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Abstract 

Nuclear mislocalization of proteins can interfere with normal cellular function and 

cooperatively drive tumour development. To understand how this process mediates AML 

development, the nuclear proteome of AML blasts was analyzed in comparison with 

normal human CD34+ cells to identify misregulated nuclear proteins.  This study 

identified that S100A4 as the most significant and fold changing protein in AML blasts 

which has not been previously associated with AML.  S100A4 belongs to the S100 multi-

gene family of calcium-binding proteins of the EF-hand type and has been implicated in 

tumour progression and metastasis in many solid tumours but little is known of its role in 

haematological malignancy.  Using western blotting, S100A4 protein expression was 

observed in the nucleus of AML blasts FAB M1 (83%; 24/33) and 44% FAB M4 (4/9) 

whilst normal CD34+ or CD14+ differentiated monocytic controls have shown only 

cytosolic expression of S100A4.  An independent dataset (TCGA) supports the 

overexpression of S100A4 mRNA in AML and suggests that overexpression may confer 

a poor prognosis (p=0.0118). To determine whether ectopic expression of nuclear 

S100A4 can affect the growth and survival of normal hematopoietic cells, CD34+ cells 

were infected with lentiviral vectors expressing nuclear-targeted S100A4. 

Overexpression of nuclear S100A4 could not be demonstrated in transduced CD34+ cells 

or in normal differentiated cells (probably due to rapid degradation of ectopically 

expressed S100A4 in these cells).  To examine functional significance of S100A4 

expression on normal and leukaemic cells, S100A4 expression was knocked down.  In 

CD34+ cells, no significant effects were observed on the growth or lineage development 

of these cells suggesting S100A4 is not required for normal hematopoiesis.  Conversely, 

knocking down S100A4 expression in AML lines (NOMO-1, TF-1, THP-1, and OCI-

AML2) showed significant reduction in growth and induced cell death through apoptosis 

suggesting that AML cells are dependent on S100A4 for their growth and survival. 

Further, to identify the binding partners of S100A4 through which mediates its functions, 

a co-immunoprecipitation coupled with LC/MS was performed on cytoplasmic and 

nuclear extract of AML cell line (ME-1) under Ca2+ enriched conditions.  Heterogeneous 

nuclear Ribonucleoprotein M (hnRNPM) was identified as novel binding partner of 

S100A4 AML.  These findings suggest that therapeutically targeting S100A4 would be 

an effective strategy in AML while sparing normal hematopoietic cells.  
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1 Chapter 1 - Overview of haematopoiesis 

1.1 Normal haematopoiesis 

 Mature blood cells carry out a variety of crucial functions such as immune 

response, gases exchange, wound healing and haemostasis.  Blood cell production is 

continuously maintained by a process called “Haematopoiesis”.  Haematopoiesis 

describes the commitment and differentiation processes by which all blood cells are 

produced.  Terminally differentiated haematopoeitic cells are derived from the 

haematopoeitic stem cell (HSC).  HSCs are defined by their dual capability of self-

renewal and multi-lineage differentiation (Matsuzaki and Sato 2015).  Adult 

haematopoiesis primarily occurs in the bone marrow (medullary) or alternatively, in other 

tissues such as the spleen, liver, and thymus (extramedullary). 

 Normal haematopoiesis is organized as a cellular hierarchy in which mature 

haematopoietic cells originates from a primitive HSC.  These cells may differentiate into 

two main multi-potential progenitors called haematopoietic progenitor cells (HPCs); 

classified into myeloid or lymphoid progenitor cells (Figure 1-1).  HPCs then differentiate 

into lineage-committed progenitor cells that can give rise to terminally differentiated 

haematopoietic cells in which each cell type has a distinctive biological function.  

Generally, lymphoid progenitors are responsible for producing B- and T-cells that 

mediate immune response.  On the other hand, myeloid progenitors produce white blood 

cells, platelets and thrombocytes (Pouzolles et al. 2016).  During haematopoiesis, a 

complex mixture of cytokines, growth factors and expression of transcription factors 

determines the differentiation of primitive HSC to certain haematopoietic cells type.   

 HSCs are relatively quiescent in the bone marrow (BM) during steady state 

haematopoiesis (Szade et al. 2018).  However; upon entering cell cycle, HSCs generates 

a hierarchy of differentiating progenitor and lineage-committed precursors that undergo 

a proliferative expansion required to replace the predominantly short-lived and mature 

haematopoietic cells.  HSCs can be divided into two categories; long-term reconstituting 

HSCs (LT-HSCs) and short-term reconstituting HSCs (ST-HSCs).  LT-HSCs are 

responsible for maintaining self-renewal and multi-lineage differentiation potential 

throughout life.  Whereas, ST-HSCs are derived from LT-HSCs and have limited self-

renewal capacity ST-HSCs preserves the multipotency property by differentiating into 

multipotent progenitors (MPPs) (Pouzolles et al. 2016) (Figure 1-1).  



Chapter 1 

 

3 

 

 These MPP populations have the ability to differentiate into restricted self-

renewal progenitors known as “oligo-lineage” which ultimately give rise to functionally 

mature myeloid or lymphoid cells (Bonnet 2002).  The common myeloid progenitors 

(CMPs) give rise to granulocyte-macrophage progenitors (GMPs), which differentiate 

into further restricted progenitors as monocyte progenitors (MPs) giving rise to precursors 

(macrophages and granulocytes) and granulocyte progenitors (GPs) (basophil, neutrophil, 

eosinophil).  Moreover, CMPs produce megakaryocyte-erythroid progenitors (MEPs), 

which differentiate into megakaryocytes/erythrocytes.  On the other hand, common 

lymphoid progenitors (CLPs) differentiate into B-lymphocytes, T-lymphocytes, and 

natural killer (NK) cells (Mendelson and Frenette 2014).  Both myeloid and lymphoid 

differentiation produce dendritic cells (Figure 1-1).  However, the classical 

haematopoietic differentiation model has been debated in recent years as several studies 

have shown that the differentiation of haematopoietic lineage committed progenitors are 

highly heterogeneous than previously suggested.  Using single cell RNA-Seq (ScRNA-

Seq), Yamamoto et al, shown that unipotent myeloid lineage-committed progenitors such 

as megakaryocyte-erythroid progenitors (MEP) can directly arise from HSCs (Yamamoto 

et al. 2013).  Similar findings were reported by Drissen, R. et al supported the fact that 

mature blood cells may not follow downstream differentiation pathway as previously 

suggested.  Results suggested that in early lineage bifurcation of the multi-potent HSCs, 

the separation of lineages is based on the expression of Gata1 in lineages (erythrocytes, 

megakaryocytes, mast cells, and eosinophils)  and lineages that did not express Gata1 

(monocytes, lymphocytes, and neutrophils) rather than differentiation downstream from 

GMP (Drissen et al. 2016).  Another study suggested that distinct subsets of HSCs exist 

that are stably biased towards the generation of platelets (Sanjuan-Pla et al. 2013). These 

findings substantially change the view towards the haematopoietic hierarchical step wise 

model to a much more dynamic model that allow potential lineages to differentiate to 

desired mature blood cells.  The subsequent work in this study is focussed on the myeloid 

lineage abnormality in the form Acute Myeloid Leukemia (AML).  

 

1.1.1 Human haematopoietic stem cells  

1.1.1.1 Characteristics of HSCs 

HSCs are a rare population of cells which constitute an estimated 0.05% to up to 

0.5% of cells in the adult bone marrow (reviewed in Bonnet 2002).  HSCs can be found 
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in BM as immobilised cells (1 in every 100,000 cells), mobilised cells in peripheral blood 

(PB) forming 5-20% of cells and abundantly present in umbilical cord blood (CB) as 

mobilised cells 1 in 100 cells are HSCs (Mosaad 2014). 

As described above, HSCs can be classified according to their self-renewal 

capacity and specific cell surface markers into; long-term, short-term and MPPs (Figure 

1-1).  LT- HSCs are known for their ability of both self-renewal and differentiation into 

lineage committed progenitors that reconstitute the entire blood and immune system for 

the lifespan of the organism.  Conversely, ST-HSCs have limited self-renewal capability 

which then differentiate into multipotent MPPs that lack self-renewal capability (Ema and 

Nakauchi 2003).  It has been proposed that there are two models in which LT-HSCs 

maintain their self-renewal capacity for the lifespan of the human life which can account 

for the recovery of the stem cell pool following haematosis or damage (Ema and Nakauchi 

2003).    
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Figure 1-1: Diagram of normal haematopoietic hierarchy.  

Classification of HSC into long-term, short-term, and MPP, based on surface expression 

markers. Shown are common myeloid progenitor (CMP) (left), common lymphocyte 

progenitor (CLP) (right), granulocyte-monocyte progenitor (GMP), megakaryocyte-

erythrocyte progenitor (MEP), natural killer (NK) cells.  

HSCs 
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The first model proposes that there is a fixed number of LT-HSCs that maintain 

haematopoiesis for life and as HSCs proliferate they undergo a progressive loss in their 

self-renewal capacity.  The second model proposes that there is a small number of LT-

HSCs sustaining lifelong haematopoiesis due to their ability of self-renewal during cell 

division.  Leaving a proportion of these cells to differentiate into lineage committed 

progenitors and mature blood cells and maturation. 

 

1.1.1.2 HSCs Microenvironment 

 The BM niche is the anatomical location where HSCs reside and the physiological 

microenvironment in which they self-renew and differentiate.  The BM niche tightly 

regulates HSCs dynamic balance between self-renewal and differentiation in a non-

autonomous manner (Sanchez-Aguilera and Mendez-Ferrer 2017).  The 

microenvironment maintains HSCs at quiescence to sustain self-renewal and activates 

HSC for differentiation and/or injury repair (Crane et al. 2017).  The BM niche consists 

of adherent cells called stromal cells and provides a shelter for HSCs, protecting them 

from physiological stress and restrains them from constant differentiation that could 

deplete the stem cell pool, and overproduction which could result in tumour formation 

(Kanji et al. 2011).   

 HSCs are mostly located in two distinctive niches in the bone marrow, the 

endosteal and perivascular niches.  Both niches are complex microenvironments 

containing a wide range of BM cells that play different roles in HSC regulation (Tamma 

and Ribatti 2017).  The endosteal niche is located in the inner surface of the bone marrow 

cavity lined by bone cells such as osteoclasts and osteoblasts.  The osteoblast cells are 

bone-forming progenitor cells that produce a chemokine C–X–C motif ligand 12 

(CXCL12) (also known as stromal cell-derived factor-1 [SDF-1]) (Lucas 2017).  Thus, 

osteoblast cells are named as CXCL12-abundant reticular (CAR) cells.  CXCL12 is 

essential for HPCs and quiescent HSCs pool retention in the BM.  Further, CXCL12 has 

been reported to stimulate HSCs motility by stromal migration via activation of adhesion 

molecules (Greenbaum et al. 2013).  Moreover, CXCL12 maintains the viability of HSCs 

via reacting to corresponding ligands on cell surface. On the other hand, the perivascular 

niche includes thin-walled vessels lined by a single layer of endothelium.  The 

perivascular niche serves as a communication channel between the blood circulation and 

BM cavity  and supply the BM with oxygen and nutrients (Tamma and Ribatti 2017).  



Chapter 1 

 

7 

 

The perivascular contain arteries that penetrate the BM compact bone via bone canal and 

branching into small arterioles which transit to venous sinusoids close to endosteum 

(reviewed in Wei and Frenette 2018).  Analysis of unprocessed bones sections using 

improved immunofluorescence methods showed that quiescent HSCs are located in a 

perivascular niche near the BM sinusoids (Asada et al. 2017).  Thus, significant numbers 

of quiescent HSCs are located close to small arterioles near the endosteal surface 

(Nombela-Arrieta et al. 2013).  Moreover, quiescent HSCs can be located in the 

megakaryocyte niche which is associated with vWF+ myeloid-biased HSCs.  However, 

the arteriolar niche is associated with vWF– and regulates lymphoid-biased HSCs which 

suggests that lineage-biased HSCs location in the BM is not randomly distributed (Pinho 

et al., 2018 ).  

 It has been reported that HSCs that reside near osteoblasts (endosteal niche) are 

LT-HSCs quiescent in nature.  Whereas ST-HSCs are present at vascular niches and are 

actively differentiating into haematopoietic cell types to replenish circulating blood cells 

(Yu and Scadden 2016).  The endosteal niche is hypoxic by nature with the lowest oxygen 

(O2) levels, whilst highest levels of O2 are thought to be observed at the vascular niche.  

Hypoxia is an essential condition in which HSCs are maintained at quiescent state (G0 

stage) and thereby preventing exhaustion of their self-renewal capacity (Hoggatt and 

Pelus 2011).  In contrast, soluble extracellular calcium is present at significantly high 

levels at endosteal niche.  Adams, G. et al demonstrated that HSCs expressing calcium-

sensing receptor (CaR) are attracted to soluble extracellular calcium (Ca2+).  When CaR 

was knocked out in HSCs, mice had reduced numbers of HSCs within the BM niche 

whereas increased HSCs were observed in the peripheral blood.  Interestingly, CaR-

knockout HSCs poorly engrafted in haematopoietic transplantation experiments (Adams 

et al. 2006).  Thus, these findings may suggest that high Ca2+ concentration is essential 

signal for homing and retention of HSC in endosteal niche. 
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1.1.2 Regulation of normal haematopoiesis  

 The haematopoiesis is a tightly regulated process during steady-state, 

differentiation, and upon injury or inflammation response (Pouzolles et al. 2016).  During 

steady-state, HSCs self-renewal capacity is maintained to insure lifelong supply of HSCs.  

Conversely, during differentiation and/or inflammation response HSCs undergoes 

proliferative expansion required to replace the predominantly short-lived mature blood 

cells (Kronenwett and Haas 2006).  Thus, HSCs are constantly balancing maintenance 

between the undifferentiated HSCs and differentiating into cells of multiple lineages.  

This process is largely regulated by extrinsic and intrinsic factors.  The extrinsic factors 

include cytokines, growth factors and other environmental factors which can activate 

certain cell signalling pathways that decide HSCs lineage fate (Endele et al. 2014).   

 

1.1.2.1 Regulation of haematopoiesis by cytokines and transcription factors 

 Cytokines are small proteins that can be either membrane-bound or secreted and 

have a specific effect on cell signalling (Oppenheim 2001).  In normal haematopoiesis, 

cytokines are produced by various cell types and can exert their functions either within  

the BM microenvironment, within the bloodstream, or lymphatic vessels.  These 

cytokines include, colony-stimulating factors, erythropoietin, Thrombopoietin (TPO), 

interferons, and interleukins (Endele et al. 2014).  Haematopoietic cytokines are sub-

classified into two classes of receptors including, tyrosine kinase receptors; such as FLT3 

and c-KIT, or cytokine receptor superfamily; such as type I and type II cytokine receptors 

(Endele et al. 2014, Robb 2007).  In steady-state, differentiation, and/or inflammation 

response, haematopoiesis is mediated mainly by cytokines.  These cytokines can define 

HSC’s fate via initiating lineage specific gene expression programme that lead to either 

self-renewal HSC or lineage committed progenitors (Pouzolles et al. 2016).  

Haematopoietic cytokines can influence lineage commitment either directly by cytokines 

instructed lineage-specific transcriptional programmes or through activation of 

transcription factor networks followed by a selective cytokine signalling (Song et al. 

2016).  On the other hand, transcription factors such as GATA-1, GATA-3, Notch-1, 

FOG-1, PU.1, C/EBPα and Pax5 are involved in defining the HSPCs cellular fate.  For 

example, GATA-1 and FOG-1 are involved in the development of megakaryocytes and 

erythrocytes, and PU.1 and C/EBPα are involved in the myeloid progenitor cells 

commitment (Iwasaki 2013). 
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1.2 Leukaemia  

1.2.1 Overview of leukaemia 

 Leukaemogenesis is characterised by recurring chromosomal aberrations and 

gene mutations that could lead to either over-activation of the growth program or interfere 

with haematopoietic terminal differentiation (Chen et al. 2010).  These chromosomal and 

molecular abnormalities alter the normal primitive cells differentiation programme or 

cause selective expression of certain genes that limits the self-renewal capability of 

normal haematopoietic cells (Chen et al. 2010).  Consequently, undifferentiated 

leukaemic blasts overcrowd normal haematopoietic cells in the BM and blood stream.  

However, gradual acquisition of genetic mutations in HSCs may lead to haematological 

malignancies such as acute myeloid leukemia (AML) in adults (Jan et al. 2012).  

Recently, genomic analysis of PB DNA of healthy individuals identified leukemia-

associated genetic mutations that are strongly associated with age (Jaiswal et al. 2014).   

Further, large chromosomal deletions and mutations not associated with leukemia are 

observed in other clones (Shlush et al. 2014).  Thus, this phenomenon represents a risk 

factor for leukaemia particularly in AML and known as clonal hematopoiesis (CH).  

Although HSCs are quiescent and protected by cell intrinsic properties, these cells can 

have an increased mutational burden with age (Beerman 2017).  It has been estimated that 

human HSPCs can develop 1.3 ± 0.2 exonic mutations per decade of individual’s life.  

Thus, by age of 50, it can be estimated that an individual could accumulate an average of 

five coding mutations in each HSPC (Welch et al. 2012).  Most common mutations are 

reported in epigenetic regulators such as DNMT3A, TET2, and ASXL1.  However, Other 

mutations are also observed in genes regulating DNA damage (TP53, PPM1D), RNA 

splicing (SRSF2, SF3B1), and signaling (JAK2) (Moran-Crusio et al. 2011, Challen et 

al. 2011).  Although healthy individuals can have CH, it is not considered as a disease.  

However, having CH can be a significant risk factor for future haematological 

malignancies such as AML ~10% of CH cases will progress to AML (Jaiswal et al. 2014, 

Abelson et al. 2018).  The accumulation of genetic mutations in HSCs overtime lead to 

development of stem cell-like cells known as leukaemic stem-like cell (LSC). 

Functionally, LSCs can initiate leukemia when transplanted into NOD/SCID mice models 

using in xenotransplantation assays (Feuring-Buske et al. 2003).  Further, LSCs have an 

unlimited self-renewal capacity similar to normal HSCs and higher proliferative potential 

than normal haematopoietic cells (Reinisch et al. 2015).  Recent study shows that LSCs 
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can selectively survive chemotherapy and evade immune surveillance by preventing the 

activation of cytotoxic lymphocytes such as natural killer (NK) cells through lacking the 

expression of stress-induced ligands for NKG2D (Paczulla et al. 2019).    Transplantation 

studies shows that human NKG2DL– AML cells infiltrate more efficiently the mouse 

bone marrow than NKG2DL+ AML cells and were associated with poor survival.  Further, 

NKG2DL– engrafted mice showed chemo resistance when treated with a chemotherapy 

drug compared to NKG2DL+ cells which showed reduction of bone marrow infiltration 

(Hilpert et al. 2012). 

Leukaemia maybe classified based on the haematopoietic cell type affected and 

on how rapidly the disease progresses.  Thus, myeloid leukaemia (also known as 

myelocytic or myelogenous) develop in early myeloid progenitor cells.  Whilst, 

lymphocytic leukaemia (also known as lymphoid or lymphoblastic) are derived from 

lymphocytes in the BM.  The acute form of leukaemia is defined by a rapid increase in 

immature blasts differentiation, whilst the chronic form is characterised by slow 

accumulation of immature blasts.  Thus, there are four main types of leukaemia, chronic 

lymphocytic leukaemia (CLL), chronic myeloid leukaemia (CML), acute lymphocytic 

leukaemia (ALL) and acute myeloid leukaemia (AML).   

 

1.2.2 Acute myeloid leukaemia (AML)  

 AML is a malignant disorder of HSC characterized by a differentiation block in 

the myeloid lineage coupled with an increased proliferation of leukaemic blast cells.  As 

a result, immature leukaemic blasts accumulate in the BM and often infiltrate to the 

peripheral blood and soft tissues (Reviewed in Short et al. 2018).   

 

1.2.2.1 Diagnosis and incidence of AML  

 In the United Kingdom, leukaemia was the 15th most common cancer (amongst 

the top 20 most common cancers) and accounts for 2% of all cancers in 2017 

(CancerResearchUK 2014).  AML is the most common acute type of leukaemia in adults, 

accounting for less than 1% of all cancers.  It has been estimated that around 3,000 new 

cases are diagnosed with AML annually and AML is responsible for around 2,600 deaths 

in the UK every year with the highest mortality rates in people aged 85 to 89 (2014-2016) 

(CancerResearchUK 2014).  Although the disease can occur in all age groups, acute 

myeloid leukaemia predominantly occurs in older adults, with a median age of diagnosis 

(>68 years of age) and is more common in males compared to females.  
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 AML is often presented with a rapid onset of symptoms that can be fatal within 

weeks or months if left untreated.  Abnormal accumulation of immature leukaemic blasts 

leads to infiltration of these blasts to tissues and replaces normal blood cells.  Patients 

diagnosed with AML often present with nonspecific clinical signs and symptoms such as 

fatigue, haemorrhage, shortness of breath, frequent infections and fever due to severe 

decrease in red blood cells (anaemia), platelets (thrombocytopenia) or neutrophils 

(neutropenia).  Moreover, leukaemic blasts infiltration to other tissues such as spleen 

could cause splenomegaly, liver (hepatomegaly), lymph nodes (lymphadenopathy), skin 

(leukaemia cutis), bone (bone pain) and central nervous system (CNS) (Khwaja et al. 

2016, Dohner et al. 2015).  Diagnosis requires at least the presence of ≥ 20% blasts count 

(which includes Monoblasts, Myeloblasts, and megakaryo blasts) in the BM aspirate or 

circulating blood (Dohner et al. 2017).  However, cytogenetic and mutation analysis is 

important, particularly as next generation technologies (NGS) become cheaper and 

quicker.  Detection of known chromosomal abnormalities (including translocations and 

inversions) is critically important for diagnosis, disease classification, and treatment 

decision-making.  For example, detection of t(16;16)(p13.1;q22), t(8;21)(q22;q22.1), 

inv(16)(p13.1q22), or PML-RARA fusion transcripts allow the diagnosis of AML to be 

made, (Taylor et al. 2017).  However, in AML patients whom have normal cytogenetics, 

often have CEBPA, Nucleophosmin 1 (NPM1), and fms-like tyrosine kinase 3- internal 

tandem duplication (FLT3-ITD) mutations that predict response to induction and 

consolidation chemotherapy.  

 

1.2.2.2 Pathophysiology and molecular abnormalities in AML 

 Most individuals diagnosed with AML presented with no predisposing risk 

factors.  Nevertheless, the risk of developing AML increases with exposure to DNA-

damaging agents, such as ionizing radiation (due to therapeutic radiotherapy), cigarette 

smoke, benzene, and cytotoxic chemotherapy agents (reviewed in Khwaja et al. 2016).  

Clinically, AML secondary to cytotoxic chemotherapy and/ or ionizing radiation is called 

therapy-related AML.  In many types of leukaemia, first-degree relatives of patients have 

an increased risk of developing similar disease.  It has been reported that 5-7 fold 

increased risk of myeloproliferative neoplasms (MPN).   However, no strong evidence 

has been reported that genetic predisposition is a risk factor in myeloid malignancies 

(AML and MDS).  In addition, certain inherited disorders can be a pre-disposing risk 
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factors for developing AML such as Down syndrome, Bloom syndrome, ataxia-

telangiectasia, Schwachman–Diamond syndrome, severe congenital neutropaenia, 

Fanconi anaemia, and Diamond–Blackfan anaemia (Seif 2011).  Frequently mutated 

genes are classified into 9 functional categories include: transcription factor fusions, 

tumour suppressor genes, DNA methylation-related genes, the NPM1 gene, signalling 

genes, chromatin-modifying genes, myeloid transcription factor genes, spliceosome 

complex genes, and cohesin complex genes, a summary is provided in Table 1-1 (Naoe 

and Kiyoi 2013, Khwaja et al. 2016). 
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Table 1-1:  Common functional genetic mutations and frequencies in AML.  
 Adopted from Khwaja et al. 2016. 

 

 

 

Functional groups Examples of mutated genes in 

AML 

Frequency in 

Patients with 

AML (%) 

Signalling pathways FLT3, KIT, KRAS, NRAS and  

serine/threonine kinases 

59 

DNA methylation DNMT3A, TET2, IDH1 and 

IDH2 

44 

Chromatin modifiers MLL fusions,  ASXL1 and EZH2 30 

Nucleophosmin NPM1 27 

Myeloid transcription factors  RUNX1 and CEBPA 22 

Transcription factors PML–RARA, MYH11–CBFB 

and RUNX1–RUNX1T1 

18 

Tumour suppressors TP53, WT1 and PHF6 16 

Spliceosome complex SRSF2 and U2AF1 14 

Cohesin complex STAG2, RAD21, SMC1 and 

SMC3 

13 
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1.2.2.3 Classification of AML 

 Classifying AML often presented challenges due to the disease heterogeneity in 

terms of blast morphology, immunophenotypic features, cytogenetic and molecular 

abnormalities.  In 1976, a cooperative group of scientists devised a new classification 

system in attempt to subdivide AML based on leukaemic blast cellular morphology and 

cytochemistry, called the French–American–British (FAB) classification as shown in  

Table 1-2 (Bennett et al. 1976).  The FAB classification system subdivides AML into 

eight subtypes, M0 - M7 based on the degree of maturation of leukaemic blasts and 

direction of differentiation from which the leukaemia developed (Bennett et al. 1976).  

However, in 2002, the FAB AML classification system was superseded by a new 

classification system revised by a group of pathologists and clinicians under the umbrella 

of the World Health Organization (WHO) (Vardiman et al. 2002) and subsequently 

updated in 2008 and lastly in 2016 (Arber et al. 2016).  Although the WHO classification 

system retained FAB main classification criteria (i.e. morphology, immunophenotypic 

features, and clinical features), it incorporates recurring cytogenetic and molecular 

genetic abnormalities, summarised in Table 1-3.  Thus, incorporating the molecular 

abnormalities of AML in the WHO classification system enabled precise diagnosis and 

prognosis of the disease compared to FAB classification. 

 

1.2.2.4 Prognostic factors and treatment of AML 

Prognosis 

 Prognosis is the prediction of the course of a disease and patient’s recovery 

chances based on pre-treatment signs and symptoms.  In AML, prognostic factors such 

as cytogenetics and molecular genetics abnormalities can be independent predictors of 

AML outcomes which allow assigning AML patients to appropriate treatment plans 

tailored to their risk groups.  The European Leukemia Net (ELN) guidelines is a widely 

used AML risk stratification guideline (Dohner et al. 2017).  The ELN guidelines 

categorise AML patients into four groups based on cytogenetic and molecular 

abnormalities; favourable, intermediate, and adverse (Table 1-4).  This categorisation of 

AML risk factors have useful prognostic and therapeutic implications.  For example, 

AML patients who carry certain chromosomal translocations such as; t(8;21), t(15;17), 

and inv(16)/t(16;16) are considered among the favourable group.   
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Table 1-2: The French–American–British (FAB) classification system of acute 

myeloid.   

 

Type Name 

M0 acute myeloblastic leukemia, minimally differentiated  

M1 acute myeloblastic leukemia, without maturation 

M2 acute myeloblastic leukemia, with granulocytic maturation 

M3 promyelocytic, or acute promyelocytic leukemia (APL)  

M4 acute myelomonocytic leukemia 

M4eo myelomonocytic together with bone marrow eosinophilia 

M5 acute monoblastic leukemia (M5a) or acute monocytic leukemia (M5b)  

M6 
acute erythroid leukaemia’s, including erythroleukemia (M6a) and very 

rare pure erythroid leukemia (M6b)  

M7 acute megakaryoblastic leukemia 
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Table 1-3: The 2016 World Health Organisation (WHO) classification of acute 

myeloid leukaemia and myeloid neoplasms.   
Adopted from Arber et al. 2016. 

Acute myeloid leukemia (AML) and related neoplasms 

AML with recurrent genetic abnormalities 

AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1 

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11 

APL with PML-RARA 

AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A 

AML with t(6;9)(p23;q34.1);DEK-NUP214 

AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM 

AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1 

Provisional entity: AML with BCR-ABL1 

AML with mutated NPM1 

AML with biallelic mutations of CEBPA 

Provisional entity: AML with mutated RUNX1 

AML with myelodysplasia-related changes 

Therapy-related myeloid neoplasms 

AML,  Not Otherwise Specified (NOS) 

AML with minimal differentiation (FAB M0) 

AML without maturation (FAB M1) 

AML with maturation (FAB M2) 

Acute myelomonocytic leukemia (FAB M4) 

Acute monoblastic/monocytic leukemia (FAB M5) 

Pure erythroid leukemia (FAB M6) 

Acute megakaryoblastic leukemia (FAB M7) 

Acute basophilic leukemia 

Acute panmyelosis with myelofibrosis 

Myeloid sarcoma 

Myeloid proliferations related to Down syndrome 

Transient abnormal myelopoiesis (TAM) 

Myeloid leukemia associated with Down syndrome 

Blastic plasmacytoid dendritic cell neoplasm 

Acute leukaemia’s of ambiguous lineage  

Acute undifferentiated leukemia 

Mixed phenotype acute leukemia (MPAL) with t(9;22)(q34.1;q11.2); BCR-ABL1 

MPAL with t(v;11q23.3); KMT2A rearranged 

MPAL, B/myeloid, NOS 

MPAL, T/myeloid, NOS 
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Recently, several studies have shown that the coexistence of Nucleophosmin1 

(NPM1) or biallelic CEBPA mutations with chromosomal abnormalities does not modify 

the prognostic effect of these mutations (Haferlach et al. 2009, Schlenk et al. 2013).  

Further, several studies suggested that AML patients with NPM1 mutations and FLT3-

ITD (with low allelic ratio <0.5) have a similar favourable prognosis to patients with 

NPM1 mutations with no FLT3-ITD which makes both groups considered under 

favourable outcomes.  Conversely, patients who have FLT3-ITD (with high allelic ratio 

≥0.5) and carry wild-type NPM1 have a poor prognosis and categorised under the 

adverse-risk group (Gale et al. 2008, Linch et al. 2014).  Therefore, the relapse rate and 

overall survival (OS) associated with FLT3-ITD depends largely on the allelic ratio of 

ITD (Dohner et al. 2017).  On the other hand, the intermediate risk group considered as 

a very heterogeneous due to inclusion of patients who have normal karyotype (NK) with 

rare chromosomal aberrations.  The final group of adverse outcomes carry a poor 

prognosis for patients with TP53 mutations, complex karyotype, and monosomal 

karyotype (Estey 2018).   

 

Conventional treatment of AML 

 Treatment of AML is traditionally divided into three phases: remission-induction 

chemotherapy usually followed by post-remission consolidation chemotherapy with or 

without HSC transplantation (HSCT) and maintenance therapy (Dombret and Gardin 

2016).  Initially, AML patients are evaluated whether they can be fit as candidate for 

intensive induction chemotherapy.  This step is crucially important to assess the risk of 

treatment-related mortality post intensive therapy especially in older patients (above the 

age of 65 years).  However, treatment-related mortality rates has declined in recent years 

due to improvement made in supportive care in older patients (Krug et al. 2010, Giles et 

al. 2007).  Further, few randomized trials suggested that medically fit older patients may 

benefit from intensive induction therapy (Burnett 2018).  Thus, age should not be the only 

determinant to decide patient’s fitness for therapy but should include other factors such 

as performance status and pre-treatment co-morbidities (Dohner et al. 2017).   
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Table 1-4: The 2017 European LeukemiaNet (ELN) AML risk stratification by 

genetics.  

Adopted from Dohner et al. 2017. 

NK, Normal Karyotype 

Risk category* Genetic abnormality 

 

Favourable 

t(8;21)(q22;q22.1); RUNX1-RUNX1T1 

inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-

MYH11 

Mutated NPM1 without FLT3-ITD or with FLT3-ITDlow 

Biallelic mutated CEBPA 

 

Intermediate  

 

 

 

 

NK and NPM1–/ FLT3– 

NK and NPM1+/ FLT3+ 

NK and NPM1–/ FLT3+ 

t(9;11)(p21.3;q23.3); MLLT3-KMT2A 

(Cytogenetic abnormalities not classified as favourable or 

adverse) 

 

 

 

 

Adverse 

t(6;9)(p23;q34.1); DEK-NUP214 

t(v;11q23.3); KMT2A rearranged 

t(9;22)(q34.1;q11.2); BCR-ABL1 

inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); 

GATA2,MECOM(EVI1) 

25 or del(5q); 27; 217/abn(17p) 

Complex karyotype, monosomal karyotype 

NK and NPM1+/ FLT3+ 

Mutated RUNX1 

Mutated ASXL1 

Mutated TP53 
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 The main goal of remission-induction chemotherapy in AML treatment is to 

reduce leukaemic blast numbers to undetectable levels in in the blood, BM, and 

extramedullary sites and to recover normal haematopoiesis (Dombret and Gardin 2016).  

Achievement of a complete remission (CR) following the induction phase is an essential 

step in AML treatment.  However, during remission phase, few remaining leukaemic 

blasts are likely to persist and may lead to relapse (Bose et al. 2017).  Further, several 

trials suggested that patients who did not receive post-remission chemotherapy may 

relapse within six to nine months.  Thus, consolidation chemotherapy is required with 

high-dose chemotherapy and/or allogeneic -HSCT) to achieve durable disease control 

(Cornelissen et al. 2012).  For younger patients (< 60 years), the traditional remission-

induction treatment is “7+3” chemotherapy with cytarabine and an anthracycline.  The 

complete remission (CR) rates achieved in this group are between 60% to 70% in large 

trials using the combination of cytarabine and anthracycline (Luskin et al. 2016).  

However, the Eastern Cooperative Oncology Group (ECOG) study has reported that 

using daunorubicin 90 mg/m2 compared to 45 mg/m2 daily for three days in younger 

patients with previously untreated AML has significantly increase in CR rate (71% vs. 

57%) and median OS (24 vs. 16 months).  Further, in older patients (50-60 years of age) 

with FLT3-ITD or NPM1 have also benefitted from high-dose daunorubicin (Luskin et 

al. 2016).  In older AML patients, conventional therapy achieved lower CR rates and very 

few long-term OS compared to younger patients which led to rapid advancement in the 

field of anti-leukaemic drugs.  Thus, older patients who are unfit for intensive 

chemotherapy induction, receive low intensity chemotherapy with hypomethylating 

agents (HMA) such as Vidaza® and Dacogen®, or low dose cytarabine as induction 

therapy (Dombret and Gardin 2016).  However, in order to achieve an optimal treatment 

for AML patients, precise diagnosis of the disease and identifying prognostic factors are 

needed to determine patients’ response to therapy and survival. 

 

Novel treatment of AML 

 Given that CR rates achieved in older and unfit AML patients is still low, as well 

as no standard therapy for relapsed AML, the need for novel and targeted therapy in AML 

is higher than ever before.  Recently, the frontline treatment of AML is rapidly advancing 

towards targeted molecular inhibitors such as kinase inhibitors (FLT3-ITD inhibitors).  

