
SimAUD 2020 May 25-27, Online
© 2020 Society for Modeling & Simulation International (SCS)

Graph Machine Learning using 3D Topological Models
Wassim Jabi1, Abdulrahman Alymani1

1Cardiff University
Cardiff, United Kingdom

{jabiw, alymaniaa}@cardiff.ac.uk

ABSTRACT
Classification of urban and architectural works using
machine learning techniques have typically focused on 2D
pixel-based image recognition. In this paper we present a
novel proof-of-concept workflow that enables a machine
learning computer system to learn to classify 3D conceptual
models based on topological graphs rather than 2D images.
The system leverages two main technologies. The first is a
custom designed software library that enhances the
representation of 3D models through non-manifold topology
and embedded semantic information. The second is an end-
to-end deep graph convolutional network (DGCNN) that
accepts graphs of an arbitrary structure without the need to
first convert them into vectors. The experimental workflow
consists of two stages. In the first stage, a generative
parametric system was designed to create a large synthetic
dataset of an urban block with several typological variations.
The geometric models were then automatically labelled and
converted into semantically rich topological dual graphs. In
the second stage, the dual graphs were imported into the
DGCNN for graph classification. Experiments demonstrate
that the proposed workflow achieves accuracy results that are
highly competitive with DGCNN’s classification of
benchmark graph datasets.

Author Keywords
Machine Learning, Topological Models, Graphs.

ACM Classification Keywords
I.6.1 SIMULATION AND MODELING

1 INTRODUCTION
Understanding and classifying the typology of urban and
architectural forms has been a topic of interest for a long
period [19]. By understanding the typology of an urban form,
relevant performative information can be extrapolated that
helps urban designers and planners to make better decisions.
Quantitative and statistical methods aided by computational
tools have been shown to be effective in morphological
studies [7]. While the impact of these approaches has thus far
been limited in the mainstream practice of urban design and
planning, there are signs that machine learning technologies
(ML) are starting to revolutionize the recognition and
classification of urban form. Several challenges still face the
adoption of these technologies. First, supervised machine
learning requires large datasets for training that are labelled.
Second, most machine learning systems rely on 2D pixel-

based image recognition. While this may seem compatible
with the representation of the available data – mainly city
plans and drawings, this leads to major limitations. The
urban environment is three-dimensional, topologically
connected, and complex. However, most machine learning
systems do not understand the semantics of the recognized
image. To an ML algorithm, the data is simply a vector of
mostly low resolution RGB values. If the data is 3D in nature
and semantically rich, that information must be stripped
away, and the data converted into images for an ML
algorithm to operate properly. The lack of shareable 3D
datasets is a real challenge and while some open-source sets
do exist [9], their format, suitability, accessibility and
licensing varies.

Even if 3D datasets are made available, there continues to be
a challenge in recognizing and classifying them. Some
researchers have focused on feature recognition of 3D
models [12, 18]. These approaches capture several 2D
snapshots of 3D models and match them to an image-based
query, thus, still not fully capturing the three-dimensional
and topological information embedded in the data. A slightly
more sophisticated approach is to extract features from a 3D
model and encode them as a vector to be used as input into a
neural network [17]. This approach extracts only a portion of
the data and must transform it into a standard input vector. It
ignores the overall topological information that can be an
indicator of the type of object.

A promising approach is to use machine learning on graphs
[14, 16, 22]. The limitation of some approaches is that they
decompose the graphs into small substructures such as walks
or paths and derive the similarity between graphs based on a
summation of attributes. The Deep Graph Convolutional
Neural Network (DGCNN) avoids the above limitations and
provides an end-to-end deep learning system for classifying
graph-based data [26]. One of the main advantages of
DGCNN is that it accepts arbitrary graphs without the need
to first convert them into vectors.

Our aim in this paper is to design a novel proof-of-concept
workflow that leverages DGCNN to classify 3D conceptual
models based on their topological graphs rather than on their
2D representation. As a domain of investigation, we chose
an urban block morphology. The workflow is divided into
two stages. In the first stage, we use a software library,
developed by one of the authors, that enhances the

427PREPRINT PREPRINT

representation of 3D models through non-manifold topology
and embedded semantic information. The software is used to
automatically and generatively create a large synthetic
dataset of an urban block with several typological categories.
The geometric models are then automatically labelled and
converted into semantically rich topological graphs. In the
second stage, we use this dataset as input to train DGCNN
for graph classification.

