR q̄u
σ(q2)

1

W( , u) = 1 W( , u) = γL qu+βL q̄ū
σ(q2) W( , u) = γR qū+βR q̄u

σ(q2) −1

W( , u) = σ(q2u)
σ(q4)

W( , u) = αL
σ(q2u2)
σ(q2)

0

W( , u) = σ(q2u)
σ(q4)

W( , u) = δL
σ(q2u2)
σ(q2)

0

W( , u) = σ(q2ū)
σ(q4)

W( , u) = αR
σ(q2ū2)
σ(q2)

0

W( , u) = σ(q2ū)
σ(q4)

W( , u) = δR
σ(q2ū2)
σ(q2)

0

Table 1. Vertex weights

The following observations are crucial.

• For bulk vertices, the weight is unchanged when reversing the orientation of all edges.
• For bulk vertices, rotation of the configuration or the label by 90◦ is equivalent to replacing
the label u by ū.

• Reflection of a local configuration in the vertical symmetry axis is equivalent to replacing u by
ū and, in addition for boundary weights, interchanging L and R in the boundary constants.

The label of a vertex in Tn is determined as follows: The path in Tn that is induced by the sequence
of vertices corresponding to the entries in (2.2) is associated with the spectral parameter uj, see also
Figure 3. The label of a vertex is then the product of the spectral parameters associated with the
paths which contain that vertex. In the case of bulk vertices, there are two such paths, while the path
is unique for boundary vertices.

Example. The left configuration in Figure 2 has the weight

δL
σ(q2u21)

σ(q2)
· σ(q

2u1u2)

σ(q4)
· σ(q

2u1u3)

σ(q4)
· σ(q

2u1u4)

σ(q4)
· 1 · σ(q

2ū1ū2)

σ(q4)
· δR

σ(q2ū21)

σ(q2)

× βLqu2 + γLq̄ū2
σ(q2)

· σ(q
2ū2ū3)

σ(q4)
· σ(q

2ū2ū4)

σ(q4)
· 1 · βRqū2 + γRq̄u2

σ(q2)

× δL
σ(q2u23)

σ(q2)
· σ(q

2u3u4)

σ(q4)
· βRqū3 + γRq̄u3

σ(q2)
,

where rows 2, 3, 4 of vertices in the graph correspond to the lines 1, 2, 3 above, respectively, and the
weights are read from left to right.
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u1 u1

u1u1

u2 u2

u2u2

u3 u3

u3u3

u4 u4

u4u4

u5 u5

u5u5

u6

u6

u1u2u1u2 u1u3u1u3 u1u4u1u4 u1u5u1u5 u1u6

u2u3 u2u3u2u4 u2u4u2u5u2u5 u2u6

u3u4u3u4 u3u5u3u5 u3u6

u4u5u4u5 u4u6

u5u6

Figure 3. Spectral parameters.

3.2. Local equations. In this subsection, we demonstrate that the weights introduced in the previous
subsection satisfy certain local equations. The most prominent local equation is the Yang–Baxter

equation, which is stated first. The schematic diagrams in this subsection have to be interpreted as
follows, see for instance (3.1). Each diagram is a graph which involves a number of external edges,
for which only one endpoint is indicated with a bullet. Close to the other endpoint of such an edge,
we place an oi which indicates its orientation, i.e.,“in” or “out”, relative to the indicated endpoint of
the external edge. A diagram represents the generating function of all orientations of the graph such
that the external edges have the prescribed orientation, degree 4 vertices are balanced, and the vertex
weights are as given in Table 1, where the parameter near a vertex indicates its label.

Theorem 3.1 (Yang–Baxter equation, [Bax89]). If xyz = q2 and o1, o2, . . . , o6 ∈ {in, out}, then

= xx

y

y z

z

o6o6

o5o5

o4o4

o3 o3

o2o2

o1o1

. (3.1)

The theorem can be proven by verifying that, for each choice of orientations of the external edges,
(3.1) is either trivial or reduces to a simple identity satisfied by the bulk weights in Table 1.

To deal with triangular six-vertex configurations, we also need left and right forms of the reflection
equation. The reflection equation was introduced (and applied to six-vertex model bulk weights) by
Cherednik [Che84, Eq. (10)], with important further results being obtained by Sklyanin [Skl88].
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Theorem 3.2 (Left and right reflection equations). Suppose x = q2ūv, y = uv and the bulk weights

are as given in Table 1. Then

=

x

x

y yu

u
v

v

o1 o1o2 o2

o3 o3

o4 o4
(3.2)

for all o1, o2, o3, o4 ∈ {in, out} if and only if there exist parameters αL, βL, γL, δL independent of u and

a function f(u) such that

W( , u) =
βL qu+ γL q̄ū

σ(q2)
f(u), W( , u) =

γL qu+ βL q̄ū

σ(q2)
f(u),

and

W( , u) = αL
σ(q2u2)

σ(q2)
f(u), W( , u) = δL

σ(q2u2)

σ(q2)
f(u),

i.e., up to a multiplicative factor, the left boundary weights are chosen as in Table 1. Similarly, if

x = q2ūv, y = ūv̄ and the bulk weights are chosen as in Table 1, then

=

x

x

yy u

u

v

vo1 o1

o2 o2

o3 o3 o4o4

(3.3)

for all o1, o2, o3, o4 ∈ {in, out} if and only if W( , u),W( , u),W( , u),W( , u) are chosen—up to

multiplication by a function g(u)—as in Table 1.

The result was obtained, independently, by de Vega and González-Ruiz [dVGR93, Eq. (15)], and
Ghoshal and Zamolodchikov [GZ94, Eq. (5.12)]. We also provide a proof below.

Proof. First we show that every solution of (3.2) is of the form as given in the statement of the
theorem. Set o1 = o4 = in, o2 = o3 = out in (3.2) and obtain (after subtraction of an identical term
from each side)

W( , x)W( , u)W( , v) +W( , y)W( , u)W( , v)

= W( , x)W( , u)W( , v) +W( , y)W( , u)W( , v). (3.4)

The equation shows in particular that W( , u) ≡ 0 if and only if W( , u) ≡ 0. We first assume
W( , u) 6≡ 0 and W( , u) 6≡ 0. We divide (3.4) by W( , u)W( , v) and deduce

W( , u)

W( , u)

(
W( , x)

W( , v)

W( , v)
−W( , y)

)
= −W( , y)

W( , v)

W( , v)
+W( , x).
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After plugging in the definitions for the bulk weights and setting x = q2ūv, y = uv, we can deduce
that

−W( , y)
W( , v)

W( , v)
+W( , x) = βLqu+ γLq̄ū,

W( , x)
W( , v)

W( , v)
−W( , y) = γLqu+ βLq̄ū,

with βL = q̄v̄
σ(q4)

− qv
σ(q4)

W( ,v)

W( ,v)
and γL = q̄v̄

σ(q4)
W( ,v)

W( ,v)
− qv

σ(q4)
. Since these are both parameters

independent of u and at least one of them is non-zero, we can deduce that W( , u) and W( , u) are
of the form stated in the theorem.

In (3.2), we now choose o1 = o2 = o3 = in, o4 = out and obtain

W( , x)W( , y)W( , u)W( , v)

= W( , x)W( , y)W( , u)W( , v)+W( , x)W( , u)W( , v)+W( , y)W( , u)W( , v).

In this identity, every quantity is known (in the case of W( , u) and W( , u) up to βL, γL, f(u)),
except for W( , u) and W( , v). The identity thereby becomes

(βLv̄q̄ + γLqv)
(
W( , u)σ(q2v2)f(v)−W( , v)σ(q2v2)f(u)

)
= 0

from which we see that W( , u) is also of the form given in the theorem. In order to obtain the
expression for W( , u), choose o1 = o2 = in and o3 = o4 = out in (3.2), which gives

W( , u)W( , v) = W( , u)W( , v). (3.5)

If, on the other hand, W( , u) ≡ 0 and W( , u) ≡ 0, we choose βL = γL = 0 and the assertion
also follows simply from (3.5).

Conversely, it is straightforward to check that the solution stated in the theorem satisfies (3.2) for
all o1, o2, o3, o4 ∈ {in, out}.

The right reflection equation follows from the left reflection equation by substituting u 7→ v̄, v 7→
ū. �

There are two additional simple rules that are necessary. For o1, o2, o3, o4 ∈ {in, out}, we have

W(
o2

o1 o3
o4

, q2) = δo1,õ2δo3,õ4 , (3.6)

and

o1

o2

qu

qū
=
(
W( , qu)W( , qū) +W( , qu)W( , qū)

)
δo1,õ2 , (3.7)

where ĩn = out, õut = in and δ is the Kronecker delta.

3.3. The (universal) partition function and its specializations. The universal partition func-
tion is the generating function of all permissible orientations of Tn with respect to the weight function
we have defined, that is ∑

C

W(C) =: Zn(u1, . . . , un;un+1),
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where the sum is over all orientations C of Tn in which each bulk vertex has two incoming and two
outgoing edges and the top edges point up.

Moreover, Z↑
n(u1, . . . , un;un+1) and Z↓

n(u1, . . . , un;un+1) denote the restrictions of this sum to con-
figurations in which the bottom vertical edge points up or down, respectively. In [BFK17, Eq. (24)],
it was shown that the two refinements are expressible in terms of the full partition function as follows.

Lemma 3.3. The universal partition function and its refinements satisfy

Z↑
n(u1, . . . , un;un+1) =

1

2
(Zn(u1, . . . , un;un+1) + (−1)nZn(u1, . . . , un;−un+1)) ,

Z↓
n(u1, . . . , un;un+1) =

1

2
(Zn(u1, . . . , un;un+1)− (−1)nZn(u1, . . . , un;−un+1)) .

In that paper we assumed more special boundary weights, but the proof of the lemma is independent
of the form of the boundary weights, since the argument involves only vertex weights that depend on
un+1, and this parameter appears in none of the boundary weights.

Next, we introduce three specializations of the spectral parameters u1, . . . , un+1, the global pa-
rameter q and the boundary parameters αL, βL, γL, δL, αR, βR, γR, δR, for which Zn(u1, . . . , un;un+1)
counts extreme DASASMs in Theorems 1.2, 1.3 and 1.5, respectively. In Sections 5–7, we then de-
rive determinant or Pfaffian expressions for these specializations of the partition function.2 We then
introduce a fourth specialization which applies to the case of all DASASMs, as studied in [BFK17].

First observe that if we specialize uj = 1 for all j and q = e
iπ
6 =

√
3+i
2 , then all bulk weights are

equal to 1.

3.3.1. The AST specialization. By Corollary 2.1 (1), we need to have

W( , 1) = W( , 1) = W( , 1) = W( , 1) = 0,

W( , 1) = W( , 1) = W( , 1) = W( , 1) = 1,

if q = e
iπ
6 . However, in order to prove a generalization of Theorem 1.2, namely Theorem 5.5, it will

be crucial to introduce an additional global parameter p such that the following is satisfied (setting
p = 1 then leads to the above conditions):

W( , p) = W( , p) = W( , p) = W( , p) = 0, (3.8)

W( , p) = W( , p) =
σ(p2q2)

σ(q2)
and W( , p) = W( , p) =

σ(p̄2q2)

σ(q2)
. (3.9)

This is satisfied if we assign the following values to the boundary parameters. Note that this is true
even if we do not specialize q. This is also the case for the two other specializations.