FLT3-ITD is one of the most common mutations in AML account for approximately 20–
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30% of patients with AML and often associated with poor clinical outcomes (Yokota et 

al. 1997).  Thus, in November 2018, a new drug called gilteritinib (Xospata®) has been 

approved by the FDA which can be used alone in adult AML patients with FLT3 mutation 

who don’t respond to initial treatment or have relapsed (Kayser and Levis 2018, FDA 

2018).   Moreover, AML novel therapies has been advancing toward other molecular 

targets such as pro-apoptotic agents, cell cycle regulators, epigenetic modifiers and 

metabolic therapies are currently in clinical trials; a summary is provided in Table 1-5 

(Reviewed in Kayser and Levis 2018, Khwaja et al. 2016).  Further Immunotherapies, 

cell-based therapies, and immune checkpoint inhibitors are also being evaluated in current 

clinical trials.  For instance, Chimeric antigen receptor (CAR)-T cells are engineered T-

cells containing an extracellular single-chain variable fragment (scFv) from antigen-

specific binding domain and an intracellular T-cell signalling domain (Miliotou and 

Papadopoulou 2018).  Moreover, CAR-T cells are capable of targeting surface antigens 

of leukaemic cells in their native conformation independent from MHC cells (Holzinger 

et al. 2016).  Recent studies show that CAR-T cell therapy targeting CD19 antigen has 

been successfully achieved in acute lymphoblastic leukemia (ALL) with low off-tumour 

toxicity (Badar and Shah 2020) .  In AML, expression of specific antigens are not 

exclusive to AML blasts and LSCs. These antigens  overlap with normal haematopoiesis, 

which can lead to severe haemato-toxicity of antigen-targeting therapies (Abreu et al. 

2020).  However, few antigens are being assessed in pre-clinical studies in AML such as 

CD33, CD123, FLT3 (CD135), and Lewis Y (LeY) as CAR-T cells antigen targets in 

AML (Reviewed in Hofmann et al. 2019).  Although CAR-T cell therapy in AML still 

need to find specific leukaemic antigens and improve off-tumour toxicity, in vivo studies 

showed promising results which can enhance AML patients’ therapeutic options of 

targeted therapy. On the other hand, a variety of therapeutic antibodies in the form of 

naked, conjugated and bispecific monoclonal antibodies directed against AML antigenic 

targets such as; CD33 and CD123.  For example, using anti-CD33 monoclonal antibody 

-drug conjugate in combination with chemotherapy improved relapse-free and OS in 

older patients group with previously untreated AML (Kung Sutherland et al. 2013).  In 

addition, targeting CD123 with CSL362 antibody was found to be well tolerated and safe 

as maintenance therapy for patients in CR and have high risk of relapse (reviewed in 

Beyar-Katz and Gill 2018).   
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Table 1-5: A summary of targeted therapeutic agents in clinical trials for AML. 

Summary table adopted from Khwaja et al. 2016. 

 

Target category Specific target Examples of agent 

(or agents) in trials 

Signalling pathways 

 

 

Tyrosine kinases 

FLT3 Midostaurin, AC220 (also 

JAKs known as quizartinib), 

KIT pacritinib and crenolanib 

SYK Ruxolitinib 

AXL  Dasatinib 

 

 

Serine/threonine 

kinases 

MEK Selumetinib, binimetinib and 

MAPK E6201 

PIM BVD-523 

AKT LGH447 

mTOR GSK2141795 

Lipid kinases   PI3K BYL719, BKM120 and 

TGR-1202 

 

Cell cycle regulators 

PLK1 Rigosertib 

Aurora kinases Alisertib and AZD1152 

WEE1 MK-1775 

Epigenetic regulators 

DNA methylation DNMTs SGI-110 and CC-486 

IDH1 and IDH2 AG-120 and AG-221 

Histone methylation DOT1L EPZ-5676 

LSD1 GSK2879552 and ORY-1001 

Histone acetylation HDACs Vorinostat and panobinostat 

Epigenetic ‘readers’ BETs GSK525762, OTX015 and 

Monoclonal antibodies 

 

Leukaemia targets 

CD33 SGN-CD33A, actimab-A and 

CD123 lintuzumab 

CD47 CSL362 and KHK2823 

CD56 CC-90002 and Hu5F9-G4 

Others 

Immune checkpoints PD1 Nivolumab 

CTLA4 Ipilimumab 

 

Apoptosis regulators 

BCL-2 ABT-199 

IAPs Birinapant 

MDM2 RO5503781 

Developmental 

pathways 

Hedgehog LDE225 (also known as 

WNT sonidegib) and PF-04449913 
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1.3 S100A family of proteins 

1.3.1 Overview of S100A protein family 

The S100 proteins’ family is group of an acidic and relatively small proteins 

constitutes the largest sub-group of EF-hand-containing Ca2+ binding proteins (Donato et 

al. 2013).  This family is comprised of 21 proteins that have a low molecular weight of 

around 8-12 kDa (Bresnick et al. 2015).  Of the 21 human S100 proteins, 19 (S100 

proteins, group A) are clustered on the chromosome 1q21 (Marenholz et al. 2004).  

Moreover, S100 proteins are exclusively expressed in vertebrates and often expressed in 

tissue and cell -specific manner (Donato et al. 2013).  Interestingly, the S100 proteins 

have different subcellular distribution in the cell.  S100 proteins are given this name as 

they are soluble in 100% ammonium sulphate solution at neutral pH (Donato 1986).  The 

first member of the S100 family was purified from bovine brain by (Moore 1965).   

 

1.3.2 S100 proteins’ structure  

 The structure of S100 proteins are symmetrically dimers in nature containing four 

α-helices (Bresnick et al. 2015).  EF-hand Ca2+ binding motifs consist of E- and F-helices 

in the form of helix-loop-helix (Heizmann et al. 2002).  Typically, these EF-hands exist 

in pairs and held together by short anti-parallel β-strand as well as hydrophobic 

interactions (Donato et al. 2013).  The EF-hand Ca2+ binding motifs has two forms; 

canonical and pseudo EF-hands (Figure 1-2A).  The canonical EF-hand which refer to as 

“cEF hand” consist of 12-residues which is a highly conserved in many Ca2+-binding 

proteins such as troponin C (TnC) and calmodulin (CaM).  The canonical EF-hand has 

six or seven oxygen ligands in the backbone which utilizes five residues as Ca2+ -binding 

domains at positions 1, 3, 5, 7, and 12 of the helix-loop-helix (Strynadka and James 1989).  

On the other hand, the pseudo EF-hand which refer to as “pEF hand” is unique to S100 

family and consist of 14 residues.  The pEF hand has carbonyl oxygen atoms instead of 

oxygen atoms in the backbone and bind to Ca2+ at several of the ligands include Asn, Asp, 

Gln, or Glu residues (Strynadka and James 1989).  The difference between the S100 

proteins is in the position of H3 in the inactive form (apo-state) and that is due to amino 

acid sequence variations in the C-terminus of H4 and in L2 (the hinge region) (Heizmann 

et al. 2002).  The C-terminal loop of S100 proteins is crucial for target protein binding.  

Thus, the lack of sequence homology in C-terminal loops suggest that S100 proteins 
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interact with binding partners in specific manner (Zhang et al. 2005).  Studies show that 

the cEF has a higher binding affinity to Ca2+ with a dissociation constant of 27–250 mM 

compared to pEF 250–16,700 mM (Gross et al. 2014).  S100 proteins are dimeric in 

structure and unlike other EF-hand containing proteins such as TnC and Cam, the dimeric 

structure prevents the movement of the exiting helix (helices 4, 4′) upon Ca2+-binding.   

This make only the entering helix (helices 3, 3′) rotates at 90 degrees upon binding to 

Ca2+ (Donato et al. 2013), as shown in Figure 1-2B.  Upon binding to Ca2+, S100 proteins 

undergo conformational change to expose a hydrophobic residues in the first helix of the 

C-terminal loop which is necessary for interacting with target proteins Figure 1-2C 

(Moravkova et al. 2016).  During this process, the affinity towards Ca2+ increases up to 

300 times (Malashkevich et al. 2008).   

 

1.4 S100A4 protein 

S100A4 belongs to the S100 multigene family of Ca2+ -binding proteins of the 

EF-hand type (reviewed in Boye and Maelandsmo 2010).  S100A4 is also known as 

metastasin (Mts1), fibroblast-specific protein (FSP1), 18A2, pEL98, p9Ka, CAPL, and 

calvasculin.  However, the new nomenclature of S100 proteins has renamed S100 genes 

based on their genomic loci (i.e. S100A designated for genes clustered on 1q21 and the 

rest of S100 proteins located on the other chromosomes carry S100 followed by a letter) 

(Marenholz et al. 2004).  S100A4 is a small protein consisting of 101-amino acids (Boye 

and Maelandsmo 2010).  S100A4 is reported to be involved in a variety of intra- and 

extra-cellular processes including cell cycle, proliferation, and differentiation (Koshelev 

Iu et al. 2008).  Moreover, overexpression of S100A4 is widely associated with  poor 

prognosis, metastasis and progression in various types of solid tumours such as pancreatic 

and breast tumours (Helfman et al. 2005, Ismail et al. 2008).  Further, S100A4 has been 

shown to negatively regulate key proteins in known pathological signalling pathways in 

cancer such as p53 and positively regulates of other protein that promote metastases and 

tumour progression such as myosin and actin (Binz et al. 2004, van Dieck et al. 2009).  
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Figure 1-2: Schematic diagram of the S100 proteins’ structure 
A) Schematic diagram shows the overall structure of S100 protein family member which consists 

of four α-helix domains, a central hinge region, two calcium-binding EF hands (one non-canonical 

EF hand, and one canonical), and N- and C-terminal domains. Figure is adopted from (Eckert et 

al. 2004).  B) S100 undergoes conformational change upon binding to Ca2+ to expose hydrophobic 

residues in on the C-terminal loop to interact with its target proteins. This figure is adopted from 

(Donato et al. 2013). C) Illustrative carton shows Apo-S100 protein in blue and yellow subunits 

which upon Ca2+ (grey circles) binding induces conformation structural rearrangement to expose 

hydrophobic sites to allow target binding (green triangles). Figures is adopted from (Bresnick et 

al. 2015).   

 

A 

Inactive apo-S100 protein Active S100 protein and Ca2+ 

C 

B 
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1.4.1 S100A4 function and structure  

 S100A4 has no known enzymatic activity and it exerts its functions via protein-

protein interactions (Donato et al. 2013).  S100A4 is involved in many intra- and 

extracellular functions.  Intracellularly, S100A4 interacts with the heavy chain of non-

muscle myosin II, F-actin, and tropomyosin and regulates cell motility, migration, and  

adhesion (Donato et al. 2013).  Further, S100A4 promotes cell proliferation and survival 

via binding to p53 and induces MDM2-dependent degradation of p53 protein (Orre et al. 

2013).  Extracellular functions of S100a4 includes extracellular matrix remodelling, 

angiogenesis, migration, and invasion (Koshelev Iu et al. 2008). 

 S100A4 has a symmetric homodimer structure which has an overall topology 

similar to other S100 proteins in the family (Pathuri et al. 2008).  Each monomer contains 

four α-helices (H1, H2, H3, and H4) connected by three short loops called “hinge” [L1, 

L2, and L3] (Gingras et al. 2008).  Moreover, S100A4 shares 50% similarity of its amino 

acid residuals with other member of S100 family and has a molecular mass of 10 kDa.  

However, S100A4 is different to other S100 proteins as the C-terminal loop (Phe89- 

Lys101) is long and very basic (Gingras et al. 2008).  Further, the hinge (L2) that links 

helices H2 and H3, shares a less similar sequence homology with other S100 proteins.  

The C-terminal loop in S100A4 structure is important for metastasis-inducing properties.  

In a study by Zhang et al, mutant S100A4 which has deletion of 15 amino acids residues 

in the C-terminal loop, has reduced Ca2+ binding by 26%, reduced motility/invasion, and 

impaired the interaction with its molecular target (NMMHC IIA) in vitro (Zhang et al. 

2005). 

 

1.4.2 Regulation of expression of S100A4  

Several studies have reported that S100A4 is expressed in a variety of normal 

human cell types.  These cells include fibroblasts (Schmidt-Hansen et al. 2004), 

monocytes, neutrophilic granulocytes, T lymphocytes (Cabezon et al. 2007), 

macrophages (Takenaga et al. 1994, and endothelial cells (Semov et al. 2005).  Initial 

cloning studies found that S100A4 is highly expressed in growth-stimulated cultured cells 

(Goto et al. 1988) and metastatic tumour cell lines (Ebralidze et al. 1989).  High S100A4 

expression was also observed in adult mouse and rat tissues such as; bone marrow, spleen, 

thymus, neutrophils, T-lymphocytes, and macrophages (Grigorian et al. 1993).
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Similar studies observed higher expression of S100A4 in embryonic macrophages and in 

differentiating mesenchymal tissues during mouse development (Garrett et al. 2006).  In 

addition, the expression levels of S100A4 are up-regulated during oncogenic 

transformation in many solid tumours (Zhou et al. 2018, Li et al. 2013).  S100A4 is 

predominantly expressed in the cytoplasmic compartment of the cell, however; it can be 

translocated into the nucleus by post-translational modifications (PTM) such as 

sumoylation process.  In a study by Miranda et al, they have shown that intracellular 

S100A4 translocated into the nucleus by SUMO-1 protein upon interleukin-1 (IL-1) 

stimulation (Miranda et al. 2010).  Two sumoylation sites at Lys22 and Lys96 have been 

identified on the S100A4 molecule (Miranda et al. 2010).  This study suggests that 

translocating S100A4 into the nucleus is crucial for the S100A4-driven metastasis 

phenotype by binding to matrix metalloproteinase-13 (MMP-13) to promote matrix 

remodelling.  Moreover, not only does the overexpression of S100A4 linked poor 

prognosis and metastasis phenotype, but also nuclear overexpression of S100A4 is linked 

to poor prognosis in colorectal cancer (Boye et al. 2010) and aggressiveness in epithelial 

ovarian carcinoma (Kikuchi et al. 2006). 

 

1.4.3 Role of S100A4 in cancer pathophysiology 

1.4.3.1 Role in metastasis 

 The overexpression of S100A4 has been linked to poor prognosis and metastatic 

potential in multiple solid tumours such as breast (Rudland et al. 2000), liver (Taylor et 

al. 2002), brain (Taylor et al. 2002) and prostate (Saleem et al. 2006).    It has been 

reported that S100A4 interacts with cytoskeletal proteins including non-muscle myosin- 

heavy chain IIA (NMMHC IIA) and directly binds to it and as a result induces metastasis-

associated cellular motility (Li and Bresnick 2006).  Further, in colon cancer, upregulated 

β-catenin/T-cell factor complex upregulated the expression of S100A4 which induces 

migration and invasion in vitro and metastasis in vivo (Stein et al. 2006).  Subsequently, 

knocking down β-catenin downregulates S100A4 expression and reduces cell migration 

and invasion (Stein et al. 2011).  Alternatively, S100A4 has been shown to be involved 

in matrix remodelling by up-regulating the expression of MMP-13 translocating 

sumoylated intracellular S100A4 by SUMO-1 protein into the nucleus to bind to MMP-

13 (Miranda et al. 2010).   
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1.4.3.2   Role in haematopoiesis and leukaemogenesis  

 The pathophysiological role of S100A4 in solid tumour is well studied and defined.  

However, little is known about the role of S100A4 in normal haematopoiesis and leukaemia.  

Early studies in paediatric AML patients show that S100A4 mRNA expression was found to be 

higher in healthy controls by 3-fold (Steinbach et al. 2007).  A study by Xu et al, showed that 

overexpression of repressor of retinoic acid signalling (PRAME) downregulates the expression 

of S100A4 and increase the activity of p53 which subsequently increased apoptosis in the AML 

cell line KG-1  (Xu et al. 2016).  Interestingly, when PRAME is knocked down in K562 (CML 

cell line), S100A4 expression is restored and p53 is decreased (Xu et al. 2016).  Moreover, 

S100A4 has reported to promote chemoresistance in CML cell line.   K562 cells with low 

expression levels of S100A4 showed chemosensitivity towards treatment with 4-hydroperoxy-

cyclophosphamide compared to KU812 which has higher S100A4 expression levels (He et al. 

2017).  Further, it has been reported that S100A4 is expressed by mesenchymal stem cells 

(MSCs) in the BM.  Thus, S100A4 is likely to be involved in the MSC proliferation and 

differentiation (Bresnick et al. 2015, Atlasi et al. 2016).  Moreover, other member of S100 

family are implicated in AML such as S100A8 and S100A9.  S100A8 and S100A9 have 

previously been shown to be abundant in myeloid cells and associated with poor prognosis in 

AML; these studies focused on total expression and not subcellular expression (Nicolas et al. 

2011, Laouedj et al. 2017).   
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1.5 Aims and objectives 

In attempt to identify mislocalised and dysregulated proteins networks in AML blasts 

compared to normal human CD34+ haematopoietic cells, our group analysed the AML nuclear 

proteome.  The analysis of the proteome identified S100A4 as the highest differentially 

expressed protein in AML nuclei compared with normal CD34+ nuclei (not previously 

implicated in AML) (Alanazi et al. 2019).   Whilst S100A4 is associated with proliferation and 

metastasis of various types of solid tumours, the pathophysiological role of S100A4 as well as 

its subcellular distribution in haematological malignancies (as well as normal haematopoiesis) 

is unknown.  The functional implication of altered S100A4 expression, subcellular localization 

and mechanisms of action in leukaemia remain unidentified.  Further, the significance of 

expression and localization in normal haematopoietic development and to the pathogenesis of 

AML has not been studied.  Thus, the main objective of this study is to gain an understanding 

of the role of S100A4 in haematopoiesis and AML.  This project will achieve this objective 

through the following aims: 

 

1. Determine the expression level and subcellular localisation of S100A4 during normal 

haematopoiesis, in differentiated myeloid subpopulations, and in normal bone marrow 

controls; 

2. Determine the expression level and subcellular localisation of S100A4 in AML blasts; 

3. Determine the effect of nuclear overexpression of S100A4 or S100A4 knock down on 

normal human haematopoietic cell growth, differentiation and development; 

4. Determine the effect of nuclear overexpression of S100A4 or S100A4 knock down on 

AML cell growth, proliferation and apoptosis. 

5. Identify potential S100A4 binding proteins in the cytoplasm and nucleus of ME-1 using 

the optimised protocol established above coupled with LC/MS. 
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2 Chapter 2 - Materials and Methods 

2.1 Reagents 

Antibodies 

The following antibodies were used in western blotting (2.9.3), flow cytometry (2.12) , 

and immunoprecipitation (2.10) experiments. 

 

Table 2-1: The list of all antibodies used in this study.   
FC, flow cytometry; WB, western blotting; IP, immunoprecipitation; NA, not applicable; CST, 

Cell Signaling Technology; NEB, New England Bilolab. 

 

Antibody 

 

Clone 

 

 

Techniq

ue 

 

Dilution/

Conc. 

 

Company 

 

Lot No. 

Anti CD36 biotin 

(1mg/mL) 

NA FC NA Ancell, 

Bayport, 

MN, USA 

185104  

Anti-GAPDH 

(Mouse) mAb 

6C5 WB 1:20,000 Santa Cruz 

Biotechnology

, Heidlberg, 

Germany 

H2144  

 

Anti-Histone 1 

(H1) mAb (Mouse) 

AE-4 WB 1:40,000 BioRad, 

Watford, UK 

SAB3701

132 

Anti-Histone 3 

(H3) mAb (Rabbit)  

NA WB 1:1,000 CST, 

London, UK 

9715 

Anti-Mouse IgG 

Horseradish 

Peroxidase linked 

whole Antibody 

NA931 WB 1:1,000 GE 

Healthcare, 

Little 

Chalfont, 

UK 

9729340  

Anti-Rabbit IgG, 

Horseradish 

Peroxidase linked 

whole Antibody   

NA934 WB 1:5,000 GE 

Healthcare, 

Little 

Chalfont, 

UK 

9653374  

 

Anti-RRP1B pPAb 

(Rabbit) 

ab1233

97 

WB/IP 1:500/250 

µg/mL 

Abcam, 

Cambridge, 

UK 

ab123397 

Anti-SUPT16H 

pPAb (Rabbit) 

ab1170

81 

WB/IP 1:500/1 

mg/mL 

Abcam, 

Cambridge, 

UK 

ab117081 

CD11b-PE  2LPM1

9C 
FC NA DAKO, Ely, 

UK 

000333469  

CD13-APC  WM15  FC NA Biolegend, 
London, UK 

B135747  

CD14-PE HCD14 
FC NA Biolegend, 

London, UK B174251 
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CD15-PE 
W6D3 

FC NA Biolegend, 
London, UK B139265 

CD34-APC 581 
FC NA Biolegend, 

London, UK B167218 

CD34-PE 

B13574

7  

FC NA BD 

Biosciences, 

Oxford, UK 

5119628 

CD45-APC 
H130 FC 

NA Biolegend, 
London, UK 

B167510 

CD45-FITC 
H130 

FC NA Biolegend, 
London, UK B146601 

DDX21 pAb 

(Rabbit) 

NB100-

1716 

WB/IP 1:2,000/0.

2 mg/mL 

Novus 

Biological, 

USA 

NB100-

1716 

hnRNPM mAb 

(Mouse) 

2A6 WB/IP 1:1,000/ Abnova, 

Taipei City, 

Taiwan 

MAB233

9 

IgG XP® Isotype 

control mAb 

(Rabbit) 

DA1E IP 2.5 

mg/mL 

CST, 

London, UK 

3900 

IgG1-APC NA 
FC NA DAKO, Ely, 

UK 38468 

IgG1-FITC NA 
FC NA DAKO, Ely, 

UK 72359 

IgG1-PE 

MOPS-

21 

FC NA Biolegend, 
London, UK 

B202580 

IgG2B-PE 

MPC-

11 

FC NA Biolegend, 
London, UK 

B169497 

MAK16 pAb 

(Rabbit) 

NB100-

60425 

WB/IP 1:2,000/0.

2 mg/mL 

Novus 

Biological, 

USA 

NB100-

60425 

MCM7 mAb 

(Rabbit) 

D10A1

1 

WB/IP 1:1000/64 

µg/mL 

CST, 

London, UK 

3735 

PerCP Cy 5.5 

Streptavidin  
NA FC NA BD 

Biosciences, 

Oxford, UK 

03159  

 

S100A4 mAb 

(Rabbit) 

D9F9D WB/IP 1:1,000/7

6 µg/mL 

CST, 

London, UK 

13018 

S100A4 mAb 

(Rabbit) 

1F12-

1G7 

WB 1:1,000 Novus 

Biological, 

USA 

NA 

S100A4 mAb 

(Rabbit) 

ab1830

92 

WB 1:1,000 Abcam, 

Cambridge, 

UK 

Ab18309

2 

Ubiquityl-Histone 

H2A (Lys119) 

mAb (Rabbit)  

D27C4 WB/IP 1:2000/61

6 µg/mL 

CST, 

London, UK 

8240 
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General reagents 

Table 2-2: The list of all materials used in this study. 

Material Company Lot No. 

0.05% v/v Trysin EDTA  Gibco, Paisley, UK 1814197 

10x Buffer for T4 DNA 

Ligase with 10mM ATP  

New England Bio Labs 

(NEB), Ipswich, UK 

0021506 

1kb DNA Ladder  NEB, Ipswich, UK 1171310 

50 μL vial of One  

Shot Stbl3 cells  

Invitrogen, Bisley, UK 1807059 

7AAD (1mg/mL)  Invitrogen, Bisley, UK 1795453 

Agarose  Invitrogen, Bisley, UK 0000238148 

Ampicillin (100mg/mL)  Sigma-Aldrich, Poole, UK 023M4080V 

Annexin V Apoptosis 

Detection Kit APC 

ThermoFisher Scientific, 

UK 

88-8007 

BamHI HF (20000 U/mL)  NEB, Ipswich, UK 0941110 

BD FACS Lysing Solution  BD Biosciences, Oxford, 

UK 

79786 

BglII (10000 U/mL)  NEB, Ipswich, UK 0421203 

Bradford Reagent  Sigma-Aldrich, Poole, UK SLBS2204V 

Buffer TE  Qiagen, Manchester, UK 154021562 

Dead Cell Removal kit Miltenyi Biotec, Bisley, 

UK 

130-090-101 

ECL Prime Western 

blotting Detection Reagent  

GE Healthcare, Little 

Chalfont, UK 

9766187 

EcoRI (20000 U/mL)  NEB, Ipswich, UK 0321201 

EcoRI Buffer  NEB, Ipswich, UK 0011106 

EcoRI HF (20000 U/mL)  NEB, Ipswich, UK 0321201 

Ficoll-Paque Premium  GE Healthcare, Little 

Chalfont, UK 

10249168 

Gel Loading Dye Blue 

(6X)  

NEB, Ipswich, UK 0021302 

Gentamycin (50 mg/mL)  Gibco, Paisley, UK 1811725 

Hanks' Balanced Salt 

Solution (1X)  

Gibco, Paisley, UK 1413908 

Heparin Sodium 1000 

U/mL  

Wockhardt, Wrexham, UK NA 

Hepes 1M  Invitrogen, Bisley, UK 804834 

HiSpeed Plasmid Maxi Kit  Qiagen, Manchester, UK 154028153 

His-Tag S100A4  R&D Systems 4137-S4 

IMDM  Sigma RNBF6090 

Indirect CD34 Micro Bead 

Kit Human  

MACS Miltenyi Biotec, 

Bisley, UK 

5131122004 

LB Broth  Sigma-Aldrich, Poole, UK BCBQ1867V 

LB Broth with Agar  Sigma-Aldrich, Poole, UK SLBR5882V 

Lipofectamine 3000 

Transfection Kit  

Invitrogen, Bisley, UK 1811507 
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Methanol ThermoFisher Scientific, 

UK 

1706141 

Ethanol ThermoFisher Scientific, 

UK 

1706122 

Isopropanol ThermoFisher Scientific, 

UK 

1705151 

MS columns  Miltenyi Biotec, Bisley, 

UK 

5161216101 

NE Buffer 3.1 10x  NEB, Ipswich, UK 0161302 

Not1 10,000U/ml  NEB, Ipswich, UK 0551602 

Novex 10-20% Tricine gel Invitrogen, Bisley, UK 16972540 

Nuclear/Cytosol 

Fractionation Kit  

Bio Vision, Cambridge, 

UK 

1J140266 

NuPage Antioxidant  Invitrogen, Bisley, UK 1771573 

Opti-MEM  Gibco, Paisley, UK 1750005 

PeqGreen DNA/RNA dye 

(20000X in water)  

Peglab, Shanghai, China 1021004 

Poly-L-lysine solution  Sigma-Aldrich, Poole, UK RNBF6040 

PVDF membrane  

(0.45μm) 

Invitrogen, Bisley, UK 1802799 

QIA prep Spin Miniprep 

Kit 

Qiagen, Manchester, UK 154015847 

QIAquick Gel Extraction 

Kit  

Qiagen, Manchester, UK 142349618 

QIAquick PCR 

purification kit  

Qiagen, Manchester, UK 148010062 

RetroNectin (1mg/mL)  Takara, Paris, France AFY9002 

RPMI 1640  Sigma-Aldrich, Poole, UK RNBF6996 

Sample reducing agent  Invitrogen, Bisley, UK 1762058 

SeaKem GTG Agarose  Lonza, Nottingham, UK 0000511489 

Soc medium  Invitrogen, Bisley, UK 1723796 

T4 DNA Ligase 

2,000,000U/mL  

NEB, Ipswich, UK 1151506 

Tricine SDS Running 

Buffer  

Invitrogen, Bisley, UK 1772855 

Tricine SDS Sample 

Buffer  

Invitrogen, Bisley, UK 1692686 

Tris Glycerine Transfer 

Buffer  

NEB, Ipswich, UK 1772799 

Tris-Acetate-EDTA Buffer 

10X  

Sigma-Aldrich, Poole, UK SLBM3638V 

Tris-Borate-EDTA Buffer 

5X  

Sigma-Aldrich, Poole, UK SLBM8210V 

ZAP-Oglobin II Lytic 

Reagent  

Beckman Coult Inc., 

Galway, Ireland 

129016 
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Retro- and lentiviral vectors  

The following vectors were used in packaging cells transfection (2.5.6), CD34+ cells 

(1.2.5.1), and in AML transduction (2.6.2) experiments. 

 

Table 2-3: The list of Recto- and lentivirus used in this study 

 

 

Vector 

 

 

Target Sequence 

information 

 

Source 

PINCO PINCO GFP control Eurofins MWG 

(Ebersberg, Germany) 

PINCO S100A4 PINCO GFP Eurofins MWG 

(Ebersberg, Germany) 

PINCO 1x NLS-S100A4 PINCO 

GFP 

Eurofins MWG 

(Ebersberg, Germany) 

PINCO 3x NLS-S100A4 PINCO 

GFP 

Eurofins MWG 

(Ebersberg, Germany). 

pHIV pHIV-EGFP control Addgene (Watertown, 

USA) 

pHIV S100A4 pHIV-EGFP Eurofins MWG 

(Ebersberg, Germany) 

pHIV 3x NLS-S100A4 pHIV-

EGFP 

Eurofins MWG 

(Ebersberg, Germany) 

shRNA Control  Scramble shRNA Mission® (Sigma, UK) # 

shRNA S100A4 clone 1 S100A4 shRNA-pLKO.5 

(TRCN0000437516) 

Mission® (Sigma, UK) # 

shRNA S100A4 clone 2 S100A4 shRNA-pLKO.5 

(TRCN0000438093) 

Mission® (Sigma, UK) # 

shRNA S100A4 clone 3 S100A4 shRNA-pLKO.5 

(TRCN0000416498) 

Mission® (Sigma, UK) # 

shRNA S100A4 clone 4 S100A4 shRNA-pLKO.5 

(TRCN0000446826) 

Mission® (Sigma, UK) # 

shRNA S100A4 clone 5 S100A4 shRNA-pLKO.5 

(TRCN0000053608) 

Mission® (Sigma, UK) # 

pLV[shRNA S100A4] pLV-EGFP:T2A:Puro-

U6 (TRCN0000416498) 

VectorBuilder, CA, USA 

pLV[shRNA Control] EGFP:T2A:Puro Control 

Scramble shRNA 

VectorBuilder, CA, USA 

#http://www.sigmaaldrich.com/life-science/functional-genomics-and-rnai/shrna/library-

information/vector-map.html#pLKO

https://portals.broadinstitute.org/gpp/public/clone/details?cloneId=TRCN0000437516
https://portals.broadinstitute.org/gpp/public/clone/details?cloneId=TRCN0000438093
https://portals.broadinstitute.org/gpp/public/clone/details?cloneId=TRCN0000416498
https://portals.broadinstitute.org/gpp/public/clone/details?cloneId=TRCN0000446826
https://portals.broadinstitute.org/gpp/public/clone/details?cloneId=TRCN0000053608
https://portals.broadinstitute.org/gpp/public/clone/details?cloneId=TRCN0000416498
http://www.sigmaaldrich.com/life-science/functional-genomics-and-rnai/shrna/library-information/vector-map.html#pLKO
http://www.sigmaaldrich.com/life-science/functional-genomics-and-rnai/shrna/library-information/vector-map.html#pLKO
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2.2 Cell Culture and cryopreservation 

 All tissue culture work was performed in a Class II biosafety cabinet and liquid 

waste was disinfected with bleach or autoclaved.  Cells were cultured under aseptic 

conditions at 37°C in 5% CO2 in air unless otherwise specified. 

 

2.2.1 Cell culture of suspension cell lines 

 Each cell line was cultured according to supplier standard cell culturing guidelines 

and biohazard risk.  Cells were cultured at a cell density of between 1 x 105 and 5x105 

cells/mL and passage number did not exceed 20. Cell density was determined prior to 

subculturing by haemocytometer or flow cytometry.  Cell culture growth medium and 

solutions were pre-warmed to room temperature (RT) prior to sub-culturing unless 

otherwise stated.  The media used to culture each cell line are listed in Table 2-4.   

 

2.2.2 Cell culture of adherent cell lines 

 The viral packaging cell lines Phoenix and HEK293T were examined 

microscopically for cell confluence prior to subculturing. These adherent cells were 

detached from the tissue culture plastic ware using 1 mL / 25 cm2 trypsin-EDTA for 3 

minutes at room temperature (RT).  Subsequently, an equal volume of appropriate growth 

medium was added to neutralise the trypsin activity and the cells were transferred into a 

fresh tube.  If required, cells were counted before centrifugation for 10 minutes at 200 x 

g. Supernatant was discarded and the cell pellet was resuspended with fresh growth 

medium and seeded according to the culture discussions in Table 2-4.
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Table 2-4: Cell lines used in this study and their growth conditions requirements. 

 

 

 

 

Cell Line 

 

Seeding 

density 

(cells/mL) 

 

Medium Conditions 

 

Source 

 

HL60 
 

1 x 105 

 

RPMI-1640 (Sigma-Aldrich, Dorset, 

UK) 

+ 10 % FBS (Biosera, UK) 

+ L-Glutamine 

+ 1:2 k  Gentamycin (50 mg/mL)   

ATCC  (USA) 

K-562 
 

1 x 105 

ECACC  (UK) 

U937 
 

1 x 105 

ATCC  (USA) 

HEL 1 x 105 ECACC  (UK) 

THP-1 1 x 105 ECACC  (UK) 

NOMO-1 1 x 105 DSMZ (Germany) 

TF-1 1 x 105 ATCC  (USA) 

ME-1 

 

1 x 105 

RPMI-1640 (Sigma-Aldrich, Dorset, 

UK) 

+ 20 % FBS (Biosera, UK) 

+ L-Glutamine 

+ 1:2 k  Gentamycin (50 mg/mL)   

 

ATCC  (USA) 

 

 

Kasumi-1 
1 x 105  

DSMZ (Germany) 

OCI-AML 2 

 

 

1 x 105 

α-MEME (Sigma-Aldrich, Dorset, 

UK) 

+ 20 % FBS (Biosera, UK) 

+ L-Glutamine 

+ 1:2 k  Gentamycin (Sanofi, UK) 

+ 10 ng/mL GM-CSF [For OCI-

AML-5] 

 

 

DSMZ (Germany) 

 

 

 

OCI-AML 5 

 

 

1 x 105 

 

 

DSMZ (Germany) 

KG-1 

 

 

 

1 x 105 

IMDM (Sigma-Aldrich, Dorset, UK) 

+ 20 % FBS (Biosera, UK) 

+ L-Glutamine 

+ 1:2 k  Gentamycin (50 mg/mL)   

 

 

 

DSMZ (Germany) 

MV4;11 

1 x 105 IMDM (Sigma-Aldrich, Dorset, UK) 

+ 10 % FBS (BioWest, UK) 

+ L-Glutamine 

+ 1:2 k  Gentamycin (50 mg/mL)   

 

ATCC  (USA) 

Phoenix & 

HEK293T 

2.5 x 106 DMEM  (Sigma-Aldrich, Dorset, 

UK) 

+ 10 % FBS (BioWest, UK) 

+  L-Glutamine 

+ 1:2 k  Gentamycin (50 mg/mL)   

 

 

ATCC  (USA) 
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2.2.3 Cell culture of haematopoietic progenitor cells 

 Freshly isolated CD34+ cells (2.3) were cultured at adensity of 1x105 /mL in 

“36Shi“ media mix Iscove modified Dulbecco medium (IMDM) (Sigma), containing (1% 

v/v BSA fraction V (Sigma), 20% v/v FCS, 45 pM beta-mercaptoethanol (Sigma), 360 

pg/mL 30% iron-saturated human transferrin (Roche), 100 U/mL penicillin, l00 pg/mL 

streptomycin (Invitrogen)) supplemented with appropriate growth factors for each culture 

stage, as described below in Table 2-5.  Following isolation of CD34+ cells (defined as 

day 0), cells were cultured (days 0-3) in “36Shi” supplemented with the addition of human 

growth as shown below (Table 2-5A).  Following 3 days in culture, cells were 

subsequently cultured in media mix supplemented with the addition of lower 

concentrations of cytokines: 5ng/mL of IL-3, SCF, GM-CSF and C-CSF, subsequently 

defined as “3SloG/GM” (Table 2-5B).  

