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ABSTRACT 
Animal models have been used for many years to generalise the human condition of 

various neurological diseases. It is important that the behavioural attributes from the 

animal model directly correlate with those found in the human pathology. Motion 

analysis (MA) techniques provide a platform for direct correlation analysis between 

the two species, which is an important step for translational medicine. 

 

A novel three dimensional (3D) MA protocol was developed to investigate temporal 

and postural gait variables in both rats and humans. Gait studies involving rats are 

mainly based on movement scores or descriptive approaches to discerning 

differences in behaviour or function. Therefore, a protocol utilising a quantitative 

3DMA technique during gait was developed. Data was acquired to describe function 

and behavioural attributes in animal models of Parkinson‟s disease (PD) and stroke 

in terms of temporal gait and postural adjustments and on a healthy cohort of 

humans. 

 

The study explored the practicality of the developed protocol to investigate the 

effects of unilateral dopamine depletion on rat locomotion while walking on beams of 

varying widths (wide, narrow and graduated). Temporal and postural gait parameters 

of ten male Lister Hooded rats (five controls (CNL) and five hemi-parkinsonian 

(PNL)) were observed using passive markers placed in locations that were 

representative of their four limbs and their body axis. Significant differences (p<0.05) 

were found between the PNL and CNL rats for speed along the wide beam and stride 

lengths for the left (impaired) fore-limb; on the narrow beam and the wide beam and 

for the left (impaired) hind limb on the graduated beam. The PD rats moved on the 

wide beam with a significantly greater roll range of motion (ROM) coupled with a 

positively biased roll kinematic waveform during one gait cycle. Whilst walking on the 

narrow beam, they displayed an increased use of the ledge and placed their tail 

towards the right. The results demonstrate that marker-based MA can provide an 

effective and simple approach to quantifying temporal gait parameters for rat models 

of PD. They also reveal how the width of the path affects the locomotion in both 

experimental cohorts.  
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The novel protocol was applied to investigate the effects of Middle Cerebral Artery 

Occlusion (MCAO) and graft on rat locomotion while walking on a wide beam. The 

data collection was carried out before and after surgery to investigate temporal and 

postural gait parameters of 50 male Wister rats. Significant differences (p<0.05) were 

found between the control and MCAO rats for roll ROM coupled with a positively 

biased roll kinematic waveform during one gait cycle. Using the data collected, a 

classification tool based around the Dempster-Shafer theory enabled the objective 

classification of the rat cohorts into a MCAO group, a control group and a graft group. 

The roll ROM and swing time data were transformed into a set of belief values that 

the animals had graft, lesion or normal gait. The belief values were then represented 

on a simplex plot, which enables the final classification of a rat, and the level of 

benefit achieved by lesion or graft surgery to be visualised. The tool was able to 

classify rats with an accuracy of between 81% and 94.84% accuracy. The tool also 

indicated that swing time and roll were the most influential variables in distinguishing 

differences in gait after MCAO lesion and graft. Further work is required on the graft 

data as some inconsistencies were found, but the classification allowed better 

comparisons between groups than just using ANOVA alone by taking this level of 

uncertainty and producing a clear comparison between the cohorts.  

Initial studies have demonstrated a practical and visual approach that can 

discriminate between gait function in the rat model. Therefore to achieve the aim of 

the thesis, a cohort of healthy humans were tested to replicate the data collection 

and processing protocols developed for animal MA. The marker based protocol was 

carried out to investigate temporal and postural gait parameters of 10 healthy human 

subjects (five male: five female). The data collected compared well with published 

data for normal human gait therefore validating the human based protocol. The 

results identified variables that were easily correlated with rat data. Similarities in 

body orientation patterns were recorded and discussed.  

In conclusion, a novel protocol was developed that allowed a simple, non-invasive, 

practical, and sensitive approach to over ground gait data acquisition for the rat 

models and a healthy human cohort. Further work that would involve patients with 

neurological disease will enable the full validation of the protocol. This is turn would 

provide answers to the argument: „Is the use of animal models of the disease 

effective approach for clinical research?‟ 
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CHAPTER 1 
1. Introduction and literature review 
1.1. Introduction  

Three dimensional (3D) motion analysis (MA) is a useful tool that provides highly 

sensitive, non-invasive detection and evaluation of many patho-physiological 

features, such as those occurring in Parkinson's disease (PD), Huntington‟s disease 

(HD), stroke, neuromuscular and skeletal muscle diseases (Whishaw et al., 2002; 

Schallert, 2006,; Madete et al., 2010,; Madete et al., 2011). Animal models of 

neurodegenerative diseases such as PD and HD enable us to understand the 

underlying pathology and offer potential therapeutic treatments. These models are 

very instrumental in providing an insight to how diseases may be managed and 

treated, by performing a range of functional and behavioural studies specific to the 

symptoms presented in the disease. 

Behavioral and functional studies that involve the use of animal models to study 

diseases that affect motor abilities, such as PD and stroke, have been mainly non-

automated and subjective (Whishaw et al., 2002; Schallert and Hall, 1988). This 

thesis approaches animal data acquisition from a biomechanics point of view using 

3DMA techniques. By calculating 3D co-ordinate data of reflective markers placed at 

intrinsic locations on the subject, it‟s possible to analyse time and distance variables 

from the position and location of segments and bodies during gait.  

The thesis provides a step by step outline as to how a novel protocol was developed 

in conjunction with the Brain Repair Group (BRG) at Cardiff University. The BRG 
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provided full support during the data collection process and decisions were made in-

line with suggestions from them as experts in animal and brain research. This was 

the first collection of this kind at Cardiff University. 

The results of the current research project have an impact in the area of animal brain 

studies as it allows for further validation of the animal models. The study provides a 

basis for correlation of gait data and thus proof of homology with human patients 

(Whishaw et al., 1992, and 2002). As a result, a better understanding of therapeutics 

and treatment plans can be achieved. 

The first Chapter presents a brief background as to why animal models are important 

in brain research; how the brain controls movement (more specifically, gait); and 

what happens when the control processes are disrupted, with focus made on PD and 

stroke. A detailed review, providing insight into current research carried out in the 

areas of gait analysis of PD and stroke for both humans and animal models of the 

disease is provided. The remainders of the chapters introduce a novel 3DMA 

protocol for quantifying locomotion in rats and humans followed by the results from 

studies carried out on two separate groups of rats (PD and Stroke) and one group of 

healthy humans. 
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1.2. Background 

1.2.1. Brain storming 

This project was developed to introduce alternative ways to utilise the motion 

analysis techniques developed at the Cardiff School of Engineering. Behavioural 

studies involving animals at the Cardiff BRG are regularly performed using tests that 

examine the behaviour of rats. Each study is developed to test different aspects of 

the animals‟ behaviour and function for example paw reaching studies to evaluate 

impairments in compensatory adjustments (Miklyaeva et al., 1994).  

Initially, a brainstorm into numerous scenarios and protocols that combined the use 

of the motion capture system with animal behavioural studies were investigated. The 

final outcome would allow assessment of animal motion and test human subjects 

under the same testing conditions.  

Animal models (in this case, rats) of neurological disease are designed to test 

reflexes usually present from birth that may be lost due to certain neurological 

conditions. For example, the righting reflex is tested by placing the rat on its back 

and measuring the time taken for it to return back on all fours (right itself). This ability 

may be lost due to neurological conditions or motor impairment (Miklyaeva et al., 

1995). In addition, stimuli such as touch, vision or sound, can be used to test 

neurological reflexes as the rat‟s body may flinch to the sound of a loud noise such 

as a metal clicker, or the rat may blink when approached with a cotton bud (Woodlee 

et al., 2008). The head may also turn when the whiskers are touched with a cotton 

bud. In a similar test, the rat is held and its whiskers are brushed against the edge of 

a table as the rat is lowered. This gives the rat the sensation of falling and its 
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automatic instinct should be to try and place its forepaw on the table to stop its “fall”. 

(Woodlee et al., 2008). 

In order to use the 3D motion capture software the thesis concentrates on the motor 

functions presented by the rats and not reflexes. Different levels of activity can be 

measured to give an idea of how greatly the animal is affected by the neurological 

condition present. The open field test, (Pellis et al., 1987, Miklyaeva et al., 1995, 

Rochester et al.,1994) for example looks at anxiety as the rat is placed in a set 

volume for 10 minutes where its activity is monitored and a trace of the rat‟s position 

throughout can be plotted to show a difference between high levels of activity and 

lower levels of activity. 

A cylinder test looks at the rats‟ need to explore its surroundings when placed in a 

new environment (Lundblad et al., 2002). The rat is placed in the cylinder for a set 

length of time and the number of rotations and paw placements can be recorded by 

hand. The rat will rear up and place one of its paws, either left or right, on the 

Perspex cylinder. It will also rotate to investigate all areas of its new surroundings. 

When combined with motion capture, the open field test and the cylinder tests do not 

present any constant variables to quantify rat motion.  

The paw reaching test investigates skilled forelimb reaching and forelimb preference. 

Pellets are placed on steps (Figure 1-1), the top steps being easiest to reach by the 

rat, the rat stands on the beam and reaches down to pick up the food pellets. Once 

the top pellets have run out, the rat has to reach lower to the harder to reach steps. 

The paw reaching apparatus provides a number of variables; trajectories of paw 

reach, speed in which the rat reaches for the pellets and upper body orientation 
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within the apparatus. This approach could possibly be incorporated within a motion 

capture system.  

Unlike the cylinder and the open field tests, the setup could be modified for human 

testing. An initial design is shown here in Figure 1-2 the subjects would sit on the 

chair with their hands reaching to collect pellets on the steps, similarly, the top ones 

being easiest to reach.  

 

Figure 1-1: Staircase paw reaching apparatus from the Cardiff Brain Repair Group 
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A pilot project that assessed reaching of five volunteers was carried out with a 

simplified apparatus shown here in Figure 1-3. Although human data acquisition was 

possible, the rat motion capture attempt introduced difficulties in data acquisition in 

that the Perspex glass hindered accurate representation of the data post analysis, 

and removing the glass meant losing the variables for the animal study.  

 

Figure 1-3: Human reaching experiment design carried out while the subject was standing 

Two further experiments were investigated for rat data collection. The accelerating 

rotarod (Ogura et al., 2005) and the balance beam (Allbutt et al., 2005, Goldstein et 

al., 1990, Domingo et al., 2009) test. The two apparatus (Figure 1-4) asses balance 

and coordination as the rat walks. The rotarod tests motor coordination and balance 

as the rat walks at the same speed that the bar is rotating and while it balances at the 

top. As the speed gradually increases it becomes harder for the rat to stay on, and so 

may fall off onto a trigger plate which stops the timer so the length of time the rat is 

able to balance is recorded. This is however difficult to translate to a human study 

and limited variables can be collected using motion capture techniques. 
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Figure 1-4: Beam and rotarod apparatus 

The balance beam on the other hand, involves walking in a straight line on a defined 

length and width which can be performed by human subjects. In the animal test, 

following training, the rat is placed on one end of the beam and walks along to the 

other end on a beam where a dark box that contains treats is located. Healthy rats 

perform the task without difficulties; however rat models will find it harder to balance 

and may have to take more steps along the beam so the total time taken to reach the 

end will be greater.  

At the Cardiff BRG the beam used is graduated, the beam gets narrower as the rat 

approaches the box making the task harder the closer they get to the end. This helps 

to distinguish the differences between healthy and transgenic rats as the transgenic 

rats may lose their footing as they get closer to the end. This test introduced a 

number of variables that could be analysed using the motion analysis system. 

Furthermore it allowed translation into a human study of balance and coordination 

during gait.  
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The elevate beam was chosen to carry out the project. The next steps of the study 

experimented on different scenarios in order to establish the best motion capture 

setup for the study. This included camera and marker protocol for optimum system 

potential. Ideally marker placement needed to be non-invasive and representative of 

the rats‟ movements being investigated. The placement method had to be repeatable 

and accurate. The tests limitations and accuracy are summarised in Table 1-1. 

Table 1-1: assessment motor behavioural test available at the Cardiff BRG 

Motor task 
behavioural 

tests 
Limitation Accuracy 

Cost in addition 
to motion 
capture  

equipments 
Open field test Rat‟s keeps stopping to 

groom or feed and with 
no motivation to walk in a 
straight line  
Can‟t be translated to 
human study 

gait is not cyclic therefore 
unable to achieve 
accuracy 

Price of open field  

Cylinder test No motion capture 
variables 
Can‟t be translated to 
human study 

Rat movements are not 
constant 

Price of Perspex 
glass 

Paw reaching Limited amount of 
variables, and hindrance 
of the Perspex glass 

Accurate in determining 
upper body motion of 
human but not accurate in 
the rat study  

Price of stair 
apparatus 

Accelerating 
rotarod 

Can‟t be translated to 
human study 

Accurate timing 
parameters 

Price of the 
rotarod 

Elevated beam Elevation can‟t be 
translated to human study 
but width and length can 

 Price of elevated 
beam 

In rat studies, the skin movement artefact, where the skin displaces relative to the 

bones and soft tissue movement reduces the accuracy of marker placement studies 

Muir and ebb (2000) and Filipe et al., (2006) quantified the magnitude of skin 

displacements during marker based motion analysis studies. Filipe et al., (2006) 

collected data from 10 Wistar adult rats and performed kinematic recording using a 

marker based motion system on the lateral side on the left hindlimb. They found 

there is a considerable skin movement artefact by comparing the knee marker and 

the knee position estimate during a step cycle. It was concluded that these large 
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errors can decrease data reliability in the research of rat gait analysis. With this in 

mind, the protocol development focussed on achieving relative motion and trajectory 

data rather than joint motion. The protocol, including marker choice and placement 

are discussed in Chapter 2. 

The initial stages of the study investigated the various potential experimental 

protocols based on the behavioral test used at the Cardiff BRG. As described, the 

paw reaching test did not produce sufficient data for analysis therefore the apparatus 

chosen was the balance beam. In addition marker placement techniques were 

explored and a technique was designed that investigated relative motion rather than 

joint motion during gait. 

The results of the current research project have an impact in the area of animal brain 

studies as it allows for further validation of the animal models. The study provides a 

basis for correlation of gait data and thus proof of homology with human patients 

(Whishaw et al., 1992, and 2002). As a result, a better understanding of therapeutics 

and treatment plans can be achieved. 

The first Chapter presets a brief background as to why animal models are important 

in brain research; how the brain controls movement (more specifically, gait); and 

what happens when the control processes are disrupted, with focus made on PD and 

stroke. A detailed review, providing insight into current research carried out in the 

areas of gait analysis of PD and stroke for both humans and animal models of the 

disease is provided. The remainder of the chapters introduces a novel 3DMA 

protocol for quantifying locomotion in rats and humans followed by the results from 

studies carried out on two separate groups of rats (PD and Stroke) and one group of 

healthy humans. 
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1.2.2. Rat models  

Different types of neurological disorders are induced in healthy animals with rats 

being the most commonly used species. Despite rats having a brain that is 15 times 

smaller than the human brain, they have similar neurological, sensory and motor 

systems to humans (Whishaw et al., 2003a). However, the question remains whether 

“artificially induced” rat models are accurate representative models of the real 

naturally occurring disorder observed in humans. This is a dilemma that has been a 

topic of much debate for many years and requires careful analysis of behaviour and 

function for each disorder under study. Although not all aspects of the modelled 

neuro-degenerative disorders can be investigated, these models are useful as they 

exhibit similar motor behaviour to patients with the disease. 

1.2.3. The Gait Cycle 

A gait cycle is the sequence of events from the time a limb is in contact with the floor 

to when it comes into contact with it again i.e., heel strike to heel strike. It is divided 

into stance and swing phases (Figure 1-5).  

1. Stance phase: The term used to designate the entire period of time during which 

the foot is on the ground. It begins with initial contact (heel strike) followed by limb 

flexion to support body weight and finally extension to push the body forwards. 

2. Swing phase: The time the foot is in the air from limb advancement. It begins 

when the foot is lifted from the floor (toe off); followed by the limb moving 

forwards relative to the body and finally extends in preparation for contact with the 

ground (heel strike).  
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A full gait cycle is described as one stride. A stride consists of two steps; defined as 

the interval between initial contacts by the left then the right foot. The rates of 

repetitions of a stride are a primary determinant of gait speed with a relationship that 

is linear in healthy individuals. The steps, rather than the strides, are counted to 

determine the step rate known as the cadence. Gait Parameters i.e., stance time, 

swing time, stride length, speed and cadence are important variables used to 

characterise normal and pathological gait. 

 

Figure 1-5: One human gait Cycle 

In the assessment of one gait cycle for rats, the limb that moves from heel strike to 

heel strike at a given period of time is known as the “reference limb”. During stance 

phase, the reference limb flexes to support the rats body weight (heel strike), then 

extends to push the rat forward (toe off). The limb then enters swing phase where it 

moves forward relative to the length of the rat‟s body and finally extends in 

preparation for contact to the ground for the subsequent stance phase (Whishaw and 

Kolb, 2005). 

Normally 60% of the cycle for both rats and humans represents the stance phase; 

and the remaining 40% is represented by the swing phase. The timing slightly varies 

depending on the speed. The relationship between speed and phase time is 

inversely related; that is, both total swing time and stance time are shortened as gait 

Stance phase

Heel Strike

Swing phase
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speed increases. In humans there is an interval when both feet are in contact with 

the ground known as double stance, but is reduced with faster walking and is 

eventually eliminated when the person is in running mode.  

In rats, the stance phase shortens with increasing speed where as swing phase 

changes very little. Unlike humans walking, rats maintain a crouched limb posture at 

all speeds providing increased stability. Limb coordination changes with speed; 

walking is defined at <55cm/s, trotting at 55-80cm/s and galloping at >80cm/s (Gillis 

and Biewener, 2001). In the current studies only walking was investigated. 

1.2.4. Postural control during gait 

Posture is defined as the orientation of a body segment. This can be relative to the 

gravitational vector coordinate system (angular measure from the vertical axis) or to 

the 3D orthogonal vector system. Maintaining posture in a defined reference system 

relative to the gravitational vector is important for stability during gait (Winter, 1995). 

During human gait, muscle action of the neck and trunk serve to maintain orientation 

and neutral alignment of the spine, while the pelvis acts as the link between the trunk 

and the mobile unit made up of the two limbs. Muscles in the pelvis help move the 

pelvis asynchronously in all three planes during gait; roll in the sagital plane, pitch in 

the frontal plane and yaw in the transverse plane to maintain balance especially 

during single limb support.  

A common symptom of patients with deficient motor function is postural instability. 

The term defines the inability to control the orientation of body segments relative to 

the gravitational vector (Bishop et al., 2006, Rochester L Fau - Hetherington et al., 

2004). Research into posture during gait is helpful in revealing data that may help in 

predicting fall risk and in documenting recovery of stability (Woollacott and 
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Shumway-Cook, 2002, Adkin et al., 2005). The current study investigates body 

angular rotations as an indirect measure that can be quantified to analyse postural 

instability (Madete et al., 2011). Similar parameters during animal gait that are used 

to monitor subtle changes in posture can be applied.  

1.2.5. Brain function during gait 

The mechanisms that allow the complexity of human and rat gait cycles to occur 

flawlessly in the coordination of movement of all the limbs occurs in the brain. Brain 

function underlying motor control is divided into multiple processing levels that 

include the spinal cord, the brain stem, the cerebellum, the cerebral cortex and the 

basal ganglia (Figure 1-6). 

 

Figure 1-6: The cross section of a brain; the cortex, the brain stem and the spinal cord are 
the three main levels of control within the central nervous system (adapted from Dubuc, 

2002) 
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The cortex, the brain stem and the spinal cord are the three main levels of control 

within the central nervous system. During movement, signals pass from the brain's 

cortex, via the brain stem and spinal cord, to the muscles, which then contract. Other 

signals pass to the basal ganglia and the cerebellum to either damp or increase the 

pathway signal thus modulating movements, as illustrated in Figure 1-6. A disruption 

of any of the systems involved in movement results in abnormal human gait, where it 

may lead to neurodegenerative conditions and movement disorders such as those 

exhibited in PD and stroke. 

1.2.6. Parkinson’s disease 

Parkinson‟s disease (PD) is the second most common neurodegenerative disorder 

after Alzheimer‟s, affecting at least 2% of the population aged 65 years and older (de 

Lau and Breteler, 2006, Gotz and Ittner, 2008). PD is caused by the degeneration of 

substantia nigra, a structure located in the basal ganglia, resulting in loss of 

dopamine. Dopamine is a neurotransmitter that damps the signal pathways to reduce 

muscle tone and allow smooth movements (Field et al., 2006). This loss of dopamine 

leads to symptoms such as muscle tremors, rigidity, slow movements and difficulty 

initiating physical activity (Penney and Young, 1983). Many symptoms expressed in 

PD are progressive and it may take between 5 and 20 years for a patient to exhibit all 

of these symptoms.  

1.2.6.1. How PD affects gait in humans. 

Abnormal gait caused by PD is characterised by a short stride length, a reduced 

walking speed, an abnormal cadence and a leaned forward trunk (Van der Burg et 

al., 2006). Impaired gait causes instability in patients that affects their ability to adjust 

their walking patterns. This in turn leads to an impaired forward motion and to an 
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increased risk of frequent falls. This imbalance eventually results in a decreased 

executive function leading to a condition known as “freezing of gait” (Plotnik and 

Hausdorff, 2008, Woollacott and Shumway-Cook, 2002). Therefore, PD patients tend 

to walk with a more cautious gait exhibiting compensatory behaviour in an attempt to 

improve their stability (Latt et al., 2009, Woollacott and Shumway-Cook, 2002). 

The cause of neuro-degeneration is not known and therefore current available 

treatments target the symptoms and aim to bring support and comfort to the patient. 

Most treatments are still in their infancy and with an aging population; there is an 

increased need for research to further understand the disease. 

1.2.6.2. How PD affects gait in rat models 

Animal models of PD have been developed to exhibit characteristics similar to those 

found in patients, e.g. shorter steps and reduced toe clearance which reflects 

shuffling of gait in humans (Metz et al., 2005, Klein et al., 2009). To investigate the 

clinical condition of PD, the most commonly used model is the unilateral injection of 

the neurotoxin 6-hydroxydopamine (6-OHDA) into the rat medial forebrain bundle 

(MFB) ;(Ungerstedt, 1968). This injection produces dopamine depletion that results 

in motor deficits that are similar to those in human PD (Cenci et al., 2002, Henderson 

and Watson, 2003, Iwaniuk and Whishaw, 2000, Whishaw et al., 1992).  

Unilaterally lesioned (hemi-parkinsonian) rats show motor deficits on the side contra-

lateral to the lesion. The ipsi-lateral side serves as an internal control. Furthermore, 

these rats show an almost complete neglect of the contra-lateral side, and 

conversely, they are more responsive to stimuli on the ipsi-lateral side. Body weight 

bearing and body posture are compensated with the healthy ipsi-lateral side 

(Miklyaeva et al., 1995).   
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1.2.7. Stroke 

A stroke is caused by an interruption of blood supply to the brain due to blocked or 

damaged arteries (anterior, middle and posterior) or their branches. An estimated 

150,000 people suffer from stroke in the UK each year and it accounts for around 

53,000 deaths per annum (Wolfe et al.,, 1996). Over 300,000 people are living with 

moderate to severe disabilities following a stroke, such as severe loss of motor 

control and language (Adamson et al., 2004).  

Strokes are either ischemic (80% of population) or haemorrhagic. Following an 

ischemic stroke, a blockage of the vessel causes the surrounding tissue to be 

affected leading to a complex set of events, (Kolb and Cioe, 2000). The location and 

extent of the damage in the brain plays an important part in determining the observed 

behavioural and functional symptoms (Van der Staay et al., 1996, Corbett and Nurse, 

1998). Stroke symptoms affect only one side of the patient (depending on what side 

of the artery is blocked) and can be reduced with good post stroke rehabilitation 

(depending on the age of the patient). Ischemic stroke can be treated 

pharmacologically up to 3 hours from the episode occurring by reducing the size of 

the clot to allow blood to flow to the affected region. Post stroke rehabilitation is the 

only alternative after the 3 hour window. 

Haemorrhagic stroke occurs when weak vessels have aneurysms that eventually 

rupture, mostly due to symptoms of hypertensive small-vessel disease. In some 

cases, underlying problems such as vascular malformations or infarcts into which 

secondary haemorrhage has occurred, may lead to stroke. The prognosis is worse 

than ischemic, with a 1 month mortality approaching 50% (Donnan et al., 2008, Auer 

and Sutherland, 2005). 
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1.2.7.1. How Stroke affects Gait in humans  

Similar to PD patients, spatio-temporal gait and posture are affected. Patients walk 

more slowly than average healthy subjects. Their gait cycle is characterised by a low 

stride length, low cadence, a longer stance phase, an increased double support 

times and toe drag during the swing phase (De Bujanda et al., 2004, Olney et al., 

1994, Shumway-cook and Woollacott, 1995). Unlike PD, stroke symptoms affect only 

one side of the patient and can disappear with good post stroke rehabilitation 

(depending on the age of a patient). 

The characteristics of human ischemic stroke are very diverse, where the location of 

the damage plays an important role in determining the observed symptoms (Van der 

Staay et al., 1996, Corbett and Nurse, 1998). This thesis focuses only on ischemic 

stroke of the middle cerebral artery (MCA), as this is the most frequently occluded 

artery in humans and is the most common model used in rodents. The lack of blood 

supply caused by the blockage of the MCA, causes damage to the largest branch of 

the internal carotid which supplies a portion of the frontal lobe, the lateral surface of 

the temporal and parietal lobes, including the primary motor and sensory areas of the 

face, throat, hand and arm and in the dominant hemisphere, the areas for speech.  

1.2.7.2. How stroke affects gait in rats 

This thesis considers a focal model known as MCA occlusion (MCAO) model, where 

a reversible occlusion around the MCA was performed. MCAO is a good 

representation of the pathology observed in human stroke victims and results in 

motor deficits similar to those in human stroke and is applied to only one brain 

hemisphere leading to a left-right motor imbalance. Therefore motor deficits are 

observed on the side contra-lateral to the occlusion. The duration of the MCAO can 
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be as short as 30 minutes (Shen and Wang, 2010) although some studies perform it 

for as long as 3 hours (Lim et al., 2008). There are advantages and disadvantages to 

the difference in duration of the occlusion. The longer the duration the larger the 

infarction caused. This difference can be seen in both pathology and behaviour, i.e., 

motor deficits increase with an increase in the infraction size (Wegeneret al., 2005 ). 
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1.3. Literature Review 

In the following sections, a literature review of the studies that have used two 

dimensional (2D) and 3DMA techniques to analyse gait on human patients with PD 

and stroke and associated animal models are described. The review also discusses 

methods used to quantify temporal gait and posture of both species.  

1.3.1. Human based motion analysis 

Clinical human gait analysis plays an important role in understanding the pathology 

of various diseases. In the early nineties, motion was quantified using a carefully 

designed apparatus to asses gait in terms of stride by stride analysis. Blin et al., 

(1990))) used a device attached to the foot to measure longitudinal displacement of 

both feet during locomotion and function to assess gait in subjects with PD. Each foot 

was attached to a separate string as the subject walked down a pulley system. 

Movement was recorded in the form of an electric signal via a pulley linked to a 

potentiometer. Variables were measured over 10m and included stride length, gait 

cycle, stance, swing, double support times, stride, and swing velocity. They found 

that PD patients had significantly shorter stride length and a longer stride time 

differences compared to an aged matched cohort. The method used was simple and 

practical; however the strings attached to the feet may have caused discomfort and 

as a result normal gait might not have been achieved. 

With technological advances; current methods such as incorporating sensors, foot 

switches, and reflective markers combined with high speed cameras and computer 

systems for analysis; the same level of practicality can be achieved. In addition these 

methods produce data with an increased sensitivity and accuracy. 
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Sensors allow mobile and wireless clinical gait analysis. Takeda et al., (2009) used 

sensors that consisted of wearable units placed on the lower limb of the patients 

(both thighs and both shanks). The advantage of this system is that one sensor unit 

can measure the acceleration and the angular velocity along three orthogonal axes 

simultaneously. The study goes further to investigate the difference between sensor 

placements with a marker placement system and found that there was a high 

correlation (values of above 0.72.) between the two. However, their study did not 

investigate cyclic gait over a long period of time and it assumes constant velocity 

which is not true, especially with patients that have difficulties in gait.  

Foot switches are a convenient and inexpensive way of obtaining temporal and 

pressure based gait measurements. They work by either compression closing or 

using  force sensitive resistor switches, usually configured as thin insoles. They can 

be placed between the foot and shoe or taped to the bottom of a bare foot. Bond and 

Morris, (2000) investigated the effects of goal-directed secondary motor tasks on gait 

in healthy subjects and subjects with PD using foot switches. Patients walked on a 

15m walkway and motion was measured in three conditions; preferred walking, 

walking whilst carrying a tray, and walking whilst carrying a tray with four glasses. 

