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S U M M A RY

Magnetic Resonance Spectroscopy (MRS) is a powerful medical diagnostic

and research tool that enables us to identify metabolite concentrations in

a region of interest (ROI) in-vivo. This non-invasive diagnostic technique

provides a large amount of information about a certain region in the body,

such as the brain or spinal cord, with no impact on patient wellbeing.

MRS is readily available in many clinical units across the UK with an

MRI machine and no additional hardware is needed.

MRS has a number of challenges, including the requirement of a

much higher level of magnetic field calibration compared to MRI, and

detecting and analysing a substantially weaker signal per metabolite. To

complicate the matter, there is a broad range of metabolites found in-vivo
with overlapping proton spectra, obscuring signals and making spectral

analysis very challenging.

The primary focus of this thesis is to explore methods to aid quan-

tification of metabolites by exploring two ends of the issue, focusing

specifically on GABA, NAA, Creatine quantification, of interest to a

range of neuroscience studies. Firstly, the focus is on the analysis of

the acquired spectral data utilizing the MEGA-PRESS pulse sequence,

specifically aimed at GABA. Comprehensively benchmarking the current

state-of-the-art spectral quantification methods with experimental data

from phantoms of known composition lays the foundation for devising

an improved quantification technique. This novel quantification method

utilises a convolutional neural network for MEGA-PRESS spectra and

can outperform the state-of-the-art.

Secondly, an optimisation method to find RF pulses that create specific

excitations in the metabolites is devised, leading to spectra that are sim-

pler to analyse. Such customisation of the spectra allows the removal of

overlapping or obscuring features, creating chemically selective spectral

acquisition methods. Moreover, the RF pulses are optimised over a range

of scanner uncertainties to improve robustness. Simulations demonstrate

that this approach can separate GABA, NAA and Creatine as well as

Glutamine and Glutamate at 3 Tesla.
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1
I N T R O D U C T I O N

Magnetic resonance imaging (MRI) is a non-invasive imaging modality

that has revolutionised medical imaging. MRI is based on the principle

of nuclear magnetic resonance (NMR) [6, 84], utilising strong static mag-

netic fields combined with field gradients for spatial localisation and

radio frequency (RF) pulses for control. MRI scanners are widely avail-

able, with MRI scans accounting for 3.39M of 41.3M (12.2%) medical

imaging scans performed by the NHS in the UK in 2018 [104]. Although

magnetic resonance imaging (MRI) scans are still considerably more

costly than alternatives such as computed tomography (CT) scans, unlike

alternatives such as X-rays, positron emission tomography (PET) and

single-photon emission CT (SPECT), MRI does not use ionising radiation

and offers superior soft-tissue contrast and a variety of acquisition modes

including diffusion and perfusion imaging, chemical shift imaging and

spectroscopy.

Magnetic resonance (MR) is an excellent platform for research and

development ranging from hardware development, such as transmit

and receive coils to improve signal-to-noise ratio (SNR) [48, 107] to

the development and optimisation of new pulse sequences. The latter

generally does not require any hardware modifications and new pulses

sequences therefore can easily be deployed on existing MRI equipment.

The focus of this thesis is on proton magnetic resonance spectro-

scopy (MRS) [89, 154] and the quantification of metabolites present in a

spectroscopy voxel by matching basis sets of known metabolite signals.

This provides knowledge of the chemical composition of biological tissue

and insight into biophysical processes and disorders. MRS has enabled

significant advances in detecting, classifying and modelling malignant

tissue in the brain [2, 40, 171], prostate [72, 121, 161] and breast [36, 50, 79].

In modern psychology and neuroscience, MRS provides insights into nor-

mal brain function, as well as abnormalities associated with conditions

such as anxiety, schizophrenia, depression and other mood disorders [25,

29, 150, 152, 158]. A key biomarker for these studies is γ-aminobutyric

acid (GABA), the primary inhibitory neurotransmitter [88].

Although MRI has been clinically available for many years, MRS is

not yet in widespread clinical use. As metabolite signal of interest are

1



1.1 problem definition 2

often several orders of magnitude weaker×10, 000 than the water signal,

obtaining good SNR is challenging. Furthermore, to achieve spectral

resolution required to distinguish metabolites requires extremely homo-

geneous magnetic field over the entire spectroscopy volume (voxel) and

precise calibration of RF control fields. These requirements for MRS cre-

ate a new set of significant challenges for clinical MR, such as improving

scanner calibration, pulse sequence design for low signal metabolites

and improvements to signal acquisition and spectral analysis (quanti-

fication). Consequently, any improvements in these areas of MRS will

have a knock-on effect on other MR modalities, such as calibration im-

provements potentially leading to sharper MR images, or pulse sequence

optimisation leading to faster or lower energy imaging sequences.

1.1 problem definition

This thesis presents a range of new techniques for MRS to improve

current practices in the quantification of metabolites with a focus on

metabolites of interest in neuroscience including γ-aminobutyric acid

(GABA), N-Acetylaspartic acid (NAA), Creatine (Cr), Glutamate (Glu)

and Glutamine (Gln).

It can be split into two parts: signal acquisition and signal analysis.

The signal acquisition includes all the necessary steps for acquiring a

spectrum — from the design and implementation of the pulse sequence

to scanner calibration and prepossessing of raw data on by the scanner.

Signal analysis is focused on decomposition of the signals from the

scanner into their constituent metabolic contributions and is usually

done off-line using independent software. These parts are directly linked

as the signal acquisition determines the analysis. The key objectives

explored in-depth are

• Improved quantification of spectra obtained using existing pulses

sequences such as Mesher-Garwood PRESS (MEGA-PRESS) based

on decomposition by Convolutional Neural Networks (convolutional

neural network (CNN)).

• Development of novel pulse sequences designed to enhance sig-

nals of interest and suppress unwanted signals via chemically se-

lective excitation pulses derived using quantum control techniques.

To assess the performance of the new tools a review of current state of

state-of-the-art quantification techniques and benchmarking results for a

range of calibrated phantom spectra will be presented.



1.1 problem definition 3

1.1.1 Magnetic Resonance Spectroscopy: Challenges in Signal Acquisition

Simplified, MR works by using a strong homogeneous magnetic field,

B0, to align spins, typically 1H and utilises RF fields for control. Spins

are excited by the RF field, and will eventually relax back into alignment

with the B0 field, emitting a signal. For spectroscopy, each metabolites’

signal is a consequence of its chemical structure, essentially forming an

electromagnetic fingerprint , which is the basis for MRS. These signals,

converted to the frequency domain to form spectra, can later be matched

to a basis set of known signals, indicating the chemical composition of a

region of interest (ROI).

MRS requires an extremely homogeneous magnetic field as spatial or

temporal fluctuations in the B0 field cause frequency drift and line broad-

ening, resulting in misidentification of spectral features and obscuring

smaller features. The challenge of performing MRS in-vivo is that biolo-

gical systems are complex and noisy. This combined with the presence of

many metabolites in often low concentrations makes it generally difficult

to quantify more than a handful due to poor signal-to-noise ratios and

spectral overlap. To improve SNR multiple repeats are necessary for noise

filtering, outlier rejection and averaging of the signal, which makes MRS

time-consuming.

MRS pulse sequences are primarily designed around broadband ex-

citation, exciting all metabolites simultaneously. In theory, this should

provide maximal information but in practice is not the case. Due to the

high spectral overlap between metabolite peaks, more prevalent metabol-

ites, especially those with high concentrations typically obscure peaks

of lower concentration metabolites, making accurate quantification of

these metabolites not possible. To address this issue pulse sequences

have been developed that utilise frequency-selective editing, such as

MEGA-PRESS [91, 92] or Hadamard encoding and reconstruction of

MEGA-edited spectroscopy (HERMES) [125].

These editing pulse sequences are commonly used to aid the quanti-

fication of the primary inhibitory neurotransmitter GABA. Due to the

importance of this metabolite and the difficulty quantifying it in-vivo
there is large focus in the MRS community on improving its quanti-

fication [31, 95, 101, 103, 106]. In Chapter 5, a method is presented to

customise spectral fingerprints of different metabolites to make them

more distinguishable.
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1.1.2 Spectral Quantification: A complex Inverse Problem

Spectral quantification is reverse engineering a spectrum to obtain abso-

lute or relative concentrations of metabolites that have contributed to it.

As explained above, quantification of in-vivo spectra is a complex task

due to low SNR, a high level of spectral overlap and a range of non-linear

noise sources distorting the spectrum.

Several software packages are available to perform quantification, usu-

ally focused on handling the task as an inverse-problem by fitting a

“basis-set” of known signals to the spectrum. The issue with this approach

is that basis set selection is complicated and typically separate basis sets

are required for different magnetic field strengths, pulse sequence, pulse

sequence timings and scanner hardware. To further complicate the matter,

basis set creation is complex and time-consuming. Basis sets derived from

experimental spectra suffer from issues with spectral quality. Compu-

tationally derived basis rely on accurate replication of pulse sequences

and accurate models for metabolites for simulation. Finally, creating

numerical models to match and correct or remove noise sources and

distortion is complex. This leads to software that can be complicated to

use, requiring specialist knowledge, with multiple options available to

the user for adjusting fit parameters. It is also an obstacle to widespread

clinical use, which calls for programs that do not require lengthy spe-

cialist training and enable clinicians to quickly obtain relevant, reliable

data for diagnosis without having to tune many parameters. Ideally,

quantification should be automated to speed up the process and remove

any bias or uncertainty introduced by manual adjustments of parameters.

The current state of quantification in MRS is difficult to assess due

to a lack of benchmarking of existing methods. Using in-vivo data for

verification of quantification methods is problematic due to the absence of

ground truth data, while simulated spectra are generally not sufficiently

representative of experimental data (see Fig. 4.6). Reviews of different

tools therefore often use linear combination of models (LCModel) as a

benchmark, accepting the results it generates as the ground truth, with

analysis of how well the reviewed method can match this data. Meth-

odologically, this has substantial flaws as will be discussed in Chapter

3.
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1.1.3 Pulse Sequence Optimisation: A novel approach

Pulse sequence optimisation is rarely found in MRS, where optimisa-

tions are typically focused on protocol enhancements for current pulse

sequences. These protocol enhancements have significant benefits to the

clinician or patients, where a reduction in total scan time or reduced total

energy has a direct impact on patient wellbeing. This, however, is not the

focus of this thesis. Instead, it focuses on a novel method for the design

of RF control pulse shapes found through numerical optimisation.

Classical broadband pulses are based around rotations, designed to act

universally on all spins rotating them by a fixed angle, e.g. 90◦ or 180◦.

Alternatively, pulses that selectively excite specific frequency ranges have

been implemented and combined with universal pulses in the previously

mentioned MEGA-PRESS [91, 92] and HERMES [125] sequences to im-

prove chemical selectivity. However, the design of pulse sequences to

detect low-signal metabolites such as GABA is challenging, the process

of designing and testing these pulse sequences can be lengthy 1 and there

is considerable room for improvement.

This thesis focuses instead on the design of pulses that selectively

excite certain modes in specific metabolites. We show later in Chapter 5

we are able to custom define how the spectra for each metabolite should

behave. This is done by selecting individual protons on a per–metabolite

basis that should be in an excited state, effectively silencing protons that

are not of interest and removing their signal from the resulting spectrum.

This ’target-state’ is then used as an optimisation target, with the aim

of producing an RF pulse that is able to place multiple metabolites in

their target-states concurrently. This sort of pulse sequence optimisation

focused on clinical MR is not typically seen, where the focus is usually on

NMR instruments where the level of robustness needed is substantially

less. This is the second strength of this method, with experimentally

validated ranges of instabilities integrated directly into the optimisation,

putting these theoretical pulses within reach of experimental validation.

1 For example, the well known MEGA-PRESS pulse sequence is still considered to be
work-in-progress (WIP) since its conception in 1988.



1.2 published material 6

1.2 published material

Journal Papers

P1 C. Jenkins et al. ‘Seeking Ground Truth for GABA Quantification

by Edited Magnetic Resonance Spectroscopy:Comparative Analysis

of TARQUIN, LCModel, JMRUI and GANNET’. In: Mc (Sept. 2019),

pp. 1–23. arXiv: 1909.02163. url: http://arxiv.org/abs/1909.

02163 — under revision

P2 M. Chandler et al. ‘MRSNet: Metabolite Quantification from Edited

Magnetic Resonance Spectra With Convolutional Neural Networks’.

In: Mc (Sept. 2019), pp. 1–12. arXiv: 1909.03836. url: http://

arxiv.org/abs/1909.03836 — under revision

P3 Max Chandler et al. ‘Robust Quantum Optimal Control for Unique

Metabolic Spectra in Magnetic Resonance Spectroscopy’. 2019 — in

preparation

Conference Posters

P5 Max Chandler et al. ‘Quantum control for magnetic resonance

spectroscopy’. In: Proceedings of the All Wales Medical conference. 2017

P6 Max Chandler et al. ‘Advanced detection and quantification of

biomarkers in magnetic resonance spectroscopy’. In: Proceedings of
the EPSRC UK Image-Guided Therapies Network+ Launch. 2016

P7 Chris Jenkins et al. ‘Quantification of edited magnetic resonance

spectroscopy: a comparative phantom based study of analysis meth-

ods’. In: Proceedings of ISMRM Annual Meeting. 2019

1.3 contributions

C1 Contribution to benchmarking of existing tools for GABA quanti-

fication based on MEGA-PRESS spectra at 3 T .

C2 A new quantification method utilising a CNN for MEGA-PRESS

spectra: MRSNet.

C3 Application of quantum control to design optimal pulses for select-

ive excitation of metabolites.

https://arxiv.org/abs/1909.02163
http://arxiv.org/abs/1909.02163
http://arxiv.org/abs/1909.02163
https://arxiv.org/abs/1909.03836
http://arxiv.org/abs/1909.03836
http://arxiv.org/abs/1909.03836
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C4 New technique to optimise pulses stable with respect to a range of

B0 and B1 instabilities.

Contribution 1 (C1) is related to Chapter 3 and publication 1 (P1).

While this work was mainly completed by collaborators from Swansea

University I contributed to the analysis of the benchmarking datasets, in

particular, the initial planning and research for the project, aided in the

creation of two phantom datasets and performing the LCModel analysis

of the spectra. The novelty and importance of this work lies in providing

benchmarking data for the most popular MRS quantification tools using

experimental datasets with associated ground truth data. By publicly

releasing the experimental benchmark datasets of spectra, it allows and

encourages others to use it to analyse the performance of new or updated

methods.

C2 is related to Chapter 4 and publication 2 (P2).

This work aims to improve quantification of MEGA-PRESS spectra with

reference to the benchmark results from C1 by exploring the utility and

performance of CNNs. A large range of options are explored, including

how to present the data to the networks so they can learn effectively. It

ultimately leads to a CNN that outperforms LCModel in terms of speed,

simplicity and overall quantification accuracy.

C3 and C4 are directly related to Chapter 5 and P3-P7.

This chapter cover the largest body of work for this thesis with the aim

to produce RF pulses to excite metabolites into specific states utilising

control methods used for quantum spin-networks. C3 is the initial invest-

igation of applying these quantum control techniques to metabolites and

observing the resulting spectrum. The main focus of this contribution

is to explore the limits of the control and what is realisable. This contri-

bution shows that it is possible to produce controls that can manipulate

multiple metabolites concurrently, enabling a chemically-selective editing

of the spectra.

C4 focuses on improving the techniques from C3 to make them the-

oretically robust and experimentally realisable. The optimised controls

generated by C3 are sensitive to noise, and due to the nature of MR the

controls would not be effective in this environment. This contribution

focuses on producing controls that are robust with respect to a range of

expected instability from a clinical MR machine. By incorporating a range

of uncertainties into the optimisation, it is possible to produce controls

that are robust with respect to the two dominant sources of instability:

magnetic field instability and control accuracy.
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Additionally, as part of the work completed for this thesis a range of

code and data sources have been created:

• Max Chandler and Frank Langbein. MR spectral quantification using
convolutional neural networks. 2018

• S.M. Shermer; C. Jenkins; M. Chandler; F. C. Langbein. Magnetic res-
onance spectroscopy data for GABA quantification using MEGAPRESS
pulse sequence. 2019. doi: 10.21227/ak1d-3s20. url: http://dx.

doi.org/10.21227/ak1d-3s20

• Max Chandler. A scheduler for automated execution of code written in
bash. 2015. url: https://github.com/MaxChandler/scheduler

• Max Chandler, Frank Langbein and Sophie Shermer. A framework
for optimising MRS RF Pulses for metabolite target states. 2017. url:

https://qyber.black/MRIS/control

All are publicly available, except for the QControl framework. It is a

proprietary optimisation framework written in MATLAB for the optim-

isation of the MR control pulses. It is currently closed source but access

is available upon request.

1.4 thesis structure

This thesis is split into six chapters, including this introduction, with

three distinct contribution chapters: Benchmarking Quantification (C1),

MRSNet (C2) and Pulse Sequence optimisation (C3 & 4). Each of these

chapters will have an in-depth evaluation, with a summary evaluation of

the thesis found in the epilogue.