 

Table 2-5: Concentrations of human cytokines required for CD34+ cells growth 

media mix  

 

Growth Factors Stock 

(µg/mL) 

Target conc. 

(ng/mL) 

Vol/ 5 mL 

(µL) 

A. 36ShiG/GM  (0-3 days) 

IL-3 5 50 50 

IL-6 10 25 12.5 

SCF 20 50 12.5 

G-CSF  5 25 25 

GM-CSF  5 25 25 

Flt3 5 50 50 

1x PBS/BSA - - 25 

TOTAL - - 200 µL 

B. 3SloG/GM media mix (3- onwards) 

Cytokines Stock 

(µg/mL) 

Target conc. 

(ng/mL) 

Vol/ 1 mL 

(µL) 

IL-3 5 50 1 

SCF 5 50 1 

G-CSF  5 25 1 

GM-CSF  5 25 1 

TOTAL - - 4 µL 
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2.2.4 Cell counting 

 Estimation of cell number was determined using haemocytometer counting 

chambers with improved Neubauer ruling (Hawksley, Brighton, UK).  Briefly, 10 μL of 

cell suspension was aliquoted from culture and directly pipetted under a counting 

chamber cover slip.  The cellularity of the sample in cells/mL was given by the average 

number of cells per cuboid multiplied by 1 x 104 cell/mL, as counted using Eclipse TS100 

light transmission microscope (Nikon, Surrey, UK). 

 

2.2.5 Cryopreservation and resuscitation of cells. 

 To freeze cells for continued culture later, between 1–10 x 106 cells were collected 

by centrifugation at 200 x g for 5 minutes and resuspended in the appropriate growth 

medium into 1.8 mL cryopreservation vials (Nunc).  An equal volume of freezing mix 

(50% v/v growth medium (RPMI or DMEM), 30% (v/v) FCS (Labtech), 20% (v/v) DMSO 

was added dropwise to the cell suspension and immediately placed inside Nalgene Mr. 

Frosty™ freezing container (Thermoscientific, UK) that have been filled with 100% (v/v) 

isopropanol (Sigma-Aldrich, UK). The freezing container then placed at –80°C overnight 

and the tubes were transferred to liquid nitrogen (LN2) for long-term storage. 

 

2.3 Isolation of CD34+ haematopoietic progenitor cells (HSPCs) from 

human cord blood 

2.3.1  Cord blood collection 

 Neonatal cord blood (CB) samples were collected upon informed consent during 

elective caesarean sections at the Women units, University Hospital Wales, Cardiff.  Cord 

blood was collected in 50 mL Falcon tubes containing 200 μL heparin. 

 

2.3.2 Isolation of Mononuclear cells (MNCs) from cord blood 

 Mononuclear cells (MNCs) were separated on Ficoll-Hypaque (Sigma-Aldrich, 

Poole Dorset, UK).  Initially, 100 μL aliquots of CB were analysed to estimate the number 

of isolated CD34+ cells (2.12).  Subsequently, CB was diluted with Hanks solution 1:1 

(v/v).  Eight mLs were carefully layered on top of 5 mL of Ficoll in universal containers 

(UC).  Samples were subsequently centrifuged at RT at 400 x g for 40 minutes.  During 
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the centrifugation, 15 mL of RPMI medium (RPMI 1640 serum free medium) were 

pipetted in UCs.  Following centrifugation, the plasma layer and the layer of mononuclear 

cells were carefully collected with a syringe and quill and ejected into UCs containing 

RPMI wash.  Cells were centrifuged at 200 x g for 10 minutes.  The supernatant was 

discarded without disrupting the MNCs pellet leaving approximately 1mL of RPMI at the 

bottom of the UCs as the pellet became loose tube.  Subsequently, all cellular pellets were 

combined into one UC and filled up to 20 mL with RPMI wash.  For counting the isolated 

MNCs, 10 μL of cells pellet were removed and resuspended into 190 μL of RPMI and 1.5 

μL Zaponin (to lyse red cells).  The remaining sample was centrifuged at 200 x g for 10 

minutes.  The pellet was washed 3 times or till the supernatant was clear of platelets.  

Finally, the cell pellet was resuspended at a density of approximately 5x107 cell/mL per 

vial and the MNCs were stored in liquid nitrogen as described above (2.2.5).  

 

2.3.3 Immunophenotyping MNCs 

To estimate the number of isolated CD34+ cells in each sample processed, MNCs 

were immunophenotyped of CD34 positivity by flow cytometry.  To each tube of 100 L 

of CB, 20 μL of IgG1-PE (or anti-CD34+-PE) was added with 5 μL CD45 APC and 

incubated for 30 minutes at 4°C.  Meanwhile, 1x lysis buffer was prepared by diluting 

1mL of BD FACS Lysis buffer with 9 mL dH2O.  Upon the end of the incubation time, 

5mL diluted FACS Lysis buffer were added.  Samples were incubated for 10 minutes at 

RT.  Following incubation, isotype control and CD34+ stained samples were washed with 

5mL 1x phosphate buffered saline (PBS) and centrifuged at 200 x g for 10 minutes.  

Subsequently, the supernatant was discarded leaving a residual volume of buffer of 

approximately 200 μL to resuspend the pellet. The samples were then transferred to 

appropriate tubes and analysed with the flow cytometer (2.12).
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Figure 2-1: Estimation of CD34+ cells in the MNCs population.  
 A) Example of non-debris gating strategy to remove debris from the analysis.  B) Using the non-

debris gate applied, CD45 expression was used to identify different population of white cells 

including the MNCs.  C) Upon gating on the “MNC cell gate”, CD34 positivity was determined 

using IgG-PE to set the background autofluorescence in the PE channel as described in (2.12).  
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2.3.4 Isolation of CD34+ cells from MNCs 

 Human CD34+ cells (> 95% pure) were isolated using MiniMACS® CD34+ 

Progenitor Cell Isolation Kit (Miltenyi Biotec, Camberley, Surrey, UK).  MNCs were 

removed from LN2 and rapidly thawed in 37oC then transferred to a UC (2ml max per 

UC).  A volume of 1 mL of FCS and 20 µL of DNase (100μg/mL ) were added.  An equal 

volume of RT 1x PBS with magnesium chloride (MgCl)(MACS buffer) was added 

dropwise so that volume doubles over 3 minutes (mixed gently after each addition).  This 

step was repeated twice, subsequently, UCs were centrifuged at 200 x g for 10 minutes.  

The supernatant was carefully aspirated and 10 µL of sterile DNase was added to each 

UC.  Cells were resuspend by tapping pellet in tube in 400 µL cold MACS buffer per 10
8
 

cells.  100 µL of solution A1 and 100 µL of solution A2 were added per 10
8
 cells.  UCs 

were mixed gently and incubated for 15 minutes at 4°C.  Next, 5 mL of MACS buffer per 

108 cells was added and centrifuged as above.  Buffer was subsequently aspirated, and 

cells resuspended in 400 µL of MACS buffer per 10
8
 cells.  A volume of 100 µL of 

reagent B per 10
8
 cells was added and cells were incubated for 15 minutes at 4°C.  Next, 

5 mL of column buffer were added per 10
8
 cells.   Cells suspension were passed through 

cell strainer and rinsed strainer with 1ml buffer to recover residual cells.  The flow 

through cells were centrifuged at 200 x g for 5 minutes.   Subsequently, MACS buffer 

was removed without disturbing pellet and washed with 500 µL of column buffer per 108 

cells and applied to the first column with a flow restrictor in place.  Once column flow 

had stopped, flow restrictor was removed and a further 500 µL of MACS buffer were 

added.   This step was repeated 3 times.  When last wash was complete, column was 

removed from the magnet and 1 mL of MACS buffer was added to top of the column; 

push plunger firmly into column top to release bound CD34+ cells into clean tubes.  Cells 

from final elution were counted on haemocytometer.  Purity of CD34+ cells was 

determined by flow cytometry (2.12).  Then, CD34+ cells either frozen in LN2 for future 

analysis as described (2.2.5) grown to day six in appropriated supplemented primary cell 

medium and used in transduction experiments (2.6.1).  Differentiated myeloid sub-

lineages (monocytes, erythrocytes, and granulocytes) were isolated by positive selection 

process using MiniMACS® (Miltenyi Biotec, Camberley, Surrey, United Kingdom) as 

previously described by (Tonks et al. 2007). 
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2.3.5 Cell surface phenotyping and differentiation analysis 

To evaluate CD34+ cells purity and differentiation status, cell surface phenotyping 

using flow cytometry was performed. Cells were stained with CD13-APC (Biolegend, 

London, UK) combined with CD36-biotin (Ancell, Bayport, MN, USA) and one of the 

following PE-labelled antibodies: CD34+-PE (BD Biosciences, Oxford, UK), CD11b-PE, 

CD14-PE, CD15-PE (Biolegend, London, UK).  CD36 was subsequently labelled with 

SA-PerCP (Pharmingen BD Biosciences, Oxford, UK).  All incubations were carried out 

at 4°C for 30 minutes.  All reactions were controlled with the appropriate isotype-matched 

antibody, as described in 2.12. 

 

2.4 AML patients’ samples, FAB subtype determination and viability 

analysis 

Peripheral blood (PB) or bone marrow (BM) AML patients’ samples (n = 33) were 

obtained with ethical approval from the AML Clinical Trials Research Tissue Bank at the 

Haematology Department, Cardiff University.  AML blast viability and cell surface 

phenotype were analyzed by flow cytometry to support FAB classification.  AML patient 

blast FAB-M1 subtype was confirmed using early surface marker CD34+-PE and 

differentiation markers CD14-PE and CD15-PE (Biolegend, London, UK) for FAB-M4 

subtype.  In this study the experimental design was restricted to minimally differentiated 

FAB-M1 since this subtype has little developmental heterogeneity and was 

developmentally matched to normal human HSPCs derived from neonatal CB.  All AML 

samples analysed in this study were ≥ 80% viable cells.  Cells viability was analysed 

manually using Trypan Blue solution 4% (1:1) (Sigma-Aldrich, Poole, UK) and 

confirmed by flow cytometric viability stain propidium iodide (PI) (2.12).  Viable cells 

were recovered from samples with ≤ 80% viable cells using Dead Cell Removal kit 

(Miltenyi Biotec, Baisley, UK).   

 

2.5 Preparation of recombinant plasmid DNA  

2.5.1 Restriction enzyme conditions for creation of PINCO constructs  

 The PINCO expression vector co-expressing S100A4 and GFP from an internal 

CMV promoter was created by directionally sub cloning S100A4 (NM_002961.2) into 
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the BamH1/EcoR1 restriction sites as previously described by (Grignani et al. 1998, 

Tonks et al. 2005).  To target expression of S100A4 to the nucleus, an additional vector 

was prepared where the N-terminus encoded a 1x and 3x nuclear localisation sequence 

(NLS) “GATCCAAAAAAGAAGAGAAAGGTA” (Fischer-Fantuzzi and Vesco 1988) 

as shown in Figure 2-2.   In this way four cultures were generated; control vector 

expressing GFP alone, 1xNLS-S100A4, 3x NLS-S100A4 overexpressing S100A4 in the 

nucleus, and the forth construct expresses S100A4 without a nuclear targeting sequence.  

Restriction enzyme (RE) digest for the creation of PINCO expression plasmids was 

performed in a total reaction volume of 100 μL using 5–10 μg of plasmid DNA containing 

appropriate NEB (New England Biolabs Ltd., Hitchin, UK) buffer, RE enzymes, BSA 

and water.  Thus, pEX-A2 were digested with BamH1 and NotI RE.  For both enzymes, 

a 100 U enzyme was used with a compatible NEB4 buffer.  All reactions were mixed 

gently by pipetting and incubated at 37°C in a water bath for 1 hour.  Aliquot of digested 

DNA was electrophoresed using 0.8% (w/v) agarose gel and 1xTAE buffer at 80 V for 45 

minutes and visualised using PeqGreen (20000X) loading dye. 

 

2.5.2 Agarose gel purification of insert DNA 

 To purify DNA inserts generated by RE, preparative agarose gel was prepared by 

creating a 0.8% (w/v) Seakem agarose solution in 1x Tris Acetic acid and EDTA 

(TAE)buffer (or 3% (w/v) agarose). DNA samples for loading contained 5-10 μg digested 

DNA, 200 μM bromophenol blue and 120 μM xylene cyanol per lane. Samples were 

electrophoresed in 1X TAE buffer at 40 V for 2 hours. The size of DNA fragments or 

plasmids was estimated using a 1 kb DNA Ladder. Upon completion of electrophoresis, 

agarose gel was stained in 10 μL of PeqGreen (20000X) for 20 minutes.  Gel was de-

stained using water for 20 minutes and DNA was visualised by long wavelength UV 

transillumination using a LAS-3000 digital imaging device (Fujifilm UK Ltd., Bedford, 

UK) before excising the desired DNA band by using a clean scalpel.  All apparatus used 

was initially wiped with 70% (v/v) ethanol. The excised gel was then placed inside a 

sterile 15 mL tube and subjected to further purification using the QIAquick Gel Extraction 

kit protocol (Qiagen®). 
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2.5.3 Ligation of S100A4 DNA into retroviral or lentiviral vectors 

 For directional subcloning, PINCO GFP vector (Grignani et al. 1998) and insert 

DNA fragments of pEX-A2 ‘carrying’ 1x and 3xNLS S100A4 were purified according 

to 2.5.2) prior to ligation.  A final volume of 10 μL ligation reaction was used, containing 

insert DNA combined with vector DNA using a 5:1 ratio of insert:vector ligation, 200 

cohesive end units/μL T4 DNA ligase (1 μL) and 1X T4 DNA ligase reaction buffer (1 

μL) (New England Biolabs Ltd., Hitchin, UK). In order to determine the level of 

background ligation due to self-ligation of the linearised vector plasmid, a background 

reaction tube was also set up as above, but lacking insert DNA. All reaction tubes were 

incubated for between 4 - 6 hours at 16˚C then stored at -20˚C before performing the 

transformation into competent E.coli. 

 

2.5.4 Transformation of competent cells with plasmid DNA 

 Each plasmid DNA to be propagated by transformation was thawed on ice 

alongside one 50 μL vial of OneShot® Stbl3 or OneShot® Top10 chemically competent 

E. coli (Invitrogen™).  For each reaction, 6 μL of DNA sample was aseptically transferred 

directly into the respective vial of competent cells and tapped gently to mix, followed by 

30 minute incubation on ice.  Following this, the cells were further incubated at 42˚C for 

30 seconds, without agitation, before replacing on ice and adding 250 μL of pre-warmed 

SOC medium (Invitrogen™) to each vial to maximise transformation efficiency.  All vials 

were secured in a shaking incubator at 37°C for 1 hour at 225 revolutions per minute 

(rpm).  Once the incubation had elapsed, between 50 μL to 100 μL of transformation 

mixture was spread onto pre-warmed LB-agar plates containing 100 μg/mL ampicillin 

(or kanamycin, using sterile plastic spreaders to generate a film of bacterial growth, and 

incubated at 37°C overnight. Transformed colonies were selected on the following day 

for large scale purification of plasmid DNA as described below. 

 

2.5.5 Purification of plasmid DNA 

 Plasmid DNA was prepared from an E.coli strain using HiSpeedTM Maxi prep kit 

(Qiagen®) based on manufacturer’s recommendations.  Firstly, colonies of interest were 

picked from LB-agar plates and a single colony was inoculated into 5 mL of LB-broth 

containing 5 μL of ampicillin or kanamycin (stock 100 mg/mL) by using a sterile 

inoculation loop and incubated in 37°C incubator with 225 rpm shaker for 8 hours. 



Chapter 2 

 

 

45 

 

Following that, the starter culture was diluted 1 in 500 into LB-broth with appropriate 

antibiotic and further incubated in 37°C with 225 rpm shaker for 16 hours.  After 

overnight incubation, the bacterial pellet was harvested from 150 mL culture by 

centrifugation at 6000 x g for 15 minutes at 4°C. Briefly, pelleted bacteria were 

resuspended in 10 mL Buffer P1 before mixing with 10 mL of Buffer P2, and tube was 

allowed to stand for 5 minutes at RT.  Next, 10 mL of Buffer P3 was added followed by 

incubation on ice for 15 minutes, and centrifugation at 20,000 x g at 4°C for 30 minutes.  

Supernatant containing plasmid DNA was removed and centrifuged again, as above, to 

remove insoluble material.  During this process, QIAGENtip-500 was equilibrated by 

adding 10 ml Buffer QBT onto the tip.  The bacterial supernatant was transferred to the 

equilibrated QIAGEN-tip where plasmid DNA was bound to the column and washed 

twice with 30 ml Buffer QC.  Subsequently, DNA was eluted from the column using 15 

ml Buffer QF and precipitated by the addition of 10.5 ml isopropanol and centrifugation 

at 15,000 x g for 30 minutes at 4˚C.  The DNA pellet was finally washed using 5 mL of 

70% (v/v) ethanol before final centrifugation at 15,000 x g for 10 minutes.  The 

supernatant was decanted with care, and the purified DNA pellet was air-dried for 10 

minutes before resuspended in 1 mL of water and concentration of DNA was quantified 

using the NanoDrop® and stored at -20˚C. 

 

2.5.6 Preparation of retro- and lentivirus  

 Phoenix cells were used as the viral packaging cell line for retroviruses and 

HEK293T for lentiviruses and cultured as described above (2.2.2).  These cells were 

subcultured at a density of 1x106 cells/mL in 15 mL media.  The following day, for 

preparation of retro- or lentiviruses, cDNA (45 µg) cell transfection was achieved using 

Lipofectamine® 3000 (Life Technologies, UK).  The Lipofectamine® 3000 lipid-DNA 

complexes were prepared according the manufacturer’s instructions.  Opti-MEM 1 

reduced Serum Medium was brought to room temperature.  The Opti-MEM 1 medium 

was reduced in each flask to 6 mL.  Lipid DNA complexes were carefully added, gently 

mixed, and flasks were incubated for 6 hours at 37°C, 5% CO2.  At 6 hours post-

transfection, flasks mediums were replaced with (9 mL for [F75] and 3 mL for [F25] 

flasks) of pre-warmed retro- or lentivirus packaging mediums.  Then, flasks were returned 

to incubator boxed in a containers.  On day 2 post-transfection, viral infection was 

evaluated under a fluorescent microscope.   To harvest viruses, supernatants from flasks 
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were removed and transferred to labelled UCs.  Next, UCs containing viral supernatant 

were centrifuged at 200 x g for 10 minutes.  After centrifugation, 0.5 mL of virus were 

aliquoted in 1 mL cryotubes and snapped frozen in LN2 and stored at -80 °C.  The medium 

in flasks were replaced with fresh medium (7.5 mL for [F75] and 2.5 mL for [F25] flasks). 

Flasks were then incubated at 37°C, 5% CO2. Retroviruses were harvested and snap 

frozen on two consecutive days.   

 

2.6 Determining the effect of nuclear mislocalised S100A4 on CD34+ 

cells and AML cell lines 

2.6.1 Retro- and lentiviral infection of CD34+
 cells  

In order to infect CD34+ cells, cells were thawed and revived in 36Shi-G/GM 

(Table 2-5A) and incubated at 37°C in 5% CO2 overnight.  To infect cells with 1x and 

3xNLS S100A4 PINCO or pHIV vectors, a 24-well plate was coated with 500 μL 

retronectin (30 μg/mL) (Takara Bio) and incubated for 2 hours at RT. The following day, 

retronectin was aspirated and replaced with 250 μL of 1% v/v BSA (Sigma) in 1x PBS 

(Invitrogen) and left for 30 min at RT.  The BSA was then aspirated and replaced with 1 

mL retroviral or lentiviral supernatant. The culture plate was centrifuged at 2200 x g for 

2 hours at 12°C. The supernatant was carefully removed from the wells and replaced with 

CD34+ cells (2 x 105 cells/mL).  In case of retroviral infection the process was repeated 

on the second day, cells were removed to a UC and placed into an incubator (37°C, 5% 

CO2), the wells were treated with retrovirus as above and the cells returned to the wells 

and incubated at 37°C, 5% CO2 overnight.  On day 3 post infect, CD34+ cells were 

harvested from the plate and resuspended with 3SloG/GM (Table 2-5B).  Cells expressing 

GFP were assessed alongside with negative control treated similarly but without viral 

infection (mock cultures) by flow cytometry (2.12) to measure infection rates.  Cells were 

centrifuged at 200 x g for 5 minutes, washed in 1x PBS (Invitrogen), centrifuged at 200 

x g for 5 minutes resuspended in 1x PBS and analysed by flow cytometry (2.12). 

Following infection, CD34+ cells were analysed for lineage commitment and phenotypic 

analysis of early cell surface differentiation markers at three-time points; day 6, 8, and 

13. 
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2.6.2 Retro- and lentiviral infection of AML cells lines 

A 24-well was treated with Retronectin (30 μg/mL) for 2 hours at RT.  The BSA 

was aspirated from all wells and 1 mL of either retro- or lentivirus was added.  The plate 

was centrifuged at 2200 x g for 2 hours.  During centrifugation, AML cells were diluted 

in fresh growth medium to 4 x 105 cells/mL.  Following centrifugation, the virus was 

pipetted off and discarded. Subsequently, 1 mL of cells were immediately aliquoted to 

their designated wells and incubated at 37°C in 5% CO2 at day of infection (defined as 

Day 0).  The cells were left to rest on day1 post infection.  On day 2 of culture the 

supernatant was discarded. The cells were resuspended in 1mL fresh medium and 

transferred into a labelled UC containing 5 mL fresh medium.  Cells were pelleted by 

washing in fresh complete medium and centrifugation at 200 x g for 5 minutes and 

resuspended to a density of 4 x 105 cells/mL in fresh medium.  Cell viability was assessed 

using 7AAD (1 μg/mL) coupled with flow cytometric analysis (2.12) and analysed in 

(2.6.3) 

 

2.6.3 Effect of serum on proliferation of infected AML cell lines 

To determine the effect of nuclear overexpression of S100A4 on the proliferation 

of AML cells, a proliferation/viability assay was conducted.  Cells in log phase growth 

(4-8 x105 cells/mL) were pelleted in a UC and washed in 10 mL of serum free medium.  

Following centrifugation (as above), the medium was discarded and the wash with serum 

free medium was repeated.  Subsequently, 90 μL of cells were aliquoted into designated 

well of a 96 U-well plate and each plate contained three replicates.  Three plates were set 

up for analysis over the next three days.  The serum dilutions were added of 10 μL to each 

well containing cells (0%, 1%, 3% and 10% v/v serum), then the plate was mixed by 

vortexing. Plates were incubated at 37°C in 5% CO2.   Cells were analysed for viability 

and proliferation change after 24 hours, 48 hours and 72 hours using PI (1 µg/mL).  To 

analyse cells, 10 μL of PI were added to 90 μL of the cells were transferred into FACS 

tubes.  Then, cells were analysed on the flow cytometer2.12).  
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2.7 Determining the effect of S100A4 knockdown on CD34+ cells and 

AML cell lines 

2.7.1 Generating shRNA lentiviral vectors  

For knock down studies, Mission® sRNA vectors based on TRC(1)2-pLKO.5-

puro(S100A4 shRNA and non- mammalian shRNA control) were purchased om Sigma-

Aldrich, Poole, UK, as shown in Table 2-3. Five independent shRNA vectors were used 

to knockdown S100A4 in NOMO-1 cells.  Subsequently, the TCR(1)2-pLKO.5-puro 

(s100A4 shRNA [TRCN0000416498] and non-mammalian shRNA control) were 

redesigned into a new vector containing an EGFP marker, as shown in Figure 2-3B.  The 

S100A4 with EGFP (Table 2-3) was purchased from VectorBuilder (California, USA). 

This vector shRNA (TRCN0000416498) was used in all S100A4 KD in CD34+ cells and 

AML cell lines. 

 

2.7.2 Growth and apoptosis assays 

Following infection of CD34+ cells and AML cell lines (2.6.1 and 2.6.2), cells 

were seeded at a density of 1x105 cells/mL on day 3 post infection in 12-well plate (mock, 

shRNA control, and shRNA S100A4) lines.  Cells were grown in culture over 5 days post 

infection.  On each day, cells were resuspended in a plate and 100 μL of cells were 

removed from culture of each infected cells into FACS tubes.  Cells were washed with 

1x PBS then resuspended with 90 μL of staining buffer (1xPBS+ 1% v/v BSA, 1% v/v 

Na-azide) and 10 μL of viability stain PI was added.  Cells were counted using flow 

cytometry and viability status was daily (2.12).  Cells were resuspend in 1x binding buffer 

at 1-5 x105 cells/mL and 5 μL of Annexin V-APC fluorochrome-conjugated were added 

to 100 μL of the cell suspension and incubated 10-15 minutes at RT in the dark.   After 

incubation, cells were washed once in 1X binding buffer and resuspend in 200 μL of 1x 

binding buffer and 5 μL of PI were added and analyzed by flow cytometry.  

https://portals.broadinstitute.org/gpp/public/clone/details?cloneId=TRCN0000416498
https://portals.broadinstitute.org/gpp/public/clone/details?cloneId=TRCN0000416498
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Figure 2-2: Retroviral vector constructs based on PINCO.   
A) Limited restriction enzyme map of the PINCO retroviral expression vector.  Generation of 

S100A4 and NLS-S100A4 by directionally cloning into the BamH1 and EcorR1 restriction 

enzyme sites. Long terminal repeat, LTR; cytomegalovirus, CMV; green fluorescent protein, 

GFP; 3x nuclear localisation sequence (NLS; GATCCAAAAAAGAAGAGAAAGGTA) (figure 

modified from Grignani et al. 1998).  B) Graphical representation of the retroviral vectors created 

for this study.  
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Figure 2-3: shRNA S100A4 pHIV vectors used in study.  
shRNA vector maps showing sequences of interest A) p-LKO.2-puro (Mission®, Sigma-Aldrich, 

Poole, UK).  B) pHIV-EGFP:T2A:Puro-U6 (VectorBuilder, California, USA). U6 (RNA 

polymerase III U6 promoter), cppt (central polypurine tract), hPGK (human phosphoglcerate 

kinase eukaryotic promoter), puroR (puromycin resistance), SIN3’LTR (3’self inactivating long 

terminal repeat), f1 ori (f1 origin of replication), ampR (ampicillin resistance), pUC ori (pUC 

origin of replication), RSV 5’LTR (Rous Sarcoma virus 5’ long terminal repeat), ΨPsi (RNA 

packaging signal), RRE (Rev response element), RSV promoter (Rous sarcoma virus 

enhancer/promoter), Δ5' LTR (Truncated HIV-1 5' long terminal repeat), Ψ (HIV-1 packaging 

signal), U6 promoter Terminator (Pol III transcription terminator), hPGK promoter (Human 

Phosphoglycerate kinase 1 promoter), EGFP:T2A:Puro (EGFP and Puro linked by T2A), WPRE 

(Woodchuck hepatitis virus posttranscriptional regulatory element), ΔU3/3' LTR (Truncated 

HIV-1 3' long terminal repeat), SV40 early pA (Simian virus 40 Early polyadenylation signal), 

Ampicillin (Ampicillin resistance gene), pUC ori (pUC origin of Replication) 

shRNA A 

B 
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2.8 Protein extraction and quantification 

2.8.1 Total Protein extraction 

Frozen cell pellets were thawed on ice in the presence of 1μL of DNase (1μg/mL) 

(Sigma) for 5 minutes with regular tapping the tube to ensure cell pellet thoroughly mixed 

with DNase. Cells (1 x 106 cells/mL) were resuspend in 50 μL of homogenisation buffer 

(composed of 10 mM HEPES-KOH (Invitrogen), 10 mM 2-mercaptoethanol (Sigma), 1 

mM magnesium acetate (Fisons Scientific Equipment), 0.5 mM EDTA (Sigma), 0.5 mM 

EGTA (Sigma), 0.25 M sucrose (Sigma), 1 mM Na3VO4 (Sigma),1 complete mini EDTA, 

protease inhibitor cocktail [PIC] tablet per 10 mL (Roche), 1% v/v x100-Triton (Sigma)), 

incubated on ice for 30 minutes with occasional vortexing.  The cell lysate was 

centrifuged at 13,000 g for 5 min at 4oC.  The supernatant (cell lysate) was aspirated into 

a clean and pre-chilled 1.5 mL Eppendorf tube. Later, protein concentration of the 

supernatant determined by Bradford assay (2.8). 

 

2.8.2 Nuclear/Cytosol Extraction and Fractionation 

Nuclear and cytosol protein extraction was achieved using the Nuclear/Cytosol 

Fractionation kit (Biovision, California, USA).  Cells (2 x 106 cells/mL) were pelleted and 

washed twice with 20 mL Tris-buffered saline (TBS), followed by centrifugation for 10 

min at 200 x g.  Cells were subsequently resuspended in 200 μL cytosol extraction buffer 

A (CEB-A) containing 1x protease inhibitor cocktail (PIC) (Sigma) and 1mM 

dithiothreitol (DTT) and vortexed for 15 seconds and incubated on ice for 10 min.  This 

buffer contains PIC and DTT to reduce the samples and inhibit protease activity during 

protein extraction.  The supernatant was carefully aspirated and discarded.  11 μL of ice-

cold CEB-B was added and the sample was vortexed for 5 seconds and incubated on ice 

for 1 minute.  Following the incubation, cells were centrifuged for 8 minutes at 10,000 x 

g at 4°C.  
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2.9 Antibody optimisation and western blotting 

2.9.1 S100A4 antibodies optimisation 

Three commercial primary S100A4 monoclonal antibodies (mAb) were chosen 

and tested for optimal binding and specificity for S100A4: clone D9F9D (Cell Signaling 

Technology [CST], Danvers, USA); clone 1F12-1G7 (Novus Biological, USA); clone 

Ab183092 (Abcam, UK) (Table 2-1).  These antibodies were tested on western blot 

(Figure 3-2) using the cytoplasmic fraction of a small cohort of AML cell lines (NOMO-

1, ME-1, and THP-1).  A dilution factor of 1:1000 was used as per manufacturer 

instructions.  Subsequent experiments used S100A4 mAb from CST (clone D9F9D ; 

optimised between 1:1000 and 1:10,000 on cytoplasmic/nuclear fractions of ME-1 cells).   

 

2.9.2 His-Tag S100A4 recombinant protein 

A recombinant human S100A4 protein derived from E. coli- (Ala2-Lys101), with 

a C-terminal 6-Histidene tag (R&D Systems, Abingdon, UK) was purchased and used as 

a positive control for S100A4 M.W. on western blot (Figure 3-4).  A range of serial 

dilutions were analysed by dot blot to determine the maximum and minimum loading 

weights of His-Tag S100A4 for western blot analysis.  Subsequently, His-tag S100A4 

was probed with serial dilutions of mAb to S100A4 (clone D9F9D) between 1:1,000 and 

1:50,000 as shown in Figure 2-4.   Further, the loading concentration of His-Tag S100A4 

protein was optimised for loading weights of 20 and 30 ng coupled with increasing 

S100A4 mAb dilution (1:1,000, 1:10,000, and s1:50,000). 

 

2.9.3 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and electroblotting  

Protein electrophoresis for western blotting was performed using the NuPAGE® 

12% Bis-Tris Tricine GEL electrophoresis and electroblotting systems (ThermoFisher 

Scientific).  A maximum of 20 μg of protein extracts were denatured by incubation for 10 

minutes at 90°C in the presence of 2x sodium dodecyl sulphate (SDS) sample buffer and 

10x antioxidant.  Following centrifugation at 10,000 xg at 4°C for 1 minute.  In order to 

estimate the M.W. of proteins a 10-fold dilution of WesternSure® Pre-Stained 

Chemiluminescent Protein Ladder was used.  The Tricine SDS-PAGE gel was left 

equilibrate to RT.  Tricine running buffer (1x) was prepared from 10x stock.  500 μL 
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antioxidant reagent was added to 200 mL running buffer and was filled in the inner 

chamber of a NOVEX electrophoresis tank.  The samples were centrifuged for 5 minutes 

at 4°C prior loading on gel.  The Tricine gel was placed in the NOVE X-Cell IITM mini-

cell containing 1x Tricine running buffer in the lower chamber.  The electrophoresis was 

performed at 125 mA for 70 minutes.   

During electrophoresis, 1x Tricine transfer buffer containing 20% (v/v) methanol, 

1x NuPAGE® Tricine transfer Buffer and 1 mL antioxidant was prepared and used to 

soak blotting pads for 60 minutes.  The Polyvinylidene fluoride or polyvinylidene 

difluoride (PVDF) membrane (0.45 μm pore size) was also pre-soaked for 5-10 minutes 

in 100% methanol.  Following membrane incubation, the PVDF was washed with transfer 

buffer for 1 minute.  The gel was subsequently removed from the tank and moistened 

with transfer buffer. During this process, a blotting pad (or sponge) was soaked with 

transfer buffer and was carefully layered onto the moistened gel avoiding any air bubbles. 

The other side of the SDS-PAGE gel was also moistened with transfer buffer, before 

layering a pre-soaked PVDF membrane ensuring all trapped air bubbles were removed.  

The sandwiched between pre-soaked blotting pads, the SDS-PAGE gel and PVDF 

membrane (illustrated in Figure 2-5) was then inserted into an XCell II™ Blot Module. 

The chamber was filled with 1x Tricine transfer buffer and the outside of the tank filled 

with dH2O and protein transfer was performed over 1 hour at 30 V.  Following 

transblotting process, the membrane was washed with 20 mL of dH2O on a plate shaker 

for 5 min (x2) to remove residual gel piece and transfer buffer traces.  The water was 

drained off and the blot and proteins visualised using Ponceau S solution for 30 seconds 

(Sigma), in order to facilitate cutting of membrane if required.  The Ponceau S solution 

was drained off the membrane and the membrane was washed with dH2O as above.   

Subsequently, PVDF membrane was incubated on a plate shaker for 60 minutes 

at RT for the blocking step in TBS-T (Tris-buffered saline [TBS], 0.1% v/v Tween-20) 

and 2.5% w/v milk powder (Marvel), then washed for 15 minutes in TBS-T and then a 

further three times for 5 minutes in TBS-T. Afterwards, membrane was subsequently used 

for immunoblotting (2.9.4).   
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Figure 2-4: Diagram illustrates the distribution of His-Tag S100A4 protein serial 

molecular weights and serial dilutions of S100A4 mAb (CST, clone D9F9D) on dot 

blot. 
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2.9.4 Immunoblotting 

 Membranes were incubated overnight at 4°C, in 10 mL TBS-T containing 2.5% 

w/v milk powder, containing primary antibodies at concentrations described in (Table 

2-1).  Membranes were washed with 10 mL of TBS-T buffer for 15 minutes on a plate 

shaker followed by three subsequent 10 mL washes for 5 minutes.  Subsequent incubation 

of the membrane occurred at RT on a plate shaker in the presence of TBS-T containing 

1% w/v milk powder and secondary anti-mouse or anti-rabbit horse radish peroxide 

conjugated antibody (GE Healthcare), diluted 1:5000, for 60 minutes.  Following 

incubation, membranes were washed four times in TBS-T as above and target proteins 

were visualised using the ECL Advance Detection Kit (GE Healthcare), according to the 

manufacturer’s instructions.  Chemiluminescence was detected using a LAS-3000 image 

analyser (Fujifilm UK Ltd) and analysed using AIDA Image Analyser Version 4.19 

(Fujifilm UK Ltd).  To confirm equal loading of proteins the PVDF membrane was 

washed and reprobed as above using 1:20,000 dilution of anti-GAPDH (Clone 6C5, Santa 

Cruze, USA) for whole cell protein extraction, or anti-GAPDH for cytosol protein 

extraction and 1:40,000 dilution of anti-histone H1 (Clone AE-4, BioRad, UK) or 1:1,000 

of  H3 (Clone 9715, CST, UK) for nuclear protein extraction (Table 2-1).   