The spatial and temporal characteristics of the foot pattern were measured using 

commercially available clinical stride analyser, which consisted of insole switches 

placed under the heel with the data logger placed on the waist. They found that PD 

patients walked slower, had shorter steps and whilst carrying a tray with four glasses 

on it, they were slower and showed a deterioration of gait compared to the other two 

scenarios. This study showed that gait analysis provided accurate representation of 

data and allowed for a comparison between two cohorts on three different scenarios.  
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A force plate measures the ground reaction forces (GRF) exerted during stepping, 

which is a measurement used to determine joint forces and moments. Using GRF as 

a variable for gait analysis provides a measure of how well the subject handles 

weight bearing and balance. It can be monitored by using force plates or in sole 

devices. A study by Chastan et al., (2009), performed a biomechanical analysis to 

monitor gait and balance disorders in PD patients to observe their ability to actively 

brake the fall of centre of gravity. The step length, peak progression velocity of the 

first step, and vertical velocity of the centre of gravity using force platform was 

measured. The study found that the decreased step length and velocity, 

characteristic of PD, mainly result from degeneration of central dopaminergic 

systems. The results from this study, combined with clinical evaluation showed the 

strength of MA as a vital research tool for bio-scientists. The data obtained from such 

studies can be used for further calculations of measuring new parameters such as 

the braking capacity, which is important when assessing risks of falls and postural 

stability associated with PD patients. 

Another method used to acquire force data is by using force insoles or gait mats. 

Hausdorff et al., (1998) investigated stride –to- stride variations of the gait cycle in PD 

patients and in Huntington‟s disease patients (HD). The subjects walked with a 

normal pace up and down a 77m long hallway for 5 minutes. A self determined pace 

was chosen for the healthy subjects because walking variability was minimised. Gait 

parameters were measured using force sensitive insoles that produced a measure of 

the force applied to the ground during gait. The variables measured were stride time, 

swing time, percentage swing time, double stance, percentage double stance and 

step time and gait speed. They found all measures of stride-to-stride gait variability 
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were significantly increased in PD patients to those observed in control subjects and 

the degree of variability correlated with disease severity (Hausdorff et al., 1998)  

1.3.2. 3D Marker Based Human Motion Analysis  

Calculation of both gait and posture requires 3D techniques where coordinate data is 

transformed into accurate positions and locations of segments and bodies. 3DMA 

comprises of two or more video cameras to track reflective markers placed on a 

subject. Provided 2 or more cameras record a markers location, 3D coordinates can 

be calculated. 3DMA has been shown to be practical and accurate in determining 

temporal and postural gait in healthy subjects and patients with neurodegenerative 

disorders (Jansson et al., 1998, Sofuwa et al., 2005).  

3DMA studies on PD patients have investigated changes in motion following 

rehabilitation and have attempted to understand the characteristics of early onset PD 

(Peppe et al., 2007, Ferrari et al.,, 2008). Studies also include those that have 

investigated the effects of different treatments and therapeutic solutions (Jansson et 

al., 1998, Sofuwa et al., 2005) 

Ferrarin et al., (2006) tested onset PD patients and their controls following a protocol 

consisting of 3 different tests which were, steady-state walking, turning while walking 

and initiation of gait. A force platform was positioned in the middle of a long walkway 

to record foot ground reaction force during walking. Kinematics data was recorded 

using an optoelectronic system consisting of 9 cameras located around a calibrated 

volume with a sampling rate of 60 Hz. They found that although PD patients did not 

differ from controls in steady state walking, significant differences emerged in gait 

initiation and turning strategies and therefore small differences in gait were 

quantified. 
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Peppe et al., (2007) quantified motion following rehabilitation of PD disease patients 

using 3DMA. They found that marker based MA highlighted a statistically significant 

difference between controls and PD patients, or in the same PD patients before and 

after the motor rehabilitation program. They confirmed that gait analysis provides 

objective outcome measures of a rehabilitation program  

Jansson et al., (1998) compared single dose effect of two different forms of 200 mg l-

dopa on the motor performance of eight patients with PD. Patients had gone without 

their ordinary anti-parkinsonian medication and food intake for 12 hours prior to 

testing. The patients‟ motor performance was recorded with an opto-electronic 

camera system. They found that the dispersible drug has a much faster and more 

constant onset of action than the standard drug preparation (25 vs 46 min.). The 

effect duration and the effects on motor performance were otherwise the same. 

Similarly, Sofuwa et al., (2005), compared gait parameters in PD patients during the 

on-phase of medication cycle with those of healthy elderly control subjects. They 

found that the PD patient‟s spatiotemporal results showed a significant reduction in 

step length and walking velocity compared with the control group.  

Stroke studies place their emphasis on the effects of post-stroke rehabilitation. 3DMA 

is a valid tool for evaluating changes in patients with stroke as the therapy 

progresses by monitoring of patients after various motor rehabilitation programs 

(Yavuzer et al., 2008, Peppe et al., 2007, McCain and Smith, Mulroy et al., 2003). 

McCain et al., (2008) investigated the impact of locomotor treadmill training as a form 

of rehabilitation after stroke. They measured increased knee flexion during swing and 

absence of knee hyperextension in stance. In addition, more normal ankle kinematics 

at initial contact and terminal stance were observed following the rehabilitation 
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regime. Improved gait symmetry was confirmed by measures of single support time, 

hip flexion at initial contact, maximum knee flexion, and maximum knee extension 

during stance. This study concluded that application of locomotor treadmill training 

with partial body weight support before over ground gait training may be more 

effective in establishing symmetric and efficient gait in adults‟ post-acute stroke than 

traditional gait training methods in acute rehabilitation. 

In a study by Jonsdottir et al., (2009), 39 adults were analysed to investigate the 

effect of speed on gait. They aimed to understand the underlying dynamic resources 

that determine an individual‟s speed of walking by performing quantitative gait 

analysis. The marker based gait analysis system was coupled with a force platform 

and an Electromyograph (EMG) system. Patients walked at two speeds: their 

preferred speed and as fast as they could. They found that at both speeds, stroke 

individuals tended to walk at higher cadence and with shorter stride length. At the 

preferred speed the investigated parameters for all patients were mostly within the 

normal profile. The results indicate that to increase gait speed, patients with loss of 

function on one side (hemi-paretic) have different functional resources needed to 

produce work of the ankles and hips compared to healthy subjects to draw from, and 

these vary from individual to individual. This study shows that 3DMA can be used to 

investigate cadence, stride length and enable discrete difference in function to be 

quantified. 

Temporal and spatial parameters may be acquired simultaneously in different 

situations using 3DMA (Nadeau et al., 1999, De Bujanda et al., 2004). Lateral 

displacements and lateral acceleration of the shoulders and pelvis of hemi-paretic 

patients was assessed (De Bujanda et al., 2004). Three walking speeds were tested: 
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slow, natural, and fast speeds. They found that stroke patients had larger lateral 

displacements and accelerations compared to the control group when walking at 

similar speeds. Results also indicated that accelerations were greater on the affected 

side, whereas single stance percentages were greater on the non-paretic side. The 

data were almost symmetric for the control subjects. 

Numerous variables can be investigated using MA; which vary depending on the 

nature of the study. Nadeau et al., (1999) combined the use of marker based 

analysis with force plate data to determine whether plantar-flexor weakness is among 

the factors preventing stroke subjects from walking at faster speeds. On the contrary, 

Roerdink and Beek, (2011) sought to understand directional variations in step-length 

asymmetry in terms of asymmetries in forward foot placement relative to the trunk 

and trunk progression.  

1.3.3. Non -marker based rat motion analysis 

Animal MA studies dates back to the early 19th century, where a photographer 

named Muybridge was commissioned to prove the concept that horses have all 

hooves off the ground during a gallop using a 12 still camera system (Muybridge, 

1899). Studies on animal MA were generally limited to two planes and post analysis 

was laborious and time consuming as it involved frame by frame analysis and 

digitising to visualise the motion. Currently, dynamic animal studies using different 

apparatus, e.g. ladders, treadmills or flat surfaces are well established (Couto et al., 

2008b, Canu et al., 2005). The data acquisition techniques vary depending on the 

output and parameters under investigation. Both 2D and marker based 3D methods 

of analysis have advantages and limitations depending on the required outcomes 

and their application. 
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Most 2D rat gait studies use the principle of paw contact analysis. The simplest 

approach is paw print analysis where ink is painted on the paws of the animal as it 

walks along a marked path (Brown and Taylor, 2005, Fan et al., 2008, Ackland et al., 

2010). This approach provides instant and visible paw contact and the ability to 

produce temporal gait parameters of all four limbs simultaneously (Figure 1-7). 

However, faint footprints may be produced when affected paws are un-weighted and 

smearing may also occur caused by toe drag (Wang et al., 2008). 

 

Figure 1-7: Example of paw print analysis from Metz et al 2005 

Recently footprint analysis has been computerised in the form of the CatWalk 

method, an example output is illustrated in  

Figure 1-8. CatWalk is a program based technique, which has been found to improve 

paw contact analysis (Koopmans et al., 2007, Hamers et al., 2006, Vrinten and 

Hamers, 2003). Movement is recorded in a specialised chamber thus limiting 

versatility of the environment; therefore movement cannot be performed on a ladder 

or a beam.  
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Figure 1-8: Catwalk output example from Hamers et al in 2006, the colours are normally 
assigned by the program, Green= right, Red= left, light = fore and Dark = hind. 

Rat gait studies that do not involve ink printing or CatWalk, such as the one carried 

out by (Coulthard et al., 2002), record the gait cycle as the rats walk along a 

Plexiglas chamber fitted with a central glass floor that has a mirror which allowed 

paw-floor contacts to be viewed at the same time as conventional lateral animal 

motion. Coulthard et al used video data acquisition method (camera‟s frequency of 

25 frames per second) to convert the number of frames for which a particular event 

was into a period of time in seconds. Therefore, temporal parameters such as stride 

length, stride time, swing time, single stance time, and the dual stance time can be 

analysed. 

Other technologies include the use of Tekscan pressure mat systems (Tekscan, 

South Boston) to monitor deviations in gait (Boyd et al., 2007). Using the pressure of 

the rat‟s paw when in contact with the mat, the system allows gait analysis from in 

built sensors on a Plexiglas tunnel to record the force applied as the animal walks. 

Another specialised gait analysis tool is Treadscan, (Clever Sys. Inc. Reston, VA, 

USA). It allows the calculation of stance time, swing time, stride length and running 

speed as the animal runs on a transparent treadmill (Simjee et al., 2007). 
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The use of 2D MA techniques to investigate rat gait parameters are favoured since 

only one inexpensive camera is used and less data needs to be acquired. This 

review shows that 2D analysis techniques that combine the use of technologies in 

conjunction with already existing behavioural studies improve their accuracy and 

repeatability. Nevertheless, these motion studies fail to measure important variables; 

such as orientation in 3D space and relative motion of segments and bodies that are 

essential for determining asymmetry, instability and postural control during gait 

(Couto et al., 2008). 

1.3.4. Marker based rat motion analysis 

Temporal and postural parameters in three planes can be recorded using 3DMA 

techniques thus increasing the scope of the amount of variables that can be used to 

investigate a given function and behaviour. It is a useful method to determine limb 

motion during locomotion as it allows the quantification of locomotor parameters, 

which are only qualitatively evaluated by visual examination (Canu et al., 2005). 

3DMA techniques reviewed earlier for human MA are not commonly used for animal 

locomotion because unavoidable skin movement artefacts, that affect the accuracy of 

the measurements, leads to the need to shave the fur off animals, making the 

procedure invasive (Filipe et al., 2006). Nevertheless, previous studies have 

successfully ( 

Figure 1-9) used this method to investigate temporal and spatial parameters as well 

as angular displacement of joints during locomotion in versatile environments 

(Garnier et al., 2008, Metz et al., 1998, Canu and Garnier, 2009, Canu et al., 2005, 

Couto et al., 2008b). 
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Metz et al., (1998) described the effects of a brain occlusion on hindlimb function. 

They observed severe impairments in trunk instability, lateral shifts in weight support, 

toe dragging, and hindlimb exo-rotation. Their study stressed the need for extremely 

sensitive methods, such as 3DMA, and sensitive behavioural tasks to enable 

detection of parameters for hindlimb function.  

 

Figure 1-9: Successful marker placement on rats in a study by Garnier et al 2008. 

Couto et al., (2008b) used marker based MA to determine hind limb kinematics on a 

treadmill for spinal cord injured rat models. They used 2mm hemispheric markers, 

covered by adhesive reflective tape. The markers were placed on the skin over five 

anatomical landmarks on the lateral side of the left hind limb. Kinematics data was 

collected after shaving around the left hind limb to improve the visual image obtained 

for analysis. The set up, shown here in Figure 1-10, included three high-speed digital 

cameras strategically positioned around the left hindlimb to minimize marker 

occlusion and maximize resolution. The angle measurements were taken at the 

flexor side of each joint. They found significant difference between 2D data and 3D 

joint angular motion. They concluded that maximal precision and accuracy of the 

kinematic data in 3D and also found that 2D methods cannot be used to determine 

the external or internal rotations of the foot because this movement occurs in the 

transverse plane.  
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Figure 1-10 : Experimental set up for (Couto et al., 2008b); three high speed cameras were 
positioned around the hindlimb to minimize marker occlusion and maximise resolution. 

Reflective markers placed on the left hindlimb of the rat are shown. 

Garnier et al., (2008) studied qualitative and quantitative locomotion characteristics 

in different modes of locomotion. They performed a 3DMA kinematics analysis of 

both hind and forelimb during over ground and ladder walking. Movements of the 

right hind and forelimb were evaluated using a 3D optical analyser, and EMG of the 

soleus and tibialis anterior muscles was synchronously recorded. Their results 

showed that kinematic and electro-myographic characteristics of locomotion are 

dependent on the type of support and that changes were more obvious for hind-limb 

rather than for fore-limb. In addition, they also found that velocity and stride length 

were lower on the ladder than on the runway.  

As the literature above suggests, measurements and apparatus vary depending on 

the condition and behaviour being investigated. It emphasizes the need of a simple 

and practical 3DMA analysis protocol that can be modified according to the 

experimental conditions by improving on the more simple approaches and simplifying 

more invasive ones.   
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1.4. Aim and Objectives 

Animal models of neurological diseases are commonly used to test new therapies as 

well as to understand behaviour and function following an onset of the neurological 

disease. The aim of this thesis was to develop a practical, non-invasive and sensitive 

three dimensional motion analysis technique to investigate animal and human 

temporal and postural gait parameters.  

To achieve this, four key objectives were explored: 

1. Development of a novel technique for the measurement of temporal and postural 

parameters of an animal model of Parkinson‟s disease. 

2. Application of the developed technique on an animal model of stroke, and the 

utilisation of the classifier, based on the Dempster-Shafer theory, for data 

processing to characterise stroke model gait. 

3. Expansion of the novel technique for the analysis of temporal and postural 

parameters of humans. 

4. Correlating temporal and postural parameters of the animal and humans from the 

developed protocols. 

This thesis describes the first study to emerge from links established between Cardiff 

School of Engineering and the School of Biosciences‟ BRG. It is hoped the outcomes 

will contribute to the validation of the rat as an animal model of PD and stroke and 

further increase understanding of the diseases in terms of behaviour and function 

during gait.   
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1.5. Thesis Summary 

The use of motion capture at MAL Cardiff School of Engineering has long been 

associated with orthopaedics research, especially in the classification of 

osteoarthritic knee function. In the last few years, the research has included gait 

analysis after total hip replacement, functional analysis of the shoulder complex and 

the quantification of skin deformation. The MAL performs MA studies using Qualisys 

motion capture system (Qualisys, Sweden) to record human movement data. The 

set-up comprises of optoelectronic cameras and tracking software that allows fast 

and precise collection of 3D and 6DOF data in real time. 

The study applies an available animal behavioural test, established in the BRG lab, 

in combination with MA techniques, used at the School of Engineering to develop a 

protocol that analyses animal model behaviour, whilst being translatable to human 

data collection. The chapters of this thesis are designed to demonstrate the use of 

the developed MA protocol in the data acquisition of rats and humans during over-

ground locomotion in 3D. 

Chapter 2 introduces the 3D marker based MA methods that were used to measure 

locomotion along an elevated beam for the animal models and the healthy human 

cohort. Data was collected in two laboratories and processed using Qualisys 

(Sweden) proprietary software, Qualisys Track Manager, and a custom developed 

software in Matlab (Mathworks, USA) and C++ (eclipse platform). Gait was 

presented in terms of temporal distance parameters and kinematic waveforms for the 

postural rotations during locomotion. In addition, a description of the DS classifier 
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method to further investigate changes in gait following MCAO lesion and graft are 

also described in this chapter. 

Initial protocol development began with a cohort of five rats that were models of HD. 

They were used to test the possibility of using the MA system to measure a rat‟s gait 

cycle while walking on an elevated beam. The elevated beam is an established 

apparatus that is used to monitor foot falls and posture during gait. The results from 

this initial study were inconclusive. However, the process revealed the many obvious 

challenges of working with animal models and that the elevated beam was an ideal 

apparatus for gait analysis.  

Chapter 3 presents the results following successful data processing from a group of 

ten rat models of PD used to further refine the protocol. The study builds on two 

published journal papers that were previously presented in three conferences. The 

PD model study successful lead to two publications in peer review journals (Madete 

et al., 2010, Madete et al., 2011). Chapter 4 further describes how the protocol was 

successfully applied to a large cohort of stroke rat models before and after lesion 

surgery, and before and after embryonic grafting. Chapter 5 demonstrates how the 

protocol was further modified to accommodate a group of healthy human subjects. 

Chapter 6 outlines an overall discussion comparing and contrasting human and 

animal gait data. Chapter 7 provides a set of conclusions which can be drawn from 

this work and provides directions for future work.  

.  
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CHAPTER 2  
2. Protocol development 
2.1. Introduction 

Motor impairments in rodent models of neuro-pathological diseases are traditionally 

analysed in two dimensions (2D) as well as other subjective methods such as digital 

video analysis and paw print analysis (Brown et al., 2005, Fan et al., 2008, Klein et 

al., 2009, Fan et al., 2008 Coulthard et al., 2002). Recently, objective and 

quantitative gait measurements for rat models of disease have been collected using 

three dimensional (3D) motion analysis (MA) techniques (Canu et al., 2005, Metz et 

al., 1998, Couto et al., 2008b). The approach has been extensively used to analyse 

gait patterns in humans (Whatling et al., 2008, Whatling and Holt, 2010, Jones and 

Holt, 2008, Peppe et al., 2007, De Bujanda et al., 2004, Nadeau et al., 1997).  

Acquisition of rat gait patterns is challenging, with techniques ranging from simple 

paw print analysis to complicated electrode implantation, all these techniques are 

viable and effective. However it is difficult to effectively reproduce them for human 

gait analysis. This study presents a protocol that will explore the application of motion 

analysis (MA) to quantify temporal parameters, motor asymmetry and stability in rats 

and humans. In order to achieve the aim of the project the designed protocol intends 

to investigate rat locomotion in terms of swing time, stance time, stride length, speed 

and cadence in addition to quantifying balance parameters. Such animal 

measurements can then be directly compared with human measures to explore 

correlations between the two species using a generic data acquisition system.  



Chapter 2: Protocol Development

 

2-2 

Animal model behavioural studies of function tests used at the Cardiff Brain Repair 

Group (BRG) are vast. The tests were investigated and a suitable study was found 

that allowed for MA of rats and humans. The ‘elevated beam, a test that investigates 

balance during gait of rat models, was chosen for its ability to produce reproducible 

results and variable The test can also be interpreted and translated into a trial that 

achieves similar outputs in human subjects for the purpose of correlative studies and 

cross validation of the rat models of disease. The developed rat and human 

protocols and future outputs will be combined with other behavioural and functional 

studies e.g. paw reaching, as part of an ongoing research programme with the BRG. 

To the author‟s knowledge, performing human and rat gait analysis under the same 

testing condition hasn‟t been performed before. A study by Whishaw et al., (1992) 

investigated homologous behaviour between rats and humans to analyse skilled 

reaching. They concluded that similarities between rats and humans strengthen the 

generalisation made in neuroscience rat model studies. 

This Chapter aimed to apply the 3D maker based MA (3DMA) techniques, 

established for human motion studies in the MA Laboratory (MAL) at the Cardiff 

School of Engineering, to record and analyse rat locomotion. A novel rat 3DMA 

protocol was developed using an optoelectronic motion capture system to quantify 

temporal gait parameters and postural adjustments (protocols available in Appendix 

B and C).  

The design of the protocol focused on the sensitivity and versatility of the motion 

capture system to record practical and non-invasive data, whilst achieving a high 

standard of accuracy. This Chapter outlines the process of developing a working 

protocol and discusses the validation of the new MA technique in quantifying rat and 
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human forward locomotion. The challenges encountered during protocol 

development have also been addressed. 

This chapter describes the development of the following protocols:  

1. Rat gait analysis protocol using marker based MA techniques. The walking 

trial was over-ground on three elevated beams of different widths. 

2. Human gait analysis protocol adapted from the rat gait analysis. The walking 

trial was also over-ground on specifically designed walkways of different 

widths. 

A description of details of the equipment used, camera layouts, calibration 

procedure, marker placement and an outline of the data collection and processing 

protocol is provided. This is the first study that aimed to investigate quantification of 

over-ground locomotion in rats by using optoelectronic methods for comparison 

purposes with human gait. A motion capture set up was established at the School of 

Biosciences to record rat gait on the elevated beam apparatus and the adapted 

approach. Data collection to provide similar movement analysis in healthy human 

subjects was at the MAL at the School of Engineering 
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2.2. Data Collection 

2.2.1. Qualisys motion analysis system 

3D movement was recorded and tracked using an array of Qualisys PROreflex MCU 

cameras and its proprietary software Qualisys Track Manager, (QTM) (Qualisys, 

Sweden). Each camera contains infrared emitting diodes that capture 2D coordinate 

data of reflective markers positioned in their line of view. A series of more than two 

cameras positioned strategically and calibrated, converts the 2D data into 3D using 

inbuilt algorithms in QTM. The produced data can be adapted to accommodate 

different movement scenarios and characteristics and later exported. 

2.2.2. Calibration 

The calibration procedure was performed according to the software specifications. A 

calibration kit consisting of two parts: an L- shaped reference structure (frame) and a 

calibration wand was used. The frame consists of a metal bar with four markers 

attached which define the origin and orientation of the laboratory coordinate system 

(Figure 2-1a). This is then placed in a position that allows all cameras in the system 

to view all four markers. The wand is a T-shaped metal stick with two markers 

attached on either end of the horizontal T at a known distance apart whichdefines the 

capture volume (Figure 2-1b). 
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Figure 2-1: Calibration kit A) ‘L’ shaped frame and B) ‘T’ shaped wand  

To perform a system calibration, the wand is moved in the measurement volume in 

all three directions while QTM records its motion for between 10 and 20 seconds. 

Each camera's position and orientation is extracted by evaluating the camera's view 

of the wand during the calibration. A passed calibration (depending on the study 

being carried out) increases the system accuracy and is indicative of a good camera 

position for the required volume. An accepted calibration for this study shows each 

camera with an average residual of less than 1 mm, as shown in Figure 2-2.  

 

Figure 2-2: Calibration results  

A) B)
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2.2.3. Protocols  

The rats and human data collection protocols are described in sections as follows: 

1. Ground (Elevated beam apparatus for rats and walkway for humans ) 

2. Cameras and calibration 

3. Marker placement 

4. Walking trials 

2.2.3.1. Rat Protocol  

Elevated beam apparatus 

Behavioural studies at the Cardiff BRG include several tests that study the effect of 

neurodegenerative disorder in rats and mice. In order to carry out a successful 

motion capture session a test that would be compatible for use with the system had 

to be chosen. The options presented to us included the „elevated beam‟ that tested  

balance, the „cylinder test‟ that tested balance and the „open field‟ test that 

investigated exploration reflexes present in the rats since birth and „paw reaching‟ to 

monitor upper body balance and speed of reaching with food rewards.  

As discussed in Chapter 1 the „elevated beam‟ was chosen as it allowed for the 

analysis of multiple variables, i.e., body orientations and temporal parameter during 

gait. The camera set up was easily placed in the volume of the beam, and there were 

no interference in the line of view of the camera, as in the paw reaching apparatus 

and the cylinder apparatus that were surrounded by Perspex. The „elevated beam‟ 

allowed the capture of continuous gait, similar to studies carried out on human 

subjects walking a defined length. 
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The „elevated beam‟ (Figure 2-3) s typically used to monitor forward locomotion and 

limb coordination of rodents by scoring foot faults (slips) as the rat walks along it. 

This technique is a highly sensitive and accurate method to evaluate motor deficits in 

models of neurodegenerative diseases (Schallert et. al., 2006). The current study 

utilised the „elevated beam‟, to quantify parameters of gait and posture during 

forward locomotion. The relative position of the head, the tail and all the four paws 

was manually recorded. 

 

Figure 2-3: Elevated beam (Graduated) 

The graduated (GR) beam was first described by Schallert et al., (2006) as a 1.65 m 

long beam with three 45 cm zones (Figure 2-4). The GR beam is tapered, i.e. each 

consecutive zone is narrower than the previous, thus has increased difficulty as the 

rat walks along the tapered section.  
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A resting box was placed at the end of the beam for the rat to rest in between walks. 

The beam has 2 cm wide ledges, located 2 cm below the upper surface of the beam. 

These allowed the rats to place their limbs off the beam and recover from foot slips 

and provided an aid to deal with the increasing difficulty of the beam. 

 

Figure 2-4: The plan view of the GR beam showing the narrowing of the beam towards the 
resting box and the three zones used to calculate zonal speed 

Two additional beams, a wide (WD) beam and a narrow (NR) beam, were 

constructed with specifications derived from the GR beam: The WD beam had the 

same dimensions as the wide section of the GR beam and the NR beam as the 

narrow end of the GR beam. All three beams are shown in Figure 2-5. 

The WD beam was introduced to test the hypothesis that the ledge, present in the 

GR and NR beams, provides a crutch for the rats as the walkway becomes more 

difficult. The beam is wide enough to accommodate the entire base of support and all 

four limbs of the rats. Consequently, the NR beam was introduced to test whether 

foot faults observed were inevitable coincidence or developed compensatory 

strategies due to the deficit. 
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Figure 2-5: Arial view of the three different beams A) WD beam, B) NR beam and C) GR 
beam  

Cameras and calibration 

A camera set up was chosen that did not cause frequent marker drop out and 

allowed the production of  acceptable 3D data for analysis. The set up included 

seven Qualisys cameras to ensure full recording as the rats moved along the 1.65m 

beam. The camera positions and the directions are shown in Figure 2-6. The camera 

set-up allowed the collection of eight to ten gait cycles for each limb. Marker position 

was sampled at 60Hz. The calibration frame was placed on the beam and the 300 

mm wand calibration was waved for 10 seconds.   

A) B) C)
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Figure 2-6: Camera map and calibration frame position  

Calibration frame was 
placed flush against the 
dowel positioned at the end 
of the beam (present in all 
three beams)
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Marker placement 

There are no known marker placement standards for rat gait studies. Due to the rats‟ 

fur coat, pliable moving skin, and size, the rats‟ physique and small skeletal structure, 

finding distinctive bony landmarks is difficult.  

Two types of markers were explored:  

1. Retro-reflective tape cut into strips or into circles (using a paper punch) 

and stuck directly on the rat.(Mahmud et al., 2010) 

2. Spheres of 2.5mm and 5mm diameter made from plastic and covered 

with retro- reflective tape (Madete et al., 2010).  

Placing reflective tape directly on the rat‟s body reduced 3D tracking accuracy due to 

the length of the fur. Therefore, the 5mm spheres were the preferred method since 

the markers were large enough not to be covered by the fur, and small enough to 

allow filming without infringement.  

Markers were located relative to underlying anatomical bony landmarks used to 

identify the four limbs and the rats‟ body are described in Table 2-1 and in Figure 2-7. 

Circular reflective markers were placed on the skin cover:  

1. One marker on the middle of the skull to identify head motion 

2. Four markers on the appendicular aspects of the rat skeletal structure  

a. A marker on each Acromium 

b. A marker on each Greater Trochanter 

3. Along the vertebrae 

a. A marker on the second Thoracic vertebrae  

b. A marker on the Sacrum 
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4. Above each Calcaneus using cable ties. 

Cable ties were used to fasten the markers on the four paws; all the remaining 

markers were securely fixed to the rat using double sided tape. Additional markers 

were placed along the length of the beam to identify relative motion of the rat and to 

illustrate the effect of the varying width of the GR beam width on rat motion. 

Table 2-1: Summary of marker placement. 

