
I 
 

 

 

An investigation of the Matteucci effect on 

amorphous wires and its application to bend 

sensing 

 

 

Sahar Alimohammadi 

 

 

A thesis submitted to Cardiff University in candidature for the degree of 
Doctor of Philosophy 

 

 

Wolfson Centre for Magnetics  
Cardiff School of Engineering, Cardiff University 

Wales, United Kingdom 
 

 

Dec 2019 
 

 



II 
 

Acknowledgment 

I would like to express my deepest thanks to my supervisors Dr Turgut Meydan and 

Dr Paul Ieuan Williams who placed their trust and confidence to offer me this post 

to pursue my dreams in my professional career which changed my life forever in a 

very positive way. I sincerely appreciate them for their invaluable thoughts, 

continuous support, motivation, guidance and encouragements during my PhD. I am 

forever thankful to them as without their guidance and support this PhD would not 

be achievable.  

I would like to thank the members of the Wolfson Centre for Magnetics, in 

particular, Dr Tomasz Kutrowski and Dr Christopher Harrison for their kind 

assistance, friendship and encouragement during my PhD. They deserve a special 

appreciation for their warm friendship and support. Also, I am thankful to my 

colleague and friend Robert Gibbs whose advice was hugely beneficial in helping 

me to solve many research problems during my studies.  

This research was fully funded by Cardiff School of Engineering Scholarship. I 

gratefully acknowledge the generous funding which made my PhD work possible. 

I owe a debt of gratitude to all my colleagues and friends, Vishu, Hamed, Lefan, 

Sinem, Hafeez, Kyriaki, Frank, Gregory, Seda, Sam, Paul, Alexander, James, 

Jerome and Lee for their kind friendship.  Also, I would like to thank other staff 

members of the Wolfson Centre for their friendships and support during my research 

especially, Dr Yevgen Melikhov. 

I would like to very especially thank my Mum and Dad whose love and support has 

been always so inspiring to me. I would say a heartfelt thank you to them for 

believing in me and encouraging me to follow my dreams. I owe them a great debt 

of gratitude as without their constant love, encouragement and strong support none 

of my achievements in my life would be possible.  

Last but not least, many thanks goes to my husband Hamid who deserves 

considerable recognition for his continuing love, support, criticism and advice. 

Without his bright thoughts and advice this PhD was not achievable. Also I am 

thankful to my brother Yashar for his emotional support and encouragement. 

 



III 
 

Abstract 

The study of wearable sensors for human biometrics has recently developed into an 

important research area due to its potential for personalised health monitoring. To 

measure bending parameters in humans such as joint movement or posture, several 

techniques have been proposed however, the majority of these suffer from poor 

accuracy, sensitivity and linearity. To overcome these limitations, this research 

aims to develop a novel flexible sensor for the measurement of bending by utilising 

the Matteucci effect on amorphous wires. The Matteucci effect occurs in all 

ferromagnetic wires but the advantages of amorphous wires are their superior soft 

magnetic and magnetoelastic properties and a Matteucci effect that is very 

sensitive to applied stresses like tensile and torsion. For these reasons a sensor 

based on Matteucci effect was investigated for use as a wearable bending sensor. 

Previous studies of the Matteucci effect have been interpreted in terms of simple 

phenomenological models using conveniently sized lengths of amorphous wire. In 

this work, the Matteucci effect has been characterised in short, sensor-compatible, 

wires. In addition, a thorough examination of the stress dependency of the 

Matteucci effect was also investigated as this is an area that has been neglected in 

the past.       

The main aim of this work was to study the effect of tensile and torsion stresses on 

the Matteucci effect in both highly positive magnetostrictive and nearly zero 

magnetostrictive amorphous wires. A measurement rig was specifically built to 

characterise the Matteucci effect for a range of magnetic field amplitudes, 

frequencies, torsions and axial stresses. The second major aim was to use this 

characterisation data to ascertain the optimum working parameters to design and 

construct a novel flexible bending sensor.  

In this work, the Matteucci effect in amorphous wires was found to be very sensitive 

to both axial and torsional applied stresses and dependent upon the sign of the 

magnetostriction. Insights gained here were used to develop the bend sensor in 

three steps. The initial prototype was a non-flexible strain sensor for measuring 

tensile stress and exhibited a very high gauge factor equal to 601± 30. The second 

step resulted in a strain sensor prototype utilising a flexible planar coil to magnetise 

the amorphous wire. The final step produced a bend sensor this time consisting of 

a flexible solenoid with greater magnetising capability. It resulted in a bend sensor 
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with a high output voltage sensitivity of 5.62 ± 0.02 mV/cm which is the slope of 

the voltage due to curvature and excellent linearity (R2 = 0.98). In this case the 

sensor’s operating range was 1.11 rad to 2.49 rad with ± 0.003 rad uncertainty. This 

range is scalable and dependent on the sensor configuration. This work has 

demonstrated the feasibility of utilising the Matteucci effect as a bend sensor with 

a performance exceeding that found in many commercial sensors.   
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Nomenclature 

Acronyms 

AC Alternating current 

B Boron 

C Carbon 

Cr Chromium 

CMOS  Complementary metal- oxide Semi-

conductor 

CNT Carbon nanotubes 

Co Cobalt 

DC Direct current 

EGF Equivalent Gauge factor 

Fe Iron 

FEM Finite element method 

FTP Fingertip blood tip vessel pulsation 

GF Gauge factor 

GMI Giant magnetoimpedance effect 

Inc. Incorporation 

IWE Inverse Wiedemann Effect 

LBD Large Barkhausen Discontinuous 

ME Matteucci effect 

MI Magneto-Impedance 

MOIF Magneto- optical indicator film 

MOKE Magneto- optical Kerr effect 

Mn Manganese 

Ni Nickel 

PCB Printed circuit board 

P Phosphorus 

SA1 First flexible bending sensor with 

annealed amorphous wire 

SA2 Second flexible bending sensor with 

annealed amorphous wire 

SD Standard deviation 

SI Stress impedance 
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Si Silicon 

S1 Flexible bending sensor number one 

S2 Flexible bending sensor number two 

S3 Flexible bending sensor number three 

S4 Flexible bending sensor number four 

TSA Flexible bending sensor with twisted 

annealed amorphous wire 

2 D 2 Dimensional 

3 D 3 Dimensional 

Greek letters 

Symbol Description Units 

α Angle  rad 

β Eddy current damping 

coefficient 

- 

𝛾𝑤 Domain wall energy 

density 

J 

δ Skin penetration depth m 

δb Bending angle rad 

Δ Change - 

ԑ Strain - 

ξ Shear modulus - 

ɳ Viscosity Dyne s/cm2 

 

θ Incident angle rad 

λ Magnetostriction - 

Λ0 Spontaneous 

magnetisation 

- 

λ𝑠 Saturation 

magnetostriction 

- 

λw Wavelength m 

µ Permeability H/m 

µ0 Permeability of free space H/m 

µ𝑟 Relative permeability - 

ρ Resistivity Ω.m 
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σ Stress Pa 

σr Residual stress Pa 

Φ Magnetic flux Wb 

𝜒 Magnetic susceptibility - 

 

Roman letters 

Symbol Description Units 

A Area 𝑚2 

B Magnetic flux density 

(Magnetic induction) 

T 

dc Inner core diameter m 

E Energy J 

E Young’s modulus Pa 

e Spontaneous strain  

f Frequency Hz 

F Force N 

H Magnetic field A/m 

H* Critical field of domain 

nucleation 

A/m 

HV Vicker’s hardness N/mm2 

I Electric current A 

Jf Current density A/m2 

K Anisotropy constant  

Ku Uniaxial anisotropy J/m3 

l Length m 

M Magnetisation A/m 

m Magnetic moment A.m2 

m Mass kg 

N Number of turns A/m2 

r Distance m 

R Resistance Ω 

Rp Yield strength  

t time s 

Tc Curie temperature °C 
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V Voltage V 

Vl Volume M3 

v Velocity m/s 

W Weight N 

Z Impedance Ω 
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1 Introduction 

1.1 Motivation  

The Matteucci effect in ferromagnetic wires is known to be sensitive to torsional 

and axial stresses however, the exploitation of this effect in sensing applications 

has to date been very limited. The Matteucci effect is the generation of voltage 

pulses at the ends of a ferromagnetic wire when magnetised axially with an 

alternating field in the presence of torsional stress. This thesis describes a unique 

approach to utilise the Matteucci effect as a wearable sensor for monitoring changes 

in curvature. In recent years demand for wearable sensors has increased 

significantly in many application areas such as medical, entertainment, security and 

military. It might be that smart wearable sensors technology will revolutionise our 

life, activities and social interaction like computers have done a few decades back 

[1]. In medical applications, they can be attached to clothes or even attached 

directly to the skin for monitoring knee or finger movements, blood pressure, heart 

rate or body temperature [2, 3].  Flex sensors are prevalent in modern wearable 

devices, particularly in the area of instrumented gloves used for measuring hand 

and finger posture. The hand’s motor function can be impaired by disease, it is 

reported that 40 percent of people will at some point be affected by arthritis in at 

least one hand. Diseases such as Dupuytren’s contracture and carpal tunnel 

syndrome also affect fine motor control and restrict movement. Twenty percent 

over the age of 65 in the UK suffer from Dupuytren’s contracture [4]. Inherited 

disorders such as epidermolysis bullosa cause a gradual loss of motor function due 

to generalised skin contracture. The assessment of hand motor function is therefore 

essential to develop suitable hand treatments. The technologies currently used in 

hand monitoring devices tend to be expensive fiber optic solutions, complex 

accelerometer systems or the less reliable resistance or capacitance-based sensors. 

There is a clear need for a new generation of lightweight wearable devices with 

improved accuracy, whilst remaining unobtrusive to the user [5]. 
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The aim of this research was to develop a high sensitivity flexible bending sensor, 

utilising the Matteucci effect, capable of monitoring body posture or bending and 

that addresses the issues discussed above. To achieve this aim, the following broad 

objectives were identified: (1) Quantify the dependence of the Matteucci effect for 

both axial and torsional applied stresses, particularly in shorter wires, not 

previously reported in literature. (2) Interpret the findings in (1) and propose novel 

sensor designs and (3) Fabricate sensors and characterise their performance.  

In recent years, ferromagnetic amorphous wires have attracted significant interest 

in sensor applications including Giant Magneto-Impedance (GMI) [6], strain, 

magnetic field and current sensing [7] due to their remarkable magnetic properties 

[8]. The unique characteristics of amorphous wire include good flexibility, high 

fatigue strength, a large Barkhausen jump and a significant Matteucci effect [9]. 

The Matteucci effect occurs in all ferromagnetic materials but is particularly strong 

in amorphous wires [10]. This research focussed on using the relative change in the 

Matteucci voltage as a function of strain as the basis for high sensitivity strain and 

bend sensors. The Matteucci effect is highly sensitive to different parameters like 

the magnetic field amplitude and frequency, stress and torsion, and wire 

dimensions. Therefore, there is the potential to optimise the bending and tensile 

stress sensitivity by fine-tuning one or more of these parameters [11]. 

The gauge factor which defines the performance of the strain sensor, is the ratio of 

relative change in electrical resistance R to the mechanical strain 𝜀. in the case of 

conventional resistive metal foil strain sensors this number is around two [12]. 

Wireless strain sensors fabricated from amorphous carbon, designed for high strain 

applications, have gauge factors of only 0.534 [13].  Amorphous magnetostrictive 

materials have the potential to form very sensitive micro strain gauges with very 

high gauge factors. For example, annealed Fe76(SiB)24 amorphous ribbon shows a 

change in differential susceptibility from 750 to 3500 over a stress range from -1.5 

to 5 MPa. This equates to an equivalent gauge factor of 4.3 x 104 defined as the 

fractional change in permeability divided by the strain [14]. In this work, equivalent 

gauge factors were calculated to enable a comparison with commercial sensors. 

To achieve the research objectives, the influence of tensile stress on the Matteucci 

effect in two types of amorphous wires (Fe77.5Si7.5B15 and Co68.15Fe4.35Si12.5B15) was 

studied. Results show how the axial stress significantly affects the Matteucci voltage 

and that, this behaviour is dependent upon the sign of the magnetostriction 

constant. Measuring the Matteucci voltage as a function of stress in 
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magnetostrictive wire, equivalent gauge factors were determined and compared to 

those of resistive strain gauges.  

   Based on the findings above, two types of sensor using positive magnetostrictive 

amorphous wire were developed. The first one used a planar coil printed on to a 

flexible polyester film for magnetising the amorphous wire. FEM modelling was done 

to select the best geometry. This sensor was designed to act principally as a strain 

sensor. A second sensor, consisting of a flexible solenoid for magnetising the 

amorphous wire, was designed specifically for measuring curvature. The output 

Matteucci voltage was measured over curvatures ranging from 1.11 to 2.49 rad to 

assess sensor performance in terms of its sensitivity and linearity.  

1.2   Outline  

Chapter 2: This chapter presents the basic principles of magnetism relevant to the 

study of ferromagnetic amorphous wires. Fundamental magnetic equations, 

magnetostriction theory, the intrinsic properties of ferromagnetic materials and the 

Matteucci effect are all described including an introduction to amorphous 

materials, their manufacture, and properties. 

Chapter 3:  This chapter reviews the academic work on the Matteucci effect. Topics 

include magnetic characterisation of amorphous wires, magnetic domain imaging, 

circular magnetisation on negative magnetostrictive amorphous wires, the effects 

of annealing amorphous wires as well as potential applications for strain and bend 

sensing.  

Chapter 4: In this chapter, a new approach is described for characterising 

amorphous wires under different conditions of torsion, tensile stress and magnetic 

field conditions to identify the best candidate for sensing. Results are explained 

and discussed. Domain imaging has also been done on amorphous wires as they 

provide useful insights into the magnetic anisotropy of the material.  

Chapter 5: This chapter presents two kinds of sensor, strain and bending, based on 

the Matteucci effect. The strain sensor utilises a planar coil configuration and the 

bend sensor employs a flexible solenoid to excite the amorphous wire. The chapter 

describes the sensor fabrication and testing followed by a discussion on the sensor’s 

performance including output linearity and repeatability.  
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Chapter 6:  This chapter is the conclusion of this thesis followed by a discussion on 

potential avenues for future research. 
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2 Basic principles of magnetism including 

the Matteucci effect in amorphous wires 

This chapter presents the basic principles of magnetism and fundamental magnetic 

equations, magnetostriction, Matteucci effect and intrinsic property of 

ferromagnetic materials as well as an introduction to amorphous materials, their 

manufacture and properties. 

2.1 Fundamental magnetism 

A magnetic field is produced whenever there is an electrical charge in motion. This 

can be due to the electrical current flowing in a conductor or a permanent magnet 

in which the magnetic field is produced by the orbital motions of electrons.  

The Biot-Savart law can be used to determine the magnetic field H at the centre of 

a circular coil of one turn with radius a meter carrying the current of i Ampers. By 

dividing the coil into elements of arc length 𝛿𝑙 each of which contributes 𝛿𝐻 to the 

field in the centre of the coil, r is the radial distance. Since by Biot-Savart [15]: 

𝐻 = ∑
1

4𝜋𝑟2
𝑖𝛿𝑙𝑠𝑖𝑛𝜃 

 

 (2-1) 

 

The simplest way to produce a uniform magnetic field in a long thin solenoid, if the 

solenoid has N turns on a former of l length and carries a current i amperes inside 

it, the magnetic field inside it will be: 

𝐻 =
𝑁𝑖

𝑙
 

(2-2) 

Ampere’s law is equivalent to one of Maxwell’s equations of electromagnetism,∇ ×

𝐻 = 𝐽𝑓 where 𝐽𝑓is the current density of conventional electrical currents. 

The magnetic field lines through and around a solenoid are shown in Figure 2-1  

[16]. 

When a magnetic field is applied to a magnetic medium, a magnetic induction (B,  

in Teslas) is generated. The ratio of magnetic induction to magnetic field strength 

is called the permeability of the medium (in Hm-1) and defined as Eq.(2-3). 
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𝜇 = �⃗� /�⃗⃗�  (2-3) 

  

Permeability is the product of relative permeability 𝜇𝑟 and the permeability of free 

space which has a constant value of 𝜇0 = 4𝜋 × 10−7𝐻𝑚−1. 

 

Figure 2-1: Magnetic field of a solenoid (adopted from [1]) 

  𝜇 = 𝜇𝑟𝜇0 (2-4) 

 Magnetic regions in a ferromagnetic material are formed by the long-range ordering 

of permanent magnet dipole moments, even with no external magnetic field 

applied. Each atomic dipole in the ferromagnetic material has a permanent magnet 

moment and the magnetisation (�⃗⃗� ) is defined as the dipole moment per unit 

volume. The magnetic induction can simply be rewritten as the sum of 

magnetisation and magnetic field multiplied by the permeability of free space [15]. 

�⃗� = 𝜇0(�⃗⃗� + �⃗⃗� ) (2-5) 

Ferromagnetic materials are broadly divided into two groups, soft and hard 

magnetic materials based on their coercivity. Broadly hard magnetic materials are 

those with coercivities above 10 kA/m where soft magnetic materials are those with 

coercivities of below 1 kA/m. Therefore, where amorphous wires are soft magnetic 

materials. One of the very important parameters for a soft magnetic material is 

permeability as it shows how much magnetic induction is generated by the material 

in the given field and generally speaking depending on applications, the higher the 

permeability the better the material [17].  

Moreover, susceptibility which is a measure of how much a material will become 

magnetised in an applied magnetic field is defined as: 
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𝜒 = |�⃗⃗� |/|𝐻|⃗⃗⃗⃗⃗⃗  (2-6) 

According to Eq.2-8, where 𝜇0 = 4𝜋 × 10−7𝐻𝑚−1. The relative permeability of free 

space is 1. The relative permeability is closely related to the susceptibility and the 

following equation is always true [15]. 

𝜇𝑟 = 𝜒 + 1 

 

(2-7) 

 According to susceptibility, magnetic materials are divided in three different 

groups: Diamagnetic, paramagnet and ferromagnetic. Diamagnetic materials are 

materials which susceptibility is small and negative 𝜒 ≈ −10−5. Their magnetic 

respond opposes the applied magnetic field. Paramagnetic materials are the 

materials which 𝜒 is small and positive and typically 𝜒 ≈ 10−3 − 10−5. The 

magnetisation of paramagnetic is weak but aligns parallel with the direction of 

magnetic field. The last one is ferromagnetic materials which the susceptibility is 

positive and much greater than one and typically have values from 𝜒 ≈ 50 − 10000 

[15]. 

2.2 Maxwell equations 

The fundamental electromagnetic equations are Maxwell equations which describe 

the properties of electric and magnetic fields. These equations provide relations 

between magnetic field H, the electric field E which is a vector field surrounding 

an electric charge that applies force on other charges, attracting or repelling them, 

the magnetic flux density B and the electric flux density D which is a measure of 

the strength of an electric field generated by a free electric charge, corresponding 

to the number of electric lines of force passing through a given area.   

∇. 𝐷 = 𝜌  (2-8) 

∇. 𝐵 = 0  (2-9) 

∇. 𝐸 =
𝜌

𝜀0
       (Gauss Law) (2-10) 

∇ × 𝐸 =
𝜕𝐵

𝜕𝑡
    (Faraday’s Law) (2-11) 

∇ × 𝐵 = 𝜇0𝑗 + 𝜇0𝜀0
𝜕𝐸

𝜕𝑡
    (Ampere’s Law with Maxwell corrections) 

 

(2-12) 

 Eq. (2-8) and (2-9) determines the static electric and magnetic fields. Eq.(2-10) 

introduces the Gauss law and Eq.(2-11)  indicates that a time-varying magnetic field 

B induces a voltage in a conductor, with E being the electric field. This equation is 

https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Electric_charge
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based on Faraday’s law. In Eq.(2-12) j is the area current density in Ampere per 

square metre that generates the field and 𝜌 is the charge density in coulombs per 

cubic metre that generates the electric flux. This equation is based on Ampere’s 

law [18]. 

2.3 Hysteresis loop  

A B-H curve represents the magnetic history characteristic of the magnetic 

material. It shows the relation between magnetic flux density (B) and magnetic 

field strength (H) for a particular material. As shown in Figure 2-2 the remanent 

magnetisation, Brem is marked on the graph and is the magnetisation remaining after 

the external magnetic field is removed. The magnetic coercivity, Hc, is a measure 

of the ability of a ferromagnetic material to withstand an external magnetic field 

without becoming demagnetised.  

The saturation induction, Bs, is the state that the material reaches when increases 

in the applied field has no further effect on the induction level in the material. 

Mathematically, this happens when 
Δ𝑀

Δ𝐻
= 0 or the permeability of the ferromagnetic 

material becomes equal to free space [15]. 

 

 

Figure 2-2: A sample B-H curve  showing coercivity field, saturation magnetisation and remanent 

magnetisation for a soft magnetic material 
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2.4 Magnetic domains 

The magnetic properties of amorphous materials are mainly dependent on the 

domain structure under the influence of external stresses and applied field and 

tempreture [19]. To investigate these changes it is important to understand their 

basic nature.  

Bozorth [20] discovered that spontaneous magnetisation occurs within 

ferromagnetic materials and attempted to explain this in terms of large interatomic 

forces acting between neighboring atomic dipoles in the crystal lattice. Below the 

Curie temperature, which is the temperature above which materials lose their 

permanent magnetic properties, these forces can overcome thermal effects leading 

to an ordered magnetic state. These interaction forces are known as exchange 

forces.  He also proposed the existence of magnetic domains in ferromagnets in 

1907. Magnetic moments of atoms are aligned in the same direction in tiny bounded 

regions called domains. The domains are magnetically saturated and act as regions 

with uniform magnetisation. However, the direction of alignment can be randomly 

different from domain to domain [15]. In an unmagnetised specimen, the domains 

are randomly oriented so that the net magnetisation of the sample is zero. The 

transition region between domains is called the domain wall which was first 

suggested by Bloch [21]. In the wall, the orientation of the magnetic dipoles change 

from the direction of one domain to the direction of the other as shown in Figure 

2-3. 

 

Figure 2-3: Magnetic moment alignment within a 180º Bloch wall [15] 
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In crystalline materials, the alignment of magnetic moments is energetically more 

favourable along certain crystallographic directions. This is known as 

magnetocrystalline anisotropy and results in easy and hard directions of 

magnetisation [20]. The final domain structure is a combination of the effects of 

the exchange energy, anisotropy and field energy of the ferromagnetic body [22]. 

The thickness of the domain wall is influenced by the forces due to the exchange 

and magnetocrystalline anisotropy energies. The magnetocrystalline anisotropy 

tend to make the domain wall thinner since the anisotropy energy is the lowest with 

all moments aligned along crystallographically equivalent axis. In contrast, the 

exchange energy tends to make the domain wall thicker as the exchange energy is 

minimized in a ferromagnet when the neighboring moments are aligned parallel 

[15]. Consequently, as shown in Figure 2-4, there is an equilibrium wall thickness 

where the domain wall energy is a minimum [15]. The total angular displacement 

across the domain wall is often 90˚ or 180 ˚. The domain boundaries between the 

neighboring longitudinal domains are 180 ˚ walls while those between closure 

domains are  90 ˚  domain walls as shown in Figure 2-5 [15].  

  

Figure 2-4: Dependence of the wall energy in wall width [15] 
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Figure 2-5: 180 ˚ and 90 ˚ domain walls [15]. 

Subsequent to Weiss’s work, two main experimental observations confirmed the 

existence of domains. The first observation was the indirect detection of domains 

by Heinrich Barkhausen [15]. The Barkhausen effect is the small discontinuous 

changes in flux density B as the magnetic field H is changing continuously. It was 

discovered in 1919, when a secondary coil was wounded on a piece of iron and 

connected to an amplifier and loud speaker. A series of clicks were heard from the 

speaker which were because of the small voltage pulses induced in the secondary 

coil. In the magnetised B-H curve, discontinuous changes are shown in Figure 2-6 

[15]. The Barkhausen noise is a consequence of small discontinuous changes in 

domain wall motion [23]. 

