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Summary
Multiphase inertia-dominated flow simulations, and free surface flow models in
particular, continue to this day to present many challenges in terms of accuracy
and computational cost to industry and research communities. Numerical wave
tanks and their use for studying wave-structure interactions are a good example.
Finite element method (FEM) with anisotropic meshes combined with dynamic
mesh algorithms has already shown the potential to significantly reduce the
number of elements and simulation time with no accuracy loss. However, mesh
anisotropy can lead to mesh quality-related instabilities. This article presents
a very robust FEM approach based on a control volume discretization of the
pressure field for inertia dominated flows, which can overcome the typically
encountered mesh quality limitations associated with extremely anisotropic ele-
ments. Highly compressive methods for the water-air interface are used here.
The combination of these methods is validated with multiphase free surface
flow benchmark cases, showing very good agreement with experiments even for
extremely anisotropic meshes, reducing by up to two orders of magnitude the
required number of elements to obtain accurate solutions.

K E Y W O R D S

anisotropic mesh, CVFEM, dynamic mesh, free surface flow, interface capture, multiphase,
numerical wave tank

1 INTRODUCTION

Studying wave-structure interaction (WSI) with numerical wave tanks (NWTs) has become common practice not only
for research institutions but also for industry, complementing and sometimes replacing physical modeling and empirical
formulas as design tools. WSI can be often studied with small domain problems where accuracy is considered critical.
Potential models can be found within finite element methods (FEMs). Although they are often considered computa-
tionally expensive, they can reproduce complex shapes accurately and present a wide range of solver and discretization
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options,1,2 making them very attractive and versatile for very different problems. The classical approach for modeling
multiphase flow problems with FEM (CVFEM) is using finite element (FE) discretization for the pressure (continuous
Galerkin, CG) and velocity (discontinuous Galerkin, DG) fields, typically with polynomials of order 0 or 1 and with control
volumes (CVs) for the phase field.3-5

A common way to reduce the computational cost is the optimization of the mesh, reducing the number of elements
in regions of the domain where resolution is not needed. Using anisotropic meshes (high ratio side-to-side elements) can
help by reducing the number of nodes even further. Dynamic mesh optimization (DMO) schemes can also be used in
order to significantly reduce computational cost without losing accuracy by adapting the mesh at different time steps.6-12

This is particularly attractive for multiphase problems where the air-water interface can be resolved with a moving
high-resolution anisotropic mesh, such NWTs.

Using highly optimized anisotropic meshes can often lead to elements with large angles, which can make the model
take significantly longer (creating matrices that are difficult to solve) or even fail to converge.13,14 Moreover, DMO could
be deemed impractical when highly anisotropic meshes are required if these are seen to be associated with model insta-
bility. These limitations have restricted the use of anisotropic meshes and DMO, making good quality isotropic (similar
side-to-side element) meshes preferable by most due to their advantages in terms of model stability (creating matrices
that are easy to solve), which leads to more elements and a higher computational cost.

To tackle elements with large angles for Darcy flow applications, Salinas et al15 proposed a simple and robust CV
discretization for the pressure field specifically to overcome mesh quality limitations. This work was based on the classic
spatial discretizations P0DGP1 and P1DGP2, that is, using polynomials of order 0 and 1 for the velocity field (with DG) and
polynomials of order 1 and 2 for the pressure field (with CG). Although this approach is very attractive for its simplicity
and robustness against challenging meshes, the authors believe that the spatial discretization with polynomials of order 0
for the velocity leads to lower accuracy for resolving the momentum equation, which is critical for inertia dominated flow
problems. Alternatively, the P1DGP2 discretization gives very high accuracy, but this accuracy comes at a much higher
cost due to discretizing the pressure field with second-order polynomials.

This article proposes using a novel P1DGP1(CV), discretizing with CVs, the pressure field, and with DG of order 1,
the critical velocity field. This has the potential to add stability and robustness to the classical P1DGP1 when using highly
anisotropic meshes and DMO for computational cost optimization.