AST
αL βL γL δL αR βR γR δR
0 −p̄q̄ pq 1 0 −pq̄ p̄q 1

The explicit boundary weights are therefore as follows.

W( , u) =
σ(pū)

σ(q2)
, W( , u) =

σ(pq2u)

σ(q2)
, W( , u) = 0, W( , u) =

σ(q2u2)

σ(q2)
,

W( , u) =
σ(p̄u)

σ(q2)
, W( , u) =

σ(p̄q2ū)

σ(q2)
, W( , u) = 0, W( , u) =

σ(q2ū2)

σ(q2)

2In a forthcoming paper [BF], we will study the universal partition function of diagonally symmetric ASMs using the
weights in Table 1. In contrast to Zn(u1, . . . , un;un+1), we are able to derive an expression for the universal partition
function in this case.
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We denote this specialization of the universal partition function as Zn(u1, . . . , un;un+1)AST and record
that

Zn(1, . . . , 1; 1)AST|
p=1,q=e

iπ
6
= |AST(n)| .

3.3.2. The QAST specialization. By Corollary 2.1 (2), we require

W( , 1) = W( , 1) = W( , 1) = W( , 1) = 0,

W( , 1) = W( , 1) = W( , 1) = W( , 1) = 1,

and the bottom vertical edge needs to point up, that is we need to work with Z↑
n(u1, . . . , un;un+1).

Again, we introduce a parameter p that is set to 1 for proving Theorem 1.3, and require

W( , p) = W( , p) = W( , p) = W( , p) = 0,

as well as

W( , p) = W( , p) =
σ(p2q2)

σ(q2)
and W( , p) = W( , p) =

σ(p̄2q2)

σ(q2)
.

We choose the boundary parameters as follows.

QAST
αL βL γL δL αR βR γR δR
0 pq −p̄q̄ 1 0 p̄q −pq̄ 1

In this case, the explicit boundary weights are

W( , u) =
σ(pq2u)

σ(q2)
, W( , u) =

σ(pū)

σ(q2)
, W( , u) = 0, W( , u) =

σ(q2u2)

σ(q2)
,

W( , u) =
σ(p̄q2ū)

σ(q2)
, W( , u) =

σ(p̄u)

σ(q2)
, W( , u) = 0, W( , u) =

σ(q2ū2)

σ(q2)
.

We denote this specialization of the universal partition function as Z↑
n(u1, . . . , un;un+1)QAST and

obtain that

Z↑
n(1, . . . , 1; 1)QAST

∣∣∣
p=1,q=e

iπ
6
= |QAST(n)| .

3.3.3. The OOSASM specialization. Recalling that A ∈ DASASM(2n + 1) satisfies N0(A) = 2n if
and only if all entries on the diagonals are zero except for the central entry of A (see the proof of
Proposition 1.1 in Section 1.1), we need to have

W( , 1) = W( , 1) = W( , 1) = W( , 1) = 0,

W( , 1) = W( , 1) = W( , 1) = W( , 1) = 1,

and so it is natural to choose the following.

OOSASM
αL = αR βL = βR γL = γR δL = δR

1 0 0 1

Here, the left boundary weights are

W( , u) = W( , u) = 0, W( , u) = W( , u) =
σ(q2u2)

σ(q2)
,

W( , u) = W( , u) = 0, W( , u) = W( , u) =
σ(q2ū2)

σ(q2)
.

In this case, the left boundary weight in row i of a configuration with non-zero weight is
σ(q2u2

i )
σ(q2) ,

while the right boundary weight in row i is
σ(q2ū2

i )
σ(q2) . This implies that the universal partition function
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has the factor
n∏

i=1

σ(q2u2
i )σ(q

2ū2
i )

σ(q2)2 in this specialization. We cancel this factor and denote the reduced

specialization as Zn(u1, . . . , un;un+1)OOSASM. Therefore,

Zn(1, . . . , 1; 1)OOSASM|
q=e

iπ
6
= |OOSASM(2n + 1)|.

Note that this normalization of the universal partition function could alternatively be achieved by tak-
ing the functions f(u) and g(u) in Theorem 3.2 to be f(u) = σ(q2)/σ(q2u2) and g(u) = σ(q2)/σ(q2ū2).
Kuperberg used in [Kup02] analogous specializations to study OSASMs and OOSASMs of order 4n.

3.3.4. The DASASM specialization. If we require

W( , 1) = W( , 1) = W( , 1) = W( , 1) = W( , 1) = W( , 1) = W( , 1) = W( , 1) = 1

in order to count all odd-order DASASMs as was done in [BFK17], then we may choose αL = αR =
δL = δR = 1 and βL = βR = γL = γR = σ(q). Here, the left boundary weight in row i is divisible
by qui + q̄ūi, while the right boundary weight is divisible by qūi + q̄ui. Thus we may divide this
specialization by

n∏

i=1

σ(q)2(qui + q̄ūi)(qūi + q̄ui)

σ(q2)2

and still obtain a Laurent polynomial in u1, u2, . . . , un+1. (Alternatively, this normalization could be
achieved by using certain choices for the functions f(u) and g(u) in Theorem 3.2.) This normalization
was used in [BFK17].

4. Characterization of the partition function

4.1. Some properties of the partition function. One of the main reasons for using the vertex
weights as given in Table 1 is that this choice ensures the symmetry of Zn(u1, . . . , un;un+1) in u1, . . . , un
as discussed next. Here we rely heavily on previous work that is presented in [BFK17]. At the end of
the previous section (see Subsection 3.3.4) we have shown that the weights in Table 1 are (up to an
irrelevant factor) generalizations of the weights used in [BFK17]. In [BFK17, Proposition 12] it was
demonstrated how these more special weights imply the symmetry of the partition function. However,
this proof of symmetry relies only on the properties of the weights given in Theorems 3.1 and 3.2,
and since these properties also hold for the more general weights in Table 1, the symmetry follows
also in this general setting. By Lemma 3.3, we then have symmetry also for the two refined partition
functions.

Theorem 4.1 (Symmetry). The partition function Zn(u1, . . . , un;un+1), and its two refinements

Z↑
n, Z

↓
n are symmetric in u1, u2, . . . , un.

Moreover, we have the following invariance.

Proposition 4.2. The partition function Zn(u1, . . . , un;un+1) and its two refinements Z↑
n, Z

↓
n are

invariant when simultaneously replacing (u1, . . . , un+1) with (ū1, . . . , ūn+1) and interchanging left and

right boundary constants, i.e., αL ↔ αR, βL ↔ βR, γL ↔ γR, δL ↔ δR.

Proof. This follows from reflecting the configuration in the vertical symmetry axis as the reflection
causes for each individual vertex the replacement of the label by its reciprocal and, for boundary
weights, the interchanging of respective left and right boundary constants (which is precisely the fact
displayed at the third bullet point after Table 1). �

Finally, Zn, Z
↑
n, Z

↓
n are Laurent polynomials in u1, u2, . . . , un+1 that are even in each ui, i = 1, . . . , n.

We need the following notion: Suppose
∑d

i=o aiu
i is a Laurent polynomial in u, and ao 6= 0, ad 6= 0.

Then d is the degree of the Laurent polynomial and o is its order.
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Proposition 4.3. (1) For each i = 1, 2, . . . , n, the partition function Zn(u1, . . . , un;un+1) and its

two refinements Z↑
n, Z

↓
n are even in ui.

(2) The partition function Zn(u1, . . . , un;un+1) and its two refinements Z↑
n, Z

↓
n are Laurent poly-

nomials in u1, . . . , un+1 of degree at most n and order at least −n in un+1, and of degree at

most 2n+ 2 and order at least −2n− 2 in ui, for each i = 1, 2, . . . , n.

Proof. (1): By Theorem 4.1, it suffices to show the assertion for i = 1.
We show that the contribution of each configuration to the partition function is even in u1. Distin-

guish between the cases whether or not the unique 1 in the top row of the DASASM is on the (left or
right) boundary. Clearly, only the weights of the top bulk vertices and the two top boundary vertices
can involve the spectral parameter u1, and if the 1 is on the left boundary, then the contribution of
the first row to the weight is

βL qu1 + γL q̄ū1
σ(q2)

δRσ(q
2ū21)

σ(q2)

σ(q2ū1ūn+1)

σ(q4)

n∏

i=2

σ(q2ū1ūi)
2

σ(q4)2
,

while the contribution is

δLσ(q
2u21)

σ(q2)

βRqū1 + γRq̄u1
σ(q2)

σ(q2u1un+1)

σ(q4)

n∏

i=2

σ(q2u1ui)
2

σ(q4)2
,

if the 1 is on the right boundary. Both expressions are obviously even in u1. If the unique 1 in the top
row is not on the boundary, then the contribution of the top bulk vertices and the two top boundary

vertices is the product of
δLσ(q

2u2
1)

σ(q2)
δRσ(q2ū2

1)
σ(q2)

and an even number (= 2n−2) of σ(q2u1ui)
σ(q4)

’s and σ(q2ū1ūi)
σ(q4)

’s,

i = 2, 3, . . . , n+ 1, and this product is also even in u1.
(2): The bounds for the degree and order in ui, i = 1, 2, . . . , n, follow from the discussion in the

proof of (1). As for the degree and order in un+1, note that there are precisely n vertices of Tn whose
weight can involve un+1 (i.e., the bulk vertices of the central column). The degree of the weight in
un+1 of such a vertex is at most 1 and the order is at least −1. �

4.2. Characterization through evaluations in un+1. In the following lemma we show that the
evaluation of the universal partition function Zn(u1, . . . , un;un+1) at un+1 = q2ū1 is expressible in
terms of the order n− 1 universal partition function.

Lemma 4.4. For any n = 1, 2, 3, . . .,

Zn(u1, . . . , un; q
2ū1)

=
1

2

{[
W( , u1) +W( , u1) +W( , u1) +W( , u1)

]
Zn−1(u2, . . . , un;u1)

+ (−1)n+1
[
W( , u1) +W( , u1)−W( , u1)−W( , u1)

]
Zn−1(u2, . . . , un;−u1)

}
Ωn,

(4.1)

where

Ωn = W( , u1)
n∏

i=2

W( , u1ui)W( , q2ū1ui).

