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Excitotoxicity is a phenomenon that describes the toxic actions of excitatory
neurotransmitters, primarily glutamate, where the exacerbated or prolonged activation
of glutamate receptors starts a cascade of neurotoxicity that ultimately leads to the
loss of neuronal function and cell death. In this process, the shift between normal
physiological function and excitotoxicity is largely controlled by astrocytes since they can
control the levels of glutamate on the synaptic cleft. This control is achieved through
glutamate clearance from the synaptic cleft and its underlying recycling through the
glutamate-glutamine cycle. The molecular mechanism that triggers excitotoxicity involves
alterations in glutamate and calcium metabolism, dysfunction of glutamate transporters,
and malfunction of glutamate receptors, particularly N-methyl-D-aspartic acid receptors
(NMDAR). On the other hand, excitotoxicity can be regarded as a consequence of other
cellular phenomena, such as mitochondrial dysfunction, physical neuronal damage,
and oxidative stress. Regardless, it is known that the excessive activation of NMDAR
results in the sustained influx of calcium into neurons and leads to several deleterious
consequences, including mitochondrial dysfunction, reactive oxygen species (ROS)
overproduction, impairment of calcium buffering, the release of pro-apoptotic factors,
among others, that inevitably contribute to neuronal loss. A large body of evidence
implicates NMDAR-mediated excitotoxicity as a central mechanism in the pathogenesis
of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS),
Alzheimer’s disease (AD), and epilepsy. In this review article, we explore different causes
and consequences of excitotoxicity, discuss the involvement of NMDAR-mediated

Abbreviations: AD, Alzheimer’s Disease; ALS, amyotrophic lateral sclerosis; AMPAR, α-amino-3-hydroxy-5-methylisoxazole-
4-propionate receptors; AQP4, aquaporin 4; Aβ, amyloid-β peptide; BDNF, brain-derived neurotrophic factor; CREB,
cAMP-regulatory element binding protein; CypD, cyclophilin D; EAAT, excitatory amino acid transporters; eNMDAR,
extrasynaptic NMDAR; GABA, γ-aminobutyric acid; GABAR, GABA receptors; iGluR, ionotropic glutamate receptors;
KAR, kainate receptors; Kir4.1, input rectifier channels for potassium; mGluR, metabotropic glutamate receptors; NMDAR,
N-methyl-D-aspartic acid receptors; NO, nitric oxide; NOS, NO synthase; ROS, reactive oxygen species; sNMDAR,
synaptic NMDAR; SOD, superoxide dismutase; TLE, temporal lobe epilepsy; TNF-α, tumor necrosis factor-α.
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excitotoxicity and its downstream effects on several neurodegenerative disorders, and
identify possible strategies to study new aspects of these diseases that may lead to
the discovery of new therapeutic approaches. With the understanding that excitotoxicity
is a common denominator in neurodegenerative diseases and other disorders, a new
perspective on therapy can be considered, where the targets are not specific symptoms,
but the underlying cellular phenomena of the disease.

Keywords: excitotoxicity, astrocytes, NMDA receptors, calcium signaling, neurodegenerative diseases,
oxidative stress

EXCITOTOXICITY: WHAT IS IT, WHERE
DOES IT COME FROM, HOW DOES IT
LIVE?

The Good, the Bad, and the Ugly: General
Definition and Summary of Consequences
When looking into the glutamatergic system within the central
nervous system, one can see three sides of the same biological
phenomenon. First, there is The Good: the glutamatergic
system is essential for brain functioning. Indeed, with 40%
of glutamatergic synapses in the central nervous system
(Fairman and Amara, 1999), glutamate is essential for neuronal
communication, as well as for higher-level functions, such as
learning and memory. Then, there is The Bad: since glutamate
plays such an important role in the brain, dysregulation of the
glutamatergic system has long been implicated as a key step
in the pathophysiology of neuronal death (Bano et al., 2005).
Finally, there is The Ugly: excitotoxicity. This phenomenon, an
important aspect of glutamatergic dysregulation, describes the
toxic actions of excitatory neurotransmitters, mainly glutamate,
that ultimately lead to neuronal death (Connolly and Prehn,
2015). While glutamate does not directly kill neurons, the
exacerbated or prolonged activation of glutamate receptors
starts a cascade of neurotoxicity (Lipton, 2008; Vincent and
Mulle, 2009), which includes cationic influx, mitochondrial
dysfunction, energetic and oxidative stress, and overproduction
of reactive oxygen species (ROS; Connolly and Prehn, 2015;
Prentice et al., 2015). Here, we review the main factors involved
in excitotoxicity, as summarized in Figure 1, and their role in
neurodegenerative diseases and epilepsy.

If These Walls Could Talk... About
Excitotoxicity: Historic Review
The term ‘‘excitotoxicity’’ makes its debut in 1969 in a study
by Olney where, for the first time, cell death was observed as
a consequence of exposure to glutamate or aspartate (Olney,
1969). This type of excitotoxicity can be divided into three
steps. It starts with the induction, which begins with the
overactivation of ionotropic glutamate receptors (iGluR),
such as N-methyl-D-aspartic acid receptors (NMDAR), α-
amino-3-hydroxy-5-methylisoxazole-4-propionate receptors
(AMPAR) and kainate receptors (KAR). NMDAR display a
high permeability to both sodium and calcium (McBain and
Mayer, 1994), while AMPAR and KAR activation contributes
mainly to sodium influx. This ionic influx is followed by

water influx, leading to cell swelling and mitochondrial
dysfunction. The final step of induction is the activation of
metabotropic glutamate receptors (mGluR), activating pathways
regulated by diacylglycerol and inositol 1,4,5-triphosphate
(Zivin and Choi, 1991). Amplification and expression are
the following stages. These consist of exacerbated metabolic
activity, further disruption of ion gradients, elevated electrical
neuronal activity, and mitochondria dysfunction (Zivin and
Choi, 1991).

Other than this classification system for excitotoxicity,
this phenomenon can be further categorized as strong or
weak excitotoxicity (Albin and Greenamyre, 1992). Strong
excitotoxicity refers to the classical phenomenon described
by Olney (1969), where excitotoxicity is elicited by direct
exposure to glutamate or another excitotoxic compound. In
strong excitotoxicity, the calcium influx is prolonged, there
is depolarization of both cell and mitochondria membranes,
excessive consumption of NAD(P)H, and an established
bioenergetic failure. Furthermore, cell death is generally brought
on by necrosis (Castilho et al., 1998; Connolly and Prehn,
2015). On the other hand, weak excitotoxicity results from a
prolonged alteration of glutamate receptor function, possibly
impacting membrane potential and cellular metabolism and
increasing cellular sensitivity to the toxic actions of glutamate
(Albin and Greenamyre, 1992). In this scenario, neurons are
transiently able to restore calcium homeostasis, membrane
potential, and internal ATP and NAD(P)H pools (Ward
et al., 2000; Weisová et al., 2009). These neurons can then
undergo delayed apoptosis, characterized by delayed calcium
dysregulation, nuclear compression, and cellular contraction
(Ankarcrona et al., 1995; Bonfoco et al., 1995; Ward et al., 2007;
D’Orsi et al., 2012). This is accompanied by a loss of membrane
potential, ATP depletion, and overproduction of ROS (Luetjens
et al., 2000; Vesce et al., 2004).

A Glutamatergic Mind: Glutamate in
Physiological and Excitotoxic Conditions
In central nervous system synapses, glutamate clearance
is achieved by diffusion and transporter uptake, mainly
into neighboring glial cells (van den Berg and Garfinkel,
1971; Benjamin and Quastel, 1972; Hertz et al., 1999),
and is practically independent of enzymatic breakdown
(Watkins and Evans, 1981).

It should however be noted that glutamatergic synapses
are complex—their morphological characteristics (number of
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FIGURE 1 | Schematic summary of different aspects of excitotoxicity, including the main cellular defenses against it, the main causes, the players involved in its
mechanisms, and general cellular consequences. The shift from normal brain function to an excitotoxic state is brought about by the main causes, and this shift is
avoided by the main cellular defenses. If the defenses fail, excitotoxicity is amplified by different mechanisms, causing cellular consequences.

release sites, the existence of dendritic spines, etc.) can differ
greatly and synapses in different neural circuitries exhibit
different time courses of synaptic communication (Jonas,
2000). Furthermore, the exact time course of glutamate
dynamics can be altered by the microanatomical synaptic
properties (synaptic contact size, complexity of synaptic
morphology, glial wrapping, etc.) and by the density of glutamate
transporters (Jonas, 2000).

Even taking all this into account, during a synaptic event, the
peak concentration of glutamate in the synapse can be estimated
to be 1.1 mM (1.0–1.5 mM), with a decay time constant of
1.2 ms (0.70–2.0 ms; Clements et al., 1992), while in extrasynaptic
locations, the peak concentration can reach 190 µM (Dzubay
and Jahr, 1999). On the opposite side, the baseline concentration
of synaptic glutamate (with no synaptic event occurring) is
thought to vary between 25 nM (Herman and Jahr, 2007)
and 600 nM (Mark et al., 2001), depending on the study.
This basal concentration is unaltered by synaptic activity, being
controlled solely by glutamate transporters (Herman and Jahr,
2007). Furthermore, this basal concentration does not activate
glutamate receptors (Trussell and Fischbach, 1989; Patneau and
Mayer, 1990; Conn and Pin, 1997) nor interferes with neuronal
excitability (Herman and Jahr, 2007).

In excitotoxicity, the time course of glutamate dynamics
can be affected in several different manners. The synaptic
concentration of glutamate can rise above its usual peak
concentration (above 1.1 mM), although this value might plateau
due to complete depletion of presynaptic glutamate, or this peak
concentration can be maintained for an excessive amount of
time, which is translated to an increase in the decay time, or
even the baseline concentration of glutamate may be increased,
regardless of depolarization-induced release. Regarding this
last scenario, it is known that neuronal excitotoxic injury

occurs with baseline concentrations of glutamate of 2–5 µM
(Mark et al., 2001).