  

 

 

 

 

 

 

 

 

Figure 2-5: Diagram of transblotting sandwich set up 

 



Chapter 2 

 

 

56 

 

2.10 Co-Immunoprecipitation (co-IP) 

 To identify S100A4 binding partners in leukaemia cells, ME-1 cells were 

fractionated into cytosolic/nuclear as described above (2.8.2).  To achieve this, two co-

IP approaches were used as detailed below.  In order to retain Ca2+-based interactions 

between S100A4 and its protein binding partners, all co-IP buffers are supplemented 

with 100 µM CaCl2.  To provide negative control for Ca2+-based interactions, a similar 

set of co-IP experiments were conducted and all buffers used were supplemented with 

metal free chelator buffer (1 mM Na2EDTA) to strip Ca2+ ion. As illustrated below in  

Figure 2-6. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6: Experimental design of co-IP enriched with Ca2+ and depleted from Ca2+ 
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2.10.1 Direct co-IP 

 The direct co-IP is based on pre-immobilization of the antibody to the magnetic 

beads followed by incubation with protein lysate mixture (as illustrated in Figure 2-7A).  

Firstly, S100A4 (CST, clone D9F9D) or IgG1 isotype control (CST, clone DA1E mAb) 

antibodies were crosslinked to the beads.  To do this, the protein A Dynabeads 

(ThermoFisher Scientific, UK) were vortexed and 165 μL of beads (enough for 5 

immunoprecipitations) were placed into a 1.5 mL protein LoBind Eppendorf tubes, a 

magnet was applied and the supernatant (storage buffer) was removed.  The beads were 

then re-suspended in 165μL of PBST (v/v PBS + 0.02% Tween-20), 25 μg of S100A4 

antibody was added and the mixture was made up to 1 mL in PBST.  The tube was 

incubated at RT for 2 hours with rotation.  Following incubation, a magnet was applied 

to the tube and the supernatant was discarded.  The antibody-bound beads were washed 

three times in PBST with inverting.  The beads were then washed three times in coupling 

buffer (PBST + 0.2 M triethanolamine pH 9) before incubation with 1 mL freshly 

prepared dimethyl phthalate (DMP) solution (coupling buffer + 2 mM DMP) for 30 

minutes at RT with rotation.  Then, a magnet was applied, and the supernatant was 

discarded before repeating the incubation with fresh DMP solution.  The DMP solution 

was discarded and the beads were incubated for 30 min at RT with 1 mL of quenching 

buffer (PBST + 50mM ethanolamine).  The beads were washed three times in elution 

buffer (0.2 M glycine pH. 2.5, 0.01% Tween-20 pH. 2.5 dH2O) and then re-suspended in 

165 μL of TBST and stored at 4° C.  All steps unless otherwise specified were performed 

on ice.   

Following crosslinking of antibodies to beads, immunoprecipitation of S100A4 

and its binding partners was conducted.  First a preclearing step was conducted.  33 μL 

of IgG1 isotype control antibody-bound beads were placed in an Eppendorf tube and the 

supernatant was removed and replaced with 33μL of co-IP lysis buffer.  The protein 

lysates (1000 µg/mL) of were added and made up to 500μL in co-IP lysis buffer (1x PBS 

+ 0.015% v/v IGEPAL-40).  The tube was incubated for 6 hours in a cold room with 

rotation.  A magnet was applied and the supernatant (precleared lysate) was transferred 

to a clean tube.  Thirty-three μL of antibody-bound beads was added to the lysate and the 

tube was incubated overnight in the cold room with rotation.  The next day, a magnet was 

applied to the tube and the supernatant was transferred to a clean tube and stored at -80° 

C for use in western blotting analysis of immunoprecipitation efficiency (2.9). The beads 
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were washed 6 times with 500μL of TBST wash buffer with inverting and incubation on 

ice for 5 minutes.  To elute S100A4 and its binding partners from the beads, they were 

boiled in 2x SDS buffer (NuPAGE® 2xSDS, 50 nM NuPAGE® reducing agent and dH2O) 

at 95°C for 5 min. The eluted protein was stored at -20° C ready for LC/MS analysis 

(2.11). 

 

2.10.2 Indirect co-IP 

 Alternatively, an indirect co-IP approach was undertaken where the antibody was 

incubated with a “protein mixture bait” to form an immune complex with the target 

protein antigen then retrieved by the magnetic beads (as illustrated in Figure 2-7B).  

Protein lysates (1000 µg/mL) were prepared in co-IP lysis buffer (1x PBS/0.015% v/v 

IGEPAL-40) placed into a 1.5 mL protein LoBind Eppendorf tubes and incubated with 

25 µg of S100A4 mAb (CST, clone D9F9D) or IgG isotype matched control antibody 

(IgG mAb XP, clone: DA1E, CST) for 3 hours at 4 °C.  The magnetic beads (Dynabeads® 

Protein A, ThermoFisher Scientific, UK) were washed with 300 µL of wash buffer 3x 

times.  Following the final wash, the magnetic beads were blocked with 50 µL of co-IP 

lysis buffer + 1mg/mL BSA and incubated at RT for 15 minutes with rotation.  

Subsequently, both S100A4 and IgG control antibodies were cross-linked with magnetic 

beads and incubated for 2 hours at 4°C with rotation.  Following incubation, unbound 

proteins in S100A4 and IgG samples were washed off the beads and analysed by western 

blot to assess IP efficiency.  Bound S100A4 was eluted off the beads using 20 ml elution 

buffer (NuPAGE® 2xSDS, 50nM NuPAGE® reducing agent and dH2O) and samples 

were incubated at 95°C for 5 minutes.  The eluted protein was stored at -20° C.   

All steps unless otherwise specified were performed on ice.  All samples were 

electrophoresed and analysed by western blot as described above (2.9) using clone 

D9F9D to detect S100A4 expression.  To validate S100A4 co-IP candidate binding 

partners, reciprocal co-IP was conducted under same conditions.  S100A4 candidate 

binding partners were pulled down and confirmed whether S100A4 is pull down with 

them.  Co-IP efficiency and reciprocal co-IP validation were confirmed by western blot. 

 

2.10.3 Florescent staining of SDS-PAGE gel  

 To evaluate the co-IP efficiency, protein complexes were subsequently separated 

using SDS-PAGE gel and visualised within gel using SYPRO® Ruby (Sigma-Aldrich, 
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UK).   All washing and staining steps were performed by floating the gel face down on 

the solution with gentle agitating (on an orbital shaker at 50 rpm).  After electroblotting 

proteins, the Tricine gel is placed face down in a container with 100 mL of fix solution 

(7% v/v acetic acid, 10% v/v methanol) and incubated for 15 minutes.  Following fixing, 

gel was washed 3x in ultrapure water for 10 minutes each, before proceeding to the 

staining step.  Then gel was transferred to a clean container and 60 mL of SYPRO® Ruby 

gel stain was added agitate gently on an orbital shaker overnight.  Following staining, the 

Tricine gel was transferred to a clean container and washed in 100 mL of wash solution 

(1xPBS + 0.02% v/v Tween-20. PBS pH7.4) for 30 minutes.  The transfer step helps 

minimize background staining irregularities and stain speckles on the gel. Before 

imaging, the gel was rinsed in ultrapure water, a minimum of 2x times for 5 minutes each 

to prevent possible corrosive damage to the imager.  SYPRO® Ruby protein blot stain has 

two excitation maxima, one at ~280 nm and one at ~450 nm and has an emission 

maximum near 618 nm. The Tricine gel stained with the dye was visualized using a 300 

nm UV transilluminator.   

 

Table 2-6: co-IP’s buffers composition.  

Buffer Compositions 

A. Direct co-IP solutions 

Co-IP lysis buffer  1x PBS/0.015% v/v IGEPAL-40 

Wash buffer (PBST) 

 

1xPBS + 0.02% v/v Tween-20. PBS pH7.4.  

 

Coupling buffer  PBST + 0.2 M triethanolamine. pH 9 

Dimethyl phthalate (DMP) 

solution  

coupling buffer + 2 mM DMP 

Quenching buffer  PBST + 50mM ethanolamine 

Elution buffer 0.2M glycine pH2.5, 0.01% Tween-20 pH.2.5 dH2O 

B. Indirect co-IP solutions 

Co-IP lysis buffer 1x PBS + 0.015% v/v IGEPAL-40  

Wash buffer (PBST) 

 

1xPBS + 0.02% v/v Tween-20. PBS pH7.4.  

 

Elution buffer  2x Tricine SDS loading buffer and sample reducing 

agent 
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Figure 2-7: Illustrative diagram of difference between direct and indirect co-IP.   
A) Direct co-IP, antibody pre-immobilised with magnetic beads first then incubated with protein 

mixture. B) Indirect co-IP, protein mixture incubated with antibody first then bound Ab-protein 

mixture is pre-immobilised to magnetic beads.
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2.11 Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis 

Following co-IP of S100A4 and binding partners, samples were sent for LC/MS 

analysis at the proteomic facility at Bristol University. The complete co-IP/LCMS pipe 

line analysis is detailed in Figure 2-8.  Samples were separated using SDS-PAGE, with 

each sample being run approximately 1 cm into the separating gel. Each gel lane was then 

excised  and subjected to in-gel tryptic digestion using a DigestPro automated digestion 

unit (Intavis Ltd.).  The resulting peptides were fractionated using an Ultimate 3000 nano-

LC system in line with an LTQ-Orbitrap Velos mass spectrometer (Thermo Scientific).  

In brief, peptides in 1% (v/v) formic acid were injected onto an Acclaim PepMap C18 

nano-trap column (Thermo Scientific). After washing with 0.5% (v/v) acetonitrile 0.1% 

(v/v) formic acid peptides were resolved on a 250 mm × 75 μm Acclaim PepMap C18 

reverse phase analytical column (Thermo Scientific) over a 150 min organic gradient, 

using 7  gradient segments (1-6% solvent B over 1min., 6-15% B over 58 minutes, 15-

32%B over 58 minutes, 32-40%B over 5 minutes 40-90%B over 1 minute, held at 90%B 

for 6min and then reduced to 1%B over 1 minute) with a flow rate of 300 nL/minute.  

Solvent A was 0.1% formic acid and Solvent B was aqueous 80% acetonitrile in 0.1% 

formic acid.   

Peptides were ionized by nano-electrospray ionization at 2.1 kV using a stainless-

steel emitter with an internal diameter of 30 μM (Thermo Scientific) and a capillary 

temperature of 250°C. Tandem mass spectra were acquired using an LTQ- Orbitrap Velos 

mass spectrometer controlled by Xcalibur 2.1 software (Thermo Scientific) and operated 

in data-dependent acquisition mode.  The Orbitrap was set to analyse the survey scans at 

60,000 resolution (at m/z 400) in the mass range m/z 300 to 2000 and the top twenty 

multiply charged ions in each duty cycle selected for MS/MS in the LTQ linear ion trap.  

Charge state filtering, where unassigned precursor ions were not selected for 

fragmentation, and dynamic exclusion (repeat count, 1; repeat duration, 30s; exclusion 

list size, 500) were used.  Fragmentation conditions in the LTQ were as follows: 

normalized collision energy, 40%; activation q, 0.25; activation time 10ms; and minimum 

ion selection intensity, 500 counts.  The raw data files were processed and quantified 

using Proteome Discoverer software v1.4 (Thermo Scientific) and searched against the 

UniProt Human database (140000 sequences) using the SEQUEST algorithm.  Peptide 

precursor mass tolerance was set at 10ppm, and MS/MS tolerance was set at 0.8Da.  

Search criteria included carbamidomethylation of cysteine (+57.0214) as a fixed 
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modification and oxidation of methionine (+15.9949) as a variable modification.  

Searches were performed with full tryptic digestion and a maximum of 1 missed cleavage 

was allowed.  The reverse database search option was enabled, and all peptide data was 

filtered to satisfy false discovery rate (FDR) of 5% or 1%.   

 

2.12 Flow cytometry and data analysis 

 For flow cytometric analysis, a minimum of 10,000 - 50,000 events were collected 

using Accuri C6 instrument (BD Biosciences, Oxford, UK) and data analysed using FCS 

express v6 (De Novo, California, USA).  Cells to be analysed by flow cytometry were 

obtained from culture and centrifugated at 5000 rpm for 5 minutes. Subsequently, cells 

washed in 1 ml staining buffer (1xPBS+ 1% v/v BSA, 1% v/v Na-azide) per lxl06 cells, 

then centrifugated as above.  Next, cells were resuspended in 25 µL of staining buffer and 

incubated with primary stage antibodies as per experimental protocol.  For secondary 

stage staining, cells were washed as above and resuspended in 25 µL of secondary 

antibody and incubated.  All reactions were controlled with the appropriate isotype-

matched antibody.  Generally, forward scattered light (FSC) was used to determine size 

and side scattered light (SSC) the granularity. Bi-variate gating strategy applied to allow 

the exclusion of cell debris and other sub-cellular size detected events.  The threshold for 

GFP positivity was determined from the autofluorescence of identically treated mock-

transduced cultures.  Gating strategy was indicated in figure’s legends in apropbirate 

results sections. Immunophenotypic analysis of infected CD34+ cells were performed at 

the time points indicated above 2.3.5).   
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Figure 2-8: Graphical pipeline of co-IP/LCMS analysis of S100A4 binding partners in AML cell line (ME-1)  
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2.13 Bioinformatics analysis and online databases 

 The S100A4 mRNA expression data were analysed in normal haematopoiesis and 

AML abnormalities using the RNAseq data by The Cancer Genome Atlas (TCGA) data 

set utilised through BloodSpot database (Tomczak et al. 2015, Bagger et al. 2016) (URL: 

http://servers.binf.ku.dk/bloodspot/).  The proteomic data generated by LC/MS were 

analysed as per the data filtration strategy detailed below in Figure 2-9. The true peptide 

sequences identified by LC/MS were validated using “UniProt Knowledge” database 

(URL: https://www.uniprot.org/).  The Gene Ontology (GO) molecular functions (MF) 

and biological processes (BP) of S100A4 candidate binding partners were analysed using 

PANTHER14.1, the 2019_04 release of (based on UniProt Release 2019_04, Ensembl 

release 95 and Ensembl Genome release 42). (URL: http://www.pantherdb.org/). 

Protein-protein interaction (PPI) network analysis performed using STRING (version 

11.0) (URL: https://string-

db.org/cgi/input.pl?sessionId=T6th4zhbWCHE&input_page_show_search=on). 

 

2.14 Statistical Analysis 

 Significance of difference was determined using the Student’s paired t-test. 

Values of p <0.01 and <0.05 were considered significant differences.  All statistical 

analyses were conducted using GraphPad Prism (ver. 8) (GraphPad Software, California, 

USA).  Appropriate statistical tests used are labelled in figure legends.

http://servers.binf.ku.dk/bloodspot/
https://www.uniprot.org/
http://www.pantherdb.org/
https://string-db.org/cgi/input.pl?sessionId=T6th4zhbWCHE&input_page_show_search=on
https://string-db.org/cgi/input.pl?sessionId=T6th4zhbWCHE&input_page_show_search=on
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Figure 2-9:LC/MS Proteomic data analysis strategy.  
FDR; False Discovery Rate, #Peptide; displays the number of distinct peptide sequences in the 

protein group., #PSM; displays the protein abundance in the sample, #Area; displays the highest 

detected peptide signal, UniProt; The Universal Protein Resource (is a comprehensive online 

resource for protein sequence and annotation data), TrEMBL; Translated European Molecular 

Biology Laboratory Nucleotide Sequence Database; (is a computer-annotated unreviewed peptide 

sequence), Swiss-Prot; Translated Nucleotide Sequence Database; (is a manually reviewed 

peptide sequence on UniProt database).

Filter #1 

 

Filter #2 

 

Rank peptides 

list by #PSM 

 

 

Rank peptides 

list by #Area 

 

 

Analyse the top 25% of highly detected peptides  

 

Removal of peptides that are < 1 # Peptide 

Unreviewed Peptides 

by TrEMBL 

Excluded from the 

analysis 

 

Peptides that are ≥ 2 # peptide 

Reviewed Peptides Swiss-Prot 

Peptides that are 

 ≤ 1 # peptide 

Excluded from the 

analysis 

 

Filter out Unreviewed peptides on UniProt 

Database 

 

Candidate peptides from Ca2+
 

enriched samples  

Filter #3 

 

Filter #4 

 

Filter #5 

 

Filter #6 

 

Filter #7 

 

 

 

Final list of candidate peptides that have high Area and PSM scores 

 

Removal of peptides that are present in EDTA enriched samples from 

Ca+2 enriched samples 

Raw Proteomic  

Data of (-) Ca+2  

[EDTA]  

at 1% FDR 

 

Raw Proteomic  

Data of (+) Ca+2   

[Ca2Cl2] 

at 1% FDR 

 

Removal of peptides that are present in IgG samples from Ca+2 and 

EDTA samples 

Combined top 25% from two list from Filters #5 & # 6 and choose only 

peptides that have high Area and PSM scores. 



Chapter 3 

66 

 

 

Chapter 3 

The expression level and subcellular localisation 

of S100A4 protein in AML blasts and normal 

human CD34+ haematopoietic cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

67 

 

3 Chapter 3 - Introduction 

3.1 Overview 

 Recent studies have reported that dysregulation of key nuclear Transcription 

Factors (TF) are critical to AML development and progression (Dohner et al. 2015).  

Using iTRAQ coupled with mass spectrometery, our group previously analysed the 

nuclear proteome of minimally differentiated AML (subtype FAB M1) which has less 

developmental heterogeneity and can be developmentally matched to normal 

haematopoietic progenitor cells (CD34+ cells) (Kumar and Agrawal 2014).  Data from 

this study showed that several proteins (including TF such as CEBPA and WT1) were 

significantly dysregulated in the nuclear proteome. 

 Our group identified S100A4 as one of the most statistically significantly 

increased and highest fold changing proteins in AML blasts that are mislocalized 

compared to normal CD34+ nuclei.  S100A4 was significantly upregulated in the nuclei 

of 11/15 AML patients with an average fold increase of 4.4 (across all samples) when 

compared to controls (Alanazi et al. 2019).  Given that this protein was also found to be 

a downstream target of CEBPA it was thus identified as a top candidate for further study 

(Liu et al. 2014). 

 S100A4 is a member of the calcium binding super-family of EF-hand type which 

comprises 20 proteins clustered on chromosome 1q21 (Bresnick et al. 2015).  S100A4 is 

reported to be involved in a variety of intra- and extra-cellular processes including 

transcription and differentiation (Donato et al. 2013).  Moreover, overexpression of 

S100A4 is associated with tumour metastasis and tumour progression in pancreatic and 

breast cancers (Helfman et al. 2005, Ismail et al. 2008).  To exert its function, S100A4 

undergoes a conformational change upon Ca2+ binding leading to a change in structure 

which exposes protein binding sites that influence various intra- and extra- cellular 

signalling pathways (Lewit-Bentley and Rety 2000, Santamaria-Kisiel et al. 2006).  

Moreover, S100A4 has been shown to interact with key proteins in known pathological 

signalling pathways in cancer such as p53 (Orre et al. 2013, van Dieck et al. 2009). 

Aberrant expression of S100A4 proteins in solid tumours has been associated with either 

poor clinical outcome or metastasis (Helfman et al. 2005).  Further, several studies have 

linked mislocalised nuclear expression of S100A4 in solid tumours such as breast, 
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ovarian, and colorectal cancers to the aggressiveness, progression, and poor outcomes of 

these types of cancer (Kikuchi et al. 2006, Boye et al. 2010, Egeland et al. 2017). 

 Whilst S100A4 is widely accepted in the literature to have a key role in mediating 

proliferation and metastasis of various types of solid tumours, fewer studies have shown 

that overexpression of S100A4 plays a role in haematological malignancies.  In AML, 

Preferentially Expressed Antigen in Melanoma (PRAME) is a tumour associated antigen 

found to induce apoptosis by negatively regulating S100A4 expression and positively 

regulating p53 in AML cell line [KG-1] (Xu et al. 2016).  Moreover, overexpression of 

S100A4 has been shown to reduce chemosensitivity in CML (He et al. 2017).  However, 

the pathophysiological role of S100A4 as well as its subcellular distribution in 

haematological malignancies (as well as normal haematopoiesis) remains largely 

unknown. 

 

3.2 Aims and objectives 

The main objective of experiments described in this chapter was to determine the 

expression level and subcellular localisation of S100A4 during normal haematopoiesis 

and in AML blasts, principally: 

• Optimisation and validation of the detection of S100A4 by western blot. 

• Determination of the expression level and subcellular localisation of S100A4 

during normal haematopoiesis, in differentiated myeloid subpopulations, and 

in normal bone marrow controls. 

• Determination of the expression level and subcellular localisation of S100A4 

in AML blasts. 

• Investigation of the correlation between S100A4 expression and clinical 

patient outcomes  
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3.3 Results 

3.3.1 S100A4 is detected in AML cell lines by three commercial antibodies 

 In order to detect S100A4 protein expression in AML blasts, all the detection 

conditions were initially optimised as illustrated in Figure 3-1.  Firstly, three commercial 

monoclonal antibodies were assessed and compared using the cytoplasmic fraction of a 

small cohort of AML cell lines (Figure 3-2A).  Clone: D9F9D from Cell Signalling 

Technology (CST) showed the greatest signal to noise ratio when compared with two 

alternative clones.  A dilution of 1:1,000 of D9F9D as per manufacturer recommendation 

was selected to detect S100A4 protein expression (Figure 3-2B). 

 A preliminary analysis of S100A4 protein expression in cytoplasmic and nuclear 

fractions of AML cell lines was performed (Figure 3-3).  Interestingly, a heavier 15 kDa 

band was visible in the nuclear compartment of ME-1, HEL, and K562 raising doubts as 

to the specificity of the mAb.  In order to provide a positive peptide control and adequately 

control for non-specific binding, a recombinant human His-Tag S100A4 protein fragment 

was also used.  Initially His-tag S100A4 loading protein weight on the PAGE was 

optimised using dot blotting coupled with electrophoresis. A concentration of 30 ng of 

HisTag-S100A4 protein was found to be the optimal amount of protein to load on the gel 

when detecting with 1:1,000 D9F9D mAb (Figure 3-4A & B).  His-tag S100A4 migrated 

at an apparent weight of 8 kDa. 

 These results suggest that S100A4 antibody (clone D9F9D, CST) has optimal 

binding capacity when used at a 1:1,000 dilution coupled with 30 ng of His-Tag S100A4 

as positive control.
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Figure 3-1: Optimisation work-flow diagram for detection of S100A4 expression  in 

AML. Illustrative diagram shows the optimisation work-flow of S100A4 detection conditions. 

WB; Western Blotting, IP; Immunoprecipitation, MS; Mass Spectrometry.   
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Figure 3-2:Optimisation of S100A4 protein detection in AML cell lines using western 

blot.  
A) Expression of cytoplasmic S100A4 protein in three AML cell lines using commercial 

antibodies. All antibodies in this comparison were used as per the supplier recommended 

concentration. B) Example immunoblots illustrating ME-1 cytosolic (C) and nuclear (N) S100A4 

expression using increasing dilution of anti-S100A4 mAb (clone: D9F9D, CST).  The 

housekeeping protein GAPDH was used as a loading control. 
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Figure 3-3:Expression of S100A4 in cytoplasmic and nuclear fractions of AML cell 

lines.  
Example immunoblot of S100A4 expression in AML cell lines fractionated into cytoplasmic 

(C) and nuclear (N) subcellular compartments.  S100A4 was immunoblotted with 1:1000 CST, 

clone: D9F9D. Membranes were reprobed with GAPDH and histone (H3) as loading control 

and to assess fractionation efficiency.  
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Figure 3-4:Optimisation of His-Tag S100A4 protein detection for use as a positive 

control.  
A) Representative dot blot showing serial loading concentrations of His-Tag S100A4 using 

increasing dilution factors of anti-S100A4 mAb.  B) Optimization of His-Tag S100A4 protein 

loading weight coupled with increasing S100A4 mAb concentration (CST, clone: D9F9D). 
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3.3.2 Confirmation of S100A4 mAb specificity  

3.3.2.1 Validation of immunoprecipitation of S100A4 

 To provide further evidence that mAb CST clone D9F9D specifically detects 

S100A4 at 8 kDa in our electrophoresis system, IP coupled with mass spectrometry was 

performed.  Using ME-1, an AML cell line with high levels of cytoplasmic and nuclear 

S100A4 protein, IP of the nuclear and cytoplasmic protein fraction was performed, and 

validation of this protocol was confirmed by western blot.  As shown in Figure 3-5, the 

level of S100A4 protein expression at 8 kDa is reduced in the nuclear fraction in the IP 

supernatant and is associated with an increase in S100A4 expression in the IP eluted 

sample.  This suggests that the IP worked as most of the nuclear S100A4 was eluated off 

the beads.  Thus, the upper ambiguous band was not pulled down with S100A4 Ab and it 

can still be seen at 15 kDa in the IP supernatant lane (Figure 3-5).  However, in the eluated 

lane, S100A4 protein was detected by S100A4 Ab (CST, clone; D9F9D) as a single band 

runs at 8 kDa (Figure 3-5). 

 In contrast, IP was less efficient in the cytoplasmic fraction.  As expected, in the 

IgG control reaction, no detectable S100A4 protein was eluated from the IgG supernatant 

sample (Figure 3-5).  Furthermore, light and heavy chains (25 and 50 kDa respectively) 

provide evidence that the protein elution has occurred and S100A4 and IgG antibodies 

had dissociated from the magnetic beads.  Therefore, the binding specificity of S100A4 

antibody from CST (clone D9F9D) was confirmed by immunoprecipitation as the 

antibody bound specifically to S100A4 which was detected on western blot as a single 

band to apparent weight of 8 kDa.  

 

3.3.2.2 S100A4 expression determined by mass spectrometry 

 Proteins within the IP fractions above were separated using Tricine SDS PAGE 

and visualised with Coomassie Blue (Figure 3-6A).  Three protein bands in the region 8-

15kDa were detected in the nuclear IP Eluate fraction (Figure 3-6A).  These three bands 

were excised from the gel and analysed by LC-MS.  Using a 1% FDR, band #1 had the 

highest abundance of S100A4 (PSM Score = 36) as compared to bands #2 and #3 (PSM 

Scores = 11 and 8 respectively) (Figure 3-6B) (full MS data are presented in attached 

CD). 
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 Therefore, mass spectrometry analysis provided further confidence of the true 

molecular weight of S100A4 as shown by the abundance of the 8 kDa band.  Further, LC-

MS analysis identified “SUMO-conjugating enzyme” (UBC9) in the band #3 dataset 

(UniProt accession # P63279).  UBC9 enzyme functions by catalysing the covalent 

attachment of ubiquitin-like proteins such as SUMO1, SUMO2, SUMO4, and SUMO5 

to the target protein in coordination with E3 Ligase (Wilson 2017).  The identification of 

UBC9 in band #3 may explain the higher weight shift detected in previous western blots 

(Figure 3-3). 

 

3.3.3 S100A4 expression levels and subcellular localisation in AML cell lines. 

 Using the Cancer Cell Lines Encyclopaedia (CLLE), the overall levels of S100A4 

mRNA in AML cell lines were examined.  S100A4 is highly expressed in most of the 

AML cell lines used in this study as shown in Figure 3-7A.  However, mRNA levels do 

not always correspond to protein levels nor to the subcellular localisation as discussed in 

3.4.2.2. 

 Having optimised and validated the expression of S100A4 in a small cohort of 

AML cell lines, this study next analysed the expression levels and subcellular localisation 

of S100A4 in a larger cohort of 10 AML cell lines by western blot (Figure 3-7B).  Nearly 

all of the cell lines analysed expressed S100A4 (9/10) with nuclear S100A4 protein 

expression being demonstrated on 6/10 (60%).  ME-1, HEL, NOMO-1, THP-1, OCI 

AML-2, and U937 cell lines showed expression of S100A4 in both nuclear and 

cytoplasmic compartments.   However, Mv4;11 and HL-60 cell lines showed expression 

of S100A4 only in the cytoplasmic compartment, whereas the Kasumi-1 cell line showed 

less overall expression in both compartments.  S100A4 expression was undetectable in 

KG-1 cells (Figure 3-7B).  These data show that these cell lines can provide potential 

models for subsequent functional studies to investigate the effects of overexpressed/ 

knocked down S100A4 on proliferation, progression, and apoptosis (4.3.4 and 4.3.5). 
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Figure 3-5:S100A4 mAb specificity is validated by immunoprecipitation 
 Immunoblot demonstrates the immunoprecipitation of S100A4 protein with S100A4 antibody 

(CST, clone: D9F9D) from ME-1 Cytosolic (C) and Nuclear (N) compartments. Upper blot image 

shows the breakdown of IgG control and S100A4 antibodies (Heavy and Light Chains) upon IP 

elution.  Lower blot image shows S100A4 Ab (CST, clone D9F9D) specificity as it was bound to 

S100A4 in the “IP Eluate” lane detected as a single band migrating at an apparent molecular 

weight of 8 kDa.  Upper blot image exposure (30 seconds) due to image oversaturation, lower 

image exposure (20 minutes). 

H
is

-T
ag

 S
1
0
0
A

4
 (

3
0
 n

g
) 

IP
 E

lu
at

e 

 

C N 

Ig
G

 E
lu

at
e 

 

C N 

IP
 S

u
p
er

n
at

an
t 

 

C N 

Ig
G

 S
u
p
er

n
at

an
t 

 

C N 

IP
 I

n
p
u
t 

 

C N 

Light Chain 

 

Heavy Chain 

 

S100A4 

(8 kDa) 

Ambiguous  

Band (15 kDa) 

 



Chapter 3 

77 

 

 

  

 

 

 

 

 

 

 

 

   

  

 

 

 

 

 

 

 

 

 

Figure 3-6: Validation of S100A4 expression at 8kDa by mass spectrometry.   

A) Immunoprecipitated proteins from (Figure 3-5) using S100A4 antibody were electrophoresed 

using 20% Tricine-SDS PAGE and visualised with Coomassie Blue. Three distinct bands (see 

(A)) in the IP Eluate lane were extracted from the gel and analysed by LC-MS.  B)  LC-MS 

identified that the highest abundance of S100A4 in band #1 ran at 8 kDa. S100A4 abundance is 

represented in MS by PSM score (This displays the total number of identified peptide sequences) 

of S100A4 detected in each band. 
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Figure 3-7: S100A4 mRNA expression levels and subcellular localisation in AML cell lines. 
 A) RNA-seq data showing that S100A4 mRNA levels are upregulated in most AML cell lines. Y-axis RPKM (Reads Per Kilobase Million).  B) Example 

western blot showing subcellular expression of S100A4 from AML cell lysates; Cytosolic (C) Nuclear (N). Membranes were probed with S100A4 mAb 

(clone D9F9D, CST) and reprobed with GAPDH and histone (H3) to ensure equal loading and assess fractionation efficiency.  
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3.3.4 S100A4 expression levels and subcellular localization in normal 

haematopoietic cells. 

 To establish the endogenous expression levels of S100A4 in normal 

haematopoiesis, mRNA expression data from haematopoietic cells was analysed.  

Analysis of transcriptomic data that has been generated in a previous study (Tonks et al. 

2007) confirmed that S100A4 is differentially expressed in normal human CD34+ cells 

compared to unipotent progenitors derived from cord blood CD34+ cells (Figure 3-8A).  

Erythrocytes and monocytes upregulate S100A4 expression; conversely, CD34+ cells and 

granulocytes have less expression (Figure 3-8A).  The publicly available database 

“BloodSpot” (Bagger et al. 2016) in combination with The Cancer Genome Atlas 

(TCGA) data set (Tomczak et al. 2015) also showed that expression of S100A4 appears 

to increase with HSC differentiation (Figure 3-8B).  Although transcriptomic data provide 

insights into S100A4 transcriptional patterns in normal haematopoiesis, they do not 

delineate the subcellular distribution of S100A4 expression. 

 To further investigate S100A4 subcellular localisation, normal CD34+ cells were 

isolated from neonatal cord blood and fractionated into cytoplasmic/nuclear lysates at day 

zero.  Further, CD34+ cells were grown to day six in appropriately supplemented primary 

cell medium.  Unilineage progenitors (monocytes, erythrocytes, and granulocytes) were 

isolated by a positive selection process (Figure 3-9).  Western blot analysis of S100A4 

expression and subcellular localization in CD34+ cells shows significant cytosolic 

expression levels with undetectable nuclear expression (Figure 3-10A).  Similarly, 

Monocytes and erythrocytes showed cytosolic expression of S100A4 with no detectable 

S100A4 nuclear expression (Figure 3-10B) .In support of the transcriptomic data, 

granulocyte progenitors appear to have less S100A4 expression which is restricted to the 

cytosol.  Analysis of normal human bone marrow also showed that S100A4 was 

expressed only in the cytosol (Figure 3-11).   

Taken together, these data suggest that S100A4 is transcriptionally regulated 

during differentiation, but that protein expression remains restricted to the cytoplasm in 

normal human haematopoietic cells. 
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Figure 3-8: S100A4 mRNA Expression Patterns in normal Haematopoiesis. 
Normalised microarray data showing log2 mRNA S100A4 expression in human haematopoietic 

cells.  A)  S100A4 expression in normal human CD34+ cells and MACS isolated haematopoietic 

progenitor subsets (day 6 of culture from CD34+ cells); Monocytes (CD14
hi
, CD36

lo
), 

Erythrocytes (CD36
hi
, CD14

lo
), and Granulocytes (CD36

lo
, CD14

lo
) (represented by 22 283 probe 

sets by Tonks et al. 2007)   (n=4).   B) S100A4 mRNA expression in normal haematopoiesis using 

the TCGA dataset probe set: 203186_s_at, (Bagger et al. 2016).  S100A4 mRNA levels are lower 

in bone marrow derived HSCs compared to committed myeloid progenitors HSC_BM; 

Hematopoietic stem cell from Bone Marrow, early HPC_BM; Hematopoietic progenitor cell from 

Bone Marrow, CMP; Common myeloid progenitor cell, GMP; Granulocyte monocyte 

progenitors, MEP; Megakaryocyte-erythroid progenitor cell, PM_BM: Promyelocyte from bone 

marrow, MY_BM; Myelocyte from bone marrow, and Mono; Monocytes.
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Figure 3-9: Purification of individual lineages expressing S100A4 used in Affymetrix 

microarray analysis and western blot.    
Representative density plots of human progenitor cells enriched for specific lineages on day 6 of 

culture using a MiniMACS depletion strategy. Quadrants delimit background isotype staining.  
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Figure 3-10 : S100A4 protein is differentially expressed in normal haematopoietic 

lineage and restricted to the cytosol.   
Example western blots showing S100A4 protein expression in human haematopoietic cells. A) 

S100A4 expression in cytosol and nuclear fractions of normal human CD34+ cells (n=2). B) 

Expression patterns of S100A4 in differentiated sub-lineages of HSPCs derived from cord blood 

grown to day 6; Monocytes (CD14
hi
, CD36

lo
), Erythrocytes (CD36

hi
, CD14

lo
), and Granulocytes 

(CD36
lo
, CD14

lo
).  Immunoblots were reprobed with GAPDH and histone (H3) to ensure equal 

loading and assess fractionation efficiency. Cytosolic (C) Nuclear (N). Cord Blood (CB) 
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Figure 3-11: S100A4 Protein expression is restricted to the cytoplasm in bone 

marrow derived haematopoietic cells.  
Western blot showing S100A4 expression and subcellular localisation in normal human bone 

marrow samples (n=5), Cytosolic (C), Nuclear (N). Immunoblot was reprobed with GAPDH and 

histone (H3) to ensure equal loading and assess fractionation efficiency.   