Concerning the two refinements, we have

Z↑
n(u1, . . . , un; q

2ū1) =
(
W( , u1)Z

↑
n−1(u2, . . . , un;u1) +W( , u1)Z

↓
n−1(u2, . . . , un;u1)

)
Ωn, (4.2)

Z↓
n(u1, . . . , un; q

2ū1) =
(
W( , u1)Z

↑
n−1(u2, . . . , un;u1) +W( , u1)Z

↓
n−1(u2, . . . , un;u1)

)
Ωn. (4.3)
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Proof. We prove (4.2) and illustrate the proof with the help of the case n = 4. By definition, the
left-hand side is the generating function of the following graph where un+1 = q2ū1.

u1 u1

u2 u2

u3 u3

u4u4

u1u2u1u2 u1u3u1u3

u2u3u2u3

u1u4u1u4

u2u4u2u4

u3u4u3u4

u1u5

u2u5

u3u5

u4u5

The label of the top bulk vertex in the central column is u1un+1 = q2. Using (3.6) at this vertex and
observing that the local configurations in the left half of the top row are now forced, we see that this
is equal to the generating function of the following graph.

u1u1

u2u2

u3u3

u4 u4

u1u2u1u2 u1u3u1u3

u2u3u2u3

u1u4u1u4

u2u4u2u4

u3u4u3u4

u2u5

u3u5

u4u5

The n vertices with fixed local configuration in the left half of the top row contribute

W( , u1)
n∏

i=2

W( , u1ui)

to the weight. We delete these vertices and move the right half of the graph down.

u1

u2

u2

u3

u3

u4

u4

u1u2u1u3

u2u3

u2u3 u1u4

u2u4

u2u4

u3u4

u3u4

u2u5

u3u5

u4u5

Now we apply the Yang–Baxter equation (3.1) to the vertices with label u2un+1, u1un and to the right
vertex with label u2un (indicated with yellow in our example). This is permissible since un+1 = q2ū1.
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We repeatedly apply the Yang–Baxter equation until we reach the right boundary, and then apply the

right reflection equation (3.3). We then untangle the crossing and gain the factor W( , u2un+1) =

W( , u2un+1) = W2. In our example, the procedure is as follows.

u1u1

u1u1

u2u2 u2u2

u2

u2

u2

u2

u3

u3

u3

u3

u3

u3

u3

u3

u1u2u1u2

u1u2u1u2

u1u3u1u3

u1u3

u1u3

u2u3u2u3u2u3u2u3

u2u3u2u3

u2u3

u2u3

u1u4u1u4

u1u4u1u4

u2u4u2u4u2u4u2u4

u2u4u2u4u2u4u2u4

u3u4

u3u4

u3u4

u3u4

u3u4

u3u4

u3u4

u3u4

u4

u4

u4

u4

u4

u4

u4

u4

u2u5

u2u5u2u5

u3u5u3u5

u3u5u3u5

u4u5u4u5

u4u5u4u5

==

= W2

Next we apply the Yang–Baxter equation (3.1) to the vertices with label u3un+1, u1un and to the
right vertex with label u3un and, with repeated applications of (3.1), move to the right as much
as possible—unless this triangle is already at the right boundary. We then use the right reflection
equation (3.3) and afterwards the Yang–Baxter equation until we reach the top. We untangle and

gain the factor W( , u3un+1) = W( , u3un+1) = W3. In our example, we perform the following.

u1 u1

u1

u1

u2u2u2u2

u2u2u2u2

u3u3u3u3

u3u3

u3

u3

u1u2

u1u2u1u2

u1u2

u1u3u1u3

u1u3u1u3

u2u3u2u3u2u3u2u3

u2u3u2u3u2u3u2u3

u1u4u1u4

u1u4 u1u4

u2u4u2u4u2u4u2u4

u2u4u2u4u2u4u2u4

u3u4u3u4u3u4u3u4

u3u4u3u4u3u4u3u4

u4

u4 u4

u4

u4

u4u4

u4

u3u5

u3u5

u3u5

u4u5 u4u5

u4u5u4u5

==

= W3
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We continue in this manner and obtain in total the factor
∏n

i=2W( , uiun+1). In our example, we
still need to apply the following steps:

u1u1

u1u1

u2u2u2u2

u2u2u2u2

u3u3u3u3

u3u3u3u3

u1u2u1u2

u1u2
u1u2

u1u3

u1u3u1u3

u1u3

u2u3u2u3u2u3u2u3

u2u3u2u3u2u3u2u3

u1u4u1u4

u1u4u1u4

u2u4u2u4u2u4u2u4

u2u4u2u4u2u4u2u4

u3u4u3u4u3u4u3u4

u3u4u3u4u3u4u3u4

u4u4u4u4

u4u4u4u4

u4u5

u4u5

u4u5
==

= W4

,

where W( , u4un+1) = W( , u4un+1) = W4. The generating function of the resulting graph can
be expressed as

W( , u1)Z
↑
n−1(u2, . . . , un;u1) +W( , u1)Z

↓
n−1(u2, . . . , un;u1).

The proof of (4.3) is analogous, and (4.1) then follows from (4.2) and (4.3) using Lemma 3.3. �

Remark 4.5. In [BFK17, Proposition 15], we have shown the following identity for the DASASM
specialization of the order n partition function.

Zn(u1, . . . , un; q
2ū1) =

(
(W( , u1) +W( , u1))Z

↑
n−1(u2, . . . , un;u1)

+(W( , u1) +W( , u1))Z
↓
n−1(u2, . . . , un;u1)

)
Ωn

(4.4)

The proof is based on (3.6), (3.1) and (3.3), and can thus be generalized to our more general weights.
The identity is equivalent to Lemma 4.4, due to Lemma 3.3.

Theorem 4.6. A sequence of Laurent polynomials Ẑn(u1, . . . , un;un+1), n ≥ 1, in un+1 over the field

C(q, u1, . . . , un, αL, βL, γL, δL, αR, βR, γR, δR) is equal to the sequence of partition functions Zn(u1, . . . , un;un+1)

if and only if Ẑ1(u1;u2) = Z1(u1;u2), and the following conditions are satisfied for n > 1.

(1) The degree of Ẑn(u1, . . . , un;un+1) in un+1 is no greater than n and the order is no smaller

than −n.
(2) Ẑn(u1, . . . , un;un+1) is symmetric in u1, . . . , un.

(3) Ẑn(u1, . . . , un;un+1) is invariant when simultaneously replacing (u1, . . . , un+1) with (ū1, . . . , ūn+1)
and interchanging left and right boundary constants.

(4) Ẑn(u1, . . . , un;un+1) is even in ui, for all i = 1, 2, . . . , n.

(5) Ẑn(u1, . . . , un;un+1) satisfies the identity obtained from (4.1) by replacing Zn with Ẑn on the

left-hand side, and Zn−1 with Ẑn−1 on the right-hand side.
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Analogous characterizations for Z↑
n(u1, . . . , un;un+1) and Z↓

n(u1, . . . , un;un+1) are obtained by replac-

ing (4.1) in (5) with (4.2) and (4.3), respectively.

Proof. By Theorem 4.1, Proposition 4.2, Proposition 4.3 and Lemma 4.4, the partition function

Zn(u1, . . . , un;un+1) has all the properties listed for Ẑn(u1, . . . , un;un+1) in the statement. We show

by induction with respect to n that Ẑn(u1, . . . , un;un+1) is uniquely determined by these properties.
For n = 1 this is true by assumption, and we assume n > 1 in the following.

We consider Ẑn(u1, . . . , un;un+1) as Laurent polynomials in un+1, and, by (1), it suffices to find
2n+1 evaluations. Now one evaluation (at un+1 = q2ū1) is given by (5). Using (4) and (5), as well as
the facts that W( , u1),W( , u1) are odd in u1, while W( , u1),W( , u1),Ωn are even, we obtain
an evaluation at un+1 = −q2ū1 as follows.

Ẑn(u1, u2, . . . , un;−q2ū1)

(4)
= Ẑn(−u1, u2 . . . , un;−q2ū1)

(5)
=

1

2

{[
−W( , u1) +W( , u1) +W( , u1)−W( , u1)

]
Ẑn−1(u2, . . . , un;−u1)

+(−1)n+1
[
−W( , u1) +W( , u1)−W( , u1) +W( , u1)

]
Ẑn−1(u2, . . . , un;u1)

}
Ωn.

(4.5)
Using (3), we also obtain evaluations at un+1 = ±q̄2ū1 as follows.

Ẑn(u1, . . . , un;±q̄2ū1)

(3)
= Ẑn(ū1, . . . , ūn;±q2u1)L↔R

(5),(4.5),(3)
=

1

2

{[
±W( , u1) +W( , u1) +W( , u1)±W( , u1)

]
Ẑn−1(u2, . . . , un;±u1)

+(−1)n+1
[
±W( , u1) +W( , u1)−W( , u1)∓W( , u1)

]
Ẑn−1(u2, . . . , un;∓u1)

}

×W( , u1)
n∏

i=2

W( , u1ui)W( , q̄2ū1ui)

By the symmetry in u1, . . . , un, u1 can be replaced by any ui, i = 2, 3, . . . , n, and so we have in total
4n evaluations in un+1, namely at un+1 = ±q±2ūi, i = 1, 2, . . . , n. All these evaluations are uniquely

determined as Ẑn−1(u2, . . . , un;u1) is uniquely determined by the induction hypothesis.

The proofs for Z↑
n and Z↓

n are similar. �

4.3. Characterization through evaluations in u1. This section provides preparations for alterna-
tive proofs of some results that avoid Lemma 4.4, and it can therefore also be omitted when reading
the article.

Lemma 4.7. Let n be a positive integer. For u1 = q, iq,

Zn(u1, . . . , un;un+1) = W( , u1)W( , u1)W( , u1un+1)

n∏

j=2

W( , u1uj)
2Zn−1(u2, . . . , un;un+1).

(4.6)

The corresponding identities also hold for the refined partition functions Z↑
n, Z

↓
n.

Proof. The possible local configurations for the top right boundary vertex are and . However,
as W( , q) = W( , iq) = 0, this local configuration must be , which causes a fixing of the top

row. More precisely, the local configurations of the top bulk vertices are , and for the top left
boundary vertex. �
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Lemma 4.8. Let n > 1. For u1 = q2ū2,

Zn(u1, . . . , un;un+1) = (W( , u1)W( , u2) +W( , u1)W( , u2))W( , u1)W( , u2)

W( , u1un+1)W( , u2un+1)
n∏

j=3

W( , u1uj)
2 W( , u2uj)

2Zn−2(u3, . . . , un;un+1). (4.7)

The corresponding identities also hold for the refined partition functions Z↑
n, Z

↓
n.

Proof. This identity appeared before for the DASASM specialization of the universal partition function
in [BFK17, Proposition 14]. The proof is based on (3.6) and (3.7), and since these rules are also valid
for our more general weights, (4.7) is true in general. �

Theorem 4.9. Let p, q be indeterminates. Suppose we consider a specialization of Zn(u1, . . . , un;un+1)
where un+1 = p and αL, βL, γL, δL, αR, βR, γR, δR ∈ C(p, q) such that

• Zn(u1, . . . , un;un+1) has a zero at u1 = p̄q2, and
• left boundary constants are transformed into corresponding right boundary constants when re-

placing p by p̄.