Due to the simplicity of the P1DGP1(CV) approach, other schemes can be added to the model for improving the accu-
racy of the solution. Different schemes are considered to better represent the physics of the free surface of the water
in NWT (see Section 2.4.1), such as a compressive advection scheme16 to simulate very sharp water-air interfaces. Two
benchmark cases are used for validation, focusing on NWTs and their main challenges of wave breaking and wave
loading. A collapsing water column is modeled, following experiments carried out by Kleefsman et al17 for validation
of water impact loading, and a solitary wave breaking on a slope is compared to experiments by Li,18 where robust
wave breaking simulations with very challenging anisotropic meshes are validated with the novel CV discretization for
pressure.

The remainder of this article is structured as follows. Section 2 describes the governing equations of the model, their
discretization, and how they are solved. Section 3 shows the results of the validation cases and compares them with
experiments. Finally, this article concludes with a discussion chapter and remarks on the scope for future adoption of
such methods for NWTs.

2 GOVERNING EQUATIONS AND NUMERICAL METHODS

2.1 Governing equations

In this two phase modeling, a multicomponent approach19,20 is used. The component advection equations are formulated
within the pressure and continuity equations, which results in local mass balance. A number of components (C) exist
in one or more phases (one is assumed here), where 𝛼i is the volume fraction of component i, i = 1, 2,… ,C, and the
system is constrained to:

c∑
i=1

𝛼i = 1. (1)
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For each component i, the equation of conservation of mass is defined as:

𝜌i

(
𝜕𝛼i

𝜕t
+ ∇ ⋅ (u𝛼i)

)
= 0, i = 1, 2,… ,C, (2)

where t is time, 𝜌i is the component density, and u is the velocity vector. The equation of motion of an incompressible
viscous fluid is:

𝜌

(
𝜕u
𝜕t

+ u ⋅ ∇u
)
= −∇p + ∇ ⋅ 𝜇

(
∇u + ∇Tu

)
+ 𝜌g, (3)

where p is the pressure field, 𝜇 =
∑c

i=1 𝛼i𝜇i is the bulk dynamic viscosity, 𝜌 =
∑c

i=1 𝛼i𝜌i is the bulk density, and g is the
gravity acceleration vector.

2.2 Temporal discretization

The adaptive time step and discretization schemes described by Pavlidis et al16 are used here. Time step size is adapted
based on the Courant-Friedrichs-Levy (CFL) number. An adaptive discretization scheme is used for solving the compo-
nent volume fraction field based on a parameter 𝜃, which varies between 0 and 1 following equation (42) from Pavlidis
et al.16 For 𝜃 = 0, an explicit forward Euler scheme is used, which results in a compressive interface, whereas for 𝜃 = 1, a
numerically robust implicit backward Euler scheme is used. The advantage of an adaptive discretization scheme is that
it is using forward Euler whenever possible (ie, the time step is below the order of the grid Courant number) and implicit
Euler (or a combination of the two) where required (ie, the time step is of the order or above the grid Courant number),
leading to a combined very robust method and a more compressive interface. The velocity field is solved with an implicit
backward Euler scheme in order to guarantee stability.

2.3 Computational grids and spatial discretization

This article proposes a novel P1DGP1(CV) based on the classic P1DGP1, this is linear discontinuous velocity and CV pres-
sure spatial discretizations. When compared to classical P1DGP1, the P1DGP1(CV) approach is more robust when applied
to very anisotropic elements, thanks to discretizing the pressure field with CV, and faster because of its higher conver-
gence speed see Salinas et al15. In order to keep higher accuracy for the pressure field, a balanced pressure decomposition
method is used,21 which solves the hydrostatic pressure separately with a quadratic element discretization scheme. This
method is found to lead to very significant improvements for the P1DGP1 FE pair, at a negligible increase in computa-
tional cost, see Maddison et al.21 The pressure decomposition applies only to the momentum equation and is omitted in
the spatial discretization description section of this article for simplicity.

