

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/131591/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Pudkon, Watcharapong, Bahruji, Hasliza, Miedziak, Peter J., Davies, Thomas E., Morgan, David J., Pattisson, Samuel, Kaowphong, Sulawan and Hutchings, Graham J. 2020. Enhanced visible-light-driven photocatalytic H2 production and Cr(vi) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule-assisted microwave heating method. Catalysis Science and Technology 10 (9), pp. 2838-2854. 10.1039/D0CY00234H

Publishers page: http://dx.doi.org/10.1039/D0CY00234H

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Supporting Information

Enhanced visible-light-driven photocatalytic H_2 production and Cr(VI) reduction of a $ZnIn_2S_4/MoS_2$ heterojunction synthesized by the biomolecule-assisted microwave heating method

Watcharapong Pudkon^a, Hasliza Bahruji^b, Peter J. Miedziak^{b,c}, Thomas E. Davies^b, David J. Morgan^b, Samuel Pattisson^b, Sulawan Kaowphong^{a,d,e,*}, Graham J. Hutchings^{b,*}

^a Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

^b Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place CF10 3AT, Cardiff, UK

^cSchool of Applied Sciences, University of South Wales, Pontypridd CF37 4AT, UK

^dEnvironmental Science Research Center (ESRC), Faculty of Science, , Chiang Mai University, Chiang Mai 50200, Thailand

^eCenter of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

1. Calculation method for the apparent quantum yield (AQY)

The apparent quantum yield (AQY) of $ZnIn_2S_4$ and $ZnIn_2S_4/MoS_2-40\%$ wt photocatalysts for the H_2 production and Cr(VI) production were calculated according to the following equations:

$$AQY(\%) = \frac{2 \times \text{number of evolved H}_2 \text{ molecules}}{\text{number of incident photon}} \times 100$$

where the light intensity is 119.43 mW/cm^2 and the irradiated surface area is 12.56 cm^2 with a 400 nm band pass filter.

$$AQY(\%) = \frac{3 \times \text{number of reduced Cr(VI) ions}}{\text{number of incident photon}} \times 100$$

where the light intensity is 62.20 mW/cm^2 and the irradiated surface area is 6.25 cm^2 with a 400 nm band pass filter.

2. The procedure of the silver photo-deposition experiment

First, the $ZnIn_2S_4/MoS_2-40\%$ wt composite (50 mg, 150 mL) was dispersed in the $Ag(NO_3)_2$ solution (1 mM) under visible light irradiation for 360 min. Then, the photocatalyst after photo-depositing Ag was collected, washed several times with DI water and dried (60 °C).

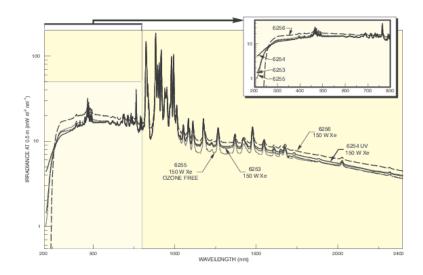


Fig. S1. Spectral irradiance of the 150 W Xe lamp (Model 6256, Newport^{1,2}).