A sequence of Laurent polynomials Ẑn(u1, . . . , un), n ≥ 1, in the variables u1, . . . , un with coeffi-

cients in C(p, q) is equal to the above mentioned sequence of specializations of partition functions

Zn(u1, . . . , un;un+1) if and only if the sequences agree for n = 1, 2 and the following conditions are

satisfied for n > 2.

(1) The degree of Ẑn(u1, . . . , un) in u1 is no greater than 2n+ 2 and the order is no smaller than

−2n− 2.
(2) Ẑn(u1, . . . , un) is symmetric in u1, . . . , un.

(3) Ẑn(u1, . . . , un) is invariant under the transformation (u1, . . . , un, p) 7→ (ū1, . . . , ūn, p̄).

(4) Ẑn(u1, . . . , un) is even in ui, for all i = 1, 2, . . . , n.

(5) Ẑn(u1, . . . , un) satisfies the identities obtained from (4.6) and (4.7) by replacing on the left-

hand sides Zn(u1, . . . , un;un+1) by Ẑn(u1, . . . , un), replacing on the right-hand side of (4.6)

Zn−1(u2, . . . , un;un+1) by Ẑn−1(u2, . . . , un), replacing on the right-hand side of (4.7) Zn−2(u3, . . . , un;un+1)

by Ẑn−2(u3, . . . , un) and considering the same specializations of the boundary constants and

un+1 on the right-hand sides.

(6) Ẑn(u1, . . . , un) has a zero at u1 = p̄q2.

Analogous characterizations for Z↑
n(u1, . . . , un;un+1) and Z↓

n(u1, . . . , un;un+1) are obtained by replac-

ing (4.6) and (4.7) with the respective identities.

Proof. The partition function Zn(u1, . . . , un;un+1) satisfies properties (1)–(5) by Proposition 4.3, The-
orem 4.1, Proposition 4.2, and Lemmas 4.7 and 4.8, and property (6) by assumption.

An even Laurent polynomial of degree at most 2n + 2 and order at least −2n − 2 is uniquely
determined by 2n + 3 evaluations where we need to guarantee that there is no pair of evaluations
which differ only in sign.

We have 2n − 2 evaluations (at u1 = q±2ūj, j = 2, . . . , n) if we combine the evaluation obtained
from (4.7) with (2) and (3), and 4 evaluations (at u1 = q±1, iq±1) if we combine the two evaluations
obtained from (4.6) with (3). The additional evaluation is provided by (6). �

5. Maximal number of −1’s: Alternating sign triangles

The main purpose of this section is to provide the proof of Theorem 1.2 and generalizations.
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5.1. The AST partition function.

Theorem 5.1. We have the following determinant formula for the partition function Zn(u1, . . . , un;un+1)AST.

∏n
j=1 σ(p̄uj)

∏n
i=1

∏n+1
j=1 σ(q

2uiuj)σ(q
2ūiūj)

σ(q2)2n σ(q4)n(n−1)
∏n

i=1 σ(uiūn+1)
∏

1≤i<j≤n σ(uiūj)
2

det
1≤i,j≤n+1








1
σ(q2uiuj)σ(q2ūiūj)

, i ≤ n

1− σ(ūn+1uj)
σ(p̄uj)

, i = n+ 1




(5.1)

Proof. We use Theorem 4.6. The case n = 1 is easy to verify. To show that (5.1) is indeed a Laurent
polynomial in un+1, observe that

∏n
j=1 σ(p̄uj)

∏n
i=1

∏n+1
j=1 σ(q

2uiuj)σ(q
2ūiūj)

σ(q2)2n σ(q4)n(n−1)
∏

1≤i<j≤n σ(uiūj)
2

det
1≤i,j≤n+1








1
σ(q2uiuj)σ(q2ūiūj)

, i ≤ n

1− σ(ūn+1uj)
σ(p̄uj)

, i = n+ 1




is a Laurent polynomial in un+1. It is divisible by
∏n

i=1 σ(uiūn+1), as the determinant vanishes if we
set un+1 = ±uj, for j = 1, . . . , n, since then the j-th column coincides with the (n + 1)-st column of
the matrix.3

We check that (5.1) has the desired properties from Theorem 4.6.
(1): To deduce the bounds on the degree and order of (5.1) as a Laurent polynomial in un+1, use

the Leibniz formula for the determinant and observe that, after multiplying each summand with the
prefactor and cancelling as much as possible, we obtain a sum of rational functions. Each numerator
has degree 2n or 2n − 1 (depending on whether or not the entry in the bottom right corner of the
matrix is involved) and order −2n or −2n + 1. The denominators have degree n and order −n, and
since we already know that (5.1) is a Laurent polynomial in un+1, the bounds follow.

(2), (3) and (4): The expression is readily checked to be symmetric in u1, . . . , un, and also even in
ui, for each i ∈ {1, 2, . . . , n}. Moreover, it is invariant under the transformation (u1, . . . , un+1, p) 7→
(ū1, . . . , ūn+1, p̄). Note that interchanging respective left and right boundary constants in the AST-
specialization (see Subsection 3.3.1) is equivalent to the replacement p 7→ p̄.

(5): Let Xn(u1, . . . , un;un+1) denote (5.1). Then we need to show the following.

Xn(u1, . . . , un; q
2ū1) =

(q − pq̄u1)σ(q
2u21)

2σ(q2)2

n∏

i=2

σ(q2u1ui)σ(q
4ū1ui)

σ(q4)2

× ((ū1 + p̄)(ū1q + u1q̄)Xn−1(u2, . . . , un;u1)

+ (−1)n+1(ū1 − p̄)σ(ū1q)Xn−1(u2, . . . , un;−u1)) (5.2)

For this purpose, multiply the (n+1)-st column of the matrix inXn(u1, . . . , un; q
2ū1) with the prefactor

σ(q2u1un+1)σ(q
2ū1ūn+1). After taking un+1 = q2ū1, the (n+1)-st column is (1, 0, . . . , 0)t. Now expand

the determinant with respect to this column to reduce the computation to the determinant of an n×n

3It is also not difficult to see directly that (5.1) is in fact a Laurent polynomial in u1, . . . , un+1: Observe that

∏n+1
j=1 σ(p̄vj)

∏n

i=1

∏n+1
j=1 σ(q2uivj)σ(q

2ūiv̄j)

σ(q2)2n σ(q4)n(n−1)
det

1≤i,j≤n+1























1
σ(q2uivj)σ(q2ūiv̄j)

, i ≤ n

1− σ(ūn+1vj)
σ(p̄vj)

, i = n+ 1









is a Laurent polynomial in the variables u1, . . . , un+1, v1, . . . , vn+1 that is antisymmetric in u1, . . . , un and in
v1, . . . , vn+1. It is also even in each ui, i = 1, . . . , n, and odd in each vi, i = 1, 2, . . . , n + 1, and thus divisible by
∏

1≤i<j≤n σ(uiūj)
∏

1≤i<j≤n+1 σ(viv̄j). After setting vn+1 = un+1, it is also divisible by σ(p̄un+1), since then the

bottom right corner entry of the matrix is 1.
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matrix. After moving the first column to the right, note that the first n− 1 rows of this matrix match
those of the matrices in Xn−1(u2, . . . , un;u1) and Xn−1(u2, . . . , un;−u1). Take the linear combination
of the last rows in the right-hand side according to the prefactors and compare it with the last row
and the prefactor in the left-hand side to see that they are equal. �

5.2. Specialization of the AST partition function at un+1 = p. Taking un+1 → p in (5.1), the
last row of the determinant becomes (0, 0, . . . , 0, 1), and we obtain the following simplified formula.

Corollary 5.2. We have the following formula for Zn(u1, . . . , un; p)AST.∏n
i=1 σ(q

2pui)σ(q
2p̄ūi)

∏n
i,j=1 σ(q

2uiuj)σ(q
2ūiūj)

σ(q2)2n σ(q4)n(n−1)
∏

1≤i<j≤n σ(uiūj)
2

det
1≤i,j≤n

(
1

σ(q2uiuj)σ(q2ūiūj)

)
(5.3)

Next we provide a sketch of an alternative proof of Corollary 5.2 which avoids Theorem 5.1 and
Lemma 4.4, the latter being probably the most complicated ingredient in the proof of Theorem 5.1.
This proof is also more in line with Kuperberg’s approach in [Kup02] as it uses a characterization of
the partition function in terms of evaluations in u1.

Sketch of an alternative proof using Theorem 4.9. First we need to verify that

Zn(p̄q
2, u2, . . . , un; p)AST = 0.

By the symmetry of Theorem 4.1, it suffices to show that Zn(u1, . . . , un−1, p̄q
2; p)AST = 0.

Consider the bottom bulk vertex v in the central column and assume un = p̄q2, un+1 = p. Its
label is unun+1 = q2, and using (3.6), there are only four possible local configurations around v that
contribute a non-zero weight (which is in fact 1 in all cases). Moreover, as W( , un) = W( , un) = 0,
there are only two possibilities (namely , ) for the right boundary vertex vR adjacent to v.

It turns out that the weights of the remaining configurations cancel in pairs: Fix a configuration
and obtain another configuration by reversing the orientation of the bottom vertical edge incident
with v and the right horizontal edge incident with v. Then only the weight of vR has changed: It is
σ(p̄2q2)
σ(q2) if the horizontal edge points to the right, and it is −σ(p̄2q2)

σ(q2) if the horizontal edge points to the

left.
Now we may use Theorem 4.9. The cases n = 1, 2 are easy to verify. To show that (5.3) is a Laurent

polynomial in u1, . . . , un, proceed as in the footnote of the proof of Theorem 5.1.
(1): We use the Leibniz rule for the determinant in (5.3). The degree and order of the numerator in

u1 of each summand—after multiplication with the prefactor and cancelling—are 4n− 2 and −4n+2,
respectively, while the degree and order of the denominator are 2n− 2 and −2n+ 2, respectively.

(2),(3),(4), (5) and (6): The expression is symmetric in u1, . . . , un, invariant under the transfor-
mation (u1, . . . , un, p) 7→ (ū1, . . . , ūn, p̄), and even in ui, i = 1, 2, . . . , n. The identities obtained from
Lemmas 4.6 and 4.7 can be verified straightforwardly. It is also evident that the expression in (5.3)
has a zero at u1 = p̄q2. �

A comparison with the partition function of all ASMs shows a close relation to the AST partition
function at un+1 = p: Let Yn(u1, . . . , un; v1, . . . , vn) denote the partition function of n × n ASMs
(u1, . . . , un and v1, . . . , vn are the horizontal and vertical spectral parameters, respectively, and we use
the bulk weights given in Table 1). Then

Yn(u1, . . . , un; v1, . . . , vn) =

∏n
i,j=1 σ(q

2uiv̄j)σ(q
2ūivj)

σ(q4)n(n−1)
∏

1≤i<j≤n σ(uiūj)σ(v̄ivj)
det

1≤i,j≤n

(
1

σ(q2uiv̄j)σ(q2ūivj)

)
.