 

 

S100A4 

8 kDa 

  

GAPDH 

37 kDa 

  

B
M

-1
 

C N 

Histone H3 

~18 kDa 

  

B
M

-2
 

C N 

B
M

-3
 

C N 

B
M

-4
 

C N 

B
M

-5
 

C N 



Chapter 3 

84 

 

3.3.5 S100A4 expression levels and subcellular localization in AML patients 

(FAB M1) and (FAB M4)  

 In the previous section, I showed that S100A4 expression is only detected in the 

cytoplasmic compartments of normal CD34+ cells and differentiated myeloid progenitors. 

Thus, the overexpression and mislocalisation of S100A4 to the nucleus of tAML patient 

samples may suggest that S100A4 plays a role in AML development or progression.  

Initially, to determine whether S100A4 is overexpressed in AML, I analysed S100A4 

mRNA expression levels across different AML subtypes in comparison to normal 

haematopoietic stem cells (HSC).  To do this analysis, the BloodSpot® database was 

utilised using mRNA data derived from a high quality AML data set derived from The 

Microarray Innovations in LEukemia (MILE) study (Kohlmann et al. 2008, Haferlach et 

al. 2010).  As shown in Figure 3-12, S100A4 is significantly overexpressed across 

multiple AML molecular subtypes (2-8 fold) compared to normal HSCs.  For example, 

S100A4 is significantly overexpressed in these AML molecular abnormalities such as 

t(15;17) p<0.05, inv(16)/t(16;16) p<0.001, t(8,21) p<0.01, t(11q23)/MLL p<0.001, and 

AML with complex cytogenetics p<0.001 (Figure 3-12).  

 However, examining the expression levels of S100A4 on the transcriptomic level 

is not informative enough in terms of subcellular distribution which in this case is very 

important.  Thus, S100A4 expression and subcellular localisation is confirmed at the 

protein level.  AML blasts from two differentiation stages: minimally differentiated (FAB 

M1) and myelomonocytic (FAB M4) were analysed by western blot with their matching 

controls; CD34+ cells and CD14+ cells respectively.   Given the clear potential for FAB 

subtypes to be misapplied, FAB designations were confirmed by flow cytometry using 

double stains of lineage-specific markers (CD14+/CD15+) and CD34+ (Figure 3-13A and 

Figure 3-14A respectively). 

 Minimally differentiated AML blasts (FAB M1) which have less developmental 

heterogeneity and can be an appropriate match to normal CD34+ cells were analysed by 

western blot for S100A4 expression and subcellular localisation.  As mentioned in section 

(1.5), I was able to confirm the preliminary findings that S100A4 is not only 

overexpressed but also mislocalised into the nucleus in AML patients’ samples.  A total 

of 24 AML patients samples (FAB M1) were fractionated into cytoplasmic and nuclear 

lysates and analysed by western blot.  The results show that S100A4 is overexpressed in 

75 % of  AML patient samples (18/24) (Figure 3-13B).  However, one of main 
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observations of this study is that S100A4 is mislocalised to the nucleus as compared to 

normal CD34+ cells which show only cellular expression of S100A4.  In the AML 

samples analysed in this study, 83% of AML patients (20/24) showed mislocalised 

expression of S100A4 to the nucleus (Figure 3-13B).  This study further analysed AML 

samples from myelomonocytic AML blasts which were characterised as FAB M4.  

Similarly, nuclear S100A4 protein was mislocalised in 44% of AML patient samples (4/9) 

when compared to normally-differentiated monocytes (CD14+) (Figure 3-14B). 

 Taken together these results validated the preliminary nuclear proteome study 

outcomes (Tonks et al. 2007) which suggested that S100A4 is upregulated in the nuclear 

compartments.  However, western blot analysis shed some light on the importance of 

mislocalisation of S100A4 in the nucleus to AML development.
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Figure 3-12:S100A4 is overexpressed in AML sub-types. 
S100A4 is significantly overexpressed across multiple AML molecular abnormalities (n=296) as 

compared to normal HSC (student t-test * denotes p<0.05; ** denotes p<0.01; *** denotes 

p<0.001). (TCGA dataset; Normal hematopoiesis with AMLs probe set 203186_s_at). (Bagger et 

al. 2016) Figure adopted from http://www.bloodspot/.com.eu; Data Accessed on 20/01/2019  
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Figure 3-13: Overexpression and mislocalization of S100A4 in the nucleus of AML 

patients.  
A) Example density plot of FAB M-1 subtypes classification by flow cytometry.  FAB subtype 

determined for minimal differentiation by examination of cell surface markers (CD34+) and 

(CD14+/CD15+) normally associated with myeloid differentiation.  Quadrants delimit background 

isotype staining.  B) Example of western blot for S100A4 protein expression and mislocalisation 

in AML blasts FAB M-1 (n= 24).  AML blasts FAB M-1 blotted with differentially matched 

control CD34+ cells.  CD34+; Haematopoietic Progenitor Cells, CB; Cord Blood. GAPDH and 

Histone demonstrate the purity/relative loading of cytosolic and nuclear fractions respectively
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Figure 3-14: Overexpression and mislocalization of S100A4 in the nucleus of AML 

patients.  

A) Example density plot of FAB M-4 subtypes classification by flow cytometry.  FAB 

subtype determined for minimal differentiation by examination of cell surface markers 

(CD34+) and (CD14+/CD15+) normally associated with myeloid differentiation.  

Quadrants delimit background isotype staining.  B) Example of western blot S100A4 

protein expression and mislocalisation in AML blasts FAB M4 (n= 9). AML blasts FAB 

M4 blotted with differentially matched control CD14+ cells isolated from cord blood. 

CD34+; Haematopoietic Progenitor Cells, Mono; Monocytes (CD14+). GAPDH and 

Histone demonstrate the purity/relative loading of cytosolic and nuclear fractions 

respectively.
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3.3.6 Correlation of upregulated S100A4 to patients’ survival, prognosis, and 

outcomes 

 

 Aberrant S100A4 expression has been associated with poor patient survival and 

outcomes in many solid tumour types (Zhao et al. 2013, Kho et al. 2012).  S100A4 mRNA 

data from the MILE study, BloodSpot database was utilised to examine whether S100A4 

mRNA expression can be an independent predictor of patients’ overall survival (OS).  

Results show that upregulated S100A4 is associated with poor survival rates in AML 

patients (p= 0.0118) (Figure 3-15).   However, Bloodspot survival analysis does not take 

into account those patients with favourable risk AML such as t(15;17) and t(8;21) and 

inv(16) AML nor the type of treatment they received to stratify them into intensively and 

non-intensively treated patients.  Here, we utilised the TCGA data (Ley et al. 2013) to 

analyse the effect of upregulated S100A4 mRNA on overall survival of AML patients 

with exclusion of AML patients who have t(8;21) and t(15;17) abnormalities from the 

dataset.   As shown in Figure 3-16, Kaplan-Meier plot shows that higher S100A4 

expression is associated with poor overall survival in AML patients (p= 0.01). 

 Further, the overall survival analysis does not take into account several 

confounding variables that are known to be associated with clinical outcome including 

cytogenetics, WBC, and Age (Dohner et al. 2015).  Therefore, we used a transcriptomic 

data set derived from the MILE study group, of which Cardiff University’s sample 

collection forms part, (Haferlach et al. 2010) to determine the association of S100A4 

expression with clinical outcomes in combination with these factors.  The effects of 

S100A4 mRNA levels on AML patient outcomes was assessed by conducting a 

correlation analysis test.  As shown in Figure 3-17, our analysis shows that there is no 

correlation between overexpressed S100A4 mRNA and patient outcomes (p-value= 0.7).  

However, the sample size of our mRNA data set is small (n=128); to see such an effect 

on patients’ outcomes the sample size has to be increased. In Summary, S100A4 mRNA 

expression can be used as an independent prediction tool to assess the overall survival 

rates in AML patients.  To gain insight on whether S100A4 expression correlates to 

patients’ outcomes, the sample size may need to be increased to detect such correlation.  
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Figure 3-15:Overexpressed S100A4 is associated Poor Overall Survival Rate in 

AML Patients. 
 Kaplan–Meier plot of the overall survival in leukaemia patients who have high S100A4 gene 

expression vs low S100A4 gene expression. (TCGA dataset; Normal haematopoiesis with AMLs 

probe set 203186_s_at) from the MILE study. (Haferlach et al. 2010). Figure adopted from 

http://www.bloodspot/.com.eu; 
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Figure 3-16:Upregulated S100A4 mRNA levels is associated poor overall survival 

rate in AML patients.  
Kaplan–Meier plot of the overall survival in AML patients who have high S100A4 gene 

expression vs low expression of S100A4 gene expression. (p-value = 0.01). S100A4 mRNA is 

derived from TCGA data (Ley et al. 2013) from cbioportal.org database 
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Figure 3-17:Overexpressed S100A4 mRNA does not correlate with AML patient 

outcomes.  
Forest plot of correlation of S100A4 mRNA of upregulated S100A4 with patients’ outcomes 

(n=128), odd ratio with CI 95%, (p-value= 0.7).  Patients’ outcomes; S100A4 mRNA, Gender: 

male, Secondary AML, Ratio of WBC count, Log WBC, Sub-Group, and Age. Figure kindly 

provided by Prof. Robert Hills (Head of Clinical Trial Centre) 
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3.4 Discussion 

 The main objective of this chapter was to determine the expression level and 

subcellular localisation of S100A4 during normal haematopoiesis and in AML blasts.  To 

achieve this aim it was necessary to optimise our western blotting protocols to enable the 

analysis of such a small molecular weight protein as S100A4.  This section discusses the 

approach taken to optimise the conditions for western blot as well as some of this issues 

that were encountered throughout the process.  The subsequent discussion in the chapter 

focuses on the main abnormalities observed in AML with regard to S100A4 expression, 

S100A4 mislocalisation to the nucleus of AML blasts and discussion of whether S100A4 

expression affects patient outcome. 

 

3.4.1 Optimisation of S100A4 protein detection 

 S100A4 is a small protein of 8-11 kDa and shares key structural features with 

other family members such as EF hand.  More specifically, the structure of Ca2+-bound 

S100A4 (active form) displays a similar protein topology to the other members of the 

S100 family (Pathuri et al. 2008).  Therefore, it is important to validate an antibody that 

has high sensitivity/specificity capacity to detect S100A4 with outcross reacting with 

structurally closely related members of the S100 family.  Hence, S100A4 clone: D9F9D 

(CST) emerged as the most sensitive antibody amongst the other antibodies tested.  

D9F9D is a monoclonal antibody that binds to a specific S100A4 epitope.  Monoclonal 

antibodies are known for less batch-to-batch variability compared with polyclonal 

antibodies which are also more likely to bind non-specifically as they bind to many 

epitopes (Hanack et al. 2016), although polyclonal antibodies do tend to have a higher 

overall binding affinity for their targets in IP (Marcon et al. 2015).  Ideally, the specificity 

of the antibody can be determined by the presence of single band in a complex biological 

sample at the expected molecular weight in a western blotting system (Signore et al. 

2017). 

 Therefore, we applied our optimised conditions (3.3.1) to the subsequent analysis 

of S100A4 expression in a small random cohort of AML cell lines fractionated into 

nuclear and cytoplasmic lysates.  Whilst the cytosolic S100A4 protein appeared as a 

single band, nuclear lysates demonstrated two bands that migrated to approximate 

molecular weights of 8 kDa and 15 kDa (Figure 3-3).  The inclusion of a recombinant 

human S100A4 peptide provided further evidence of the specificity of S100A4 mAb as 
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the resulting band migrated to an apparent weight of 8 kDa.  To resolve the ambiguity 

around the expression of S100A4 appearing at either 8 or 15kDa, immunoprecipitation 

followed by mass spectrometric (IP-MS) validation was performed on extracts of AML 

cell line (ME-1).  The ME-1 cell line was chosen due to its prominent expression of 

S100A4 in the nucleus (Figure 3-7).  IP-MS analysis provided confirmation that S100A4 

mAb (CST, Clone: D9F9D) bound specifically by pulling down S100A4 efficiently 

(Figure 3-6A).    Analysis of these “pull downs” using PAGE coupled with Coomassie 

Brilliant Blue to visualise the proteins showed 3 bands (Band# 1= at ~ 8 kDa, Band# 2= 

at ~ 12 kDa, and Band# 3=   at ~ 15 kDa) (Figure 3-6A).  The antibody specificity was 

determined by the relative abundance of S100A4 represented by MS PSM score (displays 

the total number of identified peptide sequences) in eachof the three bands excised from 

the gel.  Thus, MS results showed that S100A4 was predominantly detected at ~ 8 kDa 

(Band# 1, PSM score= 36) which confirms the specificity S100A4 mAb. 

 To provide further confidence of the true molecular weight of S100A4 amongst 

the three bands detected, mass spectrometry analysis of the abundance of S100A4 in each 

band represented by PSM score was performed.  MS results showed that band# 1 

(detected at~ 8 kDa) has the highest abundance of S100A4 (PSM score= 36) (Figure 

3-6B) which indicates the true molecular weight of S100A4.  Further evidence of S100A4 

mAb (CST, Clone: D9F9D) specificity was elucidated by functional studies.  When 

S100A4 was ectopically overexpressed in AML cell lines, the S100A4 mAb bound 

specifically to overexpressed S100A4 as well as to endogenous S100A4 (Figure 4-6).  

Conversely, when S100A4 was knocked down, the S100A4 mAb did not bind to other 

members of the S100A family in the absence of S100A4 (Figure 4-15).  Given that 

S100A4 has been detected at higher molecular weights (band #2 at ~12 kDa and band #3 

at ~15 kDa) by S100A4 Ab (CST, clone: D9F9D) this raises the question of what causes 

the S100A4 molecular weight shift in electrophoretic mobility.  There are several possible 

explanations in this case; one possible reason could be that S100A4 is post-translationally 

modified (PTM) and in turn the PTM group adds an extra molecular weight that can be 

detected at a different weight level.  Using PTM prediction tools online such as 

PhosphoSitePlus.org identified several PTMs in S100A4 such as phosphorylation, 

sumoylation, ubiquitination, and acetylation sites. 

 Thus, it has been reported that intracellular S100A4 is sumoylated by SUMO1 at 

two sumoylation sites (Lys22 and Lys96) in order to be translocated to the nucleus to 
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regulate the expression of MMP-13 upon IL1β stimulation (Miranda et al. 2010).  Our 

MS analysis of the 3 bands excised from the gel identified UBC9 (also known as SUMO 

E2) a SUMO catalytic enzyme in the dataset of band #3 only suggesting that S100A4 

may be sumoylated.  However, MW of SUMO proteinscan range between 10-15 kDa 

which may add a substantial weight to S100A4 MW (8-12 kDa) that may run to a much 

higher weight level than observed at 12 and 15 kDa.  Thereby, S100A4 sumoylation is 

unlikely to be the reason for the higher bands detected by S100A4 Ab on western blot. 

 Another possible explanation could be that the secondary bands detected at 12 and 

15 kDa are dimer forms of Ca2+ bound S100A4 altering the electrophoretic mobility.   

Although S100A4 can be present in monomeric form, binding the EF-hand to Ca+ 

promotes dimer formation in the S100A4 structure which is necessary to expose target 

binding domains in an antiparallel orientation on the face of the dimer (Donato et al. 

2013).   The dimer forms of S100A4 may thus appear on western blot with molecular 

weights approximately twice the expected molecular weight.  A further technical 

explanation could be that S100A4 can still preserve multimeric forms even after SDS and 

heat treatment.  It has been reported that proteins that have hydrophobic patches (such as 

S100A4) may exhibit abnormal migration on SDS-PAGE due to differential SDS-binding 

capacity to protein (Miranda et al. 2010).  Taken together, our optimization concluded 

that S100A4 mAb (CST, Clone: D9F9D) has the highest binding specificity and optimal 

binding capacity when used at a 1:1,000 dilution.  Mass spectrometry results provided 

further evidence that S100A4 migrates at an apparent molecular weight ~8 kDa in our 

electrophoretic system and AML cell lines.  

 

3.4.2 S100A4 expression levels and subcellular localisation in normal 

haematopoiesis and AML 

 The CCLE RNA-Seq data show that S100A4 is upregulated in AML cell lines.  

S100A4 mRNA levels in AML cell lines shown in Figure 3-7A are in relative agreement 

with the protein expression levels shown in Figure 3-7B.  However, mRNA expression 

profiling is not a powerful prediction tool for protein expression (Vogel and Marcotte 

2012).  Further, transcriptomic analysis alone does not indicate the aberrant localisation 

of proteins to the nucleus which can be critical to cancer development (Wang and Li 

2014).  Thus, transcriptional profiling is often coupled with an alternative proteomic 

analysis such as western blot or mass spectrometry.  Here, using the optimized conditions 
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for western blot analysis of S100A4 in a panel of 10 AML cell lines (nuclear and 

cytoplasmic) showed that five AML cell lines (ME-1, NOMO-1, THP-1, HEL, OCI-

AML-2) expressed S100A4 in both compartments with 3 cell lines expressing S100A4 in 

the cytosolic compartment only (Figure 3-7B).  The cell lines that expressed S100A4 in 

the nucleus can provide more information on the effect of silencing S100A4 expression 

by shRNA on survival and growth.  Conversely, cells that did not express S100A4 in the 

nucleus could potentially be used as a model to study the effect of overexpressed S100A4 

(4.3.4). 

   

3.4.2.1 S100A4 expression is restricted to cytosolic compartments in normal 

haematopoietic cells 

 In order to investigate the patho-physiological role of S100A4 in AML 

development or progression, the expression levels and sub-cellular distribution has to be 

established in the normal haematopoietic progenitor cells as well as the differentiated 

subpopulation.  In this study, cord blood derived CD34+ cells were used as a matched 

normal control to AML patient samples (FAB M1).    Freshly isolated human CD34+ cells 

from neonatal cord blood have similar transcriptional profiles to minimally differentiated 

AML blasts (FAB M-1) (Munje et al. 2015).  First, to examine S100A4 gene expression 

profile in normal haematopoiesis and AML, we utilised publicly available gene 

expression data on BloodSpot©.  S100A4 mRNA expression patterns suggest that S100A4 

is minimally expressed in undifferentiated HSCs and as these cells differentiate S100A4 

expression increases (Figure 3-8A).   

 Our microarray analysis of CD34+ cells and myeloid progenitors (monocytes, 

erythrocytes and granulocytes) was consistent with the gene expression analysis from 

BloodSpot in which S100A4 becomes upregulated with differentiation.  Normal CD34+ 

cells had low mRNA levels whilst upregulated gene expression of S100A4 was observed 

in monocytes and erythrocytes.  Much less increase was observed in granulocytes in our 

dataset and unfortunately there is no direct comparator in the Bloodspot data to verify this 

(Figure 3-7B).  S100A4 is reported to be expressed in early stages of development of 

normal tissues as it is involved in a plethora of cell differentiation-related functions 

(Koshelev Iu et al. 2008). 

 Taken together, these findings may suggest that S100A4 is expressed in small 

quantities in early stages of development and as cells become actively involved in cell 
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division and differentiate towards committed sublineages of the blood, S100A4 

expression increases.  However, mRNA transcriptional profiles alone are not a powerful 

tool to predict the effects of S100A4 expression on AML development or progression.  

Often, protein mislocalisation between cytoplasm and nucleus may interfere with normal 

cellular functions by interacting with key oncoproteins or tumour suppressors which 

cooperatively may lead to tumour development and metastasis (Wang and Li 2014).  

Thus, western blot was performed to analyse the subcellular localisation S100A4 in 

normal CD34+ cells and myeloid progenitors.  Blots demonstrated that S100A4 is 

normally expressed only in the cytosol and no expression was observed in the nucleus 

either in CD34+ cells (Figure 3-10A) or in uni-lineage progenitors with the exception of 

granulocytes (Figure 3-10B). The band present in the cytoplasmic compartment of 

granulocytes (Figure 3-10B) could be accounted for by contamination from unbound flow 

through of monocytes or erythrocyte fractions (< 10% and < 5% respectively) (Figure 

3-9).  Further, normal bone marrow samples have also shown that expression of S100A4 

is cytosolic with no nuclear expression observed (Figure 3-11).  In summary, in normal 

haematopoiesis, S100A4 expression is restricted to the cytoplasmic compartment only 

and it is developmentally regulated.  

 

3.4.2.2  S100A4 is mislocalised to the nucleus in AML patients  

 Nuclear mislocalisation of S100A4 has been previously linked to aggressiveness 

in epithelial ovarian carcinoma and thus poor survival rates (p = 0.0045) (Kikuchi et al. 

2006).  Another study suggested that nuclear expression of S100A4 is correlated with 

advanced stages in primary colorectal adenocarcinoma (p = 0.002) whilst cytoplasmic 

expression of S100A4 was not significant (Flatmark et al. 2003).  Prior to this study, 

S100A4 nuclear mislocalisation was not reported in AML patient samples.  Initially, 

interrogating curated gene expression data on the BloodSpot© database (Bagger et al. 

2016) provided useful insights on S100A4 gene expression patterns in normal 

haematopoietic stem cells versus AML subtypes.  The analysis showed that S100A4 

mRNA is significantly overexpressed across all AML subtypes as compared to normal 

HSC (Figure 3-12).  The transcriptomic data analysis findings derived from the Bloodspot 

database consolidated our previous analysis of the nuclear proteome of AML blasts 

(Tonks et al. 2007) which showed S100A4 upregulation in AML, however one of the 
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limitations of gene expression analysis is that it is not informative in terms of protein 

subcellular distribution. 

 S100A4 expression and subcellular localisation was analysed in AML patient 

samples to give us insights on abnormal subcellular location in AML.  In this study, AML 

patient samples from minimally differentiated leukemic blasts (FAB M1) were chosen to 

minimise developmental variability compared to matching normal control CD34+ cells.  

Similarly, AML FAB M4 leukemia blasts were chosen to analyse S100A4 in 

myelomonocytic leukemia blasts compared to matching control CD14+monocyte 

progenitors.  In minimally differentiated AML (subtype FAB M1), S100A4 was not only 

mislocalised in the nucleus but also overexpressed as compared to CD34+ cells (Figure 

3-13).  The expression patterns of S100A4 in AML blasts (FAB M-1 and M-4), where 

S100A4 was found to be mislocalised to the nucleus, suggests that nuclear mislocalisation 

of S100A4 could play a pathological role in AML development.  Taken together, these 

findings were consistent with the results previously shown in section 3.4.2.1, that S100A4 

is predominantly a cytosolic protein in normal CD34+ cells and differentiated myeloid 

sublineages.  However, the presence of S100A4 in the nucleus of AML patient samples 

may suggest that S100A4 could be translocated to the nucleus to interact with key 

regulatory proteins that are involved in AML and cooperatively drive AML development 

and/or progression. 

 In general, S100 family members have no known enzymatic activity and it is 

believed that they exert their functions by interacting with their binding partners (Donato 

et al. 2013).  S100A4 nuclear function is still to be described, however; a recent study 

demonstrated an intra-nuclear association between S100A4 and suppressor protein p53 

which led to its degradation and induced cell survival (Orre et al. 2013).  In conclusion, 

understanding the nuclear function of S100A4 could be the key of the underlying 

mechanism in which S100A4 or its potential binding partner(s) play their role in AML 

development.   

 

3.4.3 Expression of S100A4 does not correlate with patients’ clinical outcome 

 Aberrant expression of S100A4 has been associated with either poor clinical 

outcome or metastasis in several solid tumours (Helfman et al. 2005, Zhao et al. 2013).  

Using  the TCGA microarray data set on the BloodSpot© database, Kaplan-Meier analysis 

of survival shows that the group of AML patients with above median S100A4 mRNA 
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values have lower survival probability than the group of patients who are below median 

S100A4 mRNA (p=0.0118) (Figure 3-15).  To further analyse the effect of S100A4 

mRNA on patients’ survival, the TCGA data were analysed (Ley et al. 2013) excluding 

intensively treated patients and patients who have favourable risk abnormalities such as 

t(8;21) RUNX1/RUNX1T1 and  t(15;17) PML-RARα from the analysis.   Kaplan-Meier 

analysis of survival shows that higher levels of S100A4 mRNA are associated with poor 

OS of AML patients (p=0.01) (Figure 3-16). 

 These findings suggest that overexpressed S100A4 confers survival disadvantage 

for those patients who have high levels of S100A4.  A recent studies suggested that 

overexpression of S100A4 mediated the favourable prognosis of PRAME in paediatric 

AML via deactivating the tumour suppressor p53 (Xu et al. 2016).  Unfortunately, our 

correlation analysis of S100A4 mRNA did not show any correlation between 

overexpressed S100A4 and patients’ outcomes (p-value=0.7) (Figure 3-17).  The 

significant difference between the OS and correlation analysis could be explained by two 

reasons.  First, to show the effect of upregulated S100A4 on patients’ outcomes the sample 

size may need to be increased to detect the effect of S100A4 on patients’ outcomes.  

Secondly, the OS analysis is a multivariate analysis whereas the correlation analysis is 

bivariate. Further, as mentioned previously, mRNA profiling has poor correlation with 

protein expression in AML patients. 

 Moreover, mRNA profiles do not distinguish the subcellular localisation of 

S100A4 which is the main pathological observation in this project.  Thus, a survival 

analysis may need to be performed on fractionated AML patients’ samples to see whether 

or not the subcellular distribution of S100A4 correlates to patients’ outcomes.  However, 

this may not be feasible at this stage given the high number of samples required to show 

such correlation.  Whilst these results provide information about S100A4 gene expression 

and its correlation to patient outcomes, the pathophysiological role of S100A4 (on protein 

level) as well as its subcellular distribution in haematological malignancies (as well as 

normal haematopoiesis) could be elucidated further by functional studies in AML cell 

line models.  Previous studies of knockdown of S100A4 in anaplastic thyroid cancer 

(ATC) showed significant reduction in proliferation and increased apoptosis in ATC cells 

in vitro and similar results were achieved in an in vivo model (Zhang et al. 2016).  

Therefore, in the next chapter, functional studies including nuclear targeted 
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overexpression of S100A4 and knocking down its expression will be used to elucidate 

the underlying mechanism of S100A4’s role in AML development and/or progression.
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4 Chapter 4 - Introduction 

4.1 Overview 

 In the previous Chapter, I established that S100A4 protein expression in the 

nucleus was observed in approximately 86% of AML blasts.  In contrast, nuclear 

expression of S100A4 was undetectable in normal human CD34+ HSPC controls.  

Interestingly, S100A4 expression was also increased in the cytoplasm of AML blasts 

versus normal controls.  Moreover, data derived from TCGA suggests that S100A4 

overexpression may confer a poor prognosis.  Indeed, overexpression of S100A4 is 

widely linked to the tumour aggressiveness and metastatic phenotype in many solid 

tumours (Li et al. 2013, Zhou et al. 2018) and can be utilised as a biomarker in early 

diagnosis of several solid tumours at treatable stages (Boye et al. 2016). 

Nuclear expression or mislocalisation of S100A4 has also been associated with 

tumour stage in colorectal cancer, aggressiveness, and metastasis in ovarian cancers 

(Boye et al. 2010, Kikuchi et al. 2006).  Studies knocking down S100A4 in an in vitro 

model in colorectal cancer blocks cells growth, migration and invasion activities and 

induces apoptosis (Huang et al. 2012).  Further, knocking down S100A4 in human 

prostate cancer xenograft mice resulted in significant reduction in tumour vascularity and 

inhibited tumour growth (Ochiya et al. 2014). Therefore, dysregulation of S1000A4 

expression is common in many solid tumours which seem to rely on expression of this 

protein.  However; little is known about the functional role of S100A4 in human 

haematopoiesis as well as in leukaemogenesis.  This Chapter determines whether ectopic 

expression of nuclear S100A4 or S100A4 knock down (KD) can affect the growth and 

survival of human CD34+ HSPCs.  I also examined the consequences of knocking down 

S100A4 expression in leukaemia cell lines by assaying effects on cell proliferation, 

differentiation, and drug sensitivity analysis.
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4.2 Aims 

The main objective of this Chapter is to gain an understanding of the role of S100A4 in 

haematopoietic development and its possible contribution to the development of AML.  

This chapter will achieve this objective through the following aims: -    

1. Determine the effect of nuclear overexpression of S100A4 or S100A4 knock 

down on normal human haematopoietic cell growth, differentiation and 

development; 

2. Determine the effect of nuclear overexpression of S100A4 or S100A4 knock 

down on AML cell growth, proliferation and apoptosis. 

4.3 Results 

4.3.1 Generating retro- and lentiviral vectors overexpressing S100A4  

 In order to determine the effect of nuclear mislocalised S100A4 on growth and 

differentiation in normal human HSPCs and AML cell lines, retro- and lentiviral vectors 

were generated.  Retroviral (PINCO) and lentiviral (pHIV) vectors carrying a nuclear 

localisation signal (NLS) were constructed that would facilitate the expression of S100A4 

in the nucleus (Grignani et al. 1998, Park et al. 2015).  These vectors also co-expressed 

eGFP as a selectable marker.  Four PINCO vectors were generated for this purpose; (i) 

control vector expressing GFP alone, (ii) 1xNLS-S100A4, (iii) 3xNLS-S100A4 to stably 

overexpress S100A4 in the nucleus, and (iv) S100A4 without a nuclear targeting 

sequence.  To corroborate the retroviral nuclear transduction of S100A4, additional 

lentiviral vectors were also generated: (i) control vector expressing GFP alone and (ii) 

3xNLS-S100A4 (Figure 2-2).  Using a directional subcloning approach, 1xNLS S100A4 

and 3xNLS S100A4 cDNA were ‘released’ from the expression plasmid (pEX-A2) using 

BamHI and EcoRI restriction enzyme digestion and subsequently ligated into PINCO and 

pHIV vectors.  To validate subcloning, initial test digests were performed using restriction 

enzymes.  As per the predicted DNA migrating patterns following agarose gel 

electrophoresis (Figure 4-1B), the test digests validated successful subcloning of both 

PINCO and pHIV digested DNA fragments (Figure 4-1C).  Subsequently, DNA 

sequencing across the subcloning site validated DNA sequence against published S100A4 

NCBI sequence (NM_002961.2) (data not shown). 
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4.3.2  Validation of S100A4 ligation into PINCO and pHIV vectors and 

transduction efficiency in Phoenix cells 

 To generate and functionally validate the retro and lenti-vectors above, DNA 

transfection of Phoenix and HEK 293T cells was performed respectively.  Firstly, 

Phoenix cells were transfected with PINCO control vector DNA, 1xNLS S100A4, 3xNLS 

S100A4 or S100A4.  Following harvest of the retrovirus, GFP expression was analysed 

by flow cytometry.  Cells transfected with these vectors showed approximately 98% GFP 

positivity (Figure 4-2A).  To confirm that transiently transfected Phoenix cells also 

expressed S100A4 in the nucleus, cells were fractionated into cytoplasmic and nuclear 

lysates and western blot was performed.  Control cells showed little or no expression of 

S100A4 in both nuclear and cytosolic subcellular compartments (Figure 4-2C).  In 

contrast 1xNLS-S100A4 and 3xNLS-S100A4 expressed S100A4 in both the cytosol and 

nucleus (Figure 4-2C).  As expected, expression of 3xNLS-S100A4 migrated with an 

apparent protein molecular weight of ~13 kDa; consistent with the additional size of the 

3xNLS signal (5 kDa).  Further, S100A4 lacking NLS was overexpressed in the cytosolic 

and nuclear compartments and migrated to an approximate molecular weight of 8 kDa 

consisted with S100A4 M.W. (Figure 4-2C). 

 Alternatively, HEK 293T transfected with control, and 3xNLS-S100A4 pHIV 

vectors also showed more than 98% GFP positivity (Figure 4-3A).  Cells transfected with 

control GFP pHIV vector showed no expression of S100A4.  However, HEK 293T cells 

transfected with 3xNLS-S100A4 vector showed overexpression of S100A4 in 

cytoplasmic and nuclear compartments with a corresponding molecular weight shift to 13 

kDa (data not shown).  Taken together both retro- and lentiviral vectors are functional in 

terms of expressing GFP and S100A4 in the context of adherent packaging cells.  
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Figure 4-1: Test digest of 3xNLS-S100A4 retro-and lentiviral vectors  

A) Schematic plasmid maps of 3xNLS-S100A4 retroviral (PINCO) vector and 

lentiviral (pHIV) vector (i) S100A4 and 3 fragments of nuclear localized signal 

(NLS)-S100A4 were created by directional cloning into the BamH1 and NotI 

restriction enzyme sites of the PINCO retroviral vector (Invitrogen®). NLS; 

“GATCCAAAAAAGAAGAGAAAGGTA”.   Vector size (with insert) = 13250 

bp; insert size = CDS 1.88 kbp. (ii) Similar approach was used in creating 3xNLS-

S100A4 pHIV vector (Addgene®). Restriction site for BamHI is highlighted. 

Vector size (with insert) = 8114 bp; insert size = CDS 466 bp. NLS Inserted x3. 

5’LTR, CMV promotor, GFP gene, an origin of replication and ampicillin 

resistance gene.  B) Predicted banding pattern following digestion of (i) PINCO 

vector with BamHI and NotI enzymes and (ii) pHIV vectors with BamHI.  C) 

Banding pattern observed following test digest and agarose electrophoresis of (i) 

PINCO vector and (ii) pHIV vector with these enzymes. Marker=NEB 1kb DNA 

ladder. Plasmid mapping and diagrams were generated using PDRAW32 

(Acaclone®) - version 1.1.132. MW= molecular weight, kb= kilobases. 
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Figure 4-2: Confirmation of GFP and S100A4 protein expression in Phoenix cells 

transfected with PINCO retroviral vectors.      

A) GFP expression of transfected packaging Phoenix cells was quantitated by flow cytometric 

analysis. (i) Example of non-debris gating strategy.  (ii) The grey histogram shows the mock 

transfected control (cells ‘transfected’ without DNA). The coloured histogram over lays are 

Phoenix cells transfected with control expressing GFP only, vector expressing S100A4 only, 

1xNLS-S100A4 or 3xNLS-S100A4. Note: the fluorescence of most cells is off-scale.  B) GFP 

fluorescence microscopy images of Phoenix cells transfected with above PINCO vectors. 

Magnification is ×20 and scale bar indicates10µm.  C) Western blot analysis of S100A4 in 

transfected Phoenix cells with control (PINCO expressing GFP alone), 1xNLS-S100A4 or 

3xNLS-S100A4 or S100A4 without NLS sequence. Phoenix cells were fractionated into cytosol 

(C) and nucleus (N). S100A4 is visualised at 8kDa. 1xNLS-S100A4 is visualised at 9 kDa and 

3xNLS-S100A4 at 13 kDa. GAPDH and Ponceau indicate the purity of each subcellular fraction 

and relative loading. 
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Figure 4-3: Confirmation of GFP and S100A4 protein expression in HEK293T cells 

transfected with pHIV lenti-viral vectors.  
A) GFP expression of transfected packaging HEK293T cells was quantitated by flow cytometric 

analysis. (i) Example of non-debris gating strategy.  (ii) The grey histogram shows the mock 

transfected control (cells ‘transfected’ without DNA). The coloured histogram over lays are 

HEK293T cells transfected with control expressing GFP only and 3xNLS-S100A4. B) GFP 

fluorescence microscopy images of HEK293T cells transfected with above PINCO vectors. 

Magnification is ×20 and scale bar indicates10µm.   
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4.3.3 Phenotypic effects of overexpression of nuclear S100A4 on normal human 

CD34+ HSPCs. 

