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Abstract 1 

We present the first evidence for vascular regulation driving fMRI signals in specific functional 2 

brain networks. Using concurrent neuronal and vascular stimuli, we collected 30 BOLD fMRI 3 

datasets in 10 healthy individuals: a working memory task, flashing checkerboard stimulus, and 4 

CO2 inhalation challenge were delivered in concurrent but orthogonal paradigms. The resulting 5 

imaging data were averaged together and decomposed using independent component analysis, 6 

and three “neuronal networks” were identified as demonstrating maximum temporal correlation 7 

with the neuronal stimulus paradigms: Default Mode Network, Task Positive Network, and 8 

Visual Network. For each of these, we observed a second network component with high spatial 9 

overlap. Using dual regression in the original 30 datasets, we extracted the time-series 10 

associated with these network pairs and calculated the percent of variance explained by the 11 

neuronal or vascular stimuli using a normalized R2 parameter. In each pairing, one network was 12 

dominated by the appropriate neuronal stimulus, and the other was dominated by the vascular 13 

stimulus as represented by the end-tidal CO2 time-series recorded in each scan. We acquired a 14 

second dataset in 8 of the original participants, where no CO2 challenge was delivered and CO2 15 

levels fluctuated naturally with breathing variations. Although splitting of functional networks was 16 

not robust in these data, performing dual regression with the network maps from the original 17 

analysis in this new dataset successfully replicated our observations. Thus, in addition to 18 

responding to localized metabolic changes, the brain’s vasculature may be regulated in a 19 

coordinated manner that mimics (and potentially supports) specific functional brain networks. 20 

Multi-modal imaging and advances in fMRI acquisition and analysis could facilitate further study 21 

of the dual nature of functional brain networks. It will be critical to understand network-specific 22 

vascular function, and the behavior of a coupled vascular-neural network, in future studies of 23 

brain pathology. 24 

 25 

(296 words)  26 
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Introduction 1 

 2 

Imaging neuroscience has advanced a new theory of brain function based on the 3 

interconnectedness of neuronal activity in multiple brain regions(Friston, 2011). These regions 4 

form structural and functional networks that are consistent across individuals(Damoiseaux et al., 5 

2006) and intrinsic to brain activity during active processing or in the resting state(Friston, 2011; 6 

Smith et al., 2009). To provide efficient and targeted support for such neuronal networks, we 7 

hypothesize that the cerebrovasculature has also evolved characteristics of functional networks. 8 

 9 

It is well established that local blood flow is tightly coupled to local neuronal activity to protect 10 

brain metabolism (Damoiseaux et al., 2006; Karbowski, 2014). This coupling is what underpins 11 

the Blood Oxygenation Level Dependent (BOLD) contrast mechanism in functional magnetic 12 

resonance imaging (fMRI) of brain activity, and this technique has been used to characterize 13 

functional networks in thousands of neuroimaging studies of the human brain (Power, 14 

Schlaggar, & Petersen, 2014). Several functional brain networks are robustly identified in 15 

human subjects, in both task-activation and resting-state datasets (Cole, Bassett, Power, 16 

Braver, & Petersen, 2014; Damoiseaux et al., 2006; Smith et al., 2009), and are frequently 17 

characterized in patient cohorts to better understand the mechanisms of pathology. 18 

 19 

However, the vasculature can also regulate local blood flow in response to physical and 20 

chemical signals, independently of local neuronal activity (Kuschinsky & Wahl, 1978).  Inhalation 21 

of air with elevated levels of carbon dioxide (CO2, a potent vasodilator) is frequently used to 22 

drive a vascular response and a resulting BOLD signal increase. The resulting maps of 23 

cerebrovascular reactivity are frequently used to assess impairment in vascular function, such 24 

as in multiple sclerosis (Marshall et al., 2014), Alzheimer’s disease (Glodzik, Randall, Rusinek, 25 

& de Leon, 2013), and stroke (Krainik, Hund-Georgiadis, Zysset, & Cramon, 2005; Pillai & 26 
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Mikulis, 2015). This type of hypercapnia challenge impacts arterial blood gas tensions 1 

systemically, influencing all of the cerebrovasculature simultaneously. However, even in healthy 2 

individuals the characteristics of local vascular responses to CO2 vary across the brain (Bright, 3 

Bulte, Jezzard, & Duyn, 2009) and may demonstrate regions of coordinated vascular regulation. 4 

 5 

In a previous fMRI study to improve our methodology for mapping this regional variation in 6 

vascular regulation, we used a breath-hold paradigm to induce changes in end-tidal CO2 (Bright 7 

& Murphy, 2013). In further exploratory analyses, we averaged the resulting BOLD-weighted 8 

data across subjects and used Independent Component Analysis (ICA) to decompose the data 9 

into spatially independent “network” maps and associated time-series. In these results, we 10 

identified that the Default Mode Network (DMN) was represented by two components: one DMN 11 

time-series showed clear BOLD signal increases lagging the end-tidal CO2 effects, thereby 12 

reflecting the vasodilatory effect of the stimulus. Interestingly, the second DMN component time-13 

series exhibited BOLD signal decreases during and preceding the actual breath-hold itself, 14 

potentially reflecting deactivation of this network and reduced neural activity during the active, 15 

attentional portion of the paradigm. (See Supplemental Figure 1 for a summary of these 16 

preliminary results.)  17 

 18 

Based on this observation, we hypothesize that functional brain networks may be comprised of 19 

two, distinct but coupled systems: one primarily driven by neuronal activity and one driven more 20 

by vascular regulation. Extending this premise, vascular regulation may occur in a coordinated 21 

manner across multiple, long-distance brain regions, mimicking or contributing to known 22 

functional brain networks. 23 

 24 

To test this hypothesis, we developed a protocol to probe both physiological systems across 25 

multiple brain networks, employing concurrent and orthogonal neuronal and vascular stimuli. 26 
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We decompose the resulting BOLD signal changes using ICA and identify the relative influence 1 

of neuronal and vascular factors on functional brain networks. Our results provide further 2 

evidence for the dual-nature of functional brain networks, and highlight the importance of 3 

characterizing vascular function as well as neuronal function within specific brain networks. 4 