To see this, consult for instance [Kup02, Theorem 10]: Set a = q2 in Kuperberg’s formula and divide by

σ(q4)n
2
to take the difference in the choice of vertex weights into account. A determinant formula for

the partition function of the six-vertex model on an n×n grid with domain wall boundary conditions
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that is equivalent to the one above was first derived by Izergin [Ize87, Eq. (5)], using results of Korepin
[Ize87, Kor82]. Corollary 5.2 now implies that

Zn(u1, . . . , un; p)AST =

n∏

i=1

σ(q2pui)σ(q
2p̄ūi)

σ(q2)2
Yn(u1, . . . , un; ū1, . . . , ūn). (5.4)

In particular, (5.4) now implies that there is the same number of order n ASMs as there is of order
n ASTs, since Yn(1, . . . , 1; 1, . . . , 1) is the number of order n ASMs.

5.3. Specialization of the AST partition function at un+1 = p and q = e
iπ
6 . Next we specialize

q = e
iπ
6 and obtain an expression involving Schur functions sλ(x1, . . . , xn). We use the well-known

determinant formula

sλ(x1, . . . , xn) =
det1≤i,j≤n(x

λj+n−j

i )∏
1≤i<j≤n(xi − xj)

,

where λ = (λ1, . . . , λn), and if the partition has less than n parts, we add the appropriate number of
zero parts to the partition.

Theorem 5.3. We have the following Schur function expression for Zn(u1, . . . , un; p)AST at q = e
iπ
6 .

3−(
n+1
2 )

n∏

i=1

(p2u2i + 1 + p̄2ū2i )s(n−1,n−1,n−2,n−2,...,1,1)(u
2
1, ū

2
1, . . . , u

2
n, ū

2
n) (5.5)

Proof. Use (5.3) and [Oka06, Theorem 2.4 (1), 2nd eq.]. We note that the Schur function expression

for the ASM partition function at q = e
iπ
6 was obtained simultaneously by Okada and by Stroganov

[Str06, Eq. (17)]. �

Let us point out that formulas for the specializations of Zn(u1, . . . , un; p)AST at q = e
iπ
4 , e

iπ
8 , e

iπ
12 are

also provided in [Oka06, Theorem 2.4 (1)]. These specializations correspond to the x-enumerations of
ASMs (or ASTs, see also Subsection 5.7) for x = 0, 2, 3, respectively.

Remark 5.4. In [AB19] it is shown that the Schur function in (5.5) factorizes as

s(2n−1,2n−1,2n−2,2n−2,...,1,1)(u1, ū1, u2, ū2, . . . , u2n, ū2n)

= sp(n−1,n−1,n−2,n−2,...,1,1)(u1, . . . , u2n)o
even
(n,n,n−1,n−1,...,1,1)(u1, . . . , u2n),

s(2n,2n,2n−1,2n−1,...,1,1)(u1,ū1, u2, ū2, . . . , u2n+1, ū2n+1)

= so(n,n,n−1,n−1,...,1,1)(u1, . . . , u2n+1)so(n,n,n−1,n−1,...,1,1)(−u1, . . . ,−u2n+1),
(5.6)

where the notation so and oeven for the orthogonal characters is the same as that used in [CK09].
These factorizations are very similar to those obtained by Ciucu and Krattenthaler in that paper.

5.4. Inversion numbers: A generalization of Theorem 1.2. The inversion number of an order
n ASM A = (ai,j) is defined as

inv(A) =
∑

1≤i′<i≤n,1≤j′≤j≤n

ai′jaij′ .

If A is a permutation matrix, inv(A) is the number of inversions of the permutation π = (π1, . . . , πn),
where πi is the column for the unique 1 in row i. The inversion number of ASMs was first defined in
[RR86, Eq. (18)], where it was referred to as the number of positive inversions. Another generalization
of the inversion number of permutations is obtained if, instead of summing over all 1 ≤ j′ ≤ j ≤ n,
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we sum over all 1 ≤ j′ < j ≤ n, and this statistic, which in fact evaluates to inv(A) + µ(A), appeared
in [MRR83, p. 344]. In terms of the six-vertex model, we have

inv(A) = # ∈ C(A),

where C(A) denotes the six-vertex configuration of A. This is because

inv(A) =
n∑

i,j=1


 ∑

1≤i′<i

ai′j




 ∑

1≤j′≤j

aij′


 ,

i.e., inv(A) is the number of entries ai,j of A such that the sum of entries in the same column above
ai,j (not including ai,j) is 1 and the sum of entries in the same row to the left of ai,j (including ai,j)
is 1.

It is not hard to see that also inv(A) =
∑

1≤i≤i′≤n,1≤j<j′≤n ai′jaij′ or, equivalently, inv(A) = # ∈
C(A). This implies

inv(A) =
1

2

(
# ∈ C(A) + # ∈ C(A)

)
.

We generalize this version of the inversion number to ASTs straightforwardly: Suppose T ∈ AST(n).
Then let

inv∇(T ) =
1

2

(
# ∈ C(T ) + # ∈ C(T )

)
,

where C(T ) is the triangular six-vertex configuration associated with T .
It can be shown (where we leave the details of the derivation to the reader) that the inversion

number of T = (ti,j)1≤i≤n,i≤j≤2n−i can be written directly in terms of its entries as

inv∇(T ) =
∑

i′<i

j′≤j

ti′jtij′ =
∑

i′≤i

j′<j

ti′jtij′ =
∑

i′<i

j′<j

ti′jtij′ − µ∇(T ),

where the summation is over all i′, j, i, j′ such that ti′j and tij′ are defined. It follows from these
expressions that inv∇(T ) is an integer, while it follows from the definition that inv∇(T ) is non-negative.

Theorem 5.5. The joint distribution of the statistics µ and inv on the set ASM(n) is the same as

the joint distribution of the statistics µ∇ and inv∇ on the set AST(n), i.e., for all integers m and i
we have

|{A ∈ ASM(n) | µ(A) = m, inv(A) = i}| = |{T ∈ AST(n) | µ∇(T ) = m, inv∇(T ) = i}|.
Proof. Define the following complementary inversion numbers for A ∈ ASM(n) and T ∈ AST(n):

inv′(A) =
1

2

(
# ∈ C(A) + # ∈ C(A)

)
inv′∇(T ) =

1

2

(
# ∈ C(T ) + # ∈ C(T )

)

As there are n more 1’s in an ASM (resp. AST) of order n than −1’s, we have

µ(A) =

(
n

2

)
− inv(A)− inv′(A) and µ∇(T ) =

(
n

2

)
− inv∇(T )− inv′∇(T ),

and so it suffices to show ∑

A∈ASM(n)

xinv(A)yinv
′(A) =

∑

T∈AST(n)

xinv∇(T )yinv
′
∇(T ).

The left hand side can be studied using the partition function Yn. Indeed, we have

Yn(p, . . . , p; p̄, . . . , p̄) =
∑

A∈ASM(n)

(
σ(q2p2)

σ(q4)

)2 inv(A)(
σ(q2p̄2)

σ(q4)

)2 inv′(A)

, (5.7)
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since the (bulk) weights for the ASM partition function Yn(u1, . . . , un; v1, . . . , vn) are chosen as in

Table 1 and the label of the vertex in row i and column j is uiv̄j. Now it is important to note that σ(q2p2)
σ(q4)

and σ(q2 p̄2)
σ(q4)

are algebraically independent if p, q are (algebraically independent) indeterminates. Indeed,

let F (x, y) =
∑

s,t≥0 as,tx
syt be a polynomial in x, y and d its total degree. Then F

(
σ(q2p2)
σ(q4)

, σ(q
2 p̄2)

σ(q4)

)

is a Laurent polynomial in p of degree 2d with leading coefficient

1

σ(q4)d

∑

s,t≥0,s+t=d

as,t(−1)tq2s−2t,

and thus non-zero.
On the AST side, we consider the specialization Zn(p, . . . , p; p)AST. By (3.8), the sum in the

generating function Zn(p, . . . , p; p)AST can be taken over all odd DASASM-triangles T ′ of order n with

N−1(T
′) = n, and by (3.9), all left boundary weights are σ(q2p2)

σ(q2)
, while all right boundary weights are

σ(q2p̄2)
σ(q2)

. Hence, by Table 1,

Zn(p, . . . , p; p)AST =

(
σ(q2p2)σ(q2p̄2)

σ(q2)2

)n ∑

T∈AST(n)

(
σ(q2p2)

σ(q4)

)2 inv∇(T )(
σ(q2p̄2)

σ(q4)

)2 inv′∇(T )

,

and the assertion now follows from (5.4) and (5.7). �

5.5. Position of the 1 in the top row of an AST. A statistic that was extensively studied for
ASMs is the position of the 1 in the top row, see for instance [MRR83, Zei96b]. In this subsection,
we study the analogous statistic on ASTs and derive a formula for the number of ASTs of order n
that have the 1 in the top row in a prescribed position in terms of the doubly refined enumeration of
ASMs with respect to the positions of the 1’s in the top row and leftmost column. Explicit formulas
for this doubly refined enumeration of ASMs can in turn be derived from results in [Str06], see also
[Fis11, Fis12, Beh13].

For an AST T , let

κ∇(T ) = (position of the 1 in the top row of T )− 1

and, for an ASM A, let

κ(A) = (position of the 1 in the top row of A) + (position of the 1 in the first column of A) − 2.

We define two generating functions as follows.

KAST
n (x) =

∑

T∈AST(n)

xκ∇(T ), KASM
n (x) =

∑

A∈ASM(n)

xκ(A)

For example, KAST
n (x) = 2 + x + x2 + x3 + 2x4 and KASM

n (x) = 2 + 2x2 + 2x3 + x4. By setting

u2 = . . . = un = 1, p = 1, q = e
iπ
6 in (5.4), it can be shown (where we leave the details of the derivation

to the reader) that

(2− x)x2KAST
n (x) = (x2 − x+ 1)KASM

n (x) + (1− x)(x2n − 1)An−1,

where An denotes the number of n× n ASMs. This implies

2Tn,k = Tn,k−1 +Dn,k −Dn,k+1 +Dn,k+2 + (δk,−1 − δk,−2 + δk,2n−2 − δk,2n−1)An−1,
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with Tn,k = |{T ∈ AST(n) | κ∇(T ) = k}| and Dn,k = |{A ∈ ASM(n) | κ(A) = k}|. The recursion can
be solved and we obtain

Tn,k = 3

k−3∑

i=0

2i−kDn,i+3 −
1

4
Dn,k+1 +

1

2
Dn,k+2 + (2−k+1 − 3

2
δk,0 −

3

4
δk,1 +

1

2
δk,2n−2)An−1.

If Bn,i,j denotes the number of n× n ASMs that have the 1 in the top row in column j and the 1 in
the leftmost column in row i, then

Dn,k =
∑

i+j=k+2

Bn,i,j.