Chapter 2 introduces the background and major themes of this thesis,

starting with a brief introduction to the fundamentals of MR, the under-

lying physics and the hardware found in MR systems. An introduction

to simulating metabolite spectra, the mathematical formalism and the

current challenges in MRS simulation are outlined, followed by a brief re-

view of existing quantification methods considered in the benchmarking

exercise in Chapter 3. The notions of control optimisation in MR includ-

ing optimisation currently used in MRS and high-field NMR systems

are briefly summarised as a preamble to Chapter 5 on pulse sequence

optimisation.

Chapter 3 is focused on benchmarking the current state-of-the-art for

quantification of MRS MEGA-PRESS spectra for GABA quantification at

https://doi.org/10.21227/ak1d-3s20
http://dx.doi.org/10.21227/ak1d-3s20
http://dx.doi.org/10.21227/ak1d-3s20
https://github.com/MaxChandler/scheduler
https://qyber.black/MRIS/control
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3 T . This chapter examines the reliability of a range of quantification tools

when presented with experimental data that has associated ground truth

data, something that has not been done before on such scale. There is an

in-depth explanation of the tools and methods used to create the range

of phantoms for experimental validation, along with an explanation of

the fit routines used by each tool. This is followed by an analysis of the

performance of these tools.

Chapter 4 focuses on the development of a novel quantification method

utilising a convolutional neural network (CNN), leveraging the know-

ledge gained from Chapter 3 as a benchmark. This chapter examines

how to present spectra to a CNN and how this affects the performance

of the network. MEGA-PRESS presents a unique opportunity as multiple

spectra (edit-on, edit-off and difference) are available. Additionally, there

is a review of the performance effects of using basis sets from differ-

ent sources that are used to generate spectra to train the network. This

chapter shows that it is possible to improve upon current quantifica-

tion methods in terms of speed, accuracy and simplicity with a CNN

approach.

Chapter 5 introduces the theoretical validation of a novel method for

producing MRS RF pulses. These pulses are designed by a numerical

optimisation approach, based on techniques used for state transfer in

quantum processes. The goal of this method is to produce chemically

selective RF pulses that alter the resulting spectra, removing obscuring

signals. The targets are selected to excite specific protons or quantum

states for selected metabolites only, effectively allowing complete control

of the spectrum (if a suitable and realistic pulse can be found). This

chapter covers the challenges of this method, such as picking appropriate

targets, realistic time and energy constraints, and the integration of

scanner instabilities into the target function to produce robust pulses.

These robust pulses are the first step toward experimental validation

of this method. This chapter finishes with a comprehensive evaluation

of the utility of these pulses, and how well they are expected to be

able to theoretically perform with respect to a large number of scanner

uncertainties.

Chapter 6 evaluates and discusses the contributions made and presents

overall conclusions regarding the work presented on the current state of

quantification, the newly proposed MRSNet method, and pulse sequence

optimisation for chemically selective spectroscopy. The chapter concludes

with a discussion of future work.



2
B A C K G R O U N D

This chapter provides the background necessary for this thesis in mag-

netic resonance spectroscopy (MRS), quantification, neural networks, and

optimal control of quantum systems. Section 2.1 provides a background

to MR, the underlying physics, hardware, scanner control with pulse

sequences, and calibration to mitigate the challenging environment. Sec-

tion 2.2 dives deeper into the theory of MR and links with quantum

spin-networks which provides a primer to the later sections on control

optimisation. Next, Section 2.3 explores the aims and challenges, followed

by an in-depth literature-review of current methods, ultimately highlight-

ing the need for improvement. Followed by this is a brief background in

neural networks as a background for Chapter 4 in Section 2.4. Finally,

Section 2.5 covers optimal control, applications to quantum systems and

general optimisation found in MR.

2.1 principles of magnetic resonance spectroscopy

Magnetic resonance (MR), as the name suggests, utilises a strong mag-

netic field in combination with RF pulses for control to produce a signal

from biological material. MR is commonly known for imaging, with

clinical MR machines commonly referred to as MRI scanners. Magnetic

resonance spectroscopy (MRS) [46, 73] is another modality of MR that

requires no additional hardware than is necessary for standard MRI,

making it readily accessible in all clinical units and hospitals. MRS aims

to gain an understanding of the metabolic composition of a defined

region of interest (ROI). The spatial isolation is achieved through the

use of gradients that encode spacial information. This signal typically

originates form a quantum mechanical property called spin. Protons

(1H) are typically used for signal acquisition due to their naturally high

abundance in-vivo, but other nuclei can be used for spectroscopy such

as 13C or 31P. However, unlike MRI, MRS actively tries to suppress the

largest source of the proton signal, water, to measure the substantially

weaker metabolite signal. The resulting signal is Fourier transformed to

create a spectrum, that can later be decomposed to gain an understanding

of the metabolic content. MRS is effectively NMR performed on living

10
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Figure 2.1: Bloch Sphere. Image courtesy of Glosser.ca (CC BY-SA 3.0)

tissue, presenting a new set of challenges due to the higher temperatures,

constantly moving liquids with spacial localisation and calibration issues

across a much larger scan area.

2.1.1 Spin

Spin [4, 138] is the quantum mechanical property that enables MR. Spin

relates to the angular momentum of elementary particles, with the large

static magnetic field and electromagnetic signals to controls being able

to alter the magnetic moment, creating a signal. Simplified, spin (n) is

the angular momentum quantum number, of the form n
2 , where n must

be a non-negative integer. It is a fundamental property of particles, with

the spin number indicating how the spin can be quantised. For MRS,

any spin that can have its angular momentum quantised can be used

(i.e. any non-zero spin), enabling interaction and measurement within a

magnetic field. This thesis focuses specifically on the spin-12 hydrogen-1

(1H) nuclei used in standard, clinical MRI, due to the high availability

in-vivo.

In order to more easily visualise spin states in the following section,

the Bloch sphere is introduced. The Bloch sphere shown in Figure 2.1 is

a visualisation tool that provides a framework to project a quantum state

of a single spin, or an ensemble onto a 3D sphere.

The Larmor frequency ω of a spin is determined by the gyromag-

netic ratio of the spin and the local chemical environment, which alters

the resonance frequency. The resonance frequency of a spin is directly
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proportional to the strength of the main static external magnetic field

(B0).

ω = −γB0 (2.1)

The gyromagnetic ratio γ is 42.58MHz per Tesla [23] for 1H; for a typical

3 T clinical scanner, the operating frequency is near 127.74MHz. This

constant gyromagnetic ratio conveniently allows for spectra to be rescaled

to be in units of parts per million (PPM) (δ), enabling a comparison of

spectra between different strength magnetic fields.

δ =
f−ω

ω
× 106. (2.2)

State distribution in spin systems is determined by temperature and the

strength of the magnetic field as described by the Boltzmann distribution

in Equation 2.3.

z+

z−
=
e−∆E

kT
(2.3)

Where z+ and z− represent the populations of spins in the upper and

lower energy states, ∆E is the energy difference between the states, T is

the temperature in Kelvin and k is the Boltzmann constant.

To visualise this, the reader should imagine a set of spins tumbling in

space, which are subject to a static magnetic field. The rate of tumbling

is determined by the temperature, with spins either parallel or anti-

parallel with the magnetic field. These two states have nearly identical

populations due to the small energy difference between the spin states.

The thermal tumbling provides enough energy to ‘knock’ spins between

the higher and lower excitation states. Creating a small differential in the

number of spins either parallel or anti-parallel with the magnetic field,

with the favour being toward the lower energy state, in alignment with

the field. When a MR signal is emitted after excitation, the bulk of the

spins’ signals cancel each other signal out as they are in opposing states.

This leaves the remaining signal that originates from the small additional

percentage of spins previously in the lower energy state.

The aforementioned metaphor effectively describes a free induction

decay (FID) pulse sequence. An FID sequence is the most simplistic

pulse sequence, comprising of a single excitation RF pulse, followed

by an immediate readout. In the case of a group of single protons, a

B1 field is applied, tipping alignment away from the main static field

(B0) typically to a prescribed ‘flip-angle’ of 90◦. The B1 field is turned

off when the desired tip angle is achieved. With the protons magnetic

moment now aligned with the transverse field, a sine-wave can be read
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by a receiver coil in the transverse plane as the protons oscillate at their

Larmor frequency.

These spins eventually relax back into alignment with the magnetic

field due to relaxation; the natural process of entropy in MR. Relaxation

happens continuously, with the following two primary sources of energy

dissipation.

Spin-lattice relaxation (T1)

Spin-lattice relaxation is the longitudinal relaxation of spins. T1 is the

decay constant for the time taken to recover the z component of the

magnetism. T1 defines the time taken for spins to re-align with the static

field, after being excited and rotated into the transverse plane.

Spin-spin relaxation (T2)

Spin-spin relaxation is responsible for the loss of phase coherence of

spins in the transverse plane. Spin-spin relaxation is caused by random

processes, such as interactions with nearby spins, local magnetic field

disturbances and molecular tumbling effects. T2 is the decay constant for

spin-spin relaxation and is generally faster than T1. T2 is dependent on the

composition of the local environment, with different times found in-vivo
depending on the tissue type, e.g. for the brain, liver or prostate [38].

Molecules

So far, the discussion has been based on a free single proton in isolation

which is not realistic. In practice, spins are predominately bound in stable

chemical structures in-vivo, with the focus of this thesis specifically on on

Metabolites. Metabolites are any substance that is necessary for metabolic

function, e.g. for growth, signalling or stimulation and inhibition. The

chemical structure of these compounds directly affects the resonances of

the spins in the following ways.

Chemical shift

Chemical shift is the resonance frequency of a spin, relative to the static

magnetic field B0 frequency. The spectrometer frequency is directly

proportional to the strength of the magnetic field, which is later discussed

in Section 2.1.2. The chemical shift is determined by electron distribution,

which itself is determined by the chemical structure of the molecule. This

electron distributions partly shield the spin from the full effect of the
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external magnetic field, altering their resonance frequency, providing an

offset from the spectrometer frequency.

Chemical shift is a key property enabling identification of molecules

with MR spectroscopy, where the frequency offset from the spectrometer

is dependent on the chemical structure of the molecule.

J-coupling

J-coupling (indirect dipole-dipole coupling) is the hyperfine interaction

between two spins in the same metabolite, due to local interactions oc-

curring between electrons and nuclei. J-couplings are enabled via the

chemical bonds of a molecule, and they enable the transition of energy

between spins via these structures. Generally, the strength of these bonds

is based on proximity, with nuclei separated by fewer bonds experien-

cing a stronger coupling effect. J-couplings are invariant with respect

to scanner strength; this property means that as the scanner frequency

increases the distance between the split peaks decreases. Additionally,

J-couplings can be positive or negative; they are symmetric in strength

between two spins.

J-couplings are responsible for line-splitting seen in MR spectroscopy,

the multiplicity of which is based on the number of protons in the coupled

group. More coupled protons make for a more complex spectra increasing

the amount of line-splitting seen. This line-splitting provides a great deal

of additional information as it varies the spectra on a per metabolite basis,

compared to chemical shift alone which would simply produce singlet

peaks. J-couplings combined with chemical shift essentially gives each

molecule an electromagnetic fingerprint based on its chemical structure.

Conveniently line-splitting can only occur with nuclei that have an

integer spin value, meaning that the naturally abundant Carbon 12C

and Oxygen 16O isotopes do not cause line-splitting, simplifying the

spectra and simulation. A comprehensive introduction into line splitting

is unnecessary for this thesis, but an excellent background is available

from the Hans J. Reich at the University of Wisconsin [119].

2.1.2 MR Hardware

The primary component in an MR machine is the large static magnetic

field. This is usually generated with a superconducting magnet, cooled

with liquid helium and nitrogen. This magnet is typically in the 1.5− 3

Tesla range for a clinical scanner with 7 T for more advanced clinical
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Figure 2.2: The layers of a typical MR machines shim, gradient and RF coils.
Image Courtesy of Allen D. Elster, MRIquestions.com [34].

and research units. The focus of a clinical MR scanner is to provide a

large homogeneous magnetic field across a large scanner bore (<60 cm),

requiring a large magnet to generate a sufficient field.

For pre-clinical MR machines, it is not uncommon to find 9.4 T -15.2 T [141]

strength magnets; however, these have small scanner bores (<10 cm) and

are typically used for studies of small animals such as mice and rats.

NMR systems have magnets that are significantly stronger (15-25 T ) with

very small bore diameters (<5 cm), where the focus is shifted to studying

the chemical structure of molecules, rather than spacial localisation and

imaging. This allows NMR machines to be comparatively more compact,

all while achieving a much stronger and homogeneous field across the

scan area. Fundamentally, all of these machines utilise the same principle

but have significantly different focus.

As the strength of the principal magnetic field increases, it benefits

MRS by increasing SNR, and spectral and spatial resolution, leading to

a cleaner spectrum. However, at 7 T and above, the operating frequency

for 1H (298MHz) begins to reach the microwave band. As such, more

attention must be placed on limiting tissue heating from RF energy

exposure and reducing specific absorption rate (SAR), in addition to

reduced T1 relaxation times that must be compensated for.

An MR machine has many layers, as shown by figure 2.2. First, inside

the magnet bore are the shim coils, used to adjust the B0 field, reducing
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any inhomogeneities via “shimming”. Next, there is a selection of gradi-

ent coils, used for spatial localisation of signals, used heavily in MRI to

construct the images. These gradient coils are usually omitted from NMR

machines as they are not required as NMR typically excites the whole

volume inside the scanner bore. For the best SNR RF coils are placed

last, closest to the patient or specimen. For clinical MR machines, they

typically come with a selection of additional RF coils, such as spine coils

located in the patient table, or independently moveable coils for specific

applications such as head or knee coils. It is often more beneficial to use

these as these provide a much better SNR compared to the much larger

body coil due to the proximity.

2.1.3 Control (pulse sequences)

Pulse sequences are a programmed set of instructions for the RF transmit

and receive, and the gradients required for the operation of an MR scan-

ner. Each pulse sequence has a specific desired outcome, such as imaging

or spectroscopy. Pulses sequences additionally contain the waveform

to be transmitted by each coil at which time, along with the desired

amplitude and duration of the pulse. Whether these are achieved de-

pends on the characteristics of the waveform generator, amplifiers and

coil properties. Gradients are an excellent example of this, where a large

amount of energy must be ramped up and down through the coils. Near

instantaneous switching of this much energy is not possible, creating

a rise time before the maximum amplitude is achieved. This factor is

summarised by the ’slew-rate’ metric, which describes how quickly a

particular model of a scanner can ramp up to the maximum gradient

energy. With this in mind, and limits to the amount of energy a patient

can absorb, characterised by the SAR, pulse sequences must be designed

to be energy conservative and realistic where possible.

As an example MRS pulse sequence is the spin-echo (SE) pulse se-

quence. First, a 90◦ excitation pulse is applied to tip the magnetisation

into the transverse plane, away from alignment with the Z-axis. Spins

begin to precess in the transverse plane, some faster than others. This

excitation pulse is followed by a 180◦ pulse at TE/2, to rephase the spins

that are precessing at different rates due to T2 relaxation. If timed cor-

rectly, this leads to the maximal signal at the readout window TE. This

method of applying additional pulses for rephasing is widely employed
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Figure 2.3: PRESS pulse sequence diagram. Note the use of gradients used for
spacial localisation. Image Courtesy of Allen D. Elster, MRIques-
tions.com [34].

in other pulse sequences to negate the effects of phase decoherence in

the transverse plane.

To solve the spatial localisation problem gradients are employed in

MRS to encode spatial information by providing out-of-volume suppres-

sion and “spoiling” between RF excitation pulses to reduce any steady-

state magnetization in the transverse plane. Gradient localisation schemes

commonly used in MRI do not apply to MRS as they alter the resonant

frequency of the protons, which would destroy the spectra. Instead, RF

pulses combined with gradients in the x,y, z directions isolate the ROI.

Protons only in the intersection of each plane will experience all of the

RF pulses, creating the readout with the others dephased producing no

signal.

Spatial localisation schemes such as point resolved spectroscopy (PRESS) [7],

and stimulated echo acquisition mode (STEAM) [92] utilise these gradient

pulses to enable broadband excitation with spatial localisation. PRESS,

shown in Figure 2.3 utilises one 90◦ followed by two 180◦ pulses, whereas

STEAM uses three 90◦ pulses. PRESS is the preferred scheme, typically

producing twice the signal as STEAM. However, with PRESS, the pulse

sequence is limited in how fast the readout window can be, reducing its

utility at 7T due to the aforementioned T2 relaxation issues. STEAM, on

the other hand, can read out substantially faster than PRESS, enabling the

detection of short T2 metabolites, and has the added benefit of a much

lower SARs than PRESS.
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There are more complex pulse sequences available in MRS, such as the

edited pulse sequence Mesher-Garwood PRESS (MEGA-PRESS) which

uses frequency-selective editing pulses to suppress or enhance spectral

features. MEGA-PRESS is the main focus of Chapters 3 and 4 of this

thesis for its ability to resolve the low signal metabolite GABA.

MEGA-PRESS is based off the PRESS pulse sequence, with the same

structure of one 90◦ followed by two 180◦ pulses for excitation and refo-

cusing. MEGA-PRESS has two acquisitions, where the first acquisition

is essentially a PRESS sequence, acquiring an “edit off” spectrum. The

second acquisition includes two frequency-selective editing pulses placed

symmetrically around the final 180◦ refocusing pulse for the “edit on”

spectra.