  

Figure 2-6: Barkhausen discontinuous along the initial magnetisation curve observing by 

amplifying the magnetisation  

 The second confirmation was the direct observation of domains by Francis Bitter 

using Bitter technique [15]. In this method, a very fine magnetic powder was spread 

over a specimen and patterns of domains were observed under the microscope. 
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Particles accumulated in the places where the magnetic field gradient is greatest, 

usually where the domain walls intersect the surface. These particles in modern 

ferrofluids are usually Fe3O4 with diameters of around 10 nm. 

2.5 Magnetostriction 

Magnetisation is the vector field that expresses the density of permanent or 

induced magnetic dipole moments in a magnetic material. The magnetisation �⃗⃗�  is 

defined as the magnetic moment (m) per volume of a solid Vl.  

�⃗⃗� =
𝑚

𝑉𝑙
 

 

(2-13) 

The magnetisation in some ferromagnetic materials is sensitive to applied stress. In 

such cases,  the material will be subject to a change in the length when magnetised, 

this is called magnetostriction and was first discovered by Joule in 1842  [24, 25]. 

He showed that an iron rod increased in length when subjected to a magnetic field. 

The fractional change in length is defined as the magnetostriction coefficient λ, as 

shown in Eq.(2-14), where l is the length of material and dl is the change in the 

length when applying a magnetic field. The value of dl can be positive, negative or 

zero [26]. If it is positive the material expands, and if it is negative it will contract 

in length.  

λ =
𝑑𝑙

𝑙
 

(2-14) 

The strain due to the magnetostriction changes with the increase of the magnetic 

field and reaches a saturation value as by increasing the magnetic field, 

magnetostrction does not change anymore and domains have been aligned in one 

direction which is shown in Figure 2-7.  

https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Density
https://en.wikipedia.org/wiki/Magnetic_dipole_moment
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Figure 2-7: Magnetostriction as a function of field intensity [25] 

The crystal lattice inside each domain is spontaneously deformed in the direction 

of domain magnetisation and its strain axis rotates with the rotation of the domain 

magnetisation thus resulting in the sample’s deformation as a whole as shown in 

Figure 2-8 [18]. Conversely, the influence of stress on the magnetisation is known 

as the inverse magnetostrictive effect [15]. The dependence of magnetisation on 

stress may be described in terms of the energy 𝐸𝜎  associated with the stress and 

direction of spontaneous saturation magnetisation 𝑀𝑠 in a domain. 

 

Figure 2-8: Rotation of domain magnetisation and accompanying rotation of the axis of 

spontaneous strain [18] 

𝐸𝜎 =
3

2
𝜆𝑠𝜎 sin2 𝜃𝑠 

 

(2-15) 

Where 𝜆𝑠 is the saturation magnetostriction, and 𝜃𝑠 is the angle between saturation 

magnetisation 𝑀𝑠
⃗⃗⃗⃗  ⃗ and the stress 𝜎. According to the Eq.(2-15) when 𝑀𝑠

⃗⃗⃗⃗  ⃗ and 𝜎 are in 
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the same direction, the magnetic strain energy (magneto elastic energy) is zero, as 

sin2 𝜃𝑠 is zero it rises up to its maximum value, which is 
3

2
𝜆𝑠𝜎 [15] when they are at 

right angles. When magnetostriction in amorphous alloys are comparable to those 

in crystalline alloys typically of the order of parts per million [27].  

Easy axis is an energetically favorable direction of spontaneous magnetisation. The 

magnetisation of domains which are at an angle to the easy axis, will require higher 

energy to reach saturation magnetisation. This fact is due to the directional 

dependence of the magnetic material’s properties and is known as anisotropy. The 

energy referred to it is called anisotropy energy. When an isotopic material with 

disordered magnetic moments above the Curie temperature (Tc) is cooled below Tc, 

as seen in Figure 2-9 (a), it becomes ferromagnetic with a spontaneous 

magnetisation. The newly formed magnetic domains have an associated 

spontaneous strain (e) or magnetistriction λ0 along particular directions as seen in 

Figure 2-9 (b).  For this isotropic example, the amplitude of spontaneous 

magnetostriction is independent of the crystallographic direction. Within each of 

these domains the strain varies with angle 𝜃𝑠 from the direction of the spontaneous 

magnetisation according to the following relation: 

𝑒(𝜃𝑠) = 𝑒 cos2 𝜃𝑠 

 

(2-16) 

The average deformation throughout this isotopic sample due to spontaneous 

magnetostriction can be obtained through integration, assuming that all domains 

are oriented randomly, therefore, all directions are equally likely.  

𝜆0 = ∫ 𝑒 cos2 𝜃𝑠 sin 𝜃𝑠

𝜋/2

−𝜋/2

𝑑𝜃𝑠 = 𝑒
3⁄  

 

(2-17) 

This is the spontaneous magnetostriction caused by the ordering of the magnetic 

moments due to the onset of ferromagnetism. We should note that we have 

assumed an isotropic material where the domains are arranged with equal 

probability in all directions so although the sample’s dimensions have changed its 

shape remains the same [15]. 

https://en.wikipedia.org/wiki/Spontaneous_magnetization
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Figure 2-9: schematic diagram illustrating magnetostriction in a) paramagnetic state b) 

ferromagnetic state demagnetised c) ferromagnetic state, magnetised to saturation [15] 

 

2.6 Amorphous materials 

Amorphous metals are solid metallic materials with a disordered structure on the 

atomic scale. The majority of metals are crystalline in their solid-state which means 

the structure of atoms is highly ordered. The difference between crystalline and 

amorphous structure is shown schematically in Figure 2-10.  

 

Figure 2-10: Schematic diagram of a) Crystalline solid structure b) Amorphous solid structure in 

which each circle presents atoms 

 Duwez [11, 28] had discovered in 1960 that amorphous metals can be prepared by 

rapid quenching of melts. His experimental technique of splat quenching has been 

used first to discover and study a wide variety of liquid quenched amorphous metals 

and their properties. The unique characteristics of amorphous wires have attracted 

worldwide interest. Amorphous alloys are produced in different shapes like ribbon 

or wire. Amorphous wires made by the water quenched spinning method have 
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special advantageous such as mechanical, electrical, magnetic and chemical 

properties, compared with crystalline alloys as shown in Table 2-1. For example, 

they have high anti-corrosiveness (zero and negative magnetostriction) enabling the 

creation of micro magnetic sensors without the need for additional protective 

coatings. Moreover, they have high electric resistivity which is beneficial to make 

micro sensor heads operating with high input impedance and low eddy current losses 

[9]. 

Compositional dependent properties such as saturation magnetisation, 

magnetostriction and Curie point usually exhibit similar values in both amorphous 

ribbons and wires with the same composition. However, it should be pointed out 

that amorphous wires can exhibit  re-entrant magnetic flux reversal with a resultant  

large Barkhausen effect [29]. 

Flux reversal in a soft magnetic material is influenced by domain wall motion which 

is achieved only when the drive field is larger than the coercivity force [30].  

Table 2-1: Advantages of amorphous wires [9]. 

Mechanical Magnetic Electrical Chemical 

High tensile strength 

(400 kg/mm2) 

Effective behaviour by 

current annealing 

High resistivity 

(130 µΩ-cm) 

High anti-

corrosiveness  

(Co-rich) 

High residual stresses 
High domain wall energy 

density 
Low eddy current losses 

High Elasticity (95%) 

High stress relief by 

annealing High impedance 

High permeability 

 

Almost all amorphous materials have atomic composition of TxM100-x where T 

represents one or more of the transition metals Iron (Fe), Cobalt (Co), Nickel (Ni), 

Manganese (Mn), or Chromium (Cr) and M represents one or more of the metalloid 

or glass former elements, Phosphorous (P), Boron (B), Carbon (C) or silicon (Si). The 

transition metal content, X, can vary from 75 to 80 percent [16]. 

In amorphous metallic alloys, the absence of a long-range ordered atomic structure 

leads to a wide range of characteristics and features which makes these alloys 

favourable in a variety of applications [31]. 
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2.7 Properties of amorphous materials 

Amorphous materials have some special properties compared to crystalline 

materials which make them unique in many applications. Some of these properties 

will be discussed below.  

  Mechanical and electrical properties of amorphous 

materials  

In sensors, mechanical properties like hardness, yield strength, and Young’s 

modulus are important. Typical values are listed for amorphous and crystalline 

alloys in Table 2-2. The Vicker’s Hardness (HV) is a standard measure of the 

hardness of the material. The Young’s modulus (E), which is a mechanical property 

that measures the stiffness of a solid material, defines the relationship 

between stress (force per unit area) and strain (proportional deformation) in a 

material in the linear elasticity regime of a uniaxial deformation. The Yield strength 

(Rp) is the material property defined as the stress at which a material begins 

to deform plastically [32].  

The differences between the elastic range of amorphous material compared to 

crystalline one are shown in Figure 2-11. Amorphous alloys have an almost straight 

characteristic and withstand higher stress. The crystalline alloys have a smaller 

elastic region before exhibiting plastic flow which is a deformation of a material 

that remains rigid under stresses of less than a certain intensity but that behaves 

under severer stresses approximately as a Newtonian fluid. The tensile strength and 

yield strength are almost identical in amorphous alloys resulting in no plastic flow, 

however fracture occurs at smaller strains compared to crystalline alloys. For 

amorphous alloys, elastic strains up to 1 % are feasible however for crystalline 

metals 0.1 % is the best [31]. 

Amorphous wires have a disordered, non-periodic structure which leads to an 

irregular arrangement of atoms, therefore the electrical resistivity is high leading 

to low eddy current losses [33]. The electrical resistivity of 𝐹𝑒72.5𝑆𝑖12.5𝐵15 and  

(𝐶𝑜0.94𝐹𝑒0.06)72.5𝑆𝑖12.5𝐵15 amorphous wires are normally close to 1 Ω/cm.  

 

 

https://en.wikipedia.org/wiki/Stiffness
https://en.wikipedia.org/wiki/Solid
https://en.wikipedia.org/wiki/Stress_(mechanics)
https://en.wikipedia.org/wiki/Strain_(mechanics)
https://en.wikipedia.org/wiki/Linear_elasticity
https://en.wikipedia.org/wiki/List_of_materials_properties
https://en.wikipedia.org/wiki/Stress_(physics)
https://en.wikipedia.org/wiki/Plasticity_(physics)
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Table 2-2: Mechanical properties of magnetic materials  [31] 

 

Material group 

Vickers Hardness 

(HV) 

 

Yield strength 

(Rp) 

 (N/ 𝑚𝑚2) 

Young’s modulus 

(E) 

(kN/𝑚𝑚2) 

Metals crystalline 80 - 200 150 - 5000 100 - 230 

*Ca.150 Metals Amorphous 800 - 1000 1500 - 2000 

Soft ferrites 800 75 - 100 
150 

Ca.50 

*Ca stands for calculated 

 

Figure 2-11: Stress-strain curves of several materials (adapted from [31]) 

  Magnetic behaviour of amorphous materials 

In-rotating-water quenched ferromagnetic amorphous wires, either in the as-cast 

state or after treatments, can exhibit very fast magnetisation flux reversal in an 

external AC-field excitation. This effect can be observed using a pick-up coil to 

detect the Barkhausen noise or from the induced voltage due to the Matteucci 

effect [34]. In typical amorphous materials (𝐶𝑜𝑥𝐹𝑒1−𝑥)75𝑆𝑖15𝐵10, the 

magnetostriction coefficient 𝜆𝑠 changes with x from −5 × 10−6 at x=1 to 𝜆𝑠 ≈

35 × 10−6 at 𝑥 ≈ 0.2 achieving nearly zero values at Co/Fe about x=0.93. The best 

soft magnetic properties are achieved for nearly zero magnetostrictive Co-rich 

compositions. On the other hand, Fe-based amorphous wire has different magnetic 

properties exhibiting a rectangular hysteresis with a large and single Barkhausen 
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jump[35]. In contrast to Fe-rich wires, Co-rich amorphous wires exhibit non-hysteric 

behaviour with low coercivity field and large susceptibility. The magnetic 

properties of amorphous wires are therefore dependent on the composition. 

Furthermore, internal stresses of the material can be another reason for different 

magnetic properties. Table 2-3 represents the magnetic properties of amorphous 

wires by Unitika [9], [36], [37], [25]. 𝑀𝑠(T) is the saturation magnetisation, 𝑀𝑟/𝑀𝑠 

is the ratio of remanent magnetisation to saturation magnetisation, 𝐾𝑢(J/m3) is 

uniaxial anisotropy 𝐾𝑢 = 3/2𝜆σ𝑟, σ𝑟 is the residual stress. 

Table 2-3: Magnetic properties of as-cast amorphous wires  

Composition Ref 
Ms 

(T) 

Mr/Ms 

 

Ku 

(J/m3) 

λ 

(x 10-6) 

Ϭr 

(MPa) 

D* 

(µm) 

𝐹𝑒72.5𝑆𝑖12.5𝐵15 [9] 1.3 0.5 2200 25 60 130 

(𝐶𝑜0.94𝐹𝑒0.06)72.5𝑆𝑖12.5𝐵15 

[9] 0.8 0.65 40 -0.1 332 124 

[36], 

[37] 
0.8 - 39 -0.08 - 121 

𝐶𝑜72.5𝑆𝑖12.5𝐵15 

[9] 0.64 0.31 240 -3 54 130 

[36] 0.72 - 256 -5.6 - 123 

[37] 0.64 - - -5.6 - - 

𝐹𝑒77.5𝑆𝑖7.5𝐵15 

 

[36] 1.6 - 3187 
34.5±

1 
- 125 

[36], 

[37, 

38] 

1.6 - - 35 - - 

*D stands for diameter 

 Amorphous wires have a low coercivity field typically equal to 8 A/m on 60 Hz or 

less because of the absence of crystalline anisotropy, grain boundaries and 

structural defects such as vacancies or dislocations. The main factor which 

increases the coercivity field is the stress due to the magnetostriction effect. 

Annealing normally causes the coercivity field to be reduced because of the 

relaxation of internal stresses and zero magnetostriction alloys have the lowest 

coercivity field due to their reduced stress sensitivity  [17]. These results, together 

with domain observations, were the basis for concluding that, even in the zero 

magnetostrictive alloys, there still exists an anisotropy that can be influenced by 

magnetic or stress annealing. Finally, the permeability of As-cast amorphous alloys 

is low but annealing and magnetostriction can change it [17]. 
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 Domain structure of amorphous wires 

As it is shown in Figure 2-12, zero and negative magnetostrictive amorphous wires 

consist of three distinct magnetic regions: the inner core, an intermediate layer, 

and an outer shell.  In the inner core, anisotropy induces the magnetisation vector 

along the wire axis where one or more domain walls can propagate. A stable single 

domain state in the inner core is dependent upon the ratio 𝑙 𝑑𝑐
⁄  given by Eq.(2-18) 

[9]. 

𝑙2

𝑑𝑐
=

𝜋𝑑𝑐𝑀𝑠
2

8𝜇0𝛾𝑤
 

(2-18) 

𝐾𝑢 =
3

2
𝜎𝜆 

(2-19) 

𝛾𝑤 = 4(𝐴𝐾𝑢)
1
2 

 

(2-20) 

 

 

Figure 2-12:  Domain structure of slightly negative magnetostrictive amorphous wire (adopted 

from [39]) 

where 𝑙 is wire length, 𝑑𝑐 the inner core diameter, Ms the saturation magnetisation 

and γw is the domain wall energy density which is a function of stress and 

magnetostriction. In addition to the single-core domain, the radial domain structure 

existing in the outer shell are highly stress sensitive and dependent on frozen-in 

manufacturing stresses [40, 41]. The outer shell domains typically form radial or 

circumferential orientations in positive and negative magnetostrictive alloys 

respectively [41], [42] As a consequence, externally applied stresses strongly affect 

the magnetic properties of amorphous wires including the Matteucci effect [43, 44]. 

The complex domain structure and stress sensitivity of amorphous wire results in 

unique magnetic behaviour and various potential application areas [45]. 
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Figure 2-13: Domain model for as-cast amorphous wire with a) positive magnetostriction 𝝀 > 𝟎  b) 

Negative-magnetostriction 𝝀 < 𝟎 (adopted from [46]) 

2.8 Matteucci effect 

In a ferromagnetic wire, the preferred magnetisation direction can be aligned with 

a helical path as a function of twisting. If the magnetic strain energy density, 

related to stress, is bigger than the magnetic anisotropy all the spins are oriented 

along the helical direction [47]. This amount of stress is called saturation torsion. 

If the wire was initially demagnetised, it will remain so since both the helix senses 

are equally populated. An external, longitudinal or circular, magnetic field splits 

the helix senses and produces a magnetisation transition in the easy sense. Then a 

macroscopical magnetisation with longitudinal and circular components will 

appear. In twisted wires, the susceptibility tensor possesses two non-diagonal terms 

𝑋𝑧∅ and 𝑋∅𝑧: 

(
𝑀𝑧

𝑀∅
) = (

𝑋𝑧𝑧  𝑋𝑧∅

𝑋∅𝑧  𝑋∅∅
)(

𝐻𝑧

𝐻∅
) 

 

(2-21) 

The 𝑋∅𝑧 term relates to circular magnetisation in a longitudinal magnetic field. 

When the amplitude of the longitudinal field changes, a variation of circular 

magnetisation appears, and consequently a longitudinal electric field is induced. 

This effect is called the Matteucci effect. The  𝑋𝑧∅ relates to longitudinal 

magnetisation in a circular magnetic field which is known as the inverse Wiedemann 

effect  [47]. However, the Matteucci effect does not appear just in twisted wires, 

as Hernado (1973) has clarified that the Matteucci effect will appear in any wire 

which presents a circular magnetisation to a longitude field in the susceptibility 

tensor. In fact, the Matteucci voltage appears in non-twisted wires as well because 

of the random twisting stresses introduced in the wire during solidification [48]. 

The Wiedemann effect is the inverse of the Matteucci effect. Discovered in 1858, a 

ferromagnetic wire undergoes spontaneous twisting when subjected to an 



22 
 

alternating axial magnetic field whilst passing a DC current. Figure 2-14 shows the 

combination of ac current 𝐽1 passing through the solenoid coil and current 𝐽2 passing 

through the wire. The interaction of the wire’s magnetostriction with the 

combination of linear and circular magnetic fields gives rise to torsional oscillations. 

Memory configuration designs exhibited in the “twistor” matrix is an example of an 

application of the Wiedemann effect.  

  

Figure 2-14: Wiedemann effect [49] 

The Matteucci effect in amorphous wires was thought to be related to 

magnetostriction and domain wall propagation due to large Barkhausen effect [50] 

but it also occurs in nearly zero magnetostrictive amorphous wires which does not 

exhibit large Barkhausen effect. Therefore, the Matteucci effect is a phenomenon 

which may occur regardless of the presence of magnetostriction, and the voltage 

across the wire ends (the Matteucci voltage) is described very simply in terms of 

the time rate of change 
𝜕𝛷𝜃

𝜕𝑡
  of the circumferential flux 𝛷𝜃 in the wire, according 

to Maxwell equation ∇ × E = −
𝜕𝐵

𝜕𝑡
 . The circumferential flux is expected to be closely 

related to the domain structure in the outer shell of the amorphous wire [50]. 

Mohri et al. [48] investigated the mechanism of the Matteucci effect and Large 

Barkhausen effect in amorphous wires by domain observation. The Matteucci 

voltage 𝑒�́�  is generated at the ends of the amorphous wire by applying an AC field 

of more than 7.9 A/m at frequencies from 0.01 Hz to 10 kHz. The magnitude of 𝑒�́� 

is obtained by using the relation of ∇ × E= −
𝜕𝐵

𝜕𝑡
 and Stokes’ Theorem. The Matteucci 

voltage is calculated from the following equation:  
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𝑒�́� = 2𝐷𝑙𝑁𝑤𝑀𝑠𝐵𝑠 sin 𝜃 (𝐻∗ − 𝐻0)/𝛽 

 

(2-22) 

Where l is the wire length, D is inner core diameter, 𝐵𝑠 is the saturation flux density, 

𝑁𝑤  is the number of domain walls propagating through the pick-up coil, 𝐻∗ is the 

critical field of domain nucleation for the flux reversal, H0 is  the critical field of 

domain propagation, 𝑀𝑠 is the saturation magnetisation, 𝛽 is the eddy current 

damping coefficient, 𝐵𝑠 sin𝜃 is the resultant component of flux density 

perpendicular to a plane including the wire radius due to the random twisting 

stresses. Eddy currents  are loops of electrical current induced 

within conductors by a changing magnetic field in the conductor according 

to Faraday's law of induction. Eddy currents flow in closed loops within conductors, 

in planes perpendicular to the magnetic field. 

Mohri et al. [51] also developed an equation for the Matteucci effect in amorphous 

ribbon. To explain the Matteucci effect, Figure 2-15 shows the corresponding 

domain model. The easy magnetisation axis in a twisted ribbon is ∏/4 rad at a half 

thickness and -∏/4 rad at another half-thickness, leading to two ∏ rad walls (solid 

line and dotted line) simultaneously propagating along the ribbon axis in each half 

thickness of the ribbon with the speed 𝑣 =
𝑑𝑥

𝑑𝑡
 . From the relation of 𝐸 = −

𝜕𝐵

𝜕𝑡
  or 

∮𝐸𝑥 𝑑𝑠 = −∬ 𝐵𝑦𝑑𝑠
𝑠

, the induced voltage at the ends of the ribbon with length l 

and width W is obtained by integration of magnetic field along the paths C1 and C2 

as shown in Figure 2-15:  

𝑒 = √2 𝐵𝑠ℎ𝑁𝑤𝑙𝑣 

 

 

(2-23) 

Where 𝐵𝑠 is the flux density and 𝑁𝑤  is the number of the domain walls per unit 

length and h is the height of domain inner core.  

https://en.wikipedia.org/wiki/Electrical_current
https://en.wikipedia.org/wiki/Conductor_(material)
https://en.wikipedia.org/wiki/Magnetic_field
https://en.wikipedia.org/wiki/Faraday%27s_law_of_induction
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Figure 2-15: Domain model [51] 

The Matteucci effect with sufficient signal to noise ratio, for sensor applications, is 

realized only by using amorphous magnetostrcitive alloys because of its outstanding 

elasticity, high flux density, high resistivity, and material uniformity [51].  

The Matteucci effect was discovered in 1847 and explained in terms of 

magnetostriction, however a full explanation was not forthcoming. Skorski [49] 

performed measurements to study the Matteucci effect on 3 mm thick, 300 mm 

long iron wire. Results showed that the Matteucci voltage is induced by torsion 

leading to a shift of magnetisation along a helical path. It was shown that increasing 

the frequency of magnetisation increases the amplitude of the output Matteucci 

voltage and concluded that the Matteucci voltage depends directly on the rate of 

change of the magnetisation. It was asserted that the Matteucci effect appears in 

both ferromagnetic and nonconductive ferrite materials and can be observed in 

large plates as well as wires.  

It was  previously reported by Takamure et al. that CoSiB amorphous wire with 

negative magnetostriction exhibits a large Barkhausen effect as well as a Matteucci 

voltage but ten times greater than that of Fe-based wire [52]. According to 

Takamure et al. [52] the Matteucci effect appears in long, thin, magnetic samples 

which are magnetised with an alternating field. If the magnetisation vector is at an 

angle relative to the length direction, a voltage will be induced across the ends of 

the sample. It was proposed that a component of the magnetisation vector in the 

inner core of amorphous wire that gives rise to large Barkhausen jumps occurs at 

an angle relative to the length direction thus contributing to the Matteucci voltage. 
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The Matteucci voltage component due to the inner core magnetisation [53] is 

illustrated in Figure 2-16. Domain walls in amorphous wires were described as cone-

shaped walls. From Figure 2-16, using cylindrical coordinates in which the z-

direction is along the wire axis a cone-shaped domain wall model was developed 

with a cone length l, radius R propagating with velocity v. The generated Matteucci 

voltage is obtained by Eq.(2-24): 

𝑒𝑝𝑚 = 𝐵𝜃𝑣𝑅𝑙 

 

(2-24) 

 

 

Figure 2-16: Model of domain wall in an amorphous wire [52] 

By referring to Eq.(2-24) Takamure et al. proved that the Matteucci voltage is 

proportional to the domain wall velocity v, the inner core radius R and the wall 

length l [52]. It was shown that Matteucci voltage has the important feature of 

being proportional to the length of the domain wall, in contrast to the voltage 

pulses due to Barkhausen jumps [52]. The torsion annealing was done on 200 mm 

long Co-based amorphous wire and it caused 𝑀𝑟/𝑀𝑠 to increase therefore indicating 

that the inner core diameter had increased. It was also shown that as a result of 

annealing under torsional stress of Co-base wire, an anisotropy is induced at ∏/2 

rad to the direction of torsion. Consequently, the circumferential component of the 

flux density is increased and the inner core radius is made larger.  

