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ABSTRACT 
Classification of urban and architectural works using 
machine learning techniques have typically focused on 2D 
pixel-based image recognition. In this paper we present a 
novel proof-of-concept workflow that enables a machine 
learning computer system to learn to classify 3D conceptual 
models based on topological graphs rather than 2D images. 
The system leverages two main technologies. The first is a 
custom designed software library that enhances the 
representation of 3D models through non-manifold topology 
and embedded semantic information. The second is an end-
to-end deep graph convolutional network (DGCNN) that 
accepts graphs of an arbitrary structure without the need to 
first convert them into vectors. The experimental workflow 
consists of two stages. In the first stage, a generative 
parametric system was designed to create a large synthetic 
dataset of an urban block with several typological variations. 
The geometric models were then automatically labelled and 
converted into semantically rich topological dual graphs. In 
the second stage, the dual graphs were imported into the 
DGCNN for graph classification. Experiments demonstrate 
that the proposed workflow achieves accuracy results that are 
highly competitive with DGCNN’s classification of 
benchmark graph datasets. 
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1 INTRODUCTION 
Understanding and classifying the typology of urban and 
architectural forms has been a topic of interest for a long 
period [19]. By understanding the typology of an urban form, 
relevant performative information can be extrapolated that 
helps urban designers and planners to make better decisions. 
Quantitative and statistical methods aided by computational 
tools have been shown to be effective in morphological 
studies [7]. While the impact of these approaches has thus far 
been limited in the mainstream practice of urban design and 
planning, there are signs that machine learning technologies 
(ML) are starting to revolutionize the recognition and 
classification of urban form. Several challenges still face the 
adoption of these technologies. First, supervised machine 
learning requires large datasets for training that are labelled. 
Second, most machine learning systems rely on 2D pixel-

based image recognition. While this may seem compatible 
with the representation of the available data – mainly city 
plans and drawings, this leads to major limitations. The 
urban environment is three-dimensional, topologically 
connected, and complex. However, most machine learning 
systems do not understand the semantics of the recognized 
image. To an ML algorithm, the data is simply a vector of 
mostly low resolution RGB values. If the data is 3D in nature 
and semantically rich, that information must be stripped 
away, and the data converted into images for an ML 
algorithm to operate properly. The lack of shareable 3D 
datasets is a real challenge and while some open-source sets 
do exist [9], their format, suitability, accessibility and 
licensing varies. 

Even if 3D datasets are made available, there continues to be 
a challenge in recognizing and classifying them. Some 
researchers have focused on feature recognition of 3D 
models [12, 18]. These approaches capture several 2D 
snapshots of 3D models and match them to an image-based 
query, thus, still not fully capturing the three-dimensional 
and topological information embedded in the data. A slightly 
more sophisticated approach is to extract features from a 3D 
model and encode them as a vector to be used as input into a 
neural network [17]. This approach extracts only a portion of 
the data and must transform it into a standard input vector. It 
ignores the overall topological information that can be an 
indicator of the type of object. 

A promising approach is to use machine learning on graphs 
[14, 16, 22]. The limitation of some approaches is that they 
decompose the graphs into small substructures such as walks 
or paths and derive the similarity between graphs based on a 
summation of attributes. The Deep Graph Convolutional 
Neural Network (DGCNN) avoids the above limitations and 
provides an end-to-end deep learning system for classifying 
graph-based data [26]. One of the main advantages of 
DGCNN is that it accepts arbitrary graphs without the need 
to first convert them into vectors. 

Our aim in this paper is to design a novel proof-of-concept 
workflow that leverages DGCNN to classify 3D conceptual 
models based on their topological graphs rather than on their 
2D representation. As a domain of investigation, we chose 
an urban block morphology. The workflow is divided into 
two stages. In the first stage, we use a software library, 
developed by one of the authors, that enhances the 
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representation of 3D models through non-manifold topology 
and embedded semantic information. The software is used to 
automatically and generatively create a large synthetic 
dataset of an urban block with several typological categories. 
The geometric models are then automatically labelled and 
converted into semantically rich topological graphs. In the 
second stage, we use this dataset as input to train DGCNN 
for graph classification. 