The frequency selective pulses are utilised to excite spins that are

coupled to target spins to induce an excitation elsewhere in the spec-

tra. For the common application of GABA detection by removal of the

overlapping Cr peak, a frequency selective editing pulse is applied at

1.9 ppm to excite the coupled GABA spins near 3.1 ppm. As the Cr peak

is unaffected by this editing pulse, the spectra produced for the both the

edit off and edit on acquisitions is the same, allowing it to be subtracted

to form the difference spectra (edit on-edit off). Mullins et al. [101] pro-

duced an excellent review of the current practice and methods used for

GABA quantification with MEGA-PRESS.

More recently, the HERMES pulse sequence [125] has been developed.

This pulse sequence is an adaptation of the MEGA-PRESS pulse sequence

in an effort to unify the pulse sequence across vendors, as the current

implementation of MEGA-PRESS varies from vendor to vendor.

2.1.4 Robustness, Environment and Calibration

Some of the largest challenges facing clinical MRS are due to the envir-

onment and performing accurate calibration to mitigate the impact of

this. Calibrating the magnetic field across such a large volume, with the

added problems caused by physical movement of the patient and mo-

lecular tumbling in-vivo makes MRS very challenging. As spectroscopy

is essentially the measurement of offsets from the B0 field, any local per-

turbation seen by spins in this field can cause major problems, ultimately

drifting the location of spins relative to B0, migrating their location in

the spectrum. This effect causes the characteristic Lorentzian, Gaussian

and Voigt lineshape [86] in MRS, where the distribution of protons at a
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given resonance mimics the distribution of the B0 field across the ROI. To

reduce this effect, shimming is required for each new ROI in-vivo, with

each area having its own magnetic characteristics to be compensated

for. Automated shimming methods are typically a simple optimisation

routine, using a SE pulse sequence to measure the linewidth of the water

peak in the ROI, automatically adjusting the current to the shim coils,

attempting to reduce this linewidth. It is not uncommon to find a line-

width of >12Hz at 3 T in-vivo, where a range of <8Hz is suggested for

acceptable spectra quality at 1.5 T [27]. It is also common to find that the

automatic shim routines perform sub-optimally, and it is usually possible

to bring the linewidth down to around 4Hz with manual adjustments.

Additional calibration for the tip-angle is performed before scanning,

which aims to optimise the voltage of the RF transmitter to achieve the

maximum signal from the ROI. Effectively, this is an optimisation for the

Ernst angle, which describes precisely this effect. Similarly to before, the

calibration is performed by iteratively searching RF transmission voltages

with a SE sequence to maximise readout signal. Finally, adjustments to

the pulse sequence timing parameters TE (echo time; the time between

RF pulse and echo readout) and TR (repetition time; the time between

corresponding points in a repeating series of pulses and echoes) also

have a significant impact on the final spectra. These two timing values are

heavily dependent on the goal, such as suppression of macromolecule

signals with a longer TE time.

There are additional components of MRS control that are necessary to

acquire high-quality spectra, with one key area being water suppression.

chemical shift-selective (CHESS) [49] pulses along with gradient dephas-

ing is typically used before a pulse sequence, to suppress the dominant

water signal found around 4.7 ppm. Without this suppression, due to the

intensity of the water peak, the base of the peak can cover metabolite any

surrounding metabolite signal up to ±1.5ppm either side.

2.2 simulation

Simulation of MRS spectra is theoretically simple, however in practice

(see the later Figure 4.6) accurate simulation of the MR environment

and pulse sequences is incredibly challenging.This section introduces the

mathematics of closed spin systems, followed by open system dynamics

as the role of the environment in MR is substantial.
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(a) GABA chemical structure
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(b) GABA J-coupling network

Figure 2.4: Chemical structure of GABA alongside the corresponding Chemical
shift (ppm) and J-coupling (Hz) network. Values from Govindaraju
et al. [45].

Simulation of metabolites is one of the core themes of this thesis, where

it is used in two contexts; creation of basis sets for use as a source of truth

in quantification, and optimisation of pulse sequences. In Chapters 3 and

4 a range of simulators are used to create basis sets for quantification.

Later in Chapter 5 a custom Matlab framework [15] is used to optimise

RF pulses for simulated metabolites.

Simulation of MR is performed in the rotating-frame, simplifying

the simulation by removing the rapidly oscillating term that originates

from the B0 field. The underlying density-matrix simulation method for

molecules have been well studied, the reader is directed to the following

texts for a more comprehensive background [43, 55, 84, 122].

2.2.1 Metabolites as Spin-Networks

As previously mentioned molecules are a collection of atoms, bound into

a chemical structure. We consider protons in the metabolite molecules.

These protons form a network of spin-12 particles, as determined by their

chemical shift and J-couplings as shown in figure 2.4.

Spin-networks are not only found in molecules but are an essential

theoretical research tool for many areas of quantum systems in quantum

information transfer with spin-networks [74], to new device research

and manufacturing for quantum technologies [21]. Conveniently, the

simulation of quantum spin-networks and metabolites utilise the same

underlying mathematics, enabling the use of quantum control techniques

developed for such networks to optimise pulse sequences for MR.
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2.2.2 Closed System Dynamics

A closed system is one that isolated, with no interaction with an external

environment. In MR, such a system only experiences unitary evolution

under its dynamics and from the influence of two control fields (σx &

σy). These control fields represent the interaction the system experiences

from the two primary RF fields.

The Schrödinger equation describes the dynamics of a closed system,

ı h
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (2.4)

Ĥ is the total Hamiltonian, which is the sum of the system Hamiltonian

and the contributions from the Hamiltonians which define our controls,

and |Ψ〉 describing the wave function of the system.  h is the reduced

Planck constant  h = h
2π , where h is the Planck constant.

The system Hamiltonian H0 is comprised of the chemical shifts and

the J-couplings between nuclear spins, for N spins in the molecule.

H0 =

N∑
n=1

εnσ
n
z +

N∑
l=1

N∑
k=1

Jl,k
(
σlxσ

k
x + σ

l
yσ
k
y + σ

l
zσ
k
z

)
(2.5)

σnx , σny , σnz are the extended Pauli spin operators acting on spin n.

These are N-fold tensor products whose nth factor is one of the Pauli

matrices respectively, and all other factors are the 2× 2 identity matrix I.

σx =

0 1

1 0

 ,σy =

0 −ı

ı 0

 ,σz =

1 0

0 −1


The chemical shifts εn reflect the proton resonance frequencies relative

to the static magnetic field B0. The J-couplings Jl,k are the strength of

the interaction between two given spins via the hyperfine structure of the

molecule. Contributions from short and long-range dipole coupling terms

to the system Hamiltonian are ignored as their contribution becomes

averaged in isotropic liquids due to their chaotic motion.

Controls represent two orthogonal x and y RF coils found in all MR

systems with the corresponding control Hamiltonians Hx,Hy, which are

formed by the tensor product of the σlx and σly Pauli operators acting on

all spins l uniformly. The total Hamiltonian of the system becomes

Ĥ(t) = H0 +
∑
j=x,y

Hjuj(t) (2.6)

Time is split into K uniform time steps of length ∆t, from time 0 to

a prescribed final time T . Each control signal is a piecewise constant
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signal that is given by two vectors ux = (u(x,0), . . . ,u(x,K)) and uy =

(u(y,0), . . . ,u(y,K)), providing a control amplitude for each time step. The

modulation of these amplitudes provides the ability to steer the system

from some initial state towards the desired target state. This provides a

realistic control simulation, analogous to the digital-to-analogue converter

(DAC) found in MR systems for control generation, which outputs a

piecewise constant amplitude-modulated signal.

System simulation in this thesis is performed on the density matrix

ρ for easy translation to a dissipative simulation. The density matrix is

formed as the outer product of the wave function |Ψ〉.

ρ = |Ψ〉 〈Ψ| =
∑
j

pj
∣∣Ψj〉 〈Ψj∣∣ (2.7)

Where pj is the probability that the system is in state
∣∣Ψj〉 and the

∣∣Ψj〉
form the (computational) basis of the Hilbert space of all wavefunctions

of the system. All density matrices are normalised such that Tr(ρ) = 1.

The Schrödinger Equation (2.4) describing the dynamics of the system

becomes the Liouville-von Neumann Equation

ı hρ̇(t) = [H(t), ρ(t)] (2.8)

where [A,B] = AB−BA is the Lie bracket.

Solving the Liouville-von Neumann equation for a piecewise constant

control is directly derived from the Schrödinger equation solution, em-

ploying matrix exponentials. Hence, the dynamics of the system from an

initial state, described by the density matrix ρ0, is then given by

ρ(T) = U(T)ρ0U(T)
† (2.9)

where U(T) is the propagator from time 0 to T . Under piecewise constant

evolution it is computed as

U(T) = UKUK−1 . . . U2U1 where

Ut = exp{−i/ h∆tĤ(t)}, t = 1, . . . ,K. (2.10)

The readout is calculated by propagating the system under its dynam-

ics. At each time step, a signal is measured by projecting the density

matrix with the lowering operator in Equation 2.11.

σ− =

0 1

0 0

 . (2.11)

Finally, a simple decay model is imposed onto the readout signal to

simulate decoherence,

S(t) = S(t)e(−t∆t)/δ (2.12)
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where δ is the prescribed half-width half-maximum (HWHM) linewidth

of a Lorentzian in Hz.

2.2.3 Open System Dynamics

To simulate dissipation, the mechanics are extended by Markvoain dy-

namics to introduce the influence of the environment. This is necessary to

correctly simulate how the optimised pulses will perform in the presence

of T1 and T2 relaxation.

We define the Lindbladian, describing the effect of the environment,

L = Σn

(
γ1D

(
σ
(n)
−

)
+ γ2D

(
σ
(n)
z

))
(2.13)

where γ1, and γ2 are the inverse of T1, and T2 respectively, with σ−
being the lowering operator previously defined in Equation 2.11. D is a

super-operator acting on some operator v

D(v) = vρv† −
1

2

(
v†vρ+ ρv†v

)
. (2.14)

With the Liouville-von Neumann Equation, this leads to a Lindblad

master equation

ı hρ̇(t) = [H(t), ρ(t)] +L(t). (2.15)

Readout is calculated in the same way as non-dissipative simulation

by repeatability sampling with the lowering operator.

2.2.4 Challenges

Simulation of quantum systems is inherently challenging as the memory

requirement for the state vector grows exponentially with system size

(2N). Naturally, the exponential growth of the matrix size causes a close

to exponential growth in time requirement due to the computational cost

of calculating a matrix exponential required for simulation.

Figure 2.5 displays the memory requirement for the matrices for simu-

lation along with the average runtime for the inbuilt matrix exponential

function in Matlab (R2019a) performed on randomly generated com-

plex matrices. The sharp increase in runtime growth when compared

to memory requirement is due to the larger matrices being pushed to

slower memory types, moving from CPU cache down the memory-speed

hierarchy to RAM; for much larger systems, this data would ultimately

overflow RAM and end up in swap on disk, crippling performance.
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Figure 2.5: Simulation memory and time requirement. "expm" is the built in
Matlab (R2019a) matrix exponential function.

For a simplified optimisation with a pulse sequence has 1, 000 steps,

requiring 1, 000 matrix exponentials, each optimisation iteration for a

seven spin system would take 45 seconds, eight spins would take 171 and

nine 328. It is clear to see that this problem quickly grows out of hand.

However, conveniently the majority of metabolites that are of interest in

for this thesis are six spin systems, with the most significant being NAA

with seven.

MR simulation

Simulation of metabolites in the MR environment is particularly chal-

lenging, mimicking the broad range of potential noise sources, control

distortions and magnetic field instabilities. Unfortunately, even running

an open system simulation does not capture the wide range of potential

distortions, such as a poorly calibrated tip-angle leading to an under or

over-rotation of spins, changing the characteristics of the pulse sequences

and affecting the results. A large range of other effects, such as RF coil

ring-down, non-linear amplifiers favouring specific power or frequency

ranges and even the ramp up and down times of the RF and gradients

are unreasonable to characterise and simulate in the time frame of this

thesis. In general, a highly accurate MR simulator is complex, as hard-

ware uncertainties cannot be easily considered, or further extrapolated to

other MR machines, as they may each have their own peculiarities.

To further complicate the matter, simulation parameters for metabol-

ites are uncertain [70] and are still widely debated. These simulation

parameters designate the chemical shift of the protons and the J-coupling
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structure. This is later shown to be a large issue in Chapter 4, where

a range of GABA models (Govindaraju et al. [45], Kaiser et al. [60] and

Near et al. [103]) all fail to match experimentally collected GABA spectra

shown in Figure 4.6.

In addition, simulation of MR pulse sequences is complex, wherein

some cases (such as the MEGA-PRESS pulse sequence), the implementa-

tion differs from vendor to vendor. Furthermore, there are many possible

ways to achieve rotations in MR simulation, with either unrealistic in-

stantaneous rotations or through the use of shaped pulses. This choice of

pulse implementation not accurately recreate what is seen experimentally

by the spins, due to the range of potential distortions mentioned at the

start of this sub-section.

As mentioned in Section 2.2.4, simulation of MR spectra is computa-

tionally expensive. This imposes a limit to the number of spins a system

can have before it can no longer be simulated in a reasonable time on

standard computers, with current hardware, this limit tends to be around

10− 12 spins. Hogben et al. has developed ‘Spinach’ [54], a Matlab based

simulation library for spin dynamics that can simulate upto 40 spin sys-

tems. This is achieved through the removal of unpopulated states and

long-range couplings that have a minimal effect on the system dynamics.

Additional methods such as Spin-Scenario [20] and the Fokker–Planck

formalism [32, 71] have been recently displayed to aid in speeding up

spatially encoded MR simulations. Techniques used by these methods

to speed up MR simulation have not been employed in this thesis, for

a range of reasons. Primarily, as speed is currently not a concern for

the methods used as the largest metabolite (NAA) has 7 spins, but it is

on the roadmap for future work in Chapter 5. Secondly, by restricting

the number of state-spaces that are reachable to speed up computation

would theoretically constrain the optimisation of controls by restricting

the number of states that could be reached. In practice, these states may

never be used or even be attainable in a restricted MRS simulation, but

this would require significant investigation that has been constrained to

future work.

2.3 spectral quantification

Quantification aims to gain an understanding of the ROI by quantifying

the levels of individual metabolic contribution to the spectrum. Quan-

tification is inherently an inverse problem, where the metabolite signal
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is linearly proportional to the quantity. As such, it is typically tackled

by fitting a basis set of normalised pure individual metabolite spectra to

decompose the input spectra plus additional terms for baseline correction

and noise sources.

However, there are many ways to tackle this problem, focusing on time

or frequency domain analysis, fitting signals to a basis set, singular values

decomposition (SVD), principal component analysis (PCA), machine

learning, or peak integration, to name a few methods. Quantification can

be reported as a relative value by using a common metabolic marker that

is considered to have a stable quantity, such as NAA, Choline (Cho) Cr

or as an absolute value by using the water signal as the reference.

Due to the complexity of MRS, quantification is a challenging problem;

with a very low SNR, 10, 000 times weaker than water, spectra that fre-

quently overlap and obscure features, with a large variety of noise sources,

and with calibration and environmental factors additionally distort the

spectrum. Furthermore, additional sources of distortion can come from

spectral processing methods, such as the coil-combine algorithm, removal

of the residual water signal, baseline correction or phase correction when

incorrectly applied, often requiring an experienced operator to manually

correct. To further complicate the matter, quantification methods that

utilise a basis set require a separate basis for each pulse sequence, timing

of the sequence (e.g. the TE for PRESS), scanner B0 strength, and even

vendor pulse sequence implementation as these can vary [125].

An ideal quantification method should aim to be quick and automated,

enabling a clinician to quickly receive results, reducing workload and

negating the need for specialist training to use the software. Similarly, it

should also be verifiably accurate and precise across a broad range of

spectra, removing doubt in the accuracy of the results. However, current

quantification methods can be complex as a consequence of the difficulty

of the task, requiring experienced users to achieve accurate results. Many

methods have an extensive range of options to alter the quantification

method, altering the results, and potentially introducing a source of bias.

Methods that utilise basis sets as prior information have additional

hurdles to overcome when collecting the basis sets. These basis sets are

difficult to acquire; experimental basis sets are time-consuming to create

and suffer from the same environmental issues in their spectra, whereas

simulated basis sets are comparatively quick to simulate, they suffer from

the aforementioned simulation challenges in Section 2.2.4. Methods that

employ basis sets usually come bundled with a simulator to generate

them.
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Due to the range of presented challenges, quantification can be an

extremely time-consuming task, where time must be spent acquiring

or simulating basis sets, and adjusting fit, processing algorithms and

parameters. In the following section, there will be a brief background that

describes commonly used software packages available for quantification

and simulation, with a summary provided in Table 2.1.

2.3.1 Metabolites of Interest

A metabolite is a molecule that is involved with metabolism. They are

usually associated with a function, such as signalling, growth or fuel.