Glutamate and the Depolarization Factory:
Glutamate Receptors in Excitotoxicity
Glutamatergic neurotransmission is performed through iGluR
and mGluR. The iGluR are ligand-gated ion channels permeable
to various cations, namely sodium, potassium, and calcium, that
produce excitatory glutamate-evoked currents, while mGluR are
G protein-coupled receptors that control cellular processes via G
protein signaling cascades (Reiner and Levitz, 2018). The main
characteristics of these receptors are summarized in Table 1 and
reviewed in detail in this section.

iGluR can be divided into three functional classes such as
NMDAR, AMPAR, and KAR (Hansen et al., 2017). While
all iGluR is in the first line of the excitotoxic response,
NMDAR has been pinpointed as the main culprit in glutamate-
induced neurotoxicity, due to their permeability to calcium ions.
NMDAR exhibits a voltage-dependent magnesium-blockade,
high permeability to calcium, and requires simultaneous binding
of glutamate and a co-agonist, such as glycine and D-serine, for
activation (Guo et al., 2017). NMDAR are tetrameric structures
composed of GluN1, GluN2A-D and GluN3A-B subunits that
form a central ion channel pore. Diversity in NMDAR subunits
and assembly results in different receptor subtypes with distinct
functional properties, including different channel kinetics,
channel opening probability, and conductance. Therefore, these
differences in subunit composition can impact both synaptic
plasticity and neuronal function. Previous literature reported
that GluN2A-containing receptors present faster kinetics, while
GluN2B-containing receptors present slower opening, closing,
and glutamate unbinding, indicating that NMDAR containing
GluN2A open more reliably and with faster kinetics than
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NMDAR containing GluN2B subunits (Erreger et al., 2005).
These data suggest that NMDAR containing GluN2A is more
likely to sense rapid glutamate transients in the synapse and
open with a high probability, while NMDAR containing GluN2B
seems to be set to sense basal levels of glutamate and open
with much lower probability. Moreover, it is known that
NMDAR subunit composition also determines single-channel
conductance and blockage by magnesium ions (Kuner and
Schoepfer, 1996; Brimecombe et al., 1997; Cull-Candy et al.,
2001), where both GluN2A- or GluN2B-containing receptors
display a high ionic conductance and stronger magnesium
block. In mature neurons, GluN2A subunits are predominantly
synaptic (sNMDAR), whereas GluN2B-containing receptors are
mostly extrasynaptic (eNMDAR; Rönicke et al., 2011). In rat
hippocampal slices, the amount of eNMDAR has been estimated
to be 36% of that of sNMDAR (Harris and Pettit, 2007)
and it is known that D-serine mainly binds to sNMDAR,
while glycine preferentially binds to eNMDAR (Papouin et al.,
2012). Furthermore, previous studies reported a neuroprotective
role for sNMDAR and a neurotoxic role for eNMDAR by
receptor-mediated influx of calcium (Hardingham et al., 2002;
Hardingham and Bading, 2010; Samson et al., 2016). Moreover,
it has been proposed that the activation of NMDAR containing
GluN2A subunits stimulates signaling cascades associated with
neuroprotection and regulates survival, while stimulation of
NMDAR containing GluN2B subunits leads to the activation
of excitotoxic pathways, leading to neuronal death (Zhou et al.,
2013). sNMDAR (mainly enriched with GluN2A subunits)
activation promotes neuroprotection via changes in gene
expression that have multiple effects within the cell. Stimulation
of sNMDAR is known to result in the enhancement of
antioxidant defenses, promoting the transcription of pro-survival
factors, including cAMP-regulatory element-binding protein
(CREB; Hardingham and Bading, 2010), that results in the
transcription of brain-derived neurotrophic factor (BDNF),
essential for neuronal survival. sNMDAR activity is also
implicated in the generation of anti-apoptotic effects, including
the inactivation of pro-death transcription factors, such as
forkhead box protein O and p53 (Dick and Bading, 2010).
In contrast, stimulation of eNMDAR (mainly enriched with
GluN2B subunits) preferentially induces pro-death effects, such
as the shut-off of CREB pathway, blocking BDNF expression
(Hardingham et al., 2002); the inactivation of extracellular signal-
regulated kinases 1 and 2, which are necessary for BDNF
function on spines (Hardingham et al., 2002); activation of
forkhead box protein O and calpains, with consequent cleavage
of the striatal enriched tyrosine phosphatase, which prevents
this phosphatase from inhibiting p38 mitogen-activated protein
kinase; and oxidative stress with subsequent neurodegeneration
(Hardingham et al., 2002; Hardingham and Bading, 2010).
Hence, while sNMDAR has a neuroprotective role, eNMDAR
preferentially initiates cell death pathways (Hardingham and
Bading, 2010). It is known that low levels of eNMDAR
activity have no effects on neuronal survival, while high levels
of eNMDAR stimulation enhance cell death pathways and
exacerbate neurodegenerative processes, consequently reducing
neuronal survival (Hardingham and Bading, 2010). eNMDAR
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can also be activated by mechanical stimuli and aspartate.
Indeed, the GluN2B subunit has been reported to play a role
in the mechanosensitive activation of NMDAR (Maneshi et al.,
2017). On the other hand, although with lower affinity than
glutamate, aspartate can bind and activate NMDAR (Chen
et al., 2005). Aspartate levels are severely increased following
traumatic brain injury (Palmer et al., 1994; Amorini et al.,
2017) and, when present in excessive levels extrasynaptically, are
associated with excitotoxicity (Choi et al., 1989). In summary,
while sNMDAR signaling is associated with the suppression
of pro-apoptotic transcription factors (Dick and Bading, 2010),
eNMDAR stimulation increases the activity of pro-apoptotic
factors, leading to oxidative stress and cell death (Hardingham
et al., 2002; Hardingham and Bading, 2010; Parsons and
Raymond, 2014). The activation of these pro-apoptotic factors
can affect gene activity regulation of BDNF and vascular
endothelial growth factor (Hardingham et al., 2002), essential
for the maintenance of synaptic connectivity and architecture
(Bading, 2013). Hence, the excessive intracellular calcium levels
resulting from the excessive eNMDAR stimulation lead to
excitotoxic cell death and contributes to neuronal injury.

Intriguingly, there are conflicting pieces of evidence regarding
NMDAR involvement in excitotoxicity. Some studies state
that NMDAR has a dichotomic effect in excitotoxicity,
where activation of sNMDAR counteracts excitotoxicity and
activation of eNMDAR is the main contributor to the
excitotoxic cascade (Jia et al., 2015). Other authors propose
that NMDAR-induced excitotoxicity requires overactivation
of both sNMDAR and eNMDAR (Zhou et al., 2013, 2015).
Finally, other studies even suggest neurotoxicity could be solely
dependent on sNMDAR activity, since silencing sNMDAR
can act as a neuroprotective approach against NMDA-induced
excitotoxicity, while inhibiting eNMDAR does not have any
protective effect, questioning the role of these receptors in
neurotoxicity (Papouin et al., 2012).

AMPAR are tetrameric ionotropic glutamate receptors
formed by GluA1–4 subunits. These receptors can be either
hetero- or homotetramers and, depending on subunit
composition, display different calcium permeability (Pál,
2018), with the GluA2 subunit controlling AMPAR calcium
permeability. Assemblies of highly calcium-permeable
AMPAR have been implicated in excitotoxicity. Moreover,
the GluA2 subunit can also be subjected to RNA editing, with
the conversion of a glutamine codon into an arginine one, and
AMPAR is calcium-permeable if they contain the unedited
GluA2 subunit or if they lack the GluA2 subunit (Wright and
Vissel, 2012). Given their high calcium permeability, AMPAR
lacking GluA2 is thought to contribute to excitotoxic cell death
(Wright and Vissel, 2012).

KAR is composed of GluR5-7 and KA1-2 subunits. KAR
properties are similar to AMPAR in that they allow ion
flux directly following glutamate exposure, and are mostly
impermeable to calcium. Although AMPAR is localized mostly
in the postsynaptic membrane, several studies have shown
that KAR may be localized in both pre- and post-synaptically
(Chittajallu et al., 1996; Castillo et al., 1997). Post-synaptically,
KAR, and AMPAR have a similar function in alleviating the

magnesium block in NMDAR. This phenomenon leads to an
exacerbation of NMDAR activation under glutamate excess.

mGluR are probably the most diverse receptor family
of the central nervous system (CNS). The mGluR1 and
mGluR5 subtypes are located in the peri- and extrasynaptic
neuronal regions (Ferraguti et al., 2008). They are coupled
to Gq protein and exert their actions via the inositol
trisphosphate/calcium signal pathway, being consequently able
to stimulate calcium release from neuronal stores, thus triggering
delayed cell death (Pál, 2018).

The Gatekeepers of Homeostasis:
Astrocytes
In the forebrain, it has been shown that astrocytes are responsible
for about 90% of the glutamate clearance from the synaptic
cleft. During synaptic transmission, only approximately 20%
of synaptically-released glutamate reaches the postsynaptic
glutamate receptors, while the remainder can reach the
extrasynaptic space (Kojima et al., 1999). Due to the significant
role of astrocytes in glutamate re-uptake, impairment of
astrocytic glutamate transporters leaves neurons highly
susceptible to excitotoxicity (Rothstein et al., 1996). During
an acute insult, astrocytes can prevent excitotoxicity by
removing extracellular glutamate with high-affinity sodium-
dependent glutamate transporters also known as excitatory
amino acid transporters (EAAT). These proteins can clear
glutamate from the extracellular space into cells, where it can
be metabolized or recycled. Several subtypes of EAAT have
already been pharmacologically identified. These transporters
were divided into four subtypes in rats (GLAST, GLT-1, EAAC1,
and EAAT4) and five in humans (EAAT1-5), and can be found
in neurons (EAAT3 or EAAC1 and EAAT4) and astrocytes
(EAAT1 or GLAST and EAAT2 or GLT-1; Danbolt, 2001;
Crino et al., 2002; Beart and O’Shea, 2007; Sarac et al., 2009;
Gonçalves-Ribeiro et al., 2019). Additionally, although glutamate
transporters activity may come mostly from (if not exclusively)
from astrocytes, the role of glutamate transporters in neurons
still needs to be further explored. Indeed, neuronal glutamate
transporters knockout does not influence in terms of preventing
excitotoxicity, since mice with this knockout show no differences
in survival, weight gain, and seizure activity compared to wild-
type. On the other hand, synaptosomes prepared from these
knockout mice showed a reduction of glutamate activity by 40%
(Petr et al., 2015), suggesting that the role of neuronal glutamate
transporters is yet to be revealed.

Furthermore, astrocytes are responsible for the maintenance
of glutamate homeostasis by sustaining its synthesis, uptake and
release via the glutamate-glutamine cycle (van den Berg and
Garfinkel, 1971; Benjamin and Quastel, 1972; Ottersen et al.,
1992). Through this cycle, synaptically released glutamate is
predominantly taken up into astrocytes, where it is amidated to
glutamine by the astrocyte-specific enzyme glutamine synthetase
(Norenberg and Martinez-Hernandez, 1979). Glutamine is then
released to the synapse and uptake by adjacent neurons, where
it is converted to glutamate and γ-aminobutyric acid (GABA),
which are then repackaged into vesicles and again released in the
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synapse as neurotransmitters (Allen, 2014; Rodríguez-Arellano
et al., 2016).