The remainder of this paper is organised as follows: Section 
2 briefly reviews related work carried out using graphs and 
machine learning in architecture. Section 3 provides a brief 
summary of Graphs theory. Section 4 describes the 
Topologic software library. Section 5 discusses related 
variations of Graph Convolutional Neural Networks 
(GCNN). Section 6 describes the Deep Graph Convolutional 
Neural Network (DGCNN) that was used for this research 
project. Section 7 details the experimental case study. 
Section 8 reports on the results of the experiments. Section 9 
lists the limitations of this work. Finally, Section 10 provides 
concluding remarks and lists our plans for future work. 

2 RELATED WORK 
Beetz has researched the use of graph databases for 
harmonized distributed concept libraries for building 
information models [2]. His goal is to create “flexible, 
granular and cascading concept libraries for the building 
industry.” This work will enable standardization of the input 
data to graph neural networks. Tamke has researched the use 
of unsupervised and supervised machine learning approaches 
to deduce implicit information in building information 
models [20]. His platform can extract literal values, 
aggregates and derived values from IFC SPF files. 
Furthermore, the system possesses geometrical and 
topological analysis functionality that allows it to detect 
anomalies and to classify floor plans into two categories 
based on their geometrical appearance. Derix and Jagganath 
have researched methods to autonomously recognise spatial 
typologies through associations between spatial attributes of 
a layout [5]. They presented cases in which a building floor 
layout was analysed using space syntax concepts such as 
isovists, centrality and visual connectivity [10]. Their aim is 
to use these models to classify types and sequences of user 
experiences across buildings rather than strict typologies 
thus enabling an experience-based approach to architectural 
and urban design. Harding and Derix used a two-stage neural 
network and spectral graph theory as a spatial pattern 
recognition tool to develop a plan form of a reconfigurable 
exhibition space. To recognise and classify plans, they 
derived a graph using spatial adjacency and then reduced it 
by finding a “graph spectrum” which then forms a synaptic 
vector representation in feature space and thus “makes 
comparisons between graphs much easier to conduct.” What 
is interesting in their research is that they also use this 
approach for the automatic generation of spatial layouts. In 
their paper they describe a repulsion algorithm combined 
with a Voronoi diagram that distributes the graphs evenly 

over the boundary plan. Topological connections are 
simulated as springs to maintain node adjacency. 

3 GRAPHS 
Explaining graph theory is beyond the scope of this paper, so 
a brief summary of its main concepts, data structures and 
metrics is provided here. For more detailed information on 
graph theory, please consult [23]. Graph theory is a branch 
of mathematics used to model relations between objects. A 
simple graph G consists of a set of points called vertices 
V(G), and the lines that join pairs of points are called edges 
E(G). The degree of a vertex in a graph is the number of 
edges connected to it. Vertices that are connected by an edge 
are called adjacent vertices. Similarly, edges that share a 
common vertex are called adjacent edges. Any two graphs 
that have a one-to-one correspondence between the number 
vertices, the number of edges and the degree of vertices are 
called isomorphic graphs. 

4 TOPOLOGIC 
Topologic [21] is a 3D modelling software library developed 
by one of the authors that enhances the representation of 
space in 3D parametric and generative modelling 
environments such as Dynamo [6] and Grasshopper [8]. 
Topologic is based on the concept of non-manifold topology 
and has been described in [1, 11]. Topologic’s classes 
include: Vertex, Edge, Wire, Face, Shell, Cell, CellComplex, 
Cluster, Topology, Graph, Aperture, Content, and Context 
(see Figure 1). A Vertex is a point in 3D space with X, Y, Z 
coordinates. An Edge connects a start Vertex to an end 
Vertex. A Wire connects several Edges. A Face is made of a 
set of closed Wires. A Shell is a set of connected Faces that 
share Edges. A Cell is made from a closed Shell. A 
CellComplex is a set of connected Cells that share Faces. A 
Cluster is a grouping of topologies of any dimensionality. A 
Graph is a special data structure that is derived from 
Topologies. An Aperture is a special type of Face that is 
hosted by another Face. Any Topology can have additional 
Topologies added to its Contents. In turn, these Content 
Topologies will have a pointer back to their Context 
Topologies. This is similar to a parent/children relationship. 
In addition, any Topology can have a Dictionary that can 
hold any number of arbitrary key-attribute pairs. 