The role of metabolites in-vivo is complex and interlinked with multiple

processes. This complexity makes understanding a metabolite’s function

and its overall role in the human body a significant challenge. The

study of metabolites attempts to untangle these complex processes, how

they interact with each other, and how metabolite-related disorder can

have knock-on effects. This thesis focuses on five metabolites that are

of particular interest in MRS community for their links with metabolic

function and the insight they can provide in other areas. All metabolite

models in this section have their chemical shift (ppm) and J-coupling

(Hz) values from Govindaraju et al. [45].
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Figure 2.6: γ-aminobutyric acid (GABA) spectra (left), chemical shift (ppm) and
J-coupling (Hz) network (right).

γ-aminobutyric acid (GABA)

GABA (Figure 2.6) is the primary inhibitory neurotransmitter [88]. Its

quantification is especially difficult as it is present in low concentration

in-vivo and its characteristic MRS features overlap with those of much

more abundant metabolites, such as NAA and Cr, obscuring its signature

in MR spectra. This had lead to the development of new spectroscopic



2.3 spectral quantification 28

techniques, such as edited spectroscopy, that attempt to selectively edit

out certain features to make others observable. GABA is of particular

interest in psychology due to the wide-reaching effects when there is a

disorder in GABA levels. GABA levels have been correlated with many

disorders, such as anxiety [82], depression [126], schizophrenia [87],

obsessive-compulsive disorder [132], sleep disorder and post-traumatic

stress disorder [93], and social function in autism [67].
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Figure 2.7: N-Acetylaspartic acid (NAA) spectra (left), chemical shift (ppm) and
J-coupling (Hz) network (right).

N-Acetylaspartic acid (NAA)

NAA (Figure 2.7) is the second most prevalent metabolite in the brain. It

has a clear, distinct peak around 2 ppm that dominates the spectrum and

is often used as a reference for relative quantification. Because of this,

any improvements seen in the accuracy of NAA quantification has direct

effects on the quantification of all other metabolites. NAA is typically

associated with the repair and building of neurons in the brain, and as

such reduced levels are seen in patients after traumatic brain injury [97],

patients with early stages of Parkinson’s disease [105] and Alzheimer’s

disease [44]. Similarly, increased levels of NAA have links with improved

neuronal viability in old age, with increased concentrations found as a

consequence of aerobic exercise [35]. In cancer research, increased NAA

in cancer has been linked with a reduced survival rate [170]. For psycho-

logical disorders, decreased NAA has been linked with schizophrenia,

schizoaffective disorder and bipolar disorder [61, 69].

Creatine (Cr)

Cr (Figure 2.8) facilitates recycling the energy currency of cells and is

taken up by tissues with high energy demands such as muscles and the
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Figure 2.8: Creatine spectra (left), chemical shift (ppm) and lack of J-couplings.

brain. Cr is unusual when compared to the other metabolites that have

been selected, as it has no couplings creating straightforward spectra

without any split peaks caused by J-coupling. Cr is often used as an

internal reference compound, much like NAA due to the well-resolved

peaks and high temperature and pH stability.

Due to the importance of the role of Cr, reduced concentrations are

usually a symptom of a much larger problem as Cr is predominately

synthesised by the body. The effect of this deficiency is incredibly broad

and as such as a parent term for disorders stemming from it: Creat-

ine deficiency syndromes (CDS). CDS has links with a large range of

disorders, such as epilepsy, intellectual disability, muscle disorders and

gastrointestinal problems among others [80, 85].
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Figure 2.9: Glutamate spectra (left), chemical shift (ppm) and J-coupling (Hz)
network (right).

Glutamate (Glu)

Glu (Figure 2.9) is the most abundant neurotransmitter which primarily

serves an excitatory function, and due to the prevalence, it is linked to a

wide range of biochemical processes. The excitatory process in excess has

been linked to cell death through a process called excitotoxicity [173]. Glu
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receptors are linked to cancer growth, particularly melanoma opening

new treatment pathways to reduce tumour volume [143, 149]. The lack

of Glu specific studies is covered below under Glx.
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Figure 2.10: Glutamine spectra (left), chemical shift (ppm) and J-coupling (Hz)
network (right).

Glutamine (Gln)

Gln (Figure 2.10) is the most abundant metabolite in human blood. Gln

has an incredibly similar structure to Glu, and is a chemical precursor to

Glu. Like Glu, Gln is also linked to a large range of metabolic processes.

As before, the lack of Gln specific studies is covered below under Glx.

Glutamine (Gln) and Glutamate (Glu) combined (Glx)

Glx is not single a metabolite, but Glutamate (Glu) and Glutamine (Gln)

combined. Glx is frequently used in the MRS community to describe

the combined signal from both of the metabolites. This stems from the

inability to accurately separate them due to their highly similar chemical

structure and spectrum, particularly at 3 T and lower. Due to this, studies

performed at 3 T and lower that individually quantify Glu and Gln are

hard to find and are problematic with regards to their accuracy [90].

However, Glx is resolvable and is commonly studied with an excel-

lent review by Ramadan et al.Ramadan2013a. Increased Glx has been

linked with bipolar disorder [42], restless legs syndrome and sleep dis-

ruptions [96], and severe symptoms of attention-deficit hyperactivity

disorder in adults [85]. Decreased Glx and NAA linked with autism

spectrum disorder [153] and major depressive disorder [81].

In order to display the difficulty of quantification for this limited set of

metabolites, Figure 2.11 displays a simulated spectrum. This spectrum

has no noise and has a very reasonable FWHM linewidth of 2Hz; concen-

tration values are taken from Govindaraju et al. [45] for the human brain.
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(a) Individual metabolite spectrum (b) Combined spectra

Figure 2.11: Simulated combined FID spectra, 3 T , 2Hz full-width half-
maximum (FWHM), no added noise. Concentration values from
Govindaraju et al. [45], note how relatively low the GABA signal is.

This FID spectra is very idealistic for MRS and is only intended to dis-

play the overlap between this small subset of metabolites. In reality, these

spectra are substantially more complex, with many more metabolites

found in-vivo, with external nose, and a substantially broader FWHM.

These metabolites have been chosen due to their importance in addition

to the difficulty to quantify them. They encompass the current challenges

in MRS quantification well with two distinct challenges of accurate GABA

quantification in the presence of Cr and NAA, and secondly the separa-

tion of Glx at 3 T . These two targets are later used in Chapter 5 as they

are excellent for showcasing the method used to optimise the RF pulses.

It is clear to see the importance of studying these five metabolites due

to the wide-reaching impact any accuracy improvements to quantification

would bring. However, there are many more metabolites in the human

body, each of which will have a particular contribution to metabolism.

Methods explored later in this thesis are not restricted to these five

metabolites, but they are utilised to display the utility of these methods

to current relevant research.

2.3.2 Basis Sets

Basis sets are sets of metabolite signals that are used by methods that

attempt to quantify spectra as an inverse problem, by fitting the known set

of signals to quantify the spectrum. Selection or creation of the right basis

set is itself an incredibly complex task, a basis set that poorly represents

experimental data will ultimately lead to a poor fit. To further complicate

the matter, separate basis sets are required for each combination of pulse
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Figure 2.12: Effect of static field strength B0 for simulated GABA PRESS spectra.
Absolute spectra shown.

sequence, B0 field strength, pulse sequence timing (TE, TR) and in some

instances scanner manufacturer as each of these factors alter the resulting

spectrum in a variety of ways.

Basic simulators for basis sets often assume the molecule is prepared

in a well-defined initial state such as the ground state. They approximate

the pulse sequence by a series of instantaneous unitary operations acting

on the state at certain times, followed by readout of the MR signal, to

simulate the full MRS pulse sequence. More sophisticated simulators

perform time-resolved calculations for finite-duration pulses and include

the effects of relaxation or field inhomogeneities. However, the choices

of pulse shapes and pulse timings in vendor-specific implementations of

the MEGA-PRESS sequence differ [95] and are often not known precisely.

Therefore, quite often educated guesses must be made. Similarly, other

parameters, such as relaxation parameters or field inhomogeneities, are

typically not known precisely. Moreover, even metabolite models, includ-

ing chemical shift and J-coupling parameters, still have uncertainties [70].

A major source of these parameters for common metabolites in MRS is

the landmark paper by Govindaraju et al. [45], but alternative models

have been suggested, e.g., for GABA by Near et al. [103] and Kaiser et
al. [60].

Acquisition of an experimental basis requires the creation of a range of

calibrated phantoms, with the correct pH and temperature and addition-

ally added chemical markers, such as sodium trimethylsilylpropanesulf-

onate (DSS) to provide a reference signal. Phantom creation is typically

done for each metabolite individually to get a pure signal and later scaled

against the additional reference signal. For efficiency, a large range of

pulse sequences and timing variants should be scanned at the same time,

as phantoms typically have a short shelf life and are usually discarded

after use, requiring expensive large blocks of uninterrupted scanner time.

Experimentally collected basis sets often suffer from the same general

MR issues, where instabilities in the scanner, calibration issues and noise
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Figure 2.13: Effect of varying echo time (TE) times for simulated GABA PRESS
spectra. Absolute spectra shown.
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can distort the resulting spectrum, ultimately later influencing the quality

of the fit.

Simulation is the alternative to experimental basis set creation and is

typically preferred due to the substantially shorter time needed, lower

cost, and it removes the noise issues found experimentally. Simulation

enables alteration of parameters and is typically quick (> 60 seconds) to

simulate for metabolites of up-to seven spins. However, mimicking the

MR environment and pulse sequences is not a trivial task, and is further

complicated with the aforementioned issues of the accuracy of metabolic

model parameters for simulation [70].

2.3.3 State-of-the-art Quantification Methods

This section covers a selection of the most popular quantification software.

Table 2.1 shows a summary of the quantification tools mentioned along

with their approach to solving the issue. The most popular method is

to utilise a basis set, combined with a variant of the non-linear least

squares (NLLS) algorithm to solve the inverse problem. However, basis

sets and their creation presents additional challenges, where simulation

can be inaccurate and experimental basis sets suffer from the same

general issues as MRS.

Table 2.1: Summary of currently available quantification methods and software.

Basis set Peak

integration

Machine

Learning

Frequency

Domain

LCModel

TARQUIN

AQSES† VeSPA

GANNET MRSNet

Time Domain QUEST†

† Denotes an analysis method that is part of the Java-based MR user interface
(jMRUI) software package.

Linear combination of models (LCModel) [114, 115]

LCModel is widely considered to be the gold standard of spectral quanti-

fication. It uses the Marquardt modification of the Gauss-Newton NLLS

algorithm to decompose spectra in the frequency domain and spline fits

for removal of macro-molecule baseline signals. It also uses additional
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terms with normal distribution priors to correct for each metabolites’ T2
relaxation and frequency drift.

LCModel is commercial, Linux-based and costs $13, 200 per non-commercial

license (as of September 2019) [148]. LCModel is a black-box approach,

with few options to modify the process available to the user, with the

general focus on simplicity and robustness through automation. Basis

sets are provided by email from the creator or suggested external sources,

as LCModel is only able to simulate macro-molecule contributions, not

complete basis sets.

Totally automatic robust quantitation in NMR (TARQUIN) [120, 166]

TARQUIN is an MRS analysis tool designed for short echo sequences,

written in C++ under the GPL license and cross-platform on Windows,

Mac and Linux. It aims to solve quantification in the time domain using

the Lawson-Hanson non-negative NLLS [76] algorithm. Automated phase

and frequency correction is performed, along with the removal of the

water peak using HSVD (Hankel Singular Value Decomposition) [5, 108].

Much like LCModel, TARQUIN focuses on automation, with both a

graphical user interface (GUI) and command line interface (CLI) for

batch processing of spectra. TARQUIN can simulate and export basis

sets, with an inbuilt density-matrix simulator.

Java-based MR user interface (jMRUI) [147]

Java-based MR user interface (jMRUI) is a vast magnetic resonance ima-

ging and spectroscopy (MRI/S) toolbox with a range of quantification,

simulation and processing methods available. jMRUI is free to use for

non-commercial applications and is available on Windows and Linux.

jMRUI has a large range of available algorithms, including the NLLS

based advanced method for accurate, robust and efficient spectral fit-

ting (AMARES) and automated quantification of short echo time MRS

signals (AQSES), and the SVD based HLSVD (Hankel Lanczos Squares

Singular Values Decomposition), HTLS (Hankel Lanczos Total Least

Squares), LPSVD (Linear Prediction Singular Value Decomposition) and

quantification based on quantum estimation (QUEST).

AQSES [41, 112] and QUEST [47] are the two most predominantly

used methods from the jMRUI toolkit. AQSES is a method designed for

short-time echo sequences, uses a macromolecular baseline and auto-

matically removes any residual water signal. QUEST is a time-domain
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fitting method, utilising the simulators bundled with jMRUI for basis set

creation.

Versatile simulation, pulses and analysis (VeSPA) [140]

Versatile simulation, pulses and analysis (VeSPA) is a complete software

suite for simulation of spectra, pulse sequences, creation of basis sets

and spectral analysis. It is open-source, written in Python 2 and can

be run on Windows, Mac and Linux. VeSPA quantifies spectra in the

frequency domain, using the NLLS algorithm. The spectral quantification

is complex with a large range of options available to the user. Simulation

of basis sets uses the PyGamma library, a Python wrapper on the C++

NMR simulator GAMMA [116]. The internal basis sets are stored as sets

of peaks with frequency, magnitude and phase components that can

be used to re-simulate the spectra with different lineshape parameters

and models including Gaussian, Lorentzian and Voigt, this allows for an

incredibly flexible fit model.

GABA-MRS analysis tool (GANNET) [31]

GANNET is an open-source tool, dedicated to automated GABA quanti-

fication for edited spectroscopy, e.g. the MEGA-PRESS or HERMES pulse

sequences. It is written in MATLAB, so requires a software license to

MATLAB and a set of additional toolboxes to run; however, it is open-

source, and it can be run on Windows, Mac and Linux. GANNET fits

peaks in the frequency domain using the NLLS algorithm. It fits a Gaus-

sian peak for the 3 ppm GABA signal and a Lorentzian for the 3 ppm Cr.

Currently, it can only run with a single target per run from: GABA, Glx,

‘GABAGlx’, Glutathione (GSH) and Lactate (Lac) for the MEGA-PRESS

pulse sequence. It cannot quantify other pulse sequences, such as PRESS

or STEAM. GANNET incorporates a range of pre-processing tools that

automate ingress of raw time-domain data, performing channel combina-

tion, frequency and phase corrections and outlier rejection.

2.3.4 Review of the state-of-the-art

The motivation for this section comes from the clear disconnect in current

methods, and the need to improve on current standards. Studying the

performance of these tools is intrinsically difficult, as in-vivo data has no

associated ground truth, so the majority of studies measure performance

comparatively between tools. There are excellent reviews of these tools
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available here [47]. The following section is a review of literature that

has benchmarked current methods, motivating the work reported in

Chapter 3.

Comparative studies

There has been a limited amount of work comparing the performance

of these methods. [106] studied the reproducibility of quantification

of GABA with MEGA-PRESS at 3 T for LCModel, jMRUI and Matlab

(GANNET) using 28 healthy volunteers. Results show that LCModel

is the most consistent at reproducibility with Glx= 6%, GABA= 7%,

GANNET came second with Glx= 9%, GABA= 12% and jMRUI (AMARES)

came in last with Glx= 18%, GABA= 9%. This work is obviously missing

ground truth data as it has been done in-vivo. It also does not list the

actual concentrations reported by the tools to check if they report similar

values. This result can show how precise these tools are, but not how

accurate.

TARQUIN was compared to LCModel across a range of in-vivo and

simulated PRESS 1.5 T and 3 T data sources. It was reported that it is

“acceptable for most purposes” and “in agreement with the popular

frequency domain fitting program LCModel” [166]. However, upon look-

ing more closely at the data contained in the paper, they note a < 20%

error for Cr, TNAA, TCho and Ins with a < 40% error for Glx in 95%

in agreement between LCModel and TARQUIN for in-vivo data. This

in-vivo comparison with LCModel has no ground truth data along with

it, the reported metabolite concentrations in mM are compared to refer-

ence values for healthy males in the same age range. There is mention

of a Monte-Carlo spectra simulator used to verify both LCModel and

TARQUIN. However, only one fit is shown as a figure that appears to be

fairly accurate.

This study reports that TARQUIN performs in the same region as

LCModel on a range of in-vivo data, but it fails to assess the accuracy

of both of these methods, which could have been investigated more

thoroughly with their Monte-Carlo simulator.

In the literature, GANNET is cited to have “approximately equal”

performance to LCModel, jMRUI and TARQUIN [101], when discussing

the estimated GABA concentration for MEGA-PRESS spectra. This study

focuses on the quantitative analysis

Despite the success and considerable improvement of quantification

methods, it has been shown that there are significant errors in quan-
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tification between the different methods [62, 94, 129], in addition to

disagreement with phantoms of known composition [57]. These studies

highlight the need for improvement, for these methods to be reliable

enough for general clinical use.

The studies presented in this section have highlighted the challenges

in benchmarking quantification methods. There is no defined method for

benchmarking these tools, and as a consequence, it is hard to understand

the relative performance of these methods. While on paper they all per-

form well, the majority of them compare their performance to LCModel

in simulation or with in-vivo data, which is either not representative of

the real spectra found, or lacking ground truth data. This shows the need

for more reliable methods for quantification of MR spectra for MRS to

become a reliable tool for clinical use, especially for difficult-to-quantify

metabolites such as GABA.