The remainder of this paper is organised as follows: Section
2 briefly reviews related work carried out using graphs and
machine learning in architecture. Section 3 provides a brief
summary of Graphs theory. Section 4 describes the
Topologic software library. Section 5 discusses related
variations of Graph Convolutional Neural Networks
(GCNN). Section 6 describes the Deep Graph Convolutional
Neural Network (DGCNN) that was used for this research
project. Section 7 details the experimental case study.
Section 8 reports on the results of the experiments. Section 9
lists the limitations of this work. Finally, Section 10 provides
concluding remarks and lists our plans for future work.

2 RELATED WORK
Beetz has researched the use of graph databases for
harmonized distributed concept libraries for building
information models [2]. His goal is to create “flexible,
granular and cascading concept libraries for the building
industry.” This work will enable standardization of the input
data to graph neural networks. Tamke has researched the use
of unsupervised and supervised machine learning approaches
to deduce implicit information in building information
models [20]. His platform can extract literal values,
aggregates and derived values from IFC SPF files.
Furthermore, the system possesses geometrical and
topological analysis functionality that allows it to detect
anomalies and to classify floor plans into two categories
based on their geometrical appearance. Derix and Jagganath
have researched methods to autonomously recognise spatial
typologies through associations between spatial attributes of
a layout [5]. They presented cases in which a building floor
layout was analysed using space syntax concepts such as
isovists, centrality and visual connectivity [10]. Their aim is
to use these models to classify types and sequences of user
experiences across buildings rather than strict typologies
thus enabling an experience-based approach to architectural
and urban design. Harding and Derix used a two-stage neural
network and spectral graph theory as a spatial pattern
recognition tool to develop a plan form of a reconfigurable
exhibition space. To recognise and classify plans, they
derived a graph using spatial adjacency and then reduced it
by finding a “graph spectrum” which then forms a synaptic
vector representation in feature space and thus “makes
comparisons between graphs much easier to conduct.” What
is interesting in their research is that they also use this
approach for the automatic generation of spatial layouts. In
their paper they describe a repulsion algorithm combined
with a Voronoi diagram that distributes the graphs evenly

over the boundary plan. Topological connections are
simulated as springs to maintain node adjacency.

3 GRAPHS
Explaining graph theory is beyond the scope of this paper, so
a brief summary of its main concepts, data structures and
metrics is provided here. For more detailed information on
graph theory, please consult [23]. Graph theory is a branch
of mathematics used to model relations between objects. A
simple graph G consists of a set of points called vertices
V(G), and the lines that join pairs of points are called edges
E(G). The degree of a vertex in a graph is the number of
edges connected to it. Vertices that are connected by an edge
are called adjacent vertices. Similarly, edges that share a
common vertex are called adjacent edges. Any two graphs
that have a one-to-one correspondence between the number
vertices, the number of edges and the degree of vertices are
called isomorphic graphs.

4 TOPOLOGIC
Topologic [21] is a 3D modelling software library developed
by one of the authors that enhances the representation of
space in 3D parametric and generative modelling
environments such as Dynamo [6] and Grasshopper [8].
Topologic is based on the concept of non-manifold topology
and has been described in [1, 11]. Topologic’s classes
include: Vertex, Edge, Wire, Face, Shell, Cell, CellComplex,
Cluster, Topology, Graph, Aperture, Content, and Context
(see Figure 1). A Vertex is a point in 3D space with X, Y, Z
coordinates. An Edge connects a start Vertex to an end
Vertex. A Wire connects several Edges. A Face is made of a
set of closed Wires. A Shell is a set of connected Faces that
share Edges. A Cell is made from a closed Shell. A
CellComplex is a set of connected Cells that share Faces. A
Cluster is a grouping of topologies of any dimensionality. A
Graph is a special data structure that is derived from
Topologies. An Aperture is a special type of Face that is
hosted by another Face. Any Topology can have additional
Topologies added to its Contents. In turn, these Content
Topologies will have a pointer back to their Context
Topologies. This is similar to a parent/children relationship.
In addition, any Topology can have a Dictionary that can
hold any number of arbitrary key-attribute pairs.

