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Abstract

This work proposes a novel framework for planning the capacity of di-
agnostic tests in cancer pathways that considers the aggregate demand of
referrals from multiple cancer specialties (sites). The framework includes
an analytic tool that recursively assesses the overall daily demand for each
diagnostic test and considers general distributions for both the incoming
cancer referrals and the number of required specific tests for any given pa-
tient. By disaggregating the problem with respect to each diagnostic test,
we are able to model the system as a perishable inventory problem that
can be solved by means of generalised G/D/C queuing models, where the
capacity C is allowed to vary and can be seen as a random variable that
is adjusted according to prescribed performance measures. The approach
aims to provide public health and cancer services with recommendations
to align capacity and demand for cancer diagnostic tests effectively and
efficiently. Our case study illustrates the applicability of our methods on
lung cancer referrals from UK’s National Health Service. Healthcare
Modelling, Capacity Planning, Inventory Control, Queuing Systems
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1 Introduction

Increasing demand on healthcare services caused by an ageing population paired
with frequent budget constraints leads to a constant need to optimise healthcare
resources (Capan et al., 2017). In particular, the demand for cancer care services
in the United Kingdom (UK) has been constantly rising over the last 20 years
(Saville et al., 2019). That, in turn, gave rise to capacity issues that have
been identified by multiple government bodies (e.g., Welsh Government, 2019;
South Yorkshire, Bassetlaw & North Derbyshire Cancer Alliance, 2019; Scottish
Government, 2017; Meskarian et al., 2017).

The literature presents a number of alternatives for improving the manage-
ment of demand and capacity within healthcare services. For example, a proper
management of demand when a number of competing services are made avail-
able can be used to promote a better usage of the existing capacity, while also
improving the quality of the service (e.g., Scottish Government, 2017; Arruda
et al., 2019). In contrast, scheduling and capacity allocation models can also
be implemented to promote an optimised use of the available capacity within a
prescribed planning horizon (e.g., Culpan et al., 2019; Woznitza et al., 2018).
Reviews in (Capan et al., 2017; Marynissen and Demeulemeester, 2019; Hulshof
et al., 2012) provide an overview of analytic and simulation tools for decision
making in healthcare systems in general. For more in-depth analysis of the lit-
erature regarding cancer care and chemotherapy management, see Saville et al.
(2019) and Shi et al. (2014). In this paper we study a capacity planning problem
for cancer diagnostic services considering the steady state demand for diagnostic
tests incoming from all available cancer specialties, which are also referred to as
cancer sites.

The complex nature of healthcare services gives rise to a complex supply
chain that can be viewed as a network of interacting services and supplies (Mar-
tins et al., 2019). Martins et al. (2019) discuss the importance of considering the
nature of these interactions in healthcare models, whilst also arguing that such
models often lack a “networks perspective”. In order to capture the interaction
of services and supplies, some authors opt to model the flow of services that are
part of the scope of their studies. This gives rise to complex analytic tools that
often resort to unrealistic simplifying assumptions, or to simulation tools that
are only able to compare a small number of alternatives (Saville et al., 2019;
Alagoz et al., 2011). The related literature includes a model of network com-
munity services in Canada (Bidhandi et al., 2019) that uses classical M/M/1
queuing models to estimate the probability of a delayed service. For more de-
tails of queueing models and a definition of what is meant by an M/M/1 queue,
see (Shortle et al., 2018). A similar approach is applied by Wu et al. (2019)
for multi-stage bed allocation in hospitals. In contrast, Nguyen et al. (2018)
propose a deterministic approximation for a capacity allocation problem ap-
plied to an outpatient clinic, whereas Xiao et al. (2018) develop a deterministic
model for scheduling rehabilitation services. Deterministic methods for schedul-
ing and capacity allocation in healthcare also appear in the works of Gartner
et al. (2018), Nguyen et al. (2015) and Hulshof et al. (2013).
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Related works also include material logistics applications in healthcare, which
were recently reviewed by Ahmadi et al. (2019). These applications encompass
inventory models with restrictive assumptions on the demand distribution (Ah-
madi et al., 2019; Rosales et al., 2015), which is often assumed to follow a Poisson
process (Rosales et al., 2015). Another possible drawback of such models is that
they generally assume exogenous demand for supplies, an assumption that is vi-
olated in practice when the demand is indirect, such as the demand for surgical
supplies or diagnostic tests. While patient arrival is generally exogenous, the
demand for surgical supplies or diagnostic tests is endogenous and is generated
by patients that were previously admitted in the system. This typically gener-
ates a large variety of patient pathways. In such a context, Garg et al. (2008)
applied Markov models to search for frequent and/or costly pathways in health-
care data. Finally, a recent study by Richers et al. (2019) accounts for indirect
demand in surgical supplies inventory.