2.3.5 Machine Learning for Quantification

The use of machine learning for MRS quantification has only started to

emerge in the last few years. Initial work was done by Das et al. [26], fo-

cused on the use of random forests trained on 1 million simulated PRESS

(3 T , TE = 35ms,BW = 2500Hz) spectra, and tested on 287 experimental

spectra. This work showed that quantification could be performed quickly,

with minimal interaction from the user, and can account for lipid and a

macro-molecular baseline. Results from this study are unclear, other than

the proposed solution is ‘comparable’ to LCModel.

This was followed by Hatami et al. [51], which was the first use of a

CNN for MRS quantification. They proposed a framework for simulating

and generating large numbers of PRESS (3 T , TE = 30ms,BW = 4000Hz)

spectra for training the CNN. This paper was compared to the QUEST

quantification method from jMRUI and their own random forest imple-

mentation of the work done by Das et al. [26]. They were able to show

that a CNN can outperform the random forest and QUEST quantification

methods.

Finally, recently Lee et al. [78] trained a CNN on 40, 000 PRESS (3 T ,

TE = 30ms,BW = 2000Hz) simulated spectra to quantify a range of

simulated and in-vivo data from five healthy volunteers. They utilised

zeroth-order phase correction from jMRUI for their experimental data,

along with the Hankel Lanczos squares SVD (HLSVD) filter for removing

the residual water signal. They highlighted the performance benefits of
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utilising CNNs for quantification and the impact that it would have on

a clinical application. This study further confirmed that a well-trained

CNN has the ability to outperform LCModel.

In NMR a method utilising Bayesian inference has been developed

for the analysis of time-domain signals [165]. This method leveraged

prior knowledge with associated probability distributions and estimates

‘nuisance parameters’ such as phase-shifts, decay constants and noise

parameters, outperforming Fourier based NMR methods. Due to much

higher spectral resolution and the focus on molecular structure elucida-

tion, the issues and applications of high-field NMR are different, and the

methods have not been applied to MRS quantification in-vivo.

2.4 artificial neural networks

This section is a brief introduction into neural networks necessary for

Chapter 4, where a convolutional neural network (CNN) is introduced for

spectral quantification. This section starts at the foundations of modern

neural network (NN)s, with artificial neural network (ANN)s. ANNs are

graph-like like structures that are intended to mimic the human brain.

These networks operate by taking a “sensory” input and returning some

output with the aim of solving a specific problem. This output is usually

tied to a classification or regression problem, depending on the desired

use-case of the network, such as guessing the genus of a flower based on

a photograph.

Input layer

x1

x2

Hidden

Layer 1

f6

f5

f4

f3

f2

f1

Hidden

Layer 2

f6

f5

f4

f3

Output
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Figure 2.14: An example artificial neural network (ANN) with two hidden layers,
two inputs and three outputs.
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Figure 2.14 shows a simple ANN structure, with two inputs [x1, x2],

two hidden layers and three outputs. All nodes are fully connected to

every other node in the next layer, with data flowing from left to right.

In this simplistic model, the values seen by each node is the sum of

its inputs. Activation of nodes is typically based on a threshold value,

with the output edge having a weight scaling the strength of the signal,

determining any modulation of the value between nodes. These internal

values are usually randomly initialised and optimised through several

rounds of training.

A ‘deep’ neural network typically refers to a ANN that has multiple

hidden layers in its architecture. The term is loosely defined but is used

to generally describe modern network architectures, such as ResNET [77],

which has a 152 layer implementation. Deep networks are able to perform

much more complex tasks than previously possible. This is in part due

to improvements in computing power and leveraging modern graphics

processing unit (GPU)s to reduce training time greatly, along with new

layer types and architectures.

There is a large range of other types of neural networks, such as

recurrent neural networks (RNN), generative adversarial networks (GAN)

and radial basis function networks (RBF) among many more.

2.4.1 Network Architecture

The architecture of a NN should be tailored to suit the specific problem

it is trying to solve. It is important to recognise what information needs

to be preserved in the data that is being passed through the network.

NNs have evolved a long way from the early fully-connected ANN

architectures, with an ever-increasing range of layers available for network

design. This range of NN layers are sandwiched together into a near

limitless configuration, limited by computational power. These layers

do not necessarily feed directly into each other, there can be forks and

joins, with multiple outputs for different trained tasks, creating complex

dataflows. Designing modern NNs can be challenging, typically requiring

a large number of iterations on the architecture before a ‘good’ solution

is found.
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2.4.2 Network Layers

A full in-depth discussion into NN types and layer types is out of the

scope of this thesis, but there is an excellent resource by Gu et al. [172] that

covers Recent Advances in NNs including layer types. This subsection

will briefly go over a few key components that are used later in Chapter

4.

Fully connected (FC)

Fully connected layers are where there is a connection between every

node in the current layer and the next. These have more recently been

described as ‘classification layers’ in CNNs but were historically the

only component in early ANNs. The use of fully connected layers has

generally been phased out of modern CNNs as it has been shown that a

fully connected layer can be represented by multiple, much faster and

memory-efficient convolutional layers [144].

Convoloutional Layers

Convolutional layers are arguably one of the most significant develop-

ments for NNs in recent years. Convolutional layers lead to the creation

of convolutional neural network (CNN)s, which recently have dominated

current NN research. Convolutional layers operate by providing each

neuron with a receptive field of the input, such as a (3×3) grid of a

photo rather than a single pixel. This allows the node to obtain a broader

context than has previously been possible.

Pooling

Pooling layers can be thought of analogous to compression, where a

range of inputs is averaged, or max pooled to form the output. Similarly

to convolutional layers, pooling layers also have a receptive field such as

(2×2) or (5×5). Pooling layers are typically used to reduce the amount

of data in the network, speeding up computation, and aiding in noise

reduction by reducing unnecessary data, while retaining the necessary

information for the desired task.

Activation Layers

Activation function layers are used to alter the data in the network by

applying a non-linear function. There is a broad range of functions
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that are typically used, with rectified linear unit (ReLU) [102] being

one of the most popular functions. When choosing activation functions,

it is important to consider the effect these have on the gradient back-

propagation, ReLU, for example, is not differentiable when the input

is > 0. This stops gradient back-propagation in its tracks leading to no

learning when values are > 0 inside networks, leading to the creation of

leaky ReLU (LReLU) [169] addressing this problem.

2.4.3 Hyperparameters

Hyperparameters broadly define any global variables that affect the net-

work, they are variables such as the learning rate (how much the network

will alter weights in the nodes) and the batch size (how many training

examples are fed to the network at once for training). Each of these values

is usually optimised in parallel (either manually or automatically) when

testing different network architectures, as each network will perform

differently based on these parameters. Poorly tuned hyperparameters

will cause a network to never correctly learn and could mimic a network

architecture that is not fit for purpose. Optimisation of these parameters

can be lengthy depending on the size of the input data, requiring a new

network to be trained each time.

2.4.4 Loss Function

A loss function is required to train a neural network; it is a mathematical

description of how well the network performs a particular task. Typically,

the output of a neural network is a vector with each value corresponding

to an output node, and the loss function is used to compare this output

with a vector that contains the ground truth. Choice of loss functions is

highly dependent on the problem at hand, such as using cross-entropy

for classification problems or mean squared error (MSE) for regression

problems. Similarly to the activation functions, the choice of the loss

function directly impacts the gradients seen in backpropagation and

should be carefully considered.

2.4.5 Optimisation

Training a NN in the context of this thesis is focused on gradient back-

propagation from supervised learning. Supervised learning requires a



2.5 optimal control and optimisation in mrs 43

training set with the associated ground truth data. Simplified, back-

propagation works by showing a network an example input, getting

the current solution and adjusting the internal values of the network

based on the difference with the ground truth. For back-propagation to

work successfully, suitable activation functions need to be chosen in the

network that has exact numerical gradients supplied.

Backpropagation struggles with deep networks with exploding and

vanishing gradients, where any error in the back-propagation destroys

the accuracy of the gradients; in extreme cases, this will overflow to

NaN. This leads to models having issues gaining traction and never

accurately learning. There are many methods to combat this issue, such

as architectural changes, weight regularisation and gradient clipping, but

these are out of the scope of this thesis.

2.4.6 Network Dimensionality

Chapter 4 primarily deals with 2D neural networks, but it is worth

briefly mentioning that there are other network architecture dimensions

available. The dimensionality of the network refers to the organisation of

the data and how this is handled internally. The dimensionality of the

networks is entirely dependent on the type of input data and the goal

for the network. For example, it may make sense to split a 2D image

into multiple layers for individual colours if the task performed by the

network needs to be particularly sensitive to colour. Similarly, if the task

is detecting movement in the video, it might make sense to have the input

be black and white single frames that are stacked into a 3D rectangle.

2.5 optimal control and optimisation in mrs

This section introduces the notion of optimal control in the general case

as a primer to Chapter 5. It is also contextualised with a literature review

of current optimisation found in NMR and MRI/S. We find that control

and optimisation in the MR context has a broad range of meanings. For

clinical MR it is typically related to protocol enhancements, and in NMR

it is optimal control. Finally, optimal control is presented in relation to

quantum systems, with examples of what can be achieved based off of

current literature.
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2.5.1 Optimisation

In this thesis, optimal control is concerned with driving a system (meta-

bolite) from an initial state to the desired state at a prescribed time. To

achieve this, metabolites are simulated in a MR environment, with the

optimisation adjusting the amplitudes for the RF used to control the

rotation of the spins. This provides the ability to steer the system towards

the desired state. The desired state corresponds to a complex excitation

state, for a pre-determined spectrum that the metabolite will exhibit. This

methods essentially tailor the resulting spectrum. A much more in-depth

explanation of this method can be found later, in Chapter 5.

Optimisation in MR is a broad topic, ranging from new clinical MRI

pulse sequences, energy reduction techniques to RF coil design [110,

151] and advanced decoupling sequences in NMR. To simplify, this

section, it is broadly split into clinical and non-clinical MR, due to the

vastly different requirements for development and implementation in

these areas. Clinical MR optimisations are typically focused on protocol

enhancements and modifications that provide new features, such as the

development of MEGA-PRESS, which is an alteration of the PRESS pulse

sequence but enables spectral editing. Generally, the difficulty of the

clinical MR environment makes it difficult to optimise controls for, with

comparatively low magnet strengths, poor B0 homogeneity, and scanner

energy limits must all be taken into consideration when designing pulse

sequences.

On the other hand, non-clinical MR provides a better platform for

experimentation with control techniques, when compared to the clinical

MR environment due to the increased level of control and general ro-

bustness due to the substantially stronger, more homogeneous magnet

with a larger range of coil and gradient channels available that can repro-

duce controls much more accurately. Additionally, these machines are

designed with higher energy limits in mind, as they do not need to be

safe in-vivo. MR controls can be ’squeezed’ to produce the same results

in a much shorter time, at the cost of higher energy, but with the benefit

of less time for the environment to disturb the control and spin states.

Unfortunately, due to the high level of control achievable in NMR, these

optimisation results typically do not translate back to clinical MR, as the

lack of stability degrades the accuracy of the controls.
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Clinical MR optimisation

There has been a diverse range of optimisations in clinical MR in recent

years, ranging from RF coil design to improve B0 homogeneity [168],

open RF coil design to improve musculoskeletal MR imaging [39] and

design of asymmetric gradient coils for improved performance [151]. In

protocol enhancements and optimisation, work is generally focused on

a specific use case, such as optimisation of MRI protocols for detection

of lesions in multiple sclerosis [156] or the visibility of the appendix in

pregnant women with suspected appendicitis [130]. For general imaging,

recent work has been focused on optimising the RF pulses to improve

contrast and SNR [118, 159], spatially selective RF [162] and optimisation

of RF and slice-selective gradients together [124].

There is minimal research that focuses on optimisation for MRS due

to the aforementioned issues in Section 2.5.1, as this is typically done

in the NMR context. However, advances have been made in speeding

up 3D spin-echo sequences [100] and the JPRESS pulse sequence [10],

and dynamic nuclear polarisation for 13C [163]. For pulse sequence

optimisation, work has been done suppressing NAA for Glu and Gln

detection by optimising a PRESS pulse sequence [3].

Work presented later in Chapter 5 appears to be the first attempt at

optimising pulse sequences for metabolite states focused on a clinical

MR environment.

Non-clinical MR

NMR has a plethora of optimisation based research, covering a broad

range of topics. For RF detectors, work has been done improving the

spectral linewidth with in-situ detectors [37]. Design and optimisation

of broadband excitation pulses in NMR has been very successful, fo-

cusing on improving performance and reducing the total energy of the

pulse [28, 65, 68, 134–136], selective decoupling [33] and band-selective

excitation [137]. More recently, work has been done investigating double-

quantum spectroscopy to improve ultrafast 2D NMR for analytical chem-

istry [123] and optimisation of the localisation routines for NMR field

cameras, that are used for mapping and calibrating the B0 field [19].

There is an excellent summary of techniques for NMR simulation and

optimisation in [160]. This summary provides an excellent background

into general spin control, and is framed in the context of utilising NMR

for quantum computing by creating quantum gates through optimal

control techniques. While this work is similar to later work in Chapter 5,
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it is focused around spin manipulation in a highly controlled environment

for single spins. The work presented later is focused on concurrently

controlling multiple metabolites, each of which have many coupled spins

in a complex and unstable environment.

2.5.2 Optimisation of Quantum Processes

Control of quantum processes is an ideal application of optimal control

theory, steering a dynamical system towards a desired state. Typically

these applications are developed on simulations of quantum processes, as

large-scale reliable quantum systems are incredibly hard to produce ex-

perimentally, with many hurdles to overcome in manufacturing processes

and material research to become viable. Despite this, there are numerous

applications of quantum control that are applicable and realisable now,

such as MR. MR is already a quantum control problem as it capitalises

on the quantum mechanical property of spin. Application of quantum

control techniques to MR is typically overlooked due to the increased

difficulty due to the large role of the environment. Later, in Chapter 5 we

display a method that optimises controls with knowledge of instabilities

in the environment to great effect.

Outside of clinical MR, optimal control of other quantum systems

has had numerous successes with control of spin systems, from optimal

information routing in spintronic networks with the use of static bias

controls [74], creation of high precision sensors [109] and, importantly, has

been shown to work well within the rotating wave approximation (RWA)

approximation [63]. An excellent review that benchmarks control and

optimisation methods applied to a range of open and closed quantum

systems, with varying targets is provided by [83]. Additionally, there

is an excellent review by Wershnik et al. [164] that covers quantum

control utilising lasers and is contextualised with examples in quantum

chemistry.

In the context of this thesis quantum control techniques are utilised

in Chapter 5 to optimise RF pulses for metabolites. This provides the

ability to steer the system with the knowledge of the underlying system

dynamics towards a desired target state. The result of this is the ability

to prescribe a state that would produce desirable spectra that would be

easier to analyse.

There is a range of optimal control methods that have been developed

for quantum systems, from the gradient free Nelder-Mead with CRAB [117],
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the first-order GRAPE [65] method, second-order Broyden–Fletcher–Goldfarb–Shanno

algorithm (BFGS) adaptation of GRAPE [28], to hybrid methods such as

GROUP [142] which combines GRAPE and CRAB.

Of these methods, there are a few schools of thought on control update

schemes, where control amplitudes are adjusted either sequentially as

with the Krotov-type methods, in parallel as done with GRAPE, or

hybrid update schemes which update subset of control amplitudes [83].

Generally, of the three methods, a parallel update scheme, combined

with limited-memory BFGS (L-BFGS) is usually preferred as it is able to

outperform the other methods [83].

These optimisation methods have been explored in the NMR con-

text [53, 64, 65, 160], but they have not been studied in the clinical MR

context likely due to the difficulty of the environment.

2.6 summary

MR is a rich and diverse field, with a wide variety of potential avenues

for improvement, with spectroscopy being one key area of many. The

applications of MRS are wide-reaching, impacting many areas of research

and aiding in medical diagnosis. This chapter has provided background

to the major themes of this thesis, providing a sufficient background

with relevant links to key studies where applicable. It has introduced a

wide variety of topics including the physics of MR, metabolites and the

simulation of metabolites, quantification, NNs and finally control and

optimisation of MR and quantum systems.

While there has been considerable progress in the accuracy of quan-

tification methods, there is still plenty of room for improvement. It is

clear that there is no generally accepted standard to benchmark current

and new methods. This is problematic, as there is no clear indication for

current researchers which tool to use, or if their results will be accurate

and reliable. Additionally, due to the large range of quantification options

available in some programs, it is incredibly easy to introduce bias acci-

dentally, ultimately skewing the results of the study. The benchmarking

issue is addressed in Chapter 3, which ultimately shows there should

be a more concerted effort on the whole to validate the performance of

quantification methods.

NNs are an incredibly powerful tool with a rich, ever-growing research

community to back them up. They are reshaping the landscape of re-

search with new, successful applications being found daily. MRS spectral
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quantification could be one such task, enabling methods that are com-

putationally fast, practically simple and require no specialist knowledge

to use, only to train. This application is later investigated in Chapter 4,

building on the earlier benchmarking work in Chapter 3.