Figure 1. Topologic Core Class Hierarchy.

428PREPRINT PREPRINT

In this paper, we will focus on two features of Topologic that
were essential for the proposed workflow: 1) the automatic
derivation of 3D topological dual graphs using the Cell,
CellComplex, and Graph classes, and 2) the embedding of
semantic information through custom dictionaries.

As mentioned above, In Topologic, a CellComplex is made
of enclosed 3D spatial units (Cells) that share Faces. Cells
that share Faces are called adjacent Cells (see Figure 2).

The Graph class and associated methods are based on graph
theory. A Graph is composed of Vertices and Edges that
connect Vertices to each other. A Graph in Topologic accepts
as input any Topology with additional optional parameters
and outputs a Graph. In its simplest form, the dual graph of
a CellComplex is a Graph that connects the centroids of
adjacent Cells with a straight Edge (see Figure 3).

Figure 2. An example CellComplex. Cell A and Cell B are said to
be adjacent because they share Face F.

Figure 3. An example Dual Graph of the CellComplex. Each Cell
is represented by a Vertex and the Vertices of adjacent Cells are

connected by an Edge.

A dictionary is a data structure made of key/value pairs. A
key is any identifying string (e.g. “ID”, “Type”, “Name”).
The value of a key can be of any data type (e.g.float, an
integer, a string). Topologic enables the embedding of
arbitrary dictionaries in any topology. As topologies undergo
geometric operations (e.g. slicing a Cell into several smaller
Cells thus creating a CellComplex), the dictionaries of
operand topologies are transmitted to resulting topologies.
Furthermore, when a dual graph is created from a Topology,
the dictionaries of the constituent topologies get transferred
to their corresponding vertices. We use this capability to
label the vertices in the dual graph.

5 GRAPH CONVOLUTIONAL NETWORKS
Graph convolutional neural networks were first introduced
by Bruna et al [3] where they demonstrated that it is possible
to learn convolutional layers with a number of parameters
independent of the input size, resulting in efficient deep
architectures. In 2018, Xie and Grossman proposed a crystal
graph convolutional neural network (CGCNN) that learns
the properties of crystal atoms [24]. CGCNN offered highly
accurate predictions of eight different properties of crystals.
Chai et al proposed in 2018 a multi-graph convolutional
neural network that can predict the bike flow at station-level
in a bike sharing system [4]. Their model can outperform
state-of-the-art prediction models by reducing the prediction
error by up to 25.1%. Li et al proposed a Diffusion
Convolutional Recurrent Neural Network (DCRNN), a deep
learning framework for traffic forecasting that incorporates
both spatial and temporal dependency in the flow of traffic
[15]. Yu et al proposed graph convolutional networks to
predict traffic speed in road systems that consistently
outperforms state-of-the-art baselines on various real-world
traffic datasets [25]. In 2019, Kipf and Welling introduced a
scalable approach for learning on graph-structured data [13].
Their model scales linearly and can encode both local graph
structures and features of nodes. They showed that their
approach outperforms related methods by a significant
margin on datasets in the domain of citation networks.

6 DEEP GRAPH CONVOLUTIONAL NETWORKS
In 2018, Zhang et al introduced an end-to-end deep-graph
convolutional neural network (DGCNN) that accepts
arbitrary graphs without the need to first convert them into
tensors [26]. DGCNN accomplishes this by first passing the
inputted graph through multiple graph convolution layers
where node information is propagated between neighbours.
Then a second layer sorts the graph vertices in a consistent
order which are then inputted into a traditional convolutional
neural network (see Figure 4). By sorting the vertex features
rather than summing them up, DGCNN keeps far more
information thus allowing it to learn from global graph
topology. Furthermore, Zhang et al provide a theoretical
proof that in DGCNN, if two graphs are isomorphic (i.e. have
an identical structure), their graph representation after
sorting the vertices is the same. This avoids the need to run
additional costly algorithms to canonize the graph.
Compared to state-of-the-art graph kernels, DGCNN has

Cell A

Cell B

Face
 F

429PREPRINT PREPRINT

achieved highly competitive accuracy results on benchmark
graph classification datasets.

Figure 4. The general structure of DGCNN (after Zhang et al [26]).