In a different perspective, astrocytes are hypothesized to
be the main effectors of glycolysis to produce lactate that is
then transferred to neurons through the astrocyte-neuron lactate
shuttle. This metabolic link between neurons and astrocytes
is because neurons are highly energy-demanding cells but are
unable to perform the citric acid cycle without an external supply
of lactate, due to the lack of the essential enzyme pyruvate
carboxylase (Schousboe et al., 1997; Magistretti and Allaman,
2015). Since astrocytic glutamate re-uptake is electrogenic, for
each glutamate molecule entrance, three sodium ions enter the
cell, activating the sodium/potassium ATPase. This, in turn,
activates the glycolysis pathway in the astrocytes, stimulating
the production of the lactate by either increasing glucose uptake
or intracellular glycogen breakdown. Produced lactate is later
released into the intracellular space by the monocarboxylate
transporter 1 expressed in the astrocytes and received by
neurons through the monocarboxylate transporter 2 (Stobart and
Anderson, 2013). It is later used by the neuron as the carbon
source in the Krebs cycle for oxidative phosphorylation. Besides
lactate, astrocytes also release citrate, involved in the regulation
of neuronal excitability by chelating zinc ions, thus inhibiting
NMDAR (Westergaard et al., 1995; Schousboe et al., 1997).
Furthermore, although recent literature suggests that neurons are
primarily responsible for the synthesis and release of D-serine
(Wolosker et al., 2016), several independent studies strongly
support that astrocytes are the main source of D-serine, essential
for NMDAR function (Henneberger et al., 2010; Bergersen et al.,
2012; Martineau et al., 2013; Sultan et al., 2015).

THE BUTTERFLY EFFECT: DETAILED
LOOK INTO EXCITOTOXICITY-INDUCED
DYSFUNCTIONS

One Ion to Rule Them all: The Central
Role of Calcium to Propagate
Glutamate Toxicity
One of the first consequences of excessive activation of glutamate
receptors, namely NMDAR, is a sustained influx of calcium
into the neuron (Mehta et al., 2013). Calcium has long
been identified as a key player in glutamate neurotoxicity, as
summarized in Figure 2. Specifically, early studies proved that
scavenging extracellular calcium would decrease excitotoxicity-
induced neuronal degeneration, while removal of other cations
would not (Berdichevsky et al., 1983; Choi et al., 1988). This
influx synergizes with the release of calcium from intracellular
stores, such as the mitochondria and the endoplasmic reticulum,
due to membrane damage caused by the disruption of ionic
gradients (Mehta et al., 2013).

Together, these phenomena lead to a striking increase in the
intracellular calcium concentration, which can activate enzymes
that degrade proteins, lipids, and nucleic acids (Berliocchi
et al., 2005), as well as enzymes involved in arachidonic
acid pathways, such as phospholipase A2, cyclooxygenase-
2, and lipoxygenases. These latter enzymes, when activated,

lead to the production of arachidonic acid and its conversion
into prostaglandins, leukotrienes, and thromboxanes with the
concomitant production of ROS (Freeman and Crapo, 1982;
Pazdernik et al., 1992; Murphy et al., 1994). Among these
molecules, prostaglandin E2 has been shown to have a dual
role in excitotoxicity: at low concentration (nanomolar range),
prostaglandin E2 presents a neuroprotective effect (Akaike
et al., 1994); at higher concentrations (micro- to millimolar),
as seen in the calcium-induced arachidonic acid cascade,
prostaglandin E2 contributes to neurotoxicity and cell death
(Hewett et al., 2000). Additionally, calcium-induced activation
of phospholipase A2 inhibits GABA receptors (GABAR), thus
preventing neuronal hyperpolarization and further contributing
to excitotoxicity (Hamano et al., 1996).

Finally, the calcium dysregulation also activates
ATP-dependent ion pumps, to counteract the cationic influx,
such as the sodium/potassium and calcium ATPases, which will
drain all available ATP, creating a low-energy neuronal state
(Connolly et al., 2014; Surin et al., 2014).

Eternal Dysfunction for the Mitochondrial
Minds: Mitochondrial Damage
Another large contributor to glutamate neurotoxicity are
mitochondria (Figure 2), which are essential in bioenergetic
homeostasis and calcium signaling regulation (Mehta et al.,
2013). Indeed, following the excitotoxicity-induced calcium
influx, mitochondria capture cytosolic calcium via the
mitochondrial calcium uniporter, attempting to maintain
a low cytosolical calcium concentration (Qiu et al., 2013).
While this process temporarily buffers the intracellular calcium
concentration, the excessive cationic uptake eventually leads to
the depolarization of the mitochondrial membrane, impairing
ATP production and anti-oxidant mitochondrial functions
(Nicholls and Budd, 2000; Kushnareva et al., 2005) and
leaving neurons in a low-energy and oxidative state with
high production of ROS (Mehta et al., 2013). Following this
cascade, mitochondrial dysfunction contributes to apoptotic
cell death, activating both caspases (Lipton, 2008) and calpains
(Caldeira et al., 2014).

The Wizard of ROS: Oxidative Stress
The excessive activation of glutamate receptors also leads to an
imbalance between ROS and their opposing antioxidant forces
(Bondy and LeBel, 1993), a phenomenon named oxidative stress.
In an excitotoxic scenario, oxidative stress is brought about by
a higher intracellular concentration of ROS, which is directly
associated with glutamate neurotoxicity (Nicholls, 2004). ROS
are then mediators of enzyme inactivation, lipidic peroxidation
and consequent membrane damage, DNA alterations, and
apoptosis (Floyd, 1999; Lucca et al., 2009).

The excitotoxic production of ROS is related to the activation
of the pro-oxidant enzymes xanthine oxidase and NADPH
oxidase (Prentice et al., 2015) and mitochondrial dysfunction.
Interestingly, NADPH oxidase, and not mitochondria, has been
identified as the major source of ROS following glutamate
exposure (Brennan et al., 2009).
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FIGURE 2 | Graphical depiction of the main calcium-dependent processes involved in excitotoxicity, leading to oxidative stress and cell death. Dotted lines with end
arrows represent activation, dotted lines with T ends represent inhibition. Mcu, mitochondrial calcium uniporter.

Additionally, studies have demonstrated that glutamate
binding to NMDAR results in the production of nitric oxide
(NO) as a consequence of nitric oxide synthase (NOS)
activation by calcium influx, which is spatially linked to
NMDAR via the postsynaptic density protein of 95 kDa
(Aarts et al., 2002; Zhou et al., 2010; Jones, 2011). It has
also been observed that an increase in NO concentration
can trigger biochemical pathways that contribute to neuronal
death and cognitive impairment (Díaz et al., 2010), since NO
can react with the superoxide anion forming peroxynitrite,
known to lead to the formation of 3-nitrotyrosine (Butterfield
and Kanski, 2001). NO is then responsible for protein
degradation by nitration and oxidation, lipid peroxidation,
and DNA damage (Jia et al., 2015). Protein nitration results
in the dysfunction of several proteins such as superoxide
dismutase (SOD), actin, and tyrosine hydroxylase, and can
interfere with cell signaling pathways mediated by tyrosine
phosphorylation (Butterfield and Stadtman, 1997), contributing
to the intracellular signaling dysregulation.

WE NEED TO TALK ABOUT
EXCITOTOXICITY: EXCITOTOXICITY AS A
CONSEQUENCE OF OTHER PHENOMENA

A possible trigger for excitotoxicity is the physical damage of a
neuron. In physiological conditions, the extracellular glutamate
concentration is around 0.01% of the intracellular concentration,
not reaching the threshold for post-synaptic neuronal activation

which maintains the glutamate pools in an inactive state (Mehta
et al., 2013). However, this percentage can quickly increase
if a damaged neuron releases all its glutamate content into
the extracellular space, leading to excitotoxicity in neighboring
neurons (Mehta et al., 2013).

Oxidative stress is one of the main consequences of
glutamate-induced neurotoxicity. However, it is not possible
to define a unidirectional cause/effect relationship between
the two phenomena, since oxidative stress and excessive
intracellular ROS can also induce excitotoxicity by stimulating
extracellular glutamate release (Pellegrini-Giampietro et al.,
1990) and releasing calcium from mitochondria into the cytosol
(Richter and Kass, 1991). In another perspective, it has already
been shown that astrocytic glutamine synthetase is especially
susceptible to ROS-induced inactivation, which compromises
the whole glutamate-glutamine cycle and contributes to an
increase in extracellular glutamate concentration and consequent
excitotoxicity (Schor, 1988). Additionally, the presence of ROS
has been shown to decrease glutamate transporter activity,
impairing synaptic clearance of glutamate further contributing to
the increase in extracellular glutamate concentration (Anderson
and Swanson, 2000).

Oxygen deprivation can also induce excitotoxicity through
different mechanisms. In a straight forward manner, hypoxic-
ischemic states directly stimulate glutamate release, increasing
the extracellular glutamate concentration to neurotoxic levels
(Prentice et al., 2015). Additionally, oxygen deprivation leads
to energetic stress by impairing mitochondrial oxidative

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 April 2020 | Volume 14 | Article 90

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Armada-Moreira et al. Excitotoxicity Toward Neurodegenerative Diseases

phosphorylation and, consequently, blocking ATP production
(Doyle et al., 2008). This blockage leads to the depletion of
intracellular ATP, which prevents the reuptake of glutamate,
creating an excitotoxic concentration of extracellular glutamate
(Rossi et al., 2000).

In a different perspective, while mitochondrial damage is
one of the main consequences of excitotoxicity, mitochondria
can also be originators of excitotoxicity. Mitochondrial toxins,
for instance, can cause energetic impairment, preventing ATP
production (Dong et al., 2009). Over time, cellular ATP pools are
then depleted, with a concomitant decline in the activity of the
sodium/potassium ATPase, which will depolarize the neuronal
membrane (Mehta et al., 2013). By itself, this depolarization
can render neurons more prone to firing action potentials
(Dutta and Trapp, 2011). It, however, also affects NMDAR by
removing their voltage-dependent magnesium-block, lowering
their activation threshold so that non-excitotoxic glutamate
concentrations become capable of inducing an excitotoxic
response (Stavrovskaya and Kristal, 2005).

Finally, the physiological brain pH is estimated to be pH
7.2–7.3 in rats (Siemkowicz and Hansen, 1981), and pH 7.33 in
humans (Mutch and Hansen, 1984). However, some diseases
or disorders can drastically alter the CNS pH, inducing either
acidosis or alkalosis. For instance, anaerobic conditions of
ischemia promote the alteration of the metabolism of the cells
from aerobic oxidation of glucose to anaerobic glycolysis. This
alteration in metabolism produces lactate and protons, which
is responsible for acidosis (Li et al., 2016). Interestingly, a
curious phenomenon occurs in acidosis. While severe acidosis
(pH < 6.4) contributes to excitotoxicity through a loss of ionic
gradients (Kraig et al., 1987) and activation of acid-sensing ion
channels, which intensifies excitotoxicity by providing another
entry for calcium (Waldmann et al., 1997; Cheng et al., 2018;
Qiang et al., 2018), mild acidosis (pH 6.5–7.0) appears to
partly prevent excitotoxicity (Simon et al., 1993), as well as
glutamate-induced neuronal death (Tombaugh and Sapolsky,
1990). This phenomenon occurs due to the inhibitory effects
of protons on NMDAR activation (Tang et al., 1990). On
the other end of the spectrum, alkalosis (pH > 8.0) seems
to induce neurotoxicity. When compared to acidosis, alkalosis
produces a more severe dysfunction that is more difficult to
counteract. Indeed, cortical GABAergic neurons appear to be
more susceptible to alkalosis than to acidosis (Zhang et al., 2013).
And, considering the inhibitory effect of protons on NMDAR,
it is possible to conclude that alkalosis leads to an increase in
NMDAR activation. Thus, alkalosis contributes to excitotoxicity
by both directly stimulating NMDAR, but also by disrupting
inhibitory neurotransmission.