The mechanism of the Matteucci effect in negative-magnetostrictive amorphous 

wires were discussed in [50] by considering the magnetic domain model and B-H 
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curve measurements for the case of circular magnetisation. Three kinds of 

amorphous wires FeSiB, CoSiB and FeCoSiB with diameters of 50 and 120 µm were 

investigated [50]. It was shown that in an amorphous wire with negative 

magnetostriction, the Matteucci effect occurs due to changes in circumferential 

flux as a result of domain changes in the outer shell.  

Fevieres et al. [54] showed that the magnetic domain structure observed by the 

Bitter technique  reveals that the anisotropy changes direction rotating gradually 

from its original longitudinal direction into a ∏/4 rad helix. As a result of this helical 

anisotropy, whenever the sample is subjected to a longitudinal magnetic field, the 

Matteucci effect (ME) appears at both ends of the sample. This ME is produced by 

the magnetic flux induction variation in the circular direction which is proportional 

to the magnetisation’s circular component derivative. Similarly, Favieres et al. 

showed when the sample is subjected to a circular magnetic field, a variation of 

longitudinal component of magnetisation is detected which is called the Inverse 

Wiedemann Effect (IWE) [54]. Figure 2-17 shows a schematic representation of both 

effects IWE when a helical magnetic anisotropy is presented in a cylindrical sample. 

 

Figure 2-17: Schematic representation of both ME and IWE when a helical magnetic anisotropy is 

present in a cylindrical sample [54] 
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Therefore according to Eq.(2-21), 

 𝑀∅ = 𝑋∅𝑧𝐻𝑧  

 

(2-25) 

for the Matteucci effect since 𝐻∅ = 0 and 

𝑀𝑧 = 𝑋𝑧∅𝐻∅  (2-26) 

 for the inverse Wiedemann effect since 𝐻𝑧 = 0. 

The Matteucci effect can be observed in amorphous wires without torsion because 

of random twisting stresses induced in the wire during the solidification process 

[38]. A normal arrangement for detecting the Matteucci effect is with the applied 

field produced with an external coil along the wire axis, but another arrangement 

requiring no coil, uses AC current along the wire to produce a circumferential field 

at the wire surface which is shown in Figure 2-18. If it is sufficiently large, it can 

induce core switching, resulting in a Matteucci voltage (eM). However, it can be 

detected only in Co-based wires with a circumferential magnetised region in the 

surface layer  [38].  

 

Figure 2-18: Matteucci effect in amorphous wire [38]. 

To conclude, a brief overview has been provided on amorphous wires and the basic 

theory of magnetism in this chapter. Amorphous materials, their mechanical, 

electrical and magnetic properties have been described. The magnetic field, 

permeability and hysteresis in amorphous materials as well as magnetostriction and 

the Matteucci effect were defined. This will provide the basic understanding 

required for some of the concepts described in later chapters. 
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3 A review on the Matteucci effect in 

amorphous wires and its use in sensor 

applications 

3.1 Introduction 

This chapter reviews previous work on the Matteucci effect and its application to 

sensors. Details include the magnetic characterisation of amorphous wires, 

magnetic domain imaging, B-H curve measurements and the effect of annealing on 

amorphous wires as well as potential applications for strain and bending sensing. 

3.2 Applications utilising the Matteucci effect 

Amorphous alloy sensors are divided into two main groups, magnetometers using 

zero-magnetostrictive alloys and stress sensors using highly magnetostrictive alloys. 

The latter is further divided into three sub-groups, sensors utilising ultrasonic 

propagation effect, the stress magnetic effect, and the large Barkhausen and 

Matteucci effects. Amorphous wires have become more attractive in the last few 

years for the development of the sensing devices able to measure quantities such 

as displacement [55], acceleration [56], stress [57], and torsion [58]. 

 

 

Figure 3-1: Amorphous alloy sensor applications [59] 

Mohri et al. [10] introduced a pulse generator sensor using  𝐹𝑒77.5𝑆𝑖7.5𝐵15 and 

𝐹𝑒77.5𝑆𝑖7.5𝐵15𝐶1 compositions with 100-200 𝜇𝑚 diameter wire made by Unitika. 

Sharp pulses with extremely small jitter were induced at the pickup coil due to the 
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large Barkhausen jumps, and between both ends of the wire due to the Matteucci 

effect, for external AC fields ≥ 0.78 A/m at 0.01 Hz - 10 kHz frequency. These pulse 

generators can be used to construct high-resolution rotary encoders in combination 

with multiple ring magnets. He reported that those amorphous wires induced sharp 

and stable voltage pulses at the pickup windings due to the large Barkhausen jump 

and 6 V/cm3.Oe at the end of the wire due to the Matteucci effect. These wires 

induced higher voltage pulses than those seen in twisted amorphous ribbons [51] or 

Wiegand wires which are a low carbon Vicalloy, 

a ferromagnetic alloy of cobalt, iron, and vanadium. Initially, the wire is fully 

annealed [60]. Figure 3-2 represents the voltage pulse shapes of the pulse generator 

using amorphous wire, amorphous ribbon of 𝐹𝑒79𝐶𝑟2𝐵17𝑆𝑖2 and Wiegand wire. It can 

be clearly seen that sharpness and stability of pulses in amorphous wire are the 

best. 

 

Figure 3-2: Pulse wave shapes for three different materials magnetised with 20 mm long coils with 

500 turns [10] 

Lassow et al. [56] developed an angular accelerometer transducer utilising the 

Matteucci effect in the amorphous wire. The proposed sensor had low impedance 

output and low frequency response as compared to piezoelectric accelerometers 

without any requirement for extra electronic circuitry. He confirmed that the 

https://en.wikipedia.org/wiki/Vicalloy
https://en.wikipedia.org/wiki/Ferromagnetism
https://en.wikipedia.org/wiki/Alloy
https://en.wikipedia.org/wiki/Cobalt
https://en.wikipedia.org/wiki/Iron
https://en.wikipedia.org/wiki/Vanadium
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Matteucci effect is advantageous due to the transduction of magnetic to electrical 

signals without the requirement of pick up coils. As Figure 3-3 shows when the 

accelerometer rotates, the twist of the wire influences the magnetic properties of 

the wire. For the frequencies below the resonant frequency, the angular 

acceleration of the mass rotating about the axis of the wire will be the same as the 

acceleration of the accelerometer’s base and the Matteucci voltage across will show 

the vibratory input angular acceleration. The 𝐹𝑒77.5𝑆𝑖7.5𝐵15 amorphous wire with 

125 𝜇𝑚 diameter and 30 cm long was used in these experiments. The wire was 

magnetised with a 200 turn, 52 mm long solenoid coil and the output Matteucci 

voltage was detected directly across contacts without further amplification. The 

proposed accelerometer displays superior low acceleration results and a frequency 

response less than approximately 33 
rad

𝑠2   and 3 Hz respectively compared with 

commercially available piezoelectric accelerometers. Moreover, he declared that 

the proposed accelerometer is robust, easy to construct and has high signal to noise 

ratio with low impedance output and does not require supporting equipment for 

signal conditioning and impedance conversion.  

 

Figure 3-3: Schematic representation of an angular accelerometer, the magnetising winding is 

omitted for clarity [56]. 

Fosalau  [38]  developed a circular displacement sensor based on the Matteucci 

effect  with 𝐹𝑒77.5𝑆𝑖7.5𝐵15 amorphous wires to measure angle and force. The 

schematic diagram of the sensor is shown in Figure 3-4 in which a 55 mm long 

amorphous wire was connected between two metallic pieces, one fixed and one 

mobile, the latter connected to a moveable shaft with both axial and circular 

motion. When the shaft rotated, the wire was subjected to torsional strain and 
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generated a Matteucci voltage between the two metallic pieces. A winding precision 

potentiometer was employed to measure the torsion angle. The output voltage of 

the potentiometer had a linear relationship with the angle of the cursor. It was 

shown that when the intensity of the magnetic field H exceeds critical field H*, the 

output voltage value depends on the diameter of the wire and temperature. The 

sensor was characterised for sinusoidal and square waves and the result showed 

that the sensitivity of the sensor for square waves was 25% greater than for the sine 

wave. Moreover, at low frequencies the amplitude of the output pulses was small, 

stable and linear. At higher frequencies, the linearity of the sensor deteriorated as 

the permeability of the amorphous wire is frequency-dependent. This dependency 

is also affected by the wire diameter. It was also shown that the frequency limit 

for the wire increases as the wire thickness reduces. The sensor sensitivity depends 

on frequency variation except at higher frequencies when the sensitivity becomes 

approximately constant. This sensor had good sensitivity (approximately 5 mV/deg) 

and acceptable linearity for the range of operation of 2∏ rad.  

 

Figure 3-4: Schematic representation of the circular displacement sensor, FMP is fixed metallic 

piece, MMP is mobile metallic piece, AW is amorphous wire, C is coil, PC is plastic case, SSC is 

spring for stress control, and MS is mobile shaft  [38]. 

Dimitropoulos et al. presents a micro-fluxgate sensor utilising conventional and 

glass-covered 𝐹𝑒77.5𝑆𝑖7.5𝐵15 amorphous wires in combination with a planar coil [61]. 

The amorphous wires were mounted on to the planar coil by soldering the ends to 

create a 30×60 mm sensor. The wire was current annealed prior to mounting in 

order to optimise the inductive response of the wire. Figure 3-5 shows the pair-coil 

design which was chosen to minimise the sensor head dimension and to obtain the 

generation of a symmetric magnetic field parallel to the coil plane. Each winding 

was 0.3 mm wide and 20 µm thick and were separated by a 0.2 mm air gap.  



32 
 

 

Figure 3-5: The fluxgate sensor head. The glass-covered amorphous fibre core is visible in the 

centre of the head [61] . 60×30 mm head dimension  

Results show that the proposed sensor had 74 kV/T sensitivity before amplification. 

The glass-covered wires were preferable because they exhibited a Matteucci 

voltage even in smaller sizes down to 5 mm. The Matteucci voltage was higher in 

conventional wire than glass-covered one and this may be because of the larger 

wire diameter. However, the raw Matteucci voltage was amplified through 

amplification and a buffering stage [61]. 

Fosalau et al. [62] developed a novel current sensor to measure the Matteucci pulse 

amplitude across the ends of a twisted magnetic amorphous wire carrying an AC 

current. To obtain this effect a 125 µm thick, 300 mm long wire was wound around 

a 300 mm long cylindrical conductor, thus creating the axial orientation with 

respect to the field and, at the same time, having the possibility of modifying its 

length based on the study requirements (see Figure 3-6). The following sets of 

measurements were performed which are listed in Table 3-1 [62]: Two different 

conductor diameters (10 mm and 6 mm),  

Three different wire lengths (5 cm, 30 cm and 45 cm),  

Three different wire torsions (5π, 15π, and 25π rad/m).  

A sinusoidal current with a total harmonic distortion (THD) of 0.2 %, and a square 

wave current.  
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Table 3-1: List of measurements 

Conductor diameter 

(mm) 

Length 

(cm) 

torsion 

(rad/m) 

10 5 5π 

6 30 15π 

 45 25π 

 

The sensor frequency range was between 50 Hz to 1 kHz. The experiments were 

made at two ambient temperature values: 20 ºC and 70 ºC. The latter was 

conducted within an electric oven whose temperature control accuracy was better 

than ± 2%. The wires were tested in an as-cast form. 

  

Figure 3-6: Experimental set up for the study of sensor characteristics [62]. 

 It was demonstrated that sensor’s sensitivity increases with increasing the 

frequency due to faster flux variance in this region, leading to sharp pulses with 

higher amplitude. When the current goes to a squared shape, the magnetic field 

reverses faster than the sinusoidal case (this is due to bandwidth of the square signal 

which theoretically is infinite) and the sensitivity also goes higher. Moreover, the 

sensitivity stays constant up to 600 Hz and above that dramatically decreases, 

probably caused by two aspects: i) the loss of magneto elastic energy with 

frequency inside the wire and ii) the low-pass filter effect of the coil. Thirdly, the 

wire length becomes important when it is smaller than a critical value which usually 

depends on wire diameter. For instance, for a wire diameter of 125 μm, the critical 

length is approximately 7 cm. For wires whose length drops under 7 cm, a strong 
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reduction of the sensitivity and some output instability are expected. The 

experiments showed sensitivity decay over three times in the 5 cm case compared 

to a 30 cm long wire. Finally, as the torsion increased, the pulse amplitude 

increased as well. To conclude, the experimental sensor had the advantage of low 

price, simple construction, robustness, good linearity, accuracy and low 

dependence on temperature [62]. Furthermore, effect of waveform on the 

Matteucci effect was discussed in this paper.  

3.3 Giant magneto-impedance (GMI) effect 

As Velázquez et al. calculated in [63], the maximum relative change in impedance 

originating from the magneto-inductive voltage is given by: 

𝑍𝑚𝑎𝑥

𝑍𝑚𝑖𝑛
= {1 + [𝜋𝜇0𝑅

2𝜒𝜙𝑚𝑎𝑥𝑣/(2𝜌)]
2
}
1/2

 

 

(3-1) 

The variation in impedance increases with circular susceptibility 𝜒𝜙, radius of the 

wire R, frequency 𝑣 of the current through the wire and increases with increasing 

resistivity 𝜌.[63] Some technological applications based on this effect are reported 

in [64] and [65]. This relative change in impedance is restricted to the low 

frequency range because of the skin effect at higher frequencies. An AC current 

flowing along the wire creates an inhomogeneous AC magnetic field. In the case of 

very high frequencies, the penetration of such a field is confined to a surface shell 

due to the skin effect giving rise to changes in ohmic and inductive components of 

the impedance [66, 67]. The skin penetration depth 𝛿 can be expressed as: 

𝛿 = (
𝜌

Χ𝜙𝑣
)1/2 

 

(3-2) 

The total impedance Z is related to the penetration depth through the expression: 

𝑍 = 1/2𝑅𝑑𝑐(𝑘𝑅)(
𝐽0(𝑘𝑅)

𝐽1(𝑘𝑅)
) 

 

(3-3) 

Where 𝑅𝑑𝑐   is resistance when v=0 and 𝐽𝑖 are the Bessel functions with k= (1+i)(
𝑅

𝛿
). 

According to Eq.(3-3), changes in impedance can be produced by the modification 

of the resistivity and permeability [68]. The circular permeability is strongly 

reduced by the presence of an external biasing magnetic field. Therefore, the 
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penetration depth increases with the external field and the total impedance 

decreases simultaneously.  

Nabias et al. investigated the influence of bending parameters on the GMI effect in 

100 µm Co-rich wires [6]. Changes in the values of key parameters associated with 

the GMI effect have been investigated under bending stress. These parameters 

included the GMI ratio, the intrinsic sensitivity, and the offset at a given bias field. 

The experimental results have shown that bending the wire resulted in a reduction 

of GMI ratio and sensitivity. It has also been shown that the effect of bending 

seemed to be reversible and repetitive. However, Knobel et al. declare that more 

work is necessary to achieve a better understanding of the physical phenomena 

related to bending and compression [6].  

3.4 Characterising amorphous wires 

Meydan has studied the influence of tensile, compressive and torsional stresses on 

the magnetic properties of as-cast highly positive and nearly zero magnetostrictive 

amorphous wires [69]. Experiments were conducted on 30 cm lengths of the 

following types of amorphous wires: 

1-  𝐹𝑒77.5𝑆𝑖7.5𝐵15 positive magnetostrictive 125 µm thick amorphous wires, 

2-  (𝐶𝑜94𝐹𝑒6)72.5𝑆𝑖7.5𝐵15 nearly zero magnetostrictive, 130 µm thick amorphous 

wires. 

3- (𝐶𝑜94𝐹𝑒6)72.5𝑆𝑖7.5𝐵15, 100 µm thick amorphous wire which was annealed at 

510 ºC for 1 hour. 

It was shown that by applying tensile and compression stress on the wires the 

Matteucci voltage decreases as a result of cancelling the helical magnetisation. 

Furthermore, Fe-based amorphous wires were found to be more sensitive to the 

change in Matteucci voltage due to tensile, torsion and compression compare to Co-

based amorphous wires. This behaviour can be attributed to the increase in the 

helical anisotropy component due to the alignment of magnetisation vectors in a 

spiral magnetisation path [69].  

Lassow studied the effect of tensile, compressive and torsional stresses on the 

magnetic properties of annealed and as-cast highly magnetostrictive and nearly 

zero magnetostrictive amorphous wires for different frequencies and magnetisation 

levels to design an angular acceleration transducer [32]. The author claimed that a 
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simple, rugged, potentially inexpensive novel linear and angular accelerometer by 

using amorphous materials exhibit good overall characteristic with low impedance 

output and superior low frequency as compared to commercial piezoelectric 

accelerometer without the requirement of costly impedance conversion vibration 

preamplifiers.   

Kane et al. studied the influence of torsion during current annealing on the 

Matteucci voltage in amorphous wires [70]. Positive magnetostrictive 𝐹𝑒77.5𝑆𝑖7.5𝐵15 

amorphous wires with 125 µm diameter were used in these experiments. The wires 

were annealed using two methods, method 1 passed a 500 mA AC current for 1 

minutes and method 2 passed a 300 mA current for 10 minutes, both with 3.71 

rad/m (rad per meter) twist.  Amorphous wires were magnetised by a 120 mm long, 

300 turn solenoid. Tensile stress was applied by loading the sample and the 

Matteucci voltage was obtained by connecting oscilloscope probes across the ends 

of the wire. An experiment done under tensile stress showed that the Matteucci 

voltage increases as a result of current annealing under torsion. The influence of 

an axial DC magnetic field on the Matteucci voltage has been measured with a twist 

of 51 rad/m and an exciting ac magnetic field of 260 A/m at 30 kHz. Measurements 

showed that applying a dc magnetic field, inhibits the Matteucci voltage. 

Furthermore, current annealing under torsion leads to an increase in Matteucci 

voltage. The author [70] declared that the Matteucci effect needs the existence of 

a circular component of magnetisation which is achieved by applying torsional 

stress, so giving rise to an easy axis with the non-vanishing helical component. The 

magnetoelastic anisotropy induced by torque is described: 

𝐸𝜏 =
3

2
𝜇𝜉𝑟𝜆𝑠 

 

(3-4) 

Where 𝜆𝑠, 𝜇 and 𝜉 are the magnetostriction constant, shear modulus and angular 

displacement per unit length, respectively while r is the distance from the wire 

axis. The strength of the helical easy axis increases with r coordinate [71] [72]. 

Annealing will induce circular anisotropy when the heating is below the Curie 

temperature. It was shown that the largest Matteucci voltage was achieved when 

the wire was annealed under torsion. Kane et al. [70] suggested that the linear 

variation of the Matteucci voltage with applied axial stress can be useful for field 

and stress sensors. 
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Fe-rich alloys exhibit very low coercive field, magnetic losses and high remanence 

and susceptibility [73]. The magnetostriction depends not only on the composition 

of the amorphous wire but also the quality of the metalloid elements [74]. The 

measured magnetostriction has been shown to depend on the structural relaxation 

[75], applied stress [76] and fabrication parameters [77]. In these studies, the 

observed magnetostriction changes were of the order of 10−7 i.e. a low 

magnetostrictive material and small changes in these fabrication parameters can 

result in changes to the sign of the magnetostriction.  

Vázquez et al. [78] analysed changes in the magnetic properties of a Fe-rich 

amorphous wire 𝐹𝑒77.5𝑆𝑖7.5𝐵15   when it is submitted to bending stresses. By 

decreasing the radius of curvature Rc, the main changes in the magnetic properties 

are summarised as below: bistable behaviour disappear inside the range 110 mm - 

25 mm. This effect is also obtained for short wires less than 7 cm which do not show 

spontaneous bistability. The appearance of magnetic bistability in Fe-rich bent 

wires for short enough radius of curvature, allows the design of reduced size pulse 

generator elements. In such devices, magnetisation reversal within the wire which 

is caused by existing circular field, is generated by an electrical current passing 

through the conductor perpendicularly placed across the plane formed by the bent 

sample. In this way, when a critical current flows through the conductor wire, a 

sharp voltage pulse is detected in a pickup coil wound around a certain point of the 

bent sample. Therefore, sharp pulse generator devices and magnetic switches of 

reduced size can be built by using this configuration. 

 

3.5 Domain imaging on amorphous wires  

Co-based amorphous wires have bamboo-like straight domains in the surface while 

Fe-base amorphous wires have maze type domain patterns [40]. In positive 

magnetostrictive wire, residual stress will induce anisotropy in which the 

magnetisation easy axis lies in the radial direction and in negative magnetostrictive 

wire in the circumferential direction [79]. Therefore, the magnetic properties of 

amorphous wires depend on the composition and the internal stresses of the 

material [35].  

According to Humphrey et al. [80] two main regions of magnetisation exist in 

amorphous wires, an axially magnetised inner core and an external shell where 
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magnetisation is either radial or circular depending on the sign of the 

magnetostriction which is described in more detail in section 2.6.3. In the 

intermediate region between the core and the shell as well as the surface of the 

wire, some closure domain structure exist to reduce the magneto static energy [72]. 

The origin of such a domain structure must be related to the magneto-elastic 

anisotropy distribution inside the wire. When the reverse axial magnetic field 

reaches a critical value, magnetisation inside the core is reversed giving rise to the 

observed Barkhausen jump. This magnetisation reversal process has been ascribed 

as a nucleation mechanism [48, 81].  

The existence of domains, the arrangement of domain walls, and their reaction to 

magnetic fields are the consequence of the minimisation of the free energy of the 

magnetic body and the stray field energy has the maximum contribution [82]. The 

relative size of stray field and anisotropy energy is very important in domain 

characterisation and it is defined by the dimension less ratio 𝑄 =
𝐾

𝐾𝑑
  where K is the 

anisotropy constant which represents crystal anisotropy and 𝐾𝑑 =
𝐽𝑠
2

2𝜇0
 is the stray 

field energy coefficient which is a measure of the maximum stray field density. In 

soft magnetic materials this ratio is less than one [82]. However amorphous wires 

do not have crystal anisotropy.  

 Kerr microscopy 

In the magneto-optical Kerr microscopy method, the polarisation vector of linearly 

polarised light rotates after reflection from the magnetised surface. The reflected 

light when passed through a polarising filter can be used to develop a magnetic 

contrast image [83].  The magneto-optical Kerr effect (MOKE) can be further 

categorised as the polar, transverse or longitudinal Kerr effects according to the 

geometrical arrangement of the magnetisation and the plane of an incidence of the 

scattered light. The Kerr effect results in a rotation of the plane of polarisation of 

the incident light, or in the case of the transverse effect a change in the intensity 

of the light reflected from the surface of a magnetised material. Experiments have 

shown that the rotation of the polarisation or the change of light intensity 

(depending on the magneto-optical configuration) is approximately proportional to 

the change in magnetisation [84]. As Figure 3-7 shows, in the polar Kerr effect the 

magnetisation vector is perpendicular to reflection surface and parallel to the plane 

of incident, in the longitudinal mode the magnetisation vector is parallel to both 
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the surface plane and plane of incidence and in the case of the transverse effect 

the magnetisation vector is perpendicular to plane of incidence and parallel to the 

reflection surface.  

