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Abstract The Large Scale Polarization Explorer (LSPE) is a cosmology program for the

measurement of large scale curl–like features (B–modes) in the polarization of the Cos-

mic Microwave Background. Its goal is to constrain the background of inflationary gravity

waves traveling through the universe at the time of matter–radiation decoupling. The two

instruments of LSPE are meant to synergically operate by covering a large portion of the

northern microwave sky. LSPE/STRIP is a coherent array of receivers planned to be oper-

ated from the Teide Observatory in Tenerife, for the control and characterization of the low–

frequency polarized signals of galactic origin; LSPE/SWIPE is a balloon–borne bolometric

polarimeter based on 330 large throughput multi–moded detectors, designed to measure the

CMB polarization at 150 GHz and to monitor the polarized emission by galactic dust above

200GHz. The combined performance and the expected level of systematics mitigation will

allow LSPE to constrain primordial B-modes down to a tensor/scalar ratio of 10−2. We here

report the status of the STRIP pre–commissioning phase and the progress in the charac-

terization of the key subsystems of the SWIPE payload (namely the cryogenic polarization

modulation unit and the multi–moded TES pixels) prior to receiver integration.

Keywords Cosmic Microwave Background, B–modes, Transition Edge Sensors, Multi–

moded optics

1 Introduction

Measurements of the Cosmic Microwave Background (CMB) polarization anisotropies offer

strong probes of the standard cosmological model. Linear polarization of the CMB is known

to emerge from Thomson scattering off electrons at the last scattering surface in the presence

of local quadrupole anisotropies in the scattered radiation field. The polarization pattern ob-

served in the sky is commonly decomposed in a curl–free E–mode and a divergence–free

B–mode. E–modes alone emerge in the presence of the velocity fields around peaks in the

baryon–photon fluid at last scattering, and thus exhibit a tight correlation with the tem-

perature anisotropies of the CMB. As such, the TE angular cross–power spectrum and the

EE power spectrum can be usefully combined with the TT power spectrum to break de-

generacies among cosmological parameters, and to constrain specific parameters (e.g. the

reionization optical depth) otherwise loosely constrained by temperature anisotropies. On

the other hand, B–modes at small angular scales are observed as a result of E–to–B leak-

age due to gravitational lensing, and as such observed in correlation to the line–of–sight

integrated lensing potential due to the presence of large scale structure across the light path

to last scattering surface. In addition, a large (degree and above) scale contribution to the

B–mode angular power spectrum is predicted to emerge from a stochastic background of

tensor (metric) perturbations, i.e. gravitational waves, generated during the inflationary ex-

pansion history of the early universe. A rich variety of physical mechanisms can be devised

to fit the inflationary paradigm to the needs of the standard cosmological scenario and to its

current observational implant. The amplitude of the gravitational wave background, traced
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through its B–mode signal in the CMB polarization, can be effectively used to constrain

such scenarios. The B–mode power yields a direct measurement of the so–called tensor–to–

scalar ratio r, i.e. the power ratio between the tensor and scalar perturbations at the end of

inflation. A detection of large scale B–modes, if any at all, would thus represent the ultimate

constraining probe for the physics of inflation.

The best current upper limits on r, from the joint BICEP2 and Planck analysis, yields

r < 0.07 at 95% C.L. [1].Observationally, the inflationary signal is expected to be at most a

fraction of percent of the total polarized CMB power, invoking the need for large and ultra–

sensitive focal planes. In addition, no region of the microwave sky can be safely considered

free from foreground contamination down to the level required for primordial B–mode de-

tection. Therefore, a large scale B–mode measurement demands very clever and careful

strategies, both in instrument design and signal conditioning. While aiming at the mitigation

of hardware systematics, it is also necessary to develop accurate modeling and treatment

of the foregrounds through component separation techniques. Ideally, every spurious effect

should be understood and traced across the analysis pipeline down to a fraction of the sen-

sitivity level allowed by observations.

The CMB community is currently devoting a huge effort towards large scale polarization

measurements. A number of ongoing and upcoming projects, including the recently JAXA–

approved LiteBIRD satellite [2, 3], have been designed to shed light on the so–far elusive

B–mode signal from inflationary gravitational waves.

2 The Large Scale Polarization Explorer (LSPE)

LSPE [4] is a program funded by the Italian Space Agency and INFN with the aims to:

– perform a large–area survey of the microwave polarized sky in 5 spectral bands, with

the scope to understand the galactic foregrounds at degree scales;

– test and validate hardware solutions, observing strategies, and data processing tech-

niques for the observational challenge of the inflationary B–modes, in view of even

more ambitious ground–based and space–borne programs devoted to CMB polarization

in the next decade (including LiteBIRD);

– constrain r at the level of 10−2;

– improve constraints on reionization and large scale CMB anomalies through combined

measurements of temperature and polarization anisotropies at low multipoles.

LSPE will observe a 25% fraction of the sky in the northern hemisphere by means of its two

instruments, STRIP and SWIPE, complementary for frequency coverage and technology.