SAVING PRIVATE NEURON: CELLULAR
DEFENSES AGAINST EXCITOTOXICITY

During excitotoxicity, neurons mobilize a variety of defenses to
decrease the damaging effects of this process, among which are
potassium channels, GABA signaling, acid-sensing ion channels,
adenosine, and NO (Sapolsky, 2001).

Potassium channels are responsible for limiting and rectifying
neuronal excitability during action potentials. The small-
conductance calcium-dependent potassium channels (Sah, 1996)
are highly calcium-dependent and are quite sensitive to transient
increases of cytosolic calcium (Blatz and Magleby, 1987). The
small-conductance channels mediate the shift of the excitotoxic
calcium mobilization into a protective, hyperpolarizing signal
(Madison and Nicoll, 1984; Lancaster and Adams, 1986; Sah,
1996; Honrath et al., 2017). Other key potassium channels are
the ATP-dependent potassium channels, whose conductance
is enhanced by ATP depletion (Politi and Rogawski, 1991;
Riepe et al., 1992), particularly following excitotoxic insults
(Trapp and Ballanyi, 1995). At presynaptic sites, ATP-dependent
potassium channel activation also inhibits glutamate release
(Bancila et al., 2004).

NMDAR-mediated calcium influx also increases
sodium/potassium ATPase activity, leading to decreased
excitability by stabilizing the resting membrane potential
(Marcaida et al., 1996).

Another defense mechanism against excitotoxicity involves
the inhibitory neurotransmitter GABA and GABAergic signaling
(Bradford, 1995). Also, taurine released from glial cells during
insults (Magnusson et al., 1991; Torp et al., 1991), similarly
to GABA, also decreases presynaptic neuronal excitability by
increasing chloride influx (Huxtable, 1992) through GABAAR
(O’Byrne and Tipton, 2000; Winkler et al., 2019). Moreover,
neuronal networks were shown to offer a fast-acting GluN2A-
dependent neuroprotective signaling mechanism, which uses
the innate capacity of surrounding neuronal networks to
quench excitation, through the recruitment of GABABR
(Samson et al., 2016).

Glutamate receptor number can be also decreased by calcium-
mediated activation of calpains. Activation of these proteases
can result in the proteolysis of both NMDAR and AMPAR (Bi
et al., 1996, 1998a,b). Moreover, calcium-dependent activation
of calcineurin and calmodulin can inhibit voltage-gated and
NMDAR-gated calcium currents, respectively (Vyklický, 1993;
Lieberman and Mody, 1994; Ehlers et al., 1996).

During necrotic insults, energy depletion gives rise to
adenosine. Adenosine inhibits presynaptic glutamate release, an
action that is accomplished through A1 adenosine receptors
linked by G proteins to both calcium and potassium channels and
decreases postsynaptic calcium currents in response to glutamate
(Phillis and Wu, 1981; Cunha, 2005). On the other hand, a
downstream consequence of glutamatergic excitotoxicity is the
generation of NO, which acts intracellularly to inhibit NMDAR
activity by nitrosylation (Lipton et al., 1993).

Another response of neurons to cell stress is the expression
of heat-shock proteins, which protect against misfolding,
conferring resistance to necrotic injury (Yenari et al., 1999).
Neurons can also up-regulate and increase the activity of
antioxidant agents following necrotic insults, which includes
Mn- and Cu/Zn-SOD (Ohtsuki et al., 1993; Fukuhara et al., 1994;
Matsuyama et al., 1994), glutathione peroxidase, and catalase
(Goss et al., 1997).

Also, recent evidence has shown that synaptic activity can
protect primary rat hippocampal neurons against mitochondrial
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oxidative stress and mitochondrial dysfunction derived from
acute excitotoxicity, since synaptic activity can induce the
transcriptional repression of the mitochondrial calcium
uniporter, leading to a reduction in excitotoxicity associated
with mitochondrial calcium overload (Depp et al., 2018).

A BRIEF HISTORY OF ALS:
AMYOTROPHIC LATERAL SCLEROSIS

Amyotrophic Lateral Sclerosis (ALS) is a fatal and progressive
neurodegenerative disease, characterized by the degeneration
of both upper (motor cortex) and lower (spinal cord) motor
neurons that result in motor dysfunction and, ultimately, death.
While primary symptoms of ALS are associated with motor
dysfunction, other areas of the brain may undergo degeneration,
with 40–60% of patients showing evidence of different levels
of cognitive impairment (Witgert et al., 2010; Ferrari et al.,
2011). Although 90% of ALS cases are sporadic with no known
cause, in the 10% of familial cases, more than 30 genes have
already been implicated (Chen et al., 2013), with mutations in
Cu/Zn-SOD1, transactive response DNA-binding protein, fused
in sarcoma, chromosome 9 open reading frame 72, and several
others (Ajroud-Driss and Siddique, 2015).

Despite numerous studies demonstrating the involvement of
several altered signaling pathways, the pathogenetic mechanisms
behind ALS are still unclear. Indeed, it seems that, in ALS,
neurodegeneration is the product of a combination of different
concomitant mechanisms. Understanding the cause of motor
neuron degeneration is critical for unraveling ALS pathogenesis
and there are mainly two hypotheses to explain the origin
of the disease (Kiernan et al., 2011). The first one is the
dying-forward hypothesis, which proposes an anterograde
degeneration of motor neurons via glutamate excitotoxicity
from the cortex. The second one is the dying-back hypothesis,
which suggests that ALS may start distally at the nerve terminal
or the neuromuscular junction, progressing towards the cell
body. Despite the numerous hypotheses proposed, alterations
in excitatory neurotransmission appear to have a key role
in disease progression, mediated by increased susceptibility
to excitotoxicity, as schematically depicted in Figure 3 (Bae
et al., 2013). Physiological studies have demonstrated cortical
hyperexcitability in patients with both sporadic and familial
ALS before the onset of symptoms (Vucic and Kiernan, 2013).
In addition to cortical hyperexcitability, peripheral axons also
present changes in their excitability in ALS patients (Vucic
and Kiernan, 2006). Changes in neuronal activity can also lead
to morphological alterations. In the SOD1G93A mouse model,
upper motor neurons display reductions in dendritic length and
spine density, suggesting a homeostatic response to heightened
pre-synaptic activity or even a stressed state of these neurons
(Fogarty et al., 2016; Saba et al., 2016). It is however still
unclear whether hyperexcitability is one of the causes of motor
neuron degeneration or a compensatory mechanism resulting
from motor neuron degeneration.

One of the first proposed mechanisms underpinning
neurodegeneration in ALS was glutamate-mediated
excitotoxicity (Bendotti and Carrì, 2004). One suggested

way in which glutamate excitotoxicity may occur is through
a decrease in the levels of the transporters responsible for
the removal of glutamate from the synaptic cleft. In ALS, a
likely trigger for neuroinflammation is the motor neuronal and
astrocytic release of misfolded proteins, like aberrant SOD1,
and other toxic molecules. This release stimulates the activation
of microglia, unleashing pro-inflammatory and neurotoxic
actions (Appel et al., 2011; Zhao et al., 2013; Brites and Vaz,
2014; Pinto et al., 2017), which dysregulate the communication
between motor neurons and glial cells, compromising neuronal
homeostasis. Microglia are considered the immune cells of the
brain and may adopt different polarized activated phenotypes,
with the M1 and M2 being the most accepted. The classical
M1 phenotype is associated with the release of pro-inflammatory
molecules and activation of receptors, and the M2 phenotype
is related to the secretion of anti-inflammatory mediators and
growth factors. However, recent studies point to the coexistence
of different heterogeneous states and mixed phenotypes (Tang
et al., 1990; Pinto et al., 2017). In ALS, microglia function
changes along with disease progression, displaying the M2
anti-inflammatory phenotype at early stages and switching to
the M1 activated subtype as the disease progresses (Zhao et al.,
2013; Gravel et al., 2016). Activated microglia contribute and
enhance motor neuron death, and can even acquire a distinct
and impaired phenotype at the end-stage that accelerates disease
progression (Nikodemova et al., 2014; Pinto et al., 2017). In
addition to neuroinflammation, glial cells also play a role
in glutamate-mediated excitotoxicity. Specifically, astrocyte-
mediated downregulation of EAAT2, leading to a decrease in
glutamate uptake and subsequent potentiation of excitotoxic
effects, has been reported in both ALS patients and SOD1G93A

mice (Howland et al., 2002), as well as in the TDP-43 rat model
(Tong et al., 2013), correlating with regions of motor neuron
loss (Sasaki et al., 2000). Thus, a decrease in the level of these
transporters may lead to the accumulation of glutamate in the
extracellular space, resulting in postsynaptic glutamate receptor
overstimulation and consequent excitotoxic effects (Lin et al.,
1998; Zarei et al., 2015). Furthermore, not only have astrocytes
in ALS been reported to release lower levels of neurotrophic
factors, but they have been shown to release neurotoxic factors
that play a role in furthering neurodegeneration (Komine
and Yamanaka, 2015; Cunha et al., 2018; Gomes et al., 2019).
Moreover, it has been shown that, in ALS patients carrying
SOD1 gene mutations, there is a decrease in motor neuron levels
of calcium-binding proteins, which—by decreasing calcium
buffering in the cytoplasm—may exacerbate excitotoxicity
(Bernard-Marissal et al., 2012; Mattson, 2013). In the SOD1G93A

mouse model, overexpression of EAAT2 delays disease onset
but not death (Guo et al., 2003) and fails to prevent loss of
phrenic nerve motor neurons or rescue respiratory function
(Li et al., 2015). Several pathways have been implicated in
the modulation of EAAT2 levels, such as tumor necrosis
factor-α (TNF-α) and downstream nuclear factor κ-B signaling
(Boycott et al., 2008). Recently, membralin, an endoplasmic
reticulum membrane protein, was also shown to have a role in
EAAT2-mediated glutamate excitotoxicity in ALS. Membralin
levels are reduced in human ALS spinal cord and SOD1G93A
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FIGURE 3 | Schematic representation of the alterations in excitatory neurotransmission in amyotrophic lateral sclerosis (ALS). Different pathophysiological
mechanisms have been proposed to explain excitotoxicity in ALS. Interneuron alterations are observed in early disease stages, with a loss of cortical and spinal
interneurons, leading to the disruption of inhibitory circuits. Consequently, there is an excitation–inhibition imbalance, increasing subsequent excitability and
glutamate release to the synaptic cleft. Glutamate-mediated excitotoxicity may happen through an astrocyte-mediated downregulation of excitatory amino acid
transporter 2 (EAAT2), which decreases the glutamate uptake from the synaptic cleft and potentiates the excitotoxic effects. Astrocytes in ALS also release
neurotoxic factors that trigger changes to motor neuron glutamate receptors and render them susceptible to excitotoxicity, furthering neurodegeneration. Moreover,
the excessive firing and the dysregulated calcium influx through atypical glutamate receptors results in an ionic dysfunction in motor neurons. The excessive entry of
calcium into motor neurons results in mitochondrial overload and in the generation of reactive oxygen species (ROS), which ultimately causes oxidative stress. The
presence of protein aggregates in mitochondria can also lead to alterations in normal cell metabolism, increasing the susceptibility to glutamatergic overstimulation
as well as the activation of apoptotic pathways.

mouse models and its deletion suppresses EAAT2 expression
through a TNF-α/TNF receptor 1/nuclear factor κ-B pathway.
Overexpression of membralin in astrocytes was shown to
increase EAAT2 expression and improve motor neuron survival
(Jiang et al., 2019).