 5 

 6 

Methods 7 

 8 

Whole-brain functional MRI neuroimaging data were collected during stimuli designed to 9 

simultaneously probe neuronal and vascular systems throughout the brain. These data were 10 

then decomposed to identify network structures reflecting either neuronal or vascular 11 

mechanisms. Data are publicly available through the Open Science Framework (DOI 12 

10.17605/OSF.IO/NYQZV). 13 

 14 

Neuronal and vascular stimuli 15 

 16 

A 3-back working memory task (centrally presented, digits 0-9, presented for periods of 0.5 s at 17 

1.5 s intervals) was delivered in a 30-second block design, with an extended (60 s) off-period in 18 

the middle of the paradigm. Participants were asked to press a button when the digit presented 19 

was the same as that presented three stimuli previously.  A visual stimulus consisting of a radial 20 

flashing checkerboard pattern was also presented in a block design in the second half of the 21 

scan (8 Hz, 70% contrast, with neutral center to allow simultaneous presentation of the working 22 

memory task). These stimuli were presented using a rear projector and screen viewed through a 23 

mirror on the head coil.  24 

 25 
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During these neuronal tasks, four 1-minute blocks of passive hypercapnia were used as a 1 

concurrent vascular stimulus. A gas mixture with increased levels of carbon dioxide (CO2) was 2 

delivered to the subject via a face mask, manually adjusted to target an end-tidal CO2 increase 3 

of +5 mmHg. Inhalation of CO2 alters arterial blood gas tensions, which results in vasodilation 4 

and enhanced blood flow throughout the body. It is known that the response of local vessels to 5 

this systemic stimulus varies across the brain, in amplitude and dynamics, and these variations 6 

can be observed using BOLD fMRI (Bright et al., 2009).  We hypothesize that these variations in 7 

the response to hypercapnia will reveal spatial patterns of coordinated vascular regulation, or 8 

vascular networks.  9 

 10 

All three stimulus paradigms were designed to be mutually orthogonal: the correlation between 11 

each of the idealized stimulus designs was zero. A schematic of each stimulus is presented in 12 

Figure 1. The neuronal stimulus timings were convolved with the canonical hemodynamic 13 

response function (SPM). The end-tidal CO2 data were extracted using bespoke code 14 

(MATLAB, MathWorks, Natick, MA, USA), convolved with the same hemodynamic response 15 

function, and used as a scan-specific measure of the vascular stimulus evoked by the 16 

hypercapnia challenge (Bright & Murphy, 2013). Note that there may be slight collinearity 17 

between the neural and vascular stimuli following convolution, and depending on the precise 18 

end-tidal CO2 changes induced in each participant. 19 

 20 

In a follow-up study (Replication) that did not involve the hypercapnia stimulus, the participant’s 21 

end-tidal CO2 levels were allowed to fluctuate naturally, and a nasal cannula was used to 22 

monitor respiratory gas content in lieu of the face mask. 23 

 24 

Data acquisition 25 

 26 
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Ten healthy subjects (aged 30 ± 5 years, 3 female) were scanned using a 3T GE HDx scanner 1 

(Milwaukee, WI, USA) equipped with an 8-channel receive head coil. Three identical functional 2 

task scans, each lasting 11 minutes, were acquired using a BOLD-weighted gradient-echo 3 

echo-planar imaging sequence (TR/TE=2000/35 ms; flip angle=90o; FOV=22.4 cm2; 4 

matrix=64x64; 35 slices, slice thickness=4 mm; resolution=3.5×3.5×4.0 mm3, 5 dummy scans 5 

followed by 330 volume acquisitions), for a total of 30 datasets of 11 minutes duration each. A 6 

whole-brain high-resolution T1-weighted structural image was acquired (resolution=1.0×1.0×1.0 7 

mm3), for the purpose of image registration, and a fieldmap was acquired (matching functional 8 

scan acquisition, echo spacing=0.32 ms) for correction of image distortion artifacts.  9 

 10 

Expired gas content was continuously monitored via a sampling port on the face mask, and O2 11 

and CO2 data were recorded using a capnograph and oxygen analyzer (AEI Technologies, PA, 12 

USA). End-tidal CO2 data were extracted and convolved with a hemodynamic response function 13 

(Figure 2); the hypercapnia achieved in this protocol (averaged across the study) was 5.8 ± 1.1 14 

mmHg above baseline levels. 15 

 16 

The study cohort size was not determined via calculation, but was determined to be sufficiently 17 

large given the literature studying neuronal (Damoiseaux et al., 2006) and vascular(Curtis, 18 

Hutchison, & Menon, 2014) networks. This study was approved by the Cardiff University School 19 

of Psychology Ethics Committee, and all volunteers gave written informed consent. 20 

 21 

fMRI data processing 22 

 23 

Following motion correction (AFNI(Cox, 1996), http://afni.nimh.nih.gov/afni), brain extraction 24 