Assuming FE and CV representations for u and p, respectively, for the discretization of the governing equations, these
can be expressed in terms of their FE basis functions Qk and CV basis function Pj:

u =
u∑
k=1

Qkuk and p =
p∑
j=1

Pjpj, (4)

T A B L E 1 Summary of nomenclature
for different spatial discretization schemes Nomenclature

Velocity field
discretization

Pressure field
discretization

P0DGP1 Constant discontinuous (DG) First-order continuous (CG)

P1DGP1 First-order DG First-order CG

P1DGP1(CV) First-order DG Control Volumes

P1DGP2 First-order DG Second-order CG
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F I G U R E 1 2D representations of P1DGP1 (A) and P1DGP1(CV) (B), with a representation of elements, element nodes for pressure
(black dot) and for velocity (x) [Colour figure can be viewed at wileyonlinelibrary.com]

being u and p the velocity and pressure number of degrees of freedom, respectively. Qk are the Lagrangian shape
functions of order n (here we use n equal to 1) and Pj the CV shape functions of order 1 (ie, they take the form of (1 0 0)
(0 1 0) (0 0 1) for 2D cases).

Discretization of the mass conservation equation (Equation (2)) is well established and can be found in Pavlidis et al.20

The discretization of the momentum equation (Equation (3)) is, however, different due to the pressure term (resolved
here using CV) and is explained here. Multiplying the equation (Equation (3)) with a linear DG basis function Qk, apply-
ing integration by parts twice over each element E, with the 𝜃 time discretization method, and Green's theorem for the
pressure term, the discrete form of the momentum equation can be formulated as:

∫VE

Qk

(
𝜌

(
𝜕u
𝜕t

+ u ⋅ ∇u
)
+ ∇p − ∇ ⋅ 𝜇

(
∇u + ∇Tu

)
− 𝜌g

)
dV ≈ ∫VE

Qk

(
𝜌
(
un+1 − un)

Δt
− 𝜌g

)
dV

+ 𝜃

(
Sn+1

kADV
+ Sn+1

kVIS

)
+ (1 − 𝜃)

(
Sn

kADV
+ Sn

kVIS

)
+ ∫ΓCVj

−ΓΩp

Qkpn+1
CVj ndΓ + ∫ΓΩp

Qknpn+1
bc dΓ = 0, (5)

where VE is the domain, ΓCVj is the surface of the CV, and ΓΩp is the domain surface. SkADV and SkVIS are the advection
and viscous terms, respectively, described by Xie et al.22 pCV is the pressure field resolved with CV and pbc the pressure
value at the boundary. Note that in this case, because of Pj, we cannot explicitly evaluate the gradient of the pressure field
as in the standard FE approach, so we therefore need to apply the Green theorem. We have seen that this combination
improves the quality of the pressure matrix, helping the convergence and solution of the pressure field.

2.3.1 The transport equation

The transport or flux of each component's volume fraction is modeled with the transport equation:

𝜕𝜙i

𝜕t
+ ∇ ⋅ u𝜙i − ∇ ⋅ 𝜅∇𝜙i = 0, (6)

where𝜙i is the transported constituent, in this case𝜙i = 𝛼i𝜌i, and 𝜅 is the diffusion term. Here a Petrov-Galerkin method23

is used to obtain 𝜅 as an anti-diffusion term, as described by Pavlidis et al.16 This method is equivalent to applying a
negative diffusion on the interface in order to compensate for the model induced artificial diffusion and make the interface

http://wileyonlinelibrary.com
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F I G U R E 2 Flow chart of the
pressure projection method used here
for solving the system of equations

more compressive. The flux or transport limiter, which guarantees mass continuity and the method to be conservative
and here also controls the compressiveness of the interface, is based on the normalized variable diagram (NVD) and given
by Pavlidis et al.16

2.3.2 Solving the system of equations

A pressure projection method22 is used to solve the system of equations. GMRES Krylov subspace solver24 from the PETSc
framework25 with the Boomer algebraic multigrid preconditioner from the HYPRE library26 is used to solve for pressure,
velocity, and transport. The full algorithm for solving the system of equations is shown in Figure 2.

2.4 DMO and mesh to mesh interpolation

The mesh adaptivity scheme used here is based on the anisotropic mesh optimization library of Pain et al.7 A metric
advection method27 is used here in order to take into account the expected movement and direction of the high resolution
area between mesh adapts. Mesh to mesh interpolation is used once the new mesh has been generated.28 A standard
consistent interpolation is used for the velocity field. For pressure and component fraction fields, a CG projection29,30
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is used because of its high order interpolation and mass conservation, which also leads to better interface capture as
explained in Section 2.4.1.