However, defects in the clearance of glutamate do not seem
to be the only origin of excessive extracellular glutamate. In
the SOD1G93A mouse model, activation of Group I mGluR
or the GABA/glycine heterotransporter abnormally increases
the release of glutamate (Raiteri et al., 2003; Giribaldi
et al., 2013; Milanese et al., 2015). Recently, Bonifacino and
colleagues (Bonifacino et al., 2019) demonstrated that mGluR
are overexpressed in the spinal cord of SOD1G93A mice at
pre-symptomatic stages and that their function is altered early
on in the disease, suggesting that it can represent a cause
rather than a consequence of disease progression. Group I
mGluR may be potential targets for preventing excitotoxicity
in ALS since it has been shown that treatment with an
antagonist attenuated cell death, delayed the onset of motor

symptoms, and slightly prolonged survival in SOD1G93A mice
(Rossi et al., 2008).

Moreover, calcium permeability of AMPAR is largely
determined by the presence of the GluA2 subunit and it has been
shown that mutant SOD1 astrocytes secrete factors that lower
the expression of this subunit in motor neurons, consequently
leading to AMPAR-mediated excitotoxicity and cell death (Van
Damme et al., 2005, 2007). Moreover, fused in sarcoma-ALS
astrocytes trigger changes to motor neuron AMPAR that render
them susceptible to excitotoxicity (Kia et al., 2018) and patients
with the chromosome 9 open reading frame 72 mutations
appear to have increased vulnerability to AMPAR-mediated
excitotoxicity (Selvaraj et al., 2018).

Besides glutamate-mediated excitotoxicity, excitotoxicity may
arise from an altered regulation by interneurons. Interneurons
are one of the main regulators of neuronal signaling and the
majority in the cortex is inhibitory, using GABA or glycine
as a neurotransmitter. In healthy individuals, a subthreshold
stimulus of the motor cortex generally leads to the activation of
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inhibitory GABAergic interneurons, thus reducing subsequent
excitability, in a process called short intracortical inhibition
(Wagle-Shukla et al., 2009). In ALS patients, however, cortical
inhibition is impaired, with a reduced or complete absence of
short intracortical inhibition. Importantly, the reduction of short
intracortical inhibition was shown to be an adverse prognostic
factor in ALS (Shibuya et al., 2016). Several post-mortem reports
indicate a loss of cortical and spinal interneurons, in addition to
motor neuron losses (Stephens et al., 2006). These observations
are seen in different mouse models that also exhibit interneuron
alterations in early disease stages. The wobbler mouse model
displays hippocampal hyperexcitability, together with a reduced
number of interneurons (Thielsen et al., 2013). Also, in the
SOD1G93A mouse model, decreases in calretinin interneurons
and subsequent increases in parvalbumin interneurons in motor
and somatosensory cortex may be compensatory changes to
improve excitation–inhibition balance (Chung et al., 2005;
Minciacchi et al., 2009). In the spinal cord of the SOD1G93A

mice, interneurons degenerate before the loss of motor neurons
(Martin et al., 2007). Further studies on a mutant SOD1 zebrafish
model revealed that interneurons are the first to exhibit neuronal
stress and, once more, that the reduction of inhibitory currents or
interneurons preceded any defects in motor neurons (McGown
et al., 2013).

Another known mechanism involved in ALS
neurodegeneration is oxidative stress. The major enzyme
involved in the prevention of oxidative damage is the
Cu/Zn-SOD1 enzyme. Congruently, mutations in the SOD1
gene—resulting in either a decrease/loss or a dominant gain
of function—have been found to contribute to cytotoxicity. In
line with this, a study demonstrated that the cerebrospinal fluid,
serum, and urine samples of ALS patients had increased
levels of free radicals and concomitant oxidative stress
(Zarei et al., 2015). Another source of oxidative damage in
mitochondrial dysfunction. The existence of alterations is
normal cell metabolism due to misfolded mutant SOD1 deposits
in mitochondria has been reported in both ALS patients
and mouse models. Furthermore, dysfunctions in energy,
alterations in the triggering of apoptotic signals, disruptions in
mitochondrial transport along axons, and atypical production of
ATP and ROS have been also associated with ALS (Pasinelli et al.,
2000; Mattiazzi et al., 2002; Menzies et al., 2002; Damiano et al.,
2006). Moreover, the presence of mutant SOD1 in mitochondria
can lead to an increase of the motor neurons sensitization to
glutamatergic (over)-stimulation and therefore to excitotoxicity.
Also, the inflammation and associated microglial activation,
both hallmarks of ALS, may contribute to increasing the motor
neurons’ susceptibility to excitotoxicity.

THE OLD MAN AND THE ALZHEIMER’S
DISEASE

Alzheimer’s Disease (AD) is an age-dependent
neurodegenerative disease, considered the most common
form of dementia worldwide (Alzheimer’s Association, 2009).
AD is firstly manifested by the loss of episodic memory and
later loss of executive functions like language, attention, and

reasoning (LaFerla et al., 2007). AD is commonly characterized
by the presence of senile plaques, large extracellular aggregates
of fibrillary amyloid-β peptide (Aβ), originated by the
abnormal cleavage of amyloid precursor protein where the
sequential cleavage of amyloid precursor protein by β- and
γ-secretase produces the neurotoxic Aβ peptide (Scheuner
et al., 1996; Ertekin-Taner, 2007). The presence of intracellular
neurofibrillary tangles of hyperphosphorylated tau protein is
also a characteristic of AD (Grundke-Iqbal et al., 1986; Ferrer,
2012). Many pieces of evidence suggest that Aβ1–42 oligomers
are the most toxic Aβ species, exerting their pathological actions
by disrupting glutamatergic transmission, mainly by acting
on NMDAR and mGluR (Walsh et al., 2002). Aβ can also
increase glutamate release from both neurons (Brito-Moreira
et al., 2011) and astrocytes (Talantova et al., 2013), resulting
in abnormally high extracellular glutamate levels capable of
activating eNMDAR and, thus, leading to the activation of
pro-death pathways and consequent excitotoxicity. Hence, the
harmful effects of Aβ in AD may be mediated by the excessive
activation of eNMDAR containing predominantly GluN2B
subunits (Li et al., 2011). Also, it has been demonstrated that
the presence of Aβ can induce a sustained calcium influx via
NMDAR (Texidó et al., 2011), which can trigger a cascade
of events leading to mitochondrial and synaptic dysfunction,
excitotoxicity, production of ROS, and neuronal death (Ferreira
et al., 2012), as depicted in Figure 4.

An imbalance between sNMDAR and eNMDAR activity
was observed in brain samples from AD patients, which
can contribute to the Aβ-triggered neurotoxicity observed in
this disease. In parallel, it is also known that stimulation
of eNMDAR plays a critical role in AD. Recent studies
performed in rat acute hippocampal slices under Aβ exposure
and in Aβ-injected mice support the idea that enhancement of
sNMDAR activity, together with the inhibition of eNMDAR,
has protective effects against Aβ-induced neurotoxicity (Huang
et al., 2017). eNMDAR stimulation is also associated with the
inactivation of extracellular signal-regulated kinase/mitogen-
activated protein kinase signaling (Mulholland et al., 2008),
which is crucial for memory consolidation and synaptic
plasticity, suggesting that eNMDAR activation leads to the
impairment of the molecular mechanisms underlying memory
and learning processes (Schafe et al., 2000). In the presence of Aβ,
the exacerbated calcium influx via eNMDAR is also associated
with excessive activation of calpains, which are calcium-
dependent proteases involved in multiple cellular functions,
including proliferation, differentiation, and modulation of
synaptic function (Wu and Lynch, 2006). The overactivation
of calpains in AD is associated with functional changes in
several proteins involved in neuronal transmission, such as
BDNF. Previous reports have shown that Aβ impairs BDNF
function in a calpain-dependent manner (Jerónimo-Santos et al.,
2015), whereas inhibition of eNMDAR can prevent Aβ-triggered
impairment of BDNF action in long-term synaptic potentiation
(Tanqueiro et al., 2018).

Under physiological conditions, mitochondrial calcium
signaling stimulates oxidative phosphorylation and ATP
synthesis. In AD, as a consequence of the exacerbated calcium
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FIGURE 4 | Underlying cellular mechanisms of Alzheimer’s disease (AD). The
upstream key hallmarks of AD range from ionic dysfunction to the impairment
of several cellular processes, including Ca2+-signaling dysregulation,
abnormal Aβ production and aggregation and neuroinflammation. The
crosstalk between the mentioned factors, leads to the pathological
phenotype, involving mitochondrial dysfunction, excitotoxicity, and
extrasynaptic NMDA receptor (eNMDAR) activation. As the symptomatic
circle closes, the dysfunction of one leads to further activation of the others,
altogether contributing to neurodegeneration and cognitive deficits,
characteristics of the disease.

levels derived from eNMDAR activation, mitochondria form
a non-specific pore in their internal membrane, termed
mitochondrial permeability transition pore (Leung et al., 2008).
With the pore opening, protons can cross this membrane,
leading to the loss of mitochondrial membrane potential and
dysregulation of pH gradient. Consequently, this affects ATP
synthesis by oxidative phosphorylation, resulting in ionic
and metabolic impairment, inevitably leading to cell death.
Moreover, this decrease in mitochondrial bioenergetic capacity
and consequent impairment of oxidative phosphorylation is
associated with free radical production and subsequent oxidative
damage. There are evidences of cyclophilin D (CypD), an integral
part of the mitochondrial permeability transition pore (Leung
et al., 2008), playing a critical role in Aβ-induced mitochondrial
and synaptic injury (Du et al., 2008, 2011). Neuronal CypD is
linked to Aβ-mediated ROS production, whereas CypD-deficient
neurons appear to be resistant to Aβ-mediated inactivation of
protein kinase A/CREB signaling, thus revealing that the absence
of CypD can prevent Aβ-induced mitochondrial and synaptic
dysfunction (Du et al., 2014). Additionally, mitochondrial
dysfunction in AD includes respiration deficits, increased
generation and accumulation of free radicals, and impaired
energy metabolism (Hensley et al., 1994; Manczak et al., 2006;
Yao et al., 2009; Calkins et al., 2011). Changes in mitochondrial
dynamics, including decreased transport, increased fission, and,

eventually, loss of mitochondrial function, are also observed in
AD (Hensley et al., 1994; Manczak et al., 2006; Yao et al., 2009;
Calkins et al., 2011).