(BET, FSL( Smith, 2002)), distortion correction and slice timing correction (FEAT, FMRIB’s 25 

Software Library, Oxford, UK (Woolrich, Ripley, Brady, & Smith, 2001)) all functional datasets 26 



 8 

were registered to the corresponding high-resolution T1-weighted image, which was in turn 1 

normalized to the MNI-152 brain template (MNI152, nonlinearly derived, McConnell Brain 2 

Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada) 3 

using FMRIB’s Non-linear Image Registration Tool (FNIRT, FSL (Jenkinson, Bannister, Brady, & 4 

Smith, 2002)).  5 

 6 

Datasets were then detrended using second order polynomials and converted into units of 7 

percentage change (%BOLD). The 30 pre-processed %BOLD datasets were averaged together 8 

to reduce the influence of any signals not time-locked to the stimulus paradigm (i.e., resting 9 

fluctuations and other noise confounds). 10 

 11 

Network analysis 12 

 13 

The average dataset was decomposed into spatially independent networks using independent 14 

component analysis, as implemented in the MELODIC tool in FSL (dimensionality fixed to 15 

output 30 components; each comprised of a network map and associated time-series). Because 16 

BOLD-weighted signals are both directly influenced by changes in the vasculature, and 17 

indirectly influenced by neuronal activity via neurovascular coupling, the temporal characteristics 18 

of signal changes were used to determine whether they reflect primarily neuronal or vascular 19 

mechanisms. Three ‘neural networks’ were identified using temporal correlation values of the 20 

component time-series and stimulus timings as follows. The component with the maximal 21 

negative correlation with the 3-back stimulus was identified as the neuronal Default Mode 22 

Network (DMN), which is robustly de-activated during working memory tasks (Hampson, 23 

Driesen, Skudlarski, Gore, & Constable, 2006; Raichle et al., 2001; Shulman et al., 1997). The 24 

component demonstrating maximum positive correlation with the 3-back stimulus was identified 25 

as the neuronal Task Positive Network (TPN) (Fox et al., 2005; Spreng, 2012). Finally, the 26 
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component exhibiting maximum positive correlation with the visual stimulus was identified as the 1 

neuronal Visual Network (VN). 2 

 3 

Component maps were thresholded using a mixture model and an alternative hypothesis testing 4 

approach (Beckmann & Smith, 2004) (threshold level 0.5) and spatial similarity between all 30 5 

components was quantified using Dice’s overlap coefficient (Dice, 1945). For each neuronal 6 

network, we identified the additional component map with the greatest spatial overlap. Thus, 7 

three pairs of spatially coupled components were identified. 8 

 9 

Finally, dual regression (Filippini et al., 2009) was used to extract the time-series associated 10 

with these 6 components within each of the original 30 datasets. The normalized R2 value was 11 

defined as the time-series variance (R2) explained by one stimulus normalized by the variance 12 

explained by the full stimulus model, which is the percentage of explained variance attributed to 13 

one stimulus. Paired two-tailed Student t-tests were used to compare the normalized R2 values 14 

of each component pairing (DMN, TPN and VN) for each of the stimuli. Normality of the pair-15 

wise differences was assessed using the Lilliefors test, and significant non-zero differences in 16 

the temporal signatures of the component pairs were identified (*p<0.05, Bonferroni corrected 17 

for multiple comparisons). 18 

 19 

Replication and generalizability 20 

 21 

Eight of the original 10 subjects were scanned, three times each, using a reduced stimulus 22 

paradigm consisting of only the working memory and visual stimuli. Thus, in these scans, end-23 

tidal CO2 was allowed to fluctuate naturally rather than be driven by the gas inhalation stimulus. 24 

As such, these scans follow more “typical” task-activation fMRI experiments, and they will allow 25 

us to assess the replicability and generalizability of our observations.  26 



 10 

 1 

Data were pre-processed as described above. Because the end-tidal CO2 levels were allowed 2 

to fluctuate naturally, these fluctuations will vary across scans and individuals would not be 3 

robustly present in the group-average dataset. Thus, independent component analysis could not 4 

be applied to isolate vascular-neuronal network pairs in the averaged data as was done in the 5 

original analysis. Instead, using dual-regression the time-series associated with the network 6 

maps identified in the original dataset were extracted for the replication data.  7 

 8 

 9 

Results 10 

 11 

Following Independent Component Analysis, three resulting components were identified as 12 

“neuronal networks”, demonstrating maximum temporal correlation with the neuronal stimulus 13 

paradigms: the Default Mode Network, Task Positive Network, and Visual Network were 14 

identified (Figure 3).  15 

 16 

Using dual-regression, we extracted the time-series associated with each of these components 17 

in the original datasets (all time-series provided in Supplemental Figure 2). Each time-series 18 

was analyzed to determine the relative contributions of the neuronal and vascular stimuli to the 19 

BOLD contrast dynamics, as summarized by the normalized R2 values described above. We 20 

observed that all three functional brain networks probed in our study were composed of spatially 21 

similar pairs of components where one was significantly more associated with the appropriate 22 

neuronal stimulus and the other significantly more associated with the vascular stimulus (Figure 23 

4). For reference, a summary of the other components in the ICA decomposition is provided 24 

(Supplemental Figure 3). 25 

 26 
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In Fig. 4, the networks on the left of each pairing were identified as maximally temporally 1 

correlated with the neuronal stimuli; thus, by design, the working memory stimulus and visual 2 

stimulus explain a large proportion of the signal variance (high normalized R2 values). 3 