2.4.1 Interface capture schemes

Running simulations with first-order spatial discretization schemes, and CG pressure field in particular, can lead to a more
dissipative interface and therefore less accurate result. Different options are proposed here for keeping a sharp interface
without increasing the computational cost:

1. A more compressive interface can be obtained with the adaptive time discretization scheme described in Section 2.2.
2. A CG projection29,30 is used for the component volume fraction (see Section 2.4). This guarantees a conservative,

nondissipative, and nonbounded projection of the water volume fraction field.
3. A high-order accurate Petrov-Galerkin-based compressive advection scheme16 with a gradient-based scaling is applied.

This method described in Section 2.3.1 is equivalent to adding a negative diffusion into the advection equation.
4. A high-order FEM down-winding scheme is used to obtain fluxes on the CV boundaries, which are subjected to a

flux-limiting NVD approach,31-33 to obtain compressive and bounded solutions.

3 VALIDATION OF THE MODEL

The aim of this validation is to show the potential of the P1DGP1(CV) spatial discretization scheme for the optimization
of accuracy and computational cost for FEM simulations. The two cases chosen for this article are believed to show
such potential for NWTs. The results shown here were obtained using the open source Imperial College Finite Element
Reservoir Simulator (IC-FERST) with the P1DGP1(CV) scheme.

3.1 2D breaking of a solitary wave

A solitary wave breaking on a slope is simulated in order to prove that the presented approach is capable of modeling
wave breaking accurately. This case is run in 2D for sensitivity tests and full validation of the P1DGP1(CV) and interface
capture schemes. The benchmark case used here is based on the experiments run by Li.18 The dimensions and slope of
the NWT are shown in Figure 3.

Water depth and wave height at the deepest point are h=0.3048m and H=0.45*h, respectively. Half of the solitary wave
is added to the domain by imposing the free surface and horizontal and vertical velocities as initial conditions. The sloped
(nonslip), right, and side boundaries are closed (imposing velocities of 0). The top boundary is considered open with an
imposed constant pressure of 0. Initial and inlet boundary conditions (left boundary) follow the analytical solution of a
solitary wave.34 Density and viscosity of the water and air components are detailed in Table 2. Mesh is adapted at t=0 with
minimum and maximum element sizes in (x, y) of (h, h) and (h∕100, h∕100).

F I G U R E 3 General setup of the numerical wave tank (NWT)18 [Colour figure can be viewed at wileyonlinelibrary.com]

Component Density (kg/m3) Viscosity (kg/(m s)

Water 1000 9.892× 10−4

Air 1.125 1.81× 10−5

T A B L E 2 Densities and viscosities for air and water

http://wileyonlinelibrary.com
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F I G U R E 4 2D simulations using P1DGP1 (black circle), P1DGP1(CV) (black square), P1DGP1(CV) with a compressive interface (green
cross), and P1DGP1(CV) using compressive interface and LES (blue x), compared to experiments (red circle)18

Wave breaking, and this case in particular, is very sensitive to numerical wave energy dissipation. Different spatial
discretizations are considered in order to evaluate accuracy of the results against experiments.18 Figure 4 shows the wave
profile at different breaking stages for simulations using a classical P1DGP1 and P1DGP1(CV) discretizations with no
compressive schemes for the interface, a P1DGP1(CV) with compressive interface, and the latter using an LES model.

P1DGP1 and P1DGP1(CV) show lower wave height and late breaking when compared to experiments, but no significant
numerical energy dissipation is observed between them. This suggests that CV discretization for pressure does not add
significant extra dissipation to the P1DGP1 scheme for this case. The numerical energy dissipation can be significantly
reduced by using compressive schemes (described in section 2.4.1). As shown in Figure 4 (green cross), the compressive
interface scheme increases wave height and presents a similar wave breaking pattern to experiments, although it also
adds an upward curving head to the plunging jet of the wave before impacting the forward free surface, which is not
observed in experiments. This effect can be reduced by using a turbulence model such as LES, as shown in Figure 4 (blue
x), which suggests that this effect may have been artificially added by the interface compressive scheme (see Section 5
for further discussion). Although the LES model is expected to add extra local dissipation on the breaking wave, this has
no significant impact in overall energy dissipation (due to lower or nonturbulent flow before breaking) when comparing
simulations with and without LES, as observed in Figure 4.