7 EXPERIMENTAL CASE STUDY
For the experimental case study, we created a workflow
using Dynamo and Topologic that was designed to generate
many 3D parametric models, and their associated topological
dual graphs, of an urban block with a ground plate, an
optional base that sits directly on top of the ground plate, and
one or more tower blocks that sit either directly on the ground
plate or directly on top of the base (see Figure 8).

Figure 5. The 3D model and dual graph in Autodesk Dynamo.

The ground plate can vary in size. The base is then
dimensioned to be a certain percentage of the ground plate
with equal offsets. One or several tower geometries are then
placed with appropriate offsets and spacing. The height of
the tower blocks is varied, but all tower blocks maintain the
same height. Finally, the tower geometries are subdivided
internally into a grid of Cells. This creates a 3D lattice
structure. It is important to note that the internal sub-division
of the tower block is to aid the neural network in
distinguishing structures of different heights rather than to
provide room-level detail.

To create the dataset, we needed to accomplish three tasks.
The first task is to label the overall graph. We chose to limit

the classification of the graph to four categories: 1) Tower,
2) Slab, 3) Tower on Base, and 4) Slab on Base. The first
classification (Tower) occurs when the base is not created,
and the height of the tower is larger than its width and length.
Similarly, a Slab classification occurs when the base is not
created, but the height of the tower is less than or equal to its
width and height. The last two categories repeat the rules of
the first two but occur when a base is introduced.

The second task was to label the vertices. In addition to
labelling the overall graph, DGCNN requires that each
vertex in the graph is labelled. To experiment with the effect
of labelling vertices, we created two separate datasets that
contain the same graph topologies but with a different vertex
labelling scheme. In the first dataset, called 3 labelled, we
labelled vertices according to three categories: 1) Ground, 2)
Base, and 3) Tower Cell. For the second dataset, called 5
labelled, we subdivided the tower cells into three categories
based on their Z height value: 1) Low, 2) Medium, and 3)
High. This yields five total labels: 1) Ground, 2) Base, 3)
Low Tower Cell, 4) Medium Tower Cell, 5) High Tower Cell
(see Figure 6).

Figure 6. Examples of auto-generated urban block configurations
with associated dual graph.

430PREPRINT PREPRINT

The last task was to integrate the visual dataflow definition
with a custom python script to convert the 3D dual graph
created by Topologic into a text file according to the format
required by DGCNN (see Figure 7). The first line of the text
file contains the total number of graphs (g). This is followed
by g blocks of graphs where each block starts with a line that
contains the number of vertices (n) followed by a number
that indicates the classification (p) of that graph. This is then
followed by a block of n vertices where each line starts with
the label of the vertex (vl) followed by the indices of its
adjacent vertices. The index of a vertex is implied by its line
position using a zero-based numbering system.

g
n p
vl1 a b c d …
vl1 a e f g h …
vl2 m n o …
vl2 x y a …
 …

Figure 7. The general dataset format required for DGCNN.

Since the dataset in synthetically produced through an
iterative for loop, the resulting list is implicitly cyclical in
complexity and height (see Figure 8). To avoid biased

training or the testing of only a specific level of complexity,
the final list of graphs is reordered randomly.

The produced dataset totalled 1000 graphs as follows:

 411 tower graphs

 80 slab graphs

 420 tower-on-base graphs

 89 slab-on-base graphs

 The total number of vertices is 292,570

 The average number of vertices per graph is 292.57

 The minimum number of vertices in a graph is 10

 The maximum number of vertices in a graph is 1585

 Tower graphs have an average of 399 vertices, minimum
of 37 vertices, and a maximum of 1,585 vertices

 Slab graphs have an average of 134 vertices, a minimum
of 19 vertices, and a maximum of 361 vertices

 Tower-on-base graphs have an average of 259 vertices, a
minimum of 14 vertices, and a maximum of 706 vertices

 Slab-on-base graphs have an average of 101 vertices, a
minimum of 10 vertices, and a maximum of 433 vertices

The reason towers-on-base and slabs-on-base have fewer
vertices than those without a base is because they have a
smaller footprint when placed on a base.

All experiments were implemented on an ordinary laptop
computer running macOS Catalina 10.15 operating system
with the following configuration: An Intel Core i7 Quad-
Core CPU running at 2.7GHz with 16 GB of memory.
DGCNN was deployed using the pytorch python
environment.