Interestingly, the networks on the right of each pairing, which were identified as being spatially 4 

similar, show a significantly reduced relationship with these neuronal stimuli. The bottom row 5 

shows that all networks show a relationship with the hypercapnia stimulus (represented by the 6 

end-tidal CO2 data from individual scans), however the networks on the right of each pairing 7 

show significantly greater normalized R2 values in all cases. Combined, these results suggest 8 

that the pairs of spatially similar networks consist of one network representing the neuronal 9 

stimuli and one network more reflective of the vascular stimuli. (Note, as a control, we see the 10 

expected minimal relationship between the DMN and TPN and the visual stimulus, or the VN 11 

and the working memory stimulus.) 12 

 13 

When examining the Replication dataset, similar phenomena were also observed (Figure 5): 14 

the normalized R2 values demonstrate the same differentiation between the more ‘neuronal’ and 15 

more ‘vascular’ components. This demonstrates that our observations are also present in more 16 

“typical” fMRI data in the absence of overt hypercapnia challenges, although it is clear that the 17 

effects are more variable across individual scans. However, we observe one new effect in the 18 

Replication data that was not present in the original results. Specifically, the working memory 19 

stimulus explains significantly more variance in the “more vascular” VN, whereas no relationship 20 

was found in the original data (Fig 5, top right plot). 21 

 22 

Why is the working memory stimulus driving signal fluctuations in the “more vascular” visual 23 

network component in the Replication data? The 3-back task was presented visually, so it is 24 

plausible that it would activate the visual processing systems. However, this is not observed in 25 

the original dataset, suggesting another mechanism is responsible. It is also known that task-26 
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correlated breathing changes are a common, confounding contributor to fMRI data (Birn, 1 

Murphy, Handwerker, & Bandettini, 2009), and this end-tidal CO2 may become time-locked to 2 

the neural stimulus. Indeed, Figure 6A presents the end-tidal CO2 time-series of all scans in the 3 

Replication dataset, showing a strong negative correlation between the group-average end-tidal 4 

CO2 trace and the working memory stimulus design (Pearson correlation coefficient r=-0.68). 5 

Averaging over the ten blocks of the 3-back task, this coupled relationship is even more 6 

apparent (r=-0.91). Furthermore, Figure 6B shows the BOLD signal changes evoked by the 7 

working memory stimulus in the two VNs, clearly showing a BOLD signal decrease in the “more 8 

vascular” network; this agrees with the concurrent decrease in end-tidal CO2, while directly 9 

countering the argument that the working memory stimulus cues activate the visual cortex 10 

(which would be a positive BOLD signal change). Thus, the seemingly paradoxical relationship 11 

between the “more vascular” VN time-series and the working memory task paradigm is likely 12 

caused by vascular physiology becoming time-locked to that neuronal stimulus. 13 

 14 

 15 

Discussion 16 

 17 

Our findings provide the first evidence for network-specific behavior of cerebrovascular 18 

regulation, and suggest the brain’s blood supply may be regulated in networks that spatially 19 

mirror known neuronal networks. Using ICA to decompose group-averaged fMRI data, we 20 

identified three functional networks associated with working memory and visual stimuli. In the 21 

remaining components, three additional networks were identified to have similar spatial features 22 

and high spatial overlap as measured by the Dice coefficient. The time-series of these spatially-23 

similar networks were dominated by the vascular stimulus. Although the inhaled carbon dioxide 24 

challenge used as a vascular stimulus in this study is known to induce systemic vasodilation 25 

and BOLD signal increases (Liu, B De Vis, & Lu, 2018), our results suggest that the vasodilatory 26 
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effects show regional variation and that may drive BOLD signal changes in specific functional 1 

brain networks or sub-networks.  2 

 3 

The spatial similarity of the “more vascular” networks and neuronal networks may derive from 4 

patterns in neurovascular anatomy (Wälchli et al., 2015): because neuronal and vascular growth 5 

processes track each other during development (Quaegebeur, Lange, & Carmeliet, 2011), 6 

remote brain regions that establish neuronal links may also establish similar vascular, astrocytic, 7 

or other glial anatomy that influences local hemodynamic regulation. In the fully developed 8 

brain, environmental factors and repetitive activities (e.g., exercise) that impact the expression 9 

of neurotrophic factors may also simultaneously alter local angiogenesis (Black, Isaacs, 10 

Anderson, Alcantara, & Greenough, 1990; Ding et al., 2004; Swain et al., 2003), allowing for 11 

ongoing and co-regulated plasticity of neuronal and vascular networks. By coordinating blood 12 

flow across brain regions that typically exhibit synchronous neuronal activity, such vascular 13 

networks would also provide the most efficient hemodynamic support for increased network 14 

metabolism. 15 

 16 

The mechanisms by which long range vascular synchronizations could occur are not known, 17 

However, arteries and arterioles are not just conduits of blood but rather a collection of ion 18 

channels that are gated by voltage, calcium, pressure and other mechanical factors that lead to 19 

emergent dynamics such as vasomotion (Haddock & Hill, 2005; Nilsson & Aalkjær, 2003). If the 20 

arterioles supporting each neural network are slightly different in cellular structure, they may 21 

have variable responses to particular stimuli. Similar fluctuations in arterial CO2 and pressure 22 

could lead to differential fluctuations in BOLD signal. Isolated vessels show spontaneous 23 

oscillations in diameter with the typical frequency range for intrinsic oscillations (Gustafsson, 24 