This paper addresses the problem of capacity planning for diagnostic tests in
the cancer pathway, considering the incoming demand for various cancer special-
ties. At the operational level, a patient typically requires multiple services and
appointments since being referred to a cancer pathway (Sauré et al., 2012; As-
pland et al., 2019). While multi-appointment scheduling problems are reviewed
by Marynissen and Demeulemeester (2019), more specifically, Romero et al.
(2013) developed a simulation model for the treatment phase of skin cancer. A
spreadsheet simulation tool for a more general diagnostic and treatment unit
was introduced by Bowers et al. (2005), whereas Bikker et al. (2015) chose to
optimise the allocation of consultant doctor’s activities to accelerate the access
to radiotherapy treatments. Refer to Aspland et al. (2019) for a comprehensive
survey of clinical pathway modelling. Other applications of operational research
to cancer care are reported by Saville et al. (2019). They identified a gap in the
literature regarding optimisation methods for cancer diagnosis and staging. In
the present paper we seek to contribute to bridging this gap by addressing the
planning stage of the diagnostic and staging phases of a cancer pathway.

This study proposes an innovative analytic tool for capacity planning that
makes no assumption on the distribution of the cancer referrals, nor on the dis-
tribution of the diagnostic and staging tests required by a referred patient. In
order to keep this level of generality, we avoid a direct modelling of the path-
way, which has previously given rise to involved models that are very difficult
to solve (e.g., Sauré et al., 2012; Castro and Petrovic, 2012). Instead, we exploit
the problem’s structure to simplify the model by disaggregating it with respect
to each diagnostic test. The rationale is somewhat similar to the demand dis-
aggregation in (Suárez-Vega et al., 2017). It also bears some similarities to
agent-based approaches in which the agents examine the state of the system
and take decisions (e.g., Fuller et al., 2019).

By taking into account the aggregated demand for diagnostic tests generated
by each cancer specialty, we are able to produce a simple and easy to use ana-
lytic tool that captures the essential characteristics of the problem whilst also
enabling the user to optimise performance. For each diagnostic test, we start
by assessing the probability distribution of the demand produced by referrals
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of each cancer specialty. We propose a recursive procedure to obtain such a
distribution. Then, the overall demand for the referred diagnostic test can be
obtained as the convolution of the demands of all cancer specialties, which is
also obtained by means of a recursive procedure.

We consider the capacity planning problem for each diagnostic test as an
inventory problem with perishable items. At each day, the system possesses a
given capacity, which is viewed as an inventory of tests that can be used on
either incoming or queued patients. The inventory contains all the appoint-
ments that are available for a given test on a specific day. These appointments,
however, expire at the end of the day and will be no longer available in the
capacity inventory of the following day. Hence, unused capacity can be treated
analogously to expired inventory that needs to be discarded. Once we are in
possession of the probability distribution of the aggregate demand for tests,
the problem then becomes an inventory problem in which the decision maker
seeks a balance between unused capacity and the stationary distribution of the
number of queued tests. Once the capacity is defined, the problem can anal-
ogously be seen as a G/D/C queue that can be solved analytically, by means
of Z−transform (Chaudhry and Kim, 2003) or by means of embedded Markov
models (Shortle et al., 2018). Hence, the inventory model can be solved by de-
termining an adequate number of daily slots C in the equivalent queuing model
that provides the desirable balance between unused capacity and waiting times.