Finally, quantum control has been successful in a variety of fields,

and it is an excellent fit for MR. At the core of it, MR is a quantum

control problem, but the design of new controls typically uses conven-

tional methods, such as broadband excitation pulses. Utilising quantum

control methods to design pulse sequences could bring a new era for MR,

much like how the application of fractal mathematics has substantially

changed antenna design. This idea is explored in Chapter 5, where these

techniques are utilised to create RF control fields for specific MRS targets.
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B E N C H M A R K I N G Q UA N T I F I C AT I O N O F M E G A - P R E S S

S P E C T R A

This chapter takes a deep dive into benchmarking quantification methods,

specifically focused on quantifying GABA from spectra that has been

acquired with the MEGA-PRESS pulse sequence. We aim to answer the

question of “How well do current quantification methods perform?” and

investigate “How can we benchmark current methods reliably?”. These

two questions are essential for improving quantification. The current

state of the performance of quantification methods is difficult to navigate,

with a distinct lack of studies that comprehensively benchmark multiple

tools with experimental data that has associated ground truth data.

Benchmarking in this chapter is done with a set of experimental data-

sets, collected from calibrated phantoms of known composition. Typically

quantification methods are benchmarked using simulated spectra, or

have their results compared to LCModel under the assumption that it is a

good source of truth. The novelty in this chapter is the fact that there has

been no previous efforts to benchmark a broad range of quantification

tools using an experimental dataset that has associated ground truth data.

This work has a strong secondary goal; to encourage other researchers to

use our dataset by publicly releasing it, with the hope others will create

and release their own analysis and phantom datasets.

3.1 introduction

Quantification is a necessary counterpart to MRS data acquisition, de-

coding the complex spectra into information about metabolite levels in

the ROI. In a perfect world, quantification would be a simple inverse-

problem, as the data from any MR scanner would perfectly match sim-

ulated signals. However, as introduced in Section 2.3, the reality is that

quantification is incredibly complex, with a vast range of sources dis-

torting the spectra. In addition, collection or generation of ground truth

basis sets through experimental or simulated methods is similarly diffi-

cult, with the former suffering from the same noise issues and the latter

struggling to accurately reproduce the experimentally observed spectra.

49
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This proposes a difficult challenge, where designing a universal quanti-

fication method is simply not possible due to the wide variety in spectra,

scanners and pulse sequences; even within the same pulse sequence for

one metabolite (see Figure 2.13). As such a wide range of tools has been

developed, with the most popular methods utilising a basis set of known

signals to decompose the spectrum. This practice isolates the difficulty

of sourcing, or defining the ground truth to base the quantification on,

and instead focuses on minimising the distortion and noise found in

the spectrum. Other methods, such as peak fitting are typically highly

specialised, focusing on a handful of metabolites and pulse sequences, as

generalisation is too complex.

As part of the quantification process, it is important to correct issues

with the experimental spectra before attempting quantification. Many of

these can be expected, such as frequency drifts or incorrectly phased data,

due to the way the scanner combines signals from multiple coils; with

the best quantification methods being able to handle these distortions

successfully. It should also be noted that any improvement seen down-

stream that would improve the data quality, such as scanner calibration

or pulse sequence design, makes the job of quantification easier and, as

such, should be a priority.

The ultimate goal of quantification is accurate, precise and timely

measurements that are immune to operator bias and easy to achieve

universally. This would provide a reliable platform to base medical

diagnosis and research on, without the need for a specialist to analyse

the incoming spectra. For this to happen, there needs to be a good

understanding of the current state of quantification, which methods are

performing the best in which areas and what needs to be improved. This

requires a comprehensive testing of methods, with high quality test sets

covering a wide variety of realistic spectra. This is naturally extremely

difficult, with collecting ground truth data associated with in-vivo scans is

not possible, and developing accurate phantoms time consuming, costly

and requires specialist knowledge.

The primary goal of this chapter is to benchmark the current state

of quantification for GABA with the MEGA-PRESS pulse sequence, ac-

quired at 3 T . This is done by creating a range of water and gel based

phantoms with a handful of metabolites, with the GABA concentration

varied across multiple scans. This is followed by quantifying the spectra

collected experimentally on a range of popular quantification programs.

The benchmarking performed in this chapter is used as motivation for
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the work in Chapter 4, where a new quantification method is presented

and benchmarked against the results presented here.

We additionally release the experimental datasets, with the aim of

encouraging other researchers to utilise these sets for their own bench-

marking, and ideally contribute their own. An ideal outcome would be to

eventually have a large and varied dataset of spectra with ground truth,

collected at multiple sites, on multiple scanners, with a large range of

metabolites to be used in analysing new tools. This is common practice

in other areas where creation and collection of high-quality datasets is

extremely time consuming, such as machine learning where it is used to

train and evaluate new models; it would be extremely advantageous to

do the same for spectroscopy.

This chapter starts with the methods used to prepare the phantoms, ac-

quire the data from the scanner and how the quantification is performed

across all the chosen methods. This is followed by the presentation of

results, where there is a discussion on the quality of the spectra produced

and the results from the quantification of the spectra with each of the

methods. Next is the evaluation and discussion, which covers both an

analysis of the phantoms and the quantification, which is broken down

on a per-method basis. From here, there is a short section on recom-

mendations for the future of benchmarking quantification, and how the

methods presented here could be improved. Finally, there is a summary

followed by a conclusion, wrapping up the findings in this chapter.

3.2 method

The work in this chapter is broadly split into two distinct sections: signal

acquisition and quantification. Signal acquisition encompasses the entire

work flow from creating the phantoms, calibrating the scanner, scanning

and transporting the data off of the scanner. Quantification covers all of

the considerations that had to be made to attempt a reasonable and fair

comparison of the methods.

3.2.1 Phantom Preparation

The key focus when preparing phantoms is accuracy, spending time

double checking measurements and calculations is essential as the quant-

ities of metabolite powder used is minute. The metabolites and concentra-

tions used were pre-determined, and made in a controlled environment.
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(a) Water phantom (b) Gel phantom

Figure 3.1: Water and Gel phantoms. The phantoms are approximately 5.8 cm
in diameter for the gel, and 8.2 cm for the water.

A simplified view of the process is: Firstly, the calculation and measure-

ment for the metabolite powder for a volume of distilled water, mixing

the solution, followed by pH calibration and temperature measurement,

and finally scanning. This process typically takes an hour or two for

a water based phantom, for gel phantoms there is additional steps for

heating the solution to dissolve the gelling agent, followed by a cooling

period which is typically overnight. Once phantoms are prepared, it is

important to scan them quickly, as without preservatives, they tend to

decompose after a week or two. Although adding preservatives seems

advantageous to keep hold of the phantoms, we chose to abstain in order

to keep the produced spectra clear of unknown peaks.

A range of phantoms was prepared and scanned over a six month

period, three water and a range of gel-based phantoms. Spherical phantom

containers were chosen to reduce magnetic susceptibility effects, that

can be scanned in any orientation, reduce the size of the air-phantom

interface and most importantly to minimise the spectral linewidth.

Phantom Containers

For good magnetic homogeneity, minimised voids and reduced air con-

tact, containers for phantoms should be spherical [Bluemer2016, 113].

Using a spherical phantom provides a shape is not only highly regular,

but it also enables easy analysis of any distortion seen in preliminary

MRI field maps. Additionally, by removing complex shapes it minimises

the possibility of any voids or pockets of air in the phantom, that could

cause susceptibility affects.
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pH 7 pH 3

Figure 3.2: The effect of low pH on the NAA spectrum. Edit off acquisition of
the MEGA-PRESS pulse sequence.

For our phantoms, shown in Figure 3.1, we used a 290ml glass, round

bottom boiling flask for the water based phantoms, and hard acrylic

moulds for the gel based phantoms.

pH Calibration

pH calibration is essential to the creation of accurate MRS spectra,

where improperly balanced solutions cause peak-drifts [113], such as

the 2.3 ppm NAA peaks as shown in Figure 3.2. This is important as the

pH of the phantom should match what is seen in the ROI the phantom

is mimicking in-vivo. For the phantoms used in this work, as they are

mimicking a subset of metabolite found in the human brain, the pH

should be as close to 7.2 as possible [11].

pH adjustments were made using a 36% hydrochloric acid (CAS-7647-

01-0) solution and a 3.99% sodium hydroxide solution (CAS-1310-73-2)

to achieve a pH of 7.2± 0.2.

Water Phantom

Water phantoms are comparatively quick to create, compared to the gel

phantoms. However, it is still a time consuming procedure where care

must be taken to ensure the correct measures are used as the quantities

of chemicals involved can be incredibly minute, especially for the ad-hoc

pH balancing.

For the water phantoms, we chose to use 290ml round bottomed

boiling flasks to contain the solution. These provide excellent B0 homo-
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geneity, with a large homogeneous region in the centre for acquisition

of high SNR spectra. De-ionised water is used as the solvent, with the

metabolites added in powdered form. Weights for each metabolite are

calculated for the correct mMol/ml, and dissolved into the solution with

a glass stir rod until there is no visible precipitate. In order to save time,

a base solution is made that contains static concentrations. GABA is then

added in small quantities to the flask to increase the GABA concentration.

A 350ml metabolite solution is made, with constant levels of [Cr &

NAA] for E1 & E2 and additionally [Glu & Gln] for E3 & E4. 290ml was

placed into the round bottom flask, with an additional portion reserved

for the concentrated GABA solution.

The water phantoms were altered during scanning sessions by increas-

ing the GABA concentrations. These variations in the GABA concentra-

tion are achieved by removing 1ml of phantom solution, and replacing it

with a highly concentrated metabolite solution, equivalent to 1 mMol/ml.

Between each scanning session pH was recorded, and adjusted if neces-

sary using the previously mentioned method. This method introduces a

potential methodical issue, as 0.004% of the previous GABA solution is

removed on each iteration, which is later corrected for in the phantom

concentration values.

Gel Phantom

Gel phantoms are designed to be tissue mimicking, simulating an envir-

onment that is much closer to one that is found in-vivo [52, 111]. They

are an excellent middle ground between water phantoms and biological

material, that retain the ability to customise the metabolite composition,

however, they are more time consuming to create.

Preparation of gel based phantoms require that the metabolite solution

is heated to around 90− 100◦ before the gel crystals can be successfully

dissolved. Once heated, the solution can then be poured into the phantom

moulds and left to set. Although these phantoms can be re-heated to

be liquefied again, this additional heating process makes gel phantoms

substantially less mailable than their water counterparts. Because of this,

a range of phantoms must be created at the same time, rather than one

water based one that can be adjusted in-between scans. Overall, this

makes gel phantoms more costly due to the higher amount of metabolite

powder needed along with the additional materials for moulds, gelling

agent and extra time needed to heat and pour the solution.
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For our gel phantoms, we prepared 800ml of the metabolite solution

containing constant levels of [NAA, Cr, Glu & Gln], split into eight

100ml portions, and had a range of GABA added as shown in Table 3.2.

Each solution was pH calibrated and 1 g of agar was added as gelling

agent. The mixtures were then heated to 90 ◦C to 100 ◦C while being

stirred until the agar had fully dissolved.

For our phantoms moulds, we used clear acrylic spherical Christmas

decorations, with a small hole (5mm) made to allow for filling made

with a soldering iron on low temperature. The solution was added to the

phantom moulds with a syringe, and allowed to cool overnight, before

adding silicone to seal the hole.

3.2.2 Phantom Composition

Our phantoms can be grouped into two sets; [GABA, NAA, Cr] and

[GABA, NAA, Cr, Glu, Gln]. These sets of metabolites were chosen to

specifically benchmark the accuracy of GABA quantification. The former,

([GABA, NAA, Cr]) provides the smallest reasonable set of metabolites

for benchmarking MEGA-PRESS. The latter set included fixed quantities

of Glx to see if this has any effect on the quality of the fit.

Table 3.1: Benchmark phantom composition of constant metabolite concentra-
tions in mM (mmol/l).

Series Medium pH # NAA Cr Glu Gln

E1 Water 7.2± 0.2 13 15.0 0/8.0 0.0 0.0

E2 Water 3.0± 0.2 15 15.0 8.0 0.0 0.0

E3 Water 7.2± 0.2 15 15.0 8.0 12.0 3.0

E4 Gel 7.2± 0.2 8 15.0 8.0 12.0 3.0

Tables 3.1 and 3.2 show the medium used, the pH and the metabolite

concentrations in mM (mmol/l). In general GABA was the only meta-

bolite where the quantity was varied over the course of the scans, with

the rest of the metabolites having a fixed value, with the exception of E1,

where the first scan only had NAA, the second NAA and Cr.

The phantom concentrations were selected to mimic the ranges of

the selected metabolites in a normal human adult brain Govindaraju et
al. [45], with the exception of GABA. GABA typically has a concentration
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Table 3.2: Benchmark phantom GABA concentration in mM (mmol/l).

Scan number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E1 0 0 0.5 1 1.5 2 2.5 3 4 6 8 10 11.6

E2 0 0.5 1 1.5 2 2.5 3 4 5 6 7 8 9 10 11.8

E3 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E4 0 1 2 3 4 6 8 10

of 1.3− 1.9mmol, where in our phantoms it extends all the way up-to

14mmol providing ample opportunity to correctly quantify the signal.

Phantoms E1, E3 and E4 were all pH adjusted, no pH calibration was

performed on E2; the pH was found to be 3.0± 0.2.

3.2.3 Scanning Conditions and Settings

Phantoms were scanned on a 3 T Siemens MAGNETOM Skyra located

at Swansea University, UK which has an operating B0 field of around

127MHz (3 T ). The scanner room and phantom temperature was con-

trolled at 20± 0.6◦C by the air conditioning. Phantom temperature was

measured between each scanning run to check for any heating affects, of

which the variation was negligible.

The WIP MEGA-PRESS 859D 1 pulse sequence (TE= 68ms, BW =

1250Hz) was used with CHESS water suppression pulses, over a 20×
20× 20mm3 voxel with spectra averaged over 160 acquisitions. Editing

pulses were applied at 1.9 ppm during the off and 7.4 ppm during the on

acquisition to remove the obscuring Cr resonance from the GABA signal

at 3 ppm.

Phantoms were placed at isocentre in the scanner bore for the best

B0 homogeneity. The signal was acquired from the spine coils located

in the patient table, due to them exhibiting the highest SNR of all the

available coils due to their proximity to the phantoms. Shim and flip-

angle calibration was first done using the automatic calibration routines

on the scanner, and further manually adjusted to improve the strength of

the apparent diffusion coefficient (ADC) and to minimise the linewidth

of the spectra.

1 Work in Progress; the product is currently under development and is not for sale in the
US and in other countries. Its future availability cannot be ensured.
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3.2.4 Quantification Procedures

We aimed to perform quantification in the simplest way possible, without

the addition of custom code or scripts where possible, in an attempt to

reduce operator bias. For all programs, only the difference spectrum (diff)

was used for quantification (edit on - edit off), with no additional input

of a water unsuppressed spectra, to focus on relative quantification. All

tools were provided with the unedited Siemens “.IMA” digital imaging

and communications in medicine (DICOM) in order for the input data to

be compatible and consistent across all tools.

However, special care had to be taken due to the comparatively low

temperature of the phantoms, compared to in-vivo. The resonance fre-

quency of the water peak is directly dependant on temperature, and as

such this leads to the location of it shifting. Many quantification methods

use the water peak as a frequency reference; for some quantification

methods other reference peaks had to be used, or the frequency axis

manually corrected.

While using these tools, the creators were not contacted in regards to

optimising fitting for MEGA-PRESS, to remove any source of potential

bias. The aim was to use these tools as any other user would, starting

from a place without specialist knowledge of their usage, but utilising

the recommended settings in the user guides.

Totally automatic robust quantitation in NMR (TARQUIN)

TARQUIN version 4.3.11 was used with the inbuilt MEGA-PRESS basis

set for quantification. For frequency referencing, the NAA peak was used.

It is worth noting that TARQUIN has a comparatively different approach

to MEGA-PRESS quantification to other basis set methods. It attempts

to adjust the signal and phase to correct the negative NAA peak found,

and treat quantification more like a PRESS spectrum.

Linear combination of models (LCModel)

LCModel version 6.3-1L was used, with the MEGA-PRESS basis sets

were sourced from Dr. Dydak’s lab at Purdue University, USA [30] under

the recommendation from the creator of LCModel, Stephen Provencher.

This is the standard process for acquiring LCModel basis sets; email-

ing Stephen Provencher, as indicated in the user manual [113]. The 3 T

Siemens difference basis set with the Kaiser couplings [60] was used for

quantification. The settings shown in Listing 3.1 were used to enable
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MEGA-PRESS quantification, as recommended from the LCModel user

guide.

Listing 3.1: Recommended LCModel MEGA-PRESS quantification settings [113]

SPTYPE = ’mega-press-3’

PPMST = 4.2

PPMEND = 1.95

Java-based MR user interface (jMRUI)

jMRUI version 6.0 beta was used, with both, the time domain quantifica-

tion based on quantum estimation (QUEST) and automated quantifica-

tion of short echo time MRS signals (AQSES) methods assessed. The basis

set was simulated using jMRUIs inbuilt simulator: NMR-SCOPE-B [146].

The MEGA-PRESS protocol for simulation was created matching the

MEGA-PRESS implementation utilised experimentally. Manual adjust-

ments to frequency and phase calibration along with apodization on the

input spectra was performed, before being passed onto the quantification

methods. The fit amplitudes were used as the reported units.