Location Number of markers 

Above the Calcaneus. 1x4 

Thoracic Vertebrae 2 

Skull 1 

Greater Trochanter  1x2 

 Achromium 1x2 

The protocol provided a practical, sensitive and non-invasive method that allows for 

the analysis of representative gait parameters rather than accurate joint rotations 

measurements.  

Walking Trials 

A licensed member of staff from the Brain Repair Group (BRG) trained and tested the 

rats to walk along the beams. Following camera set, calibration and marker 

placement described earlier; gait analysis data was recorded while rats walked along 

the three different beams. 

Walking trials were performed in the following order: rats were placed on the wide 

end of the GR beam to begin testing. The rats walked along the tapered beam 

towards the resting box. The GR beam was then replaced with a NR beam using the 

same set-up. This procedure was then repeated for the WD beam as control run. A 

minimum of three continuous walking were obtained per recording. Trials in which 
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the rat stopped along the beam at some point before it reached the resting box were 

excluded from the results. Analysis included at least two runs from each rat that 

included at least five consecutive gait cycles without any stops. This provided the 

minimum number of steps that must be recorded to eliminate deviant kinematic 

curves (Duhamel et al., 2004).  

  

Figure 2-7: A) Rat marker positions B) use of cable ties to fasten markers on limbs. 
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2.2.3.2. Human protocol 

Walkway 

The walkway used for the human protocol was adapted from the elevated beam 

apparatus. The elevated beam was designed to examine stability and balance in rats 

was they walked along the elevated beam. Show in Table 2-2 and illustrated in 

Figure 2-8 are the scaling procedure from the elevated beam into the scaled human 

walkway. 

Table 2-2: Dimension definitions of the elevated beam and the human walkway  

 Rat Human 

Base of Support 2cm (Gabriel (2007) 18cm(Seidel (2002) 

Width 6cm 54cm 

Entire Length 165cm 1765cm 

Zone 1 6 54 

Zone 2 4.5 40.5 
Zone 3 3 27 

From Table 2-2, data from literature illustrate that a healthy human‟s base of support 

is nine times larger than that of the rat, thus all the dimensions of the walkway was 

scaled up by a factor of nine 

The base of support of healthy humans is around 18cm (Seidel et al., 2001), thus 

allowing for an approximate width of 54cm. The average stride length of a human 

subject is approximately 1.5m (Beauchet et al., 2009); therefore the length of the 

walkway was set to 8m. The length of the walkway was based on acquiring five 

complete gait cycles during testing since the size of the lab at Cardiff School of 

Engineering did not allow for ten gait cycles. The zone widths were also determined 

by the 1:9 ratios. 
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To keep the protocol generic and to test for dual tasking in humans, three different 

variations of the walkway (graduated walkway (GRw); wide walkway (WDw); and 

narrow walkway (NRw) were used. The WDw had the same width as the wide 

section of the GRw; and the NRw as the narrow end of the GR walkway. The NRw 

and GRw were also developed to identify important postural and balance attributes 

during gait as expressed by human subjects, both in healthy and diseased subjects. 

Dimensions were defined as shown in Figure 2-8. 

 

Figure 2-8: Graduated walkway showing dimensions  

Cameras and calibration 

Twelve qualysis ProReflex MCU cameras were used to record subjects‟ gait cycles 

at 60 frames per second, as they walked along the 8m walkway in the MAL at the 

Cardiff School of Engineering (Figure 2-9). 
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Figure 2-9: Cardiff University Motion Analysis Laboratory with a 12 camera set up. 

A map of the camera layout and the position calibration frame is shown in Figure 2--

10. An “extended” calibration was carried out due to the extent of the volume 

required for filming. This method allows for situations where the calibration frame 

cannot be viewed by all the cameras. It works on the idea that if the neighbouring 

camera has a view of the frame, the overlapping field of view of the two cameras 

allows both cameras to be calibrated when the wand was waved (Figure 2-11). 

Calibration was carried out for 15 seconds using a 700 mm calibration kit.  
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Figure 2-11 : Extended calibration  
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Human Marker placement 

Marker placement was designed to allow the recording of temporal gait parameters 

and postural body rotations of the trunk. Marker positions mirrored those established 

in the rat study. Twenty 15 mm retro-reflective markers were positioned as described 

in Table 2-3 and Figure 2-12. Markers are representative of the trunk, head, feet, and 

hand motion during gait. Markers were attached using double sided tape. A marker 

cluster used to observe head motion was placed on the head and was held using a 

head band. Markers were also placed along the length of the walkway to identify 

relative motion of the subject and to illustrate the effect of the varying width of the 

GRw width on motion.  

Table 2-3: Summary of human marker placement 

Location Number 
Head and a marker cluster 1 x 5 

Acromium 1 x 2 
Greater Trochanter. 1 x 2 

Head of radius 1 x 2 
Lateral Epichondyle of the humerous 1 x 2 

7th Cervical vertebrae 1  
1st lumbar vertebrae 1 
Lateral Epichondyle 1 x 6 

Calcaneaus 1 x 2 
1st metatarsal 1 x 2 

The placement was aimed to be as similar as possible to the one used for rat gait 

analysis and were placed on specified locations throughout the body that allowed for 

the cameras to capture markers during gait for the entire length of the walkway. The 

new approach was shown to be practical and allowed the best correlation of data 

with the rat results. 
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Human Walking trial 

Subject walked along the defined walkway starting with the GRw; followed by the 

NRw and finally the WDw in the direction shown in Figure 2--10. A „good‟ walk 

included a minimum of five consecutive gait cycles that had no marker drop outs or 

inconsistent steps. Figure 2-13 shows a QTM recording of a successful walking. 

 

Figure 2-13: Healthy human walking output from QTM showing five gait cycles of the left 
limb 

  

Five complete gait cycle

1 2 3 4 5
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2.3. Data Processing 

3D and 6DOF coordinate data was obtained by tracking markers in QTM. The 

tracking involved identifying the markers for each trial accurately. A one second 

recording produced 60 frames of data. Data was exported to excel for post analysis. 

The temporal gait parameters analysed were cadence, speed, swing time, stance 

time and stride length; and for the postural parameters; roll, pitch and yaw angles, 

limb position and tail position.  

This section describes data processing methods applied to the rat walking trial 

results, summarised in Figure 2-14. The same methods of analysis were applied to 

the data from the human walking trial since the same output variables were acquired 

except for the tail position and paw placement data. 
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2.3.1. Temporal Gait parameters 

The Cadence is the number of steps taken in a given time, the usual units being 

steps per minute. Complete cycles are counted, and since a cycle consists of two 

steps, the cadence is a measure of half cycles. Cadence was calculated by counting 

the number of steps taken by each limb in 60 seconds using Equation (2-1).  

Cadence (steps per minute) =  
                     

                         
   

(2-1) 

Where 60 x 60 refers to 60 seconds per minute and 60 frames of data in a second. 

The speed of walking in the distance covered by the whole body in a given time in 

meters per second. Speed was calculated from the coordinate data of the marker 

placed on the second thoracic vertebra marker using Equation (2-2).  

Speed (m/s) =  
                      

                
  

(2-2) 

Where 60 and 1000 are conversion factors (60 frame /s and 1000 mm in a meter). 
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2.3.1.1. Swing Time, Stance time an stride length 

A custom developed C++ program (Eclipse platform, 2009) was used to calculate 

swing time, stance time and stride length. Calculations were applied to the paw 

trajectory data using the Analyse function in the trajectory info window menu in QTM. 

The magnitude of the position vectors along the three axes (x, y and z) were 

exported for analysis. The positions of the four paw markers were plotted as shown 

in Figure 2-15 . Data was saved as a CSV file; ensuring that there were no empty 

cells and that all the four columns were of the same length. A zero value to any 

empty cell at the end of the graph was inserted and the author ensured the exported 

data had complete trajectories.  

 

Figure 2-15: Excel output for three gait cycles from exported data  
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Stance time 

Stance phase was defined as the entire period during which the paw is on the beam. 

From the illustrated curve in Figure 2-16, stance phase is representative of the points 

where there is little or no change in the „y‟ axis The maximum value (maxdy) and the 

minimum value (mindy) in the period where there is no change in „y‟ was defined as 

paw strike and toe off respectively. Stance time was calculated using Equation (2-3). 

Stance Time =                

(2-3) 

 

Figure 2-16: Example of one gait cycle with annotations used to calculate stance time 
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Swing time 

Swing phase was defined as the entire time the paw is in the air. During swing phase 

there is little or no change in the „x‟ axis (Figure 2-17). The maximum value (maxdx) 

and the minimum value (mindx) in the period where there is no change in „x‟ is 

defined as toe off and paw strike respectively. Therefore swing time is calculated by 

taking the difference in frames between maxdx and mindx using Equation (2-4). 

Swing Time =                 

(2-4) 

 

Figure 2-17: Example of one gait cycle with annotations used to calculate swing time 
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Stride length 

Stride length is the distance that the paw travels between two sequential initial 

contacts with the beam by the same limb. A stride is equivalent to the rats gait cycle 

and is based on the actions of one limb. From the curve in (A) the stride length can be 

calculated. The difference in mm between maxdy and mindy (stride length) and 

between maxdx and mindx (swing length) are used to calculate the stride length 

using Equation (2-5). 

Stride length =                                    

(2-5) 

 

Figure 2-18: Example of one gait cycle with annotations used to calculate Stride legth 
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2.3.2. Postural Parameters 
2.3.2.1. Roll, Pitch and Yaw 

The orientation of a “rigid body” was defined from the coordinate data of four markers 

placed on the appendicular aspects of the rat‟s skeleton (Figure 2-19). The following 

section describes the steps used to transform x, y and z coordinate data into axes on 

the “rigid body” in QTM to thus define body orientation during walking. 

The motion of the rigid body is in reference to an origin in a Global Reference System 

(GRS) defined during calibration. The rigid body provides an axis system known as 

local reference systems (LRS). Therefore, the GRS is established on the walking 

ground and the LRS was established at the geometrical centre of the rigid body. 

 

 

Figure 2-19: Defining a rigid body for 6DOF calcultions of the roll, pitch and yaw 

Greater Trochanter_RIGHT

Greater Trochanter_LEFT

Acromium_LEFT

Acromium_RIGHT
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2.3.2.2. Rotation of Axes 

Qualysis track manager w\s used to calculate the body orientation by analysing 

rotational angles.  

The following steps are followed to calculate the rotational angles from marker 

trajectory data in QTM. The angles are applied to the local coordinate system in the 

order: roll, pitch and finally yaw. A positive rotation is defined as clockwise rotation 

when looking in the direction of the axis. On a rigid body these rotations are defined 

as:  

1. Rotation around the GRS X-axis is called roll. 

2. Rotation around the GRS Y-axis is called pitch. 

3. Rotation around the GRS Z-axis is called yaw. 

Therefore to find the rotation of a rigid body with given roll, pitch and yaw angles from 

QTM, apply first roll, then pitch and finally yaw.  For example, Figure 2-20 illustrates 

a LRS  (x, y and z) established at the geometric center of a rigid body ((six dgrees of 

freedom (6DOF) body,, which is in alignment with the GRS (X, Y and Z). 
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Figure 2-20: Original position of 6DOF in the GRS 

1. First the LRS is rotated around the X-axis (roll) with an angle θ to the new 

positions y‟ and z‟ of the Y- and Z-axis as in Figure 2-21. 

 

Figure 2-21: rotation around the X-axis 

2.  After the roll the local coordinate system rotates around the Y-axis (pitch) 

with the Y-axis in its new position as in Figure 2-22. The X- and Z-axis is 

rotated with an angle φ to the new positions x‟ and z‟. 

GCS

Original position of 6DOF body

z

x

y

6DOF body
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Figure 2-22: Rotation around the Y- axis 

3.  Finally the local coordinate system is rotated around the Z-axis (yaw) with the 

Z-axis in its final position as in  The X- and Y-axis is rotated with an angle ψ to 

the new positions x‟ and y‟.  

 

Figure 2-23: Rotation around the Z- axis 

After the rotations the rigid body has a new orientation in reference to the GRS as 

shown inFigure 2-24. 

6DOF body

GCS

6DOF body

GCS



Chapter 2: Protocol Development

 

2-33 

 

Figure 2-24: New 6DOF position in the GRS. 

QTM uses the rotation matrix internally to describe the rotation of rigid bodies, and 

when exporting 6DOF to TSV files the rotation matrix is included for all bodies in all 

frames, together with roll, pitch and yaw angles. 

Euler angles (rotation angles) are the way that QTM shows the rotation of a 6DOF 

body. It is also how you enter any rotation that should be applied to a global or a local 

coordinate system. It is therefore important to understand how Euler angles work to 

be able to use 6DOF data correctly. Euler angles are a method to define the rotation 

of a body. The rotation angles are transformed into rotation matrix as follows: 

The defined position of the rigid body is used to compute P-origin, the positional 

vector of the origin of the LRS in the GRS, and R, the rotation matrix which describes 

the rotation of the rigid body. The rotation matrix (R) can then be used to transform a 

position P-local (e.g. x'1, y'1, z'1) in the LRS, which is translated and rotated, to a 

position P-global (e.g.x1, y1, z1) in the GRS. The following (2-6 is used to transform 

a position:  

New Position of 6DOF body

z’

x’
y’
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(2-6) 

The rotation angles are calculated from the rotation matrix (R), by expressing it in the 

three rotation angles: roll (θ), pitch (φ) and yaw (ψ). To begin with the rotations are 

described with individual rotation matrixes: Rx, Ry and Rz. The resulting three rotation 

matrixes are then as shown in  (2-7,-(2-8 and (2-9: 

    
   
          
         

  

 (2-7) 

    
         

   
          

  

(2-8) 

    
          
         

   

  

(2-9) 

The rotation matrix (R) is then calculated by multiplying the three rotation matrixes. 

The orders of the multiplications below means that roll is applied first, then pitch and 

finally yaw  

             

         
         
         

  

 

                       

                                                          
                                                         

 . 

(2-10)   
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(2-11 to (2-13 are then used to calculate the rotation angels from the rotation matrix: 

                       

(2-11) 

              
   

    
   

(2-12) 

             
   

    
   

(2-13) 

The rotation angles of a rigid body are defined as:  

1. Rotation around the X-axis is called roll. 

2. Rotation around the Y-axis is called pitch. 

3. Rotation around the Z-axis is called yaw. 

Positive rotation is defined as clockwise when looking in the direction of the axis. The 

angles are applied to the local reference system of the rigid body in the order: roll, 

pitch then yaw. These rotation angles are defined starting with the 6DOF body which 

is in alignment with the GRS . The postural rotations of the defined rigid body are 

illustrated in Figure 2-25. The roll, pitch and yaw are representative of body rotations 

of the rat during gait defined in Table 2-4.  
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Table 2-4: Definitions of roll pitch and yaw 

 

 

 

Figure 2-25: Illustrations of roll pitch and yaw  

2.3.3. Limb and paw placements analysis 

Limb placement data was analysed during locomotion by observing video files 

recorded using standard 2D video analysis (Sony camera, Japan) in QTM software. 

Two parameters were analysed:  

Roll Motion of the body during walking in the axis parallel to the beam, x-axis.
On the plane perpendicular to the beam, z-y plane 
showing the body rotation of the rat form  side to side  

Pitch Motion of the body during walking in the axis perpendicular to the beam, y-axis
On the plane parallel to the beam, x-z plane.
showing how much the animal is rotating the body up and down the beam

Yaw Motion of the body during walking in the axis perpendicular to the beam. x-axis
on the plane perpendicular to the beam, x-y plane
showing body rotations from left to right as the rat walks to right 
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1. Tail position: Monitored and recorded as straight, left or right (Figure 2-26 B) and 

converted into percentages over the entire beam. 

2. Position of limb on either the beam or the ledge (Figure 2-26 B): The four limbs 

were observed individually for each trial. A score of „1‟ was given if the limb was 

placed on the beam and „0‟ if it was placed on the ledge. The number of „1s‟ and 

„0s‟ acquired for each rat was averaged and expressed as a percentage („foot-

slips‟). Scoring can be found in Appendix C. 

 

 

Figure 2-26: Paw position along the beam was scored as either, A) on the beam or B) on 
the ledge. B) Also reveals a tail positioned on the right. 

2.3.4. Statistical and Error Analysis 

Data was analysed using GenStat and using SPSS 16 for Windows. Temporal gait 

parameters and ROM rotations were acquired for animal and human trials. 

Differences of temporal and postural gait parameters were assessed by ANOVA  

p<0.05) where (F1,degrees of freedom) followed by a SIDAK post hoc test. 

A) B)

Tail on the right
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The inter-trial repeatability of gait parameters was calculated by the one-way random 

intra-class correlation coefficient (ICC) and the 95% confidence interval (CI) of the 

ICC, using one-way ANOVA (Oken et a;l 2008). The evaluation criteria and 

standards for ICC values are accepted as follows: values ≥0.75 represent excellent 

repeatability, 0.4–0.74 represents adequate repeatability, and values ≤0.40 represent 

poor repeatability. 

2.3.5. Classification using Dempster-Shafer theory 
(DST) 

The classification method was developed and is currently employed at Cardiff 

University (Jones et al., 2006, Whatling et al., 2008). It is based around the 

Dempster-Shafer theory (DST) of evidence. The tool uses mathematical probability 

to quantify objective data and provides a means of interpreting several data sets 

simultaneously. This method of classification was initially used to differentiate 

between the characteristics of non pathological and osteoarthritic knee function 

(Jones et al., 2006) and has subsequently been used to classify hip function and total 

knee replacement function (Whatling and Holt, 2010).  

The DST helps to deal with conflicting data produced from motion analysis by 

assigning levels of support to each measurement variable; taking each piece of 

evidence to classify the data presented. The DST-based classifier transforms the 

walking data into a set of belief values based on the hypothesis tested and input 

parameters. The belief values are then represented as a unique point on a simplex 

plot to visually represented final classification of walking abilities. Visual 

representation enhances the appeal to the method and provides a tool that can be 

used to understand behavioural outcomes objectively.  
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2.3.5.1. DST Classification method 

A summary of the classification method (summarised in Figure 2-27) from (Jones et 

al., 2004) and (Whatling et al.,, 2009) and is described here using POST_CN and 

POST_LE comparison as an example. Rat gait data is transformed into a set of three 

belief values THAT FORM THE Body of Evidence (BOE):  

1. A belief that the rat has normal gait(POST_CN) 

2. A belief that the rat has gait that is characteristic of a model of stroke 

(POST_LE) 

3. An associated level of uncertainty m(Θ). 

These are represented as points on a simplex plot to give a visual representation of 

rat gait. The belief value for each point is proportional to the distance of the point 

from each side of the equilateral triangle, e.g., the closer the point is to the vertex 

labelled CN the greater is the belief that the subject has a normal gait. The 

classification method consists of five stages. 

1. Conversion of input variables into confidence factors 

2. Conversion of confidence factors to BOE 

3. Visualisation of BOE using simplex plots 

4. Combination of individual BOE 

5. Classifications based on the final combined BOE 
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Figure 2-27: The classification method showing the interaction of its three main stages.(a) 
Conversion of input variable, v, into confidence factor cf(v) using the sigmoid function.  Θ  

is the value of v for which cf(v) = 0.5. (b) Conversion of confidence factor into body of 
evidence (BOE) (c) Conversion of the BOE into its simplex coordinate, denoted by the 

point p (adapted from Beynon et al., 2002). The simplex plot is divided into four regions: 1 
denotes the dominant POST_CN classification region; 2 denote the dominant POST_LE 
classification region; 3 denote the non-dominant POST_CN classification region and 4 

denotes the non-dominant POST_LE classification regions. The dotted vertical line is the 
decision boundary. 
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Conversion of input variables into confidence factors (From Jones et al 2004) 

The first stage of the classification procedure is to standardise each input or 

characteristic measurement, v, to a value on a scale of 0-1. The transformed variable 

is defined as a confidence factor  (   (v)) and represents a level of confidence in (or 

not in). The    (v) must satisfy the following criteria (adapted from Safranek et al., 

1990):  

1.   (v) is a monotonic function  

2.   (v)  = 1 if the measurement implies certainty in {POST_CN}  

3.   (v) = 0 if the measurement implies certainty in {POST_LE} 

4.   (v)  = 0.5 if the measurement favours neither {POST_LE} nor 

{POST_CN} 

The input variable is transformed into a confidence factor using the sigmoid function 

in Equation (2-14 

       
 

          
   

(2-14) 

Where θ is the value v for which   (v)=0.5 The mean value v is used so that θ is not 

biased towards either group. The   parameter adjusts the steepness of the sigmoid 

funtion(see Figure 2-28 ).  to reflect the nature of the spread of the data.  
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Figure 2-28: Influence of k on confidence factor (a) positive association (k = 0.25) (b) 
negative association (k = -0.25) (c) small absolute value of k (k = 0.2) (d) large absolute 

value of k (k= 2) (adapted fromjone 2004) 

Conversion of confidence factors to BOE 

The       is converted into a characteristic body of evidence (BOE). The BOE is a 

set of belief values which expresses the degree to which the evidence confirms each 

hypothesis. 

1. m( {POST_CN} ) the degree of belief in the gait being {POST_CN}  

2. m( {POST_LE} ) the degree of belief in the gait being {POST_LE} 

3. m({POST_CN} {POST_LE,) = m(Θ) the degree of belief in either the 

rats gait being {POST_CN} or [POST_LE}. 
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The value m({POST_CN};{POST_LE}) is the associated uncertainty and represents 

the value which cannot be assigned to {POST_CN} or {POST_LE}. 

The sum of the belief values in a BOE is 1 as in Equation (2-15 i.e 

                                                          . 

(2-15) 

The belief values are defined in Equation(2-16, (2-17 and (2-18 as follows (Whatling) 

              
 

   
      

  

   
      

(2-16) 

           
  

   
          

(2-17) 

                               
     

   
     

(2-18) 

Where A is the dependence of m({POST_LE}) of the confidence factor and B is the 

maximal support that can be assigned to m({POST_LE}). The assignment of the 

values of A and B is dependent on the general limits of uncertainty [Θ   Θ   allowed 

for the individual input variables. The values of A and B are expressed in Equations 

(2-19 and (2-20 as: 

  
      

          
 

(2-19) 
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(2-20) 

2.3.5.2. Combination of individual BOE 

BOE‟s combined using the Dempster‟s rule into a final combined BOE( BOEc) to offer 

evidence to support the classification of the input variables. In the case where only 

two exhaustive outcomes exist, POST_LE and POST_CN, the combination of two 

independent BOE    (.) and   (.) is given by the following three formulaic 

expressions in Equations (2-21, (2-22(2-23 .The BOEc comprises the same functions 

as in the individual BOE namely {POST_LE}, {POST_CN} and   . 

                                  

  
                                                                     

                                                           
  

(2-21) 

                                  

  
                                                                     

                                                           
 

(2-22) 

                                                      

(2-23)  



Chapter 2: Protocol Development

 

2-45 

2.3.5.3. Visualisation of BOE using simplex plots 

Given the expressions                                       Θ     , a 

simplex coordinate is used to represent this set of belief values as a single point on 

the simplex plot (see Figure 2-27 ). The simplex plot is an equilateral triangle within 

which lies a point. This point exists such that the distance from p to each of the sides 

of the equilateral triangle is equal in the same proportion as the ratios of the 

values             . 

There exists a central boundary at the centre where m({POST_CN}) = 

m({POST_LE}). To the left is the area where the belief that the gait is normal i.e., 

m({POST_CN}) > m({POST_LE}). And to the right o the boundary the belief that the 

rats have a gait that is characteristic of stroke rats, i.e., m({POST_LE}) > 

m({POST_CN}. Region 1 is the area of dominant POST_CN, 2 is for dominant 

POST_LE, region 3 non-dominant POST_CN function and region 4 non-dominants 

POST_LE. the simplex plots provide a method of visualising gait data. With 

numerous data and numerous of groups to compare, visualisation is useful in 

comparing the three groups of rats in this study (see Figure 2-27 ).. 

2.3.5.4. Evaluating accuracy 

The final stage of classifier design is performance evaluation through examination of 

its error or misclassification rate. This evaluation method is discussed in (Jones, 

2004, Jones et al., 2006). The classifier is trained using a set of cases and the error 

rate is calculated using the same cases that were used to design the classifier 

(Jones, 2004). The true error rate is estimated using the hold-out method (Jones, 

2004) where a set number of cases are assigned to the training group and the 

remainder to the testing group. 
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The classifier is trained on the cross-validation method known as the leave-one-out 

method, where the classifier is trained on N training cases and tested on the 

remaining one test case. This process is repeated N times. The leave-one-out error 

rate is then defined as the average test case error rate. This method overcomes the 

issue of inefficient use of the data since every case is used in testing and each time 

every case save one is employed as a training case.  
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2.4. Comparing Human and rat protocol 

Protocols were designed to measure human and rat gait patterns accurately using 

the same measurement system of 3DMA. Differences of the two developed 

experimental protocols, one for rat and one for human motion capture are 

summarised in Table 2-5.  

Table 2-5: Rat and human MA protocols 

 Rat MA Human MA 

Apparatus-dimensions based 
on rats stride length and 
base of support during gait 

1.65m elevated beam 8m Flat walkway 

Camera system–Qualisys 
ProReflex MCU’s 

7 cameras calibrated using 
300mm kit 

12 cameras calibrated using   
700mm kit 

Retro-Reflective markers 
11 on rat and 8 to define the 
beam 

20 on the human and 8 on the 
walkway 

Gait cycles achieved More than 10 Between 4-6 

The human protocol required a larger space, more cameras and more markers to 

acquire the required number of gait cycles (i.e., 5) than the rat protocol. 

2.4.1. Cameras and calibration 

To optimise the use of the Qualisys system, camera set up and calibration is very 

important. Data recording for the rat study was carried out at the School of 

Biosciences. This was the first time MA techniques were performed across 

disciplines at the School. The rat protocol involved a 7 camera set up where the 

cameras were placed around the apparatus to capture data of the whole rat as it 

walked along the beam the room size and space was not a problem. 

Data acquisition of human multiple gait cycles had not been performed at Cardiff 

University MA Laboratory and due to the size of the room this proved to be a 
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challenge. To achieve maximum use of the space, 12 cameras were used facing 

towards the calibration frame. This only allowed the capturing of data at the posterior 

region of the subject from the start of the walkway to finish. However, the required 

number of gait cycles could be recorded.  

Setting up the cameras was time consuming because camera positions, cable 

connections, aperture and focus had to be adjusted for each session. The time it took 

to set up varied depending on the calibration success rate, with the rat calibration 

having a better calibration rate since all the cameras were focussed at the same 

volume around the beam. Calibration and set up took longer for the human setup 

because of the need to carry out an extended calibration, in addition to the numerous 

cameras and the larger room to work with.  

Once the cameras were calibrated, the data collection process was faster for the 

healthy human subjects since they were able to respond to commands from the 

researcher and walk along from one end of the walkway to the other without 

destruction. On the other hand, with rats, marker placement took longer since they 

were fidgeting while walking and their gait was sometimes unpredictable, However 

some rats walked without stopping while others would stop and groom before 

continuing, therefore repeated measurements were necessary to record at least two 

good walks along the beam. 
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2.1. Data processing 

The purpose of the developed protocol in Chapter 2 was to explicitly compare rat to 

human gait parameters. To achieve this, similar data processing methods were 

necessary to measure similar outputs. Each group, that is rats and human, produced 

similar data patterns which allowed for similar analysis. Assessment of gait to 

analyse behaviour is essential since this is a common behaviour in both rats and 

humans. Rat gait studies are used as a paradigm for the experimental study of 

control and recovery of function after injury in the expectation that results are 

generalized to humans.  

The movements were recorded and analysed using 3DMA to captured frame-by-

frame Cartesian data of markers using Qualisys Track Manger (QTM). The 

measurements are written into text format and exported for post-processing in Excel 

and Matlab, the process is described in Chapter 2. Two programs were written, one 

to transform foot and paw trajectories into temporal gait parameters, and the other to 

transform body rotation kinematic waveforms into the postural data for one gait cycle. 

2.2. Outputs 

2.2.1. Temporal parameters 

Both humans and rats were required to walk over-ground for a length that allowed 

the capture of five continuous gait cycles. Both trials were practical, non invasive and 

there were no constraints or hindrance to walking. The limb movement pattern of the 

rats and the humans during gait appeared very similar. Outputs from QTM of 
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comparable patterns during locomotion are given in Figure 2-29 and Figure 2-30, for 

the rats and humans respectively. 

 

Figure 2-29: Output data from QTM for the rats walking trial showing five gait cycles. 

 

Figure 2-30: Output data from QTM for the human walking trial showing five gait cycles. 