Figure 1. Topologic Core Class Hierarchy. 
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In this paper, we will focus on two features of Topologic that 
were essential for the proposed workflow: 1) the automatic 
derivation of 3D topological dual graphs using the Cell, 
CellComplex, and Graph classes, and 2) the embedding of 
semantic information through custom dictionaries. 

As mentioned above, In Topologic, a CellComplex is made 
of enclosed 3D spatial units (Cells) that share Faces. Cells 
that share Faces are called adjacent Cells (see Figure 2). 

The Graph class and associated methods are based on graph 
theory. A Graph is composed of Vertices and Edges that 
connect Vertices to each other. A Graph in Topologic accepts 
as input any Topology with additional optional parameters 
and outputs a Graph. In its simplest form, the dual graph of 
a CellComplex is a Graph that connects the centroids of 
adjacent Cells with a straight Edge (see Figure 3). 

Figure 2. An example CellComplex. Cell A and Cell B are said to 
be adjacent because they share Face F. 

Figure 3. An example Dual Graph of the CellComplex. Each Cell 
is represented by a Vertex and the Vertices of adjacent Cells are 

connected by an Edge. 

A dictionary is a data structure made of key/value pairs. A 
key is any identifying string (e.g. “ID”, “Type”, “Name”). 
The value of a key can be of any data type (e.g.float, an 
integer, a string). Topologic enables the embedding of 
arbitrary dictionaries in any topology. As topologies undergo 
geometric operations (e.g. slicing a Cell into several smaller 
Cells thus creating a CellComplex), the dictionaries of 
operand topologies are transmitted to resulting topologies. 
Furthermore, when a dual graph is created from a Topology, 
the dictionaries of the constituent topologies get transferred 
to their corresponding vertices. We use this capability to 
label the vertices in the dual graph. 

5 GRAPH CONVOLUTIONAL NETWORKS 
Graph convolutional neural networks were first introduced 
by Bruna et al [3] where they demonstrated that it is possible 
to learn convolutional layers with a number of parameters 
independent of the input size, resulting in efficient deep 
architectures. In 2018, Xie and Grossman proposed a crystal 
graph convolutional neural network (CGCNN) that learns 
the properties of crystal atoms [24]. CGCNN offered highly 
accurate predictions of eight different properties of crystals. 
Chai et al proposed in 2018 a multi-graph convolutional 
neural network that can predict the bike flow at station-level 
in a bike sharing system [4]. Their model can outperform 
state-of-the-art prediction models by reducing the prediction 
error by up to 25.1%. Li et al proposed a Diffusion 
Convolutional Recurrent Neural Network (DCRNN), a deep 
learning framework for traffic forecasting that incorporates 
both spatial and temporal dependency in the flow of traffic 
[15]. Yu et al proposed graph convolutional networks to 
predict traffic speed in road systems that consistently 
outperforms state-of-the-art baselines on various real-world 
traffic datasets [25]. In 2019, Kipf and Welling introduced a 
scalable approach for learning on graph-structured data [13]. 
Their model scales linearly and can encode both local graph 
structures and features of nodes. They showed that their 
approach outperforms related methods by a significant 
margin on datasets in the domain of citation networks. 

6 DEEP GRAPH CONVOLUTIONAL NETWORKS 
In 2018, Zhang et al introduced an end-to-end deep-graph 
convolutional neural network (DGCNN) that accepts 
arbitrary graphs without the need to first convert them into 
tensors [26]. DGCNN accomplishes this by first passing the 
inputted graph through multiple graph convolution layers 
where node information is propagated between neighbours. 
Then a second layer sorts the graph vertices in a consistent 
order which are then inputted into a traditional convolutional 
neural network (see Figure 4). By sorting the vertex features 
rather than summing them up, DGCNN keeps far more 
information thus allowing it to learn from global graph 
topology. Furthermore, Zhang et al provide a theoretical 
proof that in DGCNN, if two graphs are isomorphic (i.e. have 
an identical structure), their graph representation after 
sorting the vertices is the same. This avoids the need to run 
additional costly algorithms to canonize the graph. 
Compared to state-of-the-art graph kernels, DGCNN has 
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achieved highly competitive accuracy results on benchmark 
graph classification datasets.