The main characteristics of both instruments are summarized in Table 1 and the combined

sky coverage is shown in Fig. 1.

3 STRIP

STRIP (Survey TeneRife Italian Polarimeter) is a coherent polarimeter array that will ob-

serve the microwave sky from Tenerife in two frequency bands centered at 43 GHz (Q band,

49 receivers) and 95 GHz (W band, 6 receivers) through a dual–reflector crossed–Dragone

telescope of 1.5 m projected aperture. Formerly designed as a balloon–borne instrument to

be flown along with SWIPE, STRIP has now been redesigned as a ground–based platform

that will start operations by Spring 2021 at the Teide Observatory in Tenerife. The STRIP
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Instrument STRIP SWIPE

Site Tenerife balloon

Freq (GHz) 43 90 145 210 240

Bandwidth 16% 8% 30% 20% 10%

Angular resolution FWHM (arcmin) 20 10 85

Detectors technology HEMT TES multimoded

Number of detectors Ndet 49 6 110 108 108

Detector NET (µKCMB

√
s) 460 1247 12.7 15.7 30.9

Mission duration 2 years 15 days

Duty cycle 35% 90%

Sky coverage fsky 37% 38%

Map sensitivity σQ,U (µKCMB · arcmin) 104 809 12 14 29

Noise power spectrum (N E,B
ℓ )1/2 (µKCMB · arcmin) 171 1330 19 24 47

Table 1 LSPE instrumental parameters.

Fig. 1 Sample of the combined sky coverage of the LSPE instruments (equatorial coordinates.)

main instrumental parameters for the two channels in the Q and W bands are summarized

in Table 1. The Q–band goal sensitivity corresponds to an improvement of a factor 5 over

the Planck–LFI 44 GHz sensitivity on the same pixel size at the end of the 30 months mis-

sion. The W–band is intended as an atmospheric emission and fluctuation monitor and will

complement the Q–band measurements by allowing signal cleaning. STRIP will scan the

sky with a continuous azimuthal spin at 1 rpm, while maintaining telescope boresight at a

fixed elevation angle (about 20 degrees from the zenith at Tenerife latitude). By combining

the telescope spinning with the daily rotation of the Earth around its axis, STRIP will cover

a region of the northern sky that overlaps at least with 80% of the SWIPE survey. During

daytime STRIP will manage the presence of sunlight by discarding data where the sun is

at less than 10 degrees angular distance from the telescope line-of-sight. Our simulations

show that this fraction corresponds to about 15% of the data and it is included in our duty

cycle computation. When the sun is farther than 10 degrees from the boresight, its emission

will be detected by the beam far sidelobes that are at the level of about −100 dB, enough to

dilute this signal to negligible levels.

The design of the STRIP polarimeters is based on InP cryogenic High Electron Mo-

bility Transistor (HEMT) low noise amplifiers integrated in Monolithic Microwave Inte-

grated Circuits (MMIC) and on high–performance waveguide components cooled to 20 K.

A schematic of the detection chain of STRIP is shown in Fig. 2. The benefit of this design

is that the Q and U Stokes parameters are directly extracted from each pair of diodes at the

output. Fig. 2 shows the principle of operation of its radiometers.
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Fig. 2 Schematic of the STRIP detection chain. The correlation unit receives the circular polarization coming

from the orthomode transducer; each input is amplified and phase modulated by phase shifters. One phase

switch shifts the phase between 0◦ and 180◦ at 4 kHz, while the other works at 100 Hz. The two signals are

combined in a 180◦ hybrid coupler. Half of each output is bandpass filtered and rectified by a pair of GaAs

detector diodes, while the other half passes through a 90◦ hybrid coupler. A second pair of bandpass filters

and detector diodes measures the power coming out from the coupler.

Fig. 3 shows a sketch of the STRIP telescope and mount and a picture of the Q-band

focal plane.

Fig. 3 Left: STRIP telescope assembly. Right: Q–band corrugated feedhorns (incident photon view);

4 SWIPE

SWIPE (Short Wavelength Instrument of the Polarization Explorer) is a bolometric po-

larimeter based on a 50 cm refractive telescope. Its dual polarization focal plane hosts two ar-

rays, one per polarization, which results in a total of 330 large throughput multi–moded TES

bolometers operated at 0.3 K, with passbands centered at 145, 210 and 240 GHz. SWIPE will

survey the northern sky from a spinning long duration stratospheric balloon, which will be

launched from high latitudes during the Arctic winter. Its main features are summarized in

Table 1. Fig. 4 shows a sketches of the SWIPE gondola, receiver and optical system. The key

unique properties of SWIPE are the use of a large aperture half–wave plate (HWP), acting

as a broadband polarization modulator at the telescope input (see e.g. [5],[6]), and the opti-

mization of throughput with the multi–moded coupling of the single detectors to the system

optics [7]. The HWP rotation mechanism is based on a superconducting magnetic suspen-

sion system allowing continuous rotation at 60 rpm, corresponding to 4 Hz modulation of the
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Fig. 4 Left: sketch of the SWIPE gondola and receiver. Right: schematic of the SWIPE receiver and optical

system.

polarized signal [6]. The stator of the modulation unit, hosting the superconducting magnets,

is thermally attached to the pumped liquid He reservoir, ensuring an operating temperature

below 1.8 K. Magnetic friction is optimized to ensure that the rotor temperature does not

rise above 20 K under nominal operation.