4.3.3.1 Normal CD34+ HSPCs cannot be shown to overexpress S100A4  

 Human CD34+ HSPCs have a unique capacity to reproduce haematopoietic cells 

due to their self-renewal and pluripotency properties (Wang et al. 2009).  Thus, CD34+ 

cells represent an important model to study normal hematopoiesis.  In order to determine 

the functional effects of over-expressed and nuclear mislocalised S100A4 on primary 

human CD34+ HSPC differentiation and proliferation, cells were infected with retroviral 

(PINCO) vectors described above (4.3.1).  Cells infected with control (expressing only 

GFP), 1xNLS-S100A4 and 3xNLS-S100A4 or S100A4 showed 20%, 33%, 40%, and 

30% GFP positivity respectively (Figure 4-4A).  However, whilst S100A4 was detectable 

in human CD34+ HSPCs, there was no observable over-expression of S100A4 or NLS 

tagged constructs following infection (Figure 4-4B).  Cells fractionated into cytosol and 

nuclear proteins on day 13 of culture, also failed to show cytosol or nuclear NLS tagged 

S100A4 protein expression.  Unsurprisingly, S100A4 nuclear transduced CD34+ HSPCs 

differentiated normally into myeloid committed progenitors compared to control 

counterparts (Figure 4-4C).  I next used an alternative vector to corroborate the above 

findings.  Lentiviral pHIV vectors were used to attempt to overexpress S100A4 in the 

nucleus of CD34+ HSPC.  As above, on day 3 post infection, cells expressed GFP (with 

infection frequencies of control pHIV vector; 66% and 3xNLS –S100A4 pHIV vector; 

21%) (Figure 4-5A) but did not detectably overexpress S100A4 in the nucleus when 

analysed by western blot (Figure 4-5C).  Given the successful validation of these 

constructs, these results suggest either that human CD34+ HSPC may rapidly degrade 

overexpressed S100A4 protein or that the level of overexpression was too low to be 

detected in the fraction of the culture that was transduced. 



Chapter 4 

 

109 

 

    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-4: Human CD34+ HSPC did not stably over-express S100A4.  
A) Example flow cytometric histogram showing CD34+ cells expressing GFP. Histograms were 

gated on non-debris cell population based on FSC/SSC. Background auto fluorescence was 

established using mock transduced CD34+ HSPCs treated in similar retroviral infection conditions 

except they were not subjected to retrovirus (grey line).  The black marker line represents 

proportion of cells showing fluorescence greater than background auto fluorescence.  B) Western 

blot analysis of transduced CD34+ cells with 1x and 3xNLS-S100A4 on days 4 and 13 of culture.  

C)  The bar chart showing the proportion of cells committed to myeloid sub-lineage (monocytes, 

erythrocytes, and granulocytes). GAPDH and Histone were used as loading controls and as 

verification of the subcellular fractionation.
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Figure 4-5: S100A4 expression could not be achieved in the nucleus of CD34+ HSPCs 

using lentiviral vector.   
A) Example flow cytometric histogram showing CD34+ HSPCs expressing GFP. Histograms 

were gated on non-debris cell population based on FSC/SSC. Background auto fluorescence was 

established using mock transduced CD34+ HSPCs treated in similar lentiviral infection conditions 

except they were not subjected to lentivirus (black line).  The black marker line represents 

proportion of cells showing fluorescence greater than background auto fluorescence.  B) Western 

blot analysis of transduced CD34+ HSPCs with control and 3xNLS-S100A4 on days 3 of culture. 

GAPDH and Histone were used as loading controls and as verification of the subcellular 

fractionation. 
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4.3.4 Phenotypic effects of over-expression of nuclear mislocalised S100A4 on 

AML cell lines. 

4.3.4.1 Generating AML cell lines that stably express S100A4 in the nucleus 

 To study the effect of nuclear S100A4 expression in leukaemia cell lines, I used 

two lines that have minimal or no expression of S100A4 in the nucleus (K562 and TF-1).  

These cells were infected with control and 3xNLS S100A4 pHIV vectors and infection 

rates (GFP positivity) were determined flow cytometry.  Flow cytometric analysis shows 

that K562 cells have high infection rates over 90% in both control and 3xNLS-S100A4 

(Figure 4-6A).  Likewise, TF-1 cells had 82% GFP+ in control and 77% in 3xNLS-

S100A4 (Figure 4-6A).  Further, western blot analysis shows that forcing the expression 

of S100A4 in the nucleus was successfully achieved in both K562 and TF-1 cell lines 

(Figure 4-6B).   

 

4.3.4.2 S100A4 overexpression in the nucleus does not affect K562 and TF-1 

proliferation under serum deprivation conditions 

 To determine whether nuclear S100A4 over expression in leukemia cell lines 

promotes cell survival, K562 and TF-1 cell lines were grown under serum deprivation 

conditions.  Cell viability were analysed on three consecutive days using flow cytometry.  

Proliferation was measured by viable cell count using viability stain Propidium Iodide 

(PI).  There was no statistical difference in the growth and survival of S100A4 expressing 

cells compared to control over 3 days of culture in 0-10% v/v serum. (Figure 4-7A). 

Similar observations were observed in TF-1 cell expressing nuclear S100A4 (Figure 

4-7B). 
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Figure 4-6: S100A4 is overexpressed in the nucleus of leukemic cells K562 and TF-

1.  
A) Example flow cytometric plots showing transduction efficiency in K562 and TF-1 cell lines 

infected with control or 3xNLS-S100A4. B) Example western blot showing nuclear over-

expression of S100A4 to the nucleus of K562 and TF-1 cells. His-tag S100A4 peptide is used as 

a positive molecular weight control. GAPDH and Histone were used as loading controls and 

verification of the subcellular fractionation. 
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Figure 4-7: S100A4 nuclear overexpression does not affect proliferation of AML cell 

lines.   
Flow cytometric analysis of cell proliferation in control and 3xNLS S100A4 K562 and TF-1 cells, 

on day 1 (top), day 2 (middle) and day 3 (bottom). Each data point corresponds to the average 

cell count from three replicates.. The starting density of both K562 and TF-1 control were 

1x105/mL, and 1x105/mL for K562 and TF-1 3xNLS S100A4. Viable cells are counted using flow 

cytometric viability stain Propidium Iodide (PI).

Control 3xNLS S100A4 

0

100

200

300

400

0 1 3 10

M
ea

n
 o

f 
V

ia
b

le
 c

el
l 

C
o

u
n

ts
 

Serum %

K562 TF-1 

0

100

200

300

400

0 1 3 10

M
ea

n
o

f 
V

ia
b

le
 c

el
l 

C
o

u
n

ts
 

Serum %

Day 1 
A (i) B (i) 

0

100

200

300

400

0 1 3 10M
ea

n
 o

f 
V

ia
b

le
ce

ll 
C

o
u

n
ts

 

Serum %

0

100

200

300

400

0 1 3 10

M
ea

n
 o

f 
V

ia
b

le
 c

el
l 

C
o

u
n

ts
 

Serum %

Day 2 
 (ii)  (ii) 

0

100

200

300

400

0 1 3 10

M
ea

n
 o

f 
V

ia
b

le
 c

el
l 

C
o

u
n

ts
 

Serum %

0

100

200

300

400

0 1 3 10

M
ea

n
 o

f 
V

ia
b

le
 c

el
l 

C
o

u
n

ts
 

Serum %

Day 3 
(iii)  (iii) 



Chapter 4 

 

114 

 

4.3.5 S100A4 knock down in normal human CD34+ HSPC slows proliferation 

4.3.5.1 Generating shRNA control and S100A4 knockdown constructs 

 In order to study the effect of S100A4 KD on proliferation, differentiation and 

survival in normal CD34+ HSPCs and AML cell lines, S100A4 was KD using shRNA.  

For this purpose, five short hairpin RNAs (shRNA) vectors were purchased from 

Mission® based on TRC(1)2-pLKO.5-puro (S100A4 shRNA and non-mammalian 

shRNA control), Table 2-3.  Initially, S100A4 KD efficiency of these shRNA constructs 

were tested using NOMO-1; cell line expressing high S100A4 level.  As shown in Figure 

4-8A, the most efficient KD sequences of S100A4 shRNA were (TRCN0000416498 and 

TRCN000053608) with knocked down below detectable western blot sensitivity.  The 

remaining three shRNA constructs partially knocked down S100A4.  Mission® shRNA 

vectors do not contain GFP.  Therefore, in order to follow growth of transduced cells, the 

most efficient S100A4 shRNA construct (TRCN0000416498) was re-designed with 

VectorBuilder® to include EGFP selectable marker.  The analysis of transduced cells was 

based on the population of cells expressing GFP marker.  As can be seen in Figure 4-8B, 

NOMO-1 cells with S100A4 KD (TRCN0000416498) showed significant reduction in 

growth compared to controls. Furthermore, the infection efficiency of re-designed shRNA 

S100A4 vector (TRCN0000416498) with EGFP selectable marker was validated in 

NOMO-1 cells.   As shown in Figure 4-9A, the infection efficiency was over 95% in both 

lines infected with shRNA control KD and shRNA S100A4 KD (TRCN0000416498).  

Further, western blot confirmed S100A4 knockdown in NOMO-1 cells (Figure 4-9B). 

Three other shRNA S100A4 constructs were also used to knockdown S100A4 in NOMO-

1 cells.   As shown in Figure 4-8C, significant reduction in growth of NOMO-1 cells was 

also observed.  However, no difference in growth was observed in NOMO-1 cells infected 

with shRNA S100A4 (TRCN0000437516) compared to control line.   

 In summary, Mission® shRNA S100A4 vectors were validated using AML cell 

line “NOMO-1”.   Three shRNA S100A4 vectors consistently affected the growth and 

survival capacities of NOMO-1 cells.  An improved shRNA S100A4 vector 

(TRCN0000416498) with EGFP selectable marker was chosen to carry out subsequent 

studies of the effect of S100A4 KD on normal HSPCs and AML cells lines.
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Figure 4-8: NOMO-1 requires S100A4 expression for cell growth.  
A) Western blot showing S100A4 KD in NOMO-1 cells using a panel of Mission® shRNA vectors 

(Sigma). Target sequence from TRCN0000416498 was used in subsequent studies due to its 

S100A4 KD efficiency. His-tagged S100A4 and mock infected NOMO-1 (parental) were used as 

positive controls. B) TRCN0000416498 were re-designed with VectorBuilder® to include EGFP 

marker. The summary data showing growth of NOMO-1 cells with S100A4 KD 

(TRCN0000416498) compared to control over 3 days of growth following infection. Data points 

indicates mean ± 1SD (n=3).  Statistical significance is denoted by * P<0.05; analyzed by paired 

t-test. C) Data showing growth of NOMO-1 cells using a panel of Mission® shRNA vectors 

(Sigma).  S100A4 KD was compared to control over 3 days of growth following infection.  TCRN 

numbers identify target shRNA sequences used.  Data points indicates mean (n=1).  This 

experiment (part C) was conducted by Professor. Richard Darley (Cardiff University).     
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Figure 4-9: Re-designed shRNA S100A4 vector is validated in NOMO-1 cells. 
 A) Example of flow cytometry analysis of infection efficiency rates of NOMO-1 cells infected 

with shRNA S100A4 (TRCN0000416498) with EGFP selectable marker (VectorBuilder®) (i) 

Control cells were infected with shRNA targeting a non-mammalian gene. Control shRNA 

infection rate in NOMO-1 cells 95% and (ii) S100A4 shRNA 98%.  B) Western blot confirmation 

of S100A4 KD in total lysate of NOMO-1 cells.  GAPDH was used as loading controls. 
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4.3.6  S100A4 KD in normal CD34+ HSPCs does not affect cell proliferation, 

differentiation, and survival 

 To determine the effect of S100A4 KD on proliferation and differentiation in 

CD34+ HSPCs, S100A4 was knocked down using shRNA (construct; 

TRCN0000416498).  Infection rates of CD34+ HSPCs with shRNA control and shRNA 

S100A4 KD constructs were determined using flow cytometry (GFP+).  As shown in 

Figure 4-10A, over 80% of CD34+ HSPCs are GFP+ in both control and S100A4 KD lines 

on day 3 post infection.  S100A4 KD was confirmed by western blot.   As shown in Figure 

4-10B, S100A4 was not detected in CD34+ HSPCs infected with shRNA S100A4 

compared to control.  Further, CD34+ HSPCs harbouring silenced S100A4 gene 

maintained no expression of S100A4 during differentiation. 

 Subsequently, CD34+ HSPCs control and S100A4 KD lines were analysed for the 

effect of S100A4 KD on growth, differentiation, and survival.  As shown in Figure 4-11A, 

the growth rate of shRNA S100A4 transduced CD34+ cells was reduced 2-fold compared 

to control.  However, the effect of S100A4 KD on cell proliferation was not statistically 

significant (p-value= 0.104).  Further, more than 80% of cells in control and S100A4 KD 

cultures were GFP+ which indicates that the transduction is highly efficient and the 

majority of cells in the S100A4 KD culture are lacking S100A4 (Figure 4-11).  Further, 

using PI, no significant change in cell viability was observed in S100A4 KD compared 

to control over 15 days of culture (Figure 4-11A).  These data suggest that the loss of 

S100A4 in CD34+ HSPCs marginally affects cell growth but does not affect cell viability. 

To determine the effects on differentiation, cells were analysed for lineage 

markers (CD13 and CD36) as well as developmental cell surface markers (CD34, CD14, 

CD11b, CD15).  S100A4 KD does not affect CD34+ HSPC development (Figure 4-11C).  

Taken together, S100A4 was successfully knocked down in CD34+ HPSCs but these cells 

do not require S100A4 for their growth and differentiation.  
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Figure 4-10: S100A4 was successfully knocked down in CD34+ cells. 
 A) CD34+ cells were transduced with shRNA non-mammalian gene (control) and shRNA 

S100A4 (TRCN0000416498) (Vector Builder®) encoding EGFP and grown in cytokine-driven 

culture (IL-3, SCF and G/GM-CSF).  Representative flow cytometric histograms showing 

infection efficiency of CD34+ cells analyzed on day 3 of culture.  Mock transduced cultures (grey) 

delimits background auto-fluorescence.  B) Western blot of S100A4 expression in CD34+ cells 

grown under myeloid differentiating conditions. (i)  Western blot example of Day 4 post-infection 

with shRNA control and shRNA S100A4 (ii)   Western blot example of Day 11 and 15 post-

infection with shRNA control and shRNA S100A4.  Western blot was conducted on total protein 

lysates. GAPDH was used as loading controls. 
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Figure 4-11:S100A4 knockdown in CD34+ cells does not affect the development or survival of human myeloid haemopoietic cells. 
A) Summary data showing growth of CD34+ HSPCs with S100A4 KD compared to control over 4 days of growth following infection (i) Expansion of 

shRNA transduced CD34+ cells; fold change (p=0.104). (ii) Proportion of GFP expression over 5 days post infection.  Data indicated mean ± 1SD (n=3).  

(iii) shRNA transduced CD34+ cells viability.  B) Analysis of the differentiation of transduced CD34+ by four-colour cytometric analysis.  GFP+ myeloid 

cells were gated on CD13hi, CD36lo (granulocytes), CD13hi,CD36hi (monocytes) and CD13lo,CD36lo (erythrocytes).  Bar chart showing the proportion of 

cells committed to sub-lineage development during culture.  Data from 1 experiment; mean ± 1SD from five intra experimental repeats.  C)  Cytocentrifuge 

preparations, stained with Wright-Giemsa following 15 days in culture, showing myeloid morphology in the control (Left) and S100A4 KD (Right)-

transduced cultures.  Magnification is ×20 and scale bar represents 10µm.  
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4.3.7 Leukaemic cells are dependent on S100A4 for their growth and survival 

4.3.7.1 S100A4 knockdown in AML cell lines reduces cell proliferation and promotes 

apoptosis 

 Following S100A4 KD in normal human CD34+ HSPCs, the effect of S100A4 

KD on proliferation and survival was determined in leukaemia cell lines.  Using the same 

shRNA constructs, S100A4 was knocked down in leukaemia cell lines (NOMO-1, TF-1, 

THP-1, and OCI AML-2).  S100A4 KD in these lines was validated by western blot 

(Figure 4-15, Figure 4-16, and Figure 4-17 respectively).  Cell proliferation was 

significantly reduced in OCI AML-2 on 2nd and 3rd days of culture (p=0.0004 and 

p=0.0001 respectively), (Figure 4-12A).  Similarly, cell proliferation was significantly 

reduced in NOMO-1 on 3rd day of culture (Figure 4-15B), TF-1 on the 1st and 3rd days of 

culture (Figure 4-16B), and THP-1 on 1st, 2nd, and 3rd days of the culture (Figure 4-17B). 

 Next, these lines were assayed for apoptosis using Annexin V binding in 

combination with PI exclusion (Figure 4-14A).  The most markedly affected cell line was 

OCI AML 2 among the other AML cell lines analysed (p< 0.001).  OCI-AML 2 cells 

exhibited apoptosis on the second day of culture post infection (Figure 4-14B).  A similar 

trend was observed in TF-1 and THP-1 cell lines where apoptotic cells started forming 

following 48 hours post S100A4 KD.  Conversely, NOMO-1 cells had a delayed apoptotic 

effect during same culture duration post S100A4 KD (Figure 4-14A).  In all cell lines 

tested, loss of S100A4 expression induced Annexin V positivity suggesting that the lack 

of cell growth observed above was a result of programmed cell death.  

Taken together, these data infer that S100A4 is required for AML cells’ survival 

but not for normal cells suggesting that targeting S100A4 would be an effective strategy 

in this disease. 
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Figure 4-12: OCI AML-2 cells are dependent on S00A4 for growth and survival. 
A) Summary data showing growth of OCI AML-2 cells with S100A4 KD compared to control 

over 3 days of growth following infection. B) Summary data of OCI AML-2 cells population 

expressing GFP over the course of growth assay. C) Summary data of OCI AML-2 cells viable 

counts of shRNA S100A4 compared to control shRNA. Propidium Iodide (PI) was used for 

viability staining. Data indicates mean ± 1SD (n=3).  Statistical significance is denoted by * 

P<0.05; **<0.001, and ***<0.0001 analyzed by paired t-test. 
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Figure 4-13: Gating strategy for apoptosis assay in OCI AML-2 cell line.  
A) GFP expression of infected cells with control and S100A4 shRNA were confirmed by flow 

cytometric analysis.  A) Example of gating strategy in which apoptotic bodies are included. B) 

Example of GFP positive cell population were gated on SSC & FL1. (i) OCI AML-2 control 

shRNA expressing GFP only (78%) and (ii) S100A4 shRNA (90%).  
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Figure 4-14 : S100A4 is required for cell survival in OCI AML-2 cell lines.  

A) Summary data showing the effect of S100A4 KD on Annexin V staining in leukemia cell lines 

following 48 hours post infection.    B) Example plots of S100A4 KD compared to control using 

OCI-AML2 are shown.  Annexin Vneg  and PIneg (lower - left quadrant), annexin Vpos and PIneg 

(lower - right quadrant) and both annexin Vpos and PIpos (upper - right quadrant) cells were 

considered as the viable, early-phase apoptotic, late-phase apoptotic/necrotic cells, respectively. 

Data indicates mean ± 1SD (n=3). Statistical significance is denoted by * P<0.05; **<0.001 

analyzed by paired t-test.
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Figure 4-15: NOMO-1 cells are dependent on S00A4 for growth and survival. 
A) Example western blot showing S100A4 expression in NOMO-1 cells with S100A4 KD) 

compared to control (targeting non-mammalian gene) using shRNA. B) Summary data showing 

growth of NOMO-1 cells with S100A4 KD compared to control over 3 days of growth following 

infection. C) Summary data of OCI AML-2 cells population expressing GFP over the course of 

growth assay. D) Summary data of OCI AML-2 cells viable counts of shRNA S100A4 compared 

to control shRNA. Propidium Iodide (PI) was used for viability staining.  Data indicates mean ± 

1SD (n=3).  Statistical significance is denoted by * P<0.05; **<0.001 analyzed by paired t-test. 
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Figure 4-16: TF-1 cells are dependent on S00A4 for growth and survival 

A) Example western blot showing S100A4 expression in TF-1 cells with S100A4 KD) 

compared to control (targeting non-mammalian gene) using shRNA. B) Summary data 

showing growth of TF-1 cells with S100A4 KD compared to control over 3 days of 

growth following infection. C) Summary data of TF-1 cells population expressing GFP 

over the course of growth assay. D) Summary data of TF-1 cells viable counts of shRNA 

S100A4 compared to control shRNA. Propidium Iodide (PI) was used for viability 

staining.  Data indicates mean ± 1SD (n=3). Statistical significance is denoted by * 

P<0.05; **<0.001 analyzed by paired t-test. 
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Figure 4-17: THP-1 cells are dependent on S00A4 for growth and survival 
A) Example western blot showing S100A4 expression in THP-1 cells with S100A4 KD) 

compared to control (targeting non-mammalian gene) using shRNA. B) Summary data showing 

growth of THP-1 cells with S100A4 KD compared to control over 3 days of growth following 

infection. C) Summary data of THP-1 cells population expressing GFP over the course of growth 

assay. D) Summary data of THP-1 cells viable counts of shRNA S100A4 compared to control 

shRNA. Propidium Iodide (PI) was used for viability staining.  Data indicates mean ± 1SD (n=3).  

Statistical significance is denoted by * P<0.05; **<0.001 analyzed by paired t-test.
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4.4 Discussion 

 The main objective of this Chapter was to determine the functional significance 

of nuclear over-expressed and S100A4 KD on proliferation, differentiation, and survival 

of primary CD34+ HSPCs as well as in leukaemia cell lines.  To achieve this, S100A4 

was attempted to be ectopically overexpressed in the nucleus of CD34+ HSPCs and 

leukaemia cell lines (K562 and TF-1).  Primary CD34+ HSPCs did not overexpress of 

S100A4 and possibly degraded it.  Further, overexpressing S100A4 in the nucleus of 

leukaemia cell lines had little or no effect on proliferation under serum deprivation 

conditions. Conversely, S100A4 KD in CD34+ HSPCs possibly slowed their growth 

compared to control but does not affect their survival.  Finally, this chapter showed that 

AML cell line (OCI AML-2, NOMO-1, TF-1, and THP-1) are dependent on S100A4 for 

their growth and survival. Taken together, this data suggests that S100A4 could be a 

potential targeted therapy that targets only leukemic cell while sparing normal CD34+ 

HSPCs. 

 

4.4.1 Generating retro- and lentiviral vectors that over-express S100A4 in the 

nucleus 

Retro- and lentiviruses have different preferences regarding their cellular tropism 

and genomic integrations sites. Many subtypes of retroviruses are dependent on the 

degeneration of the nuclear membrane during cell division to enter the nucleus and 

genomically integrate their DNA (Miller 2014).  Conversely, lentiviruses have the ability 

to transduce dividing and non-dividing cells efficiently via nuclear pores (Sakuma et al. 

2012).  Accordingly, lentiviral vectors such as pHIV have the advantages over the 

retroviral vectors in terms of the ability to infect both dividing and non-dividing cells (Cai 

and Mikkelsen 2016) and have the ability to stably and irreversibly integrate their DNA 

into the host cell genome (Liu and Berkhout 2014).  Therefore, 3xNLS S100A4 pHIV 

vector was used should high transduction efficiency could not be achieved by PINCO 

retroviral vectors in primary or cell lines models.  Given that the abnormal localisation of 

S100A4 expression to the nucleus is a common feature of leukaemia as shown in Figure 

3-13, nuclear expression of S100A4 is forced by introducing up to 3x nuclear localisation 

signals sequence (NLS; e.g. GATCCAAAAAAGAAGAGAAAGGTA, SV40 large T-

antigen NLS).  The NLS is a short sequence of amino acid residues which are recognised 

by a nuclear protein transport called importins α and/or β that mediate trafficking proteins 
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into the nucleus via nuclear envelope (Christophe et al. 2000).  The NLS sequence 

can be attached artificially either at the N- or C-terminus of target protein.  However, the 

C-terminus of S100A4 is crucial for target proteins binding such as p53 (Ismail et al. 

2008) and important for metastasis-inducing properties through interaction with 

NMMHC IIA (Zhang et al. 2005).  Therefore, to ensure the NLS did not interfere with 

the binding capacity of S100A4, the NLS sequence was attached at the N-terminus of 

S100A4 CDS cDNA.  

 In summary, retro- and lentiviral vectors containing the nuclear localisation signal 

and S100A4 have been successfully confirmed in the packaging cells to overexpress 

S100A4 in the nucleus at the expect M.W. of 13 kDa. 

 

4.4.2 CD34+ HSPCs could not be shown to overexpress S100A4  

 This study used a retroviral vector to target dividing CD34+ HSPCs to induce over 

expression of S100A4. DNA transfection efficiency was high in Phoenix cells (measured 

by GFP expression) and use of 1x or 3xNLS-S100A4 PINCO vectors resulted in protein 

expression of S100A4 in the nucleus of the packing cells.  However, protein expression 

could not be replicated in CD34+ HSPC model.  Most importantly, 1x and 3xNLS S100A4 

transduction efficiency was only 20% and 33% respectively.  Although an improved 

retroviral gene transduction protocol has been used to transduce CD34+ HSPCs in this 

study (Tonks et al. 2005), these low transduction efficiencies cannot be explained but is 

likely due to low viral titres.  Thus, CD34+ HSPCs were transduced with lentiviruses; 

control pHIV expressing GFP only and 3xNLS-S100A4 pHIV vectors; however, this did 

not give higher transduction frequencies and again overexpression of S100A4 could not 

be demonstrated in transduced CD34+ HSPCs with 3xNLS-S100A4 pHIV vector in the 

cytosol or nucleus.   

These findings are consistent with the previous results in Section 3.3.4  which 

shows that normal CD34+ cells and differentiated progenitors express S100A4 in the 

cytoplasmic compartment only and no nuclear expression of S100A4 was observed.  It 

has been reported that S100A4 expressed predominantly in the cytoplasm.   For example, 

the Mandinova et al, have shown that S100A4 is predominantly expressed in the cytosol 

of smooth muscle cell lines derived from human aorta and intestines.  Whereas, other 

members of the family such as S100A2 and S100A6 were located primarily in the nucleus 

suggesting distinctive localisation pattern of S100 protein family (Mandinova et al. 
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1998).    Further, it has been reported that  S100A4 is located in the plasma membrane  

and involved in Ca2+ trafficking and regulation (Boye and Maelandsmo 2010).  Other 

studies suggested that changes in the extracellular concentration of Ca2+ triggers the 

release of S100A4 into extracellular space of artery smooth muscle cells (Donato 2007).  

However, there is no published evidence that S100A4 is expressed in the nucleus of 

normal cells.  In contrast, nuclear expression of S100A4 is often linked to metastasis and 

poor outcomes in colorectal (Boye et al. 2010), liver (Fabris et al. 2011), ovarian (Kikuchi 

et al. 2006), and breast cancer (Egeland et al. 2017).  This suggests that CD34+ cells may 

recognise the nuclear expression of S100A4 as abnormal and therefore rapidly degrade it 

(hence the failure to detect its nuclear expression).  Since nuclear localisation of S100A4 

could not be demonstrated in CD34+ HSPCs, the functional consequences of mislocalised 

S100A4 to nucleus could not definitively be determined. 

 

4.4.3 CD34+ cells do not depend on S100A4 for their growth, differentiation, and 

survival 

 Survival rates of AML patients (under 60’s years) has improved greatly over the 

last thirty years 20-75%.  However, in patients over 60 years 3-5 year survival rate is still 

around 10% (Seval and Ozcan 2015).  Consequently, the need for alternative targeted 

treatments or adjuncts to current treatment programmes is more needed than ever.  Thus, 

to determine whether CD34+ cells are dependent on S100A4 for their growth, 

differentiation, and survival, S100A4 was knocked down using shRNA S100A4 lentiviral 

vector.  S100A4 KD in CD34+ cells shows that loss of S1000A4 expression in CD34+ 

cells slowed the growth rate by 2-fold, however; this reduction was not statistically 

significant (p= 0.103).  Moreover, S100A4 KD did not affect the normal differentiation 

of CD34+ cells sub-lineages (monocytes, erythrocytes, and granulocytes), Figure 4-11B.  

These findings are consistent with previously reported data that S100A4 knock out mice 

do not show any obvious phenotype at birth and develop normally (Naaman et al. 2004).   

 In summary, CD34+ cells can tolerate the loss of S100A4 and differentiate 

normally in the myeloid lineage.  However, CD34+ cells may proliferate at lower growth 

rates as a result of S100A4 KD.   
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4.4.4 Nuclear S100A4 over-expression does not affect AML cell lines 

proliferation 

Previous studies have reported that S100A4 mislocalisation to the nucleus drives 

tumour growth and migration capacity in solid tumours such as breast cancers (Egeland 

et al. 2017).  Following unsuccessful attempt to demonstrate nuclear overexpression of 

S100A4 in normal CD34+ HSPCs to study the effects on proliferation and differentiation, 

S100A4 was overexpressed in the nucleus of leukaemia cell lines.  Initially, a panel of 

lines (KG-1, Mv4;11, K562, and TF-1) that have little or no expression of S100A4 in the 

nucleus were chosen for this purpose.  Overexpression of S100A4 in the nucleus was 

initially achieved in KG-1 and Mv4;11 cell lines.  However, KG-1 and Mv4;11 cell lines 

showed rapid degradation of S100A4 while cells in culture (data not shown).  KG-1 cells 

are less mature cell line classified as FAB M1 and derived from bone marrow of 59 years 

old male patient with erythroleukemia (Koeffler and Golde 1978).   Interestingly, KG-1 

cells’ behaviour was consistent with primary CD34+ HSPCs in degrading nuclear S100A4 

post transduction. Conversely, K562, and TF-1 had sustained the overexpression of 

S100A4 in the nucleus during sub-culturing.  Although K562 is not an AML cell line, 

both cell lines can still be used to study the effect on myeloid malignancy due to lack of 

S100A4 expression in the nucleus and ease of lentiviral infectability.  Moreover, S100A4 

is equally important in cytoplasm versus nucleus in K562 and TF-1 cells since these cell 

lines have no cytoplasmic expression of S100A4. 

 K562 and TF-1 cell lines were transduced with control GFP and 3xNLS-S100A4 

pHIV vectors and cultured under serum deprivation conditions.  Results show that nuclear 

expression of S100A4 does not affect the proliferation of K562 and TF-1 cells.  In 

contrast, several studies in solid tumours have shown association between nuclear 

mislocalised S100A4 expression and increase of tumour growth, (Kikuchi et al. 2006), 

invasion (Wang et al. 2012), and metastasis (Mishra et al. 2012).  One possible 

mechanism by which S100A4 promotes tumour proliferation is inhibiting the apoptotic 

cascade preventing cells from undergoing apoptosis.  Interestingly, preferentially 

expressed antigen of melanoma (PRAME) which has previously been shown to reduce 

tumorigenicity of leukemic cells in vivo, has also been shown to reduce expression of 

S100A4, particularly in those leukaemia associated with favourable outcome (e.g., in 

leukaemia’s harbouring RUNX1-ETO and PML-RARα) (Tajeddine et al. 2005).  More 

recently, Xu et al. demonstrated that PRAME promotes apoptotic death of leukaemia cells 
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by regulating S100A4/p53 signalling (Xu et al. 2016).  Indeed, it has been reported that 

S100A4 binds to C-terminal part of p53 in the nucleus of lung adenocarcinoma cells 

which in turn tags p53 for MDM2-dependent ubiquitination (Orre et al. 2013).   Further, 

Orre et al demonstrate that knockdown of S100A4 increased the transcriptional activity 

of p53 and led to p53-dependent cell cycle arrest. 

 Taken together, overexpressing S100A4 in the nucleus of KG-1 and Mv4;11 cell 

lines induced rapid degradation of S100A4 protein consistent to what was observed in 

normal CD34+ cells.  Nevertheless, overexpressing S100A4 in the nucleus of K562 and 

TF-1 cell lines did not affect their proliferation.  

 

4.4.5 AML cell lines are dependent on S100A4 for their growth and survival 

 Several studies have reported that knocking down S100A4 in solid tumours 

reduces tumour growth, suppresses migration, and induces apoptosis (Zhang et al. 2016, 

Huang et al. 2012).  However, the effect of S100A4 KD on growth and survival capacities 

in haematological malignancies has not been reported.  In order to study these effects on 

leukemic cells, a panel of AML cell lines (OCI AML-2, NOMO-1, THP-1, and TF-1) 

were chosen.  As shown previously in Fig. Ch. 3, OCI AML-2, NOMO-1, and THP-1 cell 

lines exhibited nuclear expression of S100A4.  TF-1 cell line, however; expresses 

S100A4 in the cytoplasm but have no expression of S100A4 in the nucleus.  Nevertheless, 

TF-1 can still be a useful model to study the effect of S100A4 KD on leukemic cells 

expressing cytoplasmic S100A4.   As shown in Figure 4-12A, Figure 4-15A, and Figure 

4-16A, S100A4 knockdown has significantly impaired the growth in OCI AML-2, 

NOMO-1, and TF-1 compared to control KD, respectively.  Whereas, S100A4 KD in 

THP-1 cells slowed growth but was not statistically significant (p= 0.1), Figure 4-17A.  

These findings are consistent with Zhang et al study findings, where S100A4 KD through 

RNA interference (S100A4 siRNA) significantly decreased proliferation and increased 

apoptosis in anaplastic thyroid cancer (ATC) cell lines in vitro. Similar findings where 

achieved in an in vivo model when S100A4 was knocked down with shRNA, significant 

reduction in tumour growth and inhibition of metastasis in the abdominal cavity were 

observed (Zhang et al. 2016).  Therefore, it can be hypothesised that S100A4 plays a 

crucial role in leukemic cells’ proliferation and survival. 

 Furthermore, knocking down the expression of S100A4 in AML lines resulted in 

cell death through induction of apoptosis.  As shown in Figure 4-14A, S100A4 KD has 
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significantly promoted apoptosis in OCI AML-2, TF-1, and THP-1 cell lines.  OCI AML-

2 cells is the most affected AML cell line by the absence of S100A4 expression as cell 

death was observed within the first 48 hours of S100A4 shRNA treatment (Figure 4-12B).  

However, in NOMO-1 line, cell death was delayed as NOMO-1 cells maintained their 

viability post knockdown of S100A4.  Overall, these results of apoptosis assay clearly 

indicate that leukemic cells are dependent on S100A4 for their survival. 

 In conclusion, CD34+ cells can tolerate the loss of S100A4 and differentiate 

normally in the myeloid lineage.  However, knocking down expression of S100A4 in 

AML lines results in significant growth reduction of leukemic cells and cell death through 

induction of apoptosis.  These findings provide an evidence that supports a novel role for 

S100A4 as a pro-survival factor in AML cell lines.  Hence, these findings suggest that 

therapeutically targeting S100A4 would be an effective strategy in AML while sparing 

normal hematopoietic cells.  
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5 Chapter 5 - Introduction 

5.1 Overview 

 In the previous Chapter, I showed that knock down of S100A4 in AML cells 

impaired their ability to grow and survive, suggesting that AML cells are dependent on 

expression of this protein for their survival.  Whilst it is well established that S100A4 has 

a role in cancer progression, the underlying mechanism in which S100A4 exerts its 

function is yet to be understood, especially in AML. 

 The biological functions of S100A4 are mediated by interactions with binding 

partner proteins through a Ca2+-dependant manner (Donato et al. 2013).  Interaction of 

S100A4 with Ca2+ ions is a critical process which leads to exposure of the hydrophobic 

surface of S100A4 to attract binding proteins (Bresnick et al. 2015); in vitro studies have 

shown that C-terminal EF hand (calcium binding domains) in S100 proteins has higher 

binding affinity to Ca2+ in the presence of its target (Kd ~10- 100 µM) (Gifford et al. 