Dysfunctional mitochondria are considered the main
generator of ROS and consequent oxidative stress in AD, where
oxidative stress can alter protein kinase A/CREB signaling,
a signaling pathway necessary for neuronal survival (Wang
et al., 2014). Indeed, several reports indicate that alterations in
brain glucose metabolism in AD patients contribute to synaptic
dysfunction and neuronal loss (Kennedy et al., 1995; Ishii et al.,
1997). ROS, as well as reactive nitrogen species, are associated
with the formation of protein carbonyls and 3-nitrotyrosine,
which correlates with the level of protein oxidation within a
cell. The determination of protein carbonyls levels and tyrosine
nitration is considered viable measures of oxidative damage,
where tyrosine nitration is one specific form of protein oxidation
that is associated with AD (Castegna et al., 2003), which
culminates in the loss of protein function, cellular dysfunction
and, ultimately, cell death (Butterfield and Stadtman, 1997;
Butterfield et al., 2006).

In AD, glial cell activation and consequent pro-inflammatory
response is associated with an increased expression of NOS, an
enzyme responsible for NO production. Indeed, inducible NOS,
one of the NOS isoforms, has been found in activated astrocytes
and microglia, suggesting a critical role of this enzyme in
pathological conditions (Diaz et al., 2011). Also, inducible NOS
has been described as the main culprit behind the NO increase to
neurotoxic levels, whereas its inhibition was found to be a useful
target for neuronal protection against Aβ-mediated toxicity (Diaz
et al., 2011). Furthermore, a recent report found that, in adult
rats injected with Aβ25–35, a neurotoxic Aβ fragment, there
is an increase in inducible NOS expression and consequent
upsurge of NO levels, which was prevented by the administration
of a highly selective cannabinoid receptor 1 agonist, ACEA
(Patricio-Martínez et al., 2019). Additionally, animals injected
with ACEA and Aβ25–35 presented an improvement in learning
and memory when compared with animals injected with Aβ25–35
alone (Patricio-Martínez et al., 2019), suggesting the involvement
of the cannabinoid receptor 1 in neuroprotective mechanisms
in AD.

Growing evidence has identified reactive astrocytes as a key
player in glutamate-mediated excitotoxicity, since astrogliosis
results in the loss of astrocytic physiological function and
consequent impairment of neuronal synaptic transmission. This
phenomenon is common in AD, where Aβ induces functional,
morphological, and metabolic astrocytic dysfunction (Angelova
and Abramov, 2014; Brawek and Garaschuk, 2014). Specifically,
a downregulation of astrocytic glutamate transporters has been
shown in both animal models and AD human brain samples,
impairing glutamate uptake and causing excitatory overload
in the synaptic cleft. Moreover, in astrocytic cell culture, Aβ

reduces the expression of GLT-1 through a mechanism that
involves the calcineurin/nuclear factor of activated T cells
pathway (Abdul et al., 2009) and oxidative stress (Scimemi et al.,
2013). This reduction of GLT-1 expression in astrocytes results
in increased glutamate levels at the synapse, which, by acting on
eNMDAR, contributes to the progression of AD pathology in
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the human brain (Simpson et al., 2010). Additionally, a study
performed in postmortem human samples suggests that the
preservation of GLT-1 expression in reactive astrocytes could act
as a neuroprotective mechanism against AD neuropathological
changes (Kobayashi et al., 2018).

Astrocytic glutamate uptake is not only essential for synaptic
glutamate clearance, but also the activation of the astrocytic
glycolysis cycle. The impaired glutamate uptake will then lead
to glycolysis deficiency. In this scenario, neurons not only suffer
the consequences of the excessive extracellular glutamate but
also of metabolic insufficiency as the astrocytes fail to fulfill the
necessary energetic needs. In the hippocampus, glycogen-derived
lactate is responsible for memory formation and long-term
synaptic potentiation (Newman et al., 2011). Inhibition of lactate
production and neuronal delivery weakens synaptic plasticity
and memory formation, by impairment of the Krebs cycle and
cell signaling dysregulation (Barros, 2013; Schurr, 2014; Dienel,
2017). Indeed, when Long-Evans rats with induced astrocytic
metabolic impairment were treated with downstream glycolytic
metabolites, such as pyruvate or β-hydroxybutyrate, memory
improvement and consolidation were observed (Descalzi et al.,
2019). This may suggest that astrocytic metabolic impairment is
responsible for memory loss and cognitive impairment, even in
the premature stages of AD (Merlini et al., 2011).

Metabolic dysfunction is a very early sign of disease onset.
Some studies suggest that glucose hypometabolism is a hallmark
of AD that can be detected long before any significant Aβ plaques
and neurofibrillary tangles (Mosconi et al., 2009; Chen and
Zhong, 2013). As the first aggregates occur with concomitant
astrocytic dysfunction, signaling for glycolysis starts to drop
and leads to the onset of energetic failure, causing metabolic
starvation and consequent excitotoxicity. So far, it has been
difficult to determine the causal relationship between astrocytic
glutamate uptake dysregulation and metabolic disturbance.
Nevertheless, the contribution of the metabolic processes in the
pathological excitotoxicity is undeniable.

The role of neuroinflammation in the chemically induced
AD animal models has been proven significant for the
neurodegenerative profile and assumed to be a crucial factor in
disease progression (Liu and Hong, 2003; Reynolds et al., 2007;
Taylor et al., 2013). In the early stages of AD, activated microglia
express both neurodegenerative (M1) and neuroprotective (M2)
phenotypes (Edwards et al., 2006). The M2 phenotype exhibits
a great capacity for Aβ and tau protein aggregates clearance
through phagocytosis. During disease progression, however,
the M2 phenotype appears to undergo polarization into an
M1 phenotype, resulting in the overproduction of neurotoxic
factors. Indeed, in all stages of AD, significant aggregation of
M1 microglia has been observed surrounding neurofibrillary
tangles (Sheffield et al., 2000; Yao and Zu, 2020). M1 microglia
not only release neurotoxic factors but have also been shown
to downregulate or even block neuroprotective mechanisms
involved in phagocytosis of Aβ (Yamamoto et al., 2008). This
inhibition is mainly due to the impairment of the Aβ receptor
complex, complement receptor 3, and insulin-degrading enzyme
expression (Koenigsknecht-Talboo and Landreth, 2005). Among
neurotoxic factors released by microglia, microglial glutamate

release can stimulate excitotoxicity (Barger et al., 2007), while the
release of pro-inflammatory cytokines such as interferon γ and
TNFα impair the uptake and internal degradation of extracellular
glutamate (Hu et al., 2000; Yamamoto et al., 2008). In AD,
reactive astrocytes are also able to release pro-inflammatory
cytokines, such as, TNFα and interleukin 1-β, which, while not
directly cytotoxic, can impair astrocytic glutamate uptake and
to enhance NMDAR-induced calcium release, contributing to
AD progression. Moreover, it is known that inhibitors of these
inflammatory mediators attenuate both synaptic and cognitive
deficits in Aβ-treated mice, suggesting that these inflammatory
responses mediated by astrocytes have negative effects upon
synaptic plasticity mechanisms (Ralay Ranaivo et al., 2006).

Though not often discussed, the cystine-glutamate (Xc-)
antiporter system is essential for cysteine homeostasis and
considered only a secondary mechanism in the glutamate release
and uptake. However, its contribution to pathological states
such as glutamate excitotoxicity should not be ignored. The Xc-
antiporter system is highly expressed in microglia and astrocytes.
It is a sodium-independent anionic amino acid transporter with
high specificity for negative species of cysteine and glutamate
(Sato et al., 2002). It is also electroneutral, instead of electrogenic
as most common EAAT systems (Lo et al., 2008). This antiporter
is a heterodimer (Lutgen et al., 2014), composed of heavy
4F2 chain and a specific light chain, named xCT, linked by a
disulfide bridge (Lewerenz et al., 2012). It uptakes cystine in
exchange for releasing glutamate in the molar ratio 1:1 (Sato
et al., 1999). Although less discussed, the Xc- system significantly
increases extracellular and, more specifically, synaptic levels of
glutamate, releasing up to 60% of all extracellular glutamate in
the striatum (Baker et al., 2002). This antiporter can release
up to 0.6 µM/s of glutamate into the extracellular space (Warr
et al., 1999), which is then uptaken by GLT-1 (Baker et al.,
2002; Bridges et al., 2012). Depending on the influx and overall
capacity to uptake glutamate, this release can either activate
or desensitize the NMDAR (Warr et al., 1999). The cystine-
glutamate antiporter was reported to exhibit neuroprotective
effects in neurodegenerative diseases, as it is linked to the
production of glutathione and the rise of antioxidant cellular
capacity (Bridges et al., 2012). This protective effect is observed
in AD models, where the Xc- system uptakes cystine, showing
great potential at lowering Aβ-induced toxicity, oxidative stress,
and later apoptosis. However, when activated either by oxidative
stress, TNF-α, or amyloid precursor protein, this antiporter can
release cytotoxic amounts of glutamate (Barger and Basile, 2001;
Sato et al., 2001). Not only is this antiporter involved in the
release of glutamate, contributing to excitotoxicity, but it has
also been shown to block microglial neuroprotective functions
in AD. Indeed, activated microglia in both AD patients and
in AD mouse models show an increased expression of this
antiporter and, specifically, the xCT protein (Bridges et al.,
2012). In mice, transgenic depletion of the Slca11 gene (xCT–/–

mice) impaired microglial polarization into the neurotoxic
phenotype and reduced up to 70% pathological glutamate
release in cultured microglial cells (Mesci et al., 2015). Upon
blockade of either NMDAR or the Xc- system, microglia act in a
neuroprotective way when exposed to Aβ and attenuate neuronal
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death. However, when neurons were cultured with microglia
depleted of lipid-associated apolipoprotein E expression, the
neuroprotective phenotype was lost (Qin et al., 2006), implying
that the neuroprotective phenotype of microglia in AD is
related to apolipoprotein E. In neuron-microglia co-cultures,
the activation of the Xc- system by the Aβ deposits not only
exacerbates excitotoxicity, but also lowers the neuronal threshold
for glutamate toxicity, allowing non-toxic concentrations of
glutamate to exert excitotoxic actions (Qin et al., 2006). Although
very sparse in current literature, the neuroprotective role of the
Xc- system in vivo showed similar effects, where the activation of
microglial cells by Aβ can cause both phenotypes, the neurotoxic
being mostly related to glutamate release and increased neuronal
susceptibility to excitotoxicity, and the neuroprotective related
to expression of apolipoprotein E and glutathione (Bannai and
Tateishi, 1986; Qin et al., 2006; Shih et al., 2006).