The multi–moded detectors for SWIPE trade angular resolution for optical efficiency,

by coupling few tens of modes per detector across the covered bands, so that the effective

photon noise limited sensitivity equals that of a receiver with few thousands single–moded

pixels in both polarizations [7]. The broad and flat beam pattern of the pixels ensures a

uniform illumination of the cold aperture stop of the telescope (with a -10dB edge taper at

150 GHz). This is located just after the lens on the optical path from the sky to the focal

planes (see Fig. 4). The larger pickup on the edges of the detector field of view does not

hinder detector performance, since the telescope tube and the stop are cooled to less than

2 K. In addition, highly absorptive coating is applied inside the tube in order to prevent

in-band stray-light from leaking into the main beam. The 0.3 K pixel assembly (Fig. 5)

is designed to couple each detector to the focal plane through a smooth–walled conical

horn feeding a mode–filtering waveguide. After that, radiation propagates through a conical

transition into a multi–moded cavity and it is detected by one Ti–Au TES sensor with a

large (8 mm diameter) Bi–Au spider–web absorber [9]. In SWIPE, polarization separation

takes place at the level of the large polarizer splitting the beam to the two focal planes.

Therefore, the polarization properties of the individual pixel assemblies do not affect the

polarimeter performance. The comparatively limited number of physical detectors, and of

the bias/readout units needed for their operation, allows the receiver to comply with the

strong power supply constraints due to the absence of the sun during the night flight, while

still achieving a sensitivity scaling like the square root of the total number of coupled modes

(see Table 1).

Implementation of multi–moded coupling implies obvious challenges in detector design

and fabrication, due to the large size of the SiN spider–web absorbers and to the limited

parameter space for performance optimization of the TES sensors [8, 9]. The two SWIPE
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Fig. 5 Top:SWIPE multi-moded pixel assembly. The main components are highlighted and the quoted sizes

are in mm. Bottom left: SWIPE multi–moded TES bolometer absorber. Bottom center: SWIPE pixel assembly

and bolometer cavity. Bottom right: sample pixel assembled on one of the two SWIPE focal planes.

focal planes are cooled at a base temperature of 0.3 K. Under the nominal loading conditions,

optimal tradeoff between noise and saturation power requires a superconducting transition

temperature Tc of 0.5 K.

The readout electronics is based on a Frequency Domain Multiplexing (FDM) scheme,

with each dc-SQUID sensing 16 TESs biased in the 200 kHz-1.6 MHz frequency range, for

a total of 24 dc-SQUIDs to handle the two focal planes [12]. The cold part of the electronics

is based on LC filter boards (including the bias resistor) next to the focal planes, at 0.3 K,

while the SQUID is at 1.6 K, in a shielded box. The warm readout custom board is based on

an Altera Cyclone V SoC, and it features mezzanine DAC and ADC boards.

5 Present status

At present, most of the STRIP hardware has been developed and tested. Q–band and W–band

sub–systems, including passive components (feedhorns, polarizers, OMTs) and HEMT–

based coherent receivers, have been successfully characterized at unit–level. Integration and

system–level testing of the focal plane arrays inside the instrument cryostat is planned to be

performed within the next months. Electronics and ancillary systems, such as the internal

calibrator and the star tracker, are being finalized and verified as well. Verifications of the

telescope parts are in progress. The preparation of the site and the construction of the sliding

roof will be finalized between 2019 and 2020. STRIP is scheduled to be fully integrated at

the observation site in Spring 2021.

The main subsystems of the SWIPE receiver are under construction and testing. In par-

ticular, we highlight below the work in progress on the main subsystems.

– The clamp/release system for the magnetically levitating rotor has been successfully

tested at cryogenic temperatures [11]. The other components of the HWP modulator
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have been built and individually tested, with the fully assembled system scheduled for

cryogenic testing in the next months.

– Tests of the detector prototypes for the SWIPE focal plane with a coherent source at

128 GHz prove a good consistency of the pixel response with the modeled multi–moded

performance [10]. More extensive, broadband testing at the system–level is advised by

the large size of the focal plane and by the frequency dependent positioning of the pixel

units across the focal plane.

– The first functional tests (e.g., tone generation) on the prototype readout flight model

have been performed [13].

The pre–integration campaign and subsystem compliance review for SWIPE are sched-

uled at the end of 2019. The first launch opportunity for SWIPE is late Arctic winter 2020,

and all the related activities are currently on schedule to comply with that time window.
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