Bülow, & Nilsson, 1994; Haddock & Hill, 2005; Osol & Halpern, 1988) and the amplitude and 25 

frequency of oscillation can be modulated by pressure (Achakri et al., 1995). When neural 26 
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activity is drastically reduced using muscimol infusion, there is only a minimal reduction in the 1 

amplitude of arterial diameter oscillations, cerebral blood volume fluctuations and tissue 2 

oxygenation (Winder, Echagarruga, Zhang, & Drew, 2017; Q. Zhang et al., 2019).  3 

 4 

The structure of the vascular tree could also play a role. CO2 may take time to traverse the 5 

vascular tree leading to timing differences (Tong & Frederick, 2014) and local pressure change 6 

differences along the tree could lead to divergent autoregulatory processes. Although vessels 7 

might receive similar inputs, there may be disparate drives across the networks, for example, 8 

the reactivity of the vessel due to the current state of vasodilator release. To examine the role of 9 

vascular transit variability on our results, we compared the timeseries of the three “more 10 

vascular” networks identified: using cross-correlation we observed different non-zero temporal 11 

offsets between the network timeseries and the averaged PETCO2 timeseries, and between the 12 

network timeseries (Supplemental Figure 7). Vascular transit delays have been identified as a 13 

possible source of low frequency oscillations in resting state data, and implicated in the 14 

decomposition of fMRI data using ICA techniques (Tong, Hocke, Fan, Janes, & Frederick, 2015; 15 

Tong et al., 2013). Furthermore, we also observed differences in the temporal dynamics of the 16 

BOLD response to the hypercapnia blocks, beyond a simple lag offset (Supplemental Figure 8). 17 

These variations may reflect interactions between vascular transit “path lengths” and the 18 

dispersion of vasodilatory signals, or heterogeneity in the local response to the same 19 

vasodilatory signals.  20 

 21 

There may also be a more active synchronized long-distance control of arteriolar diameters. 22 

Sympathetic innervation of vessels is known to be bilateral (Revel et al., 2012). It is also known 23 

that fluctuations in arterial diameter are bilaterally symmetrical (Porret, Stergiopulos, Hayoz, 24 

Brunner, & Meister, 1995). In the mouse brain, co-fluctuations in diameters of pairs of arterioles 25 

in the same hemisphere reduce with distance but are highly correlated in the transhemispheric 26 
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site (Mateo, Knutsen, Tsai, Shih, & Kleinfeld, 2017). Correlations in the signals are reduced in 1 

acallosal mice suggesting some input from callosal connections. 2 

 3 

In addition to providing localized, responsive hemodynamic support for neuronal metabolism, 4 

the vasculature may also have a synergistic role in network brain activity: another interpretation 5 

of our findings is that vascular physiology modulates neuronal activity to drive the splitting of 6 

functional brain networks. Thus, the “more vascular” networks identified in this study may still 7 

fundamentally represent neuronal systems, but are somehow modulated by CO2 levels, 8 

whereas the associated “neuronal networks” are not specifically affected. There is emerging 9 

evidence that vascular physiology can influence neural activity (Croal et al., 2015; Hall et al., 10 

2011; Xu et al., 2011), and our lab has demonstrated that end-tidal CO2 changes, during gas 11 

inhalation and during resting fluctuations in breathing, can modulate neuronal rhythms as 12 

measured using magnetoencephalography (MEG) (Driver, Whittaker, Bright, 13 

Muthukumaraswamy, & Murphy, 2016). It has been further hypothesized that the vasculature 14 

may be directly involved in the brain’s information processing (the so-called hemo-neural 15 

hypothesis (Moore & Cao, 2008)), modulating the excitability of neural circuits via chemical, 16 

physical, and thermal mechanisms. 17 

 18 

Importantly, these concepts are not mutually exclusive: there may be network-specific variation 19 

in vascular anatomy and regulation, neurovascular coupling, and vascular modulation of neural 20 

activity. It is not possible to differentiate these mechanisms in the current study. However, 21 

regardless of the precise origin of the observed relationships, we have demonstrated the dual 22 

nature of functional brain networks. It will be critical to ascertain how vascular physiology 23 

influences our interpretation of neuronal activity and connectivity within these systems. 24 

 25 
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Furthermore, our results support the recent work of Zhang and colleagues, who postulated the 1 

existence and importance of a “vascular-neural network” in understanding brain pathology (J. H. 2 

Zhang et al., 2012). This is an extension of the idea of the neurovascular unit, which has been a 3 

critical “conceptual framework” for understanding neurodegenerative disease and 4 

cerebrovascular injury (del Zoppo, 2012). The neurovascular unit includes endothelial cells, 5 

astrocytes, pericytes, and neurons, which must all interact in concert to maintain healthy neural 6 

function; the combined behavior of the unit must be considered when characterizing disease 7 

processes or developing new neuroprotective strategies (J. H. Zhang et al., 2012). However, the 8 

neurovascular unit spans less than a millimeter, and does not include upstream arteriolar supply 9 

vessels or downstream venous drainage. By linking these components, the vascular-neural 10 

network construct provides a useful integrated model that better describes systemic and focal 11 

neurovascular pathology, including in Alzheimer’s Disease, Parkinson’s Disease, multiple 12 

sclerosis, and autoimmune diseases of the central nervous system (J. H. Zhang et al., 2012). 13 

At present, we may be missing key factors in disease progression by ignoring such long-range 14 

vascular systems. We know that early stages of ischemia affect both neurons and their supply 15 

microvessels in concert (del Zoppo, 2012). In Alzheimer’s Disease, vascular damage can 16 

precede and drive neurodegeneration (Suri et al., 2015; Zlokovic, 2011). Our results indicate 17 

that such pathological changes in neuro-vascular interactions could be network specific. This 18 

has been supported by recent research showing that healthy adults with vascular risk factors 19 

showed impairments in cerebrovascular reactivity to CO2 that were specific to the Default Mode 20 