The research and modelling approach is motivated by working with on-
cologists and managers across Wales as part of a wider Cancer Research UK
(CRUK) funded project. The Welsh Government has recently set out its ap-
proach to improving cancer services and outcomes with a significant focus on
the earlier detection of cancers and greater understanding and efficiency of the
pathways patients take. Subsequently, the Cabinet Secretary announced the
introduction of a single cancer pathway (SCP) and its implementation must be
properly tested and evaluated to understand the impact on patient care, treat-
ment outcomes and the wider health system. Our research is therefore aimed at
supporting the Welsh Government in making recommendations to align capac-
ity to best match demand in an effective and efficient manner, and to ultimately
improve patient care and outcomes.

The remainder of this paper is organised as follows. Section 2 introduces and
motivates the problem. Section 3 features the mathematical formulation, which
is divided in two subsections. Subsection 3.1 presents a recursive algorithm for
the evaluation of the aggregate demand per test for a single cancer specialty,
whereas Subsection 3.2 introduces a recursive evaluation of the overall demand
for tests considering all cancer specialties. Section 4 discusses capacity planning
and the evaluation of the long-term behaviour of the system for prescribed
capacities. A case study to illustrate the approach based on data from the
U.K.’s National Health Service (NHS) is presented in Section 5. Finally, Section
6 concludes the paper.



2 PROBLEM DESCRIPTION 5

2 Problem Description

This paper studies the indirect demand for supplies or resources in healthcare
systems, and is concerned in particular with the demand for diagnostic tests
in cancer pathways. That notwithstanding, it is worth mentioning that the
proposed model is general enough to encompass any other system with similar
characteristics.

The demand is generated by patients that arrive spontaneously to the sys-
tem or are referred to some surgical procedure or to a specific pathway, such as
a diagnostic pathway for a cancer specialty. The patient arrivals are stochastic
and the decision maker has access to historical data on the probability distri-
bution of arrivals for a given period of interest. However invaluable, the arrival
distribution is not enough to characterise the demand for any given supply or
resource. This is because the exact composition and quantity of resources and
supplies needed for any given patient cannot be exactly foreseen a priori. In-
stead, such information is progressively revealed as the patient traverses the
pathway. Nevertheless, the decision maker has access to historical data and
hence can estimate the demand distribution of each incoming patient for any
given supply or resource of interest. In Section 3, we introduce a procedure to
evaluate the periodic demand of a given supply or resource making use of both
the patient arrival distribution and the distribution of the individual demand
per patient for all pathways that make use of this specific supply or resource.

Many systems conform to the proposed model. As an example, consider the
demand for surgical supplies such as catheters, stents or specific prosthetics.
While hospitals generally have an overall idea of the supplies that may be needed
in any given surgery, the specific supplies that will be required, as well as the
exact demand will only be known at the end of each surgery. Furthermore,
hospitals generally hold data on the demand for specific surgeries, as well as
information on the supplies demanded by similar surgeries in the past. In a
very different domain, clients arrive stochastically at the supermarket, and each
client requires a list of supplies that will only be known a posteriori. Hence,
in order to predict future demand for any given product, the decision makers
need not only forecasts of the number of arriving clients, but also probability
distributions related to the shopping list of individual clients (e.g., Guidotti
et al., 2019).