3.2 3D collapsing water column or dam break

The case of a collapsing water column is commonly used as a benchmark case for numerical model validation.35-38 The
experiments of Kleefsman et al17 are believed to be the most relevant to compare with numerical simulation due to the
presence of a rectangular obstacle in the collapsing water column path and several available pressure measurements
from sensors on the obstacle's front and top faces. Simulation results shown here are based on the P1DGP1(CV) with the
interface capture schemes presented in Section 2.4.1.

The experiment is based on a classic dam break test (see Figure 5). Pressure sensors are located at the front and top
faces of the obstacle, as shown in Figure 5B. Water level gauges are located on the water column, at 0.72 m from the tank
wall, and 1 m from the front of the water column.

F I G U R E 5 A, General setup of the experiments
and numerical model domain, with two probes (H2 and
H4) measuring water level time series. B, Pressure
sensors on the front (P1, P3) and top (P5, P7) faces of the
obstacle17 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 6 Mesh at t = 0 [Colour figure can be viewed at
wileyonlinelibrary.com]

Angle N. elements Percentage

120.00 3377 72.59

150.00 2027 43.57

170.00 930 19.99

175.00 369 7.93

T A B L E 3 Mesh quality: maximum element angles

F I G U R E 7 Detail of air-water
trapping: water drops at 0.75 second (top
left) and 0.80 second (top right) and air
trapped in water at 1.21 second (bottom
left) and 2.07 (bottom right) [Colour
figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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The top boundary of the numerical tank is considered as an open roof (P = 0) and side and bottom boundaries are
closed. Viscosities and densities of air and water are shown in Table 2.

The numerical mesh is initially adapted by the mesh adaptivity algorithm for water component volume fraction with
maximum and minimum element sizes of 1 m and 0.01 m, respectively. The aim is to exploit a highly anisotropic mesh
with a maximum aspect ratio of 100. Figure 6 shows the adapted mesh at time t = 0 in preparation for highly resolved
interface tracking with the previously described compressive interface scheme. Table 3 shows the mesh quality in terms of
element angles at t = 0, where up to 8% of elements present a very high angle (usually associated with lower quality mesh
but with no negative impacts in this approach). Simulations are run with adaptive time step for 0.1 and 1 CFL numbers
for the velocity field in order to provide a full range of time step sizes and their impact on results. The simulation is run
for 5 seconds from the dam break.

Figure 7 shows the snapshots with a very good representation of water drops in the air after impact (left) and air
trapping behind the obstacle (right). These results show the potential of resolving complex two-phase flow with droplets
and trapped air bubbles, which can be significantly improved by adding surface tension schemes.22,39 A complete sequence
of snapshots of experiments and numerical model results for CFL of 0.1 are presented in Figure 8.

F I G U R E 8 Water-air interface (0.5
water component isosurface) from numerical
model results (right) compared with physical
model experiments (left)17 at same times
[Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Pressures measured at the obstacle front and top faces are shown in Figure 9. Pressure peaks are zoomed in Figure 10.
Water level measurements from experiments and numerical simulations are shown in Figure 11. Experiments and COM-
Flow results, which is a numerical method based on finite volumes method (FVM) presented in the original paper by
Kleefsman et al,17 are also shown for comparison. Peak pressures at P1 (lower front face) show very good agreement of
P1DGP1(CV) with experiments for both CFL cases. The peak pressure from the model simulation with the presented for-
mulation is expected to be higher (25 kPa in this case) than in the experiment. This is due to pressure sensor missing
the real pressure maximum value in experiments by measuring at lower frequency than the simulation time stepping, as
shown in Figure 10.

P3 (higher up the front face) results show very good agreement for CFL=0.1 and a slightly smaller peak pressure for
CFL=1, compared to the experiments. The authors believe this is induced by a higher energy dissipation due to the longer
time step. In both cases, the presented method shows better agreement than COMFlow17 simulation results. Pressures
measured at the top face (P5 and P7) of the obstacle show very good agreement for all cases using P1DGP1(CV), with
the different pressure spikes assumed to be related to water drops falling and turbulent flow on the surface of the obsta-
cle before this is completely submerged. Good agreement with experiments is also found on water level measurements
(Figure 11). Small spikes are observed in pressure plots (for CFL=0.1), but these are very low level fluctuations when
compared to other good models such as COMFlow.