In general, rats walked with a lateral gait where two limbs were in contact with the 

ground at any given time (the order of limb contact in one stride was left hindlimb 

(LHL), left forelimb (LFL), right hind limb (RHL) and right forelimb (RFL)), whereas 

the human walking pattern was so as only one limb was in contact with the ground at 

any one time. The output data had similar patterns of trajectories as illustrated with 

an example of healthy rats in Figure 2-31 and healthy humans.  
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Figure 2-31: A) Rat gait trajectories for all four limbs and B) Human gait trajectories for all 
four limbs 

As illustrated in the two figures, the human subjects walked along on a distance of 

7m (Figure 2-31B) while rats require just under 1m length (Figure 2-31A) to record 5 

cycles. 

2.2.2. Postural parameters 

Postural control during gait was also described and discussed for each studied 

cohort (Figure 2-32 to Figure 2-34 for roll, pitch and yaw respectively). Human 

postural studies (Chapter 5) describe body rotations of the upper body (shoulders 

and spine) trunk (shoulders and pelvis) and pelvis to evaluate which of the three 

body rotation presented patterns that were similar to the rat rotations during gait. 
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Kinematic waveforms of body rotations revealed that during one gait cycle, body 

orientation is towards the weight bearing limbs for both species. 

 

Figure 2-32: The roll of the body from left to right during one gait cycle which involves 
rotations towards the side of limb weight bearing during gait for both species.  
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Figure 2-33: Pitch rotation representative of the vertical axial displacements with the 
human upper body rotations matching the pattern of the animal motion of a double 

sinusoidal path.  

These represent two cycle of downward and upward displacement in each stride of 

the right and left steps. The two dips occur during periods of double limb support 

each followed by a progressive rise above zero degrees due to the two single 

support intervals during terminal stance and late mid swing.  
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Figure 2-34: Yaw lateral displacement towards the side of the supporting limb is illustrate 
in the upper body waveforms and the animal waveforms. Displacements occur during 

single stance as the limb support shifts from the left to right limbs. Maximum 
displacement is at around 50% gait cycle during double limb with  

The developed protocol has demonstrated a protocol that enables the measurements 

of gait on a defined walkway for both rat and human subjects. This chapter has 

introduced and described the new protocol for both data collection and processing in 

detail.  The data collection protocol for rat motion capture has achieved a level of 

practicality that was non-invasive, and in turn producing accurate results illustrated 

from the error analysis and repeatability tests on marker placements. In addition a 

new human marker based motion analysis protocol was designed to incorporate the 

marker set and gait cycles of those of the rat‟s protocol, incorporating the available 

volume and similar marker set as the rat protocol. Results and discussions based on 

this chapter are given in Chapters 3 to 5. 
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CHAPTER 3 
3. Quantifying locomotion of 

Parkinson’s disease rats 
This chapter investigates the novel application of the motion analysis protocol 

developed in Chapter 2 as a tool for assessing the outcome of unilateral lesion 

surgery on a rat model with Parkinson‟s disease (PD). A brief introduction to the 

study, followed by the results of five unilaterally lesion rats and five controls as they 

walked along an elevated beam is provided.  

3.1. Introduction 

Animal models of PD (in this case rats) have been reported to exhibit characteristics 

similar to those found in human patients  (Metz et al., 2005, Klein et al., 2009, 

Whishaw et al., 1992).  To investigate the clinical condition of PD, the most 

commonly used model is the unilateral injection of the neurotoxin 6-

hydroxydopamine (6-OHDA) into the rat medial forebrain bundle; (Ungerstedt, 

1968).. This injection produces dopamine depletion that results in motor deficits that 

are similar to those in human PD (Cenci et al., 2002, Henderson et al., 2003, Iwaniuk 

and Whishaw, 2000, Whishaw et al., 1992).  

The Rats with unilateral lesion (hemi-parkinsonian) show motor deficits on the 

opposite side (contra-lateral) of the lesion. The ipsi-lateral side serves as an internal 

control. These rats show an almost complete neglect of the contra-lateral side, and 

conversely are more responsive to stimuli on the ipsi-lateral side while body weight 
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bearing and posture are compensated with the healthy ipsi-lateral side (Miklyaeva et 

al., 1995).  

Previous behavioural studies on rat model of PD to investigate the outcome of the 

lesion surgery have either been qualitative and descriptive; for example (Whishaw et 

al., 2003b) analysed behaviour of PD models using rating scales of stepping 

behaviour to indicate that the hemi-Parkinson rats were chronically impaired in their 

posture and in the use of the contra-lateral limbs; or invasive such as in EMG studies 

where electrode are implanted into the skin surface (Metz et al., 2005). Therefore 

there is a need for a simple, practical and objective tool that would allow for the 

assessment of the motor deficits expressed in PD models and furthermore, generate 

results that are comparable to human studies (Whishaw et al., 1992)  

3.2. Methods 

3.2.1.1. Data collection 

Ten adult male Lister Hooded rats (Charles River, UK) were tested in accordance 

with the United Kingdom Animals (Scientific Procedures) Act, 1986. The rats were 

older and slower than the average rat used for behavioural studies. They were 

housed in standard cages in groups of five animals in a temperature-controlled 

environment (23.0 ±0.3°C) on a 14 h light: 10 h dark schedule. Food and water was 

provided ad libitum. The animals were divided into two cohorts: five rats underwent 

the unilateral partial nigrastraital lesion (PNL) surgery while other five rats were non-

operated control rats (CNL).  

All the surgeries were carried out by a member of licensed member of the Brain 

Repair Group. All PNL rats were anesthetized with isoflurane (Abbott, 
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Queensborough, UK) and were stereotactically injected with 6-OHDA (3 μg/μl in 0.2 

mg/ml ascorbic acid in 0.9 % sterile saline; Sigma, Poole, UK) into the right MFB 

using a 30-gauge cannula (Ungerstedt, 1968).. Lesion coordinates were set in mm 

(Kirik et al., 1998): tooth bar -2.3, anterior / posterior −4.4, lateral −1.0, dorso-ventral 

−7.8. Injection volume was 3 µl and the injection rate was 1 μl/min. The cannula was 

left in place for 3 min before withdrawal followed by cleaning and suturing of the 

wound.  

Six weeks post surgery; all animals were habituated to walk along three elevated 

beams. Three dimensional (3D) Cartesian data of markers attached to the rat were 

acquired whilst they walked along wide (WD), a narrow (NR) and a graduated (GR) 

beams using a Qualisys optoelectronic camera system as described in detail in 

Chapter 2. The beams were equally divided into three sections called zones.  

The following hypotheses were investigated: 

1. Rat models of PD show differences in gait variables compared with 

their controls while walking over-ground  

2. Rat models of PD show differences in gait variables on the limbs 

contra-lateral to surgery compared to the ispi-lateral side while walking 

over-ground on a WD, NR and GR elevated beams. 

3. Rat models of PD show differences in gait variables while walking on 

beams of different widths. 
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3.3. Data Processing 

3.3.1.1. Temporal gait parameters 

Temporal gait parameters were quantified by calculating the positional vectors of the 

markers attached to the four limbs of the rat as described in Chapter 2. The data was 

input into custom developed software that calculated the stance times, swing times, 

stride length, speed and cadence for comparisons between the PNL and CNL while 

walking along the three elevated beams. The data was recorded as the average 

values of two walking trials for each animal, and the average taken for all the rats 

from each cohort. 

3.3.1.2. Postural gait parameters  

Postural instability was also quantified by calculating the rat‟s body displacement and 

orientation using Euler angles from markers placed on appendicular parts of the rat‟s 

skeletal structure as described in Chapter 2. These markers effectively define a “rigid 

body” attached to the trunk and enable six degrees of freedom (6DOF) calculation as 

displacement angles defined as the roll, pitch and yaw. Data was acquired as the 

rats were walking along three different beams (WD, NR and GR). The displacements 

were recorded as average range of motion (ROM) angles and generating kinematic 

waveforms for both cohorts. 
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Range of Motion 

The mean range of motion (ROM) for roll, pitch and yaw rotations were calculated 

comparing the three beams and the PNL and CNL cohorts. On the WD and NR 

beams the ROM mean performance was calculated for three gait cycles for each 

animal in the central section of the beams (zone 2); on the GR beam, the mean ROM 

was calculated for three gait cycles in each zone.  

Kinematic waveforms 

The 6DOF displacement was also illustrated as kinematic waveforms in order to 

visually represent the changes in posture occurring during gait and the strategies that 

PD rats adopt. The waveforms represent one gait cycle (left forelimb taken as 

reference) calculated as the average of three gait cycles taken along the central 

section of the beams. The mean waveform of the three cycles were resample to 100 

data points and the average of each cohort was used to compare the differences 

presented on the beam. 

The differences in the kinematic waveforms of roll, pitch and yaw rotations between 

the two cohorts were examined in order to understand changes in gait and postural 

strategies in hemi-parkinsonian rats. To compare the patterns of rotations for the two 

cohorts, the mean of three gait cycles (left forelimb as the reference limb) along the 

central section of the beam (zone 2) was calculated for the WD and NR beams. For 

the GR beam, the patterns of rotation were compared within each zone: the means of 

two gait cycles within zone 1 and three gait cycles within zones 2 and 3 were 

calculated respectively (Raw kinematic waveforms can be found in Appendix D). 
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3.4. Results 

3.4.1. Temporal Gait Parameters 

Temporal gait parameters were considered for comparisons between: 

1. The PNL and CNL cohorts 

2. The ipsi-lateral and contra-lateral limbs on the PNL cohort  

3. The three beams.  

An ANOVA (p<0.05) statistical analysis was performed for the 10 animals to evaluate 

the differences between their gaits following motion analysis along an elevated 

beam. 

3.4.1.1. PNL and CNL 

This section compares the data from PNL and CNL rats to illustrate the effect of 

unilateral lesion surgery on gait. The mean and standard mean errors for the 

temporal gait parameters of the rat models and their controls were recorded in Table 

3-1 and illustrated in Figure 3-1, Figure 3-2 and Figure 3-3 for the WD, NR and GR 

beam respectively, where the RFL=right forelimb, LFL=left forelimb, RHL=right 

hindlimb, LHL=left hindlimb.  
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The main observations comparing the PNL with the CNL cohort were as follows: the 

PNL cohort showed  

1. Lower forelimb cadence for the hind limbs for all three beams. 

2. Slower walking speed for the three beams. 

3. Longer swing time on the NR and GR beams.  

4. Shorter swing times n the WD beam except the LFL 

5. Longer stance time on the WD and GR beams with the exception of the 

RFL in the WD beam. 

6. Shorter stance time on the NR beam 

7. Shorter stride lengths on all three beams with the exception of the RBL, 

LBL, RBL on the WD, NR and GR beams respectively. 

The observations that were found to be significantly different for beam width and limb 

interactions were that the PNL cohorts showed: 

1. Slower walking speed, lower hindlimb cadence (F1,1 = 6.08), smaller 

forelimb stride length on the WD beam (F1,1 = 35.08),. 

2. Faster walking speed, lower forelimb cadence (F1,4 = 22.94) and a longer 

forelimb stance time (F1,4 = 9.07) on the GR beam, 

3. Lower hindlimb cadence (F1,1 = 20.25), Longer hindlimb stance time 

(F1,1 = 9.73) and lower forelimb stride length (F1,1 = 18.25) on the NR 

beam 

There were no interactions between the right and left limbs in the two groups. 
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Figure 3-1 : Temporal parameters that were found to be significantly different between 
the PNL and CNL cohorts while walking along the WD beam. The results are expressed as 

bar charts of the mean of each cohort with standard mean error 
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Figure 3-2 : Temporal parameters that were found to be significantly different between 
the PNL and CNL cohorts while walking along the NR beam. The results are expressed as 

bar charts of the mean of each cohort with standard mean error bars  
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Figure 3-3 : Temporal parameters that were found to be significantly different between 
the PNL and CNL cohorts while walking along the GR beam. The results are expressed as 

bar charts of the mean of each cohort with standard mean error bars 
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3.4.1.2. Comparing contra-lateral and ipsi-lateral limbs 

The comparisons between the left (impaired) and right (healthy) sides for the PNL 

cohort showed that there was no interaction between the side and the three beams, 

i.e., the different beams had no effect on the data from the sides. The following 

differences were noted comparing the left and the right sides: 

1. Cadence was similar between the right and left side of the rats 

(Forelimb = F1,4 = 0.23, P=n.s.; and hindlimb =  F1,4 = 0.26, P=n.s.) 

2. Longer swing times during gait on the left than on the right forelimb and 

hindlimb showing a slight asymmetry (forelimb = F1,4 = 8.82, P<0.05.; 

and hindlimb =  F1,4 = 3.46, P=n.s.) 

3. Longer left forelimb and left hindlimb stance times during gait. These 

differences were not statistically significant (forelimb = F1,4 = 2.01, 

P=n.s.; and hindlimb =  F1,4 = 0.15, P=n.s.) 

4. Shorter forelimb and hindlimb stride lengths while walking. These 

differences were not (forelimb = F1,4 = 1.21, P=n.s.; and hindlimb =  F1,4 

= 0.52, P=n.s.) 

Although the differences were not significant on most variables, these set of 

comparisons were included to test the null hypothesis that asymmetry exists between 

the left and right side due to unilateral surgery that is meant to affect the contra-

lateral side only.  
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3.4.1.3. Comparing beams 

The mean and SME for the temporal gait parameters for all animals as they walked 

along the three beams were analysed. 

In general for the CNL cohort walked along the; 

1. GR beam with a higher cadence than along WD and NR beams.  

2. WD beam faster than on the GR and NR beam 

3. GR beam with shorter swing time than along WD and NR beams. The 

times were longer on the NR beam than on the WD beam.  

4. NR beam with the shortest stance time than along WD and GR beams 

5. WD beam with long stride length compared to the GR and NR  

PNL rats walked along the: 

1. GR beam with a higher cadence than along WD and NR beams.  

2. WD beam faster than on the GR and NR beam 

3. NR beam with shorter swing time compared to the WD and GR beams 

The times were longer on the WD beam than on the GR beam.  

4. GR beam with longer stance time compared to the WD and NR beams  

5. WD beam with long stride length compared to the GR and NR  

It was found that there was a significant effect of the beams width on:  

1. Forelimb and hindlimb cadence (forelimb = F1,8= 5.70; and hindlimb =  

F1,8 = 27.98). A post hoc analysis revealed that the difference was 

significant between the WD and NR beams and between the GR and 

NR beams. 
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2. Speed where F1,2= 6.52, a post hoc analysis revealed that the 

difference was significant between the WD and GR beam. 

3. There was a significant interaction between the PNL and CNL cohorts 

for the roll ROM (F1,2= 4.64) and the forelimb swing time (F1,4=3.53). 

3.4.2. Postural gait Parameters 

The roll ROM was significantly higher in the PNL cohort while walking along the WD 

beam. Table 3-2 displays mean roll, pitch and yaw ROM on the GR beam calculated 

during motion along each zone 1, zone 2 and zone 3 independently. The mean roll 

ROM in zone 1 was found to be significantly less for the PNL cohort. The mean pitch 

ROM in zone 2 was less in the CNL cohort compared to the PNL cohort. All other 

ROMs in zones 1 and 2 were found to be similar. In zone 3, where the beam has 

reduced its width to the width of the NR beam, the roll ROM showed a non significant 

trend towards being higher for the CNL cohort compared to the PNL cohort; however, 

no significant differences were found. It is noteworthy that the yaw ROM displayed a 

particularly large standard variation in all three zones. 

3.4.2.1. Kinematic waveforms 

Figure 3-4 shows mean kinematic rotations along the WD beam; The PNL cohort 

produced a more positively biased roll and yaw ROM, i.e. they leaned to the right 

(healthy) side while turning towards the left during gait. Figure 3-5 represents mean 

rotations along the NR beam. The CNL and PNL cohorts used similar patterns of 

motion. Analysing the two cohorts, there was no bias towards either side for the roll 

and pitch ROM. The PNL cohort walked with a negative yaw ROM, i.e. they turned 

towards the right (healthy) side. 
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Figure 3-6 displays rotations in zones 1, 2 and 3 for the GR beam. The CNL cohort 

produced a negatively biased roll ROM. The PNL cohort walked with a positive roll 

ROM, i.e. they leaned to the right (healthy) side, which is related to the tail to the 

right. Both pitch and yaw rotations showed a positive bias compared to the CNL 

cohort. Note the increasing variations in zone 2 and 3 as the width of the GR beam 

decreases. 

Table 3-2: The mean ROM (degrees) for roll, pitch and yaw during locomotion along the 
WD, NR, and the three zones on the GR beam for the PNL and CNL cohorts; significant 

differences (* p<0.05) were found between the CNL and PNL animals for roll on the WD 
beam and Yaw on the GR beam (zone 1). 

 

Beam Postural 
ROM/degrees

CNL PNL

WD
Roll

Pitch
Yaw

22.41±4.51
12.50±3.84
12.36±2.38

27.01±5.10*
12.95±3.90
13.19±2.53

NR
Roll

Pitch
Yaw

27.52±5.01
16.24±2.41
15.62±2.36

24.94±2.25
13.66±4.37
13.87±4.08

GR_ Zone1
Roll

Pitch
Yaw

28.60±10.11
11.14±2.00
11.50±2.37

25.26±11.77
8.48±2.06

7.88±3.093*

GR_ Zone2
Roll

Pitch
Yaw

24.41±4.24
11.29±1.23
13.53±2.76

25.17±1.964
10.66±1.391
13.03±6.132

GR_ Zone3
Roll

Pitch
Yaw

24.16±3.317
12.91±3.549
15.06±3.718

24.76±2.8
15.82±4.2
14.84±5.6
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Figure 3-4: Kinematic waveforms for the average walking performance and its SD for one 
gait cycle on the WD beam. The bold black lines represent the average performances of 

the PNL cohort (the SD is plotted in thin black lines); the dotted lines represent the 
average performance of the CNL cohort (the SD is plotted in grey).   
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Figure 3-5: Kinematic waveforms for the average walking performance and SD for one gait 
cycle on the NR beam. The bold black lines represent the average performances of the PNL 

cohort (the SD is plotted in thin black lines); the dotted lines represent the average 
performance of the CNL cohort (the SD is plotted in grey). 
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3.4.2.2. Tail and limb position 

Tail position was recorded as straight, right or left during locomotion on the beam 

Table 3-3. The main difference in tail position between the two cohorts is 

demonstrated by the PNL cohort walking with their tail mainly to the right (healthy) 

body hemisphere on the WD, NR and GR beams. However, one animal of the PNL 

group developed a different strategy while crossing the WD beam where the tail was 

always on the left, compensating for having both the right fore and hind limbs always 

on the right ledge (instead of on the beam). 

Limb position of all the four limbs was observed and recorded as either „limb on the 

beam‟ (= 1) or „limb on the ledge‟ (left or right; = 0). On the WD beam, the CNL rats 

placed their limbs on the beam while walking along the beam at all times (100%), 

whereas the PNL rats placed their limbs only with an 85% success rate on the beam 

(Table 3-4). On the NR beam, all the rats in the CNL and PNL cohorts walked on the 

beam with a 50% success rate. On the GR beam, all rats in both cohorts walked with 

their limbs on the beam in zones 1 and 2 (90 - 100 %), whereas in zone 3, 25% of the 

CNL and 35% of the PNL rats used the ledge with their left limbs. 
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Table 3-3: Tail positions expressed as a percentage of all analysed gait cycles as either 
straight behind the rat’s body on beam or right or left of the rat’s body assisting postural 

balance by touching the beam and the ledge 

 

Table 3-4: Position of all the four limbs was recorded as either ‘limb on the beam’ (= 1) or 
‘limb on the left or right ledge’ (= 0) and is presented as a percentage of all gait cycles 
analysed per run. 

 

Beam Limb
Position

CNL/% PNL/%

WD Beam
Right Ledge
Left Ledge

100
0
0

85
12
3

NR Beam
Right Ledge
Left Ledge

50
25
25

50
25
25

GR –Zone 1 Beam
Right Ledge
Left Ledge

90
0
10

95
0
5

GR –Zone 2 Beam
Right Ledge
Left Ledge

100
0
0

100
0
0

GR –Zone 3 Beam
Right Ledge
Left Ledge

75
10
25

65
10
35
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Repeatability of assessed gait parameters was excellent (ICC >0.890), except for 

temporal parameters along the WD beam for the CNL cohort (ICC 0.283) and the 

PNL cohort (ICC 0.446) , 

3.5. Discussion  

This chapter presents quantitative assessment of 3D temporal gait parameters as 

well as speed and postural adjustments during over-ground locomotion of healthy 

and hemi-parkinsonian Lister Hooded rats. The comparison of lesion and control 

animals indicates that animal MA can provide a measure of different behaviour and 

functional characteristics of all four limbs. Five different variables were tested for 

significant differences between the two cohorts; body asymmetry was quantified 

between the impaired and the healthy side within the PNL cohort and the effects of 

varying the width of the beam on speed was also measured. 

Numerous methods have been suggested to study locomotion of rats with PD 

lesions, both in 2D and in 3D. However, few were performed with intention to 

correlate motor performance of patients with their respective animal models. For this 

reason, the current study was established using 3D MA techniques to evaluate 

functional aspects of PD during over-ground walking on three different elevated 

beams.  

The PNL animals with unilateral dopamine depletion show impairments that are 

homologous to PD patients (Whishaw et al., 1992, Metz et al., 2005) and present the 

motor deficit on the side contra-lateral to surgery, in this case impairment was on the 

left side. For the current study, expected asymmetry was observed and quantified for 

the PNL animals, affecting stance and swing times as well as cadence. Speed of 
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movement along the beams has also been shown to be slower following lesion 

surgery, caused by delayed initiation and processing of motion (Lundblad et al., 

20002). In the current study the average crossing speeds of the three beams was 

found to be lower for the PNL cohort.  

Results from this study support the view of Metz et al., (2005), Miklyaeva et al., 

(1995), and Pinna et al., (2007), that, compared to the CNL cohort, the PNL cohort 

walks more slowly with a longer stance time and swing time, indicating that the 

animals consistently remain in stance for longer period of time in all four limbs, 

resulting in lower cadence and a shorter stride length. The latter was significantly 

shorter in the PNL cohort for the impaired forelimb on the NR and WD beams. The 

impaired hind limb on the GR beam also had significantly shorter strides. PNL 

animals have a reduced ability to move the body forward using the impaired limb; 

they stay in stance for a longer period of time to allow the non-impaired limbs to 

move the body forward when entering the swing phase.  

Quantitative analysis of postural instability during over-ground locomotion of healthy 

and hemi-parkinsonian rats is also presented. Differences in posture and increased 

postural instability were measured in a rodent model of PD by means of 3D MA. The 

current study introduces a sensitive quantitative assessment of angular changes of 

body rotations during walking on three different beams. Walking patterns were 

recorded by means of marker-based motion capture; posture was analysed using 

rotational data of the Cartesian x, y and z axes known as roll, pitch and yaw, 

respectively. Video data monitoring limb and tail position were also analysed. The 

comparison of lesion and control animals indicates that even small changes in 

posture can be quantified using 3D motion capture technology during gait. PNL 
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animals with unilateral dopamine depletion presented motor deficits on the side 

contra-lateral to surgery. Furthermore, postural attributes of contra-lateral gait and 

how this translates to balance the body on the beams, limb placement and the use of 

tail as a counter balance to the impaired side are also observed in PNL animals, 

since the PNL animals stayed in stance for a longer period of time allowing the non-

impaired limbs to move the body forward when entering the swing phase. There is a 

reduced ability to move the body forward using the impaired limb. These impairments 

have an effect on the orientation of the body in space, i.e. the rats‟ posture.  

Miklyaeva et al. (1995) suggested that compensatory postural adjustments observed 

in dopamine depleted rats are active strategies directed towards maintaining posture 

and not the inability to use the bad limbs for support. Hemi-parkinsonian rats show 

typical symptoms of PD (Adkin et al., 2005, Giladi et al., Woollacott and Shumway-

Cook, 2002, Whishaw and Dunnett, 1985); they use a greater range of rotation, 

illustrated by a larger body roll from left (impaired) to right (healthy) and a turning 

effect towards the right when viewed from above (yaw). Previous studies have used 

various methods of analysing posture and body orientation. However, none have 

investigated body postural instability of hemi-parkinsonian rats by quantifying angular 

measurements (i.e. roll, pitch and yaw) of the trunk during gait. 

During forward motion on the WD beam, which has a larger base of support, a 

significantly higher ROM in the parameter roll was recorded for the PNL cohort; this 

was coupled with a positively biased roll rotation (leaning towards the impaired side) 

during the course of a gait cycle. DA-depleted rats display compensatory postural 

adjustments used to maintain postural control following an impaired contra-lateral 

gait caused by the rats‟ inability to shift body posture with the impaired limbs 
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[Miklyaeva et al., 1995; Martens et al., 1996]. Thus, instability is expressed as a 

(negative) body roll towards the healthy hemisphere side of the body. The pitch and 

yaw values did not show any significant differences. 

2D video analysis revealed the effects of increasing the difficulty of the beam walking 

task by introducing a narrower beam. While walking along the NR beam, both the 

CNL and PNL cohorts had either their right of left limbs on the ledge 50% of the 

length of the beam, compared to a lower incidence on the WD beam (CNL: 0 % and 

PNL 15 %). 

The NR beam caused both animal cohorts to walk with foot-slips which were 

unintentional rather than being related to compensatory strategies adopted to 

maintain balance. In addition, tail position for support by the PNL cohort was 

predominantly towards the right (healthy) side on the NR beam. Decreasing the width 

of the beam did not show a difference between the two groups in terms of rotation 

ROM and the kinematic waveforms. The current study also evaluates the effect of 

dual tasking (gradually changing the beam width whilst walking along the beam) on 

both cohorts.  

Zonal Speed was calculated for three different zones of the beams to investigate the 

effect of a graduating walkway on locomotion ability. The results disclose that the 

lesioned animals accelerated on the GR and the NR beam, possibly dealing with the 

decreasing path width and trying to reach the other end of the beam and the safe 

resting box more quickly. The CNL cohort was able to adapt their gait and to cope 

with the varying beam widths at all times. Comparison of zonal speed between the 

two cohorts displays a significant slower speed in zone 2 for the PNL animals on the 

GR beam (the GR beam is supposed to be the most difficult one as a constant 
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adaptation of gait is required); zone 2 is the area of the beam where the “graduating” 

of the path width begins indicating that the PNL group took longer to adjust their 

speed as the beam narrowed. However, on the NR beam the significant difference 

occurs in zone 3; where the PNL animals decelerated more than the CNL animals to 

allow for adjustments of their walking pattern.  

Hemi-parkinsonian rats show typical symptoms of Parkinson‟s disease (Metz and 

Whishaw, 2002, Miklyaeva et al., 1994, Klein et al., 2009): not only the rats‟ gait is 

severely impaired, but also other motor deficits are obvious such as cataleptic 

behaviour (Klein et al., 2009) and motor coordination deficits (Metz and Whishaw, 

2009). 

Although the PNL rats walk more slowly over the beam than their healthy 

counterparts, their speed varies between the zones. This might be part of 

compensatory mechanisms to overcome some of the motor deficits. Similar 

behaviour can be observed in patients with shuffling gait but high cadence (Brown et 

al., 2006). After a period of slow initiation of motion, a higher cadence/speed is 

needed to overcome freezing and brady-kinesia.  

This study enables the quantification of animal motion in terms of the ability to adjust 

their gait to cope with the different beam widths, thus introducing an element of dual 

tasking. For example, the zonal speed varied as the animals adjusted their speed to 

compensate the change in beam width. Therefore, the present protocol can 

successfully quantify compensatory behaviour, gait variability and deficits in 

executive function in a group of hemi-parkinsonian rats allowing future correlation of 

motor performance with patients‟ data. 
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The present analysis enabled quantification of compensatory behaviour of hemi-

parkinsonian rats in terms of body orientation while trying to cope with different beam 

widths. For example on the GR beam, zonal range of rotation (roll) varied as the 

animals adjusted their position to compensate the change in beam width. The results 

on the GR beam disclose that the CNL cohort was able to adapt their gait to cope 

with the varying beam widths at all times. There was a consistently lower ROM as the 

beam became narrower; in contrast, the PNL cohort showed increased instability as 

the ROM of the roll and pitch increased between each zone. 

The results demonstrate PNL rats‟ reduced ability to adjust their posture to maintain 

balance when the beam starts to narrow. Similar to the WD beam, a gait pattern with 

a bias toward the ipsi-lateral (healthy) side is observed as part of a compensatory 

strategy. These mechanisms allow the rat to overcome weight bearing issues on the 

more affected (contra-lateral) limbs to maintain balance and support, hence avoiding 

falling from the beam. Similar behaviour is observed in patients with decreased 

ability to internally control changes in the centre of mass during self directed 

activities that involve maintenance and control of the centre of mass (Bishop et al., 

2006, Adkin et al., 2005).  
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CHAPTER 4 
4. Quantifying locomotion of stroke 

rats 
This chapter explores the application of the motion analysis (MA) data collection and 

processing protocols developed in Chapter 2 and Chapter 3 to a rat model of stroke. 