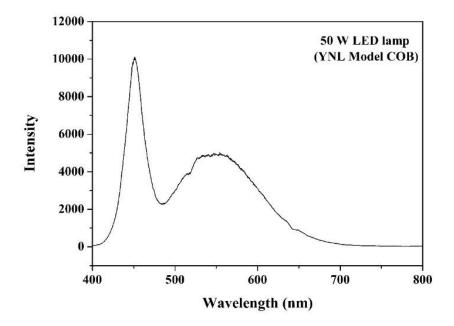
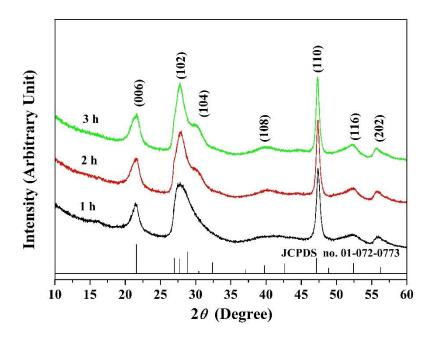
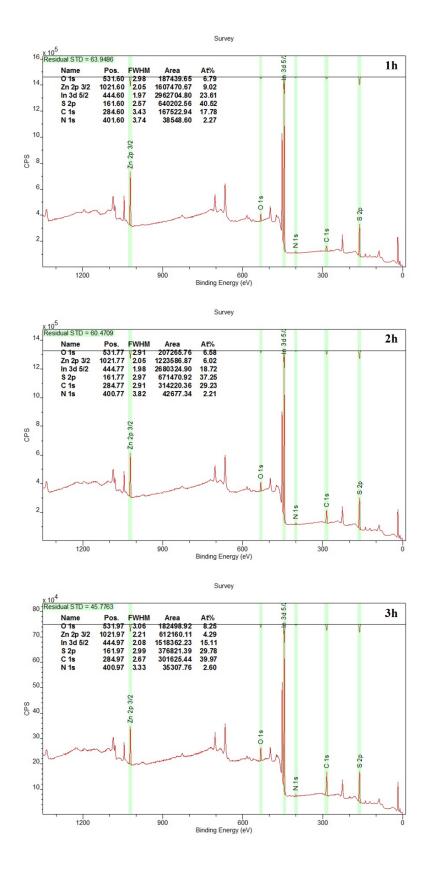
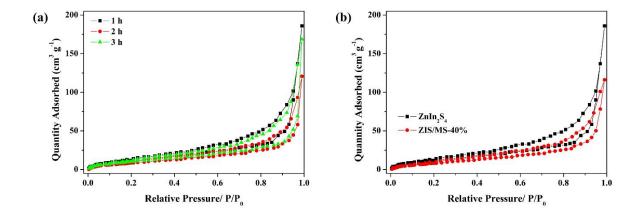




Fig. S2. Spectral irradiance of the 50 W LED lamp (YNL Model COB).


 $https://www.newport.com.cn/medias/sys_master/images/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/8797196451870/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/879719640/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/879719640/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/879719640/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/879719640/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/879719640/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/879719640/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/879719640/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/879719640/Light-https://www.newport.com.cn/medias/sys_master/images/hfb/hdf/87990/Light-https://www.newport.com/hd/hd/hd/hd/hd/hd/hd/hd/h$ Sources.pdf ² https://www.newport.com.cn/n/information-on-spectral-irradiance-data

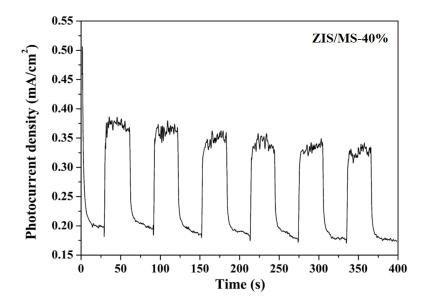
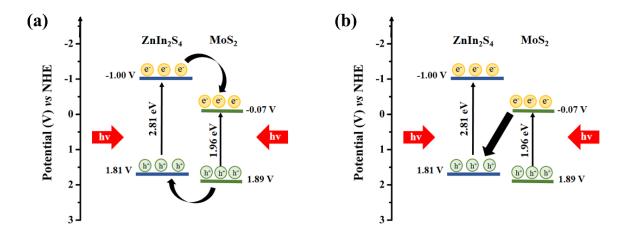
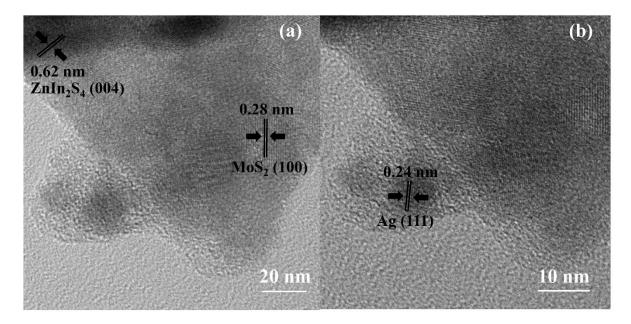

Fig. S3. XRD patterns of the ZnIn₂S₄ powders synthesized at different microwave heating times.