In spite of the level of generality, the proposed model was motivated by
general cancer care pathways. For the sake of illustration, let us consider the
diagnostic phase of lung cancer patients. Upon having access to the patient’s
medical history and undertaking an eventual physical examination, consultants
may require a computerised tomography (CT) to search for possible lesions.
The patient is then examined and waits for a radiological report that is issued
a posteriori. Then, the consultant may prescribe a second CT in case the first
report is inconclusive. Alternatively, the investigations may continue with other
tests or a decision can be reached. Furthermore, another CT scan may or may
not be required later in the pathway to search for metastases (Silvestri et al.,
2013). In the same diagnostic pathway, multiple biopsies may be required as
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the investigation progresses, and some may have to be repeated in case the
collected sample is insufficient or considered inadequate, which will only be
known a posteriori. Finally, since the investigation progresses according to the
findings in the test results, neither the specific tests to be undertaken nor their
quantities are known a-priori for any given patient entering the pathway.

3 Aggregate Demand Evaluation for a Diagnos-
tic Test

Let us consider a set of n ≥ 1 cancer specialties that are being monitored
and treated in a given health service. To enter the pathway of a given cancer
specialty, the patient must be referred to the service by a physician. For each
cancer specialty, the pathway includes appointments with specialist consultants
and medical teams, as well as a set of specialised diagnostic and staging tests.
The former are designed to test for cancer, whereas the latter are tools to
determine how advanced the cancer is. In this paper, we are interested in
determining the number of daily slots that should be made available at any
given day to satisfy the overall demand for each diagnostic or staging test, in
such a way as to ensure that the patient does not have to wait excessively for
an appointment should he or she be assigned the test.

3.1 Aggregate Demand for a Single Cancer Specialty

Firstly, let us consider the demand for a given diagnostic test, produced by in-
coming patients of a certain cancer specialty. Each incoming patient may or may
not require this specific diagnostic test, but if they do require it, they may take
the test multiple times. The studied problem involves two random variables, one
that represents the number of incoming patients on a given day, and another to
denote the number of times that an incoming patient will have to undertake the
test under consideration. Let Ak be a random variable representing the number
of patient referrals on any given day for cancer specialty k ∈ {1, . . . , n}, which
takes values from the set ΩAk

= {0, 1, , . . . , N}. Let pAk
(m), m ∈ ΩAk

, denote
the probability that exactly m patients are referred for cancer specialty k on
a given day. In addition, define a random variable Tk to represent the overall
demand for the test that is produced by cancer specialty k on a given day. It is
clear that the number of tests performed is a function of the number of incoming
referrals. Hence, by using the total probability theorem, we have:

P (Tk = j) =
∑

m∈ΩAk

P (Tk = j|Ak = m) pAk
(m). (3.1)

To simplify the notation, let Vm be the total number of tests given that we
have exactly m ∈ ΩAk

incoming referrals. This yields P (Vm = j) = P (Tk =
j|Ak = m), and hence Eq. (3.1) becomes:
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P (Tk = j) =
∑

m∈ΩAk

P (Vm = j) pAk
(m). (3.2)

In order to fully assess Eq. (3.2), we need to find an expression for the first
term in the right hand side. Let the random variable Y denote the number of
tests required by a single referred patient, which takes values from the set of
non-negative integers ΩY , and let n1 = min(ΩY ) and n2 = max(ΩY ) denote
the minimum and maximum number of tests required by a single patient, re-
spectively. Furthermore, let P (Y = i), i ∈ ΩY , denote the probability that a
patient will require exactly i tests. From the definitions, it is clear that Vm is
the sum of m independent and identically distributed (iid) random variables
Yl, 1 ≤ l ≤ m, with Yl ∼ Y, ∀l. Hence, Vm can be seen as the convolution of
m iid variables, whose distribution can be obtained by the iterative procedure
below, considering one convolution at a time, as follows:

P (Vm = i) =

i∑
j=(m−1)n1

P (Vm−1 = j)P (Y = i−j), m·n1 ≤ i ≤ m·n2, ∀m ≥ 2,

(3.3)
with

P (V1 = i) = P (Y = i),∀n1 ≤ i ≤ n2.