As stated before, another AD hallmark is hypoglycemia.
Removal of glucose in mixed astrocyte-neuron cell cultures leads
to a glycemic neuronal injury and death (Thorn et al., 2015).
However, the neuronal death observed in glucose deprivation
conditions is not connected to energy failure but most likely
tied to glutamate accumulation in the synaptic cleft (Jackman
et al., 2012). Astrocytes express significant levels of the cystine-
glutamate antiporter and are also the main metabolic factories
and energy suppliers for neurons. As these processes are tightly
linked, the dysfunction of one is likely to mediate the function
of the other system, for the benefit or damage. Upon glucose
deprivation in cultured astrocytes, xCT protein expression rose
in a time-dependent matter (Thorn et al., 2015).

In the triple transgenic AD mouse model (3xTg-AD),
astrocytic glutamine synthetase expression was found to be
decreased in the hippocampus, suggesting a critical role of
astrocytes in AD-related disruption of glutamate homeostasis,
which may affect the efficiency of glutamatergic transmission,
contributing to the cognitive deficits of the disease (Olabarria
et al., 2011). Also, it is known that glutamine synthetase activity
is sensitive to oxidation and may be impaired by oxidative
stress in AD (Smith et al., 1991; Hensley et al., 1994, 1995).

In the 3xTg-AD mouse model, Aβ near to astrocytes leads to
the extrasynaptic release of glutamate and consequent eNMDAR
activation (Talantova et al., 2013), which contributes to synaptic
dysfunction and neuronal death. Furthermore, there are also
evidences that eNMDAR activity can trigger the generation of
toxic Aβ (Talantova et al., 2013), which suggests a key role
of eNMDAR and astrocytic glutamate release in mediating
Aβ neurotoxicity.

As mentioned before, astrocytes are responsible for the supply
of D-serine to neurons (Henneberger et al., 2010). Indeed, recent
evidences reveal that serine racemase, the enzyme responsible
for D-serine synthesis is strongly expressed in reactive astrocytes
in both human AD samples and AD rat models (Balu et al.,
2019). Moreover, changes in intracellular signaling cascades,
consistent with excitotoxicity and decreased neuronal survival
were found (Balu et al., 2019). Hence, these findings support a
model where D-serine released from reactive astrocytes could
bind to extrasynaptic GluN2B-containing NMDAR, triggering
the activation of excitotoxic signaling pathways and consequent
neuronal damage and death. It has however been shown that, in
AD-like conditions, the selective blockade of eNMDAR together
with the administration of a D-serine-like NMDAR co-agonist
significantly improved spatial and related forms of learning and
memory (Huang et al., 2017). Moreover, there are evidences
that blocking eNMDAR provides neuroprotection against Aβ-
triggered deficits, together with the enhancement of sNMDAR
activity (Huang et al., 2017). In conclusion, while it is known
that D-serine is mainly a co-agonist of sNMDAR, the role
of D-serine as a mediator of neuronal excitotoxicity cannot
be excluded.

In line with what was described above, many studies support
the active involvement of glial cells, in particular astrocytes,
in early stages of AD pathogenesis, where Aβ can dysregulate
astrocytic calcium signaling both in vitro and in vivo (Haughey
and Mattson, 2003; Kuchibhotla et al., 2009), which can result
in the excessive release of glutamate and other gliotransmitters,
enhancing extrasynaptic glutamatergic signaling and consequent
excitotoxicity in AD, as summarized in Figure 5.

FIGURE 5 | Aβ-induced astrocytic dysfunctions leading to excitotoxicity and AD pathogenesis. iNOS, inducible nitric oxide synthase; NO, nitric oxide; SR, serine
racemase; GS, glutamine synthetase; CaN/NFAT—calcineurin/nuclear factor of activated T cells; GluT, glutamate transporters; GluR, glutamate receptors.
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THE PHANTOM OF THE BRAIN: EPILEPSY

Epilepsy is one of the most common neurological disorders,
estimated to affect more than 70 million people worldwide (Singh
and Trevick, 2016). Epilepsy can be regarded as a family of
disorders which comprise several diseases and conditions and
can be defined by: (i) the unprovoked occurrence of at least
two seizures more than 24 h apart; (ii) one unprovoked seizure
and further seizure probability of at least 60%; or (iii) diagnosis
of an epilepsy syndrome. There are multiple types of seizures,
which are characterized in accordance with their onset, physical
manifestation, and level of consciousness, differing in the
corresponding pathophysiological mechanisms (Fisher et al.,
2017). Nevertheless, all epileptic seizures involve persistent
changes in synaptic events such as neurotransmitter release,
and receptor and transporter activity, and are underpinned
by an abnormal excessive or synchronous neuronal firing
activity, typically resulting from an imbalance between excitatory
and inhibitory processes mediated by the neurotransmitters
glutamate and GABA, respectively. Excessive neuronal firing
is accompanied by increased extracellular levels of glutamate,
leading to excitotoxicity (Soukupová et al., 2014), one of the
primary sources of neuronal damage in epilepsy. The processes
by which excitotoxicity results in neuronal damage and/or death
have previously been described and, in this section, we will focus
on the underlying pathophysiological mechanisms of different
types of epilepsy and how they correlate with excitotoxicity. The
main findings discussed here are summarized in Figure 6.

Temporal Side Story: Temporal
Lobe Epilepsy
Temporal lobe epilepsy (TLE) is the most common form of
epilepsy, affecting up to 40 million people worldwide (Hubbard
et al., 2016; Peterson and Binder, 2019). TLE is characterized
by the occurrence of focal seizures that may impair individuals
and is often associated with treatment resistance, where
approximately 30% of patients taking antiepileptic drugs present
drug resistance that prevents them from living seizure-free (Sarac
et al., 2009; Hubbard et al., 2016; Peterson and Binder, 2019).

The increase in local excitation and cytotoxicity in the
epileptogenic focus of TLE is linked to an increase in extracellular
glutamate levels (Proper et al., 2002; Sarac et al., 2009; Albrecht
and Zielinska, 2017). Changes in glutamate levels have been
reported in the hippocampus of epileptic patients before, during,
and after seizures, which may occur due to increased glutamate
release or its impaired reuptake (Proper et al., 2002; Hoogland
et al., 2004; Hubbard et al., 2016).

As mentioned before, glutamate uptake is a major
determinant of extracellular glutamate levels and evidence
shows that the alteration of glutamate concentrations in
epilepsy may result from aberrant EAAT expression or function
(Crino et al., 2002; Proper et al., 2002). Indeed, an increase
in EAAT3 expression in the hippocampus of both patients
and animal models with TLE has been observed (Crino et al.,
2002). This enhanced expression may lead to the increased
glutamate release during seizures by increasing intracellular

FIGURE 6 | The connecting railway between Epilepsy and Excitotoxicity:
Glutamatergic and GABAergic mechanisms in epilepsy-related excitotoxicity.
Schematic representation of alterations in excitatory and inhibitory
neurotransmission and their relationship with epilepsy-excitotoxicity dynamic.
Both alterations in glutamate- and GABA-mediated neurotransmission have
been reported to play a role in epileptogenesis. Increased glutamate levels are
a key-feature of temporal lobe epilepsy, resulting from an impairment in
GLT-1, which are compensated by increased GAD. The excessive and
hypersynchronous neuronal firing promotes network hyperexcitability,
culminating in glutamate-mediated excitotoxicity.

glutamate, which will be stored in vesicles and synaptically
released by the classical calcium-dependent pathway (During
and Spencer, 1993; Crino et al., 2002). Another mechanism by
which increased glutamate release may occur is EAAT3 reversal
due to the alteration of cellular excitability promoted during
epileptogenesis (Rossi et al., 2000). However, the increase
in EAAT3 expression may be a compensatory mechanism,
leading to the improvement of GABAergic inhibitory
transmission, as shown in the granular cells of the dentate
gyrus of TLE animal models, which had increased glutamate
decarboxylase expression and GABA release (Sloviter et al., 1996;
Crino et al., 2002).

Additionally, reactive astrocytes with morphological and
functional alterations may be important in epileptogenesis since
they contribute to the increase of neuronal excitability. In TLE,
this astrocyte-induced excitotoxicity occurs by dysregulation
of glutamate astrocytic transporters (EAAT1 or GLAST and
EAAT2 or GLT-1), which are responsible for maintaining
extracellular glutamate homeostasis (Hubbard et al., 2016;
Peterson and Binder, 2019). Different studies have shown that
there is a reduction in EAAT1 and EAAT2 expression in the
sclerotic hippocampus of TLE patients at RNA or protein levels
(Proper et al., 2002; Rakhade and Loeb, 2008). Furthermore,
modifications in GLT-1 function and expression contribute to
TLE hyperexcitability and seizure generation (Hubbard et al.,
2016; Peterson and Binder, 2019). Different studies have already
shown that knockout animal models for GLT-1 exhibit severe
spontaneous seizures that can lead to early postnatal death
(Tanaka et al., 1997; Hubbard et al., 2016; Peterson and Binder,
2019), and that GLT-1 overexpression may generate pilocarpine-
induced epileptogenesis resistant mice (Kong et al., 2012; Sha
et al., 2017). In fact, in the intrahippocampal kainic acid mouse
model of TLE, a down-regulation of hippocampal astrocytic
GLT-1 has been reported, coinciding with the increased
excitability (Peterson and Binder, 2019). Also, there seems to
be a temporal regulation of GLT-1 expression during epileptic
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seizures, with an increase in GLT-1 levels 1–4 days after seizure
and a reduction 4–7 days after a seizure (Hubbard et al., 2016;
Peterson and Binder, 2019). This difference in GLT-1 expression
after epileptic seizures can arise from changes in the membrane
anchor and trafficking system, since, upon glutamate release,
GLT-1 can be trafficked to synaptic and non-synaptic regions
to ensure glutamate clearance (Murphy-Royal et al., 2015).
Different drugs can ameliorate epilepsy intensity by targeting
GLT-1. Among these drugs, antibiotics such as β-lactam and
ceftriaxone show antiepileptic effects and can increase GLT-1
levels (Rothstein et al., 2005; Zeng et al., 2010), and, in a
pilocarpine-induced TLE model, a GLT-1 activator was able
to promote an increase in GLT-1 expression and reduction of
spontaneous seizures frequency by 50% (Kong et al., 2014; Sha
et al., 2017). However, GLT-1 internalization and degradation
are still observed, suggesting that these are the causes of
GLT-1 deficiency and the limiting factors for the use of these
drugs in the treatment of TLE (Susarla and Robinson, 2008).
Thus, some studies have shown that besides increasing GLT-1
expression, it would be necessary to use inhibitors of proteins
responsible for its degradation. Studies have been performed
with a Hsp90B inhibitor (17AAG), which is one of the proteins
that recruit GLT-1 for degradation (Whitesell and Lindquist,
2005). Not only was this drug able to increase GLT-1 expression,
it also maintained GLT-1 protein levels more effectively than
ceftriaxone and exhibited a remarkable seizure suppression effect
in the TLE model (Sha et al., 2017).