Figure 4. The general structure of DGCNN (after Zhang et al [26]). 

7 EXPERIMENTAL CASE STUDY 
For the experimental case study, we created a workflow 
using Dynamo and Topologic that was designed to generate 
many 3D parametric models, and their associated topological 
dual graphs, of an urban block with a ground plate, an 
optional base that sits directly on top of the ground plate, and 
one or more tower blocks that sit either directly on the ground 
plate or directly on top of the base (see Figure 8). 

Figure 5. The 3D model and dual graph in Autodesk Dynamo. 

The ground plate can vary in size. The base is then 
dimensioned to be a certain percentage of the ground plate 
with equal offsets. One or several tower geometries are then 
placed with appropriate offsets and spacing. The height of 
the tower blocks is varied, but all tower blocks maintain the 
same height. Finally, the tower geometries are subdivided 
internally into a grid of Cells. This creates a 3D lattice 
structure. It is important to note that the internal sub-division 
of the tower block is to aid the neural network in 
distinguishing structures of different heights rather than to 
provide room-level detail. 

To create the dataset, we needed to accomplish three tasks. 
The first task is to label the overall graph. We chose to limit 

the classification of the graph to four categories: 1) Tower, 
2) Slab, 3) Tower on Base, and 4) Slab on Base. The first
classification (Tower) occurs when the base is not created, 
and the height of the tower is larger than its width and length. 
Similarly, a Slab classification occurs when the base is not 
created, but the height of the tower is less than or equal to its 
width and height. The last two categories repeat the rules of 
the first two but occur when a base is introduced. 

The second task was to label the vertices. In addition to 
labelling the overall graph, DGCNN requires that each 
vertex in the graph is labelled. To experiment with the effect 
of labelling vertices, we created two separate datasets that 
contain the same graph topologies but with a different vertex 
labelling scheme. In the first dataset, called 3 labelled, we 
labelled vertices according to three categories: 1) Ground, 2) 
Base, and 3) Tower Cell. For the second dataset, called 5 
labelled, we subdivided the tower cells into three categories 
based on their Z height value: 1) Low, 2) Medium, and 3) 
High. This yields five total labels: 1) Ground, 2) Base, 3) 
Low Tower Cell, 4) Medium Tower Cell, 5) High Tower Cell 
(see Figure 6). 

Figure 6. Examples of auto-generated urban block configurations 
with associated dual graph. 

430PREPRINT PREPRINT



The last task was to integrate the visual dataflow definition 
with a custom python script to convert the 3D dual graph 
created by Topologic into a text file according to the format 
required by DGCNN (see Figure 7). The first line of the text 
file contains the total number of graphs (g). This is followed 
by g blocks of graphs where each block starts with a line that 
contains the number of vertices (n) followed by a number 
that indicates the classification (p) of that graph. This is then 
followed by a block of n vertices where each line starts with 
the label of the vertex (vl) followed by the indices of its 
adjacent vertices. The index of a vertex is implied by its line 
position using a zero-based numbering system. 

g 
n p 
vl1 a b c d … 
vl1 a e f g h … 
vl2 m n o … 
vl2 x y a … 
 … 

Figure 7. The general dataset format required for DGCNN. 

Since the dataset in synthetically produced through an 
iterative for loop, the resulting list is implicitly cyclical in 
complexity and height (see Figure 8). To avoid biased 

training or the testing of only a specific level of complexity, 
the final list of graphs is reordered randomly. 

The produced dataset totalled 1000 graphs as follows: 

 411 tower graphs

 80 slab graphs

 420 tower-on-base graphs

 89 slab-on-base graphs

 The total number of vertices is 292,570

 The average number of vertices per graph is 292.57

 The minimum number of vertices in a graph is 10

 The maximum number of vertices in a graph is 1585

 Tower graphs have an average of 399 vertices, minimum
of 37 vertices, and a maximum of 1,585 vertices

 Slab graphs have an average of 134 vertices, a minimum
of 19 vertices, and a maximum of 361 vertices

 Tower-on-base graphs have an average of 259 vertices, a
minimum of 14 vertices, and a maximum of 706 vertices

 Slab-on-base graphs have an average of 101 vertices, a
minimum of 10 vertices, and a maximum of 433 vertices

The reason towers-on-base and slabs-on-base have fewer 
vertices than those without a base is because they have a 
smaller footprint when placed on a base. 