In brief, three dimensional (3D) Cartesian data of markers attached to the rat were 

used to record and analyse gait whilst they walked along a wide (WD) beam using an 

optoelectronic camera system. The narrow and graduated beams were not used in 

the stroke model due to the time constraints and the type of model but will be part of 

the protocol in any future studies. The data acquired aimed to investigate behavioural 

and functional attributes of Middle Cerebral Artery Occlusion (MCAO) lesion surgery 

and the outcomes of embryonic grafting. The chapter begins with a brief background 

to the study and an outline of the main hypotheses. Thereafter the results of the 

study acquired from 30 rats are presented and discussed followed by an overall 

discussion of the findings. 

4.1. Introduction 

MCAO in the rat is used to mimic large vessel occlusion in humans. As is the case 

with humans, the territory of the middle cerebral artery is the largest of all the 

cerebral arteries, and the proximal branches supply the posterior striatum and 

internal capsule (Paxinos, 1995). The MCAO technique should, theoretically, 

produce restriction in blood supply both in the cortex and in striatum. However, blood 
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flow from parallel (collateral) blood vessels can contribute to maintenance of cerebral 

blood flow that sustains tissue viability in the cortex. This means that the behaviour 

exhibited by the rat is dependent on the location and size of the lesion. 

Embryonic grafting is a technique that is used to replace neuronal populations within 

the lesioned brain. Grafting embryonic tissue into the damaged areas of rat‟s brain 

has been shown to restructure synaptic, neuro-chemical and behavioural deficits in 

rat models of neurological dysfunction such as Parkinson‟s disease (PD) and 

Huntington‟s disease HD (Dunnett, 1992). Striatal tissue grafted within the damaged 

striatum partially restores an appropriate anatomical distribution of neuro-chemicals 

decreases lesion induced hyperactivity and reintegrates into the striatal circuitry 

(Dunnett et al., 1988, Björklund, 1992). Therefore the use of embryonic tissue for 

grafting can provide a functional recovery to the damaged brain. 

The most common symptom of human MCAO is total or partial inability to move one 

side of the body and the loss of sensation on one side of the body. The most 

common behavioural tests for rodents with stroke were designed to examine the 

differences in function between the intact (ipsi-lateral) and impaired (contra-lateral) 

side of the body using asymmetry tests (Schallert et al., 2003, Ungerstedt et 

al.,,1968). Many of these tests were originally developed for other unilateral models 

of basal ganglia disorders, such as PD and HD disease. However, these tests also 

reveal deficits in rats with MCAO (Modo et al., 2000). This chapter applies a 3D 

marker based motion analysis (3DMA) technique which has been shown to work for 

a cohort of PD models (Chapter 3) where temporal and postural gait parameters 

were successfully processed and discussed.  
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The results presented in Chapter 3 prove that the developed protocol is objective and 

practical in investigating and assessing motor deficits during gait of rodent models. 

The method is quantitative, sensitive and furthermore it allows important and subtle 

differences to be determined that can be missed when using traditional studies. The 

effect of MCAO lesion and embryonic grafting on gait was investigated, and a group 

of naive controls were also tested for age matched comparisons. 

4.2. Methods 

4.2.1. Data collection 

All procedures were carried out in accordance with the United Kingdom Animals 

(Scientific Procedures) Act, 1986. 50 adult male Wister rats were used in this 

experiment (Harlan, UK). The analysis would form part of a larger study to assess the 

behavioural characterisation of the MCAO rat Model. The rats were investigated 

using several behavioral tests including some of the ones introduced in Chapter 1, 

i.e., including staircase paw reaching and the balance cylinder and the elevated 

beam. The results presented in this chapter will only focus on gait analysis on an 

„elevated beam‟. 

Initially, all rats were habituated to walk along the beam following which marker 

based 3D digital video recordings, using a seven Qualisys PRO-reflex optoelectronic 

camera system (Qualisys, Sweden), were captured as described in detail in Chapter 

2. This was the first MA session (MA1). After MA1, 40 of the rats underwent MCAO 

surgery and the remaining 10 rats were used as naive control rats. The surgeries 

were carried out by a licensed member of staff at the Cardiff Brain Repair Group. 24 

hours later they had MRI scans that excluded those rats that did not exhibit a lesion, 
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or showed signs of haemorrhage. 23 rats had suitable lesions and were included in 

the further study. Seven to 12 days after the MCAO surgery 10 of the 23 lesioned 

rats received embryonic grafts Six weeks after the MCAO surgery the rats were re-

trained on the beam and a second MA beam walking trial was performed (MA2).  The 

data collection points were pre determined by the surgery and training schedule. A 

summary of the timeline for the two MA trials and performed surgeries is presented in 

Figure 4-1. 

 

Figure 4-1: Experimental design and timeline of the stroke MA study  

50 stroke rats motion analysis I 

(PRE_LE, PRE_GRa and PRE_CN)

13 rats did not 
undergo any 
further surgery

12 rats had a 
graft 5-7 days 
after the lesion

10 Grafted  rats 
Motion 
analysis II 
( POST_GRa) 

7 rats had either an 
incomplete occlusion or a 
hemorrhage therefore they 
were not used

8 rats had vessel occlusion but 
no lesion was evident on the 
MRI scan. Therefore they were 
not used in the trial

10 rats were naive 
controls

40 rats underwent 
lesion surgery 

2 rats had the wrong size 
lesion, therefore not grafted

10 lesion rats 
Motion 
analysis II 
(POST_LE)

10 control rats
Motion 
analysis II
(POST_CN)

3 rats did 
not have 
usable
motion 
analysis 
data

2 weeks

MA1

Surgery

Graft

MA2

5-7 days 

2 months
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4.2.1.1. Middle cerebral artery occlusion surgery  

Rats were anaesthetised and the rat‟s core body temperature was kept at 36.7  1C 

using automated heat blankets with temperature feedback (Harvard, UK). Laser 

Doppler probe was used to assess changes in cerebral blood flow (CBF) to the 

middle cerebral artery (MCA) territory and was monitored using a Laser Doppler 

Perfusion Monitor (Moor Instruments, UK). 

An incision was then made in the neck, the mandibular glands, pretrachial strap, and 

sternomastoid muscles were retracted to expose the right carotid artery (CA) and the 

vagus nerve was gently dissected and retracted away. Subsequently, silk sutures 

were tied on the external carotid artery (ECA) and CA and a microclip was placed on 

the internal carotid artery (ICA). A second loose suture was placed on the CA above 

the initial suture, and a small incision was made in the CA for filament insertion. The 

filament (390 or 410μm, Doccol Company, USA) was inserted and the loose suture 

was tightened around the filament to allow release of the microclip. The filament was 

then advanced up the ICA (approximately 20mm)to the MCA branch and decrease in 

blood flow was monitored by the Laser Doppler Perfusion Monitor (Moor Instruments, 

UK). 

The filament was removed after 30 minutes, the microclip was replaced. The incision 

in the CA was sealed with electrocoagulation using bipolar diathermy probes 

(Aesculap, Germany) attached to a cautery unit (Diathermo MB122, Veterinary 

Instrumentation, UK), prior to release of all sutures so that complete reperfusion of all 

vessels was achieved.  

The muscles and glands were guided back into place and the incisions sutured. Rats 

received 2.5mL of physiological saline and 5% glucose (Rat Care Limited, UK) 
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subcutaneously prior to recovery, and those with severe weight loss were re-

hydrated daily in a similar fashion until weight stabilized. No rat‟s weight fell below 

80% of their pre surgery weight. All cages were provided with moistened rat chow 

and cereal to facilitate eating during the first postoperative week and 1mg/mL of 

Paracetemol (Boots, UK) was provided in the drinking water one day prior to surgery 

and for 3 days after to assist with pain relief. 

4.2.1.2. Grafting 

7-12 days following MCAO surgery, 10 of the 23 rats received grafts of E14 whole 

ganglionic eminence tissue. Pregnant Wistar dams were sacrificed at E14 days of 

embryonic age. The embryos were removed and the whole ganglionic eminence was 

carefully dissected out, as done previously (Björklund, 1992 S.B., 1992) The tissue 

pieces were then dissociated into a cell suspensions as described in (Björklund, 

1992 S.B., 1992). 500, 000 cells, in a 2µl solution were injected into the lesioned 

hemisphere, using a 10µl Hamilton microsyringe connected to a thin-walled widebore 

needle (dia = 0.25mm). The rats were anesthetized with isoflurane (Abbott, 

Queensborough, UK) and were stereotactically injected unilaterally with the cells. 

The coordinates were set according to bregma and dura: tooth bar -2.3, anterior / 

posterior +1.4, lateral −3, dorso-ventral −4 and -4.5. Injection volume was 2 µl and 

the injection rate was 1 μl over 90 seconds, with 1µl deposited at each depth. The 

needle was left in place for 3 min before withdrawal, cleaning and suturing of the 

wound. Paracetemol (Boots, UK) was provided in the drinking for 3 days after 

surgery to assist with pain relief. 
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4.2.2. Data processing 

Temporal and postural gait parameters were obtained and subsequent classification 

analysis was performed for 30 Wister rats. The rats were divided into three different 

cohorts as illustrated in Figure 4-2; 10 naive controls, 10 that had undergone MCAO 

lesion and 10 that received an embryonic graft following lesion . This chapter 

presents outputs from data following two beam walking trials; MA1, was carried out 

on all the rats before any surgery and MA2 was carried out six weeks later following 

the MCAO lesion surgery and grafting. All variables were compared statistically 

between the three groups using a ANOVA, (p<0.05).  

 

Figure 4-2: Post analysis division of the three cohorts 

4.2.2.1. Temporal gait parameters  

Temporal gait parameters were quantified by calculating the position vectors of the 

markers attached to the four limbs of the rat as described in Chapter 2. The data was 

input into in house software that calculated the stance time, swing time, stride length, 

speed and cadence for comparisons between the control, lesioned and grafted 

cohorts while walking along a WD elevated beam  

Analysis

MA2

Graft

Lesion

MA1 50 Stroke rats

PRE_

40 Lesion

13 no Graft

13 POST_LE

10 

POST_LE

12 Grafted

12 POST_GRa

10 

POST_GRa

15 not used in 
study

10  No surgery 
controls

10 POST_CN

10

POST_CN

27 
PRE_surgery
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4.2.2.2. Postural parameters (ROM) 

Postural gait was quantified by calculating the rat‟s body displacement and 

orientation using Euler angles from markers placed on appendicular parts of the rat‟s 

skeletal structure as described in Chapter 2. These markers effectively define a “rigid 

body” attached to the trunk and enable six degrees of freedom (6DOF) calculation as 

displacement angles defined as the roll, pitch and yaw. 

4.2.2.3. Kinematic waveforms  

The 6DOF displacement was also illustrated as kinematic waveforms that represent 

one gait cycle (left forelimb taken as reference) calculated as the average of three 

gait cycles taken along the central section of the beams. The mean waveform of the 

three cycles were resample to 100 data points and the average of each cohort was 

used to compare the differences presented on the beam. 

4.2.3. Statistical and error analysis 

An ANOVA, a SIDAK post-hoc test and an ICC were used to compare the mean 

kinematic data between the three groups of rats. Subgroups were categorized based 

on side of lesion (left versus right), time point (before or after stroke), surgery (lesion, 

graft and control).  

4.2.3.1. Classification simplex plots 

A classification method was used to further asses the outcome of the data collected. 

The roll range of motion (ROM) and swing time variables were used to train the 

Dempster-Shafer theory (DST) Cardiff classifier. The classification tool helps to deal 

with conflicting data produced from MA by assigning levels of support to each 

measurement variable; taking each piece of evidence to classify the data presented.  
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The classifier was trained using two variables that were found to be significantly 

different for most of the cohorts, i.e., swing time for all four limbs and roll ROM were 

used. These variables showed significant differences (p<0.05), before and after 

surgery for the control (roll) and lesion (swing time) cohorts. The classifier will enable 

direct comparison between three cohorts and establish the level of benefit achieved 

by the MCAO and grafting procedures. A series of six classifications were used to 

investigate differences in walking patterns of all the rat data for MA1 and MA2 to test 

the hypotheses that: 

1. Classification 1: There is no difference in gait variables in the control group 

between for MA1 and MA2; (PRE_CN and POST_CN) 

2. Classification 2: MCAO rats show gait function deficits when comparing the data 

between MA1 and MA2. (PRE_LE and POST_LE) 

3. Classification 3: Grafted rats do not show gait function deficits when comparing 

the data between MA1 and MA2. (PRE_GRa and POST_GRa) 

4. Classification 4: MCAO rats show gait function deficits when comparing data for 

MA2 with their age matched controls. (POST_LE and POST_CN) 

5. Classification 5: Grafted rats do not show gait function deficits when comparing 

data for MA2 with their age matched controls (POST_GRa and POST_CN) 

6. Classification 6: Grafted rats show improved gait function when compared with 

MCAO rats from MA2. (POST_LE and POST_GRa). 
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4.3. Results 

The results were presented in three sections;  

1. Temporal gait parameters (cadence, speed, swing time, stance time 

and stride length). 

2. Postural parameters in terms of roll, pitch and yaw angles  

3. Postural Kinematic waveforms and functional classification. 

4.3.1. Temporal Gait Parameters 

The data was recorded as the average values of two walking trials for each rat, and 

the average taken for all the rats from each cohort to test the hypotheses that: 

1. There is no difference in gait variables between the two test points 

(MA1 and MA2) 

2. There are no differences in gait between the three cohorts (controls, 

lesioned and grafted) and between the right and left limbs. 

4.3.1.1. Comparing two test points 

This section compares the data from MA1 and MA2. The mean and standard mean 

errors (SME) for the temporal gait parameters of the rat models and their controls 

were recorded in Table 4-1. The data illustrates the impact of age, MCAO lesion 

surgery and embryonic grafting on gait.  

The main observations comparing the data from MA1 and MA2 were as follows: 
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1. POST_CN cohort walked with fewer steps per minute, a longer stance time, a 

longer swing time and shorter stride length on each limb compared to the 

PRE_CN cohort. 

2. POST_LE cohort walked with slower gait, fewer steps per minute, a longer stance 

time and a longer swing time for each limb with the exception of RBL compared to 

the PRE_LE cohort. 

3. POST_GRa cohort walked slower, fewer steps per minute, a significantly longer 

stance time, a significantly longer swing time on the RBL and the LFL and a 

significantly shorter stride length was recorded for the RBL as compared to the 

PRE_GRa cohort. 

To observe the interactions related to age, lesion and graft, all the data was analysed 

together using an ANOVA. This also allowed to comparisons of each rat back to its 

own baseline performance in MA1. Following a ANOVA, grafted data from MA1 and 

MA2 was eliminated from the overall statistical analysis because initial results 

revealed that there was insufficient data for accurate evaluation of interactions 

between the three groups. The ANOVA therefore was carried to compare the control 

and lesioned rats for the two test points (MA1 and MA2). The performance was 

stable across test points for all the variables, with the exception of the fore and hind 

limb swing times, the difference was significantly lower for MA1 data for both the 

control and lesioned groups (p<0.05). 
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4.3.1.2. Comparing the three cohorts 

This section investigates the impact of MCAO lesion surgery and graft on gait 

compared with an age-matched control cohort (POST_CN); and the impact of 

grafting compared to lesion on gait. The mean and SME for the temporal gait 

parameters of the rat models and their controls were recorded in Table 4-1. The main 

observations were as follows: 

1. The POST_LE walked slower, fewer steps per minute; longer stance , 

longer swing times ; and a shorter stride length compared with POST_CN 

cohort 

2. The POST_GRa walked slower, fewer steps per minute, a shorter stance 

time, a longer swing time as well as a shorter stride length compared with 

POST_CN cohort.  

3. The POST_LE walked slower, fewer steps per minute, a longer stance 

time, shorter swing time and a shorter stride length compared with 

POST_GRa cohort. 

Similarly a MANOVA was carried out to compare the POST_CN and POST_LE data. 

There was no interactions that suggested effect of lesion on temporal gait 

parameters gait following a MANOVA: (cadence, F1,17 = 0, P=n.s; speed, F1,17 = 0.29, 

P=n.s.; fore limb stance time, F1,17 = 0.14, P=n.s; hind limb stance time, F1,17 = 0.09, 

P=n.s ; fore limb swing time, F1,17 = 0.31, P=n.s.; hind limb swing time, F1,17 = 1.24, 

P=n.s.; fore limb stride length, F1,17 = 0.22, P=n.s.; hind limb stride length, F1,17 = 

1.74, P=n.s. ) 
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4.3.1.3. Comparing the two sides; Left and right  

A MANOVA revealed that there was no effect of lesion on the right and left side 

therefore, no asymmetry was observed for the temporal gait parameters following 

lesion. (Fore limb stance time, F1,17 = 1.70, P=n.s; hind limb stance, F1,17 = 0.38, 

P=n.s; fore limb stride length, F1,17 = 1.24, P=n.s;  hind limb stride length, F1,17 = 0.59, 

P=n.s; fore limb swing time, F1,17  = 0.14 P=n.s; and hind limb swing time= F1,17 = 

0.963, P=n.s)  

4.3.2. Postural parameters (ROM) 

The displacements were recorded as average ROM of the roll, pitch and yaw angles. 

A MANOVA (without the GRa group) was carried out to compare the ROM values in 

Table 4-2 for the roll, pitch and yaw rotations. There was no effect of lesion on pitch, 

F1,17 = 0.05, P=n.s. and yaw , F1,17 = 2.36, P=n.s and the ROM performance was 

stable across MA1 and MA2  (Pitch=F1,14 =3.56, P=n.s and Yaw=F1,14 =3.77, P=n.s). 

There was a significant difference between the CN and LE cohorts. The POST_LE 

cohort exhibited more roll, F1,17 =15.18, P<0.01 than the POST_CN cohort. There 

was also a significant difference in performance across MA1 and MA2 time points for 

the two cohorts independently (F1,13 =5.14) and after POST hoc SIDAK analysis, this 

effect showed interactions within the LE and CN cohorts F1,13 =5.14, P<0.05, with the 

control animals improving over the two test points, MA1 and MA2 (T29.37 = 3.12). The 

LE animals did not improve between MA1 and MA2 (T 29.37 = 0.20,p = n.s.) 
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4.3.3. Postural parameters (ROM) 

Body displacements were recorded as average ROM of the roll, pitch and yaw 

angles. An ANOVA was carried out to compare the ROM values in Table 4-2 for the 

roll, pitch and yaw rotations. There was no effect of lesion on pitch, F1,17 = 0.05, and 

yaw , F1,17 = 2.36, and the ROM performance was stable across MA1 and MA2  

(Pitch=F1,14 =3.56, and Yaw=F1,14 =3.77). 

There was a significant difference between the control and lesion cohorts. The lesion 

cohort exhibited more roll, F1,17 =15.18, than the control cohort in MA2.  

There was also a significant difference in performance across MA1 and MA2 time 

points for the two cohorts independently (F1,13 =5.14) and after Posthoc SIDAK 

analysis, this effect showed interactions within the LE and CN cohorts F1,13 =5.14, 

with the control rats improving over the two test points, MA1 and MA2 (T29.37 = 3.12). 

The LE rats did not improve between MA1 and MA2 (T 29.37 = 0.20,p = n.s.) 

Table 4-2: Range of motion of the rats for MA1 (PRE_prefix) and MA2 (POST_ prefix) 
showing postural gait parameters in terms of roll, pitch and yaw angles for the control 
(CN); Lesion (LE) and graft (GRa) cohorts while walking along the beam. The results are 

expressed as mean ± SEEM of each cohort) 

 

Variable
PRE_CN
(n=10)

PRE_LE
(n=10)

PRE_GRa
(n=7)

POST_CN
(n=10)

POST_LE
(n=10)

POST_Gra
(n=10)

Roll/o 41.09±3.21 46.52±2.39 26.09±4.63 27.45±3.57 48.90±3.27 21.38±2.16

Pitch/o 4.33±0.40 5.09±0.98 9.35±1.68 6.53±1.12 5.99±0.87 9.71±0.93

Yaw/o 6.58±0.58 5.93±0.66 9.41±1.30 9.38±1.52 7.43±1.07 6.02±1.16
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4.3.4. Kinematic waveforms and classification 
simplex plots 

To compare the patterns of Roll, Pitch and Yaw for the rats, the mean and SD of 

three gait cycles (left forelimb as the reference limb) along the central section of the 

beam was calculated. for the WD and NR beams.The 6DOF waveforms and simplex 

plot from the DST classifier were used to visually represent the differences in gait 

data between the following pairs: 

1. Control rats when first tested versus six weeks later, (PRE_CN and POST_CN) ;  

2. Lesioned rats before versus after surgery( PRE_LE and POST_LE ); 

3. Grafted rats before versus after grafting (PRE_GRa and POST_GRa) ;  

4. Lesioned rats after surgery versus control rats 6 weeks after initial testing. (POST_LE 

and POST_CN);  

5. Grafted rats after surgery versus control rats 6 weeks after initial testing. (POST_GRa 

and POST_CN). 

6. Grafted rats after surgery versus Lesioned rats after surgery (POST_GRa and 

POST_LE) 
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4.3.4.1. Control rats when first tested versus six weeks 
later 

The mean rotations in the kinematic waveforms along the WD beam were illustrated 

in Figure 4-3. Control cohort produced a negatively biased roll and yaw six weeks 

after initial testing. 

 

Figure 4-3: Kinematic waveforms for the average walking performance and its SD for one 
gait cycle on the beam. The bold black lines represent the average performances of the 

PRE_CN cohort (the SD is plotted in thin black lines); the dotted lines represent the 
average performance of the POST_CN cohort (the SD is plotted in grey). 
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The control cohort achieved 6 out of 10 dominant classifications six weeks apart, 

where                                    Θ   see Figure 4-4. Three months 

between the walking trials show that the rats are better classified as having different 

gait patterns to normal with an out of sample accuracy 85%. Most of the          

cohort, except for 2, were accurately classified with positioning of their simplex 

coordinates within their dominant classification region of the simplex plot. 

 

 

Figure 4-4 Simplex co-ordinate representations of the BOEc for the PRE_CN classified with 
the POST_CN cohorts 

 

  

{PRE_CN}{POST_CN} + = PRE_CN

o = POST_CN
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4.3.4.2. Lesioned rats before versus after surgery  

The kinematic waveforms (Figure 4-5 ) also reveal during the swing phase, Lesined 

rast after the surgery have a positively biased Roll on the LF swing phase of the gait 

cycle compared to the rats before the surgery. 

 

Figure 4-5: Kinematic waveforms for the average walking performance and its SD for one 
gait cycle on the WD beam. The bold black lines represent the average performances of 
the PRE_LE cohort (the SD is plotted in thin black lines); the dotted lines represent the 

average performance of the POST_LE cohort (the SD is plotted in grey).  
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The lesioned cohort after surgery achieved 7 out of 10 dominant classifications 

where                                        see Figure 4-6. MCAO Lesion 

surgery reduced normal gait function allowing for a classification with an out of 

sample accuracy 86.31%. Most of the          cohort, had 6 out of 9 subjects 

accurately classified with positioning of their simplex coordinates within their 

dominant classification region of the simplex plot 

 

Figure 4-6 Simplex co-ordinate representations of the BOEc for the PRE_LE classified with 
the POST_LE cohorts 

.  

{PRE_GRa]{POST_GRa} + = PRE_GRa

o = POST_GRa
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4.3.4.3. Grafted rats before versus after grafting  

The mean kinematic rotations along the WD beam are illustrated in Figure 4-7.  

.  

Figure 4-7 : Kinematic waveforms for the average walking performance and its SD for one 
gait cycle on the WD beam. The bold black lines represent the average performances of 
the PRE_GRa cohort (the SD is plotted in thin black lines); the dotted lines represent the 

average performance of the POST_GRa cohort (the SD is plotted in grey). 
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After classification the data revealed that the grafated cohort achieved 9 out of 10 

dominant classifications after surgery where                                 

         see Figure 4-8. Grafting affected gait function allowing for a classification 

with an out of sample accuracy of 88%. Most of the           cohort, except for 1, 

was accurately classified with positioning of their simplex coordinates within their 

dominant classification region of the simplex plot. 

 

Figure 4-8 Simplex co-ordinate representations of the BOEc for the PRE_GRa classified 
with the POST_GRa cohorts 

  

{PRE_GRa]{POST_GRa} + = PRE_GRa

o = POST_GRa
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4.3.4.4. Lesioned rats after surgery versus control rats 6 
weeks after initial testing 

The mean kinematic rotations along the WD beam were illustrated in Figure 4-7. The 

lesioned cohort had a negatively biased roll during stance phase and a negatively 

biased roll during swing phase  

 

Figure 4-9 : Kinematic waveforms for the average walking performance and SD for one 
gait cycle on the WD beam. The bold black lines represent the average performances of 
the POST_LE cohort (the SD is plotted in thin black lines); the dotted lines represent the 

average performance of the POST_CN cohort (the SD is plotted in grey). 
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8 of the 10 rats in the lesioned cohort were accurately classified after surgery with an 

out of sample accuracy of 83.15% where                                

     Θ   see Figure 4-10. MCAO affected gait function when compared to an age 

matched control. 6 of the           cohort were accurately classified with 

positioning of their simplex coordinates within their dominant classification region of 

the simplex plot 

 

Figure 4-10: Simplex co-ordinate representations of the BOEc for the POST_CN classified 
with the POST_LE cohorts 

  

{POST_LE} + = POST_CN

o = POST_LE

{POST_CN}
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4.3.4.5. Grafted rats after surgery versus control rats 6 
weeks after initial testing.  

The mean kinematic rotations along the WD beam are illustrated in Figure 4-11. 

Although no significant difference was recorded, it was interesting to note that the 

grafted cohort approached the control dominant region function better than the 

lesioned cohort after surgery. 

 

Figure 4-11 : Kinematic waveforms for the average walking performance and its SD for one 
gait cycle on the WD beam. The bold black lines represent the average performances of 

the POST_GRa cohort (the SD is plotted in thin black lines); the dotted lines represent the 
average performance of the POST_CN cohort (the SD is plotted in grey). 
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5 out of the 10 grafted rats were accurately classified with an out of sample accuracy 

of 81% where                                       Θ   see Figure 4-12. 

Similarly, only 5 out of 10           rats were accurately classified with positioning 

of their simplex coordinates within their dominant classification region of the simplex 

plot.  

 

Figure 4-12: Simplex co-ordinate representations of the BOEc for the POST_CN classified 
with the POST_GRa cohorts 

  

{POST_CN}+ = POST_CN

o = POST_GRa

{POST_GRa}
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4.3.4.6. Grafted rats after surgery versus Lesioned rats 
after surgery  

The mean kinematic rotations along the WD beam were illustrated in Figure 4-13 .  

 

Figure 4-13 : Kinematic waveforms for the average walking performance and its SD for one 
gait cycle on the WD beam. The bold black lines represent the average performances of 

the POST_GRa cohort (the SD is plotted in thin black lines); the dotted lines represent the 
average performance of the POST_CN cohort (the SD is plotted in grey).  
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Grafted cohort achieves 9 out of 10 dominant classifications with an out of sample 

accuracy of 91.84% where                                      Θ   see 

Figure 4-14. Similarly, 9 out of 10           rats were accurately classified with 

positioning of their simplex coordinates within their dominant classification region of 

the simplex plot. Gait function changed after grafting when compared to lesion rats. 

 

Figure 4-14: Simplex co-ordinate representations of the BOEc for the POST_LE classified 
with the POST_GRa cohorts 

 

  

{POST_LE}{POST_GRa} + = POST_LE

o = POST_GRa
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A seventh classification was performed to investigate the effect of the MCAO and 

grafting. After classification the data revealed that the grafted cohort achieved a 9 out 

of 10 accurately classified rats with positioning of their simplex coordinates within 

their dominant classification region of the simplex plot. The Lesioned rats achieved 

10 out of 10 rats classification with most of the control rats having 5 out of the 10 

classified in the dominant grafted region the five in the dominant lesioned region. 

  

Figure 4-15: Simplex co-ordinate representations of the BOEc for the POST_LE classified 
with the POST_GRa  and POST_CN cohorts. 

  

{POST_Gra and POST_CN}{POST_LE}
+ = POST_CN

o = POST_LE

∆ = POST_Gra
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4.4. Discussion 

This chapter applies a 3D marker based motion analysis (3DMA) technique which 

has been shown to work for a cohort of PD models (Chapter 3) where temporal and 

postural gait parameters were successfully processed and discussed. Gait 

parameters during over-ground locomotion of MCAO, grafted Wister rats and their 

controls before and after surgery were quantified to further validate the developed 

protocol. The rats were part of a larger study that was aimed at looked at various 

behavioural characteristics of MCAO. 