3.2 Considering Multiple Cancer Specialties

Multiple cancer specialties pose no significant additional difficulties for the cal-
culation of the distribution of the total demand for tests. In that case, one just
needs to repeat the procedure detailed in Section 3.1 for each cancer specialty.
Like in the previous section, let us assume that a total of n ≥ 1 cancer specialties
make use of the considered test, and recall that Tk, k = 1, . . . , n is the random
variable representing the total demand for tests from all incoming referrals for
cancer specialty 1 ≤ k ≤ n. In that case, the total demand for tests is

T =

n∑
k=1

Tk. (3.4)

The distribution of T is now the convolution of n distinct and independent
probability distributions, and the iterative procedure to find the distribution of

T is rather similar to that presented in the last section. Let Wm =

m∑
k=1

Tk, 1 ≤

m ≤ n, be a random variable representing the number of tests required by the
first m cancer specialties. If follows that:

P (Wm = i) =

i∑
j=0

P (Wm−1 = j) pTm(i− j), i ≥ 0, ∀m ≥ 2, (3.5)
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with
P (W1 = i) = pT1(i),∀i ∈ ΩT1 ,

and T = Wn.

4 Capacity Planning

This section discusses the elaboration of a capacity plan that makes use of the
aggregate demand for tests obtained by the procedures in Sections 3.1 and 3.2.
Let E(T ) be the average daily demand for a given test. A simple course of action
for the decision maker is to offer a fixed number C ∈ N of daily slots, where
N is the set of natural numbers. Considering that a slot that is not occupied
on a given day cannot be kept in inventory for the next day, we can model the
resulting system as a G/D/C queue. Furthermore, to ensure finite waiting times
and long-term stability, we must have C > E(T ) (Shortle et al., 2018). Such
a system can be solved analytically, by means of the Z−transform procedure
detailed in Section 4.1. Alternatively, the solution can also be obtained via
an embedded Markov chain (e.g., Shortle et al., 2018), as described in Section
4.2. The choice of C depends on the trade-off between unused capacity and
quality of service to the end users, which can be modelled in a number of ways;
for example as a function of the stationary distribution of the waiting times.
Regardless of the long-term goal, the decision maker has to be able to evaluate
the steady state distribution of the resulting queue, as described in the following
subsections.

Another possible approach, which will be explored in detail in the Case
Study - Section 5 - is to have some temporary extra capacity that is deployed
with a given probability. In that case, an analytic solution by means of the
Z−transform is no longer applicable. However, embedded Markov chains can
still be employed, as detailed in Section 4.2.

4.1 Steady State Distribution for the Overall Demand us-
ing the Z-Transform

The problem of finding the steady state distribution of the resulting queuing
system for a given fixed capacity C > E(T ) can be solved by means of the
Z−transform, making use of an equivalent signal processing formulation. Let
pT (m) = P (T = m) = tm, denote the probability that exactly m tests are
requested on a given day. The probability generating function (PGF) can be
defined as

T (z) =

N∑
m=0

tmz
m. (4.1)

The PGF T (z) is a polynomial of degree N , where N is the maximum
possible number of test requests on a given day. The probability mass function
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(PMF) can be expressed as a discrete sequence

t(m) =

N∑
r=0

trδ[m− r] (4.2)

that can be used to find the PGF

T (z) = Z{t(−m)}, (4.3)

where Z{·} denotes the Z−transform operator (e.g., Oppenheim and Schafer,
2009). Let Xk, k ≥ 0 be the stochastic process that describes the number of test
requests in the system, i.e. the tests that are either being serviced or are waiting
to be processed at any given period k ≥ 0. Then, the steady state probability
of process Xk, k ≥ 0, denoted by vector π, such that

πm = π(m) = lim
k→∞

P (Xk = m), m ≥ 0,

has the PGF given by

Π(z) =

∞∑
m=0

πmz
m = Z{π−m}. (4.4)

Bruneel and Wuyts (1994) and Chaudhry and Kim (2003) propose an explicit
expression for the generating function, given by