Besides glutamate homeostasis, astrocytes can also modulate
water flow and potassium homeostasis in the extracellular space
(Devinsky et al., 2013). Potassium concentration is regulated by
astrocytes through its uptake by the sodium/potassium ATPase,
sodium/potassium/chloride cotransporters, and input rectifier
channels for potassium (Kir 4.1; Ransom et al., 2000; D’Ambrosio
et al., 2002; Kofuji and Newman, 2004; Nikolic et al., 2019).
Increased potassium concentration in the extracellular space
can generate sustained neuronal depolarization and neuronal
hyperexcitability (Walz, 2000; Devinsky et al., 2013; Nikolic et al.,
2019), and evidence in the literature suggests an association
between the uncontrolled increase of extracellular potassium
levels and epilepsy, both in humans and in animal models
(Steinhäuser et al., 2016).

In recent years, studies have shown an association between the
glial water channel aquaporin-4 (AQP4) and Kir 4.1, forming an
astrocytic protein complex responsible for removing potassium
from the extracellular space, being an important mechanism
in establishing a hyperpolarized neuronal membrane potential
which may play an important role in epilepsy (Aronica et al.,
2000; Das et al., 2012; Devinsky et al., 2013). Indeed, reduced
expression of Kir 4.1 has been described in the hippocampus
of patients with TLE (Das et al., 2012), where astrocytes
showed deficits in potassium and glutamate uptake similar to
those found in Kir 4.1 knockout animal models (Djukic et al.,
2007; Chever et al., 2010; Nikolic et al., 2019). Furthermore,
AQP4 knockout animals are also more susceptible to seizures
and epilepsy (Dudek and Rogawski, 2005; Devinsky et al., 2013)
and, in kainate-induced epileptic animal models, a reduction in
AQP4 expression was also reported (Lee et al., 2012; Devinsky

et al., 2013). Similarly, patients with TLE who have hippocampal
sclerosis show a decrease or loss of AQP4 expression, suggesting
the involvement of these channels in early epileptogenesis
(Amiry-Moghaddam et al., 2003; Eid et al., 2005; Seifert et al.,
2010). Taken together, these findings show that, in addition to
the glutamate transporters, the control of potassium homeostasis
and water flow is involved in neuronal excitability and TLE,
even though further studies are needed to better elucidate their
underlying mechanisms for controlling neuronal excitability.

Not only is ion homeostasis, such as sodium and potassium,
altered in various forms of epilepsy, but cell metabolism has
also been shown to be deeply affected in the epileptic brain. For
instance, it is well known that there is a high energy demand
during seizures, accompanied by high glucose consumption by
neural networks. However, cerebral glucose hypometabolism is
a feature of interictal phases in different forms of epilepsy, in
regions that encompass but are generally larger than the region
of seizure onset (Goffin et al., 2008; Pittau et al., 2014). The
exact mechanisms underpinning such alterations are not clear,
but mitochondrial dysfunction, linked with deficient glycolysis,
remains a plausible hypothesis. Indeed, glutamate is known to
promote astrocytic glycolysis (Bittner et al., 2011; Yan et al.,
2017), a process in which glucose is converted into lactate. In
epilepsy, where extracellular glutamate levels are increased, this
process is most likely heightened when in comparison with
control conditions. Thus, this results in a rapid depletion of
glucose and a quick increase in lactate levels, indicating that,
following seizure activity, in which there is a high consumption of
glucose, neurons likely rely mostly on astrocyte-derived lactate.
The lactate surplus is released into the extracellular space,
creating a gradient between astrocytes and neurons (Mächler
et al., 2016). Accompanying these alterations, the expression
of astroglial monocarboxylate transporters, which lead to an
efflux of monocarboxylates in astrocytes, has been reported to
be increased in animal models of TLE (Liu et al., 2014), further
suggesting that this astroglial-neuronal metabolic coupling
pathway is affected in epilepsy. This pathway is vital for several
brain functions, including for long-term memory formation
(Suzuki et al., 2011), which might indicate a compromise
of several neural functions, as a consequence of disrupted
energy homeostasis. Due to the accumulating evidence of
metabolic disruption in epilepsy, treatment strategies targetting
cell metabolism have been gaining more attention, including the
revival of the ketogenic diet (Walczyk and Wick, 2017). Pyruvate
has been proposed as a possible treatment for epilepsy on account
of being an anaplerotic mitochondrial fuel and because of its
protective features, including acting as a potent ROS scavenger
and normalizing cytosolic redox state. This molecule also
facilitates brain-to-blood glutamate flux, preventing neuronal
excitability (Popova et al., 2017). Finally, since blood glutamate
can be converted into 2-ketoglutarate in the presence of pyruvate,
mediated by glutamate-pyruvate transaminase (Gottlieb et al.,
2003), treatment with pyruvate can be a protective measure
against excitotoxicity (Carvalho et al., 2011).

In addition to alterations in cell metabolism in epilepsy, which
include the hypermetabolism and hypometabolism during ictal
and interictal phases, respectively, intracellular ATP levels are
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also affected. Indeed, depletion of intracellular ATP has been
reported in seizures (Wasterlain et al., 2010), and considering
that the major source of ATP in the mitochondria, the possibility
of mitochondrial dysfunction in epilepsy has gained considerable
attention. While it is known that mitochondrial dysfunction
is involved in seizure-related neuronal death (Kovac et al.,
2013), it has also been associated with increased ROS and
NO production during seizures (Frantseva et al., 2000; Jarrett
et al., 2008), which is related with the activation of glutamate
receptors and depolarization of the mitochondrial membrane.
As the major sources of ATP are glycolysis and mitochondrial
respiration, alterations in the rate of these processes in epilepsy
will also impact ATP production which, reciprocally, influences
mitochondrial activity. Mitochondrial dysfunction has been
profoundly linked with neuronal damage and death (Rose et al.,
2017), and this organelle is particularly relevant for calcium
homeostasis. Mitochondria serve as a key regulator of cytosolic
calcium, via the mitochondrial calcium uniporter and, in its
turn, the influx of calcium into the mitochondria can activate
the respiratory chain as well as promote the production of
ATP. During seizure activity, in which neurons are exposed
to high concentrations of glutamate, the subsequent activation
of NMDAR induces calcium oscillations and a subsequent
depolarization of the mitochondrial membrane (Kovac et al.,
2012), which can be a trigger for neuronal death (Vergun
et al., 1999). In rats where epileptic status was induced by
L-allylglycine and bicuculline, the influx of calcium into neurons
led to mitochondrial calcium overload, resulting in cell death
(Griffiths et al., 1983; De Stefani et al., 2011). This issue has been
overcome in the pilocarpine model of epilepsy by the inhibition
of the mitochondrial calcium uniporter system, which decreased
neuronal death, suggesting this system plays a role in seizure
activity (Wang et al., 2015). Also, increasing ATP production by
providing a substrate such as a pyruvate has been demonstrated
to prevent neuronal death (Kovac et al., 2012). It should be noted
that not only mitochondrial alterations can be observed but
also in the endoplasmic reticulum, another intracellular pool of
calcium. Indeed, debilitation of endoplasmic reticulum calcium
with thapsigargin results in decreased neuronal excitation
triggered by bicuculline in cultures (Sokal et al., 2000) as well as in
slices, where (RS)-3,5-dihydroxyphenylglycine and pilocarpine-
induced ictal discharges were shown to be dependent on the
endoplasmic reticulum calcium pool (Rutecki et al., 2002).
Although very few studies have focused on the contribution of
endoplasmic reticulum calcium stores toward seizure activity, it
has been demonstrated that depleting intracellular endoplasmic
reticulum calcium stores can counteract neuronal excitability
(Sokal et al., 2000).

Another major consequence of intracellular calcium
accumulation and mitochondrial dysregulation is the
exacerbated production of ROS, which is an essential mechanism
in excitotoxicity-induced neuronal injury (Patel et al., 1996).
Indeed, oxidative stress has been implicated in both immediate
and later excitotoxic neuronal damage and increased ROS
production has been reported in the ictal and interictal phases
of epilepsy (Liang et al., 2000). Furthermore, this increase is also
known to inhibit mitochondrial complex 1 activity and decrease

mitochondrial membrane potential (Ryan et al., 2012; Rowley
et al., 2015).

Additionally, calcium influx also leads to NOS activation and
consequent NO overproduction, which is known to be increased
in the cerebral cortex of rodents and epilepsy patients (Mülsch
et al., 1994; González-Hernández et al., 2000) and has been
suggested to contribute to seizure-induced neuronal death. It
has also been demonstrated that NO-mediated activation of
the type 1 ryanodine receptor is crucial for seizure-induced
neuronal death and that antagonists of this receptor have
a neuroprotective effect, emerging as suitable candidates for
ameliorating conditions following seizures (Mikami et al., 2016).
Supporting this fact, it has been described that non-selectively
blocking NOS can potentiate rubidium chloride anti-convulsive
effects (Rahimi et al., 2019). Thus, given the onset of metabolic
and mitochondrial alterations as a consequence of excitotoxicity
in seizure activity and their relevance for neuronal damage, there
has been a growing interest in the use of antioxidants and other
neuroprotective drugs that prevent neuronal damage following
seizures (Petkova et al., 2014; Mishra et al., 2015; Williams et al.,
2015; Pauletti et al., 2019).

CURTAIN CALL: CONCLUSIONS

Excitotoxicity relies on multiple pathways that are involved in
several regulatory cell mechanisms. Studies reviewed here suggest
that, although the glutamatergic system is essential for brain
functioning, its dysregulation is implicated as a key step in
the pathophysiology of neuronal impairment, which is closely
associated with excitotoxicity. This dysregulation may occur at
the receptor, transporter, or metabolic levels, leading to different
types of cellular responses that ultimately culminate in oxidative
stress and neuronal death. Several neurodegenerative diseases
display excitotoxic events or characteristics, and possibly this
chronic mild excitotoxicity contributes, among other factors,
to the neuronal death observed in these pathophysiological
conditions. Thus, it is urgent to discover new therapeutic targets
that counteract the excitotoxicity mediated by glutamatergic
system, with a positive impact on neurological diseases such as
ALS, AD, and TLE.
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