5.6. Another interesting AST statistic. Each left or right boundary entry of an AST T is either
0 or 1. Let L(1, T ) denote the number of 1’s on the left boundary, and R(01, T ) the number of 0’s on
the right boundary that are contained in a column with sum 1. Define the statistic

ρ(T ) = L(1, T ) + R(01, T ) + 1

for T ∈ AST(n). We have numerical evidence that, for any integers n and r,

|{A ∈ AST(n) | ρ(A) = r}| = |{A = (ai,j) ∈ ASM(n) | a1,r = 1}|.
In a forthcoming paper, we will study this statistic and derive related constant term identities. Inter-
estingly, data suggests that the joint distribution of µ∇, inv∇ and ρ on AST(n) is not the same as the
joint distribution of µ, inv and the position of the unique 1 in the top row of an ASM on ASM(n).

5.7. 2-enumeration and 3-enumeration of ASTs. The following weighted enumeration of ASMs
is referred to as the x-enumeration: ∑

A∈ASM(n)

xµ(A)

If x = 0, then we obviously obtain n! since ASMs with no −1 are precisely permutation matrices.
Besides x = 0, 1, the numbers are also round for x = 2 (see [MRR83]) and x = 3 (see [Kup96]).
Theorem 1.2 states that the x-enumeration of ASTs is the same as the x-enumeration of ASMs for
any x. Hence we obtain the following.

Corollary 5.6. The 2-enumeration of order n ASTs is 2(
n

2), while the 3-enumeration of order 2n+1
ASTs is

3n(n+1)
n∏

i=1

(
(3i− 1)!

(n+ i)!

)2

and

3n(n+2) (3n + 2)!n!

(2n + 1)!2

n∏

i=1

(
(3i− 1)!

(n+ i)!

)2

for order 2n+ 2 ASTs.

Curiously, as demonstrated in [EKLP92] (see also [Ciu97, Remark 4.3]), the 2-enumeration of ASMs
can be translated into the enumeration of perfect matchings of certain regions of the square grid (or,
equivalently, into the plain enumeration of the domino tilings of the Aztec diamond). Similarly, we
may now translate our result on the 2-enumeration of ASTs into a matching enumeration result.

In order to do so, define for each integer n > 0 a graph Qn as indicated in Figure 4 (left). It
consists of n rows of centered sequences of tilted squares (shaded in our drawing and referred to
as diamonds in the following) of lengths 2n − 1, 2n − 3, . . . , 1, from top to bottom. The bottom
vertices of the columns (except for the middle column) play a special role and these vertices are
denoted by their column position, counted from the left. Note that Qn is bipartite and the vertices
1, 2, . . . , n − 1, n + 1, . . . , 2n − 1 all lie in the same vertex class. There are n − 1 more vertices in
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Figure 4. Q5 (left) and an example (right)

this class than in the other class, and hence, in order to obtain a graph that could possibly possess a
perfect matching, we may delete n− 1 vertices in {1, 2, . . . , n− 1, n + 1, . . . , 2n − 1} from Qn. There
is an example of such a perfect matching in Figure 4 (right), where we delete vertices 1, 2, 4, 9.

Now, on the AST-side, since each of the n rows of an order n AST has sum 1, and each of the
2n− 1 columns has sum 0 or 1, there must be precisely n− 1 columns that have sum 0. Let 1 ≤ i1 <
i2 < . . . < in−1 ≤ 2n− 1 and denote by AST(n; i1, . . . , in−1) the subset of AST(n), where the columns
with sum 0 are the columns i1, . . . , in−1. (Note that this set is obviously empty if ij = n for a j.)

In the example in Figure 4 (right), we indicate a surjection from the set of perfect matchings of Qn−
{i1, . . . , in−1} onto AST(n; i1, . . . , in−1) (see also [Ciu97, Remark 4.3]): Each diamond corresponds to
an entry of the AST, and this entry is in fact the number of matching edges on the boundary of the
diamond. To compute the size of the preimage of a given AST under this map, observe that for each 1
of the AST, there are obviously two possibilities to arrange the two matching edges on the boundary
of the respective diamond. In summary,

∑

T∈AST(n)

2# of 1’s in T =
∑

V ⊆{1,2,...,n−1,n+1,...,2n−1}
|V |=n−1

(# of perfect matchings of Qn − V ).

As
∑

T∈AST(n) 2
# of 1’s in T = 2n

∑
T∈AST(n) 2

µ(T ), Corollary 5.6 now implies the following.

Corollary 5.7. For any n = 1, 2, 3, . . .,
∑

V ⊆{1,2,...,n−1,n+1,...,2n−1}
|V |=n−1

(# of perfect matchings of Qn − V ) = 2(
n+1
2 ).

The number of perfect matchings of a tilted square region of the square grid of order n (dual to

the Aztec diamond of order n) is also 2(
n+1
2 ), since the plain enumeration of the perfect matchings of

this region is up to the factor 2n equal to the 2-enumeration of order n ASMs as mentioned above. A
bijection between the set of perfect matchings of this region and the set of perfect matchings of the
family of graphs (Qn − V )V⊆{1,2,...,n−1,n+1,...,2n−1} might give a hint on the bijection between ASMs
and ASTs.

6. Maximal number of 1’s: Quasi alternating sign triangles

The main purpose of this section is to provide a proof of Theorem 1.3 and generalizations.

6.1. The QAST partition function.
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Theorem 6.1. We have the following determinant formula for the partition function Z↑
n(u1, . . . , un;un+1)QAST.

∏n
j=1 σ(p̄uj)

∏n
i=1

∏n+1
j=1 σ(q

2uiuj)σ(q
2ūiūj)

σ(q2)2nσ(q4)n
2∏n

i=1 σ(uiūn+1)
∏

1≤i<j≤n σ(uiūj)
2

det
1≤i,j≤n+1








1
σ(q2uiuj)

+
1

σ(q2ūiūj)
, i ≤ n

σ(p̄un+1)
σ(p̄uj)

, i = n+ 1




(6.1)

Proof. We use Theorem 4.6. The case n = 1 is easy to verify. To show that (6.1) is indeed a Laurent
polynomial in un+1, observe that

∏n
j=1 σ(p̄uj)

∏n
i=1

∏n+1
j=1 σ(q

2uiuj)σ(q
2ūiūj)

σ(q2)2nσ(q4)n2∏
1≤i<j≤n σ(uiūj)

2
det

1≤i,j≤n+1








1
σ(q2uiuj)

+
1

σ(q2ūiūj)
, i ≤ n

σ(p̄un+1)
σ(p̄uj)

, i = n+ 1




is a Laurent polynomial in un+1. It is divisible by
∏n

i=1 σ(uiūn+1), as the determinant vanishes if we
set un+1 = ±uj, for j = 1, . . . , n, since then the j-th column coincides with the (n + 1)-st column of
the matrix up to sign.

We check the properties from Theorem 4.6.
(1): To deduce the bounds on the degree and order as a Laurent polynomial in un+1, use the Leibniz

formula for the determinant and observe that, after multiplying each summand with the prefactor and
expanding, we obtain a sum of rational functions where each numerator has degree 2n and order −2n,
and each denominator has degree n and order −n.

(2), (3) and (4): The expression is readily checked to be symmetric in u1, . . . , un, invariant under
the transformation (u1, . . . , un+1, p) 7→ (ū1, . . . , ūn+1, p̄) and even in ui, i = 1, 2, . . . , n. Note that
interchanging respective left and right boundary constants in the QAST-specialization (see Subsec-
tion 3.3.2) is equivalent to the replacement p 7→ p̄.

(5): As W( , u1) = 0, Z↓
n(u1, . . . , un;un+1) disappears on the right-hand side of (4.2). Let

Xn(u1, . . . , un;un+1) denote (6.1). Then we need to show the following.

Xn(u1, . . . , un; q
2ū1) =

σ(p̄q2ū1)σ(q
2u21)

σ(q2)2

n∏

i=2

σ(q2u1ui)σ(q
4ū1ui)

σ(q4)2
Xn−1(u2, . . . , un;u1)

For this purpose, multiply the (n+1)-st column of the matrix ofXn(u1, . . . , un; q
2ū1) with the prefactor

σ(q2u1un+1)σ(q
2ū1ūn+1). After taking un+1 = q2ū1, the (n + 1)-st column is (σ(q4), 0, . . . , 0)t, and

now expand the determinant with respect to this column. �

6.2. Specialization of the QAST partition function at un+1 = p. Taking un+1 → p in (6.1), the
last row of the matrix becomes (0, 0, . . . , 0, 1), and we obtain the following simplified formula.

Corollary 6.2. We have the following formula for Z↑
n(u1, . . . , un; p)QAST.

∏n
i=1 σ(q

2pui)σ(q
2p̄ūi)

∏n
i,j=1 σ(q

2uiuj)σ(q
2ūiūj)

σ(q2)2n σ(q4)n2 ∏
1≤i<j≤n σ(uiūj)

2
det

1≤i,j≤n

(
1

σ(q2uiuj)
+

1

σ(q2ūiūj)

)
(6.2)

Here we again sketch an alternative proof of Corollary 6.2 which avoids Theorem 6.1 and Lemma 4.4.

Sketch of an alternative proof using Theorem 4.9. We need to verify Z↑
n(p̄q2, u2, . . . , un; p)QAST = 0.

By the symmetry of Theorem 4.1, it suffices to show that Z↑
n(u1, . . . , un−1, p̄q

2; p)QAST = 0. Assume
un = p̄q2 and un+1 = p, and consider the bottom bulk vertex v in the central column. Its label is

unun+1 = q2, and since W( , q2) = 0, there are only two possible local configurations around v that

contribute a non-zero weight (namely and ). However, this implies that there are only two
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possible configurations for the right boundary vertex vR adjacent to v (the vertical edge connecting v
and vR is oriented from v to vR). The assertion follows as W( , un) = W( , un) = 0.

The cases n = 1, 2 are easy to verify. To show that (6.2) is a Laurent polynomial in u1, . . . , un,
proceed as in the footnote of the proof of Theorem 5.1.

(1): We use the Leibniz rule for the determinant. The expression is a sum of rational functions
with degrees and orders of the numerators in u1 being 4n and −4n, respectively, while the degrees
and orders of the denominators are 2n− 2 and −2n+ 2, respectively.

(2),(3),(4), (5) and (6): The expression is obviously symmetric in u1, . . . , un, invariant under the
transformation (u1, . . . , un, p) 7→ (ū1, . . . , ūn, p̄) and even in ui, i = 1, 2, . . . , n. The identities from
Lemmas 4.6 and 4.7 can be verified straightforwardly. It is also obvious that the expression in (6.2)
has a zero at u1 = p̄q2. �

6.3. Specialization of the QAST partition function at un+1 = p and q = e
iπ
6 .

Theorem 6.3. We have the following Schur function expression for Z↑
n(q, u1, . . . , un; p)QAST at q =

e
iπ
6 .