Π(z) = T (z)Q(z), (4.5)

where

Q(z) =

L∏
i=1

1− βi
z − βi

, (4.6)

and βi is a root of zC − T (z) = 0. The polynomial zC − T (z) has L = (N −C)
roots outside of the unity circle |z| ≤ 1 (Bruneel and Wuyts, 1994; Chaudhry and
Kim, 2003). One can find Π(z) using the inverse Z−transform, and modelling
Eq. (4.5) as a digital causal stable filter whose output gives π−m. We have

Π(z−1) = T (z−1)H(z), (4.7)

where H(z) is the system function with L poles pi = 1
βi
, i = 1, . . . , L, within

the unit circle, and

H(z) =

L∏
i=1

1− pi
1− piz−1

=
ν0

1 +
∑L
i=1 ηiz

−i
. (4.8)

The steady state distribution for the requested tests in the system, π, is the
inverse Z−transform of Π(z−1). The digital filter output can be implemented
using the following difference equation (Oppenheim and Schafer, 2009):

πm = ν0tm −
L∑
i=1

ηiπm−i, (4.9)

where ν0 is the numerator of Eq. (4.8), and ηi are the coefficients of the poly-
nomial in the denominator of Eq. (4.8).
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4.2 Steady State Distribution for the Overall Demand via
Embedded Markov Chains

Recall from Section 4 that the system is modelled as a G/D/C queue, where C
is the fixed number of available daily tests. This queue can be described by an
embedded Markov chain (Shortle et al., 2018) with state space S = {0, 1, 2, . . .}
that represents the evolution of process Xk, k ≥ 0, defined in the previous
section as the number of test requests in the system. Let pT (l) = P (T = l) be
the probability that l test requests are received on a given day. The elements
of the transition matrix PC for a given capacity C are given by:

pCij =


pT (l), if j = i− C + l and i > C;

pT (l), if j = l and i < C;

0, otherwise,

(4.10)

for all i, j ∈ S. The first line in Eq. (4.10) models the transition when there is
already a queue of tests waiting to be processed. The second line considers the
system with no waiting test requests; observe that all requests already in the
system will be served in the current period, whilst the incoming requests will be
processed on the following day. Classical Markov chain theory yields that the
steady state distribution of Xk, k ≥ 0 is the solution of the following system of
equations (Brémaud, 1999):

πPC = π,
∞∑
i=0

π(i) = 1.
(4.11)

Now consider the case where the capacity is a random variable, i.e. C is a
random variable taking values from the set of positive integers ΩC = {c1, c1 +
1, . . . , c2}, with P (C = c) = PC(c). In that case, the Z−transform method
of the previous section is no longer applicable. However, the Markov chain
approach is still valid, and the system is stable if E(T ) < E(C). In that case,
we have

PC =
∑
l∈ΩC

pC(l)P l, (4.12)

where P l is evaluated by means of Eq. (4.10), with C = l. Once again, the
steady state behaviour is obtained by solving (4.11).

The variable capacity setting is interesting to model the case when extra
capacity is made available with a given probability, for example, by granting
access to some shared resources. This possibility will be explored in the case
study in Section 5.

5 Case Study

We illustrate our novel methdological approach using data on lung cancer re-
ferrals from one health board (region) of South Wales. We consider data on
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lung cancer referrals from the Cwm Taf Morgannwg University Health Board
in Wales, covering the 26-week period from 1st April 2016 to 30th September
2016. A total of 341 patients were referred to the lung cancer pathway in the
studied period.

Incoming Patients
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0.25
Arrival Distribution (Av. Rate = 2.6623)

Figure 1: Incoming Distribution of Lung Cancer Suspicions

In this example, we will consider CT test requests. Considering five business
days per week, we have a rate λ = 341

26·5 ≈ 2.623 incoming patients per day. We
assume that the number of daily incoming referrals is described by a Poisson
process with rate λ. Imposing a boundary of 0.99 in the cumulative distribution
FA : A → [0, 1], we limit the maximum number of arrivals to n = 7, and we
make

P (A = 7) =

∞∑
k=7

P (A = k),

to obtain the probability distribution depicted in Figure 1.
The total number of CTs performed over the period is 393. For the sake of

modelling, and considering the Optimal Lung Cancer Pathway guidelines (Lung
Clinical Expert Group, 2017), we assume that every patient undergoes at least
one CT test. Since there were 341 lung cancer referrals in the database, we
assume that 52 patients had a repeated CT scan. Hence, we have P (Y = 1) =
341
393 ≈ 0.868, and P (Y = 2) ≈ 0.132. Applying Eq. (3.2) to the available
data, we obtain the distribution of the number of daily CT requests, depicted
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in Figure 2.