Numerical energy dissipation is expected for P1DGP1(CV) due to solving the pressure field with CV (low order), which
should become more evident at the later stages of the simulation. This is observed in Figure 11 as a delay on H2 (A) water
level peak at 1.8 second, and as a smoothing effect on peaks at 4.8 second (H2), and 2.8 second and 3.8 second (H4).
However, this does not affect the general good agreement with experiments.

F I G U R E 9 Pressure measurements at the front (A,B) and top (C,D) faces of the obstacle. Numerical model results against physical
model experiments17 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 10 Peak pressure measurements at the front face of the obstacle. Numerical model results against physical model
experiments17 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 11 Water level measurements at H2 and H4. Numerical model results against physical model experiments17 [Colour figure
can be viewed at wileyonlinelibrary.com]

Due to DMO, the number of elements varies during the simulation (see Figure 12). For CFL=1, a maximum of 2×
105 elements is achieved at 1.3 second. For CFL=0.1, a maximum threshold is set to 5× 105. This threshold is reached
at 0.8 second and therefore does not affect simulated pressure peaks at sensors P1 and P3. Mesh resolution require-
ments, that is, maximum (1 m) and minimum (0.01 m) edge element lengths, are the same for all three cases. Time
step remains between 10−3 second and 5×10−3 second for CFL=1 and between 5×10−4 second and 3×10−3 second for
CFL=0.1.

F I G U R E 12 Evolution of the number of
elements [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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Overall, the global behavior of the P1DGP1(CV) scheme results using CFL=0.1 and CFL=1 agree well with the
experiment. Impact peaks are in good agreement, especially for P3 with CFL=0.1, which was missed by COMFlow17

simulation.

3.3 3D breaking of a solitary wave

We now extend the 2D wave (see Section 3.1) to 3D in order to fully validate the P1DGP1(CV) scheme and show the
potential of the presented numerical schemes in terms of mesh optimization. This is a particular case where one of the
dimensions is initially of less importance compared with the other two dimensions. The goal is, therefore, to reduce
the resolution in the y axis direction without compromising the results. For this case, a solitary wave with H∕h = 0.4
(h=0.3048 m) is simulated and compared to experiments.18

The 3D domain consists of a layout as described in Figure 3 and a flume width of 0.5 m. The mesh is adapted at t = 0
with maximum element length in (x, y, z) of (h, h, h). Three different resolution settings for minimum element lengths are
considered (see Table 4): Mesh A for a standard isotropic mesh; Mesh B for a highly anisotropic mesh; and Mesh C for an
even higher anisotropy ratio mesh.

Figure 13 shows the 3D mesh refinement around the interface for meshes A, B, and C. These three meshes have a
starting number of elements of 472342 (A), 30915 (B), and 8742 (C), respectively. Table 5 shows element angle quality

Mesh A Mesh B Mesh C

(h∕100, h∕100, h∕100) (h∕100, h∕10, h∕100) (h∕100, h∕5, h∕100)

T A B L E 4 Minimum element lengths for the
meshes considered (h=0.3048 m)

F I G U R E 13 3D multiphase model meshes: mesh A (bottom left), mesh B (bottom center), and mesh C (bottom right) [Colour figure
can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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T A B L E 5 Mesh quality: maximum element angles for meshes A, B, and C

Angle No. elements (A) % (A) No. el. (B) % (B) No. el. (C) % (C)

120.00 297739 63.03 25415 82.21 7036 80.49

150.00 40571 8.59 12675 41.00 4835 55.31

170.00 6 0.00 1908 6.17 1603 18.34

175.00 0 0.00 111 0.36 553 6.33

statistics for the three mesh settings considered here at t = 0. P1DGP1(CV) scheme results from mesh setups (B) and (C)
can be seen in Figure 14, which shows a very close match up to the fourth breaking stage just before the plunging jet
impacts the water surface. This indicates that the latest stages of the wave breaking process are more sensitive to mesh
changes. However, the authors believe that, as seen in 2D simulations, this could be due to the high sensitivity from the
compressive interface schemes used here.