Gait parameter data was obtained for 27 rats before surgery (MA1) and 30 rats after 

surgery (MA2) to provide a measure of different behaviour and functional 

characteristics of all four limbs. Eight different variables, (cadence, speed, swing 

time, stance time, stride length, roll ROM, pitch ROM and yaw ROM) were tested for 

significant differences between the three cohorts to quantify the effects of training 

and age on gait; the effect of MCAO lesion surgery and graft on gait between the two 

testing time-points and; body asymmetry between the impaired and the healthy side 

within the lesion cohort. 

Data was further classified using the DST classification method developed by Jones 

et. al., (2004) to assess the outcome of the data collected. The DST uses 

mathematical probability to quantify objective data and provides a means of 

interpreting several data sets simultaneously. More importantly the DST helps to deal 

with conflicting data produced from MA by assigning levels of support to each 

measurement variable; taking each piece of evidence to classify the data presented. 
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The roll ROM and swing time variables were used to train classifier as they were 

variables that were found to be significantly different within the cohorts.  

4.4.1. Temporal and postural gait parameters 

The most common behavioural tests for rodents with stroke were designed to 

examine the differences in function between the intact (ipsi-lateral) and impaired 

(contra-lateral) side of the body using asymmetry tests (Schallert et al., 2003) 

(Ungerstedt et al., 1968). Many of these tests were originally developed for other 

unilateral models of basal ganglia disorders, such as PD and HD disease. However, 

these tests also reveal deficits in rats with ischemia confined to subcortical areas, 

predominantly the striatum (Modo et al., 2000).  

The characteristics of human Ischemic stroke are very diverse since the location of 

the damage plays an important part in determining the observed symptoms (van der 

Staay et al., 1996, Corbett and Nurse, 1998). Similar to PD patients, spatio-temporal 

gait and posture are affected in patients with stroke. Patients walk slower than the 

average healthy subjects; their gait cycle is characterised by a low stride length, 

lower cadence, longer stance phase, toe-drag during the swing phase and exhibit 

increased double support times (De Bujanda et al., 2004, Olney et al., 1994, 

Shumway-cook and Woollacott, 1995). MCAO in the rat is used to mimic large vessel 

occlusion in humans however the behaviour exhibited by the rat is dependent on the 

location and size of the lesion. 

MCAO rat models are used to understand stroke in humans and results vary from 

study to study, depending on the strain of rat used and the nature of the behaviour 

analysis carried out (Whishaw and Kolb, DeVries et al., 2001). Locomotor activity has 

been reported in previous studies to either increase or decrease in experimental 
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stroke rats depending on the model of stroke used. (Shen and Wang, 2010, Tomac 

et al., 2002, Ji et al., 2007). In the current study, POST_ LE rats walked slower than 

POST_CN. Subsequently, stance times were longer and swing times were shorter, 

suggesting that although POST_LE stayed in stance for longer, thus affecting their 

speed, the increase in swing times meant that the speed difference was not 

significant.  

The rat data between time-points, MA1 and MA2, show that the rats are older and 

are accustomed to the beam thus an overall improved orientation on the beam is 

observed for the control cohort. The control group also showed improvements in the 

roll ROM and in the swing times between trials MA1 and MA2. The control cohort 

learnt how to navigate the beam after training where as the lesion rats did not show 

differences in gait function, therefore the control group were better at learning the 

beam after training than the lesioned rats.  

A 30 minute MCAO surgery has been shown to increase swing time, but does not 

affect the other temporal gait parameters. The lesion cohort data between the two 

time points was to illustrate the impact of MCAO lesion surgery on gait. Quantitative 

analysis of postural instability during over-ground locomotion revealed a greater 

difference between healthy and MCAO rats. The sensitivity of the protocol allowed 

for quantitative assessment of angular changes of body rotations during gait. 

Lesioned rats did not show any asymmetry toward the contra-lateral side as 

expected, but revealed a high (not significant p<0.05) roll ROM when compared to 

the control cohort. It is useful to note that impairments are mainly manifested in the 

first few days after MCA occlusion; studies have shown that there is complete 

recovery after 3-4 weeks of testing (Corbett and Nurse, 1998). Classification 
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demonstrated deficits that are not evident using other behavioural studies such as 

those used by (Shen and Wang, 2010).  

Embryonic grafting is a technique that is used to replace neuronal populations within 

the lesioned brain. Grafting embryonic tissue into the damaged areas of rat‟s brain 

has been shown to restructure synaptic, neuro-chemical and behavioural deficits in 

rat models of neurological dysfunction such as PD and HD (Dunnett, 1992). 

Therefore the use of embryonic tissue for grafting can provide a functional recovery 

to the damaged brain. The grafted rats should approach normal values compared to 

the lesion cohort. Although the results show improvements in gait following grafting 

(the grafted rats walk faster than the lesioned rats which is reflected with shorter 

swing, shorter stance time, increased cadence and increased stride length), these 

differences were not found to be significant. The graft cohort compared to the 

controls had significantly longer stance and swing phase times thus they walked with 

a slower gait and less steps per minute compared with gait before surgery. Therefore 

grafting affected normal gait function. 

4.4.2. Classification 

Classification of data sets between the two test points (MA1 and MA2 data) for the 

three cohorts showed accurate classification of the rats using swing times and roll 

ROM. This suggested that there are differences in gait due to training (accurate 

classification between the PRE_CN and POST_CN); there are differences in gait 

after MCAO lesion (accurate classification between the PRE_LE and POST_LE) and 

there are differences in gait after grafting (accurate classification between the 

PRE_GRa and POST_GRa). With all classifications having an accuracy of above 
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80% with more than seven out of 10 rats accurately classified on the dominant region 

of the simplex plot.  

Classification between the three cohorts also revealed greater than 80% accuracy. A 

better classification is observed when comparing the POST_LE cohort with the 

POST_CN cohort than when comparing it with the POST_GRa data, with 9 out of 10 

rats achieving a dominant classification in the POST_LE group and only 5 in the 

POST_GRa cohort. More rats from the POST_GRa cohort approached normal gait 

than the POST_LE cohort. 

The results strongly validate the novel marker-based optoelectronic MA protocol 

developed in Chapter 2 by demonstrating that it can provide an effective and simple 

approach to quantifying temporal gait parameters for rat models of stroke and the 

effect of grafting. Swing time and roll ROM indicative of postural adaptation 

strategies, were found to be stronger variables for the classification of stroke rats.  

The data can be used as a basis for correlation with healthy human data based on a 

similar 3D MA in human subjects in Chapter 5. The results of this study demonstrate 

the sensitivity of the MA protocol to quantify functional characteristics of the stroke 

model. They also reveal the use of a powerful classification tool that has allowed 

data analysis in terms of comparison between the three surgical interventions and 

their controls. It has also allowed the relationship between outcomes of the rats‟ pre 

and post surgery and the use of important variable that distinguish between MCAO 

function.  

.  
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CHAPTER 5 
5. Quantifying locomotion of Healthy 

Humans 
5.1. Introduction 

Gait disorders are a fundamental symptom in patients suffering from 

neurodegenerative disorders that affect the motor cortex such as Parkinson‟s 

disease (PD) and stroke. These disorders leave the patients unable to adjust their 

walking patterns with ease according to the demands of the situation (Moreau and 

Hill, 2008). For example, patients with PD have reduced arm swing, shuffling of gait, 

reduced walking speed, shorter stride length and an abnormal cadence (Moreau and 

Hill, 2008, Schaafsma et al., 2003). This leads to increased gait variability and 

decreased executive function which eventually leads to falls and the condition known 

as “freezing of gait” (Plotnik et al., 2008, Woollacott and Shumway-Cook, 2002).  

As a result, PD patients walk with a more cautious gait, exhibiting compensatory 

behaviour in an attempt to improve their stability (Latt et al., 2009). To fully 

appreciate the different pathological gait parameters, it is paramount to understand 

healthy gait. A protocol was developed to assess gait in healthy human subjects. It 

was designed specifically for comparisons with the previously described rat model 

analyses. 

According to Duhamel et al., (2004),motion Analysis (MA) protocols should include  a 

minimum of four gait cycles in order to reduce single cycle abnormalities. The current 

study introduces a MA protocol that guaranteed that at least four gait cycles were 
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measured, with the possibility of more at the labarotory. The number of gait cycles 

measured is limited only by the room dimensions and the number of cameras 

available. 

The aim of this chapter was to present and discuss the results obtained from the 

human data collection and processing protocols, described in Chapter 2. To achieve 

this aim, the various sections in this chapter explored the following objectives:  

1. Identify the effects of dual tasking on healthy gait by introducing walkways of 

different widths. 

2. Demonstrate the protocol‟s sensitivity in identifying gait differences between 

two cohorts.  

3. Validate the protocol by comparing the results to the work of others.  

The chapter begins by providing a brief introduction to the study, followed by the 

results for healthy subjects as they walked along three different 8m walkways. 
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5.2. Methods 

5.2.1. Data collection 

Human gait was assessed by taking three dimensional (3D) Cartesian data of 

markers attached on specific points of the subject while walking along a WDw, NRw 

and GRw. Ten healthy volunteers, five male (mean age :23.3±2.1 years; height 1.77 

± 0.09m; weight 74.5±17.1kg BMI 23.4 ±3.5kg/m2) and five female (mean age 

(24.2±2.3 years, height 1.68±0.08m, weight 63.9±9kg, BMI 22.4±1.6kg/m2) were 

recruited to the study. Their gait cycle was collected and processed as they walked 

on an 8m walkway following the methods described in Chapter 2.  

5.2.2. Data processing 

The temporal gait parameters, stance time, swing time, stride length, speed and 

cadence were calculated from the calcaneus marker trajectory data. Postural 

asymmetry in terms of body rotational angles, roll, pitch and yaw range of motion 

(ROM) body orientations of the three rigid bodies; upper body, trunk and pelvis, were 

recorded. The temporal gait parameters were processed for four gait cycles, however 

the postural gait parameters were processed for three gait cycles due to marker drop 

out during data collection. 

5.2.2.1. Temporal gait  

Comparisons of the temporal gait parameters were calculated from three gait cycles 

taken along the central section of the WDw and NRw. Data for the GRw was divided 

into two zones, two gait cycles at the wide end of the walkway (GRw-wide) and also 

two gait cycles from the narrow end of the walkway (GRw-narrow). 
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The differences in the kinematic waveforms for roll, pitch and yaw for the trunk, pelvis 

and upper body rigid bodies were also examined. The data enabled the 

understanding of postural strategies in healthy human subjects when dealing with 

different walking situations along the central section of the walkways. The GRw was 

not divided into two sections for postural analysis due to insufficient data at the 

beginning and at the end of the walkways. 

5.2.2.2. Postural parameters  

Postural data was acquired for the trunk, pelvis and the upper body. The trunk and 

the pelvis have different functional obligations leading to dissimilar motion patterns 

during gait (Perry, 1992). Three rigid bodies were defined according to the methods 

described in Chapter 2, and are illustrated in Figure 5-1. The figure shows markers in 

Qualisys Track Manager (QTM) that define the three rigid bodies used to illustrate 

healthy human posture as follows: 

1. The trunk rigid body was defined using four appindicular markers of the 

upper body, i.e., the two hips, and the two shoulders.  

2. The pelvis rigid body was identified by the two hip markers and one 

spine marker.  

3. The upper body rigid body was defined using the two shoulder marker 

and the mid-spine marker. 

Kinematic waveforms were illustrated in Figure 5-2 for the postural data. The 

waveforms displayed human body orientation and brought insight into the vertical, 

lateral and anterior-posterior displacements of the three rigid bodies during gait.  
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Figure 5-1: QTM screen shots of the three defined rigid bodies, A) Trunk, B) Pelvis and C) 
Upper Body; used to investigate human posture during gait. 

5.2.3. Statistical and error analysis 

Differences of temporal and postural gait parameters were assessed by ANOVA  

p<0.05) where (F1,degrees of freedom) followed by a SIDAK post hoc test. Subgroups were 

categorized based on gender (men versus women), and side(right or left). The inter-

trial repeatability of gait parameters was calculated by the one-way random intra-

class correlation coefficient (ICC) and the 95% confidence interval (CI) of the ICC, 

using one-way ANOVA (Oken et al., 2008;). The evaluation criteria and standards for 

ICC values are accepted as follows: values ≥0.75 represent excellent repeatability, 

0.4–0.74 represents adequate repeatability, and values ≤0.40 represent poor 

repeatability.  

Pelvis 
Rigid 
Body

Trunk Rigid 
Body

Upper Body 
Rigid Body

A) B) C)
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5.3. Results 

The results of the study are presented and discussed in two sections: 

1. Comparison between the three walkways, 

2. Comparison between the male and female cohorts.  

5.3.1. Comparisons between the three Walkways 
5.3.1.1. Temporal parameters  

The mean and standard deviations (SD) of the temporal parameters were recorded 

in Table 5-1. The differences observed between the three walkways were as follows; 

1. Slower speed, longer stance time, longer swing time, smaller stride length and 

more steps per minute on the NRw compared to the WDw (differences were not 

significant). 

2. Slower speed, longer stance time, longer swing time, smaller stride length and 

fewer steps per minute on the GRw-Wide compared to the WDw (differences 

were not significant).  

3. Fast speed, longer stance time, shorter swing time, smaller stride length and 

more steps per minute on the GRw-Narrow compared to the WDw (differences 

were not significant, except for the cadence). 

4. Slower speed, longer stance time, longer swing time, larger stride length and 

fewer steps per minute on the GRw-Wide compared to the NRw (differences were 

not significant). 

5. Faster speed, shorter stance time, shorter swing time, larger stride length and 

more steps per minute on the GRw-Narrow compared to the NRw (differences 

were not significant). 
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6. Faster speed, shorter stance time, shorter swing time, larger stride length and 

more steps per minute on the GRw -Narrow compared to the GRw Wide 

(differences were not significant, except for the speed and cadence.) 

Table 5-1: Temporal parameters comparing the WDw, NRw and GRw. The results are 
expressed as mean ± SD of both the right and left limbs. 

 

5.3.1.2. Postural parameters 

The mean ± SD ROM roll, pitch and yaw angles along the GRw, NRW and WDw are 

recorded in Table 5-2. Although there were no significant difference between the 

three walkways following an ANOVA (p<0.05), the results from the central section of 

the walkway to test dual tasking on posture was tested for the trunk, pelvis and upper 

body ROM‟s. 

Trunk ROM was; 

1. Less for roll, pitch and yaw, on the NRw compared to the WDw  

2. Less for roll, and greater for pitch and larger yaw on the GRw 

compared to the WDw. 

3. Greater for roll and yaw, as well as smaller pitch on the GRw compared 

to the NRw.  

Limb WDw NRw
GRw

narrow
GRw
wide

Stance time/ms
Right
Left

0.37±0.09
0.39±0.10

0.43±0.06
0.44±0.07

0.44±0.08
0.49±0.11

0.40±0.09
0.39±0.07

Swing time/ms
Right
left

0.62±0.06
0.63±0.06

0.63±0.11
0.60±0.06

0.63±0.09
0.61±0.05

0.59±0.04
0.60±0.08

Stride length/m
Right
left

1.28±0.08
1.28±0.07

1.25±0.24
1.25±0.15

1.26±0.20
1.22±0.14

1.35±0.08
1.33±0.10

Cadence/
steps /minute

Right
left

109.85±10.09
113.24±15.70

109.72±23.53
116.17±5.49

128.00±13.86
127.69±8.46

121.22±18.70
117.26±8.72

Speed/
m/s

Average 1.25±0.34 1.19±0.15 1.12±0.15 1.31 ±0.13
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Pelvis ROM was: 

1. Greater for roll and yaw as well as less for pitch on the NRw compared 

to the WDw. 

2. Less roll, pitch and yaw on the GRw compared to the WDw.  

3. Less roll, pitch and yaw on the GRw compared to the NRw.  

Upper body ROM was: 

1. Greater for roll, as well as less for pitch and yaw ROM‟s, on the NRw 

compared to the WDw. 

2. Less for roll as well as greater for pitch and yaw on the GRw compared 

to the WDw. 

3. Less for roll, as well as greater for pitch and yaw on the GRw compared 

to the NRw.  

Table 5-2: Postural parameters comparing the WDw, NRw and GRw. The results are 
expressed as mean ± SD for the roll, pitch and yaw ROM angles. 

 

  

Trunk Pelvis Upper Body

WDw NRw GRw WDw NRw GRw WDw NRw GRw

Roll /° 3.82±1.51 3.68±1.94 4.26±2.26 5.50±3.29 5.83±3.30± 4.76±3.59 4.10±2.32 4.29±3.53 3.67±2.11

Pitch /° 3.85±2.24 3.76±2.18 3.25±1.19 5.10±5.65 4.79±3.59± 3.73±3.03 4.99±2.62 3.93±2.27 6.02±3.06

Yaw /° 7.16±2.80 6.50±3.67 7.19±3.94 11.30±5.40 13.11±6.74± 10.93±6.02 9.20±5.36 8.32±5.22 10.70±4.63
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5.3.1.3. Kinematic waveforms 

The waveforms were representative of the roll, pitch and yaw rotation waveforms, 

i.e.: 

1. Two oscillations for the anterior -posterior roll movement (mean amplitude for 

trunk =3.92± 0.30°; pelvis = 5.36±0.54° and upper-body= 4.20±0.3°) 

representative of the shift from left to right limb. 

2. Two oscillations for the vertical up and down pitch (mean amplitude for trunk = 

3.62±0.32°;pelvis = 4.54±0.72° and upper-body =4.98±1.04°) representative and 

the dropping of the body weight as the subject moved from terminal stance to 

make contact with the ground ready for heel strike. 

3. One oscillation for the lateral left to right yaw rotation (mean amplitude for trunk 

=6.95±0.39°; pelvis =11.78 ±1.17° and upper-body= 9.41 ±1.20°) representative 

of the body motion from the left to the right side. 

Rigid body movement was related to the change in limb support from one limb to the 

next as the subjects walked along the walkways. 
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5.3.2. Comparisons between the male and female 
cohorts 

5.3.2.1. Temporal parameters 

The temporal parameters were determined for comparison of the male and female 

cohorts and are summarised in Table 5-3.  This specific comparison was made in 

order to determine the efficiency of the developed protocol, by determining how well 

the results compared to published literature (Perry). The main observations 

comparing the male and female cohorts during walking are as follows: 

In comparison to the male cohort, the female cohort walked with: 

1. Slower speed, shorter stance time, shorter swing time, smaller stride 

length and more steps per minute on the WDw (differences were not 

significant, except for the stride length). 

2. Slower speed, shorter stance time, longer swing time, longer stride length 

and fewer steps per minute on the NRw (differences were not significant,). 

3. Slower speed, shorter stance time, shorter swing time, smaller stride 

length and more steps per minute on the GRw-Wide (differences were not 

significant) 

4. Slower speed, longer stance time, longer swing time, smaller stride length 

and more steps per minute on the GRw-Narrow (differences were not 

significant, except for cadence) 

5. Longer left stride length on the GR-Narrow than on the GRw-Wide. 

Both cohorts had faster speeds, shorter stance times, shorter swing times as well as 

longer stride lengths on the left limbs in comparison to the right and more steps per 

minute on the GRw-Narrow than on the GRw-Wide.  
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5.3.2.2. Postural parameters 

The mean roll, pitch and yaw ROM‟s were calculated comparing the male and female 

cohorts for the three rigid bodies (trunk, Pelvis and upper body). The differences 

were not significant when the male and female data was compared for the Trunk rigid 

body, (Table 5-4), the Pelvis rigid body (Table 5-5) and the Upper body rigid body 

(Table 5-6). 

Table 5-4: Mean ± SD postural parameters comparing the male and female cohorts during 
gait along the WDw, NRw and GRw for the roll, pitch and yaw ROM values of the trunk 

rigid body. 

 

Table 5-5: Mean ± SD postural parameters comparing the male and female cohorts during 
gait along the WDw, NRw and GRw for the roll, pitch and yaw ROM values of the Pelvis 

rigid body. 

 

  

Trunk
WDw NRw GRw

Male  Female  Male  Female  Male  Female  

Roll /° 4.56±1.55  3.07±1.15  2.59±0.9 3.15±1.56 4.06±2.05  4.47±2.68  

Pitch /° 5.15±2.42  2.56±1.15  1.29±1.04 3.61±2.60 2.79±1.28  3.72±1.01  

Yaw /° 7.46±1.50  6.86±3.89  4.40±3.67 3.19±5.50 6.28±2.94  8.09±4.92  

Pelvis
WDw NRw GRw

Male  Female  Male  Female  Male  Female  

Roll /° 4.79±0.76  7.17±3.52  5.19±170  7.51±3.14  4.73±1.28  7.17±3.76  

Pitch /° 3.88±1.44  7.09±7.57  3.65±2.05  6.65±3.80  3.76±2.33  5.57±2.88  

Yaw /° 13.79±3.32  11.56±4.37  15.65±6.64  13.70±4.40  14.43±1.32  12.90±2.44  
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Table 5-6: Mean ± SD postural parameters comparing the male and female cohorts during 
gait along the WDw, NRw and GRw for the roll, pitch and yaw ROM values of the upper 

body rigid body. 

 

5.3.2.3. Kinematic waveforms 

The trunk rigid body kinematic waveforms shown in Figure 5-3 show that the female 

cohort had a negatively biased roll rotation especially during the swing phase of the 

gait cycle on all three walkways.  

The pelvis rigid body kinematic waveforms shown in Figure 5-4 show that the pitch 

and roll patterns are similar for the two cohorts, with the female cohort displaying a 

slightly negatively biased roll during stance phase of the gait cycle, which changes to 

a positively biased roll during the swing phase (after 50% cycle) on all walkways.  

The upper body rigid body kinematic waveforms shown in Figure 5-5 show that the 

female cohort show a slightly positively biased roll on the WDw, whereas along the 

NRw and GRW none of the cohorts showed any bias. 

  

Upper Body
WDw NRw GRw

Male  Female  Male  Female  Male  Female  

Roll /° 5.25±1.28  3.99±2.32  4.63±0.91  6.10±4.46  4.29±1.44  3.91±2.15  

Pitch /° 5.57±2.43  5.53±2.03  4.28±0.78  5.55±0.93  6.56±1.77  6.80±2.93  

Yaw (/° 9.43±3.31  10.85±5.65  7.61±4.45  10.55±4.73  8.29±2.66  13.07±5.38  
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Figure 5-3: Trunk Kinematics waveforms comparing the male (mean=solid lines, SD=light 
grey lines) and female (mean=dashed lines; SD=dark grey lines) roll, pitch and yaw 

rotations on the A) WDw, B) NRw and C) GRw 
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Figure 5-4: Pelvis Kinematics waveforms comparing the male (mean=solid lines, SD=light 
grey lines) and female (mean=dashed lines; SD=dark grey lines) roll, pitch and yaw 

rotations on the A) WDw, B) NRw and C) GRw. 
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Figure 5-5: Upper body kinematics waveforms comparing the male (mean=solid lines, 
SD=light grey lines) and female (mean=dashed lines; SD=dark grey lines) roll, pitch and 

yaw rotations on the A) WDw, B) NRw and C) GRw 
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5.4. Discussion 

The adapted data collection and data processing protocol investigated the same 

temporal and postural parameters as those observed for the rats reported in 

Chapters 3 and 4. The study presented a practical, simple, repeatable (ICC >0.75) 

and translatable method for assessing gait function in healthy humans and 

furthermore allowed for the correlation of data between the two species.  

A discussion of the overall results from this study is now given in reference to these 

objectives.  

1. Identify the effects of dual tasking on healthy gait by introducing walkways of 

different widths. 

Subjects walked faster on the WDw  in compassion to the NRw and GRw-Wide 

(1.25±0.34 m/s for the WDw, 1.19±0.15m/s for the NRw, 1.12±0.15m/s for the GRw -

Wide). On the WDw, although still confined, the walkway was wide enough (stride 

width) for the subjects to walk freely without fear of stepping over the predestined 

width of the walkway. Their gait phases, i.e., swing time and stance time, were 

shorter and they walked on the WDw with longer strides and faster cadence. 

However, no significant differences were found between the WDw, NRw and GRw. 

Furthermore, a comparison between the WDw and NRw with the GRw-narrow 

kinematic waveforms revealed that subjects walked with a different pattern on the 

NRw in comparison to the WDw and the GRw-Narrow. They were faster in GRw-

narrow compared to NRw and WDw. This shows that the subjects slowed down as 

they approached the narrow end of the GRw and increased their walking speed to 
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complete the walkway towards the end. A similar pattern was also observed for the 

study on the PD rats (Chapter 3) as an effect of the gradually narrowing the walkway. 

2. Demonstrate the protocol‟s sensitivity in identifying gait differences between two 

cohorts.  

The female cohort showed that as they walked with a slower speed, they took 

smaller strides and walked with more steps per minute on average along the 

walkways. They also had a greater anterior-posterior roll ROM as representative of 

the shift from left to right limb. Conversely, they also showed less yaw ROM on the 

NRw compared to the male cohort.  

3. Validate the protocol by comparing the results to the work of others.  

Comparisons between male and female gait has been published and clearly 

summarised by Perry, (1992). General level of walking speed for adults was found to 

be about 1.36m/s. Perry found Male subjects walked 5% faster and female subjects 

walked 6% slower. The results presented in the current study show that compared to 

the average population speed of 1.36 m/s:  

1. The male subjects walked 4% faster and the female subjects were 20% 

slower in general. 

2. The male subjects walked 12%  slower and the female subjects 23% slower 

on the NRw 

3. On the GRw-wide, the male subjects walked 2% slower where as the female 

cohort walked 6% slower. 

4. In GRw-narrow, the male subjects were 10% slower where as female subjects 

were 14% slower. 
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The results for stride length and cadence in the current study are in agreement with 

Perry (1992) as the primary determinants of speed are the stride length and the 

cadence. The average stride length was 1.42 m with men having a 14% longer stride 

than the women. The recorded average cadence of women was 117 steps per 

minute which is faster than that of men (111 steps per minute) therefore 

compensates for their shorter stride. The results obtained for stride lengths and 

cadence is consistent with the findings obtained by Perry (1992). The trends show 

that the protocol produced results that are similar to published data and further 

validates the method for gait analysis. 

The number of gait cycles recorded could be increased by adding extra cameras or 

increasing marker size as the majority of marker drop out was due to the large 

distance from each camera to final end position of the walking task. However, the 

size limitation only affected camera placement. The protocol did offer advantages 

such as: the task pathway was sufficiently long to capture over six cycles for all 

subjects. Secondly the developed protocol was shown to provide data that was 

comparable and suitable for both genders and can be used on multiple subjects. 

In conclusion, the data demonstrated a successful execution of a human gait 

protocol that was developed from an already established rat MA protocol. The 

protocol will aim to strengthen the generalization that can be made in experimental 

neuroscience studies, that use of the information based on rat models are accurately 

transferable to human data in terms of Gait. As a pilot study on a healthy human 

cohort, the results show that both the temporal and postural patterns can provide 

data that could be a compared with that rat data. However, data from subjects with 

either PD of stroke would help with correlative analysis between the two species.  
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CHAPTER 6 
6. Discussion 

Developments in motion analysis (MA) technology over the last two decades have 

enhanced our understanding of rat locomotion (Brown et al., 2005, Fan et al., 2008, 

Klein et al., 2009, Fan et al., 2008 Coulthard et al., 2002, Canu et al., 2005, Metz et 

al., 1998, Couto et al., 2008b). However, such advances in knowledge are futile if no 

practical use is made of them. Scientists and engineers should make the most of 

these developments by forging stronger links with bio-scientist that use these rat 

models. Further advances in MA knowledge should be applied to clinical problems 

involving rat models for the long-term benefit to patients with neurodegenerative 

diseases that affect gait.  

Over the last decade, the need to cross validate rat models with human data 

following direct comparisons have been identified to show that there are similarities 

in the behaviour of the two species and thus rat models studies could be more 

convincingly generalized to human studies (Whishaw et al., 2002, Whishaw et al., 

1992, Sacrey et al.,  2009). For this reason, the main purpose of this study was to 

determine if three dimensional marker based MA (3DMA) techniques are practical 

and sensitive enough to investigate the gait of both rats and humans in terms on 

temporal and postural parameters.   

This research project was conducted to design, develop and examine the ability of a 

developed protocol that identifies the differences in gait for rat models of Parkinson‟s 

disease (PD) (Experiment 1 described in Chapter 3) and stroke (Experiment 2 
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described in Chapter 4) and to replicate the designed protocol to investigate human 

gait allowing for correlation and cross validation with the rat gait data (Experiment 3 

described in Chapter 5).  

The three experiments were carried out using 3DMA as described in Chapter 2. 

Experiment 1 was a pilot study involving a cohort of 10 rat models of PD. This pilot 

study was the foundation of the project and allowed exploration of measurement and 

analysis techniques applied to the rats as they walked across an elevated beam. 