Figure 8. Sample of automatically generated urban block typologies.

431PREPRINT PREPRINT

For our experiments, we maintained most of the default
values used by DGCNN. For details on these, please consult
[26]. Below is a brief summary of these unmodified
parameters:

 Size of graphlets: 3.

 Decay parameter: the largest power of 10 that is smaller
than the reciprocal of the squared maximum node degree.

 SortingPool k: Set such that 60% of the graphs have
nodes more than k.

 Two 1-D convolutional layers. The first layer has 16
output channels with a filter size of 2 and a step size of 2.
The second 1-D convolutional layer has 32 output
channels with a filter size of 5 and a step size of 1.

 The dense layer has 128 hidden units followed by a
softmax output layer.

 A dropout layer is added at the end with a dropout rate of
0.5.

 DGCNN uses a nonlinear hyperbolic function (tanh) in
the graph convolution layers and a rectified linear units
(ReLU) in the other layers. DGCNN does not use
validation set labels for the training.

8 EXPERIMENTAL RESULTS
As detailed in the experimental results below, we varied only
the following hyper-parameters: the training/testing ratio, the
learning rate, the number of epochs, and the batch size.

8.1 Training and testing division ratio
The 1000 graphs in the two datasets were divided into
training and testing data. We experimented with using 20%,
30% and 40% of the total graphs as testing data and then
documented the resulting graph classification prediction
accuracy (see Table 1). The 5 labelled dataset achieved
consistently higher accuracy than the 3 labelled dataset. The
highest accuracy (78.66%) was achieved for the 5 labelled
dataset with a 30% testing ratio. Therefore, in subsequent
experiments, we used this testing ratio to continue improving
the accuracy of the results.

Training
data

Testing
data

% of
testing

3 Labelled 5 Labelled

800 graphs 200 graphs 20% 65.50% 69.00%

700 graphs 300 graphs 30% 64.45% 78.66%

600 graphs 400 graphs 40% 71.17% 72.00%

Table 1. Accuracy results using various training and testing ratios.

8.2 Learning rate
In convolutional neural networks, the learning rate is the
amount by which the weights of nodes are updated during
training. Varying the learning rate can dramatically affect the
accuracy of the results. We experimented with four learning
rates (1e-5, 1e-4, 1e-3, and 1e-2) and documented the results
(see Table 2). A steep drop in the classification result was
reported when using 1e-2 for both 3 labelled and 5 labelled
datasets which was less than the acceptable rate. The highest

prediction accuracy result in this stage (79.66%) was
achieved through a learning rate of 1e-4 on the 5 labelled
dataset using a 30% testing ratio. This improved on the
results achieved in the first round of testing. Therefore, in
subsequent experiments, we used this testing ratio and
learning rate to continue improving the accuracy of the
results.

Learning Rate % of Testing 3 Labelled 5 Labelled

1e-5 30% 64.45% 78.66%

1e-4 30% 67.00% 79.66%

1e-3 30% 64.66% 67.00%

1e-2 30% 31.66% 34.66%

Table 2. Accuracy results using various learning rates.

8.3 Number of epochs
The number of epochs is the number of complete iterations
through the training dataset. We experimented with various
numbers of epochs while maintaining a testing rate of 1e-4
and a testing ratio of 30% (see Table 3). The best
classification accuracy result was reported using 800 epochs
for the 5 labelled dataset (84.33%). Exceeding that value
(e.g. 1000 epochs) for the 5 labelled dataset resulted in a
significant decrease in the classification accuracy which
indicates that the model became over-fitted. The variation of
the number of epochs for the 3 labelled dataset reported
insignificant variation and was consistently worse than the
accuracy reported for the 5 labelled dataset.

Number of epochs 3 Labelled 5 Labelled

500 67.00% 79.66%

800 67.33% 84.33%

1000 67.66% 78.66%

Table 3. Comparison of accuracy results using various epochs.

The line graph below charts the graphs’ classification
accuracy for an average of 20 epochs (see Figure 9). The
chart illustrates an elevated result for the 5 labelled dataset,
with a moderate classification result for the 3 labelled
dataset.

Figure 9. Learning rate and number of epochs for 3 labelled and 5
labelled datasets.