It is important to note that no comparison between P1DGP1(CV) and the classical P1DGP1 schemes could be shown
here as the classical P1DGP1 scheme failed to converge with mesh B and mesh C. A qualitative comparison with exper-
iments of the wave breaking (plunging) is shown in Figure 15 with the mesh C setup. The mesh requirements of this
simulation using P1DGP1(CV) reduces 2 and 1 orders of magnitude the number of nodes needed for an accurate result
when compared to mesh A and mesh B setups (see Table 6), while it is in very good agreement with experiments.18

F I G U R E 14 LES - P1DGP1(CV) 3D simulations of a solitary wave breaking with mesh B (Figure 13B) and mesh C (Figure 13C).
H∕h = 0.4 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 15 3D Wave breaking stages of numerical simulation (bottom) against physical modeling results (top) for H∕h = 0.418

[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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T A B L E 6 Starting total number of elements for different mesh setups

Isotropic (a) Highly anisotropic (b) Challenging anisotropic (c)

No. elements 472342 30915 8742

4 DISCUSSION

The novel P1DGP1(CV) scheme is proven to be as accurate as P1DGP1 standard CVFEM scheme, while being more robust
and capable of resolving free surface flow problems with highly anisotropic meshes accurately. These code develop-
ments when applied to NWTs effectively accelerate FEM approaches with their typical higher accuracy, when compared
to generally established faster NWTs based on FVM or SPH alternatives.40-42 The FEM speed up can be attributed to a
new level of mesh optimization with a significant reduction in the number of elements and computational cost, making
P1DGP1(CV) more competitive and attractive. This model acceleration is also attributed to a faster convergence of the
solution and to the optimization of the mesh. The validation cases used here have shown that the formulation is capable
of providing an accurate solution with a reduction of up to 1 and 2 orders of magnitude compared with standard isotropic
meshes or meshes with low anisotropy rates.

Compressive interface schemes are really useful for tackling numerical energy dissipation. The interface capture
scheme used here is proven to be conservative in terms of energy dissipation, but it generates artificial lower pressure
near the crest of the wave when the wave breaking jet is created. Balancing uplift velocities and an artificially induced
shape not seen in experiments are generated. This side effect of the compressive interface scheme can be smoothed with
an LES model. Future work will aim to improve the performance of the interface capture scheme.

Traditionally more expensive unstructured grids can be combined with DMO helping optimize the mesh and reduce
the computational cost of the simulations. However, the standard formulations would fail to solve the system with
very obtuse elements. The presented formulation allows to push the boundaries of DMO by allowing to increase the
aspect-ratio of elements and further reduce the computational costs while maintaining accuracy. Therefore, this is not
only providing a new scheme to overcome a long standing problem for classical FEM models but also has a great potential
for a wide range of applications. This is of particular interest for 2D and 3D cases where one or more dimensions have
less importance in solving the physics of the problem during part of the simulation or parts of the domain, such as
with NWT applications. Future work will look at NWTs with WSI, mainly working with rubblemound structures, where
high accuracy and adaptive highly optimized meshes will have a significant advantage and will help contributing to the
understanding the physics of the problem.

5 CONCLUDING REMARKS

The P1DGP1(CV) scheme is proven to be more robust than the P1DGP1 scheme for bad quality meshes. The
P1DGP1(CV) scheme is also proven capable of resolving free surface flow problems with highly anisotropic meshes
accurately, facilitating a new level of mesh optimization with a significant reduction in the number of elements and
computational cost.

Energy dissipation under the P1DGP1(CV) scheme is of the same order of magnitude as for the standard P1DGP1
scheme. The numerical energy dissipation in the validation cases is mostly attributed to the interface capture, which
can be significantly reduced by applying compressive schemes for the interface. Compressive scheme side effects on the
breaking jet can be smoothed with an LES model.

Overall, the novel and very robust P1DGP1(CV) scheme is able to provide very accurate results with a significant
reduction of the number of elements. A speed up associated with reduction in element number of up to 2 orders of
magnitude is demonstrated for the benchmark cases simulated for this article.
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