Temporal gait, spatial and distance parameters were investigated using MA 

techniques to acquire 3D kinematic measurements while rats walked continuously 

along a straight walkway.  

The rats showed differences in the way they adapted their gait on a narrow path and 

a gradually narrowing path (Madete 2011, 2010). The results were compared to 

walking along a wide (control) beam which only directs their forward motion and 

allows them to walk freely otherwise. The results also provided data that matches 

those found in literature, i.e., PD rat models presented a motor deficit on the side 

contralateral to surgery, (Metz et al., 2005) and that speed was slower following 

surgery (Lundblad et al., 2002). Postural adaptation strategies of PD and healthy rats 

during gait were presented for the first time in terms of roll, pitch and roll of the rats‟ 

body. The results revealed increased levels of complexity of the beam elicit 

compensatory movements used by the rats to maintain balance on the beam 

(Miklyaeva et al.,1995). Furthermore, the findings allow a detailed and effective 

analysis of angular displacements of the rat, thus postural instability.  

The study concluded that 3DMA techniques can be used in a non-invasive and 

practical way to record rat locomotion. Compensatory movement patterns as 
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suggested by Miklyaeva et al., (1995), presented as postural adjustment‟s. The data 

was written into two separate journal papers that have been published in peer review 

journals 

Following the success of Experiment 1 (excellent reliability ICC parameters (>0.75), 

the rat 3DMA protocol was applied to measure temporal gait and posture of a cohort 

of stroke rat models as part of a larger study involving 50 rats in Experiment 2. 

Additionally, classification of stroke gait and the utilisation of the Dempster-Shafer 

Theory (DST) (Jones et al., 2002) classifier in data processing were introduced. 

This second experiment allowed for the protocol to be fully tested. A group of middle 

cerebral arterial occlusion (MCAO) rats were investigated. Occlusion time is typically 

30, 60, 90, or 200, generally. For this cohort, the experimenter occludes the MCA for 

30 minutes, 30 minutes of MCAO produces striatal insults where as longer occlusion 

times (60 minutes or more) produce larger strokes (Shen et al., 2010, Wang et al., 

2009). In the literature there is disputing evidence as to whether any behavioural 

conditions can be quantified post-stroke from a 30 minute MCAO (Shen et al., 2010, 

Corbett and nurse).  Therefore there is a need for a sensitive approach that can pick 

up and analyse slight differences in behaviour and function following a 30 minute 

MCAO. 

The 3DMA protocol was applied to investigate behavioural characteristics of the 

stroke cohort due to its proven sensitivity in picking up small changes in rat temporal 

and postural gait. The results from the stroke walking trial were interpreted using the 

Cardiff DST objective classifier tool, developed by Jones et al., (2004). The tool 

enables distinct classification of cohorts that otherwise would present uncertain, 

inadequate and conflicting evidence. From statistical results of the walking trial of the 
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PD rat data the input variables that were found to be the most influential for the final 

DST classification were swing time and range of rotation around the x axes (roll). 

These variables may provide useful information as to which are the most significant 

variables involved in the analysis of temporal and postural gait of stroke rats. 

Experiment 2 helps further validate the developed protocol and demonstrates that 

the developed techniques are reproducible and can be replicated to successfully 

record and measure rat gait.  

Whishaw et al., (1992), states that it is important to demonstrate any similarities 

between rats and humans because it strengthens the generalizations made when 

interpreting rat model experiments on behaviour and function following brain 

damage. Therefore the developed rat data collection protocol was modified to 

accommodate measurements for human gait in Experiment 3. The conversion of the 

small scale gait protocol into a larger one took into account average values of stride 

length and base of support of both species and determined a ratio of 1:9. This ratio 

was used to determine the length and width of the human walkway in order to 

maintain the generic nature of the study. The outcome would aim to provide 

validation and further understanding of the rat model of disease 

Experiment 3 involved applying 3DMA techniques were used to acquire data from 

several cycles during continuous human walking along a straight line on a defined 

walkway. Temporal and postural gait parameters were analysed. Dual tasking 

introduced by including three different beam widths was repeated in the human study 

with walkways of varying widths in order to compare gait data on a narrow path and a 

gradually narrowing path with a wide path. The study concluded that the protocol was 

successful in collecting and processing data that produced similar outputs as that of 
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the rat cohort. Data allowed comparisons of male and female cohorts which 

compared well to published temporal data (Perry, 1992, whittle et al ).Results from 

the three beams were also compared and no significant differences from data for the 

three beams were found. 

Experiment 1, 2 and 3 allowed comparative temporal and postural data of the rat 

models of PD and stroke and humans from the developed protocols to be produced. 

There are not many studies that investigate the comparison between rats and 

humans. Several studies have done this; Whishaw et al., (1992) aimed to compare 

healthy rat to healthy human reaching. They compared reaching movements made 

by rats with those made by humans tested in similar circumstances. They combined 

the use of video analysis, Cartesian reconstructions of movement trajectories and 

velocity profiles. They varied the size of the target to determine whether the 

movements that both species used were subject to the same constraints. 

Furthermore, Whishaw et al (2002) looked at data from a group of PD patient‟s 

compared to rat model of the disease. They investigated whether the reaching 

movements of rats that were affected by DA-depletion had related deficits studied in f 

PD patients. They concluded that the use of a similar task across a number of 

species proves helpful in understanding the motoric consequences of the disorder as 

well as the potential of treatments to improve motor performance.  

Sacrey et al 2009 investigated hand shaping during skilled reaching and compared 

the results for rats and humans using high-speed video recording to capture 

representative reaches for both species at 1000 frames per second. Rats were 

examined in a single-pellet reaching task box in which they were required to reach 

through a slot for a food pellet placed on a shelf, grasp the pellet and withdrawal their 
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hand to place the pellet in the mouth for eating.  Humans reached for a CheerioTM 

while seated. The „complexity and degree of correspondence‟ of hand shaping 

between rats and humans was measured by digitizing the tips of the digits offline to 

compare the spatial and temporal aspects of digit movements during frame-by-frame 

analysis. They also found similarities across the two species. 

For this thesis, the most relevant rat measurements that the study achieved a direct 

comparison with humans were temporal and postural parameters during gait. Rats 

have a quadrupedal gait cycle (Hamers et al., 2006) that can be categorised either 

by how many feet are on the ground at any one time (Hildebrandet al .,1976) or 

which limbs are on the ground together (Muybridge 1899) while humans are bipedal. 

Temporal gait similarities in the movements made by rats and humans during over 

ground locomotion show a consistent and cyclic gait movement pattern with the 

stance and swing phases clearly observed for each limb.  

Postural control during gait was defined in rats and humans described using body 

rotations of a rigid body on the subject‟s anatomy during gait. For both species, the 

body orientation observed from kinematic waveforms was cyclic and affected by the 

swing and stance phases of the limbs. Three rigid bodies, upper body, trunk, and the 

pelvis, were investigated in the human trials, where in the rats trial, only one rigid 

body was defined representative of the entire body. This was due to the small nature 

and the skin covering of the rats. 

Kinematic waveforms revealed that during one gait cycle, body orientation is towards 

the weight bearing limbs for both species (Miklyaeva et al., 1995). The upper body 

rigid body matched patterns produced from the rat rigid body. The roll of the body 

from left to right during one gait cycle which involves rotations towards the side of the 
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weight bearing limb during gait. The Pitch rotation, representative of the vertical axial 

displacements with the human upper body rotations, matches the pattern of the rat 

motion of a double sinusoidal path. This represents two cycle of downward and 

upward displacement in each stride of the right and left steps. The two dips occur 

during periods of double limb support each followed by a progressive rise above zero 

degrees due to the two single support intervals during terminal stance and late mid 

swing. The yaw Displacements occur during single stance as the limb support shifts 

from the left to right limbs. Maximum displacement is at 50% gait cycle 

representative of double limb support in humans and three limbs are in contact with 

the ground in rats (Miklyaeva et al., 1995). 

The developed protocols were able to analyse over-ground locomotion of rat and 

human subjects using 3DMA techniques. The thesis demonstrates how the results 

can be translated to compare results from the two species successfully and have 

moved one step closer in the validation of rat models of disease for disease testing. 

In addition, the measurement protocol can be applied to subjects that have the 

modelled disease to compare function and behaviour of the disease. 

3DMA can provide an effective and practical approach to quantifying temporal gait 

parameters for rat models of PD and stroke. The results of this exploratory study 

demonstrate functional characteristics of models in terms of the disability to maintain 

posture during locomotion. They also reveal how increased levels of complexity of 

the walkway elicit compensatory strategies used by the PD rats to maintain balance 

on the beam. Furthermore, the findings allow a detailed and effective analysis of 

angular displacements of the body, thus postural instability.  
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Rat 3DMA can thus provide a practical and powerful tool for validating these models. 

The new protocol identified gait deficits and thus classified the rats‟ function 

objectively. Furthermore, rat measurements were directly compared with human 

measurements to explore correlations between patients and rat behaviour.. 

The results demonstrate that marker-based MA techniques provide an effective and 

practical approach to quantifying temporal gait parameters. A method that allowed 

detailed and effective analysis of angular displacements of the human and rat body 

was developed. This was further validated by a second study carried out on a larger 

cohort of rat models of stroke. The protocol allowed direct correlations of human and 

rat gait data. The clinical relevance and appeal of the protocol is that it is practical, 

non-invasive and the visualisation nature of the body rotation data for direct 

comparison.  

This research was in collaboration with a bio-scientist that was involved with patients 

who had neurodegenerative condition discussed in this thesis. These interactions 

enabled understanding of the limitations and constraints of performing the trial in a 

clinical setting. This partnership has provided an invaluable insight in understanding 

the clinical application of the protocol in correlating rat findings with those of patients. 

The protocol was designed with a clinical application in mind, therefore given more 

time in conjunction with doctors and patients in clinics, the protocol application could 

be carried out on patients in a clinical setting. 

The results demonstrate that marker-based optoelectronic motion analysis (MA) is an 

effective and practical approach to quantifying in vivo, non invasive, temporal and 

postural gait parameters on both rats and human. The rat protocol further validated 

by a second study carried out on a larger cohort of models of stroke. The results 
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showed that rat three dimensional (3D) marker based MA (3DMA) can thus provide a 

practical and powerful tool for validating rat models as well as to identify gait deficits 

and classify healthy and pathological function objectively. These measures can be 

used to explore correlations between patients and rat behaviour highlighting the 

findings and scientific achievements of the study.  
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CHAPTER 7 
7. Conclusions and further work 

7.1. Conclusions 

Three experiments were carried out using three dimensional (3D) marker based 

motion analysis (3DMA) to measure gait of animal models of Parkinson‟s disease 

(PD) and stroke and on a healthy human cohort. Conclusions specific to each of the 

key objectives outlined in Chapter 1 will be discussed.  

Objective 1: Development of a novel technique for the measurement of temporal and 

postural parameters of animal model of Parkinson‟s disease. 

A novel protocol was developed (described in Chapter 2) and data produced that 

described for temporal and postural gait data of a cohort of ten animal models of PD 

(Chapter 3). This pilot study was the basis of the thesis and allowed for the 

exploration of measurement and analysis techniques that were applied to a cohort of 

rats as they walked across an elevated beam temporal gait, spatial and distance 

parameters were investigated MA techniques to acquire 3D kinematc measurements 

while rats walked continuously along a straight line.  

The animals showed differences in the way they adapted their gait on a narrow path 

and a gradually narrowing path. The results were compared to walking along a wide 

(control) beam which only directs their forward motion and allows them to walk freely 

otherwise. The study concluded that 3DMA techniques can be used in a practical, 
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non-invasive and simple way to record animal locomotion. The data was written into 

two separate journal papers that have been published in peer review journals.  

Postural adaptation strategies of hemi-parkinsonian and healthy rats during gait were 

presented for the first time. The results revealed increased levels of complexity of the 

beam elicit compensatory movements used by the rats to maintain balance on the 

beam. Furthermore, the findings allow a detailed and effective analysis of angular 

displacements of the body, thus postural instability. Compensatory movement 

patterns presented as postural adjustments have successfully been quantified and 

could be used for correlation with patient data based on a similar 3DMA in human 

subjects. 

Objective 2: Application of the developed animal motion analysis protocol to 

measure temporal gait and posture of animal model of stroke and their classification 

of stroke gait and the utilisation of the Demster-Shafer Theory classifier in data 

processing. 

This second experiment allowed for the protocol to be fully tested. A set of middle 

cerebral arterial occlusion rats were used. The occlusion only lasts 30 minutes and 

there is disputing evidence as to whether any behavioural conditions can be 

quantified post-stroke. 3DMA was used to analyse this cohort due to its proven 

sensitivity in picking up small changes in behaviour. Furthermore, data collection 

further validate the developed protocol. 

The protocol was successfully applied to a cohort of 50 stroke rats as they walked 

along a wide beam. Recordings described temporal and postural gait parameters for 

27 of the 50 animals before and after surgical intervention. The animals were divided 
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into three groups, before and after lesion surgery; before and after grafting and their 

controls before and after surgery. 

The results from the stroke walking trial were interpreted with the Cardiff Dempster- 

Shafer (DS) objective classifier tool, developed by Jones et al., (2004). The tool 

enables distinct classification of cohorts that otherwise would present uncertain, 

inadequate and conflicting evidence. The DS classifier incorporates an optimisation 

technique and simplex plots to classify normal and stroke behaviour and function of 

the rats. Simplex plots allowed the classification of the rats and each associated 

characteristic to be represented visually. 

The input variables that were found to be the most influential for the final 

classification were swing time and range of rotation around the x axes (roll). These 

variables may provide useful information as to which are the most significant 

variables involved in the analysis of temporal and postural gait of stroke rats.  

This study was carried out to validate the developed protocol and demonstrate that 

the technique and experiences gained from the first study may be replicated on 

group of different rats to successfully record and measure their gait.  

Introducing an element of dual tasking was not applied to this walking trial as the 

animals were too small and walked on the narrowest beam without adjusting their 

gait. The study concluded that the protocol developed could be applied to a different 

set of rats. In addition, the uses of previously developed objective classification 

techniques to further understand and interpret the data. 
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Objective 3: Development of a novel technique for the measurement of temporal and 

postural parameters of human subjects adapted from the animal model of 

Parkinson‟s disease protocol. 

The animal data collection protocol was modified to accommodate measurements for 

human gait. The conversion from smaller scale to larger scale took into account 

average values of stride length and stride width of both species to determine what 

proportions to scale the set up. The procedure would provide validation and further 

understanding of the animal model of disease 

Temporal gait, spatial and distance parameters were recorded and analysed using 

Motion analysis (MA) techniques to acquire data during continuous human walking 

from several cycles along a straight line. The element of dual tasking was repeated in 

the human study with paths of varying widths to compare gait data on a narrow path 

and a gradually narrowing path. The results were also compared to walking along a 

wide path.  

The study concluded that the protocol was successful in achieving similar outputs as 

of that animal cohort. Data allowed comparisons of male and female cohorts which 

compared well to published temporal data (Perry, 1992).Results from the three 

beams were also compared and no significant differences from data for the three 

beams were found. 

Objective 4: Correlating temporal and postural parameters of the animal models and 

humans from the developed protocols. 

There are not many studies that have investigated the correlation of both animals 

and humans. Whishaw et al.,(1992) compared human and rat skilled reaching. They 
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reasoned that if it could be shown that there are similarities in the behaviour of the 

two species then the results of behavioural studies on the rat could be more 

convincingly generalised to humans. The author compared temporal gait and 

postural gait parameters of control rats with those made by healthy humans tested in 

similar circumstances. 

The results demonstrate that marker-based MA techniques provide an effective and 

simple approach to quantifying temporal gait parameters. A method that allowed 

detailed and effective analysis of angular displacements of the human and rat body 

was developed. This was further validated by a second study carried out on a larger 

cohort of animal models of stroke. The protocol allowed direct correlations of human 

and animal gait data. The clinical relevance and appeal of the protocol is that it is 

practical, non-invasive and the visualisation nature of the body rotation data for direct 

comparison.  

This research was in collaboration with bio-scientist that was involved with patients 

who had neurodegenerative condition discussed in this thesis. These interactions 

enabled understanding of the limitations and constraints of performing the trial in a 

clinical setting. This partnership has provided an invaluable insight in understanding 

the clinical application of the protocol in correlating animal findings with those of 

patients. The protocol was designed with a clinical application in mind, therefore 

given more time in conjunction with doctors and patients in clinics, the protocol 

application could be carried out on patients in a clinical setting. 
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7.2. Further work 

To meet the overall aims of this project, the novel protocol needs further 

development in a number of ways. 

Data from the walking trials was not always correctly tracked therefore leading to a 

number of rat and human subjects to be eliminated. The errors may lie in 

imprecision, errors due to skin movement artefacts and the overall camera set up 

before calibration.  

In addition, the method used for rat marker placement needs to be reviewed further 

due to the slight discomfort to the rats. Couto et al., (2008), Canu et al., (2009) and 

Metz et al., (2005) used self-sticking infrared reflective markers of varying sizes, and 

the need to shave the rats was essential to ensure marker fixation. Therefore this 

route should be considered. Marker clusters (three markers in one position) should 

also be explored to calculate entire six degrees of freedom (6DOF) of the 

representative bodies. 

Further biomechanical and clinical problems should be investigated, e.g., 

identification of upper body and pelvis 6DOF, introducing an elevated beam to the 

human protocol and data collection of patients with gait disorders. A healthy human 

data base should be established with a larger cohort of subjects from all age groups. 

Additionally, it is suggested that the classification method be used for the 

assessment of the human gait patterns comparing different walkway scenarios e.g., 

identification of the differences in gait along the wide and narrow walkways. 
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Madete JK, Klein A, Fuller A, Trueman RC, Rosser AE, Dunnett SB, Holt CA, Challenges facing 
quantification of rat locomotion along beams of varying widths.  Proc Inst Mech Eng H. 2010 
Nov;224(11):1257-65 

Madete JK, Klein A, Dunnett SB, Holt CA.;Three-dimensional motion analysis of postural 
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Brain Res. 2011 Jun 20;220(1):119-25. Epub 2011 Feb 3  

Whatling GM, Dabke HV, Holt CA, Jones L, Madete J, Alderman PM, Roberts P Objective 
functional assessment of total hip arthroplasty following two common surgical approaches: 
the posterior and direct lateral approaches. 

 

Conferences 

Madete J.K. , Holt C.A., Ben Hammada A, Dunnett S. B. And Rosser A.E. Quantifying 
voluntary motion of facial expressions; Cardiff institute of tissue engineering and repair, 7th 
annual meeting, The hill education and conference centre, abergavenny, Wednesday 3rd 
september & thursday 4th september 2008. 

Madete J.K. ,Holt C.A.,  White A., Sprinz P., Dunnett S. B. And Rosser A.E. , Animal Model 
Motion Capture During Locomotion; Cardiff institute of tissue engineering and repair, 8th 
annual meeting, The lecture theatre, optometry building, maindy road, Wednesday 2nd 
september 2009. 

Madete J.K. , Klein A. , Dunnett S. B., Holt C.A; Quantifying Locomotion of an Animal Model 
of Parkinson’s disease Along a Graduated, Narrow and Wide Beam,. Cardiff institute of 
tissue engineering and repair, 9th annual meeting, And Arthritis research UK biomechanics 
and bioengineering centre, 1st annual meeting, Eastwood Park, falfield, Gloucestershire, 
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GM Whatling, CA Holt, L Jones, JK Madete, H Dabke, PM Alderman, P Roberts; Investigating 
the effects of surgical approach on total hip arthroplasty recovery using 3D gait analysis; 
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Engineering CMBBE 2008  Sheraton Hotel and SPA, Porto, Portugal, 27th February-1st 
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Madete JK, A. Klein, S.B. Dunnett and C. A. Holt; Postural adjustments of an animal model 
of Parkinson’s disease during over-ground locomotion; 9th International Symposium on 
Computer Methods in Biomechanics and Biomedical Engineering CMBBE 2010; The Westin 
hotel, Valencia. 

 

Madete J.K. ,  Fuller A., Klein A.  , Dunnett S. B., Holt C.A.: Quantifying Rat Temporal 
Parameters and Body Posture While they Walk Along Wide, Narrow and Graduated 
Beams; European society of Biomechanics 2010: 5 - 8 July 2010, Edinburgh UK. 

 

Madete J.K.1 ,Holt C.A. ,  White A. , Sprinz P. , Dunnett S . and Rosser A.: 3D Motion Capture 
of Parkinson’s and Huntington's Disease Rat Models ; 10th International Symposium; 3D 
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June Madete, Cathy Holt., Andrew Lawrence, Assia Ben- Hammada , Steve Dunnett. And 
Anne Rosser; Facial mimicking using 3d motion anlyisis capture compared to qualitative 
data: congress of the international society of biomechanics, cape town, south africa from 
5th to 9th July 2009. 
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B. Data collection 
protocol 

Equipment check list 

Item   Check 

Calibration kit 
(110) and (300) 

 

 

 

Makers  

 

 

Double sided 
tape 

 

 

 

Scissors  

 

 

Laptop  

 

 

Mouse  

 

 

Laptop Power 
cable 
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PCI card  

 

 

Qualisys MCU 
and tripods 

 

 

 

Qualisys  Power 
cable 

 

 

 

 

Data Cable – 
Blue Data cable 

–yellow 
 

 

 

Video Camera  

 

 

Video Power 
cable 

 

 

 

Video - power 
adapter, 

 

 

 

Video - USB 
connectors 

 

 

 

Tape measure 
for mapping 

 

 

 

Protractor for 
mapping 
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Animal protocol 

Apparatus 

 7 Qualisys cameras, 
 Camera power cables  
 Camera data connecting cables,  
 Camera tripods 
 Two video cameras and power cables  
 USB cables for video cameras 
 video camera tripods 
 At least twenty 5mm makers which include – four makers placed on a cable tie  
 Cable tie clippers 
 300 mm calibration frame and wand 
 Wig tape (at least half a roll) 
 Scissors 
 Tape-measure to set up the cameras 
 Three elevated beams, narrow (NR), graduated (GR) and wide (WD). (the NR 

and GR beams were not used for the stroke motion capture). 

Procedure 

1. Set up the seven cameras as shown in Figure 8-1. 
2. Check that the cable connection is correct, that is the blue data cables are 

connected from previous camera to next camera and the computer yellow data 
cable is in the data port of the master cameras (camera 1). 

3. Turn on the computer and check that all the cameras are accurately identified. 
4. Ensure that all the cables are tied up and stuck with masking tape to reduce trip 

hazards 
5. Using the calibration frame as a guide, check that all the cameras are in the 

correct height and angle for filming the volume surrounding the beam. 
6. Calibrate the system using the 300 mm calibration kit (placement shown in 

Figure 8-1) checking that the workspace tools are as follows: 

 The camera linearization files are present and accurate. 

 Videos are connected and checked on the video devices page 

 Maximum maker size is accurate 

 Maker number is set at 1 plus the actual number of markers present (20) 

 Calibration frame type and size are accurate. (300.1mm) 

 Bounding parameters are within the required limit  

 Tracking parameters are set at the required limit (maximum residual 
between 2 and 5 and the prediction error is less than 25mm 

 Frequency is set at 60HZ 
7. After calibration, place 8 makers 5 mm on the underside of the beam as shown in 

Figure 8-2 using the wig tape.  
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Figure 8-1: Camera map and calibration frame position 

Calibration frame was 
placed flush against the 
dowel positioned at the end 
of the beam (present in all 
three beams)

C
am

era 4

Camera 6 Camera 2

Height :1.16m

Angle to origin :130°
Length :1.85

Height :1.1m

Angle to origin :40°

Length :1.85m

Height : 1.2m

Angle to origin : 20°

Length :1.5m

Height :1.5m

Angle to origin : 30°

Length :1.6m

Height : 1.45m

Angle to origin :150°
Length : 1.6m

Height : 1.05m

Angle to origin :160°
Length :1.6m

Height: 2.1m
Angle to origin : 90°

Length : 1.8m

Positions of the cameras 
are determined by 
distance from the origin 
and the angle measured 
using a gyroscope as 
shown here. 

Zo
n

e 1

Zo
n

e 1
Zo

n
e 1

Video Camera 1Video Camera 2
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Figure 8-2: maker placement on the beam 

8. Make sure you have the data collection form illustrated below for recording the trial 
and adding comments during the trial printed and in-front of you. Record the rats 
details i.e., condition e.g., stroke or PD; number e.g., ASUB1; weight and age. 

9. A licensed member of staff from the brain repair group then brings in the rats and 
they are acclimatised on the beam and are then ready for maker placement. 

10. The makers are placed as shown in figure Figure 8-3 on head, mid spine and rear 
spine, four points of the appendicular aspects of the rat skeletal, On the 4 paws using 
cable ties (Figure 8-4 ). 

 

Figure 8-3 markers attached to the rats body a) appendicular aspects of the rats skeletal , 
b) Head, mid-spine and back- spine and c ) on the 4 paws using cable ties 

 

Figure 8-4 Cable-tie and maker configuration 

 

a)

b)
b)

b)

a)

a)

a)

c)
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11. Data collection motion capture begins by placing the rat on the end of the beam 
without a box and engaging the record button on the QTM software.  

12. Motion capture is complete when data from three good walks from each animal on 
each of the three beams, NR, WD and GR is acquired. A good walk is classified as a 
walk along the beam from beginning to the end of the beam without stopping and 
where all the markers are visible. 

13. Trial ends and the files are saved and checked that they are in the correct files for 
post-analysis  
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Human protocol 

Apparatus 

 12 Qualisys cameras, 
 Camera power cables  
 Camera data connecting cables,  
 Qualisys camera tripods 
 Two video cameras and power cables  
 USB cables for video cameras 
 video camera tripods 
 markers 

o At least twenty eight, 25mm makers  
o One marker cluster consisting of three 5mm markers attached to a 

head band.  
 710 mm calibration frame and wand 
 Wig tape (at least half a roll) 
 Scissors 
 Tape-measure to set up the cameras 
 2 Path outlining ropes 8m long (this ropes are used to define the three 

walkways as wide(WDw), narrow NRw and graduated (GRw). 
o The width of the walkway was specified as three times the base of support of 

an averaged human subject therefore the walkway approximate width of 
54cm.  

o The length of the walkway was based on acquiring five complete gait cycles 
during testing. The average stride length of a human subject is approximately 
1.5m in healthy humans; the chosen length of the walkway was 8m. 

o The WDw had the same width as the wide section of the GRw; and the NRw 
as the narrow end of the GR walkway.  

Procedure 

1. Set up the 12 cameras as shown in Figure 2-6. 
2. Check that the cable connection is correct, that is the blue data cables are 

connected from previous camera to next camera and the computer yellow data 
cable is in the data port of the master cameras (camera 1). 

3. Turn on the computer and check that all the cameras are accurately identified. 
4. Ensure that all the cables are tied up and stuck with masking tape to reduce trip 

hazards 
5. Using the calibration frame as a guide, check that all the cameras are in the 

correct height and angle for filming the volume surrounding the beam. 
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Figure 8-5: Camera map and calibration frame position 
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6. Calibrate the system using the 700 mm calibration kit (placement shown is Figure 
8-5) checking that the workspace tools are as follows: 

 The camera linearization files are present and accurate. 

 Videos are connected and checked on the video devices page 

 Maximum maker size is accurate 

 Maker number is set at 1 plus the actual number of markers present  

 Calibration frame type and size are accurate. (700 mm) 

 Bounding parameters are within the required limit  

 Tracking parameters are set at the required limit (maximum residual 
between 2 and 5 and the prediction error is less than 1000mm).  

 Frequency is set at 60HZ 

7. After calibration, the walkways are defined and 8 markers placed on the outline of 
the walkway using the wig tape. 

8. Make sure you have the data collection form for recording the trial and adding 
comments during the trial printed and in-front of you.  

9. Record the subjects details taking the current weight and height 
10. The makers are placed as shown in Figure 8-6  

 

Figure 8-6: Anterior maker placements  
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Figure 8-7 Posterior marker placement 

11. Data collection motion capture begins as the subject walks from the start of the 
8m walkway and engaging the record button on the QTM software . 