 

Figure 3-7: Different geometries in Kerr microscopy  

Yamasaki et al. have reported on domain imaging of Fe-based and Co-based 

amorphous wires using Kerr microscopy [79]. As shown in Figure 3-8-a, in Fe-based 

wire maze-like domains were observed over the entire surface whereas in Co-based 

wire which is shown in Figure 3-8-b a bamboo-like domain pattern is observed with 

alternating light and dark areas. These domain patterns do not vary with 

magnetisation reversal, inferring that both wire types have core domains that 

contribute to the main magnetisation reversal.  Figure 3-9 shows the domain pattern 

on a polished surface of Fe and Co-based wires. When Fe-based wires are polished 

deeply a point occurs when the inner core domains become visible and as the 

polishing proceeds further, the core domains eventually disappear [79].  For Fe-

based wire an in-plane magnetisation appears over one-half of the polished surface. 

Here the effect of polishing is small and the observed domain structure in Figure 

3-9-a believed to reflect fairly the internal domain structure.  
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Figure 3-8: a) Domain patterns of Fe-Si-B , b) Co-Si-B amorphous wires observed by Kerr 

microscopy [79] 

 

Figure 3-9: Domain patterns of a) zigzag structure Fe-Si-B and b) Co-Si-B triangular structure 

observed in mechanically polished surfaces by Kerr microscopy [79] 
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The triangular structure that appeared in Figure 3-9-b in one-half of the polished 

surface is caused by magnetic poles appearing at the surface as a result of polishing. 

In Co-based wire no domains corresponding to core domain are observed,  Since the 

magnetisation in Co-based wires are in a circular direction, a perpendicular 

magnetisation component always appears in a polished surface [79].   

Yamasaki et al. demonstrated that Fe-based amorphous wires have separate domain 

structures consisting of an outer shell and an inner core [85]. The re-entrant 

reversal takes place in the core domain by domain wall propagation along the wire 

axis. When domain wall coercivity is smaller than the wall nucleation field re-

entrant flux reversal occurs. The wall coercivity of FeSiB amorphous wire is 0.79 

A/m and the threshold field (the filed which flux reversal appears) is about 71.79 

A/m which is much larger than the wall coercivity. Kerr microscopy performed on 

125 µm thick 𝐹𝑒77.5𝑆𝑖7.5𝐵15 amorphous wire with 40 mm length is shown in Figure 

3-10. The 40 mm long wire is too short to support re-entrant reversal.  

The linear increase in magnetisation proceeds by the smooth motion of the wall in 

the core with the transition region domains remaining unchanged as shown in Figure 

3-10-b,c. The cause of the wavy wall in the core domain is not clear. The shell 

domain seems to catch the white domain in the core when the wall gets closer to 

the shell domain on the left side, resulting in the small magnetisation jump as 

shown in Figure 3-10-c,d. The domain pattern of the shell transition region changes 

on the left side while remaining unchanged on the right.  
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Figure 3-10: Domain patterns in a polished section of 40 mm long wire at different drive conditions 

[85] 

Chizhik et al.  investigated surface magnetic domain structures in 120 µm thick, 70 

mm long  Co-rich (𝐶𝑜94𝐹𝑒6)72.5𝑆𝑖12.5𝐵15 amorphous wires using Kerr microscopy [86]. 

The formation and motion of multi-domain structures with curved domain walls 

have been observed in these wires. Figure 3-11 represents the evolution of the 

domain pattern during reversal of magnetisation when an axial field was applied to 

the wire which is perpendicular to the direction of circular surface anisotropy. The 

change of magneto–optical contrast is shown through Figure 3-11-b to f at the point 

when full reversal is complete. An equivalent schematic diagram of the surface 

domain structure is also shown in Figure 3-12 where four distinct domain regions 

exist prior to complete reversal which is marked from 1 to 4. Domain walls between 

types 1 and 3 and types 2 and 4 were clearly observed, but the positions of them 

between the domains of 1-2 and 3-4 were not evident [86].  

To conclude, by applying an axial magnetic field, magnetisation reversal appears 

as a fluent rotation of magnetisation, followed by the formation of a domain 

structure containing domains of four distinct regions including a curved domain wall 

boundary. This structure which can move along the wire surface could be 

considered as a magnetic vortex. The formation of a vortex-type structure in the 

surface of the wire could be related to some twisting process appearing in the inner 

core of the wire and to cylindrical-shape anisotropy [86]. 
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Figure 3-11: Surface domain images of Co-based wires [86]. 
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Figure 3-12: Schematic diagram of the evaluation of surface domain structure in the axial 

magnetic field. Arrows show the direction of magnetisation in surface domain structure [86]. 

Kabanov et al. [87] investigated a 100 mm long 120 µm  thick 

𝐹𝑒77.5𝑆𝑖7.5𝐵15 amorphous wire with positive magnetostriction and 𝐶𝑜72.5𝑆𝑖12.5𝐵15 

with negative magnetostriction. Figure 3-13-a, shows the distribution of 

magnetisation in the wire for the so-called stripe with the “open” domain structure. 

The band domains in Figure 3-13-b were strongly twisted and their shape was similar 

to Labyrinth-like domain structure in thin films with a bubble domain structure. 

Figure 3-13-c shows the magneto-optical indicator film (MOIF) image of the same 

area as Figure 3-13-b [87].  The dark contrast of the transition region between the 

stripe domains relates to domain walls between them. Figure 3-14-a shows the 

distribution of the stray field around the edge of an artificial shallow scratch made 

on the Co-rich wire surface along its axis. Figure 3-14-c is a schematic diagram 

assuming that the magnetisation at the surface has circular orientation and is 

formed by 90 ˚ domains. Such an alignment of the magnetisation in the domains 

creates a stray magnetic field in the edges of the scratch as shown in Figure 3-14-

b.  
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Figure 3-13: Magneto-optical contrast of magnetisation distribution on the surface of Fe- rich wire 

(a,b) and c) MOIF image of the domain walls in the region as indicated in (b) [87]. 

 

Figure 3-14: a) The MOIF image of magnetisation distribution near artificial shallow scratch made 

along axis of the C0 – rich wire [87]. 
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 Bitter technique 

The Bitter pattern technique involves placing a small quantity of ferrofluid on to 

the surface of a ferromagnetic material. The ferrofluid spreads along 

magnetic domain walls where magnetic field gradients are highest. 

Mohri et al. [48], used the Bitter technique to observe domain images as shown in 

Figure 3-15 for 125 µm diameter, 80 mm long 𝐹𝑒77.5𝑆𝑖7.5𝐵15 amorphous wire.  In 

Figure 3-15-a, Zig-Zag walls indicate the existence of ∏/2 rad walls with the induced 

anisotropy perpendicular to the wire surface. Moreover, the parallel pattern of 

these walls with ± 0.70 − 1.22 𝑟𝑎𝑑 with respect to the wire axis shows the existence 

of a random twisting stress direction. The stress direction in “a” is inverse to that 

in “b”. These stresses at the wire surface occur during the solidification of the wire. 

Figure 3-15-b shows the domain pattern after annealing by passing a 0.4 A current 

for 2 sec to induce circular magnetic anisotropy. Figure 3-15-c shows the domain 

pattern after annealing at 370 ºC for 30 minutes. In this case, all domain walls are 

aligned parallel to the circumference of the wire due to the elimination of random 

twisting stresses. From these domain images it was concluded that the Large 

Barkhausen jump and the Matteucci effect of as-prepared wire are dominated by 

random twisting stresses in the inner core [48]. 

 

Figure 3-15: Domain observation of 𝑭𝒆𝟕𝟕.𝟓𝑺𝒊𝟕.𝟓𝑩𝟏𝟓 amorphous wire by Bitter technique [48] 

https://en.wikipedia.org/wiki/Ferrofluid
https://en.wikipedia.org/wiki/Domain_wall_(magnetism)
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Bitter patterns of  𝐶𝑜72.5𝑆𝑖12.5𝐵15 and 𝐹𝑒77.5𝑆𝑖7.5𝐵15 which were observed by 

Yamasaki  [88] are shown in Figure 3-16. As can be seen, Co-based wire has bamboo-

like straight walls at the surface while Fe-based wire shows maze-like domain 

patterns. The domain width is about 20 µm for Co-based wire and 4 µm for Fe-based 

wire.  

 

Figure 3-16: Bitter pattern of Co-Si-B and Fe-Si-B amorphous wires by applying 0.8 kA/m magnetic 

field perpendicular to the surface [88]. 

Also, Hernando et al. used the Bitter technique [89]  to characterise 

𝐹𝑒73.5𝑆𝑖13.5𝐵9𝑁𝑏3𝐶𝑢1 amorphous wire under torsion. A metallographic microscope 

was used to see the magnetic domains under a constant magnetic field (24 kAm-1) 

perpendicular to the wire axis to enhance the contrast. The ends of the wire were 

fixed by clamping and one of the clamps could be rotated to apply pure torsion. An 

external field up to 6.4 kA/m was provided by a Helmholtz coil. The domain 

patterns showed a maze configuration and zigzag walls over the whole surface as 

shown in Figure 3-17. The domain structure changed from a maze configuration with 

zigzag walls to a helical one by applying torsion. Domain width, as well as tilt angle 

with respect to the wire axis, changed with torsion. The tilt angle saturated at 𝜋/4 

rad/m (radian per meter) for both clockwise and anticlockwise torsions for twisting 

angles above 2𝜋 rad/m. 
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Figure 3-17: Domain structure of  𝑭𝒆𝟕𝟑.𝟓𝑺𝒊𝟏𝟑.𝟓𝑩𝟗𝑵𝒃𝟑𝑪𝒖𝟏 a) untwisted and under different values 

of the applied torsion in the clockwise sense: b) 10  rad/m c) 12.5 rad/m, and in the counter 

clockwise sense d) -12.5 rad/m [89] 

   

3.6 Annealing amorphous wires 

There are different types of annealing such as current annealing, furnace annealing 

field and stress annealing. Current annealing which is based on Joule heating is 

commonly used for amorphous wires. When thermal treatment is performed below 

the sample’s Curie temperature, helicoidal anisotropies are easily induced resulting 

in very interesting magnetic behaviour. Furthermore, if the material is twisted 

during annealing, induced anisotropies can be achieved [90].  In this paper [90] the 

relationship between temperatures and current flow through the wire is described 

as:  
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∆𝑇𝑚𝑎𝑥 = 𝑇(0) − 𝑇(𝑎) =
𝑗2𝜌

4𝑘
𝑎2 

 

(3-5) 

Where a is the wire radius, k is thermal conductivity, T0 is the room temperature, 

j is the current density (j=I/S), I is the electrical current and S is the cross-sectional 

area of the wire. By considering an annealing current of 0.36 A, a=6.2*10-5, 

ρ=1.3*10-6 Ωm and k=10 Wm-1K-1/4, ∆Tmax=0.11 K, which suggests that under 

particular boundary conditions, the radial steady state temperature profile is 

homogeneous far from the ends of the wire. This theory can be used in the case of 

amorphous wires showing that the z temperature profile turns out to be extremely 

flat over more than 90 % of the wire length.  

 Chiriac et al. stated [91] that current annealing amorphous wires would improve 

their magnetic properties. They [91] proposed a model to calculate the relation 

between the DC current and temperature by taking into account the linear 

temperature dependence of the electrical resistivity. The higher the value of DC 

current, the faster the equilibrium temperature is reached. The temperature 

distribution was approximately constant in the cross-section of the wire. The 

calculated values of temperature for different values of current were very close to 

those found by magnetic measurements of the Curie temperatures.    

 Gonzalez et al. [92] annealed 125 µm thick, 100 mm long  𝐹𝑒77.5𝑆𝑖7.5𝐵15  amorphous 

wires by passing 400, 425 and 550 mA current through it. The annealing time was 

chosen by considering the necessary time to reach a stable value of reduced 

remanence with different intensities of electric current. It was concluded that 

current annealing increases the relaxation of internal stresses produced from 

quenching, resulting in increased remanence and reduced coercive field prior to 

applying tensile stress. Consequently, after annealing the internal stresses were 

reduced [92]. Results show that the switching field H* by applying tensile stress 

decreases after certain stress that the remanence reaches its saturation value and 

the pinning centers at the surface, make the wire magnetically harder and hence 

an increase of H* is observed. The annealed sample show similar result to as-

quenched one but the applied stress for achieving the minimum value of H* 

decreases as the value of annealing current increases. For higher stress, H* increases 

in a similar way to the as-quenched wire [92]. Moreover, remanence (mr=Mr/Ms) 

increases with stress then saturates. The stress in which this saturation occurs is 

300 MPa for as-quenched wire while it decreases for increasing annealing current. 
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The coercive field depends on the applied stress in either as-quenched or annealed 

samples in a manner similar to H*. Overall, this paper [92] discussed the influence 

of applied stress on the magnetic properties of the hysteresis loop on as-quenched 

and annealed positive magnetostrictive wire. 

3.7 B-H curve 

Some amorphous wires show bi-stable magnetic behaviour due to their unique 

domain structure. Fe–based amorphous wires, in contrast to amorphous ribbons, 

have bi-stable hysteresis loops, a consequence of its large Barkhausen jump [40]. 

Bi-stable simply means two stable states. In the case of AF10, both stable states 

are along the wire but in opposite’s directions. Reversing the magnetisation flips 

from one state to the other via the large Barkhausen jump. Yamasaki et al. [88] 

measured the B-H curve for 𝐶𝑜72.5𝑆𝑖12.5𝐵15, 𝐹𝑒77.5𝑆𝑖7.5𝐵15 and (𝐹𝑒6𝐶𝑜94)72.5𝑆𝑖12.5𝐵15 

for a 60 Hz sinusoidal field parallel to  the wire’s length. The B-H curve for Co-

based wire as it is shown in Figure 3-18, exhibits properties similar to Fe-based 

wire. The wire exhibits no irreversible flux change when the amplitude of the drive 

field is below a certain threshold. Large Barkhausen discontinuities (LBD) take place 

when the applied field is equal or higher than the critical domain nucleation field 

Hn. The value of Hn and the fraction of magnetisation participating in LBD of Co-

based wire are smaller than Fe-based wire. In contrast,  (𝐹𝑒6𝐶𝑜94)72.5𝑆𝑖12.5𝐵15 shows 

very soft magnetic properties without LBD.  
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Figure 3-18: B-H loops of as-quenched (a) Co-Si-B, (b) (Fe,Co)-Si-B, and (c) Fe-Si-B amorphous 

wires measured at 60 Hz [88]. 

Fe-based 𝐹𝑒77.5𝑆𝑖7.5𝐵15 amorphous wire has square-shaped B-H curve related to 

large Barkhausen jump as shown by Gawronski et al. [93]. Usually Co-rich 

microwires exhibit inclined hysteresis loop with low coercivity of 4-5 A/m but the 

magnetic permeability is not high because of the relatively high magnetic 

anisotropy field. Generally, the best soft magnetic properties are observed for 

nearly-zero magnetostrictive compositions [36, 94]. 

 The dependence of hysteresis loop on these parameters has been attributed to the 

magneto elastic energy given by: 
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𝐾𝑚𝑒 ≈ 3
2⁄ 𝜆𝑠𝜎𝑖 

 

(3-6) 

Where 𝜆𝑠 is saturation magnetostriction and 𝜎𝑖 is the internal stress.  

3.8 Strain sensors 

Strain sensors are normally used to detect physical deformation and mechanical 

loading such as stress and strain on the structure. Currently, strain sensors are used 

in various fields ranging from civil engineering to medical applications [95], [96]. In 

medical applications, strain sensors are used to monitor physiological parameters 

such as lung ventilation [97], joint and bone movement [95] and human body motion 

[98]. Continuous real-time monitoring of these parameters allows a better 

evaluation of patient’s health by physicians [99]. For instance, Gattiker et al. [95] 

developed a wireless and passive implantable sensor based on ultrasound detection 

for real-time monitoring of small strains on implants, bones and joints. Another 

real-time strain sensor is the magnetostrictive amorphous sensor developed by 

Klinger and co-workers [97] to measure strain by detecting change in the magnetic 

permeability caused by mechanical loading. The most common and established 

sensor is resistive and capacitive strain gauges. The capacitive sensor is based on a 

change of the separation distance between two parallel conductor plates which 

alter the capacitance of the sensor. Although they are simple and sensitive, they 

are electronic components that need direct wire interface [100]. Tan et al. 

presented [100] a passive strain sensor based on the harmonic shift of a 

magnetically soft material. Also, a passive stress sensor based on magnetic material 

is presented in [101] and [102]. The resonant frequency of the vibrating magneto 

elastic ribbon changed with varying applied stress, allowing remote detection of 

mechanical deformation and loadings. However, this sensor was just applicable to 

low stress situations since high stress severely dampens the vibration leading to 

significant weakening of the sensor signal. Kusumoto et al. [103] developed, a 

fingertip blood vessel pulsation (FTP) sensor with a capillary blood vessel pressure 

by using CoSiB amorphous wire stress impedance which showed a giant magneto 

impedance of about 4000. The FTP was placed between the elbow and wrist and 

measured blood vessel pulsation speed Vew. Measurements between the wrist and 

fingertip Vwf showed Vew was faster than Vwf. Mohri et al. [104] developed sensitive, 

quick response and low power consumption micro magnetic sensors utilising 

magneto- impedance (MI) and stress- impedance (SI) effects in zero 



53 
 

magnetostrictive and negative magnetostrictive amorphous wires of 30 µm 

diameter and 2 mm length connected with CMOS MI sensors circuits. The SI sensor 

using a 20 µm diameter negative-λ amorphous wire showed an equivalent gauge 

factor of about 4000 for stress (Strain) sensors and a resolution of 0.1 cms-2 for 

acceleration sensors.  

 Stretchable strain gauges  

Strain gauges are stretchable sensors which produce a changing electrical signal in 

response to applied stress. There are different types of materials and technologies 

listed in Table 3-2 for strain sensor applications. 

Table 3-2: Strain sensor applications on different materials  

Material Method to measure strain 

Metallic films 

[105-107] 
Piezoresistive effect 

Carbon blacks 

[12, 108, 109] 
Piezoresistive effect or dimension changes 

Carbon nanotubes (CNTs) 

[110-112] 

Depended on both the separation 

of the wrinkled structure and the changes in the 

wrinkle’s geometry to respond the strain below 

400% 

Graphene 

[112-115] 
Change of resistance due to strain 

Silver nanoparticles 

(AgNPs) 

[116, 117] 

Exploiting the mechanisms including the micro-

crack propagation in thin films and the 

disconnection between sensing elements 

Conductive ionic liquids 

[112, 118, 119] 
Change in dimension of ionic liquids 

Graphite 

[120, 121] 
Change in contact resistance 

Platinum nanobelts 

[122] 
Change of resistance due to strain 

Carbon-coated fibre 

[123] [124] 

Measuring their resistance changes under variable 

loading 
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a) Metallic strain sensors 

Conventional metal-foil strain sensors consist of a fine wire or metallic film 

arranged on a flexible substrate in a grid pattern. Despite their simple 

structure they have low sensitivity (Gauge factor (GF)~2 ) and have small 

strains (maximum strain of 5 %). This makes them unsuitable for measuring 

strains associated with human motion [115], [125],[126]. A class of 

stretchable strain sensors fabricated by thermally evaporating gold film 

patterns on to silicon substrate or micro plotting liquid metal as conductive 

wires [105] or tubes [106] has increased the strain by up to 50 % but still 

suffer from a small GF less than 5.  

b) Fabric-based strain sensors 

Fabric based deformation sensors can be produced by coating a thin layer of 

piezoresistive material on conventional fabrics. Fabric-based strain sensors have 

high wear ability, but slippage of the conductive material on textile fabrics 

usually deteriorates the measurement accuracy. Moreover, it is difficult to 

establish a reliable relationship between the applied strain and the kinematic 

parameters such as bending angles, since the textile sensors have large contact 

area and human skin tends to be uneven. [127] 

c) Nanomaterial- based strain sensors 

Among the available nanomaterial-based sensors, CNT-based sensors have 

demonstrated strong stretchability with maximum strains of 280 % (single-

walled CNTs) [128], 400 % (super- aligned CNT films) [129], 450 % (vertically 

aligned CNT forest), 510 % (multi-walled CNTs), 750 % (wrinkled CNTs) [130] and 

960 % (CNT fibres). However, they have the limitation of GF<1. A wearable strain 

sensor fabricated by depositing nano/micro sized wrinkled CNTs on to an Eco 

flex substrate has been developed. The wrinkled structure increased the 

sensor’s strain to 750 %, but the GF was small at 0.65 for strains below 400 %.  

d) Graphene fibres 

Sensors based on Graphene fibres with compression spring architectures 

exhibited an ultrahigh sensitivity to the detection limit of 0.2 % strain and ability 

to measure multiple forms of deformations, including strain, bending and 

torsion [131]. Although they have a wide sensing range (up to 200 % strain) and 

excellent durability, they still suffer from some limitations in their applications 
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including the complicated fabrication processes and the non-transparency of 

the sensor that might affect the appearance of wearable devices [129].  

 

3.9 Bending sensors 

 Bend sensors, also known as flex/flexion/flection sensors, angular displacement 

sensors, or flexible potentiometers, directly measure the amount of bend typically 

as a function of electrical resistance [132]. They are generally fabricated by coating 

or printing carbon/polymer ink-based materials onto flexible plastic substrates such 

as polyimide and polyester. When the sensor bends, micro-cracks are introduced 

into the coated film causing the change in resistance. 

The earliest motion control for home entertainment was developed especially for 

use in the “Power Glove” in 1989 by Abrams [133]. A year later its production ceased 

due to its imprecision and difficulty of operation [134]. Following this, several 

manufacturers such as Image science Instruments, Inc.(Images SI) [135] Spectra 

Symbol, Crop. [136], and flexible point sensor system, Inc.(Flexpoint SS) [137] 

released their owned flexible bend sensors.  

As shown in Figure 3-19-a, Images SI [138] manufactures bi-directional bend sensors 

with a length of 114.3 mm, which consists of a strip of resistive material sandwiched 

between two copper foil laminates. According to the manufacturer’s specification, 

the sensor has a nominal resistance of 10 kΩ which decreases gradually by bending 

in either direction [138]. However, Orengo in [139] developed a piezoresistive bend 

sensor by Images SI which showed linear increases of resistance from 4 kΩ to 16 kΩ 

for bending angles ranging from -∏/6 to ∏ rad. Although these bend sensors are used 

in glove sensing systems [140-142], they have been discontinued since 2010 because 

of their low accuracy and stability. The off-the-shelf bend sensors manufactured by 

Spectra Symbol are usually designed with lengths of 55.9 mm or 112 mm, as shown 

in Figure 3-19-b [143]. They exhibit a linear dependence with bending angle. 

However, a hysteresis error of 14 % was reported for the 112.2 mm sensor during 

bending-unbending operation from 0 to ∏/2 rad, much higher than that of bend 

sensors from Flexpoint SS(about 3 %) [144]. Simone et al. [145] achieved a 112.2 

mm sensor over a 7.62 cm diameter tube, 31.8 % decay of initial resistance over 

time after bending for 30 seconds which is almost three times that of Flexpoint SS. 

(8.9 %). Moreover, in [144] sensor resistance varied from 8.2 kΩ to 13.1 kΩ when 
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the sensor was bent from 0 to ∏/2  rad. In contrast, the sensor with Flexpoint SS 

produced resistance variation of 112 kΩ for the same bending range. It can be 

concluded that the Flexpoint SS sensors are more stable and sensitive to mechanical 

deformation than the Spectra Symbol bend sensors. 

 

Figure 3-19:  Images of commercial bend sensors a) Bi-directional bend sensors manufactured by 

Images SI [138] b) Bend sensors produced by Spectra Symbol [143] c) Bend sensors with different 

lengths manufactured by Flexpoint SS [144] d) custom design, bend sensor array produced by 

Flexpoint SS  [146]. 

Borghetti et al.  [144] reported that the resistance of polyimide, polyester and bare 

bend sensors varied by about 2 %,3 % and 30 % respectively after bending at ∏/2 rad 

for 180 s. Therefore, the sensors over-coated with polyester or polyimide are 

generally considered to be more stable than bare bend sensors. 