3−(
n+1
2 )

n∏

i=1

(p2u2i + 1 + p̄2ū2i )s(n,n−1,n−1,n−2,n−2,...,1,1)(u
2
1, ū

2
1, . . . , u

2
n, ū

2
n) (6.3)

Proof. Use (6.2) and observe that this expression is a specialization of one of two factors of the
partition function of half-turn symmetric ASMs as noted in [Kup02, Theorem 10]. The result follows
from [Oka06, Theorem 2.4 (2), 2nd eq.] or from [Str04, RS06a, Eq. (11), Eq. (31)]. �

Formulas for the specializations of Zn(u1, . . . , un; p)QAST at q = e
iπ
4 , e

iπ
8 are also provided in [Oka06,

Theorem 2.4 (2)]. They correspond to x-enumerations of QASTs for x = 0, 2, respectively.

Remark 6.4. In [AB19] it was shown that (6.3) factorizes as

s(2n,2n−1,2n−1,2n−2,2n−2,...,1,1)(u1, ū1, u2, ū2, . . . , u2n, ū2n) =

(−1)nso(n,n−1,n−1,...,1,1)(u1, . . . , u2n)so(n,n−1,n−1,...,1,1)(−u1, . . . ,−u2n),

s(2n+1,2n,2n,...,1,1)(u1, ū1, u2, ū2, . . . , u2n+1, ū2n+1) =

sp(n,n−1,n−1,...,1,1)(u1, . . . , u2n+1)o
even
(n+1,n,n,...,1,1)(u1, . . . , u2n+1).

(6.4)

6.4. Proof of Theorem 1.3. We set ui = 1, i = 1, . . . , n, and p = 1 in (6.3) to finally prove
Theorem 1.3. We use the following formula for the specialization of Schur functions.

sλ(1, 1, . . . , 1) =
∏

1≤i<j≤n

λi − λj + j − i

j − i
(6.5)

This is, by the combinatorial interpretation of the Schur function as the generating function of semi-
standard tableaux of shape λ, also the number of these tableaux. It follows that

3−(
n

2)s(n,n−1,n−1,n−2,n−2,...,1,1)(1
2n) =

n−1∏

i=0

(3i + 2)(3i)!

(n+ i)!

and the latter is also the number of cyclically symmetric plane partitions in an n × n × n box, see
[And79].
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6.5. Outlook. A natural question to ask is whether there is a generalization of Theorem 1.3 that is
analogous to Theorem 1.2, i.e., what is a statistic on n×n×n CSPPs that has the same distribution as
the numbers of −1’s in the fundamental domain of (2n+1)×(2n+1) DASASMs A with N1(A) = n+1?
In a forthcoming paper, we will show that this is the case for a statistic that was already introduced
by Mills, Robbins and Rumsey in [MRR87, p. 47], namely the number of special parts in a CSPP.
In fact, this result will follow from a common generalization of Theorems 1.2 and 1.3 that involves
an infinite family of alternating sign matrix objects, among which the objects from Theorems 1.2 and
1.3 are two special members. In addition, certain classes of extreme diagonally and antidiagonally
symmetric alternating sign matrices of even order will also be members of this family.

With regard to this family, it will also make sense to consider objects with vertical symmetry, and we
will enumerate these symmetry classes. A special case of this result will be that vertically symmetric
ASTs of order n are equinumerous with vertically symmetric ASMs of order n. More generally, we
will see that the generating functions of vertically symmetric ASMs and vertically symmetric ASTs
with respect to the numbers of −1’s coincide.

7. Maximal number of 0’s: Off-diagonally and off-antidiagonally symmetric

alternating sign matrices

In this section, we provide the proof of Theorem 1.3 and generalizations.

7.1. The OOSASM partition function. Recall the definition of the Pfaffian of a triangular array
A = (ai,j)1≤i<j≤2n

Pf
1≤i<j≤2n

(ai,j) =
∑

π={{i1,j1},{i2,j2},...,{in,jn}}
π perfect matching of K2n,ik<jk

sgnπ

n∏

k=1

aik ,jk ,

where sgn π is the sign of the permutation i1j1i2j2 . . . injn. Suppose Â = (ai,j)1≤i,j≤2n is the skew
symmetric extension of A. Then it is a well-known fact that

(
Pf

1≤i<j≤2n
(ai,j)

)2

= det
1≤i,i≤2n

(ai,j).

Theorem 7.1. We have the following Pfaffian formula for the OOSASM partition function

Zn(u1, . . . , un;un+1)OOSASM = P⌈n
2
⌉(u1, . . . , u2⌈n

2
⌉)Q⌈n+1

2
⌉(u1, . . . , u2⌈n+1

2
⌉−1),

where

Pm(u1, . . . , u2m) = σ(q4)−(m−1)2m
∏

1≤i<j≤2m

σ(q2uiuj)σ(q
2ūiūj)

σ(uiūj)
Pf

1≤i<j≤2m

(
σ(uiūj)

σ(q2uiuj)σ(q2ūiūj)

)

and

Qm(u1, . . . , u2m−1) = σ(q4)−(m−1)(2m−1)
∏

1≤i<j≤2m−1

σ(q2uiuj)σ(q
2ūiūj)

σ(uiūj)

× Pf
1≤i<j≤2m







σ(uiūj)
σ(q2uiuj)

+
σ(uiūj)
σ(q2ūiūj)

, j < 2m

1, j = 2m


 .

Curiously, Pn(u1, . . . , u2n) is the partition function of 2n×2n OSASMs using the bulk weights from
Table 1 and normalizing the boundary weights as in the OOSASM case (i.e., all boundary weights are

1). To see this, set a = q2 in Kuperberg’s formula [Kup02, Theorem 10] and divide by σ(q4)(
2n
2 ) to

account for the different normalization of the bulk weights.
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Proof. We use Theorem 4.6. The case n = 1 is easy to verify.
Both Pm(u1, . . . , u2m) and Qm(u1, . . . , u2m−1) are Laurent polynomials as the two Pfaffians involved

are antisymmetric functions in the variables u1, . . . , u2m and u1, . . . , u2m−1, respectively, and odd in
each ui.

(1): By the definition of the Pfaffian, Pm(u1, . . . , u2m) is a sum of rational functions where the de-
grees and orders of the numerators in u1 are 4m−4 and −4m+4, respectively, and of the denominators
2m − 2 and −2m + 2, respectively. Hence the bounds for the degree and order of Pm(u1, . . . , u2m)
are 2m − 2 and −2m + 2, respectively. This shows that, in case of n is odd, the degree and order
in un+1 of the proposed expression for the partition function are at most n − 1 and at least −n + 1,
respectively (m = ⌈n2 ⌉).

On the other hand, the degrees (resp. orders) of the numerators of the summands ofQm(u1, . . . , u2m−1)
in u1 are either 4m − 4 (resp. −4m + 4) or 4m − 5 (resp. −4m + 5), depending on whether or not
1 is matched to 2m and the degrees (resp. orders) of the denominators are 2m − 2 (resp. −2m + 2)
and 2m − 3 (resp. −2m + 3). Thus, the degree and order of Qm(u1, . . . , u2m−1) are at most 2m − 2
and at least −2m + 2, respectively. This shows that, in case of n is even, the degree and order in
un+1 of the proposed expression for the partition function are at most n and at least −n, respectively
(m = ⌈n+1

2 ⌉).
(2), (3) and (4): The expression in the statement is symmetric in u1, . . . , un as it is the product

of two symmetric functions in u1, . . . , un. It is also invariant under the replacement (u1, . . . , un) 7→
(ū1, . . . , ūn+1) as Pm(u1, . . . , u2m) is invariant under (u1, . . . , u2m) 7→ (ū1, . . . , ū2m) andQm(u1, . . . , u2m−1)
is invariant under (u1, . . . , u2m−1) 7→ (ū1, . . . , ū2m−1), and even in ui, i = 1, 2, . . . , n.

(5): Let Xn(u1, . . . , un;un+1) denote the expression in the statement. Then—by Lemma 4.4 and
by taking into account the normalization we have chosen—we need to show

Xn(u1, . . . , un; q
2ū1) =

n∏

i=2

σ(q2u1ui)σ(q
4ū1ui)

σ(q4)2
Xn−1(u2, . . . , un;u1).

Thus it suffices to show

Pn(u1, . . . , u2n−1, q
2ū1) =

2n−1∏

i=2

σ(q2u1ui)σ(q
4ū1ui)

σ(q4)2
Pn−1(u2, . . . , u2n−1),

Qn(u1, . . . , u2n−2, q
2ū1) =

2n−2∏

i=2

σ(q2u1ui)σ(q
4ū1ui)

σ(q4)2
Qn−1(u2, . . . , u2n−2)

and this follows easily from the definition of the Pfaffian. �

7.2. Specialization of the OOSASM partition function at q = e
iπ
6 . Here we obtain a formula

involving symplectic characters spλ(x1, . . . , xn) when specializing at q = e
iπ
6 . (See [FH91, § 24.2] for

a reference on symplectic characters.) We use the determinantal formula

spλ(x1, . . . , xn) =

det
1≤i,j≤n

(
x
λj+n−j+1
i − x̄

λj+n−j+1
i

)

∏n
i=1(xi − x̄i)

∏
1≤i<j≤n(xi + x̄i − xj − x̄j)

(7.1)

if λ = (λ1, λ2, . . . , λn), and extend the partition with zero parts if its length is less than n.
Symplectic characters are also generating functions of certain tableaux: A symplectic tableaux of

shape λ is a semistandard tableaux of shape λ with entries 1 < 1′ < 2 < 2′ < 3 < . . . and the
additional constraint that entries in row i are no smaller than i, see [Sun90, Theorem 2.3]. Now

spλ(x1, . . . , xn) =
∑

T

n∏

i=1

x
(# i∈T )−(# i′∈T )
i ,
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where the sum is over all symplectic tableaux of shape λ with entries in {1, 1′, 2, 2′, . . . , n, n′}.

Theorem 7.2. Assume q = e
iπ
6 . We have the following formula for Z2n−1(u1, . . . , u2n−1;u2n)OOSASM

in terms of symplectic characters

3−(n−1)(2n−1)sp(n−1,n−1,n−2,n−2,...,1,1)(u
2
1, . . . , u

2
2n)sp(n−1,n−2,n−2,n−3,n−3,...,1,1)(u

2
1, . . . , u

2
2n−1) (7.2)

and for Z2n(u1, . . . , u2n;u2n+1)OOSASM

3−n(2n−1)sp(n−1,n−1,n−2,n−2,...,1,1)(u
2
1, . . . , u

2
2n)sp(n,n−1,n−1,n−2,n−2,...,1,1)(u

2
1, . . . , u

2
2n+1). (7.3)

We use Theorem 7.1 to prove the theorem. As Pn(u1, . . . , u2n) is the partition function of OSASMs,

we can take its specialization at q = e
iπ
6 from [Oka06, Theorem 2.5 (2)] where it was shown that

Pn(u1, . . . , u2n)|
q=e

iπ
6
= 3−(n−1)nsp(n−1,n−1,n−2,n−2,...,1,1)(u

2
1, . . . , u

2
2n).