Fig. S4. Survey XPS spectra and the detailed chemical compositions of ZnIn₂S₄ synthesized at microwave heating time of 1, 2 and 3 h.


Fig. S5. The N_2 adsorption-desorption isotherms of **(a)** ZnIn₂S₄ synthesized at different microwave heating times, and **(b)** ZnIn₂S₄/MoS₂-40%wt compared with that of ZnIn₂S₄. All amples exhibit type-IV isotherms with the hysteresis loops in the range of 0.4-1.0 P/P₀, indicating the presence of slit-like mesopores due to the stacking of sheets.³


Fig. S6. Transient photocurrent density-time curve of the ZnIn₂S₄/MoS₂-40%wt photoelectrode.

-

³ C.Liu, B. Chai, C. Wang, J. Yan, Z. Ren, Solvothermal fabrication of MoS₂ anchored on ZnIn₂S₄ microspheres with boosted photocatalytic hydrogen evolution activity, *Inter. J. Hydrogen Energy*, 2018, 43(14), 6977-6986.

Fig. S7. The energy band positions and possible charges transfer in the $ZnIn_2S_4/MoS_2$ photocatalyst through (a) conventional type-II heterojunction and (b) Z-scheme heterojunction.

Fig. S8. (a)-(b) High-magnified TEM images of the silver nanoparticle deposited on the MoS_2 particle in the $ZnIn_2S_4/MoS_2$ -40% wt composite. (b) Lattice fringe of Ag nanoparticles.

Table S1. Fitting parameter (χ^2), amplitudes (α_1 , α_2), excited-state lifetime (τ_1 , τ_2), and average exciton lifetime $<\tau>$ for ZnIn₂S₄/MoS₂-40% wt.

	χ^2	α_1	α_2	τ_1 (ns)	τ_2 (ns)	<τ> (ns)
ZnIn ₂ S ₄	1.25	17.69	82.31	1.38	14.03	13.77
$ZnIn_2S_4/MoS_2\text{-}40\%wt$	1.22	15.65	84.35	2.53	18.20	17.81

The average lifetime ($<\tau>$) was calculated using the equation^{4,5}:

$$<\tau> = (\alpha_1 \tau_1^2 + \alpha_2 \tau_2^2)/(\alpha_1 \tau_1 + \alpha_2 \tau_2)$$

 χ^2 : the goodness of fit parameter. The ideal χ^2 values are 0.8-1.3.⁶

Table S2. The E_{VB} and E_{CB} of $ZnIn_2S_4$ and MoS_2 calculated by the Mulliken electronegativity (EN) theory and Mott-Schottky measurement.

Band Potential	Mulliken l	EN theory	Mott-Schottky plots		
	ZnIn ₂ S ₄	MoS_2	ZnIn ₂ S ₄	MoS_2	
E _{VB}	1.71	1.84	1.81	1.89	
E _{CB}	-1.10	-0.12	-1.00	-0.07	

⁴ C. Du, B. Yan, Z. Lin, G. Yang, Enhanced carrier separation and increased electron density in 2D heavily N-doped ZnIn₂S₄ for photocatalytic hydrogen production, *J. Mater. Chem. A*, 2020, **8**, 207.

⁵ S. Manchala, V. S. R. K. Tandava, L. R. Nagappagari, S. M. Venkatakrishnan, D. Jampaiah, Y. M. Sabri, S. K. Bhargava, V. Shanker, Fabrication of a novel ZnIn₂S₄/g-C₃N₄/graphene ternary nanocomposite with enhanced charge separation for efficient photocatalytic H₂ evolution under solar light illumination, *Photochem. Photobiol.* Sci., 2019, 18, 2952

⁶ D.F. Eaton, Recommended methods for fluorescence decay analysis, *Pure & Appl. Chem.*, 1990, **62(8)**, 1631-1648.

Table S3. Comparison of the photocatalytic H_2 production rates of the $ZnIn_2S_4/WS_2$ photocatalyst with the previous literature reports.