2007) (Figure 1-2).  Although S100A4 protein binding partners such as RAGE and 

myosin have been identified in solid tumours (Bowers et al. 2012, Dahlmann et al. 2014), 

proteins that bind to S100A4 in the nucleus of haematological malignancies including 

AML remain unknown.  One of the most wildly used techniques to identify and validate 

physiologically relevant protein–protein interactions is co-immunoprecipitation (co-IP) 

(Turriziani et al. 2016).  Co-IP uses specific antibodies to the target protein to indirectly 

pull down binding partners which can be subsequently identified by liquid 

chromatography mass spectrometry (LC/MS) (Lin and Lai 2017). 

 In this Chapter, a co-IP / MS approach was conducted to identify the binding 

partners of S100A4 in the cytoplasm and nucleus of AML cells.  To replicate the 

biological conditions in which S100A4 binds proteins, S100A4 from both cytoplasmic 

and nuclear subcellular fractions had been pulled down under Ca2+ enriched conditions.    

These samples were assayed at the Bristol Proteomics Facility to identify a candidate list 

of potential S100A4 binding proteins.  The co-IP/LCMS analysis of S100A4 binding 

partner in ME-1 cells and data analysis pipelines are detailed in Figure 2-8 and Figure 2-9 

respectively.
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5.2 Aims 

To identify the protein interaction partners of S100A4 in the ME-1 AML cell line.  To 

achieve this objective, I aim to: 

• Establish a co-IP protocol to pull down S100A4 binding partners under Ca2+ 

enriched conditions; 

• Identify potential S100A4 binding proteins in the cytoplasm and nucleus of ME-

1 using the optimised protocol established above coupled with LC/MS; 

• Validate S100A4 binding proteins using a reciprocal co-IP approach coupled 

with western blot; 

• Identify the over-represented gene ontology (GO) biological processes (BP) and 

molecular functions (MF) for S100A4 candidate binding proteins; 

• Identify the protein-protein interaction (PPI) networks between S100A4 

validated binding proteins and AML related proteins.  

 

5.3 Results 

5.3.1 Generating cytosolic and nuclear protein lysates from AML cell lines 

In order to retain Ca2+-based interactions between S100A4 and its protein binding 

partners, a buffer (TAEB) was used which was free of metal chelator (i.e. EDTA and 

EGTA) in order to retain calcium-dependent interactions.  NOMO-1 and ME-1 cells were 

fractionated into cytosolic and nuclear sub-cellular fractions and GAPDH and Histone 

H3 protein expression were determined by western blot to verify fractionation efficiency 

and purity under these conditions (Figure 5-1)  As before, S100A4 was expressed in both 

cytosol and nuclear sub-cellular fractions.  Since NOMO-1 cells grow much faster than 

ME-1 cells, extracts from these lines were used for optimisation of S100A4 co-IP.  

However, given the increased nuclear expression of S100A4 in ME-1 cells, this line was 

used for subsequent LC-MS analyses using the optimal co-IP protocol.   
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Figure 5-1: S100A4 is expressed in cytosolic and nuclear sub-cellular compartments 

of NOMO-1 and ME-1 cells.  
Example western blot showing S100A4 expression in NOMO-1 and ME-1 cells using non-ionic 

chelators containing extraction buffers (Cytoplasmic buffer and TEAB nuclear extraction buffer).  

(C) Cytoplasmic and (N) Nuclear subcellular compartments of NOMO-1 and ME-1 cells.  

GAPDH and Histone H3 were used to demonstrate fractionation efficiency. 
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5.3.2 Optimisation of co-IP of S100A4 and its binding partners complex in 

calcium enriched conditions for LC-MS analysis 

Initially, a direct co-IP approach was used to pull down S100A4 binding proteins.  

The direct co-IP is based on pre-immobilization of the antibody to the magnetic beads 

followed by incubation with protein lysate mixture (Illustration diagrams are shown in 

Figure 2-6).  As shown in Figure 5-2A, protein expression of S100A4 was determined by 

western blot following co-IP.  Whilst S100A4 was detected in the original input lysates 

before conducting co-IP “input sample” and IgG co-IP (using NOMO-1 cells), S100A4 

co-IP failed to show S100A4 protein expression in the IP eluted fraction. 

Alternatively, an indirect co-IP approach was undertaken where the antibody was 

incubated with a “protein mixture bait” to form an immune complex with the target 

protein antigen then retrieved by the magnetic beads.  As shown in Figure 5-2B S100A4 

protein expression was observed at 8 kDa in the input sample as well as the IP eluted 

sample.  Further, upon eluting the co-IP fraction, the heavy (~50 kDa) and light (~23 kDa) 

chains of S100A4 mAb were visible suggesting elution was successful. 

In order to retain S100A4 bound to protein partners in both cytosolic and nuclear 

lysates, co-IP was performed in the presence of 100 µM CaCl2.   A parallel co-IP using 

matched IgG control was performed under the same conditions to control for non-specific 

binding.  Further, to control for Ca2+ independent interactions, an additional co-IP was 

performed in the presence of 10 mM Na2EDTA.  To quickly assess co-IP efficiency, 

protein complexes were subsequently separated using PAGE and proteins visualised 

within gel using SYPRO Ruby®.  Immunoprecipitated S100A4 and partner proteins under 

both Ca2+ enriched and Ca2+ depleted conditions were not visible in the eluted fraction, 

due to the lower sensitivity of this method compared to immunoblotting (Figure 5-3A & 

B respectively). Taken together these data suggest that the indirect co-IP approach is more 

effective than the direct co-IP method in pulling down proteins.  
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Figure 5-2:Immunoblots of direct and indirect S100A4 antibody binding co-IP of 

S100A4 binding partners.  
Immunoblots showing the efficiency of S100A4 co-IP using two different co-IP methods.  A) 

Western blot of direct co-IP on both nuclear and cytosolic extracts of NOMO-1 cell line. B) 

Western blot of indirect co-IP on a cytosolic extract of NOMO-1 cell line.  Input: original lysate 

before co-IP, IgG/IP Supernatant; unbound protein lysate, IgG/IP Eluate; eluted bound proteins. 

Each lane represents total lysate of NOMO-1 cell line. (H. Chain); Heavy IgG Chain (~50 kDa), 

(L. Chain); Light IgG Chain (~23 kDa).
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Figure 5-3:Quality Control check of co-IP on Tricine SDS-PAGE gel stained with SYPRO Ruby Fluorescent Stain.  
Quality control immunoblots stained with SYPRO Ruby fluorescent stain showing the co-IP efficiency under different enrichment conditions. A) PAGE 

gel of S100A4 co-IP under Ca+ enriched conditions. B)  Immunoblots of S100A4 co-IP under EDTA enriched conditions. (C) Cytoplasmic, (N) Nuclear. 

Input: original lysate before co-IP, IgG/IP supernatant; unbound protein lysate, IgG/IP Eluate; eluted bound proteins.
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5.3.3 LC-MS Proteomic analysis and data filtration of S100A4 binding partners  

5.3.3.1 LC-MS Proteomic analysis of S100A4 binding partners in cytoplasmic and 

nuclear compartment of ME-1 cells 

 The indirect co-IP protocol established above was used to ‘pulldown’ proteins 

bound to S100A4 in the cytoplasm and nucleus of ME-1 AML cells.  Each sample was 

subsequently analysed by LC-MS (See full raw and analysed LCMS data in attached 

electronic CD).  In the cytoplasmic fractions, LC-MS analysis detected lower number of 

peptides as compared to nuclear counterparts (Table 5-1).  LC-MS chromatograms show 

lower relative peptide abundance in the cytoplasmic IgG control co-IP samples under 

Ca2+ and EDTA enriched conditions  (Figure 5-4A & C) compared to their S100A4 co-

IP samples (Figure 5-4B & D) However, when spectra generated from these two samples 

(S100A4 co-IP/Ca2+ and S100A4 co-IP/EDTA) were searched against UniProt Human 

database, less peptides IDs were identified at 1% FDR. Further, matching the cytoplasmic 

peptides sequences against curated NCBI/taxonomy database resulted in more hits for 

BSA (Area Score: 1.722×1010/Ca2+ and 2.1×109/EDTA and rabbit IgG (Area Score: 

1.71×109/EDTA only) compared to other cytoplasmic peptides identified by MS analysis.  

On the contrary, nuclear MS data showed that higher number of peptide IDs were 

identified as shown in Table 5-1.  

In summary, LC-MS analysis identified peptides IDs pulled down with S100A4 

binding partners in cytoplasmic and nuclear co-IP at 95% confidence level at 1% FDR 

cut-off.  These data will be filtered further according to the data filtration strategy shown 

in Figure 5-5 for cytoplasmic peptides and in Figure 5-6 for nuclear peptides.
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Table 5-1: Number of Peptides Identified by LC-MS in Cytoplasmic and Nuclear 

Co-IP Samples 
This table compares the number of peptides identified in cytoplasmic and nuclear fractions under 

calcium enriched and deprived conditions co-IP in S100A4 and IgG control. 

 

 

 

% FDR → 1% FDR 

Enrichment → Ca2+ EDTA 

Lysate IgG 

Control 

S100A4 IgG 

Control 

S100A4 

Cytoplasmic 82 19 142 25 

Nuclear 191 681 222 696 
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Figure 5-4:LC-MS Chromatograms Showing the Relative Abundance of Peptides Detected in Cytoplasmic Co-IP.  
A) Example of LC-MS chromatogram of cytosolic IgG control co-IP in the presence of EDTA. B) Example of LC-MS chromatogram of cytosolic S100A4 

co-IP in the presence of EDTA. C) Example of LC-MS chromatogram of cytosolic IgG co-IP under Ca2+ enriched condition. D) Example of LC-MS 

chromatogram of cytosolic S100A4 co-IP under Ca2+ enriched condition.  Y-axis represents the relative abundance. X-axis; represents the run time in 

minutes.
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5.3.3.2 LC-MS data filtration for cytoplasmic peptides  

Following LC-MS analysis of potential S100A4 binding proteins in the cytoplasm 

of ME-1 cells, identified peptides were filtered and refined based on criteria outlined in 

(Figure 2-9).  At a 1% FDR cut-off, a total of 19 peptides were detected in the S100A4 

co-IP and 82 peptides were detected in the IgG control co-IP enriched with 100 µM of 

CaCl2.  Of the 19 peptides detected in the S100A4 co-IP, 11 non-specific peptides were 

detected (present in the IgG control co-IP) and 8 specific (exclusive) proteins detected in 

S100A4 co-IP (Figure 5-5A). 

To control for Ca2+-independent interactions with S100A4, a similar co-IP was 

performed on cytoplasmic and nuclear lysates of ME-1 using calcium chelators 

Na2EDTA enriched conditions.  A total of 25 peptides were detected in the S100A4 co-

IP samples while 142 peptides were detected in the IgG control sample.  Thirteen specific 

peptides were ‘pulled down’ when non-specific binding proteins were filtered out (Figure 

5-5B).  Common to both approaches were two proteins (Figure 5-5C).  Six proteins were 

specific to the Ca2+ enriched conditions.  The candidate list of proteins was further refined 

by removing peptides that have only 1 distinct peptide sequence in the protein group from 

the list, leaving 2 candidate proteins only (Figure 5-5D, Filter #3).  These proteins were 

matched against reviewed protein sequences in UniProt Knowledgebase (UniProtKB).  

Both proteins were identified as unreviewed proteins sequences on TrEMBL (Figure 

5-5D, Filter #4). Therefore, these two proteins were excluded from the analysis. 

Taken together, the above approach identified very few proteins in the cytosolic 

compartment of ME-1 as S100A4 binding partners (discussed further in 5.4.2). 
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Figure 5-5: LC-MS Preliminary Peptide filtration of cytoplasmic co-IP 
A) Venn diagram showing filtering of non-specific peptides that appeared in IgG control from 

S100A4 calcium data set.  B) Venn diagrams showing filtering of non-specific peptides that 

appeared in IgG control from S100A4 EDTA data set.  C) Venn diagram showing filtering of 

peptides that were pulled down with S100A4 in the absence of calcium from S100A4 calcium 

data set.  Circled numbers in red Venn diagram depict the number of peptides after filtration. D) 

Further filters of cytoplasmic peptides identified by LC-MS using spectra algorithmic scores 

including peptides score, PSM (displays the protein abundance in the sample), and Area (displays 

the highest detected peptide signal) as well as online peptide identification tools (UniProt-

Human).  Numbers in red in brackets depict the number of peptides resulting after each filter.
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5.3.3.3 LC-MS data filtration for nuclear peptides 

 In the nuclear sub-cellular compartment of ME-1 cells, LC-MS analysis identified 

a total of 681 peptides in the S100A4 co-IP enriched with Ca2+.  Further, a total of 191 

peptides were detected in the IgG control lysate under the same conditions.  As shown in 

Figure 5-6A, non-specific binding peptides detected in the IgG control co-IP were 

removed from the nuclear calcium enriched fraction.  Alternatively, a total of 696 peptides 

were detected in the nuclear lysate that had been treated with EDTA.  In this approach, 

222 peptides were detected in the IgG control co-IP sample under the same conditions.  

As shown in Figure 5-6B, non-specific binding peptides detected in the IgG control co-

IP sample were removed from the nuclear EDTA enriched co-IP.  To identify S100A4 

binding peptides in a Ca2+-dependent manner, peptides that are present in the EDTA data 

list were removed from the Ca2+ enriched sample remaining 287 peptides in Ca2+ enriched 

sample (Figure 5-6C).  Subsequently, candidate peptides were refined based on their 

peptide score, in which peptides that have < 1 peptide score were removed from the list 

leaving 163 peptides (Figure 5-6 D, Filter #3). 

 Using UniProtKB, the list of 163 candidate peptides were matched against 

reviewed peptides sequences.  A total of 97 unreviewed peptides on TrEMBL/UniProt 

were removed from the list (Figure 5-6 D, Filter #4).  The previous step resulted in 

identifying 66 manually reviewed peptides sequences on the Swiss-Prot/UniProt database 

and can be processed in the next step in the analysis (Table 5-2).  However, Keratin, type 

II cytoskeletal 74 (KRT74) was removed as it has been recognised in the literature as 

major background contaminant (discussed in 5.4.2).  Candidate list of 65 peptides were 

ranked twice, first rank is based on highest PSM score (displays the protein abundance in 

the sample) and second rank is based on Area score (displays the highest detected peptide 

signal).  Subsequently, analysed peptides that are in the highest quartile of both data sets.  

This filtration step resulted in two sets of 16 proteins with highest PSM score and 16 

peptides with highest area score (Figure 5-6 D, Filter #5 and #6).  In the final filtration 

step, ranked data sets from previous filtration step were combined and only 9 peptides 

which have both the highest PSM and area scores (Table 5-3) were chosen for further 

experimental validation, (Figure 5-6 D, Filter #7).
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Figure 5-6: LC-MS preliminary peptide filtration of nuclear co-IP. 
A) Venn Diagrams showing filtering non-specific peptides appeared in IgG control from S100A4 

calcium data set.  B) Venn Diagrams showing filtering non-specific peptides appeared in IgG 

control from S100A4 EDTA data set.  C) Venn Diagrams showing filtering peptides that are 

pulled down with S100A4 in the absence of calcium from S100A4 calcium data set.  Circled 

number in red Venn diagram depicted the number of peptides after filtration.  D) Further 

refinements of Cytoplasmic peptides identified by LC-MS using spectra algorithmic scores 

including peptides score, PSM, (displays the protein abundance in the sample), and Area (displays 

the highest detected peptide signal) as well as online peptide identification tools (UniProt-

Human). Numbers in red colour in brackets depicted the number of peptides resulted after each 

filter. 

 

Table 5-2: Identification of reviewed proteins on UniProt KB database in the 

S100A4 co-IP sample.  
List of 65 nuclear proteins identified as reviewed proteins in Swiss-Prot/UniProt KB database in 

the S100A4 co-IP sample enriched with calcium. These proteins were further refined as indicated 

in Figure 5-6. 

 

UniProt 

Accession 

No 

HUGO 

Gene Name 

(Symbol) 

Candidate 

Protein Name 

O75533 SF3B1 Splicing Factor 3B subunit 1 

P52272 hnRNPM heterogeneous nuclear Ribonucleoprotein M 

P33993 MCM7 Minichromosome Maintenance complex 

component 7 

Q9NR30 DDX21 DExD-box helicase 21 

P42167 TMPO Thymopoietin 

Q8WUM0 NUP133 Nucleoporin 133 

Q13428 TCOF1 Treacle Ribosome Biogenesis Factor 1 

Q9BW27 NUP85 Nucleoporin 85 

Q9Y5B9 SUPT16H 

 

SPT16 homolog, Facilitates Chromatin 

Remodeling Subunit 

P29590 PML Promyelocytic Leukemia 

Q14684 RRP1B Ribosomal RNA Processing 1B 

Q8TAQ2 SMARCC2 SWI/SNF related, matrix associated, actin 

dependent regulator of chromatin subfamily c 

member 2 

Q8IY81 FTSJ3 FtsJ RNA 2'-O-methyltransferase 3 
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Q6KC79 NIPBL NIPBL cohesin loading Factor 

Q96QV6 HIST1H2AA Histone Cluster 1 H2A Family Member A 

P55265 ADAR Adenosine Deaminase RNA Specific 

Q86WJ1 CHD1L Chromodomain Helicase DNA Binding protein 

1 Like 

P46087 NOP2 NOP2 Nucleolar Protein 

Q9BXY0 MAK16 MAK16 homolog 

P46781 RPS9 Ribosomal Protein S9 

P12270 TPR Translocated Promoter Region, Nuclear Basket 

Protein 

Q9ULK4 MED23 Mediator Complex Subunit 23 

Q9NY61 AATF Apoptosis Antagonizing Transcription Factor 

P46060 RANGAP1 Ran GTPase Activating Protein 1 

Q9BTA9 WAC WW domain Containing Adaptor with Coiled-

Coil 

P07437 TUBB Tubulin Beta Class I 

P68371 TUBB4B Tubulin Beta 4B Class IVB 

Q13242 SRSF9 Serine and Arginine Rich Splicing Factor 9 

P39023 RPL3 Ribosomal Protein L3 

Q9UQR0 SCML2 Scm Polycomb Group Protein-Like 2 

P22626 hnRNPA2B1 heterogeneous nuclear Ribonucleoprotein 

A2/B1 

Q86UE4 MTDH Metadherin 

Q99848 EBNA1BP2 EBNA1 Binding Protein 2 

P55081 MFAP1 Microfibril Associated Protein 1 

P35659 DEK DEK proto-oncogene 

P62277 RPS13 Ribosomal Protein S13 

P38159 RBMX RNA Binding Motif Protein X-linked 

Q92769 HDAC2 Histone Deacetylase 2 

Q14669 TRIP12 Thyroid Hormone Receptor Interactor 12 

Q96DI7 SNRNP40 Small Nuclear Ribonucleoprotein U5 Subunit 

40 

P17026 ZNF22 zinc finger protein 22 
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Q5QJE6 DNTTIP2 

 

Deoxynucleotidyl Transferase Terminal 

Interacting Protein 2 

Q14692 BMS1 BMS1 Ribosome Biogenesis Factor 

P53999 SUB1 SUB1 homolog, transcriptional regulator 

P55735 SEC13 

 

SEC13 homolog, nuclear pore and COPII coat 

complex component 

O60216 RAD21 RAD21 cohesin complex component 

Q96PK6 RBM14 RNA Binding Motif Protein 14 

Q8TEM1 NUP210 Nucleoporin 210 

Q13595 TRA2A Transformer 2Alpha homolog 

Q92785 DPF2 Double PHD Fingers 2 

Q8IY67 RAVER1 Ribonucleoprotein, PTB binding 1 

Q13619 CUL4A Cullin 4A 

Q9UBW7 ZMYM2 Zinc finger MYM-type containing 2 

Q6UN15 FIP1L1 Factor Interacting with PAPOLA and CPSF1 

P25705 ATP5F1A ATP synthase F1 subunit alpha 

Q9NRH3 TUBG2 Tubulin Gamma 2 

Q14344 GNA13 G Protein subunit Alpha 13 

Q96MU7 YTHDC1 YTH Domain Containing 1 

Q8NEJ9 NGDN Neuroguidin 

Q9Y232 CDYL Chromodomain Y Like 

P62263 RPS14 Ribosomal Protein S14 

Q8N7H5 PAF1 

 

PAF1 homolog, Paf1/RNA polymerase II 

complex component 

Q13315 ATM ATM serine/threonine kinase 

Q92556 ELMO1 Engulfment and cell Motility 1 

P49756 RBM25 RNA Binding Motif Protein 25 
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Table 5-3: S100A4 nuclear candidate binding partners identified by LC-MS 

A total of 9 proteins were concluded as S100A4 candidate binding partners Figure 5-6) with highest abundance (High PSM scores) and highly detected 

peptide signal (high Area score) in MS list of S100A4 candidate binding partners under calcium enriched conditions. PSM score (displays the protein 

abundance in the sample), Area score (displays the highest detected peptide signal). 

UniProt 

Accessio

n No 

HUGO 

Gene 

Name 

(Symbol) 

Candidate 

Protein Name 

 

Function 

MS 

Area 

Score 

MS 

PSM 

Score 

Reference 

P52272 hnRNPM heterogeneous nuclear 

ribonucleoprotein M 

Involved in pre-mRNA binding, Splicing, mRNA 

Transcription 

1.34×109 65 Geuens et al. 

2016 

Q96QV6 HIST1H2AA histone cluster 1 H2A family 

member A 

Involved in transcription regulation, DNA repair, DNA 

replication and chromosomal stability 

1.34×109 33 McGinty and 

Tan 2015 

P42167 TMPO Thymopoietin 

 

Involved in the structural organization of the nucleus 

and in the post-mitotic nuclear assembly 

4.14×108 29 Naetar et al. 

2017 

O75533 SF3B1 Splicing Factor 3B subunit 1 pre-mRNA splicing Factor 1.81×108 40 Dolatshad et 

al. 2015 

P33993 MCM7 MiniChromosome 

Maintenance complex 

component 7 

 

putative replicative helicase essential for 'once per cell 

cycle' DNA replication initiation and elongation in 

eukaryotic cells 

1.4×108 29 Ishimi 2018 

 

Q14684 RRP1B Ribosomal RNA processing 

protein 1 homolog B 

Positively regulates DNA damage-induced apoptosis 

by acting as a transcriptional coactivator of 

proapoptotic target genes of the transcriptional 

activator E2F1 

1.26×108 16 Lee et al. 2014 

Q9BXY0 MAK16 MAK16 homolog Part of the apparatus concerned with the nuclear events 

of the cell cycle 

1.22×108 9 Pellett and 

Tracy 2006 

Q9Y5B9 SUPT16H SPT16 homolog facilitates 

chromatin remodelling 

subunit (FACT complex) 

Component of the FACT complex and acts to 

reorganize nucleosomes.   

1.19×108 17 Formosa 2013 

Q9NR30 DDX21 

 

 

DExD-box helicase 21 

 

RNA helicase that acts as a sensor of the 

transcriptional status of both RNA polymerase (Pol) I 

and II 

9.78×107 22 Calo et al. 

2015 
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 Among the list of 65 proteins in Table 5-2, there were several proteins that have 

been implicated to have a role in AML pathogenesis including HDAC2, PML, DEK, 

RBM25, RAD21, and ATM (Table 5-4).  Four of these proteins DEK, RBM25, RAD21, 

and ATM, were excluded from subsequent analysis due to their low abundance (PSM, 

Filter #5) and low signal intensity (Area, Filter #6) scores, Figure 5-6.  The remaining 

proteins (HDAC2 and PML) were initially prioritised into the top quartile of proteins list 

for either high abundance or high signal intensity scores.  However, after applying Filter 

#7 (Figure 5-6) HDAC2 and PML were excluded from the prioritized list due to having 

a low score in either PSM or Area scores.  Despite the systematic data filtration exclusion 

of these AML related proteins, pulling down these proteins with S100A4 in Ca2+ enriched 

conditions from nuclear lysate may be of biological relevance.   

In summary, 9 nuclear candidate proteins were identified as S100A4 binding 

partners candidates.  Subsequently, these proteins’ interaction with S100A4 will be 

validated experimentally.  In this study, proteins pulled down under Ca2+ enriched 

conditions but identified as known abnormalities, will be considered as  S100A4 binding 

partners in AML and will be included in the subsequent functional analysis with S100A4 

binding partners in 5.3.6. 

 

5.3.4 Validation of S100A4 nuclear binding proteins using two-step co-IP and 

western blot 

The data above identified 9 proteins that were potentially bound to S100A4.  To 

confirm this, a two-step validation approach using ME-1 cells was applied.  Firstly, a co-

IP was performed where S100A4 was ‘pulled down’ in the presence of Ca2+ (controlled 

using an IgG control co-IP) followed by western blot of the candidate binding partner 

proteins.  Secondly, co-IP using the reciprocal candidate proteins and a subsequent 

western blot of S100A4 was then performed.  Of the 9 proteins identified, only 6 

commercial antibodies that are suitable for immunoprecipitation were available to test; 

hnRNPM, HIST1H2AA, MCM7, DDX21, SUPT16H, and MAK16. 
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Table 5-4: AML proteins have been detected in S100A4 in Ca2+ enriched co-IP . 
A total of 6 proteins known in AML bound to S100A4 in the calcium enriched co-IP. PSM score (displays the protein abundance in the sample), Area 

score (displays the highest detected peptide signal).  Upward green arrow denotes that this protein has a high PSM/Area score  downward red arrow 

denotes that this protein has a low PSM/Area score. 

 

 

 

UniProt 

Accession 

No 

HUGO 

Gene  

Symbol 

Protein  

Name 
 

Function 

MS Area 

Score 

MS 

PSM 

Score 

Reference 

Q92769 HDAC2 Histone Deacetylase 

2 

Involved in histone deacetylation  
 

1.01×108 

 5 Yang et al. 2015 

P29590 PML Promyelocytic 

Leukemia 

Involved in tumour suppression, transcriptional 

regulation, apoptosis, and DNA damage 

response 

 

7.67×107 

 15 Hsu and Kao 

2018 

P35659 DEK DEK proto-

oncogene 

Involved in chromatin organization, epigenetic 

and transcriptional regulation 
 

4.87×107 

 6 Sanden and 

Gullberg 2015 

P49756 

 

RBM25 RNA-Binding Motif 

protein 25 

 

Involved in regulation of alternative pre-mRNA 

splicing and in regulation of the apoptotic factor 

BCL2L1 isoform expression 

  

3.1×107 

 4 Carlson et al. 

2017 

O60216 RAD21 Double-strand-break 

repair protein 

RAD21 

Involved in sister chromatid cohesion and  

post-replicative DNA repair.  
 

2.72×107 

 4 Rocquain et al. 

2010;  

Q13315 

 

ATM Ataxia 

Telangiectasia 

Mutated (Serine-

protein kinase) 

Acts as a DNA damage sensor activating  

checkpoint signalling upon double strand breaks 

(DSBs) 

 

6.93×106 

 2 Paull 2015; Stein 

et al. 2018 
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Using the former approach, as expected S100A4 was ‘pulled down’ (Figure 5-7).  

Subsequent western blot reprobing demonstrated protein expression of HIST1H2AA (23 

kDa), Mak16 (48 kDa), SUPT16H (120 kDa) and DDX21 (115 kDa).  However, in case 

of MCM7 (80 kDa) and hnRNPM (65kDa) I was unable to confirm that these proteins 

were pulled down with S100A4 as no difference between the IgG and S100 lanes was 

observed (Figure 5-7 and Figure 5-8 respectively).  To provide further evidence that the 6 

candidate proteins (MCM7, DDX21, MAK16, SUPT16H, and hnRNPM, HIST1H2AA) 

are bound to S100A4, a reciprocal co-IP was performed in ME-1 nuclear protein lysates.  

Candidate proteins were pulled down individually and lysates analysed for S100A4 

protein expression by western blot. 

In the input sample for “MCM7” (Figure 5-9A), protein expression of S100A4 

and MCM7 (80 kDa) was observed.  Following co-IP using anti-MCM7 (IP eluted), there 

was an enrichment of MCM7 protein expression compared to IgG co-IP.  However, there 

was no detectable protein expression for S100A4.  A similar observation was observed 

for the reciprocal co-IP of DDX21 and MAK16 at their expected molecular weights (115 

and 48 kDa respectively) (Figure 5-9B & C).  In contrast the co-IP for “SUPT16H” failed 

to detect SUPT16H expression, nor was there detectable protein expression of S100A4 

when assayed by western blot (Figure 5-9D). 

When pulling down HIST1H2AA, protein expression of S100A4 and 

HIST1H2AA was detected at their expected molecular weights of 8 kDa and 23 kDa 

respectively in the eluted co-IP sample (Figure 5-10A).  A similar observation was noted 

for the reciprocal co-IP of hnRNPM; with hnRNPM protein expression observed at 65 

kDa (Figure 5-10B).  Although the immunoblots of HIST1H2AA and hnRNPM show 

that the bands are oversaturated at 30 seconds of exposure, S100A4 can be easily visible 

on the blot.  In summary, S100A4 was pulled down reciprocally with only two binding 

partners (HIST1H2AA and hnRNPM).
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Figure 5-7: S100A4 candidate binding partners are validated using co-IP. 
Western blots of S100A4 co-IP from the nuclear lysate of ME-1. All immunoblots blots were 

assayed for S100A4 expression and the candidate binding partner simultaneously; S100A4 (8 

kDa); HIST1H2AA (23 kDa); MAK16 (48 kDa); MCM7 (80 kDa); SUPT16 (120 kDa); DDX21 

(115 kDa).  Input: original lysate before co-IP, IgG control; negative co-IP control, S100A4 co-

IP; eluted bound proteins.  
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Figure 5-8:hnRNPM is validated as a candidate binding partner of S100A4 using 

co-IP. 
 Western blot of S100A4 co-IP from the nuclear lysate of ME-1 probed with S100A4 Ab and 

hnRNP Ab. S100A4 is detected at 8 kDa. Input: original lysate before co-IP, IgG/IP Superman; 

unbound protein mixture, IgG/IP Eluate; eluted bound proteins. H. Chain; Heavy Chain ~50 kDa, 

L. Chain; Light Chain ~23 kDa.
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Figure 5-9: Validation of putative S100A4 candidate binding partners using reciprocal co-

IP. 
 A) Immunoblot shows that S100A4 was not pulled down in reciprocally with MCM7.  B) Immunoblot 

shows that S100A4 was not pulled down in reciprocally with DDX21. C) Immunoblot shows that 

S100A4 was not pulled down in reciprocally with MAK16 D) Immunoblot shows SUPT16 co-IP was 

not successful.  Input: original lysate before co-IP, IgG/IP Superman; unbound protein mixture, IgG/IP 

Eluate; eluated bound proteins. H. Chain; Heavey Chain ~50 kD, L. Chain; Light Chain ~23 kD. His-

Tag S100A4 represent molecular weight control. 
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Figure 5-10: HIST1H2AA and hnRNPM are validated as S100A4 binding partners 

using reciprocal co-IP.  

S100A4 is reciprocally detected in binding partner co-IP. A) Immunoblot shows that S100A4 was 

pulled down reciprocally with HIST1H2AA.  B) Immunoblot shows that S100A4 was pulled 

down reciprocally with hnRNPM. Input: original lysate before co-IP, IgG/IP Superman; unbound 

protein mixture, IgG/IP Eluate; eluated bound proteins. H. Chain; Heavey Chain ~50 kD, L. 

Chain; Light Chain ~23 kD. His-Tag S100A4 represent molecular weight control. Image exposure 

time: 30 seconds
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5.3.5 Functional analysis of S100A4 final binding partners candidates 

To gain more insight on how S100A4 and its binding proteins could be linked AML 

pathophysiology, Gene Ontology (GO) enrichment analysis for “Biological Process” 

(BP) and “Molecular Function” (MF) were applied.  The GO analysis was performed 

using PANTHER Over-representation Test Gene Ontology Consortium online tool.  

Initially, the nine candidate binding partner proteins of S100A4 were searched against the 

reference list of 65 proteins pulled down with S100A4 in presence of Ca2+((Table 5-2) 

for BP and MF enrichment analysis. 

Using the MF enrichment analysis, “Nucleic Acid Binding” (in which hnRNPM, 

HIST1H2AA, SF3B, MCM7, TMPO, and DDX21 were identified) was the most over-

represented BP (Figure 5-12).  Alternatively, GO analysis identified several processes 

with the three most over-represented BPs involving “Nucleic Acid Metabolic Process”, 

“RNA Metabolic Process”, and “Nucleobase, Nucleoside, Nucleotide and Nucleic Acid 

Metabolic Process”; in which SUPT16H, MCM7, RRP1B, DDX21, hnRNPM, and 

SF3B1 were involved (Figure 5-12).  Interestingly, hnRNPM and SF3B1 were observed 

in all nucleic acids related BPs and RNA related BPs reported in Figure 5-12 such as 

RNA splicing, RNA processing suggesting strong protein-protein interaction (PPI) 

between them. 

 Taken together, GO functional enrichment analysis demonstrated the involvement 

of validated S100A4 binding partners’ hnRNPM and HIST1H2AA in the overrepresented 

molecular functions and biological processes analysed. 
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Figure 5-11: Functional analysis using molecular function enrichment for the final list of A100A4 binding partners’ candidates. 
A) Gene Ontology (GO) Enrichment analysis using Molecular Function (MF) shows that “Nucleic Acid Binding” is the most overrepresented molecular 

function for S100A4 binding partners final candidate list. Functional representation is shown in the number of genes identified for each molecular function 

on the Y-axis of the graph. B) MF/Protein set overlap matrix showing the number of proteins observed in each MF. The GO/MF analysis was performed 

using PANTHER14.1 and searched against the reference list of 65 proteins pulled down with S100A4 in presence of Ca2+(Table 5-2). PANTHER14.1 is 

generated from the 2019_04 release of Reference Proteome dataset (based on UniProt Release 2019_04, Ensembl release 95 and Ensembl Genome release 

42). 
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Figure 5-12: Functional analysis using biological process enrichment for the final list of S100A4 binding partners candidates. 
Enrichment analysis using Gene Ontology (GO) using Biological Process (BP) using shows that “Nucleic Acid Metabolic Process”, “RNA Metabolic 

Process”, and “Nucleobase, Nucleoside, Nucleotide and Nucleic Acid Metabolic Process” are the most overrepresented biological processes for S100A4 

binding partners final candidate list. Functional representation is shown in p-value on the left panel of the graph. Red rectangle indicates the 

overrepresented BPs in this analysis. PANTHER Overrepresentation Test (Released 20190711). The GO/BP analysis was performed using 

PANTHER14.1 and searched against the reference list of 65 proteins pulled down with S100A4 in presence of Ca2+(Table 5-2). PANTHER14.1 is 

generated from the 2019_04 release of Reference Proteome dataset (based on UniProt Release 2019_04, Ensembl release 95 and Ensembl Genome release 

42).
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5.3.6 Protein-protein interaction analysis between S100A4 and its binding 

partners 

 To analyse the PPI of S100A4 with the nine binding partners identified (Table 

5-3), a functional protein association network analysis using STRING database was 

performed.  The analysis was extended to include the AML related binding partners in 

Table 5-4.  This analysis suggested no interaction were previously reported between 

S100A4 and the 9 binding partners (Figure 5-13A).  Likewise, no interaction was reported 

between S100A4 and the AML related binding partners (Figure 5-13B).  However, 

STRING combined analysis of S100A4 nine binding partners and AML related proteins 

shows significant interaction between each other (p-value= 5.8×10-10), Figure 5-14.  