See also [RS04, Theorem 5]. (In [Oka06, Theorem 2.5 (2)] appears also a formula for the specialization

of Pn(u1, . . . , u2n) at q = e
iπ
4 .) We still need to show

Qn(u1, . . . , u2n−1)|
q=e

iπ
6
= 3−(n−1)2sp(n−1,n−2,n−2,n−3,n−3,...,1,1)(u

2
1, . . . , u

2
2n−1). (7.4)

The Pfaffian identity stated next is useful in the following.

Lemma 7.3. We define

W(x1, . . . , xn; a1, . . . , an) = det
1≤i,j≤n

(
xj−1
i + ai x

n−j
i

)
.

Then

Pf
1≤i<j≤2n







W(xi,xj ;ai,aj)(1+aiaj)
1−xixj

, j < 2n

1− a2i , j = 2n


 =

W(x1, . . . , x2n−1;−a21,−a22, . . . ,−a22n−1)∏
1≤i<j≤2n−1(1− xixj)

. (7.5)

Proof. The following special case of an identity due to Okada [Oka06, Theorem 3.4., Eq. (20)] is
applied.

Pf
1≤i<j≤2n−2

(W(xi, xj , x2n−1; ai, aj , a2n−1)

1− xixj

)
=

(1 + a2n−1)
n−2

∏
1≤i<j≤2n−2(1− xixj)

W(x1, . . . , x2n−1; a1, . . . , a2n−1)

(7.6)
(Substitute n for n − 1, and set b1 = . . . = b2n−2 = 0, z = x2n−1, c = a2n−1 in Okada’s identity.)

After replacing ai by −a2i in (7.6), the right-hand side is—up to the factor (1− a22n−1)
n−2

∏2n−2
i=1 (1−

xix2n−1)—equal to the right-hand side in the statement. It suffices to show

(1− a22n−1)
n−2

2n−2∏

i=1

(1− xix2n−1) Pf
1≤i<j≤2n







W(xi,xj ;ai,aj)(1+aiaj)
1−xixj

, j < 2n

1− a2i , j = 2n




= Pf
1≤i<j≤2n−2

(
W(xi, xj , x2n−1;−a2i ,−a2j ,−a22n−1)

1− xixj

)
. (7.7)

The fact that elementary row and column operations do not change the determinant of a matrix has
an analogue for Pfaffians: For instance, suppose A is an even-order skew-symmetric matrix, and A′ is
obtained from A by adding a multiple of row i to row j, and simultaneously adding the same multiple
of column i to column j, for some i 6= j. Then Pf(A) = Pf(A′). The identity (7.7) can now be proven
using such operations.
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More specifically, we use the identity

cn−2
2n−1,2n Pf

1≤i<j≤2n
(cij) = Pf

1≤i<j≤2n−2


Pf



ci,j ci,2n−1 ci,2n

cj,2n−1 cj,2n
c2n−1,2n




 , (7.8)

for any (ci,j)1≤i<j≤2n, which is a special case of a Pfaffian analogue of Sylvester’s determinant identity.
(Replace n by n−1, and set β = {1, . . . , 2n−2} and α = {2n−1, 2n} in an identity of Knuth [Knu96,
Eq. (2.5)].) Alternatively, (7.8) can be obtained directly by transforming the first 2n−2 entries in the
last column of (ci,j)1≤i<j≤2n to zeros using certain row and column operations, and then expanding
along the last column. Now let (ci,j)1≤i<j≤2n be the array in the Pfaffian on the left-hand side of (7.7).
It can be checked straightforwardly that

Pf



ci,j ci,2n−1 ci,2n

cj,2n−1 cj,2n
c2n−1,2n


 =

W(xi, xj , x2n−1;−a2i ,−a2j ,−a22n−1)

(1− xixj)(1 − xix2n−1)(1− xjx2n−1)
.

The result now follows from (7.8). �

Proof of Theorem 7.2. We prove (7.4). Assume q = e
iπ
6 . As

σ(q4) =
√
3i, σ(q2x)σ(q2x̄) = −(1 + x2 + x̄2), σ(q2x) + σ(q2x̄) =

√
3i(x+ x̄),

we have that Qn(u1, . . . , u2n−1) is equal to

(−3)−(n−1)2
∏

1≤i<j≤2n−1

1 + u2i u
2
j + ū2i ū

2
j

uiūj − ūiuj
Pf

1≤i<j≤2n








u2
i−ū2

i−u2
j+ū2

j

1+u2
iu

2
j+ū2

i ū
2
j

, j < 2n

1, j = 2n


 .

By setting xi = u6i and ai = −u2i in Lemma 7.3, we see that the left-hand side of (7.5) is, up to

the factor
∏2n−1

i=1 (1− u4i ) (which arises from a factor bibj in each entry of the triangular array, where
bi = 1/(1− u4i ) for i < 2n and b2n = 1), equal to the Pfaffian in the previous expression. This implies
that the previous expression is equal to

(−3)−(n−1)2
2n−1∏

i=1

1

1− u4i

∏

1≤i<j≤2n−1

1 + u2i u
2
j + ū2i ū

2
j

(uiūj − ūiuj)(1− u6iu
6
j )

det
1≤i,j≤2n−1

(
u6j−6
i − u12n−4−6j

i

)

= (−1)n 3−(n−1)2
2n−1∏

i=1

u6n−4
i

1− u4i

∏

1≤i<j≤2n−1

1 + u2iu
2
j + ū2i ū

2
j

(uiūj − ūiuj)(1 − u6iu
6
j )

det
1≤i,j≤2n−1

(
u
2(3n−3j+1)
i − ū

2(3n−3j+1)
i

)
.

The required right-hand side of (7.4) can now be obtained from this expression by multiplying columns
n+1, . . . , 2n− 1 of the matrix by −1, reordering the columns as 1, 2n− 1, 2, 2n− 2, . . . , n− 1, n+1, n,
simplifying the prefactor, and applying the determinant formula (7.1) for symplectic characters �

Remark 7.4. A different approach to proving Theorem 7.2 would be to show that the function in this

theorem fulfills the properties from Theorem 4.6 in the special case q = e
iπ
6 . (The same idea would

clearly also lead to direct proofs of Theorems 5.3 and 6.3, where in this case we would have to show
that the properties from Theorem 4.9 are satisfied. This approach was previously used, see for instance
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[Str06].) It turns out that it suffices to show

sp(n−1,n−1,n−2,n−2,...,1,1)(u1, u2, . . . , u2n−1, q
4ū1)

sp(n−2,n−2,...,1,1)(u2, u3, . . . , u2n−1)
=

2n−1∏

i=2

(q̄2u1 + q2ū1 + ui + ūi),

sp(n,n−1,n−1,...,1,1)(u1, u2, . . . , u2n, q
4ū1)

sp(n−1,n−2,n−2,...,1,1)(u2, u3, . . . , u2n)
=

2n∏

i=2

(q̄2u1 + q2ū1 + ui + ūi)

at q = e
iπ
6 . Since spλ(u1, . . . , un) is a certain generating function of symplectic tableaux, it would be

interesting to explore whether these identities have a combinatorial proof.

7.3. Proof of Theorem 1.5. We set ui = 1 for i = 1, . . . , n in (7.2) and (7.3) to compute the number
of OOSASMs. Here we need the following product formula, see [FH91, Exercise 24.20].

spλ(1, 1, . . . , 1) =
n∏

i=1

λi + n+ 1− i

n+ 1− i

∏

1≤i<j≤n

(λi − λj + j − i)(λi + λj + 2n+ 2− i− j)

(j − i)(2n + 2− i− j)

We obtain

|OOSASM(4n− 1)| =
n−1∏

i=0

(3i+ 2)!(3n + 3i)!

(2n+ i)!(3n + i)!
,

and this is also the number of (4n+ 1)× (4n + 1) VHSASMs. Finally,

|OOSASM(4n + 1)| =
n∏

i=1

(3i− 1)!(3n + 3i)!

(2n + i)!(3n + i+ 1)!
,

and this is also the number of (4n+ 3)× (4n + 3) VHSASMs, see [Oka06].
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Appendix A. ASMs and ASTs with a single −1

We count n×n ASMs with precisely one −1: Such matrices are uniquely determined by the following
information.

• The columns of the unique −1 and the two 1’s that are situated in the same row. There are(
n
3

)
choices.

• The rows of the −1 and the two 1’s that are situated in the same column as the −1. There
are

(
n
3

)
choices.

• The permutation matrix of order n− 3 that is obtained by deleting the three chosen rows and
the three chosen columns. There are (n− 3)! choices.

Therefore, there is a total of
(
n
3

)2
(n − 3)! ASMs of order n with precisely one −1. We note that

formulas for the numbers of ASMs with more −1’s are given in [Ava10] and [LG11], and that ASMs
with one −1 were studied by Lalonde [Lal02, Lal06].

On the other hand, ASTs with precisely one −1 are less accessible: Let i1 ∈ {2, 3, . . . , n− 1} be the
row of the −1, counted from the bottom, and j2 ∈ {−n + 2,−n + 3, . . . , n − 2} its column, counted



EXTREME DASASMS OF ODD ORDER 39

1

1

1 −1

−j1
j2

j3

i1

i2

Figure 5. Definition of i1, i2, j1, j2, j3

from the central column and where we use the negative sign if the column is left of the central column.
Let j1, j3, i2 encode the positions of the three 1’s to the left, to the right and above the −1 as indicated
in Figure 5. For integers a, b, we use the following notation.

p(a, b) =

{
a(a+ 1) · · · b if a ≤ b,

1 otherwise.

We count all possible subarrays consisting of the i1 − 1 bottom rows of such an AST: Since there is
neither a 1 in column j1 nor in column j3, the number is

p(1,min(|j1|, |j3|))p(min(|j1|, |j3|),max(|j1|, |j3|)−1)p(max(|j1|, |j3|)−1, i1−3) = F1(j1, j3, i1). (A.1)

(The argument is analogous to that used for counting ASTs without −1’s.) If we impose the condition
that there is also no 1 in column j2 in this subarray then this number is

p(1,min)p(min, | −1)p(| −1,max−2)p(max−2, i1 − 4) = F2(j1, j2, j3, i1), (A.2)

where min = min(|j1|, |j2|, |j3|), max = max(|j1|, |j3|), |= |j1| + |j2| + |j3| − min−max. There are
p(i1 − 1, i2 − 3)p(i2, n− 1) possibilities for extending the latter type of subarray to a permissible AST
of order n. Combining (A.1) and (A.2), it is clear that there are

F1(j1, j3, i1)− F2(j1, j2, j3, i1)

possibilities for the bottom i1−1 rows that have a 1 in column j2. Here, there are p(i1, i2−2)p(i2+1, n)
ways to extend this to a permissible AST of order n. In total, there are

∑

−n+1<j1<j2<j3<n−1

∑

max(|j1|,|j3|)+1≤i1<i2≤n

[
F2(j1, j2, j3, i1)p(i1 − 1, i2 − 3)p(i2, n− 1)

+ (F1(j1, j3, i1)− F2(j1, j2, j3, i1)) p(i1, i2 − 2)p(i2 + 1, n)
]

configurations. It is tedious but straightforward to show that this is indeed equal to
(
n
3

)2
(n− 3)!.
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