CT Requests
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Figure 2: Distribution of CT Requests for Lung Cancer Referrals

The cumulative distribution of CT requests per business day is depicted in
Figure 3 below. One can see that, for a service rate ρ ≥ 0.8 a supply of five CT
slots per business day would suffice, whereas at least four CT slots per business
day are required for stability. Furthermore, depending on the required service
rate, the daily available capacity should range between the average number of
daily CT requests λCT ≈ 3.014 and 14 CT slots per day. A fractional capacity
can be attained by providing a fixed number of daily slots, for example 3 slots,
and offering some extra slots on specific days. For example, by having three
regular slots plus one extra slot every Monday, we would have an average of 3.2
slots per business day.

5.1 Optimal Capacity Planning

As mentioned in Section 4, if we keep a fixed capacity, that is, a fixed number
of daily CT slots, our model becomes a G/D/C queuing system. In that case,
we may define C as a function of a compromise between the perceived costs
of delayed tests and unused capacity. However, more general inventory policies
can be pursued, which would produce G/D/C queuing systems with removable
servers. By convention, we assume that no incoming request can be processed at
the time of arrival. All requests have to wait at least one period to be processed.
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CT Requests
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Figure 3: Cumulative Distribution of CT Requests for Lung Cancer Referrals

The motivation is that a cancer test typically requires an appointment and very
seldom the appointment will be available for the same day.

Consider the example in the previous section, whose cumulative distribution
of requests is depicted in Figure 3, and whose average daily request rate is
λCT ≈ 3.014. Let us assume we have a fixed capacity of C = 3 daily CT
slots and an extra slot that can be used with a probability α ∈ [0, 1]. For a
given fixed capacity C, the system can be described by a Markov chain (e.g.,
Brémaud, 1999) with state space S = {0, 1, . . . } and transition matrix PC

defined in Section 4.2.
In the example, we have:

PC =



pT (0) pT (1) . . . pT (14) 0 0 0 0 . . .
pT (0) pT (1) . . . pT (14) 0 0 0 0 . . .
pT (0) pT (1) . . . pT (14) 0 0 0 0 . . .

0 pT (0) . . . pT (13) pT (14) 0 0 0 . . .
0 0 . . . pT (12) pT (13) pT (14) 0 0 . . .
0 0 . . . pT (11) pT (12) pT (13) pT (14) 0 . . .
0 0 . . . pT (10) pT (11) pT (12) pT (13) pT (14) . . .
...

...
...

...
...

...
...

...
. . .


,

for C = 3. Observe in the transition matrix that, if there is no request which
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cannot be immediately processed i.e. Xk = i ≤ C, then the next state equals
the demand in period k ≥ 0, regardless of the current state i ≤ C. This happens
because the system will process all the i pending requests during period k and
will be left with only the incoming requests in the current period. In contrast,
when i > C, some of the requests will be left in the queue and the number of
impending requests at the onset of the following day will be Xk+1 = Xk−C+ l,
where l is a realization of the random variable T , which represents the number
of incoming tests at any given time.
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Figure 4: Steady state probabilities for the number of pending tests

Now, let us assume in the example that we allocate an extra capacity with
a given probability α. Hence, we have P (C = 3) = 1 − α and P (C = 4) = α.
In that case, the transition matrix for process Xk, k ≥ 0, becomes:

PC = αP 4 + (1− α)P 3.