432PREPRINT PREPRINT

The 3 labelled model started learning and improved
dramatically from the first few epochs. However, the
accuracy level tapered after reaching approximately 220
epochs which means that the model stopped learning after
that point. The 5 labelled model started learning well from
the initial few epochs which began at approximately 65%. It
then continued improving to reach a peak of 84.33%.

8.4 Batch size
The batch size of gradient descent in convolutional neural
networks controls the number of training samples to iterate
through before the model’s internal parameters are updated.
For this last experiment, we used the 1000 5 labelled dataset
and maintained 30% testing ratio, 1e-4 learning rate and 800
epochs. We experimented with a diverse range of batch sizes
(1, 10, 20, 30, 50 and 100). The best classification accuracy
was reported for a batch size of 1 (see Table 4). However, a
significant reduction in processing time (approximately
76%) can be achieved by increasing the batch size from 1 to
20 with a relatively modest loss in accuracy (approximately
5.5%). The associated line graph indicates the effect of the
batch size on the classification accuracy (see Figure 10).

Batch size Accuracy Total Processing Time

1 84.33% 02:35:57

10 79.33% 00:36:30

20 79.66% 00:31:09

30 77.00% 00:31:22

50 76.33% 00:41:37

100 75:33% 01:09:50

Table 4. Comparison of accuracy results and total processing time
using various batch sizes.

Figure 10. The effect of increasing the batch size on the
classification accuracy

9 LIMITATIONS
Due to the lack of ‘real’ datasets, we resorted to generating
synthetic datasets based on parametric variation. Even if we
were to obtain real datasets, they may need intervention and
translation work to make them amenable for dual graph
extraction. Furthermore, this paper focused on the domain of
an urban block tower. Its applicability to other typologies
remains to be tested in future work. We compared graphs
with 3 labels and to ones with 5 labels and found the latter to

be more effective for machine learning. However, we do not
know the effect of further increasing the number of labels,
inventing a different labelling scheme, or using more
complex topologies that represent further internal space
division. By using a computer with moderate power, we were
limited in the amount of training and testing that we could
conduct. Finally, our workflow was tested and fine-tuned
independently and was not compared to other approaches
which may or may not be more effective.

10 CONCLUSION
In this paper we aimed to find out if we can classify urban
form through a novel workflow that uses machine learning
on three-dimensional graphs rather than on two-dimensional
images. We leveraged a sophisticated topology-based 3D
modelling environment to derive dual graphs from 3D
models and label them automatically. We then fed those
graphs to a state-of-the-art deep learning graph convolutional
neural network. To discover the best accuracy rates, we
experimented with the vertex labelling scheme, testing
ratios, learning rates, number of epochs and number of
batches.

At the conclusion of our experiments we found that the 5
labelled dataset of 1000 graphs with a testing ratio of 30%, a
learning rate of 1e-4, using 800 epochs, and a batch size of 1
gave us the best prediction accuracy (84.33%). This result is
highly competitive with accuracy results on benchmark
datasets. Our approach shows strong promise for recognising
urban and architectural forms using more semantically
relevant and structured data. Planned future work will
experiment with other datasets, labelling schemes, and will
compare this novel workflow to other approaches.

We have identified several new areas of research based on
our findings. First, we are planning to investigate node
classification rather than just overall graph classification.
Second, we are planning a system that may recognise the
topological relationships the designer is building in near real-
time and suggest precedents from a visual database. Other
future planned work includes the use of this technique as a
fitness function within an evolutionary algorithm to generate
and evaluate urban block forms that fit within a context based
on user’s preferences.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Padraig Corcoran,
Cardiff University for his help with graph neural networks
and Mr. Akhil Meethal, ÉTS Montreal for his help with the
pytorch programming environment.

REFERENCES
1. Aish, R. et al. 2018. Topologic : Tools to explore

architectural topology. Advances in Architectural
Geometry 2018 (2018), 316–341.

2. Beetz, J. 2014. A Scalable Network of Concept
Libraries Using Distributed Graph Databases.
Computing in Civil and Building Engineering. (2014),
955–1865.

433PREPRINT PREPRINT

3. Bruna, J. et al. 2014. Spectral networks and deep
locally connected networks on graphs. 2nd
International Conference on Learning
Representations, ICLR 2014 - Conference Track
Proceedings (2014).