12. Motion capture is complete when data from three good walks from each subject 
on each of the three walkways, NRw, WDw and GRw, are acquired. A good walk 
is classified as a walk:  

a. along the walkway from beginning to the end without stopping 
b. where the markers did not drop off. 
c.  where the tracking from 2D to 3D shows all markers for the entire length of 

the walkway with a minimum number of unidentified markers 
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 Data collection form 

ASUB 

Condition  

Weight  

Age 

Comment:  
Trial Track Comment 
1   

 
2   

 
3   

 
4   

 
5   

 
6   

 
7   

 
8   
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C. Data processing 
C++ program  

 

//========================================================
====================
// Name        : TEP.cpp
// Author      : June Madete
//========================================================
====================
#include <iostream>
#include <fstream>
#include <vector>
#include <stdlib.h>
#include <math.h>
#include "include/LEG_MOVEMENTS.h"

using namespace std;

void explode(const string& str,  vector<string>& tokens, const string& 
delimiters = ""){

// Skip delimiters at beginning.
string::size_type lastPos = 

str.find_first_not_of(delimiters, 0);
// Find first "non-delimiter".

string::size_type pos     = str.find_first_of(delimiters, 
lastPos);

while (string::npos != lastPos){
// Found a token, add it to the vector.
tokens.push_back(str.substr(lastPos, pos - lastPos));

//string::size_type temp = 

lastPos ;
//pos = lastPos ;

// Skip delimiters.  Note the "not_of"
//lastPos = pos ;

lastPos = str.find_first_not_of(delimiters, 
pos);

// Find next "non-delimiter"
pos = str.find_first_of(delimiters, lastPos);

}
}
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int main() {
string file_name ;
cout << "Please enter name of csv file to read data 

from" << endl;
cin >> file_name ; //get filename from user

ifstream fin(file_name.c_str()); //declare input 
filestream

if(!fin){ //check if filestream is valid
cerr << "Invalid file" << endl;
exit(0);

}
vector <double> arr_1 ; //declare array to hold data for 

leg movement
vector <double> arr_2 ;
vector <double> arr_3 ;
vector <double> arr_4 ;

vector <string> arr_rstr ;
string row ;
row.erase(row.begin(), row.end());
while(getline(fin, row)){

cout << "Input: " << row << "\n"; //show 
input on screen

arr_rstr.clear();
explode(row,arr_rstr,",");

arr_1.push_back(atof(arr_rstr.at(0).c_str()) );

arr_2.push_back(atof(arr_rstr.at(1).c_str()) );

arr_3.push_back(atof(arr_rstr.at(2).c_str()) );

arr_4.push_back(atof(arr_rstr.at(3).c_str()) );

}
fin.close();

}
//========================================================
=================
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/// Write Results to File

//Calc2 results
//Write Title Row to file for col 2
fout << "LFoot_a SWT" << ","

<< 
"LFoot_a SPL" << ","

<< 
"LFoot_a SRL" << endl;

//Output Col 2
for(unsigned int i=0; i < calc2.arr_dx().size(); ++i){
fout << calc2.arr_dx().at(i) << ","

<< calc2.arr_dy().at(i) << ","
<< sqrt(pow(calc2.arr_dx().at(i),2) + 

pow(calc2.arr_dy().at(i),2))
<< endl;

}

//========================================================
=====================

//Calc5 results
//Write Title Row to file for col 5
fout << "RFoot_b SWT" << ","

<< 
"RFoot_b SPL" << ","

<< 
"RFoot_b SRL" << endl;

//Output Col 5
for(unsigned int i=0; i < calc5.arr_dx().size(); ++i){
fout << calc5.arr_dx().at(i) << ","

<< calc5.arr_dy().at(i) << ","
<< sqrt(pow(calc5.arr_dx().at(i),2) + 

pow(calc5.arr_dy().at(i),2))
<< endl;

}
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//========================================================
================

//Calc6 results
//Write Title Row to file for col 6
fout << "LFoot_b SWT" << ","

<< "LFoot_b SPL" << ","

<< "LFoot_b SRL" << endl;
//Output Col 6
for(unsigned int i=0; i < calc6.arr_dx().size(); ++i){
fout << calc6.arr_dx().at(i) << ","

<< calc6.arr_dy().at(i) << ","

<< sqrt(pow(calc6.arr_dx().at(i),2) + 
pow(calc6.arr_dy().at(i),2))

<< endl;
}

//========================================================
===============

fout.close();
return 0;

}
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Leg Movements Function 

 

* LEG_MOVEMENTS.cpp
*
*  Created on: 25-Apr-2009
*      Author: fabio
*/

#include "include/LEG_MOVEMENTS.h"

LEG_MOVEMENTS::LEG_MOVEMENTS(const  vector<double> &arr_data){
_max_dx = 0; _max_dy = 0 ;
double s, ly;
bool chan = false ;
unsigned int i , l ;
l = 0 ;
ly = arr_data.at(0);
for(i=0; i < arr_data.size()-1; ++i){

s = (arr_data.at(i+1) - arr_data.at(i)) ;
if(fabs(s) > 0.9999999999 && chan == false){

chan = true ;
_arr_dx.push_back(i - l);
_arr_dy.push_back(arr_data.at(i)- ly) ;

l = i ;
ly = arr_data.at(i);

}else if (fabs(s) < 0.9999999999 && chan == true){
chan = false ;
_arr_dx.push_back(i - l);
_arr_dy.push_back(arr_data.at(i)- ly) ;
l = i ;
ly = arr_data.at(i);
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}
}
i = arr_data.size()-1 ;

_arr_dx.push_back(i - l);
_arr_dy.push_back(arr_data.at(i) - ly) ;

//Find max dx
_max_dx = _arr_dx.at(0);

for(i=0; i < _arr_dx.size(); ++i){
if(_max_dx < _arr_dx.at(i)) _max_dx = _arr_dx.at(i) ;

}
//Find max dy
_max_dy = _arr_dy.at(0);

for(i=0; i < _arr_dy.size(); ++i){
if(_max_dy < _arr_dy.at(i)) _max_dy = _arr_dy.at(i) ;

}

}

const vector <unsigned int>& LEG_MOVEMENTS::arr_dx() const{
return _arr_dx;

}

const vector <double>& LEG_MOVEMENTS::arr_dy() const{
return _arr_dy;

}

unsigned int LEG_MOVEMENTS::max_dx() const{
return _max_dx ;

}

double  LEG_MOVEMENTS::max_dy() const{
return _max_dy ;

}
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 Matlab program for re-sampling 6-DOF data 

  

%June Madete
%17th June 2010
%RESAMPLING 6DOF data from matlab for one gait cycle for three gait cycles
%NR, WD and GR 
clc
clear
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%
% Path where all the data is stored:
p=path;
path(p,'D:\PhD 2010\Brain repair group Studies\Animal\stroke\New 6DOF\pCN')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%
% Reading in the file containing the input variables in tabular form 
% where the rows are observations (people) and the columns are variables:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%

%insert the filename
Filename = ('3.xlsx');

%data from (excell sheet), (file name), (sheet number ) 
Cycle1 = xlsread(Filename,1);
Cycle2 = xlsread(Filename,2);

[m,n]=size(Cycle1);   
[o,p]=size(Cycle2); 

%RESAMPLING

Cycle_100_1=RESAMPLE(Cycle1,100,m);
Cycle_100_2=RESAMPLE(Cycle2,100,o);

%change the order of the rows and columns

Cycle_1=  Cycle_100_1';
Cycle_2=  Cycle_100_2';

Filename1=[Filename 'hundred']

eval(['save ' Filename1 ' Cycle_1 -ascii -tabs',' Cycle_2 -ascii -tabs'])
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Procedure for 6DOF data acquisition  

The following steps were taken to acquire the 6DOF body: of the rat whilst waking 

along the elevated beam on QTM version 2.0.. 

1. The four markers on two hips, and two shoulders were selected Figure 8-8. They 
define the rigid body. 

 

Figure 8-8: Export to 6DOF 

2. A dialogue box appears (Figure 8-9) insert the new name of the rigid body A new 
6DOF body is created. 

 

Figure 8-9: Wakrspace define  

3. Any previously defined rigid bodies were deleted to avoid overlap with the new 

one. 
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4. The rigid bodies‟ LRS was then translated to its geometric centre (Figure 8-10).  

 

Figure 8-10: Workspace translate 

5. The 6DOF data was in the form of kinematic waveforms produced of the rotation 

angles, roll pitch and yaw are shown in Figure 8-11. 

 

Figure 8-11: QTM export 6DOF  
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PD animal models limb and tail position  

Table 8-1: Limb and tail Positions on the GR beam 

  

Position of Limb
(beam =1 or 

ledge=0)

Tail Position
(Left=0 or right 
and straight =1)

No. Limb Z1 Z2 Z3 Z1 Z2 Z3

1

RBL 1 1 1

L L L
RFL 1 1 1
LBL 1 1 0
LFL 1 1 1/0

2

RBL 1 1 1

S L R
RFL 1 1 1
LBL 1 1 1
LFL 1 1 1

3

RBL 1 1 0

L L R
RFL 1 1 1/0
LBL 1 0 1
LFL 1 1 0

4

RBL 1 1 1

S L L
RFL 1 1 1
LBL 1 1 1
LFL 1 1 1

5

RBL 1 1 1

L L L
RFL 1 1 1
LBL 1 1/0 1
LFL 1 1 1

6

RBL 1 1 1

S S R
RFL 1 1 1
LBL 1 1 1
LFL 1 1 1

7

RBL 1 1 1

R R R
RFL 1 1 1
LBL 1 1 0
LFL 1 1 1

8

RBL 1 1 0

SR R R
RFL 1 1 0
LBL 1 0 0
LFL 1 1 1

9

RBL 1 1 1

R R R
RFL 1 1 1
LBL 1 1 1/0
LFL 1 1 0

10

RBL 1 1 1/0

S S R
RFL 1 1 1
LBL 1 1 1
LFL 1 1 1
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Table 8-2: Limb and tail position on the NR beam 

  

Position of 

Limb

(beam =1 or 

ledge=0)

Tail Position

(Left=0 or right 

and straight =1)

No.
Lim

b
Z1 Z2 Z3 Z1 Z2 Z3

1

RBL 0 0 0

R R R
RFL 0 0 1

LBL 1 1 0

LFL -1 1 0

2

RBL 1 1 1

L L L
RFL 0 1 1

LBL 0 0 0

LFL 1 0/1 0

3

RBL 0 0 0

R R R
RFL 0 1/0 0

LBL 0 0 0

LFL 1 1 0

4

RBL 1 1 1

L L L
RFL 1 1 1

LBL 0 0 0

LFL 0 0 0

5

RBL 0 0 0

R R R
RFL 0 0/1 0/1

LBL 1 1 0

LFL 0 1 0

6

RBL 0 0 0

R R R
RFL 0 0 0

LBL 1 1 1

LFL 1 1 1

7

RBL 1 1 1

R R R
RFL 1 1 1

LBL 0 0 0

LFL 0 0 0

8

RBL 0 0 0

- - R
RFL 0 0 0

LBL -1 -1 1

LFL -1 -1 1

9

RBL - - 1

- - R
RFL - - 1

LBL - - 0

LFL - - 0

10

RBL - - -

- - -
RFL - - -

LBL - - -

LFL - - -
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Table 8-3: Limb and tail position on the WD beam 

 

Position of Limb

(beam =1 or 
ledge=0)

Tail Position

(Left=0 or right 
and straight =1)

No.
Lim

b
Z1 Z2 Z3 Z1 Z2 Z3

1

RBL 1 1 1

S S S
RFL 1 1 1

LBL 1 1 1

LFL 1 1 1

2

RBL 1 1 0

S L S
RFL 1 1 1

LBL 1 1 1

LFL 1 1 1

3

RBL 1 1 1

S S S
RFL 1 1 1

LBL 1 1 1

LFL 1 1 1

4

RBL 1 1 1

S S L
RFL 1 1 1

LBL 1 1 1

LFL 1 1 1

5

RBL 1 1 1

S S S
RFL 1 1 1

LBL 1 1 1

LFL 1 1 1

6

RBL 1 1 1

R R R
RFL 1 1 1

LBL 0 1 1

LFL 1 1 1

7

RBL 1 1 1

R R R
RFL 1 1 1

LBL 1 1 1

LFL 1 1 1

8

RBL 0 0 1

L L L
RFL 0 0 0

LBL 1 1 1

LFL 1 1 1

9

RBL 1 1 0

R R R
RFL 1 1 1

LBL 1 0 1

LFL 1 1 1

10

RBL 1 1 1

S L S
RFL 1 1 1

LBL 1 1 1

LFL 1 1 1
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D. Kinematic waveforms  
Animal  

 

Figure 8-12:PD 6DOF kinematic waveforms along the wide beam 
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Figure 8-13: PD 6DOF kinematic waveforms along the graduated beam  
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Figure 8-14: PD 6DOF kinematic waveforms along the Narrow beam 
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Human-Graduated walkway  

 

Figure 8-15: Human 6DOF Upper Body  
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Figure 8-16: Human 6DOF Trunk 
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Figure 8-17: Human 6DOF  Pelvis 
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Wide walkway  

 

Figure 8-18: Human 6DOF upper Body 
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Figure 8-19: Human 6DOF Trunk 
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Figure 8-20: Human 6DOF Pelvis 
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Narrow walkway  

 

 

Figure 8-21: Human 6DOF upper Body 
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Figure 8-22: Human 6DOF Trunk 
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Figure 8-23: Human 6DOF Pelvis 
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E. Surgeries 
Middle cerebral artery occlusion surgery  

Rats were anaesthetised and the rat‟s core body temperature was kept at 36.7  1C 

using automated heat blankets with temperature feedback (Harvard, UK). Laser 

Doppler probe was used to assess changes in cerebral blood flow (CBF) to the 

middle cerebral artery (MCA) territory and was monitored using a Laser Doppler 

Perfusion Monitor (Moor Instruments, UK). 

An incision was then made in the neck, the mandibular glands, pretrachial strap, and 

sternomastoid muscles were retracted to expose the right carotid artery (CA) and the 

vagus nerve was gently dissected and retracted away. Subsequently, silk sutures 

were tied on the external carotid artery (ECA) and CA and a microclip was placed on 

the internal carotid artery (ICA). A second loose suture was placed on the CA above 

the initial suture, and a small incision was made in the CA for filament insertion. The 

filament (390 or 410μm, Doccol Company, USA) was inserted and the loose suture 

was tightened around the filament to allow release of the microclip. The filament was 

then advanced up the ICA (approximately 20mm)to the MCA branch and decrease in 

blood flow was monitored by the Laser Doppler Perfusion Monitor (Moor Instruments, 

UK). 

The filament was removed after 30 minutes, the microclip was replaced. The incision 

in the CA was sealed with electrocoagulation using bipolar diathermy probes 

(Aesculap, Germany) attached to a cautery unit (Diathermo MB122, Veterinary 
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E-2 

Instrumentation, UK), prior to release of all sutures so that complete reperfusion of all 

vessels was achieved.  

The muscles and glands were guided back into place, the incisions sutured. Animals 

received 2.5mL of physiological saline and 5% glucose (Animal Care Limited, UK) 

subcutaneously prior to recovery, and those with severe weight loss were re-

hydrated daily in a similar fashion until weight stabilized. No animal‟s weight fell 

below 80% of their presurgery weight. All cages were provided with moistened rat 

chow and cereal to facilitate eating during the first postoperative week and 1mg/mL 

of Paracetemol (Boots, UK) was provided in the drinking water one day prior to 

surgery and for 3 days after to assist with pain relief. 

Grafting 

7-12 days following MCAO surgery, 10 of the 23 animals received grafts of E14 

whole ganglionic eminence tissue. Pregnant Wistar dams were sacrificed at E14 

days of embryonic age. The embryos were removed and the whole ganglionic 

eminence was carefully dissected out, as done previously (Björklund, 1992 S.B., 

1992) The tissue pieces were then dissociated into a cell suspensions as described 

in (Björklund, 1992 S.B., 1992). 500, 000 cells, in a 2µl solution were injected into the 

lesioned hemisphere, using a 10µl Hamilton microsyringe connected to a thin-walled 

widebore needle (dia = 0.25mm). The rats were anesthetized with isoflurane (Abbott, 

Queensborough, UK) and were stereotactically injected unilaterally with the cells. 

The coordinates were set according to bregma and dura: tooth bar -2.3, anterior / 

posterior +1.4, lateral −3, dorso-ventral −4 and -4.5. Injection volume was 2 µl and 

the injection rate was 1 μl over 90 seconds, with 1µl deposited at each depth. The 



   Appendix 

 

E-3 

needle was left in place for 3 min before withdrawal, cleaning and suturing of the 

wound. Paracetemol (Boots, UK) was provided in the drinking for 3 days after 

surgery to assist with pain relief. 
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F. Belief values for 
simplex plots 

Belief values for simplex plots 

Table 8-4: BOEc values for the PRE_CN compared to PRE_GRa and PRE_LE dataset 

  

ANIMAL

SUBJECT

BOEc

m {PRE_GRa and PRE_LE} m{PRE_CN} m{ɸ}

PRE_LE 1 0.4002 0.3040 0.2958

PRE_LE2 0.6981 0.1207 0.1812

PRE_LE3 0.1573 0.4894 0.3534

PRE_LE4 0.2360 0.4630 0.3010

PRE_LE5 0.1568 0.6759 0.1673

PRE_LE6 0.1071 0.7126 0.1803

PRE_LE7 0.1151 0.7793 0.1056

PRE_LE8 0.1572 0.6213 0.2215

PRE_LE 9 0.2621 0.4666 0.2713

PRE_LE 10 0.6055 0.1909 0.2035

PRE_GRa1 0.2117 0.6893 0.0989

PRE_GRa2 0.8713 0.0258 0.1029

PRE_GRa3 0.8739 0.0317 0.0944

PRE_GRa4 0.6079 0.1378 0.2543

PRE_GRa5 0.2569 0.4018 0.3413

PRE_GRa6 0.9074 0.0236 0.0690

PRE_GRa7 0.1545 0.6335 0.2121

PRE_CN1 0.5853 0.3373 0.0774

PRE_CN2 0.0434 0.8450 0.1116

PRE_CN3 0.5693 0.2494 0.1814

PRE_CN4 0.2177 0.4279 0.3544

PRE_CN5 0.2092 0.5456 0.2452

PRE_CN6 0.4460 0.2499 0.3041

PRE_CN7 0.8758 0.0330 0.0913

PRE_CN8 0.1679 0.5327 0.2995

PRE_CN9 0.2571 0.5077 0.2353

PRE_CN10 0.2373 0.4749 0.2878
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Table 8-5: BOEc values for the PRE_GRa compared to PRE_CN and PRE_LE dataset 

  

  

ANIMAL

SUBJECT

BOEc

m {PRE_CN and PRE_LE} m{PRE_GRa} m{ɸ}

PRE_CN1 0.039873 0.908503 0.051624
PRE_CN2 0.825645 0.06645 0.107906
PRE_CN3 0.085023 0.792453 0.122524
PRE_CN4 0.456333 0.183778 0.359888
PRE_CN5 0.810816 0.07219 0.116994
PRE_CN6 0.745061 0.105978 0.148962
PRE_CN7 0.339007 0.393815 0.267178
PRE_CN8 0.584798 0.130903 0.2843
PRE_CN9 0.10539 0.74259 0.15202

PRE_CN10 0.63831 0.111444 0.250246
PRE_LE 1 0.684096 0.141503 0.174401
PRE_LE2 0.175203 0.508484 0.316313
PRE_LE3 0.357133 0.256672 0.386195
PRE_LE4 0.659981 0.160692 0.179328
PRE_LE5 0.775403 0.098586 0.126011
PRE_LE6 0.798685 0.080887 0.120428
PRE_LE7 0.751107 0.120323 0.128571
PRE_LE8 0.769068 0.097812 0.13312
PRE_LE 9 0.536272 0.158931 0.304797

PRE_LE 10 0.207383 0.468045 0.324572
PRE_GRa1 0.37294 0.501602 0.125459
PRE_GRa2 0.076709 0.802726 0.120565
PRE_GRa3 0.142586 0.720474 0.13694
PRE_GRa4 0.076384 0.799003 0.124613
PRE_GRa5 0.365035 0.24678 0.388185
PRE_GRa6 0.080791 0.797252 0.121957
PRE_GRa7 0.309693 0.510613 0.179694
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Table 8-6: BOEc values for the PRE_LE compared to PRE_GRa and PRE_CN dataset 

  

ANIMAL

SUBJECT

BOEc

m {PRE_CN and PRE_GRa} m{PRE_LE} m{ɸ}

PRE_CN1 0.951851 0.021622 0.026527
PRE_CN2 0.264067 0.617648 0.118285
PRE_CN3 0.876932 0.026243 0.096825

PRE_CN4 0.290043 0.328663 0.381294
PRE_CN5 0.040879 0.854392 0.104729
PRE_CN6 0.023473 0.83499 0.141537

PRE_CN7 0.011925 0.889394 0.098682
PRE_CN8 0.308167 0.381018 0.310815
PRE_CN9 0.846496 0.026685 0.126819

PRE_CN10 0.217211 0.515295 0.267493
PRE_GRa1 0.927717 0.015823 0.05646
PRE_GRa2 0.569935 0.305958 0.124107
PRE_GRa3 0.460992 0.434563 0.104445
PRE_GRa4 0.700076 0.140352 0.159572
PRE_GRa5 0.359944 0.276542 0.363514
PRE_GRa6 0.565302 0.323462 0.111236

PRE_GRa7 0.763138 0.067176 0.169686
PRE_LE 1 0.061473 0.756545 0.181981
PRE_LE2 0.146006 0.610503 0.24349

PRE_LE3 0.43831 0.209262 0.352427
PRE_LE4 0.169589 0.612983 0.217428
PRE_LE5 0.049906 0.837995 0.112099

PRE_LE6 0.085303 0.78734 0.127358
PRE_LE7 0.102425 0.792974 0.1046
PRE_LE8 0.151449 0.701427 0.147125

PRE_LE 9 0.27449 0.445176 0.280334
PRE_LE 10 0.204454 0.563084 0.232463
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Table 8-7: BOEc values for the PRE_CN compared to POST_CN dataset 

  

Table 8-8: BOEc values for the PRE_GRa compared to POST_GRa dataset 

  

ANIMAL

SUBJECT

BOEc

m {PRE_CN} m{POST_CN} m{ɸ}

PRE_CN1 0 0.994902 0.005098

PRE_CN2 0.57423 0.295996 0.129774

PRE_CN3 0.226962 0.635265 0.137773

PRE_CN4 0.883719 0.018784 0.097497

PRE_CN5 0.93161 0.005556 0.062834

PRE_CN6 0.947668 0.004285 0.048047

PRE_CN7 0.962922 0.005243 0.031836

PRE_CN8 0.88732 0.025695 0.086985

PRE_CN9 0.42138 0.298055 0.280565

PRE_CN10 0.934888 0.007433 0.057679

POSTCN1 0.237261 0.634506 0.128233

POSTCN2 0.127558 0.74167 0.130772

POSTCN3 0.244024 0.633823 0.122153

POSTCN4 0.452582 0.437703 0.109714

POSTCN5 0.486271 0.410586 0.103143

POSTCN6 0.375715 0.543251 0.081033

POSTCN7 0.435911 0.251222 0.312867

POSTCN8 0.014065 0.958799 0.027136

POSTCN9 0.310857 0.624465 0.064678

POSTCN10 0.415877 0.49917 0.084953

ANIMAL

SUBJECT

BOEc

m {PRE_GRa} m{POST_GRa} m{ɸ}

PRE_GRa1 0.01539 0.887862 0.096749

PRE_GRa2 0.986165 0 0.013835

PRE_GRa3 0.994269 0 0.005731

PRE_GRa4 0.955358 0.021014 0.023627

PRE_GRa5 0.98238 0.000709 0.016911

PRE_GRa6 0.923308 0.061327 0.015365

PRE_GRa7 0.749539 0.187993 0.062469

POST_GRa1 0.073376 0.66482 0.261804

POST_GRa2 0.216293 0.608849 0.174858

POST_GRa3 0.625729 0.31111 0.06316

POST_GRa4 0.263662 0.653123 0.083215

POST_GRa5 0.084207 0.855037 0.060756

POST_GRa6 6.88E-05 0.988687 0.011244

POST_GRa7 0.143052 0.698932 0.158016

POST_GRa8 0.087048 0.889956 0.022996

POST_GRa9 0.000119 0.991469 0.008412

POST_GRa10 0.293297 0.6228 0.083903
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Table 8-9: BOEc values for the PRE_LE compared to POST_LE dataset 

 

Table 8-10: BOEc values for the POST_CN compared to POST_GRa dataset 

  

ANIMAL

SUBJECT

BOEc

m {PRE_LE} m{POST_LE} m{ɸ}

PRE_LE1 0.848984 0.038397 0.112619

PRE_LE2 0.991438 0.001805 0.006757

PRE_LE3 0.174662 0.570487 0.254851

PRE_LE4 0.32063 0.451562 0.227808

PRE_LE5 0.543176 0.241311 0.215513

PRE_LE6 0.518442 0.237276 0.244282

PRE_LE7 0.527718 0.302417 0.169865

PRE_LE8 0.493848 0.333956 0.172196

PRE_LE9 0.660727 0.175954 0.16332

PRE_LE10 0.990048 0.002017 0.007935

POST_LE1 0.129525 0.717395 0.15308

POST_LE2 0.365079 0.604605 0.030316

POST_LE3 0.014313 0.849176 0.136511

POST_LE4 0.008592 0.944213 0.047196

POST_LE5 0.284844 0.563015 0.152141

POST_LE6 0.058448 0.789073 0.152479

POST_LE7 0.48211 0.382521 0.13537

POST_LE8 0.458182 0.404941 0.136877

POST_LE9 0.03334 0.887318 0.079342

POST_LE10 0.499244 0.29415 0.206606

ANIMAL

SUBJECT

BOEc

m {POST_CN} m{POST_GRa} m{ɸ}

POSTCN1 0.845946 0.066156 0.087898

POSTCN2 0.790485 0.039375 0.170139

POSTCN3 0.341046 0.549236 0.109718

POSTCN4 0.464269 0.41594 0.119791

POSTCN5 0.69359 0.190758 0.115651

POSTCN6 0.760667 0.136452 0.102881

POSTCN7 0.831624 0.074432 0.093944

POSTCN8 0.096158 0.85366 0.050182

POSTCN9 0.007325 0.94679 0.045885

POSTCN10 0.335909 0.593345 0.070746

POST_GRa1 0.23642 0.479394 0.284186

POST_GRa2 0.202219 0.609124 0.188657

POST_GRa3 0.548939 0.367321 0.08374

POST_GRa4 0.272549 0.548472 0.178978

POST_GRa5 0.134255 0.7426 0.123144

POST_GRa6 0.024479 0.915944 0.059577

POST_GRa7 0.191955 0.456372 0.351673

POST_GRa8 0.521213 0.369034 0.109753

POST_GRa9 0.010512 0.930441 0.059047

POST_GRa10 0.460015 0.292412 0.247573
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Table 8-11: BOEc values for the POST_LE compared to POST_GRa dataset 

 

Table 8-12: BOEc values for the POST_LE compared to POST_CN dataset 

 

 

ANIMAL

SUBJECT

BOEc

m {POST_GRa} m{POST_LE} m{ɸ}

POST_GRa1 0.788802 0.135421 0.075777

POST_GRa2 0.000484 0.981563 0.017952

POST_GRa3 0.918752 0.012574 0.068674

POST_GRa4 0.650297 0.229714 0.11999

POST_GRa5 0.973213 0.003555 0.023233

POST_GRa6 0.943916 0.007442 0.048641

POST_GRa7 0.955108 0.005235 0.039657

POST_GRa8 0.905574 0.058359 0.036067

POST_GRa9 0.950544 0.00936 0.040096

POST_GRa10 0.944416 0.015629 0.039954

POST_LE1 0.063857 0.821798 0.114345

POST_LE2 0.093213 0.796829 0.109958

POST_LE3 0.554185 0.377874 0.067941

POST_LE4 0.096846 0.848699 0.054455

POST_LE5 0.07736 0.826403 0.096237

POST_LE6 0.011844 0.977813 0.010342

POST_LE7 0.021705 0.900567 0.077728

POST_LE8 0.104759 0.770884 0.124357

POST_LE9 0.003626 0.974386 0.021989

POST_LE10 0.154671 0.779403 0.065926

ANIMAL

SUBJECT

BOEc

m {POST_LE} m{POST_CN} m{ɸ}

POSTCN1 0.619182 0.179957 0.20086

POSTCN2 0.787148 0.093191 0.11966

POSTCN3 0.787708 0.096163 0.11613

POSTCN4 0.793458 0.087171 0.119372

POSTCN5 0.724302 0.164025 0.111673

POSTCN6 0.016912 0.941286 0.041802

POSTCN7 0.4581 0.291052 0.250848

POSTCN8 0.745704 0.133977 0.120319

POSTCN9 0.525772 0.388638 0.085589

POSTCN10 0.019553 0.929835 0.050613

POST_LE1 0.21469 0.655805 0.129504

POST_LE2 0.951148 0.007348 0.041504

POST_LE3 0.06583 0.807942 0.126228

POST_LE4 0.430088 0.218782 0.351131

POST_LE5 0.035227 0.866125 0.098648

POST_LE6 0.062948 0.821123 0.115929

POST_LE7 0.051213 0.840564 0.108223

POST_LE8 0.077692 0.816828 0.105481

POST_LE9 0.025226 0.87827 0.096504

POST_LE10 0.084893 0.79442 0.120687