All experiments were implemented on an ordinary laptop 
computer running macOS Catalina 10.15 operating system 
with the following configuration: An Intel Core i7 Quad-
Core CPU running at 2.7GHz with 16 GB of memory. 
DGCNN was deployed using the pytorch python 
environment. 

Figure 8. Sample of automatically generated urban block typologies. 
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For our experiments, we maintained most of the default 
values used by DGCNN. For details on these, please consult 
[26]. Below is a brief summary of these unmodified 
parameters: 

 Size of graphlets: 3.

 Decay parameter: the largest power of 10 that is smaller
than the reciprocal of the squared maximum node degree.

 SortingPool k: Set such that 60% of the graphs have
nodes more than k.

 Two 1-D convolutional layers. The first layer has 16
output channels with a filter size of 2 and a step size of 2.
The second 1-D convolutional layer has 32 output
channels with a filter size of 5 and a step size of 1.

 The dense layer has 128 hidden units followed by a
softmax output layer.

 A dropout layer is added at the end with a dropout rate of
0.5. 

 DGCNN uses a nonlinear hyperbolic function (tanh) in
the graph convolution layers and a rectified linear units
(ReLU) in the other layers. DGCNN does not use
validation set labels for the training.

8 EXPERIMENTAL RESULTS 
As detailed in the experimental results below, we varied only 
the following hyper-parameters: the training/testing ratio, the 
learning rate, the number of epochs, and the batch size. 

8.1 Training and testing division ratio 
The 1000 graphs in the two datasets were divided into 
training and testing data.  We experimented with using 20%, 
30% and 40% of the total graphs as testing data and then 
documented the resulting graph classification prediction 
accuracy (see Table 1). The 5 labelled dataset achieved 
consistently higher accuracy than the 3 labelled dataset. The 
highest accuracy (78.66%) was achieved for the 5 labelled 
dataset with a 30% testing ratio. Therefore, in subsequent 
experiments, we used this testing ratio to continue improving 
the accuracy of the results. 

Training 
data 

Testing 
data 

% of 
testing 

3 Labelled 5 Labelled 

800 graphs 200 graphs 20% 65.50% 69.00% 

700 graphs 300 graphs 30% 64.45% 78.66% 

600 graphs 400 graphs 40% 71.17% 72.00% 

Table 1. Accuracy results using various training and testing ratios. 

8.2 Learning rate 
In convolutional neural networks, the learning rate is the 
amount by which the weights of nodes are updated during 
training. Varying the learning rate can dramatically affect the 
accuracy of the results. We experimented with four learning 
rates (1e-5, 1e-4, 1e-3, and 1e-2) and documented the results 
(see Table 2). A steep drop in the classification result was 
reported when using 1e-2 for both 3 labelled and 5 labelled 
datasets which was less than the acceptable rate. The highest 

prediction accuracy result in this stage (79.66%) was 
achieved through a learning rate of 1e-4 on the 5 labelled 
dataset using a 30% testing ratio. This improved on the 
results achieved in the first round of testing. Therefore, in 
subsequent experiments, we used this testing ratio and 
learning rate to continue improving the accuracy of the 
results. 

Learning Rate % of Testing 3 Labelled 5 Labelled 

1e-5 30% 64.45% 78.66% 

1e-4 30% 67.00% 79.66% 

1e-3 30% 64.66% 67.00% 

1e-2 30% 31.66% 34.66% 

Table 2. Accuracy results using various learning rates. 

8.3 Number of epochs 
The number of epochs is the number of complete iterations 
through the training dataset. We experimented with various 
numbers of epochs while maintaining a testing rate of 1e-4 
and a testing ratio of 30% (see Table 3). The best 
classification accuracy result was reported using 800 epochs 
for the 5 labelled dataset (84.33%). Exceeding that value 
(e.g. 1000 epochs) for the 5 labelled dataset resulted in a 
significant decrease in the classification accuracy which 
indicates that the model became over-fitted. The variation of 
the number of epochs for the 3 labelled dataset reported 
insignificant variation and was consistently worse than the 
accuracy reported for the 5 labelled dataset. 