GABA-MRS analysis tool (GANNET)

GANNET version 3.0 was used and run with MATLAB (R2018a), with

adjustments made to the the pre-initialisation script to compensate for the

room temperature phantoms, by adjusting the frequency offset. GANNET

requires no basis sets as it is a peak fitting method. As GANNET reports

the area of the peaks, rather than the expected concentration, the area of

GABA and NAA is multiplied by 3
2 to account for the proton weightings,

and to obtain the GABA-to-NAA ratio.

LWFit

LWFit is a proprietary fitting method developed as part of this study by

our collaborators S. Shermer and C. Jenkins [59]. The method is simplistic,

and is an attempt to see how well a basic numerical integration routine

would perform when compared to the more complex available methods.

It uses a numerical peak integration method to fit peaks over a pre-

determined frequency range per metabolite. As before with GANNET,

the ratios are achieved by multiplying the GABA and NAA reported

ratios by 3
2 to account for the proton ratios to the respective peaks.
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3.3 results

The results are presented in two sections: firstly, the quality of the ob-

served spectra, followed by the presentation of the results from the

quantification methods.

3.3.1 Spectra Quality

Tables 3.3 and 3.4 display the average linewidths of the water and NAA

peaks from a Lorentzian fit for all series. Additionally, the WS factor

(WSF) and SNR for the NAA peak is shown. Overall, the linewidths

for the solution phantoms is excellent in the 2− 4Hz range, suggesting

an accurate B0 shim was achieved producing high quality spectra. For

the gel phantoms, the linewidths are expectedly worse as they mimic

the environment found in-vivo, with the water peak around 12Hz and

the NAA around 4Hz, however this should be more than acceptable for

spectroscopy at 3 T .

Table 3.3: Linewidths (Hz) of the H2O (mean±std) peak with water suppression
(WS) On and Off for the Edit Off spectra, as well as mean WSF.

Series WS Off WS On WSF

E1 2.40± 0.67 2.10± 0.54 1840

E2 3.04± 1.44 2.82± 1.03 1873

E3 2.98± 0.90 4.16± 2.02 665

E4 11.16± 3.19 12.42± 9.01 478

Table 3.4: Linewidths (Hz) of the NAA peak (mean±std) for Edit Off and differ-
ence spectra and the mean SNR of NAA peak.

Series NAA Edit Off NAA Diff. NAA SNR

E1 1.19± 0.31 1.19± 0.31 209.6

E2 1.84± 0.33 1.85± 0.33 223.0

E3 1.97± 0.25 1.98± 0.25 222.0

E4 4.20± 1.48 4.25± 1.55 109.7
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E1

Figure 3.3: E1 real difference spectrum. GABA concentration increasing from
bottom to top.

Figure 3.3 shows a waterfall plot of the real difference spectrum for E1.

The spectra are well resolved, with clear distinct features indicative of

the lowest linewidth of all the series as shown in Table 3.4. The editing

efficiency is also excellent, with no visible residual Cr signal in the

difference spectrum, clearly displaying the GABA triplet around 3 ppm.
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E2

Figure 3.4: E2 real difference spectrum. GABA concentration increasing from
bottom to top.

Figure 3.4 shows a waterfall plot of the real difference spectrum for E2,

the low pH phantom. As before with E1, the spectra are of good quality,

with well resolved sharp peaks. The linewidth of the NAA peak as shown

in Table 3.4 is still below 2Hz, which is excellent. However, the effect of

the low pH is clear to see, with the NAA peaks drifting from around

2.3 ppm all the way up-to 2.8 ppm. This also appears to have a large effect

on the GABA peaks seen around 3 ppm, where in E1 they are visible, in

E2 are now a small ‘mound’ and have lost their distinctive shape despite

having very similar concentrations in both phantoms.
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E3

Figure 3.5: E3 real difference spectrum. GABA concentration increasing from
bottom to top.

The E3 phantom introduces Glu and Gln to the composition, complicating

the spectrum as shown in Figure 3.5. As before, the spectra are well

resolved, still maintaining the linewidth of NAA less than 2Hz. However,

this water phantom has the lowest WSF of the three, suggesting that the

CHESS routine was not fully effective. Despite this, it does not appear

to have an adverse affect on the quality of the spectra. The spectra from

E3 are more complex than E1 and E2 due to the additional peaks from

Glu and Gln. The GABA peaks around 3 ppm in the difference spectrum

are well resolved and visible with an additional contribution from Glx

around 3.8 ppm.
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E4

Figure 3.6: E4 real difference spectrum. GABA concentration increasing from
bottom to top.

Our final set of spectra are from the E4 Gel phantom as shown in Fig-

ure 3.6. The peaks in the spectra are visibly wider, with the linewidth

of the NAA peak being two times wider than the water based E1-E3

phantoms. In addition, this phantom has the lowest WSF as shown in

Table 3.3. However, these two effects are to be expected by the tissue

mimicking gels. The NAA and Cr peaks are still well resolved, with the

GABA triplet visible at 3 ppm and the Glx contribution around 3.8 ppm.

3.3.2 Quantification Performance

As relative quantification is being performed, a reference metabolite is

needed to produce a ratio. Cr and NAA are common reference metabol-

ites. However, as the Cr signal is edited out in the difference spectrum
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for MEGA-PRESS, we use NAA as the reference. As such, performance

is assessed on the GABA-to-NAA ratio, comparing the reported values

to the known values. Results are analysed by comparing the slope and

intercept of the real-to-predicted values reported over a 95% confidence

interval (CI), along with the coefficient of determination (R2). The ideal

quantification method to have an intercept at 0, a slope of 1 and an R2

value of 1.

Results from all quantification methods are summarised in Table 3.5.

The following paragraphs contain figures plotting the slope and intercept

of each quantification method, for each phantom.

Figure 3.7: GABA/NAA ratio for E1 displayed as the predicted-to-actual ratio.
Dashed lines are linear fits per quantification method. The light grey
line represents an ideal quantification method, with a 1:1 ratio.

E1

Figure 3.7 shows the GABA-to-NAA ratio for the E1 series. Visually,

LCModel and LWFIT perform the best, with the closest slope and in-

tercept to the ideal quantification method, with well grouped linear

estimations, leading to their high R2 values in Table 3.5. GANNET simil-

arly produces a reasonably linear set of predictions with a good intercept

near 0, however the slope of 0.27 displays how significantly it is under-

estimating the ratio. TARQUIN, AQSES and QUEST all over-predict the
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ratio, with TARQUIN producing a relatively linear set of estimations

(R2 of 0.95) and an intercept near zero of −0.11. However, it grossly

over estimates the slope. Both of the jMRUI based methods (AQSES and

QUEST) perform the worst of all the methods by detecting GABA where

there is none present with an intercept near 0.5, in addition to having a

poor scaling with a slope near 0.6 and poor linearity with an R2 of 0.68.

Figure 3.8: GABA/NAA ratio for E2 displayed as the predicted-to-actual ratio.
Dashed lines are linear fits per quantification method. The light grey
line represents an ideal quantification method, with a 1:1 ratio.

E2

Figure 3.8 displays the quantification results for the E2 phantom, which

is the low pH water phantom. Overall, all quantification methods make

more stable estimations, with a mean R2 value of 0.90 compared to 0.85

for E1. In general, similar trends continue, with LCModel, GANNET

and LWFIT continuing to underestimate the ratio, and with TARQUIN,

AQSES and QUEST over-estimating. TARQUIN provides the best fit

for this dataset, with a good slope of 1.07, intercept of 0.05 but with a

comparatively average R2 of 0.9. LCModel performs significantly worse

than on the E1 phantom. However, this is to be expected as the basis

sets provided no longer match the experimental spectra. LWFit overall

performs reasonably, which is to be expected as it does not use a basis set
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but peak integration, where at the same time GANNET performs poorly,

perhaps trying to fit a Lorentzian peak to the uncharacteristic signal from

GABA as seen in Figure 3.4.

Figure 3.9: GABA/NAA ratio for E3 displayed as the predicted-to-actual ratio.
Dashed lines are linear fits per quantification method. The light grey
line represents an ideal quantification method, with a 1:1 ratio.

E3

Figure 3.9 shows the quantification results for the water based E3 phantom,

that unlike E1 and E2 now contains Glu and Gln. Overall, quantification

performance is relatively poor, where the best methods are LCModel

and LWFIT with the best slope and intercept values, but they still un-

derestimate the ratio by around 30%. TARQUIN, AQSES and QUEST

continue to over-estimate the ratio, with all having a slope greater than

1.2. The jMRUI based methods continue to detect GABA when it is not

present in the phantom with an intercept of around 0.2 with all other

methods having intercepts near 0.0. LCModel, GANNET and LWFIT are

the three methods that have similar results to E1, suggesting the inclusion

of Glx has little effect on their ability to quantify NAA and GABA. In con-

trast, TARQUIN, QUEST and AQSES have large differences in their slope

and intercept values, but similar NAA variation, alluding to difficulties

quantifying GABA when Glx is present.
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Figure 3.10: GABA/NAA ratio for E4 displayed as the predicted-to-actual ratio.
Dashed lines are linear fits per quantification method. The light
grey line represents an ideal quantification method, with a 1:1 ratio.

E4

Finally, Figure 3.10 displays the quantification performance on the gel

E4 phantom. Overall quantification is the worst across the board com-

pared to the other phantoms, with the lowest average R2 of all three

phantoms of 0.65, suggesting the difficulty of quantification is greater.

The same quantification trends continue, with LCModel, LWFIT and

GANNET under-estimating the ratio and TARQUIN, AQSES, QUEST

over-estimating. Overall LWFIT performs the best of all methods, with

an intercept of 0.03. However, with a slope of 0.58 it underestimates the

ratio by 42%. AQSES and QUEST have few visible points inside the plot

area, and again with intercepts of around 0.5, detecting GABA when it

is not present. TARQUIN has the worse R2 seen for any result across all

phantoms, with a range of scans decreasing in their predictions as seen

between 0.2− 0.4 in the figure, it would appear that TARQUIN struggles

quantifying with the higher linewidth.
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3.4 evaluation and discussion

Overall, we have highlighted the importance of benchmarking quanti-

fication methods with experimental data. All of methods tested, at best,

are concerningly far from the ground truth and, at worst, will incorrectly

report high levels of GABA when none is present. In addition, we have

shown that it is possible to create calibrated phantoms relatively easily to

achieve high quality spectra.

However, as the spectra were collected from one scanner, with one

pulse sequence and we only focused on the GABA-to-NAA ratio, it is

hard to generalise. In theory this should apply across the board, but there

may be environmental factors or user error altering the quality of the

spectra from the scanner. It would be excellent to see this extended into a

multi-site study, with different scanner manufacturers, magnet strengths

and a range of pulse sequences for a range of metabolites, but this is

clearly beyond the scope of this work.

The following two sections will explore in greater depth into the

analysis of the phantoms and the quality of the quantification.

3.4.1 Phantoms

Overall we were able to get a range of 51 MEGA-PRESS spectra with

varying concentrations of GABA. These phantoms were time consuming

to create and scan, typically requiring at least a day or two for the water

phantoms and three for the gel series. However, as shown in Tables 3.4

and 3.3 a high level of calibration was achieved, leading to low NAA

peak widths less than 2Hz for the water phantoms and 4.2Hz for the gel

phantom. The spectra, as shown earlier in Section 3.3.1, are high quality,

with easily visible metabolite features.

The E2 phantom spectra, as shown in Figure 3.4, highlights the import-

ance of correct pH balancing when creating phantoms. This was shown

in the results, as the majority of the quantification methods struggled to

quantify the E2 spectra when compared to the E1 phantom which has a

very similar chemical composition, but a neutral pH.

The gel phantom E4 produced expectedly worse spectra, mimicking the

environment found in-vivo. Despite this, the linewidth achieved on the

NAA peak is within reasonable values for 3 T in-vivo spectroscopy [167].

It is interesting to note that all quantification methods struggled with
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this, suggesting that more research is needed into benchmarking these

tools with tissue mimicking gels.

3.4.2 Quantification

The results highlight some interesting shortcomings for the selected

quantification methods for MEGA-PRESS spectra. Generally, for all

phantoms LWFIT performed the best, with the closest average gradient

and intercepts. However, it was specifically designed in conjunction with

this study. Of the external tools, LCModel is the best performing on

all phantoms, but it consistently under-estimates the ratio by around

50%. Overall, all methods performed worse on the issue mimicking

E4 phantom. This result is worrying and highlights the need for more

testing of these quantification methods, as they are designed for in-vivo
quantification.

TARQUIN

TARQUIN consistently overestimates the GABA-to-NAA ratio, with the

exception of the E2 phantom, for all others the mean predicted slope

is 2.15. In addition, TARQUIN struggles to consistently estimate the

constant NAA concentration. The large variation for E1 may be due to

an unexplained rescaling of metabolite amplitudes between scans 10 and

11. The % variation of NAA for scans 1 – 10 is 6.09%. There is no simple

explanation for the large variation reported by TARQUIN for E4. For the

water based phantoms (E1-E3), TARQUIN is relatively consistent in the

linearity of the predictions as indicated by the high R2 values. However,

for E4 this drops substantially, struggling with consistency for the gel

based phantoms.

LCModel

LCModel was the best performing external tool, consistently suggesting

a low intercept value and typically having the highest R2 value per

phantom. Of the external tools, it was consistently the closest to the

ideal quantification method. However, it consistently under-estimates

the GABA-to-NAA ratio, and expectedly performs poorly on the low

pH phantom due to the basis not matching the spectra. Worryingly, in

line with the other methods, the performance drops for the gel phantom,

underestimating the ratio by 55%. Overall, this suggests that LCModel is
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a good tool for highly calibrated spectra, but it begins to struggle with

distorted spectra shapes as seen in E4.

jMRUI

Both AQSES and QUEST from jMRUI were consistently the worst of all

the quantification methods for consistently having an intercept that is out

of an acceptable range, and with the exception of E4 consistently making

the least consistent predictions as suggested by the R2 value. This is

worrying, as both methods report a quantity ofGABA when there is none.

Both methods appear to be relatively consistent with each other, with

their slopes and intercepts for each phantom typically having close values.

AQSES and QUEST are the only methods in this set that share the same

basis set simulated from jMRUI. In addition, both methods were supplied

spectra that had a range of manual pre-processing steps performed by

a user for filtering and frequency and phase calibration from jMRUIs

interface. Both of these could potentially be sources of methodological

bias, where a more experienced user may be able to optimise each step

of the process to improve the fit. This specifically highlights the difficulty

and complexity of quantification, and where possible user interaction

and the number of user-made choices should be minimised.

LWFIT

Overall, LWFIT was the best performing method, outperforming LCModel

in terms of gradient accuracy marginally in most cases, and significantly

for the E2 phantom by 30%. Overall, it reports an intercept value close to

0, consistently achieves a high R2 value and had the lowest mean NAA

variation of 2.68%. This is rather surprising, as it is a simple peak integra-

tion method. However, despite the successes of the method, like LCModel

and GANNET, it consistently under-estimates the GABA-to-NAA ratio

by around 40%. This result may be unsurprising, as the method was

developed in conjunction with this study and so presents a significant

source of methodological bias. However, with this in mind, it fails to per-

form significantly better than the second place LCModel. As this method

is peak integration directly measuring the observed area, it would be

difficult to apply to more complex spectra with spectral overlap without

careful consideration of peak locations and fitting methods. As such, it is

not a generalisable method, but it appears to work well for edited spectra

where the overlap issue is removed.
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GANNET

GANNET was the only external non-basis set method, and unfortunately

it performed poorly at estimating the GABA-to-NAA ratio. It consistently

underestimated the slope, where in the best case it estimated it to be

0.33 for E2 and 0.25 in the worst for E4. However, like many other

methods it was able to consistently estimate an intercept near 0 along

with having a low overall variation in the NAA estimation. This consistent

underestimation of GABA may be due to the Gaussian model used to

fit the GABA peaks, where visually our well resolved peaks are more

Lorentzian. Nevertheless, GANNET is able to produce a reasonably

consistent set of estimations, as shown by the high R2 values.

3.4.3 Methodological Issues

This work was an initial study, where our group was investigating the

need for benchmarking. While this has shown some rather surprising

results, there are a few issues that should be addressed in future work

before the results should be considered generalisable.

Firstly, this work was conducted at a single site and only assess the

performance of the GABA-to-NAA ratio. This makes this work difficult

to generalise to different strength scanners and even to other scanner

manufacturers, as MEGA-PRESS is known to have vendor specific imple-

mentations [101]. In addition, although it may be unlikely, any issues with

the spectra produced at Swansea would be difficult to detect without hav-

ing data from another site to compare to. In future, it this study should be

expanded to include multiple scanners at different sites, from a range of

vendors and with a broader range of pulse sequences. In addition, a range

of gel phantoms could be made to have specific T1 and T2 relaxation

properties, it would be interesting to explore a range of phantoms that

mimic specific areas in-vivo, and their relaxation times. Additionally, the

use of a vendor made spectroscopy specific phantom would be interesting

to explore, as this would provide us with a high quality reference spectra.

This would also make a multi-site study substantially easier, assuming

that other locations also have the same phantom available. This were not

explored as we did not have one available, and the cost to purchase them

is substantial.