Thin-film bend sensors produced by Flex point SS, are one of the most popular 

sensors used in applications for tracking finger motion [5, 147-149]. Jurgens et al. 

[150] have developed a low-cost sensor by screen printing carbon-based electrically 

conductive ink onto the polyester substrate. The sensor repeatability was 6.5 % with 

a 100 Ω variation in resistance when bending from 0 to ∏/2 rad. 
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Melzer et al. [151] designed a new sensor based on the Hall effect. Inorganic 

functional nanomembranes with polymeric foils were combined to achieve a 

flexible sensor with sensitivity of -2.3 V (AT)-1. The sensor was fabricated on 100 

µm thick polyimide foils that withstand mechanical deformations. Only a minor 

reduction was observed in sensor performance after bending to a radius of 6 mm 

and returning to the flat state. As shown in Figure 3-20-a,b,c adhering the flexible 

sensor to a finger creates a wearable sensor. By monitoring the output, the relative 

position of the finger with respect to a permanent magnet was obtained as shown 

in Figure 3-20-d and e. For demonstration purposes, eight bismuth Hall sensors were 

exposed to the field of a permanent magnet Figure 3-20-f,g.  A maximum signal was 

achieved when the magnet was placed above the sensor as shown in Figure 3-20-h. 

In order to investigate the bending performance, flexible sensor elements were 

mounted on to sample holders with concave curvatures from 6 to 32 mm. From 

geometric considerations, these curvatures correspond to strain values in bismuth 

film of 0.24 % and 1.25 %, respectively. The sensitivity of the unbent sensor was –

(0.54±0.01)V (AT)-1 which is the highest value for as-prepared sensing elements on 

the polyimide foils (200 nm thick Bi film). The sensor was positioned in the planar, 

bent and then again planar arrangement for each radius of curvature measurement. 

In the flat state, the sensor response remained at the initial sensitivity even after 

bending into a radius of 6 mm [151].  

To conclude, flexible bismuth Hall sensors on polymeric PEEK and polyimide foils 

were fabricated. The sensor can be bent around the wrist or positioned on the finger 

to realize the finger position with respect to the magnetic field. The optimised 

sensor sensitivity was -2.3 V (AT)-1 [151]. 

Alaferdov et al. [120] developed a simple and scalable method for fabrication of 

wearable strain and bending sensors based on high aspect ratio graphite nanobelts, 

thin films deposited by a modified Langmuir-Blodgett technique on to flexible 

polymer substrates. The sensing mechanism is based on the changes in contact 

resistance between individual nanobelts upon substrate deformation. Very high 

sensor response stability for more than 5000 strain release cycles and a device 

power consumption as low as 1 nW was achieved. The maximum strain that could 

be applied to the system was 40 %. Bending tests were carried out for various radius 

of curvature.  
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Figure 3-20: The different position of sensor on the finger or on the wrist of a hand [151] 

The common limitations and strength of these sensors are listed below: 

Strength: they are highly flexible, easy to operate and low cost. 

Limitations: time-consuming calibration process, large hysteresis errors and failure 

to return to the initial state after loading, slow to respond, temporal drift and 

suffering from significant overshoot in high-speed situations.  

Klinger et al. [97] designed a new sensor, simple, inexpensive to manufacture and 

with adjustable sensitivity for the monitoring articular movements and lung 

ventilation. This sensor is based on the change of permeability due to mechanical 

stress and strain. If an amorphous ribbon is glued on to a plastic ribbon with 

considerably higher thickness, bending this sensor will cause mainly tensile or 

compression stress in amorphous magnetostrictive material dependent upon the 

direction of bending. Figure 3-21 shows the amorphous ribbon AR (length l, 

thickness 𝑑𝑎 , width 𝑏𝑎 and Young’s modulus 𝐸𝑎 ) attached to a plastic ribbon PR (l, 

𝑑𝑝, 𝑏𝑝, 𝐸𝑝 ) which shows lower Young’s modulus but considerably higher thickness. 
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As a result of bending the composite sensor Figure 3-21a, the tensile stress in the 

ribbon will dominant for state ΙΙ and a compressive stress dominates in state ΙΙΙ.  

Consequently, considering the theory of pure bending of beams and taking into 

account additional simplifications (such as plain cross-sections, negligible thickness 

of adhesive layer, validity of Hooke’s law) the mean strain of the amorphous ribbon 

is given by [97]: 

𝜀 =
1

𝑙

𝑑𝑎

2
𝑟𝑑𝑟𝑏𝑟𝐸

1 + 𝑟𝑑
1 + 𝑟𝑑𝑟𝑏𝑟𝐸

 

 

(3-7) 

With l equal to the bending radius and 𝑟𝑑 =
𝑑𝑝

𝑑𝑎
 , 𝑟𝑏 =

𝑏𝑝

𝑏𝑎
 , 𝑟𝐸 =

𝐸𝑝

𝐸𝑎
, the ratios of 

thickness, widths and Young’s moduli for AR and PR layers. Gluing AR on PR, which 

was pre-bent to the radius of l0, yielded an effective sensor for elongation x in the 

connecting line of two sandwiches ends.  

For the ratio of bending stiffness 𝑟𝑑
3𝑟𝑏𝑟𝐸 ≪ 1, gluing will not yield considerable 

change of l0 and effective overall elongation x will cause a bending radius according 

to: 

𝑙 sin(
𝑙

2𝑙
)=

𝑥

2
+ 𝑙0 sin(

𝑙

2𝑙
) 

 

(3-8) 

Thus, roughly the amorphous ribbon will show pure compressive stress according to 

differentiate stress and strain.  

𝜀 = (
1

𝑙
−

1

𝑙0
)
𝑑𝑎

2
𝑟𝑑𝑟𝑏𝑟𝐸

1 + 𝑟𝑑
1 + 𝑟𝑑𝑟𝑏𝑟𝐸

 

 

(3-9) 
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Figure 3-21: a) Compound sensor type in various states of stress b) pre-bent sensor in initial and 

elongated states  

A literature survey regarding the Matteucci effect on amorphous wires, 

characterising amorphous wires and their application in addition to domain imaging 

on amorphous wires, annealing and B-H curves were discussed in this chapter. 

Moreover, different technologies in producing strain and the bending sensors were 

reviewed. The performance of each type of sensor were briefly presented and their 

advantages and disadvantages were summarised.   
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4 The magnetic characterisation and 

measurement of the Matteucci effect in 

amorphous wires  

4.1 Introduction 

The Matteucci effect is the presence of voltage pulses detected at the ends of an 

amorphous wire when magnetised axially with an alternating field. The amplitude 

of the voltage pulses changes by application of torsional and axial stresses. The 

origin of the effect is helical anisotropy brought about by the interaction of the 

magnetostriction and induced stresses. However, the effect is also significant in 

near‐zero magnetostrictive alloys so the mechanism involved cannot be simply 

explained in terms of magnetostriction. 

Much of the reported characterisation on amorphous wires has been done on long 

wires ranging in lengths from 10 cm [10] , 12 cm, 13 cm [10, 32], 20 cm [52] , 30 

cm [49, 56] to 55 cm [38]. For sensing applications, there has been a lack of 

investigations into the Matteucci effect for short wires. Amorphous alloys are 

suitable candidates for small sized magnetic sensors with high stress and magnetic 

field sensitivities. Typically, they have high maximum tensile strengths (𝜎𝑚𝑎𝑥: 2450-

3920 MPa), uniform microstructures due to the absence of grain boundaries and 

high resistivities (𝜌: 120 − 190 𝜇Ω /cm). They are also thin with thicknesses of 20- 

40 𝜇𝑚 for ribbons and 50 to 200 𝜇𝑚 diameter for wires. Their magnetic properties 

include high permeability and a small induced anisotropy constant ( 𝐾𝑢: 200- 800 

J/𝑚3) [59]. Amorphous wires were chosen for investigation in this thesis because of 

their exceptional Matteucci voltages and magnetoelastic properties making them 

potential candidates for strain sensing applications. This chapter describes the 

experiments conducted to characterise amorphous wires under different conditions 

of torsion, tensile stress and magnetic field strengths and frequencies in order to 

optimise properties for sensor applications. Domain imaging and B-H curve 

characterisation has also been done to provide useful insights into the magnetic 

anisotropy of the material.  

  



62 
 

4.2 Amorphous wires which are investigated 

The samples used in this thesis are listed in Table 4-1. 

Table 4-1: Specification of amorphous wires  

Samples Composition Diameter 

(µm) 

magnetostrction Length 

(mm) 

Annealed 

AF10 𝐹𝑒77.5𝑆𝑖7.5𝐵15 125 34.5 × 10−6 114,45,20 1 min 

by 

passing 

0.5 A 

current 

AC20 (𝐶𝑜94𝐹𝑒6)72.5𝑆𝑖7.5𝐵15 125 −0.08 × 10−6 114,45,20 - 

 

As it can be seen in Table 4-1, the amorphous wires investigated in this work were 

supplied by Unitika Ltd and included 𝐹𝑒77.5𝑆𝑖7.5𝐵15 (AF10) and (𝐶𝑜94𝐹𝑒6)72.5𝑆𝑖7.5𝐵15 

(AC20), both 125 µm in diameter with magnetostrictions of  34.5 × 10−6 and 

−0.08 × 10−6 respectively [36]. AF10 amorphous wire was annealed by passing 0.5 

A current for 1 min. 

4.3 The measurement system for measuring Matteucci 

voltage in amorphous wire 

To be able to measure the Matteucci voltage in amorphous wires, a system capable 

of applying both tensile and torsional stresses were needed. To achieve this, the 

measurement system shown in Figure 4-1 was designed and built. This system used 

a solenoid to excite the wire with a sinusoidal magnetic field of peak amplitude 

1.49 kA/m. The solenoid was powered by a function generator (Key sight Infinivision 

DS0-X3012T) connected to a power amplifier (Pioneer M-73 stereo power amplifier). 

A later version of the system substituted the power amplifier with a Keysight 

BP2961A power source. The magnetising coil frequency varied from 100 Hz to 10 

kHz at a peak sinusoidal magnetic field of 1.49 kA/m. A LCMFL-20N load cell, with 

a nominal capacity of 20 N, was used to measure the tensile stress applied to the 

wire. Movement of the translation stage (with a resolution of 10 µm), attached to 

one end of the fixed wire, enabled fine control of the axial stress from 0 to 326 

MPa. Torsional stress was applied at intervals of 0.17 rad by a rotation mount with 
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a precision of 0.002 rad (one arc per minute) from 0 to 2∏ rad. Right angle brackets 

and post holders at both ends, were mounted on to an aluminium breadboard to 

support the amorphous wire under test. Experiments were performed on amorphous 

wires using lengths of 114 mm for basic characterisation and 20 mm and 45 mm for 

determination of sensor performance. 

 

 

Figure 4-1: The mechanical arrangement used for measuring Matteucci pulses. 

All components used in the construction of the system were nonmagnetic and epoxy 

resin was used to fix the amorphous wires inside the post holders. To measure the 

Matteucci voltage, the ends of the amorphous wire were connected to thin copper 

wire using copper sleeves with relative permeability of 0.9. The other ends of the 

copper wire were connected to an oscilloscope. This method was chosen as it 

provides a minimal stress connection and avoids soldering which could risk 

crystallisation of the sample.  

 

Figure 4-2: Electric circuit of the designed system 
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The electric circuit for the measurement system is shown in Figure 4-2. The peak 

magnetic field was determined from the magnetising current by measuring the 

voltage VH across a 0.47 Ω non-inductive shunt resistor connected in series with the 

magnetising winding as shown in Figure 4-2. The value of the magnetic field, H, was 

calculated using Eq. (4-1) [15] assuming a long thin solenoid geometry as assumed 

in Eq. (2-2): 

 𝐻 =
𝑁𝑉𝑚

𝑅𝑙
                                               (4-1) 

Where N is the number of turns in the magnetising winding, 𝑙 is the length of the 

flux path, 𝑉𝑚 is the maximum value of the magnetising voltage and R is the shunt 

resistance.  

The strain gauge meter used was an Omega DP25-S with an operating temperature 

range of 16 to 71 °C and a load cell operating range between 0 to 20 Newtons (N). 

Eq.(4-2) was used to calculate the axial stress (𝜎)  using the applied force (F) and 

the cross-sectional area of the amorphous wire (A). 

𝜎 = 𝐹/𝐴 (4-2) 

Prior to measurements, the Load cells were calibrated using suspended known 

weights in the set-up shown in Figure 4-3. The weight (W) of an object due to the 

force of gravity on the object is defined in Eq.(4-3) as the mass (m) times the 

acceleration of gravity (9.81 m/s2). The measured force was determined using Eq. 

(4-3). Figure 4-4 is a plot of the measured force, from the load cell, against the 

calculated force. The calibration was performed by loading the load cell gradually 

starting from zero weight to a maximum value of 4.92 N. The measurements were 

repeated six times before averaging, resulting in a linear plot which can be seen in 

Figure 4-4.The coefficient of determination (R2) in this figure, is one. The 

coefficient of determination is used to analyze how differences in one variable can 

be explained by differences in another variable. The uncertainty of the 

measurements will be discussed in section 4.3. 

𝐹 = 𝑊 = 9.81𝑚 (4-3) 
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Figure 4-3: The system used to calibrate the load cells comprised of a known weight attached to 

the load cell vertically  

 

 

Figure 4-4: Load cell characteristic, measured force against ideal force 

4.4 Uncertainty  

Measurement uncertainty has many sources including instrument limitations, 

random environmental effects, operator error etc. There are established rules for 

how to calculate an overall estimate of uncertainty from these individual error 

contributions. The usual way to quantify spread in a reading is a standard deviation 
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(SD). The SD of a set of numbers tells us how different the individual readings 

typically are from the average of the set. The complete process of calculating the 

estimated SD for a series of n measurements can be expressed mathematically as: 

𝑆 = √
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

(𝑛−1)
                                               

(4-4) 

 

Where 𝑥𝑖 is the result of ith measurements and �̅� is the arithmetic mean of n 

measurements.  

There are two approaches to estimate uncertainties, type A and type B evaluations. 

Type A evaluations: uncertainty estimates using statistics (usually from repeated 

readings) 

Type B evaluations: uncertainty estimates from any other information. This could 

be from past experience of the measurements, from calibration certificates, 

manufacturer's specifications, from calculations, from published information, and 

from common sense. 

However, all contributing uncertainties should be expressed at the same confidence 

level, by converting them into standard uncertainties. A standard uncertainty is a 

margin whose size can be thought of as plus or minus one SD. The standard 

uncertainty tells us about the uncertainty of an average (not just about the spread 

of values). 

When a set of several repeated readings has been taken (for A-type estimate of 

uncertainty), the estimated standard uncertainty u is calculated from the Eq. (4-5). 

 𝑢 =
𝑆

√𝑛
                                               (4-5) 

Where S is standard deviation and n is the number of measurements in the set [152]. 

 The measurements of the load cell calibration in the previews section were 

repeated six times and by using Eq.(4-5), the SD were calculated, then uncertainty 

budget was calculated in  

Table 4-2. The calculated uncertainty for stress was ranging from 0.04 to 0.3 N as 

shown in Figure 4-4. 
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Table 4-2: Uncertainty budget for Load cell 

 Source of 

uncertainty 

Value Probability 

distribution 

Divisor Standard 

uncertainty 

VRP SD 

Repeatability of 

Matteucci 

effect 

0.7 N Normal 1 0.7 N 

W Resolution of 

Scale (g) 

0.005 g Rectangular √3 0.00028 g 

 

4.5 Matteucci voltage on positive and slightly negative 

amorphous wires  

Figure 4-5 shows the input magnetic field and Matteucci voltage for AF10 amorphous 

wire. When the applied field changes direction, a voltage peak is generated at the 

ends of the amorphous wire as the domains are influenced by the helical anisotropy 

due to twisting. When the applied field changes direction, a voltage peak is 

produced with opposite polarity.  

 

Figure 4-5: Input signal and produced Matteucci voltage for AF10 amorphous wire magnetised in 

1 kHz frequency, 1.5 kA/m magnetic field, twisted 0.08 rad/cm ( 29.57 MPa torsion stress). 
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Figure 4-6 shows the output Matteucci voltage in positive magnetostrictive (AF10) 

and negative magnetostrictive (AC20) amorphous wires respectively. Positive 

magnetostrictive wires have clearly defined single positive and negative voltage 

peaks whereas the voltage peaks in negative magnetostrictive wire (AC20) exhibit 

a small peak immediately followed by a reverse peak. Under the same conditions, 

the Matteucci voltage for AF10 amorphous wires was almost two and a half times 

greater than that for AC20. Magnetic domains in the outer shell of AF10 are in the 

radial direction as it is shown in Figure 2-13. Applying torsion will cause the 

magnetic moments to rotate towards the circular direction in both the inner core 

and the outer shell. In AC20, the domains in the outer shell are already lined up in 

the circumferential direction as it is shown in Figure 2-13 [40]. As AC20 has a slightly 

negative magnetostriction, twisting will tend to cause the magnetic moments to 

align perpendicular to the torsional stress direction. Therefore, under zero axial 

stress conditions, the Matteucci voltage is less in AC20 compared to AF10 due to 

the difference in the magnitudes are their magnetostriction constants.  

 

 

Figure 4-6: The output Matteucci voltage for AF10 and AC20 amorphous wires at 1 kHz frequency 

twisted 0.08 rad/cm (29.57 MPa torsion stress) by applying 55 MPa tensile stress.  
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Figure 4-7: The Matteucci voltage in AF10 amorphous wire for both clockwise and anti-clockwise 

twisting with 1 kHz magnetisation. 

Figure 4-7 shows that the Matteucci voltage reverses with a ∏ rad phase change 

when twisting goes from a clockwise to the anti-clockwise direction. This is because 

the magnetic domain orientation also changes. A schematic representation is shown 

in Figure 4-8 and illustrates how domains which are initially in the radial direction 

(Figure 4-8-a), change to a helical direction (Figure 4-8-b) by twisting anticlockwise 

and then reversing direction for clockwise twisting (Figure 4-8-c).  
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Figure 4-8: The change of the orientation of domains in AF10 amorphous wire a) domains in the 

radial direction, b) Twisted wire and domains changed to helical direction c) Twist inversed and 

domains changed direction 

4.6 The influence of magnetising amplitude, 

magnetising frequency and length of amorphous 

wire on the Matteucci voltage 

Figure 4-9 represents the variation of peak Matteucci voltage (𝑉𝑚) versus applied 

field H for AF10 amorphous wire magnetised at 1 kHz frequency for different 

twisting angles ranging from 0.87 to 3.49 rad ( corresponding to 0.08 rad/cm to 0.31 

rad/cm)  in 0.87 rad steps for 114 mm length amorphous wire. As the magnetic field 

increases, the Matteucci voltage linearly increases. This was observed for all 

twisting angles in the measurement range. According to the Eq.2-21, by increasing 

the magnetic field, the axial flux density component increases and hence the 

Matteucci voltage increases. Furthermore, the higher the twisting degree, the 

higher the induced voltage due to ∆M∅ changes as the magnetic domains partially 

align with the axial field direction. The sensitivity has been calculated in Eq. (4-6) 

using the ratio of the change of the Matteucci voltage due to the change of the 

applied magnetic field.  

Sensitivity =
𝑉1 − 𝑉2

𝐻1 − 𝐻2
  

(4-6) 
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Where V1 is the voltage for magnetic field (H1) and V2 is the measured voltage for 

magnetic field H2. As Figure 4-9 shows the sensitivity has doubled as twisting 

increases from 0.87 to 3.49 rad but the linearity, as determined by the coefficient 

of determination (R2), has stayed the same. The Matteucci voltage in AF10 shows 

very high linearity of 0.99 with changing magnetic field. It should be noted that a 

minimum drive field of 20 A/m at 1 kHz frequency and 0.08 rad/cm twisting angle 

was required for the Matteucci voltage to be observed since the wire exhibited no 

irreversible flux change below this value of field. In [32] it has been reported that 

50 A/m is the minimum magnetic field for the Matteucci voltage to appear. The 

frequency and twisting angle are not mentioned in [32], and the wire length was 

300 mm compared to 114 mm used in this work. Therefore, a direct comparison is 

not possible along with an explanation for the difference in minimum field. 

Figure 4-10 shows the Matteucci effect as a function of length of AF10 amorphous 

wire. Increasing the length of the wire also leads to an increase in the Matteucci 

voltage as predicted by Eq.(2-22). Three different lengths of wire, 114 mm (in fact 

as 100 mm length solenoid was used to excite the amorphous wire, the effective 

length of the wire is 100 mm) 30 mm and 50 mm were chosen. A point to note is 

that the Large Barkhausen effect appears in wires more than 70 mm long. The 

results show that the Large Barkhausen jump does not affect the trend in Matteucci 

voltage with wire length. The Matteucci voltage as a function of length increases 

linearly with a coefficient of determination equal to (R2) 0.92 and an output 

sensitivity of 0.36 mV/mm calculated from the slope in Figure 4-10. 

 

Figure 4-9: The variation of Matteucci voltage due to the magnetic field on 114 mm length AF10 

Amorphous wire magnetised at 1 kHz frequency 
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Figure 4-10: The variation of Matteucci voltage due to the length of wire, 0.08 rad/cm twisting 

angle (29.57 MPa torsion stress) on 114 mm, 50 mm and 30 mm AF10 amorphous wire which is 

magnetised in 1 kHz and 1.49 kA/m magnetic field 

 

 

4.7 Influence of tensile and torsion stress on the 

Matteucci voltage 

Figure 4-11 and Figure 4-12 illustrates the variation of the peak to peak Matteucci 

voltage as a function of twist angle and magnetising frequency for 114 mm lengths 

of AF10 and AC20 amorphous wires with a 55 MPa tensile stress. This level of stress 

was chosen because of the high Matteucci voltage shown in Figure 4-14, whilst 

avoiding the region below 55 MPa which provided reduced voltages at frequencies 

higher than 7 kHz. For both wires to be comparable with each other the same tensile 

stress has been chosen for AC20 amorphous wire. The experiments were repeated 

three times to average the data shown in Figure 4-11 and Figure 4-12. The 

uncertainties were measured using Eq.(4-5) and are shown as errors bars for each 

point in Figure 4-11 and Figure 4-12. Increases in excitation frequency and angle of 

twist both led to increases in Matteucci voltage due to Faraday’s law of induction 

the faster the flux variance in the region higher the Matteucci voltage, and 

increased helical anisotropy. A comparison of the two compositions reveals similar 

behaviour with both exhibiting some degree of asymmetry dependent on the 

direction of the twist. The most striking difference is in the amplitude of the 
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Matteucci voltage being approximately two and a half times greater in the positively 

magnetostrictive alloy compared with the negative magnetostrictive alloy. It seems 

that Matteucci voltage saturates after certain volume of twist which is because of 

domains have moved to helical direction and twisting more does not have any 

influence in Matteucci voltage. 

To calculate torsion stress from twist the following equation is used [153]: 

𝜏 =
𝐺 × 𝜃 × 𝑟

𝐿
 

 

(4-7) 

Where θ is twisting angle, G is shear modulus, r is the radius of wire and L is the 

wire length. For AF10 amorphous wire G is 62 GPa according to [154]. The same 

number is assumed for AC20 in this equation. Therefore, for the twisting angle from 

0 to 2∏ rad, the torsion stress is calculated from 0 to 213 MPa.  

 

Figure 4-11: The variation of Matteucci voltage due to the twisting angle on 114 mm AF10 

amorphous wire with 55 MPa tensile stress.  
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Figure 4-12: The variation of Matteucci voltage due to the twisting angle on 114 mm AC20 

amorphous wire with 55 MPa tensile stress. 