Network, which is considered central to pathological mechanisms in aging and Alzheimer’s 21 

Disease (Haight et al., 2015). Improving our understanding of vascular network behavior (or the 22 

vascular-neural network construct), and how the vasculature in specific functional networks is 23 

susceptible to early pathological impairment, may offer new windows for targeted protective 24 

therapies. 25 

 26 
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There is some existing evidence in the literature for pairs of spatially-similar networks observed 1 

in resting state fMRI data. Braga and Buckner identified two similar, but distinct, networks that 2 

both resembled the canonical Default Mode Network (Braga & Buckner, 2017). Other networks, 3 

including the dorsal attention network and fronto-parietal network were also fractioned into two 4 

distinct, parallel networks within individual datasets. The authors hypothesize that these are 5 

neuronal sub-networks, but the role of vascular physiology in network-specific BOLD signals 6 

was not considered. It may be that one or more of these observed sub-networks is primarily a 7 

vascular network, or that vascular regulation is altering BOLD signal fluctuations in specific sub-8 

networks to drive their differentiation. 9 

 10 

To further explore the spatiotemporal differences between the network pairs, we isolated voxels 11 

that were unique to the “neural” component, unique to the “vascular” component, or common to 12 

both networks (i.e., overlapping). Getting the average timeseries in these voxel groups, we 13 

again examined the correlation with the neural and vascular stimulus models (Supplemental 14 

Figure 4). All voxels groups demonstrated significant correlation with the vascular stimulus, as 15 

might be expected with a global vasodilatory stimulus. The voxels unique to the “more neural” 16 

network or common to both networks correlated significantly with the neural stimuli, however the 17 

voxels unique to the “more vascular” network do not. We interpret these findings to mean that 18 

differentiation of network pairs is likely due to voxels unique to each network. Of more interest, a 19 

network predominantly reflecting global vascular effects is selectively including many voxels 20 

specific to one neural network. In this study, we highlight this novel observation, that a vascular 21 

stimulus results in the extraction of spatial patterns of co-varying signals that show certain 22 

nodes of voxels typically associated with neural network patterns. 23 

 24 

There are numerous challenges involved with using BOLD fMRI to study simultaneous neural 25 

and vascular properties of the brain. Because there is inherently a maximum possible BOLD 26 



 18 

signal change, occurring when all venous hemoglobin is fully oxygenation, modulating the 1 

baseline oxygenation levels may reduce observed task activation responses (i.e., a “ceiling 2 

effect”). This effect is generally expected to occur at much more extreme hypercapnia stimuli 3 

than used in this paper (Gauthier, Madjar, Tancredi, Stefanovic, & Hoge, 2011), but may subtly 4 

impact the activation patterns observed during normo- versus hypercapnia. In addition, the 5 

BOLD contrast mechanism reflects local levels of deoxygenated hemoglobin, but this is 6 

constantly modulated by both direct vasoactive pathways and indirect neurovascular coupling 7 

mechanisms. Alternative imaging modalities such as EEG and MEG may provide better direct 8 

insight into the neural processes underpinning functional brain networks, however it is not yet 9 

fully understood how vascular physiology may manifest in these data (Driver et al., 2016) or how 10 

network activity fluctuations in these different modalities relate back to fMRI signals (Tewarie et 11 

al., 2016). In this study, the dual nature of BOLD fMRI contrast, in conjunction with dual stimulus 12 

types, facilitates our ability to probe the dual nature of functional brain networks, but perhaps 13 

future research should employ multi-modal imaging to best explore these phenomena in greater 14 

detail. 15 

 16 

The decomposition of spatially similar network pairs is also very sensitive to the details of how 17 

ICA is employed. We opted to average together 30 individual scans prior to decomposition, 18 

imitating the methodology of our first observations in breath-hold data (Supplemental Figure 19 

1). Tensor ICA is an alternative approach to decompose signal features common across 20 

multiple datasets; the results of Tensor ICA decomposition of the 30 individual datasets (with 21 

automatic dimensionality determination) are summarized in Supplemental Figure 5. 22 

Interestingly, this approach showed mixed success in isolating the network pairs observed in 23 

our primary analysis: in the 12 output components, only one VIS component was identified and 24 

(perhaps surprisingly) no clear DMN was identified. When dimensionality was fixed to output 30 25 

components, we could identify candidate network pairs for VIS and TPN, but again no clear 26 



 19 

DMN was present. The relationships between these 30 component timeseries and the 1 

neurovascular stimuli are summarized in Supplemental Figure 6. Tensor ICA did not appear to 2 

maintain the polarity of the signal changes, making identification of “deactivation” during the 3-3 

back task more challenging. The results of Tensor ICA are difficult to robustly interpret, and as 4 

such do not readily support or contradict our original analyses. Still, Tensor ICA may be an 5 

appropriate tool in future studies to explore these neurovascular phenomena. 6 

 7 

Furthermore, the spatial ICA algorithm maximizes the spatial independence of the resulting 8 

components, which is likely not an ideal approach to identify spatially similar features in fMRI 9 

data. However, temporal ICA is not well suited to fMRI data, particularly when acquired using 10 