4. Chai, D. et al. 2018. Bike flow prediction with multi-
graph convolutional networks. GIS: Proceedings of
the ACM International Symposium on Advances in
Geographic Information Systems. (2018), 397–400.
DOI:https://doi.org/10.1145/3274895.3274896.

5. Derix, C. and Jagannath, P. 2014. Digital intuition –
Autonomous classifiers for spatial analysis and
empirical design. The Journal of Space Syntax. 5, 2
(2014), 189–215.

6. Dynamo: http://dynamobim.org. Accessed: 2020-03-
11.

7. Gil, J. et al. 2012. On the discovery of urban
typologies: Data mining the many dimensions of
urban form. Urban Morphology. 16, 1 (2012), 27–40.

8. Grasshopper 3D: http://grasshopper3d.com. Accessed:
2020-03-11.

9. Gröger, G. and Plümer, L. 2012. CityGML -
Interoperable semantic 3D city models. ISPRS Journal
of Photogrammetry and Remote Sensing.

10. Hillier, B. and Hanson, J. 1984. The Social Logic of
Space. Cambridge University Press.

11. Jabi, W. et al. 2018. Topologic: A toolkit for spatial
and topological modelling. Computing for a Better
Tomorrow, Proceedings of the 36th eCAADe
conference (Lodz, Poland, 2018).

12. Kasaei, H. 2019. OrthographicNet: A Deep Learning
Approach for 3D Object Recognition in Open-Ended
Domains. (2019).

13. Kipf, T.N. and Welling, M. 2019. Semi-supervised
classification with graph convolutional networks. 5th
International Conference on Learning
Representations, ICLR 2017 - Conference Track
Proceedings. (2019), 1–14.

14. Kriege, N. and Mutzel, P. 2012. Subgraph matching
kernels for attributed graphs. Proceedings of the 29th
International Conference on Machine Learning, ICML
2012. 2, (2012), 1015–1022.

15. Li, Y. et al. 2018. Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting. 6th
International Conference on Learning

Representations, ICLR 2018 - Conference Track
Proceedings. (2018), 1–16.

16. Orsini, F. et al. 2015. Graph invariant kernels. IJCAI
International Joint Conference on Artificial
Intelligence. 2015-Janua, Ijcai (2015), 3756–3762.

17. Qin, F. et al. 2014. A deep learning approach to the
classification of. 15, 2 (2014), 91–106.
DOI:https://doi.org/10.1631/jzus.C1300185.

18. Sarkar, K. et al. 2017. Trained 3d models for CNN
based object recognition. VISIGRAPP 2017 -
Proceedings of the 12th International Joint
Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications. 5,
(2017), 130–137.
DOI:https://doi.org/10.5220/0006272901300137.

19. Steadman, P. et al. 2000. A classification of built
forms. Environment and Planning B: Planning and
Design. (2000). DOI:https://doi.org/10.1068/bst7.

20. Tamke, M. 2015. Assessing implicit knowledge in
BIM models with machine learning. Modelling
Behaviour. December (2015).
DOI:https://doi.org/10.1007/978-3-319-24208-8.

21. Topologic: 2019. https://topologic.app. Accessed:
2020-03-14.

22. Vishwanathan, S.V.N. et al. 2010. Graph kernels.
Journal of Machine Learning Research. 11, (2010),
1201–1242. DOI:https://doi.org/10.1007/978-0-387-
30164-8_349.

23. Voloshin, V.I. 2009. Introduction to graph theory.

24. Xie, T. and Grossman, J.C. 2018. Crystal Graph
Convolutional Neural Networks for an Accurate and
Interpretable Prediction of Material Properties.
Physical Review Letters. 120, 14 (2018).
DOI:https://doi.org/10.1103/PhysRevLett.120.145301.

25. Yu, B. et al. 2018. Spatio-temporal graph
convolutional networks: A deep learning framework
for traffic forecasting. IJCAI International Joint
Conference on Artificial Intelligence. 2018-July,
(2018), 3634–3640.
DOI:https://doi.org/10.24963/ijcai.2018/505.

26. Zhang, M. et al. 2018. An end-to-end deep learning
architecture for graph classification. 32nd AAAI
Conference on Artificial Intelligence, AAAI 2018.
(2018), 4438–4445.

434PREPRINT PREPRINT
Powered by TCPDF (www.tcpdf.org)