 

Figure 4-13: The variation of Matteucci voltage due to tensile stress and twisting on 114 mm AF10 

amorphous wire magnetised in 1.49 kA/m and 1 kHz magnetic field  

Figure 4-13 shows the variations of Matteucci voltage due to tensile and torsion 

stress on 114 mm length AF10 amorphous wire. As it can be seen, tensile stress 

varies from 0-326 MPa while torsion stress changes from 29.57 to 207.34 MPa 

according to Eq.(4-8). Figure 4-13 shows the sensitivity of the Matteucci effect 

increases from 0.13 to 0.45 mV/MPa by increasing the twisting angle. The 

coefficient of determination is approximately 0.9 for all twist angles indicating that 

the linearity is similar in all cases. In later measurements, 0.87 rad was chosen as 
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a suitable twist angle (0.08 rad/cm (29.57 MPa torsion stress) for 114 mm wire) 

because this falls within the linear range before plateauing in Figure 4-11. The 

variation of peak Matteucci voltage with tensile stress with a fixed twist angle for 

114 mm lengths of AF10 and AC20 wire are shown in Figure 4-14 and Figure 4-15 

respectively. In this case, the magnetising frequency range was 100 Hz to 10 kHz 

for AF10, and 1 kHz to 10 kHz for AC20 with a twist angle of 0.08 rad/cm. Tensile 

stress was applied from 0 to 326 MPa. The frequency range of AC20 was reduced 

because the Matteucci voltage was too small to measure at the lower frequencies. 

The behaviour of each type of wire is distinct and attributable to the difference in 

the sign of their magnetostriction. The sign of the magnetostriction coefficient 

significantly influences the domain structure in amorphous wire with 

circumferential and radial domain patterns in AC20 and AF10 respectively [40]. In 

AF10 amorphous wire, the Matteucci voltage decreases as tensile stress rotates the 

magnetisation vector away from the helical direction. However, in AC20 amorphous 

wire, the Matteucci voltage increases with increasing axial stress as more domains 

become aligned in the circumferential magnetisation direction. In addition, Figure 

4-15 indicates that sensitivity to tensile stress increases from 0.12 to 0.21 mV/MPa 

with increasing frequency. As in AC20 amorphous wire axial stress will increase 

circumferential anisotropy even further because of negative magnetostriction. The 

maximum SD in both Figure 4-14 and Figure 4-15 were 0.02, 0.03 respectively and 

the minimum SD was 0.00 for both cases.  
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Figure 4-14: The variation of Matteucci voltage due to tensile stress on 114 mm AF10 amorphous 

wire with a 0.08 rad/cm twist angle (29.57 MPa torsion stress).  

 

Figure 4-15: The variation of Matteucci voltage due to tensile stress on 114 mm AC20 amorphous 

wire with a 0.08 rad/cm twist angle (29.57 MPa torsion stress). 

Finally, Figure 4-16 shows the Matteucci voltage due to the tensile stress on a 45 

mm length of AF10 amorphous wire. The Matteucci voltage decreases as tensile 

stress increases as also seen in the longer wires (Figure 4-14). As expected, the 

Matteucci voltage is lower in amplitude compare to 114 mm length amorphous wire 

but the linearity has increased to a maximum of 0.93 (R2 value) at 5 kHz. 
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Figure 4-16: The variation of Matteucci voltage due to tensile stress on 45 mm AF10 amorphous 

wire with a 0.19 rad/cm twist angle (74.92 MPa torsion stress). 

4.8  Gauge factor 

For strain gauges, the Gauge factor (GF) is the ratio of relative change in electrical 

resistance R to the mechanical strain 𝜀. The gauge factor is defined as: 

𝐺𝐹 =

∆𝑅
𝑅
∆𝐿
𝐿

=

∆𝑅
𝑅
𝜀

 

(4-8) 

Where ∆𝐿 is the absolute change in length, ∆𝑅 is the change in strain gauge 

resistance due to axial strain and 𝑅 is the unstrained resistance of strain gauge.  

To evaluate the sensitivity of amorphous wires, an equivalent strain gauge factor 

for AF10 and AC20 amorphous wires was calculated. To derive the strain (𝜀) from 

the measured stress (σ) we assumed a value of 1.58 x 1011 Pa [155] for the Young’s 

modulus of amorphous wire and used Eq.(4-9).  

𝜀 =
𝜎

𝐸
 (4-9) 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝐺𝑎𝑢𝑔𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 =
∆𝑣𝑚

𝑣𝑚
×

1

𝜀
 

(4-10) 

Eq.(4-10) defines an equivalent gauge factor using the change in Matteucci voltage 

which is defined in Eq.(4-11). 𝑣𝑖 is the Matteucci voltage for different stresses and 

𝑣0 is the initial Matteucci voltage with no stress. 𝜀 is the strain in the wire defined 

by Eq.(4-9). Equivalent gauge factors (EGF) for AC20 and AF10 114 mm length 
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amorphous wires were calculated at frequencies ranging from 0.1 kHz to 10 kHz and 

a 0.08 rad/cm twist angle. 

∆𝑣𝑚

𝑣𝑚
=

𝑣𝑖+1− 𝑣𝑖

𝑣0
 

(4-11) 

  

Figure 4-17 and Figure 4-18  show the EGF measured for AF10 and AC20 in four 

tensile stress regions indicated by P1 to P4 in Figures 4-14 and 4-15. For the 

parameters given above, the highest EGF for AF10 was 70 at 100 Hz. This data shows 

that the stress sensitivity of the Matteucci voltage in AF10 drops off with stress 

amplitude but the EGF dependence with frequencies is less clear. In contrast, AC20 

has higher EGF’s with a best value of 150 at 2 kHz. There are smaller variations in 

EGF over the whole stress range which is indicative of AC20’s better linear variation 

of Matteucci voltage with stress. 

 

Figure 4-17: The sensitivity of AF10 amorphous wire in frequencies from 100 Hz to 10 kHz in 

different positions which are marked in Figure 4-14. 
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Figure 4-18: The sensitivity of AC20 amorphous wire in frequencies from 100 Hz to 10 kHz in 

different positions which are marked in Figure 4-15. 

 

4.9 DC and AC B-H curves 

B-H measurements were performed on 114 mm length and 125 µm diameter as-cast 

and annealed AF10 and AC20 amorphous wires by applying a DC magnetic field using 

a 585 mm long solenoid with 364 turns. The magnetic field (H) was calculated from 

Eq.(4-1) by measuring the current passing through a resistor (1.3 Ω). AF10 was 

annealed by passing 0.5 A current for 1 min through the wire. 

The flux density (B) was measured by using a flux meter connected to a secondary 

pick-up coil with 12 layers, a total of 10330 turns, 60 mm in length and a cross-

sectional area of 9.45 mm2. To compensate for the air flux, the amorphous wire 

was removed from the coil and the air flux measured. This was then subtracted 

from the flux measurements obtained with the wire present. The electrical circuit 

schematic and the measurement system for measuring the B-H curve are shown in 

Figure 4-19 and Figure 4-20 respectively. As it can be seen the existing setup 

consists of a power amplifier (Kepco) to amplify the DC current which passes 

through the excitation coil, a flux meter (Lakeshore, 480) was connected to the 

secondary coil to measure the magnetic flux density (B). As Figure 4-19 shows the 

output of the flux meter and current across the shunt resistor were controlled using 

a LabVIEW program.    
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Figure 4-19: Schematic of the electrical circuit for measuring B-H curve and Matteucci voltage. 

 

Figure 4-20: The system designed to measure B-H loop 
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AC B-H measurements were performed on 114 mm length AF10 and AC20 amorphous 

wires by applying a sinusoidal magnetisation field (1.5 kA/m amplitude, 1 kHz) using 

a 100 mm long solenoid, 5 mm in diameter and 168 number of turns. The magnetic 

field (H) and flux density (B) were calculated from Eq.(4-1) and (4-12) respectively. 

To compensate for air flux, two identical coils were connected in series-opposition 

with only one coil enwrapping the amorphous wire as shown in Figure 4-21. 

𝐵 =
∫𝑉𝑀

𝑁𝐴
                                               (4-12) 

In this equation VM is the voltage of the secondary coil around the amorphous wire, 

A is the cross-sectional area of the amorphous wire, N is the number of turns of the 

secondary coil, i.e. 111.  

 

 

Figure 4-21: Electric circuit to measure the AC B-H curve 

Figures 4-22 to 4-24 show the effect of annealing AF10 by passing a 0.5 A current 

for 1 min through the amorphous wire in air. In Figure 4-22, the B-H curves for as-

cast and annealed AF10 amorphous wire exhibit a clear difference in their shapes. 

In the case of the annealed wire, the approach to magnetic saturation occurs more 

rapidly compared with the as-cast wire. This is even clearer in Figure 4-24 which 

shows that the annealed wire is closer to saturation at 5 kA/m. Inspection of the 

hysteresis loops at very low field shows an obvious difference between two wires. 

The annealed wire exhibits a distorted B-H characteristic in the first quadrant unlike 

the as-cast wire which exhibits the classic single Barkhausen jump that occurs in 

AF10 wires with lengths exceeding 70 mm [40]. It is unclear what is causing the 
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distorted B-H loop but it may be an indication of partial crystallisation resulting in 

the presence of two different magnetic phases. 

Figure 4-23 shows the coercivity field and Residual magnetic flux for the as-cast 

amorphous wire is 4.5 A/m and 0.7 T respectively, and for the annealed wire is 3.1 

A/m and 0.57 T respectively. The coercivity field has decreased as a result of 

annealing along with a reduction in the residual magnetic flux.  

 

Figure 4-22: DC B-H curve with magnetic amplitude of 500 A/m for as-cast and annealed AF10 

amorphous wire with air compensation  

 

Figure 4-23: Zoomed DC B-H curve for as-cast and annealed AF10 amorphous wire with air 

compensation 

Coercivity field for As-

cast wire: 4.5 A/m 

Coercivity field for 

annealed wire: 3.1 A/m 
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Figure 4-24: DC B-H curve with magnetic amplitude of 5 kA/m for as-cast and annealed AF10 

amorphous wire with air compensation  

In Figure 4-24, the B-H curves at 5 kA/m show a magnetisation of 1.7 T and 1.73 T 

for as-cast and annealed AF10 respectively. This is very close to what is reported 

for as-cast AF10 amorphous wire by Unitika which is 1.6 T [28]. 

 

Figure 4-25: DC B-H curve with magnetic amplitude of 500 A/m for AC20 amorphous wire with air 

compensation 

Figure 4-25 shows the B-H curve, at low fields, for AC20 amorphous wire exhibited 

an s-shaped hysteresis as reported in [9]. Figure 4-26 shows the coercivity field and 

Residual magnetic flux for AC20 amorphous wire equalled 1.9 A/m and 0.11 T 
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respectively. Compared with the positive magnetostrictive wire (AF10) it shows less 

coercivity field and residual magnetic flux. 

 

Figure 4-26: DC B-H curve for AC20 amorphous wire with air compensation  

 

Figure 4-27: DC B-H curve with magnetic amplitude of 5 kA/m for AC20 amorphous wire with air 

compensation  

Figure 4-27 shows the saturation magnetisation is 0.72 T for AC20 amorphous wire. 

This is very close to what is reported by Unitika which is 0.8 T [28]. 

To conclude, AF10 amorphous wire has a squarer B-H curve compared to AC20 

amorphous wire due to a large Barkhausen jump as reported in the literature [40]. 

Secondly, AC20 has less coercivity and residual flux density than AF10 and saturates 

at much lower magnetising fields. And finally, coercivity and residual magnetic flux 

Coercivity field: 1.9 

A/m 
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for annealed AF10 wire are less than as-cast wire because annealing reduces the 

stress anisotropy inside the wire [17].  

 

 

Figure 4-28: AF10 amorphous wire AC B-H curve magnetised in 1.49 kA/m and 1 kHz frequency 

 

Figure 4-29: AC20 amorphous wire AC B-H curve magnetised in 1 kHz frequency 

To investigate the AC character of AF10 and AC20, B-H curves were obtained at 1 

kHz magnetisation as shown in Figure 4-28 and Figure 4-29. The saturation 

magnetisation was 1.42 T and 0.7 T and the coercivity field was 76 A/m, and 72 

A/m for AF10 and AC20 respectively. The coercivity fields were higher than those 

observed for DC magnetisation because of eddy currents at higher frequencies. The 
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skin effect is the tendency of an AC current to become distributed within 

a conductor such that the current density is largest near the surface of the 

conductor, and decreases with greater depths in the conductor. The electric 

current flows mainly at the "skin" of the conductor, between the outer surface and 

a level called the skin depth. The skin effect causes the effective resistance of the 

conductor to increase at higher frequencies where the skin depth is smaller, thus 

reducing the effective cross-section of the conductor. The skin effect is due to 

opposing eddy currents induced by the changing magnetic field resulting from the 

AC current.  

4.10 X-ray results 

X-rays are transverse electromagnetic radiation, like visible light but with a shorter 

wavelength. The range of wavelengths which is commonly used for X-ray 

crystallography is between 0.5 to 2.5 Å [156]. 

Atoms scatter X-ray waves, primarily through the atoms' electrons. An X-ray striking 

an electron produces secondary spherical waves emanating from the electron. This 

phenomenon is known as elastic scattering, and the electron is known as 

the scatterer. A regular array of scatterers produces a regular array of spherical 

waves. Although these waves cancel one another out in most directions 

through destructive interference, they add constructively in a few specific 

directions, determined by Bragg's law: 

2𝑑 sin𝜃 = 𝑛 𝜆𝑤 

 

(4-13) 

Here d is the spacing between diffracting planes, 𝜃 is the incident angle, n is any 

integer, and 𝜆𝑤 is the wavelength of the beam. These specific directions appear as 

spots on the diffraction pattern called reflections. Thus, X-ray diffraction results 

from an electromagnetic wave (the X-ray) impinging on a regular array of scatterers 

(the repeating arrangement of atoms within the crystal). 

https://en.wikipedia.org/wiki/Conductor_(material)
https://en.wikipedia.org/wiki/Current_density
https://en.wikipedia.org/wiki/Electrical_resistance
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Eddy_current
https://en.wikipedia.org/wiki/Magnetic
https://en.wikipedia.org/wiki/Elastic_scattering
https://en.wikipedia.org/wiki/Destructive_interference
https://en.wikipedia.org/wiki/Bragg%27s_law
https://en.wikipedia.org/wiki/Diffraction_pattern
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Figure 4-30: Interference between waves originating at two scattering centres 

As Figure 4-30 shows, the incoming beam (coming from upper left) causes each 

scatterer to re-radiate a small portion of its intensity as a spherical wave. If 

scatterers are arranged symmetrically with a separation d, these spherical waves 

will be in sync (add constructively) only in directions where their path-length 

difference 2𝑑 sin𝜃 equals an integer multiple of the wavelength 𝜆𝑤 . In that case, 

part of the incoming beam is deflected by an angle 2𝜃, producing a reflection spot 

in the diffraction pattern [156]. 

To confirm the amorphous nature of AF10 and AC20, wires of both types, and of 

pure iron as a reference sample, were cut into lengths of 30 mm for X-ray analysis. 

50 lengths of each type were glued on to glass slides to form a continuous and 

homogeneous surface. Table 4-3 shows details of the X-Ray machine settings for 

these experiments. X-ray wavelength was 1.59 Å for AF10 amorphous wire and 1.79 

Å for AC20 and Fe, the step size was 0.02 and scan step time 0.6 s for AF10 and 0.5 

s for AC20 and Fe. The X-ray results for AF10, AC20 and Fe are presented in Figure 

4-31. The x-axis in the chart refers to the scattering angle 2𝜃 (Theta) and the y-

axis refers to the intensity of photons per second. Figure 4-31 confirms that AF10 

and AC20 are primarily amorphous. AC20 is highly amorphous as no peaks were 

detected in its X-ray characteristic. Slightly partial crystallinity was observed in 

AF10 with Bragg spacings at 5.49±0.03 Å and 3.64 ±0.03 Å. Both peak sizes are very 

small, with one of them indicating the possible presence of Fe2O3 (Bragg spacings 

of 3.67 Å) [157] due to oxidation over time.  In the crystalline iron wire, two distinct 

Bragg spacings were detected at 2.03 Å and 1.43 Å corresponding to a body centre 

https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Diffraction_pattern
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cubic iron phase. The results demonstrated that compared to the crystalline iron 

sample, both AF10 and AC20 have maintained their amorphous nature despite 

having been in storage for a number of years. 

Table 4-3: X-Ray settings 

Material 

Wavelength, 

K-Alpha2 

 [Å] 

Step size 

[2*Theta] 

Scan step time 

 [s] 

AF10 1.59 0.02 0.6 

AC20 1.79 0.02 0.5 

Fe 1.79 0.02 0.5 
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Figure 4-31: a) X-ray results on AF10 b) AC20 amorphous wires compare to c) Fe 
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4.11 Domain imaging 

Two different types of domain imaging methods, the Bitter technique and Kerr 

microscopy were performed on AF10 and AC20 amorphous wires as they help us to 

have a better understanding of the magnetic anisotropy of the material.  

 Bitter technique 

The Bitter technique combined with optical microscopy was used for magnetic 

domain observations. The Ferro fluid (DHYS1-A Hydro domain observation fluid) 

used in this investigation was supplied by Liquids Research Ltd (viscosity ɳ< 5cp, 

mean particle size 6 nm and saturation magnetisation 8 mT). To enhance the image 

contrast, a magnetic field of 1.1 kA/m (see Figure 4-32) was generated 

perpendicular to the wire axis using a 126 turn coil measuring 20 mm deep and 90 

mm diameter. Prior to observation, to see the influence of twisting on domains 

structure, the wires were manually twisted and glued to a glass microscope slide. 

To ensure a uniform field in the region of interest, wire lengths were restricted to 

50 mm in length. 

 

Figure 4-32: The set-up used for generating the field for contrast enhancement 

Figure 4-33 consists of a series of images showing the evolution of the magnetic 

domain structure with increasing torsion. There is a clear transition from a 

circumferential zigzag pattern to an arrangement of regularly spaced parallel 

domain walls running oblique to the wire circumference. Closer inspection of the 

region between the zigzag walls reveals a fine structure of bar domains. This is 
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consistent with the formation of closely spaced closure domains associated with the 

radial domain structure previously reported in Fe77.5Si7.5B15 wires [50]. As the helical  
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Figure 4-33: Domain structure of a 50 mm length AF-10 Amorphous wire with an applied 

perpendicular magnetic field of 1.1 kA/m and twist angles of a) zero, b) ∏/2, c) ∏ and d) 2∏. 
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anisotropy increases, the fine domain structure disappears leading to the parallel 

wall arrangement consistent with domain magnetisation coincident with the wire 

surface and the directions of maximum shear stress. Mohri et al. [48] also observed 

zig-zag walls by using the Bitter technique on AF10 amorphous wire which is 

explained in chapter 3 in detail.  

 Kerr microscopy 

The influence of the magnetisation on the state of light are known as magneto-

optical effects. One particular type of magneto-optical effect is the Kerr effect 

which is extensively for magnetic domain imaging.  

Kerr microscopy is best performed on an optically flat plane surface, in this work 

however, the curved wire surface limited the field of view that was possible.  

Furthermore, to study the effect of twisting on the domain structure, a new system 

was designed as shown in Figure 4-34. The wire was fixed at each end by using 

chucks with a twisting mount placed at one end of the wire. The system used a 

Neoark BH-780-IP polarising microscope. Images were taken on 20 mm length AF10 

and AC20 amorphous wires at 50 times magnification enabling high resolution 

images (lens resolution 1 µm) as shown in Figure 4-35 and Figure 4-36. The dark and 

light contrast in Figure 4-35 represents the radial domain structure in positive 

magnetostrictive amorphous wires. 

  

 

Figure 4-34: Designed twisting system under the microscope for Kerr microscopy  
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Figure 4-35-a shows a schematic view of domain images by Kerr microscopy. The 

domain boundary rotates by an angle α relative to the wire axis. The darker contrast 

indicates a component of magnetisation into the image plane and the lighter 

contrast out of the image plane. Twisting from 0 to ∏/2 rad (corresponding to 0 to 

∏/4  rad/cm) in AF10 shifted the domain wall boundary by 32 µm along the wire as 

shown in Figure 4-35-b-h. Figure 4-36 shows a vortex domain structure in AC20.  
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Figure 4-35: The schematic view of the domain boundary  with α rad twisting, the boundary 

rotates by angle α b-h) Longitudinal Kerr microscopy on 20 mm AF10 amorphous wire under 

different twisting from 0 to ∏/2 rad (corresponding to 0 to ∏/4  rad/cm). 
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Figure 4-36: Kerr microscopy on 20 mm AC20 amorphous wire 

Chizhik et al. [84] also indicate vortex domain images for AC20 amorphous wire. 

Ideally to see a vortex domain structure, AC20 amorphous wire should be 

magnetised in the axial direction however, it was still possible to image such a 

domain without magnetisation as shown in Figure 4-37-b. A schematic diagram for 

the domain structure is shown in Figure 4-36-a. The domains are pointing in a 

circular direction around the vortex area. The change of magneto-optical contrast 

is observed in some areas which are attributed to the rotation of magnetisation. 

Another reason for the vortex structure could be the shape anisotropy of the wire. 

The non-planar nature of the sample can cause the formation of magnetisation 

fluctuations of the vortex type [158]. We were not able to see bamboo like domains 

as the wire should be magnetised in a circular direction to be able to see this 

structure.  
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4.12  Annealing amorphous wires 

To eliminate induced stresses during wire fabrication, annealing was done on AF10. 

The 114 mm long AF10 amorphous wire was annealed for 1 min by passing a 0.5 A 

DC current and twisting the wire ∏ rad. Therefore, three types AF10 amorphous 

wires as-cast, annealed and twisted annealed were studied. The current was limited 

to less than 0.5 A to avoid crystallisation. Annealing and twisting induce an 

anisotropy in wire after cooling. These parameters were selected based on the work 

Kane et al. [159] and Gonzalez et al. [160]. The latter used current annealing of 

550 mA for 1 min in AF10 to achieve a fully square hysteresis loop shows and 

complete relaxation of internal stresses. Figure 4-37 and Figure 4-38 show the 

results of applying tensile and torsion stress respectively on wires magnetised at a 

field amplitude of 1.49 kA/m and 1 kHz frequency. Results in Figure 4-37 show that 

annealing has little impact on the Matteucci voltage when the tensile stress exceeds 

around 50 MPa although the annealed wire (without twisting) does have slightly 

higher Matteucci values. The most striking difference are the significantly higher 

Matteucci voltages at zero tensile stress for both annealed wires. This may be due 

to the elimination of manufacturing residue stresses. Figure 4-39 shows with the 

application of a 55 MPa tensile stress, the Matteucci voltages in the 0 to 3.49 rad 

range are not significantly affecting by annealing.  

 

Figure 4-37: Matteucci voltage as a function of tensile stress on 114 mm annealed and as-cast 

AF10 amorphous wires which are magnetised in 1.49 kA/m magnetic field and 1 kHz frequency 

and twisted 0.08 rad/cm ( 29.57 MPa torsion stress). 
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Figure 4-38: Matteucci voltage as a function of torsion stress on 114 mm annealed and as-cast 

AF10 amorphous wires which are magnetised in 1.49 kA/m magnetic field and 1 kHz frequency by 

applying 55 MPa tensile stress. 

4.13 Summary  

To summarise, a new system has been designed to characterise amorphous wires 

and it has been demonstrated that: 

1. The Matteucci effect in amorphous wire is very sensitive to both axial and 

torsional applied stresses. 

2. The near-zero magnetostrictive wire surprisingly produces a Matteucci 

output comparable to that found in the highly magnetostrictive alloy, and 

with much better sensitivity at 2 kHz frequencies compare to other 

frequencies. In this respect, AC20 shows greater potential as a candidate for 

strain sensing. 

3. The Matteucci voltage increases as the length of the wire increases. 

4. The Matteucci voltage increases with tensile stress in AC20 amorphous wires 

but decreases in AF10 amorphous wires.  

5. Annealing increased the Matteucci voltage at small tensile stresses, but 

values converged at larger stresses. 

6. Domain imaging by the Bitter technique shows zigzag domain structure in 

AF10 amorphous wires. By twisting the wire from 0 to 2∏ rad (corresponding 

to 0 to 2∏/5 rad/cm) a transition from a circumferential zigzag pattern to 

an arrangement of regularly spaced parallel domain walls occurs. 
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7. Domain imaging by Kerr microscopy shows movement of a domain boundary 

in response to twisting from 0 to ∏/2 rad (corresponding to 0 to ∏/4 rad/cm) 

in AF10 amorphous wire. A vortex domain structure was observed in AC20 

amorphous wire.  