Photocatalyst	Weight (mg)	Synthesis method	Light source details	Sacrificial reagent	H ₂ production rate (μmol h ⁻¹ g ⁻¹)
ZnIn ₂ S ₄ /MoS ₂ (Our work)	100	Microwave heating method	150 W Xe lamp (λ > 400 nm)	Na ₂ S/Na ₂ SO ₃	200.1
Ref. [23]	50	Hydrothermal method	300 W Xe lamp $(\lambda > 420 \text{ nm})$	Na ₂ S/Na ₂ SO ₃	120
Ref. [7]	50	Impregnation method, followed by calcination	300 W Xe lamp $(\lambda > 420 \text{ nm})$	Na ₂ S/Na ₂ SO ₃	306
Ref. [22]	80	Solvothermal method	300 W Xe lamp $(\lambda > 420 \text{ nm})$	Lactic acid	2,512.5
Ref. [21]	80	Solvothermal method	300 W Xe lamp $(\lambda > 420 \text{ nm})$	Na ₂ S/Na ₂ SO ₃	3,891.6
Ref. [24]	80	Hydrothermal method	300 W Xe lamp $(\lambda > 420 \text{ nm})$	Lactic acid	4,287.5
Ref. [25]	100	Hydrothermal method	300 W Xe lamp $(\lambda > 420 \text{ nm})$	Lactic acid	8,047

References

- [7] L. Wei, Y. Chen, Y. Lin, H. Wu, R. Yuan, Z. Li, Appl. Catal. B., 2014, 144, 521-527.
- [21] Z. Zhang, L. Huang, J. Zhang, F. Wang, Y. Xie, X. Shang, Y. Gu, H. Zhao, X. Wang, Appl. Catal. B., 2018, 233, 112-119.
- [22] C. Liu, B. Chai, C. Wang, J. Yan, Z. Ren, Int. J. Hydrog. Energ., 2018, 43, 6977-6986
- [23] T. Huang, W. Chen, T. Y. Liu, Q. L. Hao, X. H. Liu, *Powder Tech.*, 2017, **315**, 157-162.
- [24] B. Chai, C. Liu, C. Wang, J. Yan and Z. Ren, *Chinese J. Catal.*, 2017, **38**, 2067-2075.
- [25] G. Chen, N, Ding, F. Li, Y. Fan, Y. Luo, D. Li, Q. Meng, *Appl. Catal. B.*, 2014, **160-161**, 614-620.

The difference in the H₂ production rate presented in Table S3 could be caused by the variation in the photocatalytic conditions such as the power of the light source and

type/concentration of sacrificial reagents. ^{7,8,9} In addition, the characteristic of the photocatalysts that were synthesized via the different methods probably affects the H₂ production rate. For the hydrothermal process, ZnIn₂S₄ (or MoS₂) powder was firstly prepared and then being dispersed in the precursor for MoS₂ (or the solution of Zn²⁺, In³⁺ and S²⁻). Finally, the suspension was hydrothermally treated. This strategy could enable the nucleation process of the co-catalyst material on the host material's surface. As a result, the intimate construction of ZnIn₂S₄/MoS₂ heterostructure could be achieved, facilitating the interfacial charge transportation in the heterostructure. Although the activity of the ZnIn₂S₄/MoS₂ heterostructure prepared in this work is relative low, it exhibits the enhanced photocatalytic activity than that of ZnIn₂S₄ or MoS₂ for both H₂ production and Cr(VI) reduction reactions. Besides, the benefit of the proposed microwave heating synthesis is the reduction in the reaction time and energy consumption for the synthesis of photocatalytic materials.

⁷ V. Kumaravel, M. D. Imam, A. Badreldin, R. K. Chava, J. Y. Do, M. Kang, A. Abdel-Wahab, Photocatalytic hydrogen production: role of sacrificial reagents on the activity of oxide, carbon, and sulfide catalysts, *Catalysts*, 2019, **9**, 276 (1-35).

⁸ B. Weng, M. Qi, C. Han, Z. Tang, Y. Xu, Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective, *ACS Catalysis*, 2019, **9(5)**, 4642-4687.

⁹ D. Zhang, J. Cheng, F. Shi, Z. Cheng, X. Yang, M. Cao, Low-temperature synthesis of ribbon-like orthorhombic NaNbO₃ fibers and their photocatalytic activities for H₂ evolution, *RSC Adv.*, 2015, **5**, 33001-33007.