To evaluate the steady state behaviour of the system under any value of α,
it suffices to find the limiting distribution of Xk, k ≥ 0, by solving the system
in (4.11). Figure 4 depicts the steady state distribution for distinct values of α.
One can notice in Figure 4 that small values of α tend to keep a large queue of
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impending tests. As we increase the value of α we observe a steady decrease in
the system occupation, which is steeper for larger values of α.

Since the service is deterministic, we can easily obtain the expected waiting
time of an incoming patient. Suppose, for example, that Xk = n just after the
arrival of the patient’s request. Then, the patient will have to wait d nC e days
for his/her request to be processed, where⌈ n

C

⌉
= min

{
u ∈ Z : u ≥ n

C

}
,

is the ceiling of n
C , i.e. the closest value in the set of integers Z that exceeds n

C .
Hence, we can easily calculate the steady state distribution of the waiting time
from the distribution of pending requests.
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Figure 5: Waiting time thresholds and probabilities

Figure 5 depicts the probability that an incoming request will have to wait
more than t days to be processed for distinct integer values t ≥ 0. With the
results in Figure 5 the decision maker can, for example, establish a target time
t and a target probability p̄, and determine a suitable value of α such that
P (ω > t) ≤ p̄. For example, if we accept that at most 10% of patients are
allowed to wait more than 10 days for a test result, then α = 0.25 suffices. On
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the other hand, α = 1 ensures that no more than one in a thousand requests
will wait in excess of six days. In order to facilitate the reproducibility of the
results, the code in R (R Core Team, 2018) for the example is provided as
supplementary material.

6 Concluding Remarks

Motivated by the need to improve the delivery of diagnostic services in cancer
pathways in Wales, this study introduced a novel recursive procedure to obtain
the probability distribution of the overall demand for a given diagnostic service
in a disaggregated manner. The approach is general in that it does not impose
constraints on the distributions of both incoming referrals and the number of
repeated diagnostic tests for each incoming patient. Furthermore, the proposed
model is easy to implement and simple enough to allow the design of an optimal
policy with respect to a given performance criterion. But it is also general
enough to warrant application in analogous problems in healthcare and beyond.
This illustrates the power and impact of analytical approaches in healthcare
systems.

By disaggregating the problem for each diagnostic test, we are able to model
the resulting system as a perishable inventory problem that can be solved by
means of a G/D/C queuing model for a given capacity C. In that case, the
problem can be solved by means of analytic signal processing techniques or
Markov chain techniques, and the decision maker has to select a capacity C
that yields a good compromise between service quality and unused capacity.
However, when solved by means of Markov models, the approach is more general
and enables the decision maker to define random capacities by deploying shared
resources with a prescribed probability. The case study illustrates the flexibility
of the approach and demonstrates how the decision maker can use the results
to enforce bounds on the service time with prescribed probabilities.

Finally, while the model illustrates the aggregation of the demand for tests
coming from different cancer specialties, it is worth mentioning that the re-
sources needed are generally shared with other medical specialties and path-
ways, and are often scarce. Fortunately, the approach introduced in this paper
can be seamlessly applied to aggregate the demand for any number of medi-
cal specialties and pathways, which makes it an ideal tool for general capacity
planning studies that involve all of the potential users of any given healthcare
resource. Such studies may ensure fairness as opposed to prioritisation rules
which improve the access of certain segments of patients at the expense of a
deteriorated service for the segments left out.

Future research directions include introducing more flexibility to the deci-
sion maker by modelling the system as a Markov decision process and thereby
defining the service level as a function of the current state of the system. While
flexible, such an approach requires the decision maker to prescribe a cost func-
tion, which may be very difficult in the setting, considering that the trade-off
between waiting times and the cost of extra capacity is not easily quantifiable.
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Moreover, since the actual system capacity is generally fixed, a flexible use of
such capacity by cancer pathways needs to be offset by an effective resource shar-
ing protocol that enables the extra capacity to be deployed in other pathways
when it is not needed for cancer care. Hence, a number of research problems
can be defined to tackle each of these issues in future studies.
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