8. AF10 and AC20 produced an equivalent gauge factor over two orders of 

magnitude greater than that obtained in a conventional resistive strain 

gauge, show they are good candidates for strain sensors. 

9. The sensitivity of the Matteucci voltage due to tensile stress was also 

demonstrated in shorter wires of length 45 mm making them possible 

candidates for wearable sensor applications.  
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5 Development of a strain sensor and a 

flexible bend sensor by utilising the 

Matteucci effect in amorphous wires 

5.1 Introduction 

According to the findings in the chapter 4, the Matteucci voltage in both positive 

and slightly negative magnetostrictive amorphous wires changes with tensile stress 

leading to the prospect of strain sensors with high gauge factors. Sensors exploiting 

the Matteucci effect on amorphous wires have these advantages: 

1. The Matteucci effect is high in amorphous wires compare to amorphous 

ribbon or other ferromagnetic materials as they are more sensitive to 

applied stress [10]. 

2.  The Matteucci effect is sensitive to the H-field amplitude and frequency, 

wire dimensions, tensile stress, torsion and bending stresses. Therefore, the 

tensile and bending sensitivity can be fine-tuned by setting the torsion, H-

field or other wire parameters. 

3. There is no need to use a pick-up coil for measuring the Matteucci voltage. 

4. Geometrically, amorphous wires have an advantageous shape with a circular 

cross-section and smooth surface which makes it suitable to wind a coil 

directly on the wire [59]. 

Three novel sensors based on the Matteucci effect were developed in this work, one 

measuring strain and two flexible strain and bending sensors. Strain gauges 

developed in this thesis have significantly greater gauge factors compared to 

conventional strain gauges and other strain sensors. The two types of flexible 

sensors were designed, one using a planar coil and the other using a flexible solenoid 

to excite the amorphous wire. Finite element modelling was also used in the initial 

design work of the planar coil. Linearity and repeatability of each sensor were 

investigated and are discussed. 
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5.2 Strain sensor design consideration 

125 µm thick Fe77.5Si7.5B15 (AF10) and Co68.15Fe4.35Si12.5B15 (AC20) amorphous wires 

were investigated in this work. A schematic diagram for the proposed strain sensor 

is shown in Figure 5-1-a and the measurement system is shown in Figure 5-1-b. It 

comprises of a solenoid to excite the amorphous wire with a sinusoidal magnetic 

peak field of 1.49 kA/m and a LCMFL-20N load cell to monitor the applied tensile 

load on the wire. Fine tuning of the axial stress was made possible with precise 

movement (10 µm) of the translation stage attached to one end of the wire. The 

rotation mount enabled precise control of applied torsion with a precision of 0.002 

rad (one arc per minute). All experiments were performed on 20 mm length 

amorphous wire to assess sensor performance. The magnetic field was determined 

from the magnetising current by measuring the voltage VH across a 0.47 Ω shunt 

resistor connected in series with the magnetising winding as shown in Figure 5-1. 

The value of the magnetic field H was calculated assuming a long solenoid as 

described in Eq.(4-1).  

 

Figure 5-1: a) Schematic diagram of strain sensor b) 20 mm experimental rig 
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5.3 Results of the strain sensor 

The variation of peak-to-peak (pk-pk) Matteucci voltage with tensile stress for 20 

mm lengths of AF10 and AC20 amorphous wire are shown in Figure 5-2. The 

magnetising frequency of 2 kHz was chosen as according to Figure 4-18, 2 kHz has 

the highest EGF in AC20 amorphous wire. Moreover, wires were subjected to a twist 

angle of 0.43 rad/cm (168 MPa torsion stress). The Matteucci voltage decreases in 

AF10 amorphous wire by increasing tensile stress while increasing in AC20 

amorphous wire due to the different domain structure in both wires.  

To evaluate amorphous wire as a potential candidate for strain sensing, an 

equivalent strain gauge factor (EGF) for AF10 and AC20 amorphous wires was 

calculated as described in Eq.(4-10), in four different regions named 1-4 as shown 

in Figure 5-2. By achieving high gauge factors for amorphous wires in chapter 4, 

sensors with smaller lengths were investigated for use as potential wearable 

sensors. To measure the uncertainty in the equivalent gauge factor, summation in 

quadrature was used to combine the individual uncertainty contributions as in 

Eq.(5-1). 

R =  

x 

y
z

⁄   →    
u(R)

R
= √(

u(x)

x
)2 + (

u(y)

y
)2 + (

u(z)

z
)2                                               

(5-1) 

Where u(R)/R is the relative uncertainty in R and u(x)/x, u(y)/y and u(z)/z are the 

relative uncertainties in x, y and z respectively [152]. 

The relative uncertainty for EGF is calculated from Eq.(5-2) and shown in Table 5-1.  

u(EGF)

EGF
= √(

u(∆V)

∆V
)2 + (

u(V0)

V0
)2 + (

u(σ)

σ
)2                                                  

(5-2) 

Where u(EGF)/EGF is the relative uncertainty in EGF and u(∆V)/ ∆V, u(V0)/ V0 and 

u(σ)/(σ) are the relative uncertainties in difference between voltages of different 

strain measurements, initial voltage and strain gauge resolution (0.005 N) 

respectively. 

The good linearity seen in Figure 5-2 for AC20 (R2 = 0.99) enabled the fitting of a 

trendline to determine the gauge factor which was equal to 601± 30 taken over the 

whole stress range. In the case of AF10, individual EGF’s were calculated for 

different stress regions (1-4) due to the non-linear decrease in Matteucci voltage 

with stress. EGF varied from 806 to 72 as shown in Table 5-1 demonstrating 



103 
 

excellent performance at lower tensile stress but becoming progressively less 

sensitive with increasing tensile stress. 

In summary, over the stress range investigated (0 - 326 MPa), AF10 produced the 

highest gauge factor but this was limited to low tensile stresses. In contrast AC20 

produced consistent EGF’s over the whole stress range with values only around 34 

% smaller than AF10’s maximum EGF value of 806.  

  

Figure 5-2: Variation of peak-to-peak Matteucci voltage as a function of tensile stress in 20 mm 

long AC-20 and AF10 Amorphous wires which were twisted 0.43 rad/cm (168 MPa torsion stress) 

and magnetised at 1.49 kA/m, 2 kHz.  

Table 5-1: Gauge factor determination 

Amorphous 

wire 
Position 

∆𝑉𝑚
𝑉𝑚

 
∆𝜎 

(MPa) 
EGF 

Uncertainty of 

EGF 

AF10 1 0.20 40.74 806 78 

AF10 2 0.07 40.74 296 32 

AF10 3 0.06 40.74 248 53 

AF10 4 0.02 40.74 72 114 

AC20  0.15 40.74 601 30 

 

The viability of amorphous wire to function as a strain sensing device was 

investigated.  



104 
 

It is demonstrated that the Matteucci effect in AF10 and AC20 amorphous wires is 

very sensitive to both axial and torsional applied stresses. The Matteucci voltage 

generated in near-zero magnetostrictive wire is comparable to that found in the 

highly magnetostrictive alloy and is more linear as a function of tensile stress.  

The highest gauge factor is 806 ± 78 for the sensor with AF10 amorphous wire. This 

is an excellent result compared to the much smaller gauge factors of other sensing 

types referenced in Table 5-2. Ink-based resistive strain sensors and Carbone 

nanotube-based strain sensors change nonlinearly with strain while the proposed 

AC20 and AF10 amorphous wire sensors have a linearity (R2) of 0.99 and 0.89 

respectively. Repeatability of the sensor was evaluated using the SD and was a 

minimum of 0.08 mV for the AF10 strain sensor and 0.15 mV for the AC20 strain 

sensor. Equivalent values were not available for the other sensors. The strain range 

calculated for the proposed wire sensors was 0.25 % in this work which is not the 

maximum capacity of the sensor. For the other sensors [161]- [130], values differ 

from 50 % to 750 % which shows the stretchability of the sensors, however they are 

not linear in these ranges.   
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Table 5-2: Strain sensor’s comparison  

Sensor Linearity 
Sensitivity 

(GF) 
Strain range 

*AF10 strain sensor 0.87 806 0.25 % strain 

**AC20 strain sensor 0.99 601 0.25 % strain 

Ink-based resistive strain 

sensor [161] 
nonlinear 3.8±0.6 

400 % strain 

single axis 

Carbone nanotube based 

strain sensor  [110] 
nonlinear 

0.82 for  

(Strain<40 %) 

0.06 for 

 (Strain> 60 %) 

280 % strain 

single axis 

AgNP based stretchable 

strain sensor [162] 
linear 2.05 - 

Conventional metal foil strain 

sensor [115], [125], [12] 
- ~2 100 % strain 

Wireless strain sensors 

fabricated from amorphous 

carbon  [13] 

Linear 0.534 51% strain 

Single-walled CNT  [128] - <1 400 % 

super- aligned  (CNT films) 

[129] 
- <1 450 % 

wrinkled (CNTs)  [130] - 0.65 750 % 

Note: ‘–‘means the literature did not report the corresponding performance index.  
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5.4 Flexible strain sensor based on PCB printed planar 

coil 

In this work, the main objective was to produce a flexible sensor, capable of 

measuring strain and bending. To excite the amorphous wire several planar coil 

geometries were modelled in ANSYS Maxwell FEM (Finite Element Method) software. 

And then fabricated as flexible printed circuit boards (PCB). The PCB consisted of 

a non-conductive flexible polyester substrate laminated between two layers of 

patterned copper. 

 FEM theory 

The concept of FEM was first proposed in the field of structural mechanics in 1956 

due to the emergence of computers [163]. Today finite element method has become 

one of the most frequently used methods to solve engineering equations. This 

method requires intensive use of computers and can be used to solve a problem in 

one, two or three dimensions. The finite element method consists of using simple 

approximations of unknown variables to transform partial differential equations 

into algebraic expressions.  

Making algebraic equations for the entire domain of a structure is extremely 

difficult, so the structure is divided into a number of small elements. These 

elements are connected to nodes. By putting all the element equations together 

and solving them, the unknown variables at nodes can be obtained explicitly. The 

field quantity is then interpolated by a polynomial over an element at non-nodal 

points. 

5.4.1.1 Geometry 

The geometry of the design was drawn in ANSYS in 3D as shown in Figure 5-3. All 

the parameters which are defined in the model are listed in Table 5-3. Two identical 

46 turn copper spirals with track width equal to 0.125 mm, track separation equal 

to 0.125 mm and thickness equal to 0.3 mm was modelled. The two spiral coils were 

positioned overlapping with a separation of 0.125 mm equal to the diameter of the 

amorphous wire. Furthermore, the magnetic isolation boundary condition specifies 

the magnetic field to be contained within the model thus the normal component of 

the flux on the boundary is zero. An initial value applied to the outer boundary of 

https://en.wikipedia.org/wiki/Insulator_(electricity)
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the model and contained magnetic vector potential was set to zero. The size of this 

simulation volume was 27×25×5.95 mm.  

 

Figure 5-3: Planar coils schematic design – Not to scale  

Table 5-3: The ANSYS model parameters 

Parameter name Value (mm) 

Distance between turns 0.125 

Width of spiral 0.125 

Thickness/height of the spiral 0.03 

Number of turns 46 

Volume of simulation 27×25×5.95 

5.4.1.2  Meshing and solving 

Meshing is the process used to divide the physical domain into a set of simple 

geometric elements which are usually triangular or quadrilateral for 2D and pyramid 

for 3D. The finite element method approximates the solution within each element 

by minimizing an associated error function. Meshing a geometry is an essential part 

of the simulation process and is crucial for obtaining the best results in the fastest 

manner. If the mesh size is too coarse, then the solution would quickly converge (if 

converges) with a big error and if the mesh is too fine the computation time will be 

too long and may never converge in a reasonable time. As a rule of thumb, the 

minimum mesh size should be smaller than one third of the smallest area/corner in 

the geometry which is to be solved. For the geometry shown in Figure 5-3, the 

minimum dimension of the region for which a solution was obtained was 125 µm. 
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Therefore, maximum mesh size of 40 µm can be used however the minimum mesh 

size of the model was set to 100 nm. The typical solving time of this design was 

around 45 min using a computer with core i7 processor and 16 GB RAM. The current 

of 8.1 X 106 A/m2 was applied in the x-direction as shown in Figure 5-3. Simulation 

results show that a magnetic field of 400 A/m along the Y direction was generated 

at the centre of the two coils. Figure 5-4 shows, the generated magnetic field in 

the Y direction from Y=0 the start of the coil, to 24 mm the edge of the coil. 

 

Figure 5-4: Magnetic field produced between two square coils modelled in ANSYS. 

 PCB Planar coil 

 The final design for single planar coil, shown in Figure 5-6, generates a field 

component parallel to the coil plane equal to 200 A/m at a distance of 62.5 µm 

using a 0.1 A current which was chosen to limit coil heating. A square coil was 

chosen as it generates a uniform field in the Y direction. As Figure 5-6-b shows, the 

square coil contains 46 turns with a track width of 0.125 mm and a spacing of 0.125 

mm. According to Ampere’s law Eq. (4-1), passing a current through the planar coil 

generates a magnetic field around each track. The resultant magnetic field in the 

Y direction parallel and close to the coil surface would be uniform as shown in 

Figure 5-5. This uniform magnetic field is a superposition of the smaller magnetic 

fields generated by each track. A similar magnetic field is generated in the X 

direction but in this case has little impact since the wire element was aligned along 

the Y direction. 
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Figure 5-5: The magnetic field distribution in between the two planar coils  
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Figure 5-6: 24×24×0.13 mm, 46 turn planar printed coil on a flexible PCB substrate with 0.125 

mm track size and 0.125 mm track spacing. 

  Flexible strain sensor 

AF10 amorphous wire was used in this sensor as it has bigger Matteucci voltage 

output compare to AC20 and high gauge factor. According to Figure 4-17, AF10 

amorphous wire has the highest gauge factor for 100 Hz however the Matteucci 

voltage is small at this frequency. To provide a large Matteucci voltage, 500Hz was 
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selected as the operating frequency whilst maintaining a respectable gauge factor 

of 70 % of the highest value.  The schematic diagram of the sensor and the 

experimental set-up are shown in Figure 5-7-a,b respectively. The sensing element 

comprised of a 45 mm long 125 µm diameter wire. Two planar coils were positioned 

under and above the wire with a 125 µm separation equal to the wire diameter. 

The planar coils were fabricated on to a flexible polyester film made by Quick-tech 

Ltd. To increase the field, the wire was sandwiched between two planar coils used 

to excite the wire with a total sinusoidal magnetic field of amplitude 400 A/m. A 

LCMFL-20N load cell, with a nominal capacity of 20 N, monitored the tensile load 

applied to the wire. And a rotation mount was placed to twist the wire to the 

desired value which was 0.70 rad/cm (271 MPa torsion stress). 

 

Figure 5-7: a) Schematic diagram of the sensor. Note: The wire was tightly sandwiched between 

the two coils. The diagram’s components are not drawn to scale. b) Experimental set-up; 45 mm 

long sensor 
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5.5 Results of the proposed strain sensor 

A 45 mm long positively magnetostrictive Fe77.5Si7.5B15 (AF10) wire was energised by 

two planar coils generating an alternating magnetic field. The peak output 

Matteucci voltage shown in Figure 5-8, was only 1 mV. This low voltage occurs 

because the magnetic fields produced by each planar coil (see Figure 5-4) are 

opposing and therefore cancelling each other out. Since a well-defined Matteucci 

voltage does appear, albeit small, this indicates an asymmetry exists within this 

particular sensor. Figure 5-9 demonstrates the stress sensitivity of this sensor. 

Using the relative change in Matteucci voltage divided by the strain in the wire an 

equivalent gauge factor of 767 was calculated. This demonstrates the feasibility of 

this approach. Dimitropoulos et al. developed a micro-fluxgate sensor using a 

similar approach with 𝐹𝑒77.5𝑆𝑖7.5𝐵15 amorphous wire and a planar coil [60]. In his 

design, the amorphous wire was soldered across half of the square coil to achieve 

magnetisation in one direction. Extending the work described in this thesis in a 

similar fashion, should improve the Matteucci output level significantly.  

 

Figure 5-8: Output Matteucci voltage on 45 mm AF10 amorphous wire, magnetised with 400 A/m 

at 500 Hz frequency , 150 MPa tensile stress, twisted 0.70 rad/cm (271 MPa torsion stress). 



113 
 

 

Figure 5-9: Variation of Matteucci voltage by applying tensile stress on Fe77.5Si7.5B15 amorphous 

wire, Twisting: 0.70 rad/cm (271 MPa torsion stress), Magnetic field: 400 A/m, Frequency: 500 

Hz, Length: 45 mm. 

In conclusion, a simple strain sensor has been developed which is light (0.9 g) and 

has high strain sensitivity equivalent to a gauge factor of 767. There is scope to 

develop the sensor further by utilising the field from only half of the planar coil’s 

geometry. Also, the integration of a pre-torsioned wire and planar coil into a self-

contained package is still to be realised.  

5.6 Bending sensor 

Bending is the combination of compression and tensile stress as it can be seen in 

Figure 5-10. If the force pulls the member (tension) it results in a tensile stress and 

if the force pushes the member (compression) it results in compressive stress. By 

far, the bending stress effect in GMI amorphous wires is actually less known. 

Nevertheless, the investigation of this effect is particularly important in 

applications such as current sensors [6]. We do this study to see the effect of 

bending on Matteucci effect on amorphous wires.  

 

Figure 5-10: Bending stress distribution  
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 Flexible bending Sensor design considerations  

The output Matteucci voltage in the proposed sensor in the previous section was 

small and overheating occurs for currents more than 0.1 A. Therefore, another 

sensor design was investigated using a flexible solenoid and Fe77.5Si7.5B15 amorphous 

wire. As the schematic diagram of the sensor shows in Figure 5-11, the sensing 

element consisted of a 45 mm long, 125 µm thick amorphous wire. The amorphous 

wire was placed inside a flexible tube 0.3 mm in diameter and 30 mm long. A coil 

with 200 turns of 0.11 mm diameter wire, formed a solenoid able to excite the 

amorphous wire with a sinusoidal magnetic field of amplitude 0.9 kA/m by passing 

0.135 A current through it. Both ends of the amorphous wire were physically 

connected to copper measurement leads to pick up the Matteucci voltage. The 

whole arrangement was embedded inside silicone rubber (Dragon skin 30 from 

Smooth-on Company). 

 

Figure 5-11: Schematic diagram of the bending sensor 

 Dragon skin 30 was chosen to give enough flexibility for the sensor to bend but also 

stay stiff enough to support the coil. The wire was twisted 0.70 rad/cm (271 MPa 

torsion stress) with the rotation mount as shown in Figure 5-13 before allowing the 

silicone rubber to cure. This angle was chosen because according to Figure 5-12, it 

gives high enough Matteucci voltage before going to the nonlinear region. The 

finished dimensions of the sensor were 3 mm height, 5 mm width and 50 mm length. 

To test the bending sensitivity of the sensor two types of curvature surfaces, A and 

B, were printed as shown in Figure 5-14. The first curvature surface (A) was used 

by taping the sensor on to the curved surface to induce bending stress in the sensor. 

However, the action of the tape also induced tensile stresses. The second type of 
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surface (B) included a groove to hold the sensor, this avoided the induced fixing 

stresses seen using A. Curvature measurements were obtained using both types of 

surfaces. The sensor was installed on different curvature diameters ranging from 40 

mm to 90 mm in steps of 5 mm, and the Matteucci voltage was measured. The 

curvature surfaces were designed in Solid works and printed by a 3D printer as 

shown in Figure 5-15. There is a groove to place the sensor in, and additional slots 

for aiding the removal of the sensor and placing the electrical connections. As the 

sensor was 50 mm long, the curvature surfaces cannot be under 40 mm in size.  

 

Figure 5-12: Matteucci voltage due to twisting angle on 45 mm length AF10 amorphous wire which 

is magnetised in 1.49 kA/m magnetic field and 500 Hz frequency by applying 55 MPa tensile stress. 

 

Figure 5-13: Rotation mount for twisting the amorphous wire  



116 
 

 

Figure 5-14: Two different curvature surfaces a) A surface and b) B surface. 

 

Figure 5-15: a) Solid work design of curvatures b) Printed curvature surfaces designed to test the 

sensors in sizes varying from 40 mm to 90 mm  
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5.7    Results and discussion of flexible bending sensor 

The output Matteucci voltage shown in Figure 5-16 is 40 mV peak. Experiments were 

repeated ten times for each curvature and averaged as shown in Figure 5-17. The 

maximum and minimum uncertainties in the Matteucci voltage were 1.38 mV and 

0.31 mV respectively for A surfaces and 0.4 mV and 0.08 mV respectively using the 

B surfaces. Uncertainty was calculated using Eq.(4-5). Figure 5-17 shows that better 

linearity was achieved and more than doubling of the sensitivity was measured using 

the B surfaces.  

 

Figure 5-16: Output Matteucci voltage for the sensor magnetised with 0.9 kA/m magnetic field at 

500 Hz frequency 
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Figure 5-17: The variation of peak to peak Matteucci voltage due to different curving surfaces A 

and B on 45 mm long, 0.70 rad/cm twisted (271 MPa torsion stress) AF10 amorphous wire 

magnetised with 0.9 kA/m magnetic field at  500 Hz. Each measurement was conducted 10 times 

and then the results were averaged.   

Four sensors named S1- S4 were fabricated to evaluate the repeatability.  

The fabrication process for S1 and S2 involved constructing a 3D printed mould with 

an internal cavity measuring 3x5x50 mm as shown in Figure 5-18. This enabled 

embedding the sensor with silicone rubber i.e. dragon skin 30. During the 

embedding process the amorphous wire and solenoid were placed inside the cavity 

with the wires protruding through holes at the ends of the mould. Sensors, S1 and 

S2, were made by using several stages of silicone embedding. First stage involved 

partially embedding the coil and amorphous wire inside a thin silicone rubber layer. 

In the next stage, a second mould was used in which the wire/solenoid assembly 

was inserted. One end of the wire/solenoid was pressed against the mould, the 

other end was left exposed. The whole assembly was coated with a second layer of 

silicone thereby fixing the exposed wire end. The final stage was to rotate the 

uncoated wire end by 0.70 rad/cm as shown in Figure 5-19 whilst simultaneously 

embedding the whole arrangement in a third coating of silicone.  
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Figure 5-18: The mould to be filled by silicon rubber and making the sensor 

 

 

Figure 5-19: Holding amorphous wire from one end, method number one 

Experiments were repeated by attaching and removing the sensors to each curved 

surface ten times. Each set of ten measurements consisted of two groups of five 

measurements spread over two days to check there were no time dependent 

changes such as the untwisting of the wires. The results for S1 and S2 are shown in 

Figure 5-20 and Figure 5-21 respectively. Each point in Figure 5-24 and Figure 5-25 

are the average of five measurements. The SD in these measurements (average of 
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five measurements SD5) were calculated using Eq.(4-5), for S1 and S2 were 1.29 mV 

and 0.58 mV respectively. 

 

Figure 5-20: S1 -The variation of peak to peak Matteucci voltage due to different curving diameter 

on 45 mm AF10 amorphous wire magnetised with 0.9 kA/m magnetic field, 500 Hz frequency and 

twisted 0.70 rad/cm (271 MPa torsion stress) 

 

Figure 5-21: S2 -The variation of peak to peak Matteucci voltage due to different curving diameter 

on 45 mm AF10 amorphous wire magnetised with 0.9 kA/m magnetic field, 500 Hz frequency and 

twisted 0.70 rad/cm (271 MPa torsion stress) 

To make sensors S3 and S4 another method was developed which has improved the 

uncertainty compare to method one. In this method the ends of the wire were 

connected to chucks to maintain wire straightness and to exert a twisting of 0.70 
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rad/cm as shown in Figure 5-16. The mould was filled with silicone rubber and left 

to solidify for one hour. The fabricated sensors S3 and S4 are shown in Figure 5-23. 