“typical” sampling rates of 1-2 seconds, due to the small number of degrees of freedom in each 11 

dataset. We also arbitrarily opted to decompose the data into 30 components; further 12 

assessment of other output dimensionality at this step in the analysis did impact the 13 

identification of network pairs, suggesting that the precise “splitting” of networks is highly 14 

dependent on this analysis choice. Similar observations have been observed by other research 15 

groups, where increasing ICA dimensionality facilitates the differentiation of sub-network 16 

structures (Dipasquale et al., 2015). Further studies into neuronal and vascular network 17 

properties should carefully assess the role of dimensionality on our observations, adopting 18 

rapid-sampling EPI (using simultaneous multi-slice acceleration to achieve sub-second 19 

sampling (Feinberg & Setsompop, 2013)) and testing the utility of temporal ICA at differentiating 20 

the neuronal and vascular features in the data. 21 

 22 

 23 

Conclusions 24 

 25 



 20 

We have shown that functional brain networks can be split into two spatially similar networks 1 

during concurrent neuronal and vascular stimuli. One of these networks is dominated by the 2 

neuronal stimulus paradigm, as expected, whereas the other network appears dominated by 3 

vasodilatory responses to changes in arterial CO2 levels. This suggests that vascular regulation 4 

may be coordinated across long-distance brain regions, mimicking the structure of neuronal 5 

networks, or that neurovascular relationships vary in a network-specific manner. It will be critical 6 

to consider how the underlying vascular function influences the observation and interpretation of 7 

network brain activity and connectivity in future neuroimaging studies. 8 
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Figure Captions 

 

 

 

 

Figure 1. Schematic of neuro-vascular stimulus paradigm. The neuronal stimuli (working 

memory task and flashing checkerboard pattern) were presented in a block design, which was 

convolved with a hemodynamic response function to model the resulting BOLD signal. Four 1-

minute blocks of hypercapnia were induced via gas inhalation, and modeled in a subject-specific 

manner by extracting the end-tidal CO2 data and convolving with a hemodynamic response 

function. 

 



 

Figure 2. End-tidal CO2 data for all scans. Data for 30 scans (3 repeated scans per participant) 

were convolved with a hemodynamic response function, and represented the scan-specific 

vascular stimulus. For illustration purposes, data were normalized to the baseline end-tidal CO2 

level (mean value in the first 100 seconds of the scan). 

 

 

 



 

 

Figure 3. Identification of spatially similar component pairs for three functional brain networks. 1) 

The three components with maximum temporal correlation with the neuronal stimuli were 

identified as ‘neuronal’ networks. 2) For each neuronal network, an additional component with the 

maximal spatial overlap was identified. 3) The temporal characteristics of these spatially similar 

components were used to assess the underlying neuronal or vascular mechanisms. 

 



 

Figure 4. Neuronal and vascular contributions to spatially similar network components. Using 

dual-regression, the component time-series for the three network pairs (Default Mode Network, 

Task Positive Network, Visual Network) were obtained in the original 30 datasets. The normalized 

R2 values (percentage of explained variance) were calculated for each stimulus.  For each 

functional brain network pair, one was found to be significantly more associated with the 

appropriate neuronal stimulus and the other significantly more associated with the vascular CO2 

stimulus (*p<0.05, paired t-tests, corrected for multiple comparisons). 



 

Figure 5. The spatial maps extracted in the original dataset were applied to a second dataset to 

test the replicability and generalizability of our primary observations. In these new data, no 

hypercapnia stimulus was administered and end-tidal CO2 was allowed to fluctuate naturally. 

Eight of the original 10 participants were re-scanned, 3 times each, using only the working 

memory and visual stimuli. The networks identified in the original data were regressed onto the 

new data, and the associated time-series were extracted and analyzed as before. Significant 

differences in the normalized R2 values, in good agreement with the original observations in the 

first study, are indicated by asterisks (*p<0.05, paired two-tailed Student t-tests, Bonferroni 



corrected for multiple comparisons). Note an unexpected, significant relationship between the 

“more vascular” Visual Network data and the working memory stimulus, not observed in the 

original dataset (Fig. 4).  

 



 

Figure 6. Evidence for task-correlated changes in vascular physiology and its effect on the “more 

vascular” networks in the Replication dataset. A) In the absence of a hypercapnia gas inhalation 

stimulus, end-tidal CO2 fluctuated with each individual’s natural variations in breathing. The group 



average end-tidal CO2 trace across all scans in the Replication dataset (red, standard deviation 

shown in gray) is plotted, with the 3-back working memory stimulus paradigm (blue) provided as 

a reference. The block average across the 10 blocks of the 3-back task is also shown. Pearson 

correlation coefficients between the CO2 data and the stimulus are given (r=-0.68 across the entire 

time-series, r=-0.91 in the block-average data). B) The average end-tidal CO2 data and the block-

average BOLD response evoked by the 3-back working memory task (blue bars) in the “more 

neural” and “more vascular” visual networks (thin lines represent the data from each individual 

scan, thick lines represent the average of 30 scans). These results demonstrate that the task-

correlated changes in end-tidal CO2 appear to drive the signal fluctuations in the “more visual” 

network. Because these effects manifest as negative BOLD signal changes time-locked to the 

working memory task, and visual activation during the working memory task would evoke positive 

BOLD signal changes, this is further evidence for a vascular driver of this functional network 

system.   
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Figure S1. Decomposition of averaged breath-hold fMRI data using ICA resulted in the Default Mode Network 
being represented in two components. The component maps and associated time-series (blue) are presented, 
with the breath-hold timing and average end-tidal CO2 trace (red). The top component shows BOLD signal 
increases closely following the end-tidal CO2 trace. The bottom component shows BOLD signal decreases 
preceding and during the breath-hold stimulus, possibly reflecting deactivation of the neuronal Default Mode 
Network during the execution of the paced-breathing and breath-hold task. These results drove our hypothesis 
that functional brain networks, like the Default Mode Network, may be comprised of both neuronal and vascular 
systems. 