Number of epochs 3 Labelled 5 Labelled 

500 67.00% 79.66% 

800 67.33% 84.33% 

1000 67.66% 78.66% 

Table 3. Comparison of accuracy results using various epochs. 

The line graph below charts the graphs’ classification 
accuracy for an average of 20 epochs (see Figure 9). The 
chart illustrates an elevated result for the 5 labelled dataset, 
with a moderate classification result for the 3 labelled 
dataset. 

Figure 9. Learning rate and number of epochs for 3 labelled and 5 
labelled datasets. 
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The 3 labelled model started learning and improved 
dramatically from the first few epochs. However, the 
accuracy level tapered after reaching approximately 220 
epochs which means that the model stopped learning after 
that point. The 5 labelled model started learning well from 
the initial few epochs which began at approximately 65%. It 
then continued improving to reach a peak of 84.33%. 

8.4 Batch size 
The batch size of gradient descent in convolutional neural 
networks controls the number of training samples to iterate 
through before the model’s internal parameters are updated. 
For this last experiment, we used the 1000 5 labelled dataset 
and maintained 30% testing ratio, 1e-4 learning rate and 800 
epochs. We experimented with a diverse range of batch sizes 
(1, 10, 20, 30, 50 and 100). The best classification accuracy 
was reported for a batch size of 1 (see Table 4). However, a 
significant reduction in processing time (approximately 
76%) can be achieved by increasing the batch size from 1 to 
20 with a relatively modest loss in accuracy (approximately 
5.5%). The associated line graph indicates the effect of the 
batch size on the classification accuracy (see Figure 10). 

Batch size Accuracy Total Processing Time 

1 84.33% 02:35:57 

10 79.33% 00:36:30 

20 79.66% 00:31:09 

30 77.00% 00:31:22 

50 76.33% 00:41:37 

100 75:33% 01:09:50 

Table 4. Comparison of accuracy results and total processing time 
using various batch sizes. 

Figure 10. The effect of increasing the batch size on the 
classification accuracy  

9 LIMITATIONS 
Due to the lack of ‘real’ datasets, we resorted to generating 
synthetic datasets based on parametric variation. Even if we 
were to obtain real datasets, they may need intervention and 
translation work to make them amenable for dual graph 
extraction. Furthermore, this paper focused on the domain of 
an urban block tower. Its applicability to other typologies 
remains to be tested in future work. We compared graphs 
with 3 labels and to ones with 5 labels and found the latter to 

be more effective for machine learning. However, we do not 
know the effect of further increasing the number of labels, 
inventing a different labelling scheme, or using more 
complex topologies that represent further internal space 
division. By using a computer with moderate power, we were 
limited in the amount of training and testing that we could 
conduct. Finally, our workflow was tested and fine-tuned 
independently and was not compared to other approaches 
which may or may not be more effective. 

10 CONCLUSION 
In this paper we aimed to find out if we can classify urban 
form through a novel workflow that uses machine learning 
on three-dimensional graphs rather than on two-dimensional 
images. We leveraged a sophisticated topology-based 3D 
modelling environment to derive dual graphs from 3D 
models and label them automatically. We then fed those 
graphs to a state-of-the-art deep learning graph convolutional 
neural network. To discover the best accuracy rates, we 
experimented with the vertex labelling scheme, testing 
ratios, learning rates, number of epochs and number of 
batches. 

At the conclusion of our experiments we found that the 5 
labelled dataset of 1000 graphs with a testing ratio of 30%, a 
learning rate of 1e-4, using 800 epochs, and a batch size of 1 
gave us the best prediction accuracy (84.33%). This result is 
highly competitive with accuracy results on benchmark 
datasets. Our approach shows strong promise for recognising 
urban and architectural forms using more semantically 
relevant and structured data. Planned future work will 
experiment with other datasets, labelling schemes, and will 
compare this novel workflow to other approaches. 

We have identified several new areas of research based on 
our findings. First, we are planning to investigate node 
classification rather than just overall graph classification. 
Second, we are planning a system that may recognise the 
topological relationships the designer is building in near real-
time and suggest precedents from a visual database. Other 
future planned work includes the use of this technique as a 
fitness function within an evolutionary algorithm to generate 
and evaluate urban block forms that fit within a context based 
on user’s preferences. 
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