Interestingly, when the interaction between the S100A4 candidate binding partners and 

AML-related proteins was analysed, hnRNPM predicted to bind to SF3B1 and RBM25.  

Moreover, hnRNPM is predicted to have a catalytic and reaction functions with SF3B1 

and only reaction function with RBM25 (Figure 5-14A).  Likewise, HIST1H2AA is 

predicted to bind to HDAC2 and ATM and have a catalytic and reaction functions with 

them (Figure 5-14B).  However, ATM is predicted to induce posttranslational 

modification (PTM) on HIST1H2AA (Figure 5-14B). 

 In summary, PPI network analysis elucidated the interaction of hnRNPM and 

HIST1H2AA with proteins that are implicated in known molecular pathways of AML 

development such as dysregulated splicing machinery, gene expression, and epigenetics 

regulation.  Thus S100A4 could mediate its function through its validated binding 

partners’ hnRNPM and HIST1H2AA in these pathways.
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Figure 5-13: String interaction network analysis of S100A4 and binding partners. 
Protein interactions network analysis was performed on S100A4 and the 9 candidate binding 

partners and with AML-related proteins by STRING version 11.0 using interaction based on 

“evidence” A) PPI analysis using STRING network analysis of S100A4 with final MS candidate 

list of S100A4 binding partners.  Average local clustering coefficient: 0.317; PPI enrichment p-

value = 1.98×10-5 B) Network analysis of S100A4 with AML related proteins from MS dataset. 

Average local clustering coefficient: 0.143; PPI enrichment p-value = 0.0142.  Coloured lines 

between proteins indicate various types of interactions evidence. PPI network analysis performed 

using STRING (version 11.0).
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Figure 5-14: S100A4 nuclear candidate binding partners and AML-related proteins 

are highly interactive.  
 Protein interactions network analysis was performed on the 9 candidate binding partners of 

S100A4 and AML-related proteins by STRING version 11.0 using interaction based on 

“molecular action” A) HnRNPM binds to SF3B1 and RBM25 and share catalytic and reactions 

functions. B) HIST1H2AA binds to HDAC2 and ATM AML-related proteins and share catalytic, 

reaction and PTM functions. Underlined proteins are validated S100A4 binding partners, red 

dotted circles highlight the interaction complexes in which hnRNPM and HIST1H2AA are 

involved. Interaction line thickness indicates the strength of data support. Average local clustering 

coefficient: 0.553; PPI enrichment p-value = 5.8×10-10. PPI network analysis performed using 

STRING (version 11.0).
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5.4 Discussion 

The main objective of this Chapter was to identify proteins that bound S100A4 in 

the cytoplasm or nuclear subcellular compartment in AML cells.  To achieve this, a co-

IP protocol was established to ‘pull down’ S100A4 and its binding partners in the 

presence of calcium.  As shown in (Figure 3-7), four cell lines (ME-1, HEL, NOMO-1, 

and THP-1) demonstrated expression of S100A4 in both cytoplasmic and nuclear sub-

cellular fractions.  However, ME-1 AML cell line was chosen to determine the binding 

proteins of S100A4 due to the high abundance of expression of S100A4 in the 

cytoplasmic and nuclear compartment compared to other cell lines.   Given the ease of 

culturing NOMO-1 cells (as opposed to ME-1) and the generation of sufficient nuclear 

protein lysate to use in several co-IP assays (approximately doubling every 35 hours), this 

line was chosen to establish the co-IP protocol.  This study shows that S100A4 is bound 

to hnRNPM and HIST1H2AA when co-immunoprecipitated under Ca2+ enriched 

conditions.  Further functional and PPI analysis identified hnRNPM and HIST1H2AA in 

overrepresented BP and MF as well as actively interacting with proteins known to be 

changed in AML.  

 

5.4.1 Optimal protein extraction and co-IP conditions were achieved in ME-1 cell 

line 

For protein extractions in co-IP experiments, it is recommended to solubilise the 

cell membrane by using non-ionic non-denaturing buffers that will disrupt the integral 

membrane proteins and preserve endogenous protein interactions (Lin and Lai 2017).  

Further, given S100A4 is a protein which has a conserved EF-hand motif and binds Ca2+ 

to change its conformation, there is a need to retain this interaction complex in the protein 

extraction buffer. This buffer should not contain any high-affinity metal ion chelators 

such as EDTA or EGTA.  EDTA has a higher affinity to bind to magnesium and low 

affinity towards Ca2+ ions whereas EGTA is known for its high affinity for binding with 

Ca2+ ions (Auld 1995).  This study used a non-ion chelating buffer CEB-A (BioVision, 

Oxford, UK) for cytoplasmic extraction and triethylammonium bicarbonate buffer 

(TEAB) for nuclear extraction.  

 One of the most commonly used protocols for co-IP is the direct co-IP approach 

where the antibody is pre-immobilised to magnetic beads (Lin and Lai 2017).  This study 

compared the direct co-IP method to an in house optimised indirect co-IP protocol and 
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found that direct co-IP was ineffective in ‘pulling down’ S100A4 binding complexes 

(Figure 5-2).  The likely reason for this poor efficiency is that free antibody in the lysate 

can form stable immune complexes with the target protein (present in low concentrations) 

before it has been bound by the magnetic beads.  Moreover, indirect co-IP is beneficial 

when the binding kinetics of the antibody to the antigen is slow or the antibody has a 

weak binding affinity for the antigen (Kaboord et al. 2015). 

Most target-free S100 proteins, at normal physiological concentrations of Ca2+, 

have low Ca2+ affinity when they are in an inactive form.  However, S100 proteins Ca2+ 

binding affinity rise significantly when they bind to their functional targets (Liriano et al. 

2012).  Thus, the stability of S100A4 with its targets depends on Ca2+ ion concentrations 

which in vivo ranges from 0.1–10 µM (Scott and Kekenes-Huskey 2016).  To replicate 

the naturally occurring mechanism in S100A4 interaction with its binding partners in a 

Ca2+ dependent manner, all co-IP buffers were enriched with excess 100 µM CaCl2 to 

preserve the reversible interaction throughout the co-IP process.  To control for non-Ca2+ 

protein interactors with S100A4, a further set of co-IP lysates were generated where Ca2+ 

ions were depleted from the co-IP buffers using 10 mM Na2EDTA.  Stripping out Ca2+ 

ion using metal chelator such as EDTA during co-IP acts as a negative control in this 

experiment and served as a useful comparator in the LC-MS data analysis to rule out non-

Ca2+ binders as well as non-specific binding proteins from Ca2+-enriched S100A4 co-IP. 

Co-IP buffers are carefully chosen to ensure high antibody-antigen binding 

affinity as well as retaining S100A4 interaction complex throughout the co-IP process.  

In this co-IP experiment, Triton X-100 was chosen for its mild and non-denaturing 

property on the antibody-antigen reaction which ranges between 8% to 10% v/v (Qualtiere 

et al. 1977).  Moreover, Triton X-100 has rigid and large nonpolar heads that do not 

disturb water-soluble proteins and does not disturb indigenous interactions complex or 

structures of proteins (Lee et al. 2018).  Co-IP quality control for Ca2+ enriched conditions 

and Ca2+ depleted conditions co-IP experiments were verified by western blot.  These 

blots show that both co-IP conditions have low non-specific background noise in the IP 

eluted lanes (Figure 5-3).   

 In summary, indirect co-IP was more efficient than the commonly used direct co-

IP approach.  Further, enriching extraction buffers with Ca2+ ions is essential to retain 

Ca2+ dependent interactions between S100A4 and its binding partners.  Additionally, 

using a mild detergent that does not affect antibody-antigen affinity to ensure high co-IP 

efficiency.  
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5.4.2 Mass Spectrometry proteomic analysis and data filtration strategy 

Following the ‘pull-down’ S100A4 and its binding proteins in the presence and 

absence of Ca2+ in ME-1 cells, cytoplasmic and nuclear lysates samples were analysed by 

LC-MS.  The taxonomy analysis for cytoplasmic co-IP identified hits for BSA and rabbit 

IgG.  This discrepancy between the observed high relative abundance signal on MS 

spectra outputs and number of cytoplasmic peptides IDs identified could be attributed to 

contamination occurred during either co-IP of Ms preparation.  Another possible 

explanation is that this discrepancy could be attributed to heavy post-transcriptional 

modification (PTM) that could not be identified in a standard spectral search (Doll and 

Burlingame 2015).  To illustrate, the MS analysis could detect the backbone of 

cytoplasmic peptides without detecting PTM at standard enrichment conditions.  When 

peptides’ spectra matched to target-decoy database, the confidence (measured by 

percentage of FDR) of these identified peptides is very low and thereby they will be 

excluded from the final peptides list (Wang et al. 2017) resulting in a fewer number of 

peptides than observed spectral outputs.  However, this is highly unlikely due to the 

sensitivity of LC-MS that could detect basic isoforms of proteins analysed.  In most cases 

of MS data analysis, the analysis strategy is often designed to identify PPI, PTM, or 

quantification of protein(s) expression levels under certain stimuli (Matthiesen et al. 

2011).  Thus, in this study, the MS proteomic data filtration strategy targeted primarily 

identification of Ca2+ based PPI between S100A4 and its binding proteins which are 

represented in peptides identified in Ca2+ enriched co-IPs (cytoplasmic/nuclear). 

 The proteomic data filtration strategy applied in this study is based on removing 

non-specific / non Ca2+ dependent binders, filtering out underrepresented and 

unreviewed peptides’ sequences, and prioritising peptides for experimental validation 

based on their MS abundance and signal intensity scores. As a result, non-specific (IgG 

control co-IP) and non Ca2+ dependent binders (Ca2+  depleted co-IP) were removed 

from the Ca2+ enriched co-IP samples [cytoplasmic (Figure 5-5) and nuclear (Figure 

5-6)].   

Further refinement has resulted in removing underrepresented peptides’ 

sequences that have peptide score ≤ 1 and “Unreviewed” peptides reported by 

TrEMBL/UniProt KB database.  The reason for excluding non-curated peptide sequences 

is to limit the analysis to true peptides matches.  UniProt KB is a public database 

composed of Swiss-Prot (protein sequences source), PIR (protein information source), 
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and TrEMBL (translated nucleotide sequences from EMBL).  PIR and Swiss-Prot 

databases contain manually curated protein sequences with several cross-references to 

other resources, including literature references (UniProtConsortium 2017).  Thus, after 

applying this filter, the cytoplasmic data set analysis was terminated as the concluded 

peptides after removing the unreviewed peptides were zero.  These findings are surprising 

given that S100A4 is primarily expressed in cytoplasm and therefore would expect to 

detect more interactions in the cytoplasmic compartment. 

 On the contrary, nuclear peptide data set were reduced to 66 peptides that are 

reported as reviewed peptides on Swiss-Prot database Table 5-2.  However, Keratin 

(KRT74) was removed from this pre-final candidate list.  Keratin is a fibrous structural 

protein abundant in skin and hair and is considered as one of the most frequently reported 

contaminants in MS (Hodge et al. 2013).  Nuclear peptides are classified based on PSM 

score and based on Area score and analysed the highest quartile of both data sets.  This 

step narrowed down the list of candidate proteins to more logical and manageable number 

of proteins to validate their interactions with S100A4.  The final filtration step resulted in 

nine proteins (Table 5-3) that are highly abundant and have highest detected signal in MS 

analysis.  These 9 proteins could be potential S100A4 binding partners and needed to be 

validated using reciprocal co-IP described in section 5.3.4. 

 Taken together, MS data filtration strategy has removed all non-specific, non-Ca2+ 

based binding proteins of S100A4, and non-reviewed peptide sequences in UniProt 

database.  This filtration strategy resulted in prioritising only 9 proteins based on their 

MS peptide abundance and highly detected peptide signals. 

 

5.4.3 S100A4 is bound to proteins that are implicated in AML  

 LC-MS analysis is a highly sensitive technique that can pick up significantly low 

peptides signals in the mixture (Di Falco 2018).  In many cases, during raw data 

processing many of these peptides get excluded from the data set due to their low 

abundance or signal intensity scores.  However, those peptides may be biologically 

relevant interactors with S100A4 either in a less frequent or indirect manner of 

interactions.  In this study, I decided not only to focus my functional analysis on novel 

S100A4 binding proteins in AML but also include those proteins that have a meaningful 

biological role and already implicated AML pathophysiology such as Histone 

deacetylatase2 (HDAC2) and RNA binding motif protein 25 (RBM25) among other 
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proteins reported in (Table 5-4).  It may not be possible at this stage to experimentally 

validate whether these proteins bind with S100A4, however, it could shed some lights on 

relevance of S100A4 in AML interaction network. 

One of the known molecular mechanisms of AML is dysregulation of gene 

expression which involves many genes such as HDAC2, DEK.  For example, HDAC2 is 

involved in repression of gene transcription by deacetylating lysine residues on the N-

terminus of the core histones (H2A, H2B, H3 and H4) resulting in condensation of 

chromatin (Yang and Seto 2007).  Interestingly, one the downstream targets of HDAC2 

“HIST1H2AA” was ‘pulled down’ with S100A4 and validated by reciprocal co-IP as 

binding partner of S100A4.  This may suggest indirect interaction of S100A4 with 

HDAC2 via its binding partner HIST1H2AA. 

 The role of other RNA binding proteins such as RBM25 which regulates pre-

mRNA splicing are yet to be described in AML.  For example, RBM25 functions as a 

regulator of the alternative pre-mRNA splicing through regulating the expression ratio of 

the pro-apoptotic factor BCL2L1 isoform S to antiapoptotic BCL2L1 isoform L mRNA 

expression.  In AML, normal expression levels of RBM25 in leukemic cells controls the 

activity of growth oncogene MYC.  However, downregulated RBM25 confers a 

proliferative advantage on pre-malignant cells by activating MYC and escaping apoptosis 

via shifting the ratio of pro-apoptotic BCL2L1 isoform S towards the anti-apoptotic 

BCL2L1 isoform L (Ge et al. 2019).  Moreover, a recent study showed that approximately 

51% (247/484) of RBP genes to be differentially expressed in AML patients (Wang et al. 

2019).  In this study, 107 RBP genes have been identified to be significantly upregulated 

in AML patients compared to normal CD34+ hematopoietic stem/progenitor cells.  In 

Wang, E. et al study, RBM39 have been identified to play an essential role in AML 

survival and maintenance.  CRISPR-mediated deletion of RBM39 caused altered splicing 

of HOXA9 target genes, known as an essential transcriptional network required in AML. 

Thus, RBM25 as well as other RNA binding proteins play an essential role in AML 

maintenance and pro-survival of leukemic cells through regulation of transcriptional 

networks and pro-apoptotic factors. 

 In summary, both epigenetic modifications and splicing machinery are commonly 

dysregulated molecular pathways in AML.  The AML-related proteins that are ‘pulled 

down’ with S100A4 under Ca2+ enriched conditions may interact indirectly with S100A4 

via its validated binding partners hnRNPM and HIST1H2AA.  Functional and protein-
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protein interaction analysis of the AML-related proteins with S100A4 and its binding 

partners may reveal how S100A4 mediates its function (s) in AML development. 

5.4.4 Validation of S100A4 candidate binding partners 

 In order to experimentally validate S100A4 binding to the 9 candidate proteins 

(Table 5-3), a two steps validation co-IP were performed.  Only six candidate proteins 

(HIST1H2AA, MAK16, SUPT16H, and DDX21 ) (Figure 5-8 and Figure 5-8) were 

successfully pulled down with S100A4 in the first co-IP.  However, initial results of 

pulling down MCM7 and hnRNPM with S100A4 were questionable as no difference have 

been observed between IgG and S100A4 co-IPs but the latter was validated in reciprocal 

IP. Subsequently, using a reciprocal co-IP approach, S100A4 was successfully pulled 

down with only two candidate proteins HIST1H2AA (Figure 5-10A) and hnRNPM 

(Figure 5-10B).  

 HIST1H2AA is a highly conserved core component protein of the nucleosome 

complex, highly abundant in the nucleus, and heavily positively charged protein 

(Chakraborty et al. 2018).  Thus, HIST1H2AA protein can act as a magnet to small 

negatively charged proteins such as S100A4 when pulled down.   Although, S100A4 was 

pulled down reciprocally with HIST1H2AA, I have to be cautious in naming 

HIST1H2AA as binding partner of S100A4 as it may be a non-specific binding arising 

during nuclear extraction.  Nevertheless, the interaction was dependent on the presence 

of calcium which would make it more likely that this was a specific interaction.   In 

addition, it is well reported that PTMs of HIST1H2AA may be linked to regulation of 

gene expression and other cellular activities such as transcription, DNA repair, 

replication, and epigenetics (reviewed in Corujo and Buschbeck 2018).   

 Heterogeneous nuclear ribonucleoprotein M (hnRNPM) belongs to a large RNA-

binding protein (RBP) family localised mainly in the nucleus where it functions as a 

component of the spliceosome complex (reviewed in Geuens et al. 2016).  Previous 

studies linked overexpression of hnRNPM with tumour progression, aggressiveness, and 

metastasis.  For example, Yang et al reported that overexpressed hnRNP in breast cancer 

induced cell growth, colony formation, and inhibited apoptosis (Yang et al. 2018).  

Another study reported that hnRNPM promoted tumour metastasis through mediating 

alternative splicing programme (Xu et al. 2014).  As mentioned previously in section 

5.4.3, Wang, E. et al study identified 107 upregulated RBM genes in AML.  Interestingly, 

among the dysregulated RBPs, hnRNPM was one of the upregulated genes (p < 0.05) and 



Chapter 5 

 

170 

 

have been implicated as a member of the as pro-survival spliceosome machinery of AML 

interacting with RBM39 (Wang et al. 2019).    

 S100A4 was not detected in the other three candidate protein pull downs, MCM7, 

DDX21, and MAK16 (Figure 5-9A, B, and C respectively).  A possible explanation is 

that the interaction between these proteins and S100A4 may not be frequent.  The number 

of these proteins that are bound to S100A4 could be an underrepresented fraction of the 

‘pulled down’ protein and therefore undetectable.  An alternative explanation is that 

S100A4 is relatively less abundant in the nuclear compartment as compared to the 

candidate binding partners.   

 Finally, co-IP was not achieved in the case of SUPT16H (Figure 5-9D).  The 

antibody may need further optimization in terms of antibody dilution or testing of 

alternative clones which was not possible given the time limitation.  Alternatively, I may 

try another SUPT16H antibody that is validated to work in co-IP.  In summary, the data 

above suggest that HIST1H2AA and hnRNPM are bound to S100A4 in the nucleus of 

ME-1 and could be the basis of future studies (6.2). 

 

5.4.5 Validated S100A4 binding partners (hnRNPM and HIST1H2AA) are 

identified in overrepresented MF and BP  

 S100A4 mediates its function indirectly via interacting with target proteins.  Thus, 

it is very important to understand what the molecular functions (MF) of S100A4 binding 

proteins are and the biological processes they are involved in.  As shown in Figure 5-11, 

the GO enrichment analysis for MF of the final binding partners of S100A4 in Figure 

5-11 revealed that five binding partners were involved in the highest overrepresented MF 

of “Nucleic Acid Binding”.  The validated binding partners of S100A4 (HIST1H2AA and 

hnRNPM) were observed in this MF. 

 Gene ontology enrichment analysis assigns general MF terms to proteins of 

interest; thus, it is important to couple the MF enrichment analysis with biological process 

to identify the BP these proteins involved in.  Therefore, GO enrichment analysis for BP 

in Figure 5-12 shows that hnRNPM observed in all over-represented BPs together with 

SF3B1.  In addition to the over-represented BPs, hnRNPM and SF3B1 were observed 

together in all RNA related biological processes such as mRNA processing and RNA 

splicing suggesting strong protein-protein interaction between them.  Further, both 

hnRNPM and SF3B1 were among the pulled down list of proteins in the nuclear-Ca2+ 
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enriched S100A4 co-IP and detected by LC-MS analysis as highly abundant proteins in 

the group.  These findings may suggest a physical interaction between hnRNPM and 

SF3B1.  Although SF3B1 has not been experimentally validated as S100A4 binding 

partner in this study, the co-appearance with hnRNPM in RNA related BPs indicates its 

importance as a potential indirect binding partner with S100A4.  Mutated SF3B1 is 

frequently detected in several haematological malignancies such as MDS, CLL and AML 

and associated with poor patients’ outcomes (Ganguly and Kadam 2016, Wang et al. 

2011, Larsson et al. 2013 respectively).  For instance, Hou et al reported that SF3B1 

mutation is associated with poor OS and DFS in de novo AML.  In this study, AML 

patients who undergone conventional intensive chemotherapy achieved CR 79.7%.  

However; SF3B1 mutation was associated with lower CR (22.2% vs. 79.7%, P = 0.0005).  

Furthermore, patients who have SF3B1 mutation had significantly shorter OS (2 months 

vs. 29.5 months, P < 0.001) and DFS (0 month vs. 9 months, P < 0.001) (Hou et al. 2016). 

 In summary, hnRNPM and HIST1H2AA have been identified in over-represented 

MF and BP suggesting that these proteins have an important role in the cell. 

 

5.4.6 Validated S100A4 binding partners (hnRNPM and HIST1H2AA) are 

highly interactive with AML-related proteins 

 It has been reported in AML that key biological processes such as gene expression 

regulation, epigenetics modifications, and cell survival are mediated by proteins assembly 

via coordinated mechanisms of action called PPI which may play a vital role in disease 

development and progression (Shi et al. 2014).  Thereby, to identify the PPI between 

S100A4 and its binding partners reported in Table 5-3, a protein association analysis 

(STRING) was used. 

 As shown in Figure 5-13A, no interaction has been predicted between S100A4 

and the candidate list of binding partners.  Similarly, STRING analysis has shown no 

predicted interaction between S100A4 and AML-related proteins that are pulled down 

with nuclear S100A4 Ca2+ enriched co-IP, Figure 5-13B.  However, STRING’s protein-

protein network analysis is based on importing data from experimentally derived PPI 

through literature-curated interactions.  Further, STRING also uses computational PPI 

prediction tools that calculate the interaction confidence score based on text mining, 

experimentally determined, co-expression, and interactions that are imported from other 

curated databases (Szklarczyk et al. 2015).   Thus, novel and under-reported interactions 



Chapter 5 

 

172 

 

such as the interaction between S100A4 and the pulled down proteins in literature and 

other curated databases may not be imported in STRING network analysis (Wodak et al. 

2009).  Therefore, S100A4 could be a novel interactor with hnRNPM and HIST1H2AA 

but under-reported in literature. 

 Interestingly, two of the nine binding proteins of S100A4, hnRNPM and 

HIST1H2AA showed an interaction with AML-related proteins; SF3B1, RBM25 known 

splicing factors in AML and HDAC2 and ATM known epigenetics and cell cycle 

regulators in AML respectively as shown in Figure 5-13.  This protein-protein network 

analysis has significantly more interaction than predicted by STRING (p-value= 5.8×10-

10).  To illustrate, the group of proteins included in this analysed have more interactions 

among each other than what would be expected from a random set of proteins of similar 

size drawn from the genome. 

 In conclusion, S100A4 may interact indirectly with AML driver proteins such as 

SF3B1 and RBM25 to mediate splicing events through its binding partner hnRNPM.  

Likewise, S100A4 may interact indirectly with HDAC2 and ATM to regulate gene 

expression and cell cycle through binding with HIST1H2AA.  The PPI analysis was 

consistent with the observed MF and BP of the validated binding partners of S100A4 

hnRNPM and HIST1H2AA.  In future studies, we may extend this project to show how 

S100A4 can modulate the activities of hnRNPM and HIST1H2AA in AML as discussed 

in section (6.1). 
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6 Chapter 6 - General discussion 

6.1 Summary and conclusion 

 Acute myeloid leukaemia is very heterogeneous disease where multiple factors 

contribute to AML development, progression, and relapse.  Given that AML is much 

more prevalent in older people with a median age of diagnosis (>68 years of age), it 

has been reported that 70% of patients in this age group die of AML within the first 

year of diagnosis (Short et al. 2018).  Further, the overall 5 year survival rate is still 

below 50% for younger patients despite the fact that they are able to receive intensive 

treatment (Khwaja et al. 2016).  Older AML patients generally have lower tolerance 

towards therapeutic cytotoxic agents which limits their treatment options.  

Consequently, this group of patients are good candidates for less intensive therapies 

such as low-intensity chemotherapy or targeted therapeutic agents (Burnett et al. 

2011).  In the last decade, targeted therapeutic agents in AML have become the centre 

of focus in many clinical trials as solo treatment, in combination of chemotherapy 

regimen, or in combination of other target agents (Kayser and Levis 2018).  Recent 

advances in transcriptome contributed to better understanding of aberrant genes 

expression profiles in leukemia (Ye et al. 2019).  However, transcriptomic data 

provide insufficient information about the protein expression profiles and does not 

identify altered subcellular localization of proteins.  Often, protein mislocalisation 

between cytoplasm and nucleus may interfere with normal cellular functions by 

interacting with key oncoproteins or tumour suppressors which cooperatively may 

lead to tumour development and metastasis (Wang and Li 2014).  Thus, analysing the 

AML proteome in tandem with transcriptomics with focus on protein changes within 

the nuclear compartment led to identification of S100A4 as the most significant and 

fold changing protein in AML blasts that had not been previously associated with 

AML (Alanazi et al. 2019).  S100A4 belongs to the S100 multigene family of calcium-

binding proteins of the EF-hand type. These proteins have diverse roles in a variety of 

cellular processes including regulation of proliferation, cell cycle progression, 

apoptosis, differentiation, Ca2+ homeostasis, migration, adhesion and transcription 

(Bresnick et al. 2015, Donato et al. 2013).  The functions of S100A4 and other family 

members may vary in normal and cancer cells based on the expression levels and 

subcellular localisation (Chen et al. 2014 ).  
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In cancer, S100A4 is implicated in metastasis, apoptosis regulation, cytoskeletal 

rearrangements, angiogenesis regulation, transcription factors regulation which are 

highly dysregulated processes in cancer (Chen et al. 2014).  Overexpression of 

S100A4 is widely reported in several solid tumour and often associated poor prognosis 

(Xu et al. 2019), tumour progression (Zhou et al. 2018), chemoresistance (Mencia et 

al. 2010), and metastasis (Li et al. 2013).  Moreover, S100A4 is predominantly 

expressed in the cytoplasm under normal physiological conditions (Kikuchi et al. 

2006) and secreted to the extracellular space upon Ca2+ homeostasis (Donato et al. 

2013).  However, several studies have identified that S100A4 is mislocalised to the 

nucleus of transformed cells (Boye et al. 2016, Boye et al. 2010).  In this study, the 

levels and subcellular localisation of S100A4 were established in normal CD34+ cells 

and AML patients’ samples.  Following, the functional significance of nuclear 

overexpressed and knocked down S100A4 on CD34+ cells and AML cell lines were 

studied as summarised in the working model (Figure 6-1).  Thus, this study 

demonstrated that S100A4 expression is restricted to the cytoplasmic compartment in 

normal CD34+ HSPCs (Figure 3-10A) and differentiated progenitors (Figure 3-10B).  

Further, restriction of cytoplasmic S100A4 expression was also confirmed in mixed 

progenitors’ population in normal BM samples (Figure 3-11).  However, in AML, 

S100A4 is mislocalised to the nucleus in 83% of AML (20/24) of FAB M1 (Figure 

3-13B) and 44% (4/9) of FAB M4 (Figure 3-14B) compared normal controls.  Indeed, 

nuclear mislocalisation of S100A4 in many solid  tumours including colorectal, 

ovarian, and breast cancers was linked to aggressiveness, progression, metastasis 

phenotypes (Kikuchi et al. 2006, Egeland et al. 2017, Flatmark et al. 2003).  The 

pathological link between the presence of S100A4 in the nucleus and cancer 

phenotypes could be explained by its direct interactions with key regulatory proteins 

in the nucleus.  For example, S100A4 regulates cell cycle in HeLa cells through 

negatively regulating p53 in the nucleus leading to its degradation (Orre et al. 2013).   
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Figure 6-1: Integrated working model summarising the investigation plan of role of S100A4 in AML  carried out in this study. 
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 This study also demonstrated that S100A4 mRNA is significantly 

overexpressed across all AML subtypes as compared to normal HSCs (Figure 3-12) 

and was associated with poor OS of AML patients (p=0.01) (Figure 3-15).  However, 

it would more informative to perform the survival analysis on nuclear protein samples 

to see whether the subcellular distribution of S100A4 influences patient outcomes.   

 Nuclear expression of S100A4 in solid tumours promoted proliferation, and 

tumour survival; however, little is known about its role in leukemia.  Thus, I attempted 

to be ectopically overexpress S100A4 in the nucleus of CD34+ HSPCs and leukaemia 

cell lines (K562 and TF-1) to study the effect on proliferation, differentiation and 

survival.  Although, the viral vectors used in this study contained a nuclear localisation 

signal to force nuclear expression of S100A4 (that was successfully validated in HEK 

cells) primary CD34+ HSPCs did not overexpress of S100A4 in the nucleus (Figure 4-

4).  This suggests that CD34+ HSPCs recognise the nuclear expression of S100A4 as 

abnormal and therefore rapidly degrade it.  In contrast, I was able to overexpress 

S100A4 in the nucleus of leukaemia cell lines but this had little or no effect on 

proliferation even under serum deprivation conditions (Figure 4-7).   

Knock-down of S100A4 in CD34+ HSPCs had little impact on their 

proliferation, differentiation or survival (Figure 4-11).  In contrast, knocking down the 

expression of S100A4 in AML cell lines showed significant reduction in growth and 

resulted in cell death through induction of apoptosis (Figure 4-14A).  Several studies 

have reported similar results in solid tumours.  For instance, S100A4 KD in colorectal 

tumours supresses cell growth (Huang et al. 2012), inhibits tumour angiogenesis in 

endothelial cells (Ochiya et al. 2014), and blocks metastasis in anaplastic thyroid 

cancer (Zhang et al. 2016).  Knock down of S100A4 has also been shown to reduce 

the self-renewal capability and tumorigenic properties of solid tumour cancer initiating 

cells (Lo et al. 2011). 

S100 family members in general have no known enzymatic activity (Donato 

et al. 2013), instead; S100 proteins mediate their functions through interacting with 

other proteins and regulate their functions (Bresnick et al. 2015).   The majority of 

these interactions occur in Ca2+ dependent manner (Badyal et al. 2011).  Several 

binding partners of S100A4 have shown a role cancer development and metastasis in 

solid tumours such as non-muscle myosin heavy chain IIA (NM-MHC IIA), p53, 

MMP9, among others.  In such heterogeneous and complex disease such as AML, 

proteins interactions play a vital role in disease pathogenesis.  This study identified 
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novel binding partners of S100A4 through mass spectrometry analysis.  S100A4 was 

pulled-down with hnRNPM and HIST1H2AA in Ca2+ dependent manner.  HnRNPs 

comprise a family of RNA binding proteins involved in processing heterogeneous 

nuclear RNAs into mature mRNAs (Geuens et al. 2016).  Interestingly, hnRNPM has 

been reported to be one of the upregulated genes (p < 0.05) among RNA-binding 

proteins (RBM) and have been implicated as a member of the as pro-survival 

spliceosome machinery of AML interacting with RBM39 (Wang et al. 2019).   

Moreover, this study demonstrated through protein network analysis that hnRNPM 

interacts with SF3B1 known to be frequently mutated MDS and linked poor prognosis 

(Malcovati et al. 2011).  Further, HIST1H2AA interacts with HDAC2 and ATM 

known epigenetics and cell cycle regulators in AML.

 In conclusion, this study demonstrated for the first time the subcellular 

localisation of S100A4 in normal haematopoiesis and AML.  Normal CD34+ cells and 

myeloid differentiated lineages express detectable S100A4 in the cytosol only while, 

S100A4 is mislocalised to the nucleus of AML patients’ samples.  Further, CD34+ cells 

can tolerate the loss of S100A4 and differentiate normally in the myeloid lineage.  In 

contrast, knocking down expression of S100A4 in AML lines results in significant growth 

reduction and induction of apoptosis.  These findings provide an evidence that supports a 

novel role for S100A4 as a pro-survival factor in AML cell lines and suggest that 

therapeutically targeting S100A4 would be an effective strategy in AML while sparing 

normal hematopoietic cells.  Mechanistically, S100A4 may interact indirectly with 

proteins such as SF3B1 and RBM25 to dysregulate splicing through its binding partner, 

hnRNPM.  Likewise, S100A4 may interact indirectly with HDAC2 and ATM to regulate 

gene expression and cell cycle through binding with HIST1H2AA.    All finding of this 

study regarding the role of S100A4 in AML are summarised in a graphical abstract in  

Figure 6-2.
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Figure 6-2: Graphical abstract summarising the findings of this study about the role 

of S100A4 in Acute Myeloid Leukaemia. 
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6.2 Future directions 

The effect of subcellular distribution of S100A4 on patient outcome, could be performed 

using nuclear fractionated S100A4 patient samples.  Further exploration of the 

mechanistic role of S100A4 in modulating the activities of hnRNPM and HIST1H2AA 

in AML could also be performed.  This could be done by knocking down S100A4 and 

analysing its binding partners’ activity.  Another exciting avenue to explore, would be to 

test the efficacy of S100A4 inhibitors in cell lines and in patient derived xenograft mouse 

models (PDX) expressing nuclear S100A4.  Saleem et al, have developed novel small 

molecules (SMI1 and SMI2) which have shown high binding efficiency with S100A4.  

When SMI1 and SMI2 have been tested in vitro on neuroendocrine prostate (NE-CaP), 

both inhibitors inhibited tumour growth, proliferation, migration and invasiveness 

(Saleem et al. 2017).    Further, the role of S100A4 in the regulation of HSC in the niche 

is yet to be described.  However, HSC self-renewal and differentiation fates are regulated 

through Wnt/β-Catenin canonical signalling pathway (Katayama 2019).  Some studies 

showed that the expression of S100A4 is positively regulated by β-Catenin activity in 

colorectal and lung cancers (Stein et al. 2006, Hou et al. 2018).  Reporter assays 

confirmed that β-Catenin regulates the expression of S100A4 through binding to TCF 

which in turn induces S100A4 promoter activity (Stein et al. 2006). One study showed 

that inhibiting the expression of S100A4 in colon cancer cell lines by an inhibitor called 

calcimycin reduced the activity of Wnt/β-Catenin pathway (Sack et al. 2011). Thus, 

inhibiting the expression of S100A4 could reduce the activity of overexpressed β-Catenin 

in Wnt/β-Catenin pathway and consequently keep the balance of HSCs self-renewal 

capacity.  To do this, first, we have to confirm that S100A4 expression is regulated by β-

Catenin by knocking down β-Catenin and check the expression of S100A4.  Alternatively, 

we could induce the expression of β-Catenin in AML cell line that is known to have less 

expression of β-Catenin and analyse the expression of S100A4.  
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7 Appendices 

Appendix 1 

To view the complete AML patient’s data, please refer to the attached electronic 

document on Google Drive Link Below: 

https://drive.google.com/open?id=1Y-1WNC2qklBduY2DNL9MuzjpRQfmQ2Jv  

 

Appendix 2 

To view the complete LC/MS raw data, please refer to the attached electronic document 

on Google Drive Link Below: 

https://drive.google.com/open?id=1PfOup6dqB9tpuVHUU51KlZtYWnnCXcQG  

 

Appendix 3 

To view the complete LC/MS raw and analysed data of Cytoplasmic and Nuclear 

proteomic, please refer to the attached electronic document on Google Drive Link 

Below: 

https://drive.google.com/open?id=17dLkYZZz_XjZpt-2ceVvJj-A9x02XuDf 
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