 

Figure 5-22: Holding amorphous wire from both sides. Method number one 

 

Figure 5-23: 3×5×50 mm sensors with 125 µm diameter, 45 mm length AF10 amorphous wire laid 

in silicon rubber 

The same bending and measurement procedures used for S1 and S2 were repeated 

for sensors S3 and S4, the results are shown in Figure 5-24 and Figure 5-25. The SD5 

in these measurements (average of 5 measurements in each point) for S3, S4 are 

0.63 mV and 0.52 mV respectively.  
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Figure 5-24: S1 - The variation of the peak to peak Matteucci voltage due to different curving 

diameter on 45 mm long, 0.70 rad/cm twisted (271 MPa torsion stress) AF10 amorphous wire 

magnetised with 0.9 kA/m magnetic field at 500 Hz.  

 

 

Figure 5-25: S2 - The variation of the peak to peak Matteucci voltage due to different curving 

diameter on 45 mm long, 0.70 rad/cm twisted AF10 amorphous wire (271 MPa torsion stress) 

magnetised with 0.9 kA/m magnetic field at 500 Hz.  

Figure 5-26 shows a comparison between all four of the sensors after fitting a linear 

trendline. To measure the sensitivity, the ratio of voltage change is divided by 

curvature change described in Eq.(5-3) in mV/cm. V1 is the voltage for curvature 

(C1) and V2 is the measured voltage for curvature C2.  
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Sensitivity =
𝑉1 − 𝑉2

𝐶1 − 𝐶2
  

(5-3) 

 

 According to Figure 5-26, S1 and S2 have a sensitivity of 5.45 and 3.95 mV/cm and 

a linear response to curvature with coefficients of determination equal to 0.95 and 

0.94 respectively.  

S3 and S4 have a linear response to curvature and coefficients of determination 

equal to 0.98 and 0.96 and sensitivity of 4.45 mV/cm and 2.79 mV/cm respectively. 

Discrepancies in performance between each sensor may be due to differences in 

internal stresses when cutting the wire elements.  

Other uncertainty parameters included length of the amorphous wire 45 ±

 0.30 mm, the volume size of the sensor 750 ±  17.00 𝑚𝑚3, number of turns 200 ±

 1.00, length of the coil 30 ±  0.30 𝑚𝑚, the magnetic field 900 ±  9.54 𝐴/𝑚, 

frequency 500 ±0.57 mHz, twisting 0.70 ±  0.001  rad. By comparing the coefficients 

of determination, the linearity for S3 and S4 (0.98 and 0.96) are more than S1 and 

S2 (0.95 and 0.94). Furthermore, the uncertainty of sensitivity has decreased from 

0.02 mV/cm in S2 to 0.005 mV/cm in S4 as shown in Table 5-5. Consequently, fixing 

both ends of the amorphous wire during preparation (method number two) has 

increased linearity and decreased uncertainty. 

 

 Figure 5-26: Comparison between four sensors  made with  AF10 amorphous wire, magnetised in 

0.9 kA/m magnetic field and 500 Hz frequency, twisted 0.70 rad/cm 
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5.8 Flexible bending sensor with annealed amorphous 

wire 

As the method used to make S3 and S4 (method number two) had less uncertainies, 

three more sensors named SA1, SA2, TSA were made using the same method but 

using annealed AF10 amorphous wire. Annealing was conducted by passing a 0.5 A 

current through the wire for one minute. To see the effect of twisting, two of the 

wires were annealed without any twisting (SA1 and SA2) and the third one was 

twisted by 0.70 rad/cm (TSA). The results are shown in Figure 5-28. To evaluate 

the repeatability, the SD was calculated using Eq.(4-5) for the average of 5 

measurements in each point. The maximum SD was 0.61 mV, the minimum was 0.18 

mV for the SA1, 0.37 mV and 0.16 mV for the SA2 and 0.62 mV and 0.33 mV for the 

TSA. An uncertainty budget is included in Table 5-4 and a comparison of the 

uncertainties for all of the sensors is summarised in Table 5-5. Table 5-4 shows a 

statistical evaluation of repeatability given to one standard deviation assuming a 

normal distribution. For a normal distribution, one standard deviation encompasses 

68.27% of the area under the curve as shown in Figure 5-27. This means that there 

is about 68% confidence that the measured value y lies within the stated limits. 

When it is possible to assess only upper and lower bounds of an error, a rectangular 

distibution should be assumed for the uncertainty associated with this error. Then 

if ai is the semi-range limit, the standard uncertainty is given by [164]:  

u(xi)=
𝑎𝑖

√3
  

 

(5-4) 

Therefore the uncertainty of equipments has been calculated by using Eq.(5-4). 

Where ai  is the resolution of oscilloscope and micormeter respectively. 
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Figure 5-27: Normal distribution. The hatched area represents 1 standard deviation (SD) from the 

centre of the distribution (µ). This corresponds to approximately 68 % of the area under the curve.  

  

 As it can be seen in Table 5-5, the SA1 has the highest sensitivity and linearity of 

5.62 mV/cm and 0.98, which shows that annealing has had a modest effect 

improving the sensor’s performance. S4 has the smallest sensitivity of 2.79 mV/cm 

and TSA has the smallest linearity of 0.92. S4 with the lowest sensitivity has the 

minimum SD of 0.16 mV but the sensor with the twisted annealed wire with the 

lowest linearity has also the maximum SD of 0.47 mV. The twisted annealed and 

annealed sensors (TSA,SA1,SA2) have higher sensitivity in general compared to S1- 

S4 , however S3 and S2  are comparable with the annealed ones with the highest 

linearity and sensitivity occurring in SA1. Overall, SA1 is the best sensor, although 

all sensor performances are comparable except for S4.   
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Figure 5-28: Comparison between sensors with as-cast, annealed and twisted annealed AF10 

amorphous wire, twisted 0.70 rad/cm (271 MPa torsion stress), magnetised in 0.9 kA/m magnetic 

field and 500 Hz frequency 

 

Table 5-4: Uncertainty budget for sensors 

 Source of 

uncertainty 

Value Probability 

distribution 

Divisor Standard 

uncertainty 

VRP SD 

Repeatability of 

Matteucci 

effect 

0.6 mV Normal 1 0.6 mV 

VRS Resolution of 

oscilloscope 

0.25 mV Rectangular √3 0.14 mV 

R Resolution of 

micro meter  

0.0005 cm Rectangular √3 0.00028 cm 
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Table 5-5: Comparison between sensors sensitivity, linearity and uncertainty made with AF10 

amorphous wires which are magnetised in 0.6 kA/m and 500 Hz frequency, twisted 0.70 rad/cm 

(271 MPa torsion stress) 

Sensors 
Sensitivity 

(mV/cm) 

Linearity 

(R2) 

Max 

SD 

(mV) 

Min 

SD 

(mV) 

Average 

SD 

(mV) 

Uncertainty of 

sensitivity 

(mV/cm) 

S1 5.45 0.95 0.36 0.18 0.27 0.01 

S2 3.95 0.94 0.67 0.24 0.45 0.02 

S3 4.45 0.98 0.27 0.11 0.19 0.01 

S4 2.79 0.96 0.25 0.07 0.16 0.005 

SA1 5.62 0.98 0.61 0.18 0.39 0.02 

SA2 5.08 0.95 0.37 0.16 0.26 0.01 

TSA 5.12 0.92 0.62 0.33 0.47 0.02 

5.9 Bending angle measurements from bending 

curvature 

The sensitivity of the proposed bending sensor in this work was expressed in terms 

of mV/cm where the curved surface was quantified in terms of its diameter of 

curvature. Other researchers have used V/rad to characterise their sensor. To be 

able to compare the results of this research with the findings of other researchers, 

a translation from V/cm to V/rad has been performed. As there is no exact solution 

an estimate is given here. To do this, an arc with radius R was mapped on the 

curvature surface as shown in Figure 5-29. The length of the sensor in the curvature 

surface is always fixed and equal to L. The curvature surface (sensor) can be 

estimated by two tangential lines Line 1 and Line 2 which are drawn from either 

side of the sensor. Then, the angle ϴb on the intersection of these two lines can be 

used as an indication of the amount of bending of the sensor due the specific 

curvature surface. R will have a direct relationship with angle ϴb.  
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Figure 5-29: Bending sensor with the length of L (highlighted in grey) mapped on an arc (R,180) 

to estimate the curvature in radius R with a bending angle of 𝜹𝒃.  

The sensitivity of the proposed bending sensor in this work was expressed in terms 

of mV/cm where the curved surface was quantified in terms of its diameter of 

curvature. Other researchers have used V/rad to characterise their sensor. To be 

able to compare the results of this research with the findings of other researchers, 

a translation from V/cm to V/rad has been performed. As there is no exact solution 

an estimate is given here. To do this, an arc with radius R was mapped on the 

curvature surface as shown in Figure 5-29. The length of the sensor in the curvature 

surface is always fixed and equal to L. The curvature surface (sensor) can be 

estimated by two tangential lines Line 1 and Line 2 which are drawn from either 

side of the sensor. Then, the angle ϴb on the intersection of these two lines can be 

used as an indication of the amount of bending of the sensor due the specific 

curvature surface. R will have a direct relationship with angle ϴb.  

To determine the equation of a tangent to a circle with centre (0,0) and radius R 

at point (a,b), it is required to calculate the slope of tangent which at the point of 

contact (a,b) is perpendicular to the radius of the circle. The slope of the radius 

drawn to point (a,b) is b/a. Line 1 equation can be expressed as follows: 

𝑦 = −
𝑎

𝑏
𝑥 + (

𝑎2

𝑏
+ 𝑏)  (5-5) 
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Where a and b can be expressed in terms of 𝛼𝑏 and R, as shown in Figure 5-29.  

In a similar way, the Line 2 equation can be determined using the contact point 

(a,b) and radius slope at the contact point equal to a/b.  

The angle between Line 1 and Line 2 can be calculated from the following equation 

where m1 and m2 are their slopes respectively: 

𝜃𝑏 = tan−1 𝑚1−𝑚2

1+𝑚1𝑚2
  

 

(5-6) 

An approximate relationship between curvature and bend angle had to be 

developed. To extrapolate the bend angle from the arc, induced through curvature, 

the following equation applies. 

𝛼𝑏 =
𝜋

2
−

𝐿

2𝑅
  

 

(5-7) 

Therefore  

𝜃𝑏 = tan−1 2 cot𝛼𝑏

1−(cot𝛼𝑏)2
  

  

(5-8) 

Substitute Eq.(5-8) into Eq.(5-7), results in Eq. (5-9). 

𝜃𝑏 = tan−1
2 cot(

𝜋
2

−
𝐿
2𝑅

)

1 − (cot(
𝜋
2 −

𝐿
2𝑅))2

 

  

(5-9) 

As tan(𝜃𝑏) = cot (
𝜋

2
− 𝜃𝑏) , Eq.(5-9) can be rewritten as Eq.(5-10).  

𝜃𝑏 = tan−1
2 tan(

𝐿
2𝑅)

1 − (tan(
𝐿
2𝑅))2

 

  

(5-10) 

And finally as 

tan (2𝜃𝑏) =
2 tan( 𝜃𝑏)

1 − (tan(𝜃𝑏))
2
 

  

(5-11) 

 

By substituting Eq.(5-11) into Eq.(5-10), 
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𝜃𝑏 = tan−1(tan (2 
𝐿

2𝑅
))                         −

𝜋

2
< 𝜃𝑏 <

𝜋

2
 

  

(5-12) 

 

And finally 

𝜃𝑏 =
𝐿

𝑅
 

  

(5-13) 

 

The bending angle 𝛿𝑏  is related to 𝜃𝑏, by Eq.(5-14). 

𝛿𝑏 = 180 − 𝜃𝑏 

  

(5-14) 

 

Substituting the diameter values (40 mm – 90 mm) in Eq. 5-13 for the curved 

surfaces shown in figure 5-14-b, produces a bending range from 1.11 rad to 2.49 rad 

which was used to characterise the bending sensor in this work. As an example, the 

uncertainty of the Matteucci voltage measurement was 0.02 mV/cm for SA1, 

therefore because of the linear relationship of the Matteucci voltage to bending 

angle (Figure 5-30), the uncertainty of the bending angle equalled 0.003 rad. As 

shown in Figure 5-30-a linear trend line was fitted to each of the sensor outputs 

against bending angle. Extrapolating the data in Figure 5-29 to zero bending angle 

enables a prediction of the sensor output for a flat surface. A comparison of the 

predicted values with actual zero bending measurements are shown in Table 5-6 for 

all sensors. The maximum difference between the sensor measurement and the 

extrapolated values is less than 4 % suggesting a close linear fit over the whole 

bending range from 0 to 2.49 rad.  
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Figure 5-30: Comparison between sensors with as-cast, annealed and twisted annealed AF10 

amorphous wire, twisted 0.70 rad/cm (271 MPa torsion stress), magnetised in 0.9 kA/m magnetic 

field and 500 Hz frequency due to bending angle 

Table 5-6: Comparison between sensor in flat condition and trendline extrapolation to ∏ rad 

Sensor type 

Flat condition 

output 

 (mV) 

Trend line 

extrapolation to 

∏ 

(mV) 

% error 

S1 130 134.81 3.7 

S2 134 129.50 3.3 

S3 137 141.83 3.5 

S4 130 135.52 3.8 

SA1 130 135.00 3.8 

SA2 134 138.28 3.1 

TSA 136 141.01 3.6 

  

An important point to note in this work is that the bending angle has been defined 

in terms of the sensor’s length and the curvature of the surface (i.e. the diameter). 

This is a somewhat arbitrary definition and needs consideration when calibrating 

the sensor. To illustrate this point further, Figure 5-31 shows two examples of how 

the sensor’s output voltage depends on both sensor length and surface curvature. 

Figure 5-30-a shows that for the same curvature, sensors of different length will 

have the same internal stress distribution but different output voltages because this 



132 
 

is also proportional to length. The bending angles will also be considered different 

due to the definition used in Figure 5-29 despite the curvature being identical. 

Figure 5-31-b illustrates how two sensors with different lengths each on different 

curvatures will give identical bend angles according to the bending angle definition 

used here, however, the output for L4 will be much smaller than that for L3. To 

summarise, the sensor’s output voltage is inversely proportional to the bending 

angle (Figure 5-30) and directly proportional to its length (Figure 4-10). Therefore, 

the best signal-to-noise ratio will be obtained for large output voltages when the 

curvature is small and the sensor is long. This high signal and linearity over small 

bending angles is a distinct advantage when compared to commercial flex sensors 

which are non-linear between 0 to 0.35 rad. Another advantage is its large 

measurement range of 0 to 2.49 rad. This may be extended even further with the 

use of shorter sensors although this will reduce the level of the output signal. When 

using this type of sensor, it is therefore important to calibrate the sensor based on 

its length and the type of curved surface to be measured. For example, to measure 

finger flexure the sensor dimensions will need to closely match the size of the 

individual’s joint.

 

Figure 5-31: a) The same curvature but different sensor length (highlighted in grey) gives different 

bend angles, b) different sensor lengths and different curvatures give the same bend angle 

Flex sensors are prevalent in modern wearable devices, particularly in the area of 

instrumented gloves used for measuring hand and finger posture. The technologies 

currently used in such gloves tend to be expensive fiber optic solutions, less reliable 

resistance or capacitance-based sensors or complex accelerometer systems. Table 

5-7 summarises the specifications of some commercially available bend sensors. 
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The table shows that most commercial sensors perform with a bend resolution 

somewhere between 0.002 rad and 0.03 rad and a measurement range from 0 and 

∏/2 rad. However, not all of these exhibit a linear response, the relatively cheap 

resistive flex sensors for example perform poorly over small bend angles. The 

sensors developed as part of this work compare very favourably with the 

commercial ones and have demonstrated a measurement resolution of 0.003 rad, 

good linearity (0.92 < R2 <0.98) and a confirmed measurement range between 0 and 

2.49 rad. 
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Table 5-7: Comparison of bending sensors 

Sensors Linearity Sensitivity Resolution Measuring range 

Commercial bends sensor from Bebop 

sensors, 9-degree IMU and smart fabric bend 

sensor [165] 

-  ±0.03 rad  

Commercial bend sensors from Spectra 

Symbol (Resistive flex sensor) [144] 
Nonlinear between 0-∏/6 Variable Resolution <0.02 rad ∏/2 

Optical-based sensor [166] Non-linear under ∏/6 Low sensitivity in small angles - ∏/2 

Bending sensor based on Hall effect [151] - 
For smaller radii, only a minor 

decay in sensitivity is observed 
- 6 to 32 mm* 

Single-mode optical fibre sensor [167] Nonlinear - 0.002 rad ∏/2 

Embedded hetero-core fibre optic sensor 

[168] 
Linear - 0.01 rad 1.70 rad 

Potentiometer[169] Linear - - - 

Commercial bend sensor, Resistance base 

sensor(Shadow monitor)[170] 
Nonlinear Variable 0.02 rad - 

Commercial bend sensor, Resistance base 

sensor (WU Glove)[148] 
Linear after modification - 0.03 rad - 

Note: ‘–‘means the literature did not report the corresponding performance index. * In this paper curvature is recorded instead of angle
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To conclude three kinds of sensors have been developed, the first one is a strain 

sensor with a gauge factor of 601 ± 30 for AC20 amorphous wire at 2 kHz frequency 

and 0.43 rad/cm twist angle. This is an excellent result compared to the much 

smaller gauge factors achieved in resistive foil gauges. Secondly, a simple flex 

sensor has been developed to measure strain by using an AF10 amorphous wire 

excited with a planar coil. This sensor is light (0.9 g) and has high strain sensitivity 

equivalent to a gauge factor of 767, but it overheats when the excitation current is 

more than 0.1 A and the output Matteucci voltage is low. Finally, a flexible bend 

sensor has been developed capable of measuring curvature diameters ranging from 

40 mm to 90 mm. It is small and light (2.5 g) and can sit on the finger easily, and 

therefore a good candidate for wearable glove sensors. A high sensitivity and 

linearity of (5.62 ± 0.02) mV/cm and 0.98 respectively was calculated for this 

sensor. Using a definition of bending angle based on surface curvature a 

measurement resolution of ± 0.003 rad was achieved with a measurement range of 

0 to 2.49 rad.  
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6 Conclusion and future work 

6.1 Conclusion 

This work culminated in the development of a flexible bend sensor by utilising the 

Matteucci effect in amorphous wires. The aim was to develop a sensor with high 

linearity and sensitivity and superior performance compared to existing 

technologies. This was achieved by adopting a novel approach, using a flexible 

solenoid to excite the amorphous wire and detecting voltage pulses caused by the 

Matteucci effect.  

In this work, a better understanding of the Matteucci effect for sensor applications 

was achieved through the magnetic characterisation of amorphous wires. Matteucci 

voltages across the ends of the wire were measured for various tensile and torsion 

stresses and a range of applied magnetic field amplitudes and frequencies. Further 

characterisation also included studies of the B-H curve, domain imaging by Kerr 

microscopy and the Bitter technique, and an investigation into the effects of 

annealing on amorphous wires.  

Results show that: 

1. Amorphous wires are very sensitive to both axial and torsional applied 

stresses. The magnitude of the Matteucci effect decreased in as-cast and 

annealed AF10 amorphous wire when applying tensile stresses. In this case, 

the stress is inhibiting the formation of a helical magnetisation anisotropy 

present in the wire.  

2. However, the opposite is true in AC20 amorphous wire indicating an 

increase in the helical anisotropy.  

3. Increases in excitation frequency and twisting angle both led to increases 

in the Matteucci voltage in both AF10 and AC20 amorphous wires. The higher 

the degree of twisting, the higher the induced voltage in the wire because 

of the increased helical anisotropy.  

4. The near-zero amorphous wire (AC20) surprisingly produced a Matteucci 

output comparable to that found in highly magnetostrictive wires and with 

much better linearity when measured as a function of axial stress.  
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5. Increasing the length of the wire increases the Matteucci voltage confirming 

the hypothesis that the Matteucci voltage is due to the change in circular 

magnetisation integrated over the length of the wire. 

6. Annealing improved the Matteucci voltage at small tensile stress but values 

were very similar at larger stress levels. 

7.  Domain imaging by the Bitter technique showed a zigzag domain structure 

in AF10 amorphous wires. And by twisting the wire from 0 to 2∏ rad a 

transition from a circumferential zigzag pattern to an arrangement of 

regularly spaced parallel domain walls occurred.  

8. Domain imaging by Kerr microscopy showed movement of domain 

boundaries when twisting from 0 to ∏/2 rad (corresponding to 0 to ∏/4 

rad/cm) in AF10 amorphous wire. In AC20, domain images were hard to 

detect possibly because the expected bamboo structure was too small for 

optical observations. However, structures similar to a vortex domain 

structure were observed.  

This body of work has presented new insights into the Matteucci voltage 

characteristics in short amorphous wires, an area neglected in previous studies. 

In the second stage of this work, the findings from the characterisation work were 

used as guide for sensor development. A number of sensors were developed, 

beginning with: 

1. A strain sensor with a gauge factor of 601 ± 30 for AC20 amorphous wire at 

2 kHz frequency and 0.43 rad/cm twist angle. This gauge factor is much 

higher than that seen for resistive foil gauges and other similar sensors.  

2. Secondly, a simple flex sensor has been developed to measure strain using 

AF10 amorphous wire excited by a flexible planar coil. 3D modelling was 

performed in this work to demonstrate the feasibility of employing FEM in 

the process for designing planar coil sensors. Different geometries were 

investigated and among them, the square shape was chosen to uniformly 

magnetise the amorphous wire element. The designed sensor was small and 

lightweight and had an equivalent gauge factor of 767. The limitations of 

this particular sensor was overheating with currents greater than 0.1 A and 

the output Matteucci voltage was low.  

3. Finally, a flexible bend sensor was developed, to measure various curvature 

diameters ranging from 40 mm to 90 mm. A simple model was proposed in 

this thesis to translate these curvature measurements into equivalent 
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bending angles. The equivalent measurement range in this case was 1.11 to 

2.49 rad but additional measurements at 0 were consistent with a linear 

output spanning the whole range from 0 to 2.49 rad. Seven sensors were 

made to investigate the variability and repeatability of sensor performance 

due to the manufacturing methods. Three of them were subjected to 

annealing during manufacture which improved the linearity of the sensor. 

The annealed sensors had generally higher sensitivity compared to the non-

annealed sensors but all sensors exhibited consistent linear behaviour. 

When compared to commercially available ones, the bend sensors 

developed in this work achieved a better measurement range (0 and 2.49 

rad) whilst delivering good linearity (0.92 < R2 <0.98). A measurement 

resolution of 0.003 rad also compares very well with the 0.002 – 0.03 rad 

seen in commercial sensors, 

6.2 Future work 

The feasibility of measuring bend angle using a novel Matteucci effect sensor has 

been clearly demonstrated in this work. However, a number of limitations have 

been identified which require further development in order to produce a practical 

sensing device.  

The manufacturing methodology requires further investigation to eliminate 

variability in output sensitivity as seen in the non-annealed bend sensors. Annealing 

reduced this variability but further study is needed to optimise the procedure. 

Future designs should be concerned with reducing sensor size and integrating 

suitable circuit conditioning and amplification electronics that can be interfaced 

with standard wireless communication technologies. 

Another potential area for improvement is the optimisation of output sensitivity. 

During the bending process, the sensor experiences both a compressive and tensile 

stress distribution along the wire sensing element. By implementing a sensor with 

a composite layered structure, it is possible to shift the neutral bend axis away 

from the centre of the amorphous sensing wire leaving a uniform tensile (or 

compressive) stress in the wire. This should significantly improve output sensitivity.    

The square planar coil strain sensor produced an encouraging, near linear output as 

a function of applied stress despite its non-optimal configuration. By utilising four 
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separate wire elements positioned in cross formation over each of the planar coil’s 

quadrants, the sensor will function similar to a pair of two-element 90-degree 

planar Rosette Strain Gauges and thus improve strain sensitivity. The mechanical 

coupling between the wire and planar coil also needs further study.     
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