Figure S2. Time-series for vascular-neuronal network pairs. Time-series were extracted from the original 30 
datasets using dual-regression. Networks of the left were identified via temporal correlation with the neural 
stimuli. Networks on the right were identified as having similar spatial characteristics to the neuronal network 
maps.   



 

Figure S3. Additional components resulting from the Independent Component Analysis decomposition of the 
averaged dataset (fixed dimensionality of 30 components). Independent Components (ICs) that are discussed 
in the manuscript or without clear spatial structure are excluded from visualization. Several components reflect 
large vessel or CSF effects in both their spatial pattern and temporal signal properties (e.g., ICs 2, 3, 4, and 7). 
Numerous other ICs demonstrate spatial maps that could potentially reflect, at least in part, neural network 
structure (ICs 5, 8, 11, 13, 15); the temporal signals in these ICs reflect varying mixtures of vascular and neural 
stimulus designs. Of note, IC 18 (positive and negative responses in the occipital lobe), IC 20 (predominantly 
white matter regions) and IC 22 (predominantly subcortical gray matter regions) do not reflect any of the 
stimulus paradigms in the experimental protocol as clearly.    



 

 

Figure S4. Characterization of common and unique voxels in the “more neural” and “more vascular” 
component pair. The average timeseries was extracted from the voxels unique to each network and common 
to both networks, and the correlation between each timeseries and the neural and CO2 stimulus models was 
determined. The neural stimulus is strongly correlated with the voxels unique to the “neural” network and 
voxels common to both networks. The voxels unique to the “vascular” component are not significantly 
correlated with the neural stimulus design. In contrast, all timeseries are strongly correlated with the CO2 
model, reflecting the global nature of the vasodilatory stimulus. 

  



 

 

Figure S5. Results of Tensorial Independent Component Analysis decomposition (as implemented in 
MELODIC v3.15, part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl) [Beckmann 2005]. 
Dimensionality was automatically estimated, resulting in 12 independent components visualized in the figure. 
Note that polarity of the main hypercapnia effect is often inverted (e.g., ICs 1, 2, and 4). Two components 
exhibit spatial structure similar to the expected task positive network (ICs 5 and 6), showing very similar 
timecourses reflecting both the working memory and gas paradigms. The visual network is isolated to one 
component (IC 9). Interestingly, no component cleanly reflects the spatial structure of the default mode 
network. 



 

 
 
Figure S6. Results of Tensor ICA decomposition of the preprocessed 30 datasets. The correlation coefficient 
between the component timeseries and the neural and CO2 stimulus timeseries are provided. Blue shaded 
values highlight robust correlations (|r|>0.3) with the n-back and visual task. Gray shaded values indicate 
components with a less robust (|r|<0.7) correlation with the CO2 task. Pairs of “more neural” and “more 
vascular” TPN and VIS networks are identified. Several additional components reflect spatial patterns similar to 
the TPN or certain nodes of the TPN. No component demonstrated spatial patterns corresponding to the DMN. 
Note, Tensor ICA did not preserve polarity of signal changes consistently. Isolating negative correlations with 
the n-back task cannot be performed as in the single ICA decomposition of the averaged dataset.  

IC #
N-back 
Stimulus

Visual 
Stimulus

CO2 
stimulus Description

1 0.10 0.05 0.89
2 -0.13 -0.07 -0.87
3 -0.09 0.26 0.85
4 -0.17 -0.02 -0.86
5 -0.04 -0.08 0.89
6 -0.35 -0.03 -0.84 TPN "more vascular" TPN IC 6
7 0.03 0.24 0.85
8 -0.31 0.04 0.83
9 -0.03 0.56 0.73 VIS "more vascular" VIS IC 9
10 0.16 -0.01 0.92
11 0.37 0.36 0.78 TPN
12 0.03 -0.16 0.89
13 -0.38 -0.02 0.81 other
14 -0.25 0.13 -0.87
15 0.41 -0.06 0.84 TPN partial
16 -0.18 0.81 0.43 VIS "more neural" VIS IC 16
17 0.02 -0.16 -0.88
18 -0.41 -0.02 0.77 TPN

19 0.57 -0.07 0.78 TPN

20 -0.11 -0.37 -0.77
21 0.82 -0.14 0.54 TPN "more neural" TPN IC 21
22 -0.08 0.13 0.90
23 0.34 -0.45 0.58 TPN partial
24 -0.12 -0.43 -0.66 other
25 -0.33 0.04 -0.54 other
26 -0.23 0.16 0.08
27 -0.18 0.28 -0.25
28 -0.04 0.30 -0.02
29 0.00 -0.11 -0.22
30 -0.12 -0.45 -0.32 other

shaded cells: |r|>0.3 |r|>0.3 |r|<0.7
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Figure S7. Analysis of temporal lag effects contributing to distinct timeseries of “vascular” components. A) 
Timeseries of the three “more vascular” components reflecting the DMN, TPN, and VIS network structure, and 
the results of cross-correlation between these time-series and the CO2 timeseries (averaged across datasets). 
The optimal lag (corresponding to peak correlation) is indicated for each network. B) Cross-correlation 
between each “vascular” network timeseries with optimal lag indicated. 

Figure S8. Block average over the hypercapnic periods for the three “more vascular” component timeseries. 
Clear differences in the response shape/dynamics are visible. 