Our phantoms were designed to provide a ”’best-case”’ scenario, where

only a minimal number of metabolites were used to simplify the quanti-

fication problem. It is important to recognise that the environment in-vivo



3.4 evaluation and discussion 72

is much more complex, with a diverse range of metabolites. As such, it is

important to continue this work by expanding the range of metabolites in

the phantoms, such as Choline, Glutathione, Phosphocreatine and Myo-

inositol. Introducing more metabolites would make the spectra more

complex and the quantification more challenging, but would bring the

benchmarking spectra closer to what is seen in-vivo. By collecting a larger

range of spectra, it would allow the results to be more generalisable.

At the initial conception of this study, there were two groups of thought

as to how to approach the quantification. One was to use the same basis

set for all of the basis set methods, with the second being to use the

recommended basis set or simulator for each method. During the initial

research, the former method raised an interesting set of issues, where

most quantification methods are unable to export and read each other’s

basis sets. From our set only LCModel and TARQUIN are able to share

the same basis set by being able to read LCModels proprietary “.BASIS”

files. This has left us with the latter method of using the recommended

settings for each quantification method. As the performance of the basis

set methods is directly reliant on the quality of the basis set, it is extremely

difficult to separate this effect in our analysis. In addition, it appears that

this may even be the case for the jMRUI results, as the two independent

methods consistently have similar results, potentially due to their shared

basis. In order to correctly assess the underlying performance of the basis

methods, there would need to be a standardised format for saving and

loading of basis sets used by all tools. Currently the LCModel “.BASIS”

and “.RAW” appear to be the most transferable, but with a very poorly

documented standard, and it is based on an old Fortran file format

that is not particularly human readable. Ideally, a new format should

be specified and used by all programs, perhaps in a easily human and

machine readable mark-up language, such as YAML or JSON.

For most of the basis set quantification methods, the Govindaraju et
al. [45] GABA model is used. However, the LCModel basis set used the

Kaiser et al. [60] model for GABA. As before with the different basis

sets, by changing the metabolite model this adds another uncontrolled

variable for this study, making it difficult to understand a cause and effect

with the results. In theory, the success of LCModel could potentially be

due to this metabolite model. In the future, the metabolite models should

be standardised across all quantification methods.

Overall the results suggest that peak integration methods are more

robust than basis set methods for edited MRS, perhaps a consequence

of the simplified spectral landscape, eliminating the requirement for
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basis set fitting. This is in agreement with the observations of Mosconi et
al. [99], who also reported the robustness of these methods in-vitro but

note the poor performance of integration methods in-vivo. However, due

to the absence of a ground truth, the accuracy of quantification is difficult

to establish for in-vivo data.

3.5 summary

This chapter has presented work for benchmarking a range of quantific-

ation tools using experimentally collected MEGA-PRESS spectra at 3 T .

Overall, we have shown that there is a great deal of need to have a more

rigorous method to benchmark these quantification methods, in order

to improve them. We have also shown the procedures used to create a

range of water and gel based spectroscopy phantoms for this method are

not complex, and are within reach of many other researchers.

The quantification methods investigated present a worrying picture

for the current accuracy of GABA quantification with MEGA-PRESS at

3 T , with the best external quantification method (LCModel) consistently

underestimating the GABA-to-NAA ratio by 38%-55% for the pH neutral

phantoms. For the other methods, AQSES, QUEST and TARQUIN were

very far off the mark, and GANNET performing similarly to LCModel

but typically underestimating by at least an additional 20%.

The systematic errors observed require further study to elucidate

the precise nature of the variation and this work highlights the need

for standardisation of existing methods and the development of new

approaches to quantification of MRS data.

The methodological dependence of the quantification results observed

also suggests that care must be taken when comparing results across

studies, where analysis pipelines may differ and standardisation is de-

sirable where possible. Furthermore, the methodological dependence is

not restricted to instantaneous measurements of GABA, but is in fact

found to propagate into reported changes in concentration, with tools

presenting a range of GABA-to-NAA gradients. This finding is of great

relevance to clinical studies, with our results suggesting that reported

differences between normative and disease state GABA measurements

will also be influenced by the choice of analysis method.

Finally, we have made our spectra datasets publicly available [75],

allowing others to use and expand on this dataset for benchmarking new

or updated methods. This is the first step in generalised improvements
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in MR quantification, as there is a clear need for experimental validation

of methods.
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Table 3.5: Quantification results for GABA-to-NAA ratios on E1 - E4 phantoms.
Gradient (Grad.), intercept (Int.) are displayed over a 95% confid-
ence interval (CI) in addition to coefficient of determination (R2) and
percentage of NAA variation.

Series Tool Grad. (95% CI) Int. (95% CI) R2 NAA %

TARQUIN 2.85 (2.41,3.30) -0.11 (-0.27 ,0.05) 0.95 38.2

AQSES 0.66 (0.36,0.96) 0.47 (0.37 ,0.58) 0.68 3.86

E1 QUEST 0.57 (0.29,0.84) 0.48 (0.39 ,0.58) 0.66 4.03

LCModel 0.62 (0.59,0.65) 0.01 (0.01 ,0.03) 0.99 2.76

GANNET 0.27 (0.20,0.34) -0.01 (-0.09 ,0.01) 0.86 3.39

LWFIT 0.68 (0.61,0.77) 0.009 (−0.02 ,0.04) 0.95 2.61

TARQUIN 1.07 (0.86,1.27) 0.05 (-0.03 ,0.19) 0.90 2.87

AQSES 1.01 (0.73,1.29) 0.27 (0.16 ,0.38) 0.81 4.95

E2 QUEST 1.06 (0.72,1.39) 0.27 (0.15 ,0.41) 0.77 5.52

LCModel 0.23 (0.20,0.27) 0.013 (0.01 ,0.03) 0.95 4.33

GANNET 0.33 (0.30,0.36) -0.021 (-0.04 ,-0.01) 0.98 2.85

LWFIT 0.53 (0.48,0.59) −0.005 (−0.02 ,0.03) 0.96 4.22

TARQUIN 1.85 (1.72,1.97) -0.04 (-0.12 ,0.03) 0.99 5.55

AQSES 1.40 (0.86,1.93) 0.20 (-0.09 ,0.50) 0.71 3.59

E3 QUEST 1.41 (1.04,1.79) 0.23 (0.03 ,0.43) 0.84 3.31

LCModel 0.59 (0.55,0.64) -0.04 (-0.07 ,0.02) 0.98 3.77

GANNET 0.30 (0.25,0.34) -0.01 (-0.03 ,0.02) 0.95 3.31

LWFIT 0.62 (0.56,0.69) 0.03 (−0.00 ,0.06) 0.97 1.59

TARQUIN 1.77 (-0.54,4.08) 0.13 (-0.70 ,0.96) 0.37 42.1

AQSES 1.17 (0.15,2.18) 0.47 (0.12 ,0.84) 0.57 5.85

E4 QUEST 1.02 (0.18,2.22) 0.52 (-0.09 ,0.95) 0.42 6.11

LCModel 0.45 (0.21,0.68) 0.04 (-0.05 ,0.12) 0.79 7.83

GANNET 0.25 (0.16,0.34) 0.04 (0.01 ,0.07) 0.90 2.82

LWFIT 0.58 (0.35,0.82) −0.03 (−0.05 ,0.12) 0.86 2.29



4
Q UA N T I F I C AT I O N O F M E G A - P R E S S S P E C T R A W I T H A

C O N V O L U T I O N A L N E U R A L N E T W O R K

In this chapter, we explore a novel use of convolutional neural networks

as a method of quantification for 3 T MEGA-PRESS spectra. We explore

in depth how to present the spectra to the network, as MEGA-PRESS

produces multiple spectra due to the three acquisitions: Edit Off, Edit

On and Difference. In addition, the spectra can be presented as different

combinations of real, imaginary or absolute numerical values to the

networks. Every combination of acquisitions and data-types is later tested,

and shown that this ultimately has a large impact on the performance

of the network. For benchmarking the quality of the networks, this

chapter uses the data from Chapter 3. Using the benchmark results and

spectra dataset, we show that convolutional neural networks are able to

outperform the state-of-the-art on the supplied experimental spectra.

MEGA-PRESS is the focus of this chapter as, similarly to Chapter 3, it

provides an opportunity to quantify the relatively low signal intensity

metabolite GABA. As previously introduced in Section 2.3.1, GABA is

of high research interest and given the poor performance of current

quantification methods shown in Chapter 3, there is a significant need to

improve on quantification accuracy of GABA with MEGA-PRESS.

Using a machine learning approach, such as CNNs, has extremely

promising prospects for MRS quantification. Once a network is trained

and validated, quantification is quick and requires no specialist know-

ledge or adjustment of fitting parameters. CNNs are excellent at being

able to automatically extract and learn features from input data. This

shifts the focus when designing a quantification method from numerical

modelling of the spectra and noise to network architecture and input

data design. This chapter investigates in detail the range of choices in

presenting MEGA-PRESS spectra to a CNN along with a selection of

network architectures.

The major result of this chapter is a CNN architecture: ‘MRSNet’.

MRSNet is designed to solve the multi-class regression problem that is

spectral quantification. It accepts a selection of spectra as the input, and

returns the relative quantities of five metabolites: [NAA, Cr, GABA, Glu

and Gln]. The following sections describe the process of investigating a

76
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range of choices that shaped the network design. Section 4.1 outlines the

network architectures tested, along the range of input data shapes, data

sources for training and testing and finally the experimental datasets

used for validation. Section 4.2 steps through a range of experiments that

feed sequentially into each-other, affecting experimental design decisions

along the way in order to limit the search space. This section covers a

range of network architectures, spectra representation into the network,

basis set selection and a comparison with the state of the art. This specific

sequence of experiments was chosen as a logical progression of network

improvements, starting with the fundamentals and iterating on the design.

Finally, there is an evaluation and summary of the work in this chapter.

MRSNet outperforms LCModel in the majority of cases of the specific

benchmark spectra dataset introduced in Chapter 3, where LCModel is

the best performing publicly available method in that chapter.

4.1 method

MRS network (MRSNet) is a 2D CNN. Input data to the network is a

N× 2048 matrix, where each row contains one component of a single

spectrum. The maximum number of input rows is N = 9 for the real

and imaginary part and magnitude of up to three spectra (edit-off, edit-

on and difference). Spectra are zero-padded and trimmed to obtain a

length of 2048 in the range from 4.5 ppm to 1.5 ppm, i.e. each column

is a single frequency bin 0.0014 ppm wide, providing ample resolution

for small features. The majority of convolutions are 1×M, spanning

horizontally across the frequency bins to align with the separate rows of

the input spectra. This network structure is loosely based on the Visual

Geometry Group’s (VGG) CNN architecture [131] and experimentally

derived. Multiple layer 1D and 2D networks and single-layer 3D networks

were explored by varying the arrangement of acquisitions and data type

representations. However, they generally have worse performance than

the suggested network structure in this chapter and, hence, are not

discussed further here.

The architecture of the network is designed to train identification of

spectral features in individual rows (component of a single spectrum)

early on, to subsequently be combined further down the network. These

reduction layers are implemented in the middle of the network and

repeated to combine the rows until the output tensor has one row. Using

convolutions spanning multiple rows of the input early on lead to very
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poor results, whereas combining the convoluted rows near the middle of

the network provided the best results.

The complete network architecture is shown in Table 4.1 for the ‘small’

variant without pooling. For every variant of the network, the layer class

reduction1 is repeated until the output is a tensor with one row. For input

spectra with nine rows, the layer is repeated four times, whereas for an

input of a tensor with one row the layer has a convolutional kernel sized

1× 3 and is used only once. This is where the information contained in

the different rows (spectra) of the input tensor are combined. A variety

of substitutions are made to test different ‘medium’ and ‘large’ networks

and pooling variants as shown in Tables 4.2 and 4.3. The final layer uses

the softmax activation function,

S(y)i =
eyi∑K
j e
yj

, (4.1)

to rescale the output to be a ratio that sums to 1.

The network is trained using the ADAM [66] weight update with an

experimentally derived learning rate of 10−4 and suggested beta values of

β1 = 0.9 and β2 = 0.999 respectively. Mean squared error (MSE) is used

as the loss function over mean absolute percentage error (MAPE) or mean

absolute error (MAE) due to the generally higher overall performance

seen experimentally. The training was performed on an NVIDIA Titan X,

using Python 2.7.15, Keras 2.2.4 [22] with Tensorflow 1.9.0 [1] and CUDA

9.0.176.

4.1.1 Data

Spectral datasets for quantifying mixtures of NAA, Gln, Glu, GABA

and Cr are used due to their importance for MRS applications as intro-

duced in Section 2.3.1. These metabolites are in principle detectable by

MEGA-PRESS. The networks are trained and validated using simulated

data generated by combining individual metabolite spectra from basis

sets. A basis set contains the normalised characteristic signals in the

frequency domain for each metabolite, which are combined to create

mixed spectra. The goal is to have the CNN distinguish and identify

these spectral features on a per-metabolite basis.

We use simulated datasets for training and validation, with an exper-

imental dataset for benchmarking. Simulated spectral basis sets were

deemed more efficient than deriving basis sets experimentally from calib-

rated phantoms. Using experimental data to generate basis sets is also
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Figure 4.1: Acquisitions of MEGA-PRESS, from left to right: edit off, edit on and
difference. data-types of the Fourier transform from top to bottom:
real, imaginary and absolute.

problematic due to the difficulty of obtaining high-quality spectra [113].

To assess the performance of the networks, experimental data from care-

fully calibrated phantoms are used as a benchmark.

Selection of basis sets is as important as the selection of the quantifica-

tion method, as it supplies the ground truth for the expected metabolite

signals. In Section 2.3.2 we introduced the difficulties of basis set simu-

lation. Hence, we use and test different basis sets from state-of-the-art

simulation and quantification software: FID appliance (FID-A) [133],

Python-GAMMA (PyGamma) [116] and LCModel [114]. It is important

to mention, that each of these the three simulated bases utilise different

GABA models: LCModel uses the Kaiser et al. [60] model, VeSPA uses

the Govindaraju et al. [45] model, and finally FID-A uses the Near et
al. [103] model.
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Table 4.1: MRSNet architecture. ‘Small’ network structure without pooling. Ellip-
sis indicate repeated layers of the same class. Keys: convolution (conv),
batch normalisation (BN), dropout (DO), fully connected (FC), recti-
fied linear unit (ReLU).

Layer class Description

input [1− 9]×2048 spectra

conv1 256×1×7 conv, 1×2 stride, ReLU, BN, DO= 0.4

conv2 256×1×5 conv, 1×2 stride, ReLU, DO= 0.4

reduction1 256×[1− 3]×3 conv, ReLU, DO= 0.25

reduction1 . . .

conv3 256×1×3 conv, padding=same, ReLU, DO= 0.25

reduction2 256×1×3 conv, 1×3 stride, ReLU, DO= 0.25

conv3 . . .

reduction2 . . .

conv4 512×1×3 conv, padding=same, ReLU, DO= 0.25

reduction3 512×1×3 conv, 1×3 stride, ReLU, DO= 0.25

conv4 . . .

reduction3 . . .

dense1 1024 FC

output 5 FC, Softmax activation

LCModel

Basis sets for LCModel are acquired by emailing the creator (Stephen

Provincer) directly. For MEGA-PRESS spectra users are directed to the

Perdue basis sets [30]. These basis sets are density matrix simulations of

the vendor specific implementation of MEGA-PRESS, as it varies between

Siemens, Phillips and GE [125]. For MRSNet we use the Siemens basis set

with Kaiser et al. [60] couplings to match the basis set used for LCModel

quantification performed in Chapter 3. As this data source is a basis set,

and not a simulator unlike the other two basis set sources, the linewidth

is fixed at 1Hz.

Custom Python routines were written to read in the LCModel basis

sets as they use a proprietary file format that is poorly documented in

the user manual [113].
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Table 4.2: Network layer class substitutions for ‘medium’ and ‘large’ networks,
differences are in bold.

Network Layer class Description

Medium conv1 256×1×9 conv, 1×2 stride,

ReLU, BN, DO= 0.4

conv2 256×1×7 conv, 1×2 stride,

ReLU, DO= 0.4

reduction1 256×[1− 3]×5 conv, ReLU, DO= 0.25

Large conv1 256×1×16 conv, 1×2 stride,

ReLU, BN, DO= 0.4

conv2 256×1×8 conv, 1×2 stride,

ReLU, DO= 0.4

reduction1 256×[1− 3]×7 conv, ReLU, DO= 0.25

Table 4.3: Network substitutions for pooling variants where strided convolutions
are replaced by a MaxPool layer following a convolution layer.

Network Layer class Description

All (pooling) reduction2 256×1×3 conv, ReLU, DO= 0.25

1×3 MaxPool

reduction3 512×1×3 conv, ReLU, DO= 0.25

1×3 MaxPool

VeSPA (PyGamma)

VeSPA is a Python based MRS toolbox and uses PyGamma as the under-

lying simulator, and in order to be able to programatically and automatic-

ally create basis sets, we directly call PyGamma with the pulse sequence

code and metabolite models from VeSPA. The MEGA-PRESS pulse se-

quence code was kindly shared by Brian Soher, one of the creators of

VeSPA. The PyGamma simulation code bundled in the MRSNet reposit-

ory [14] is able to simulate FID, STEAM, PRESS and MEGA-PRESS pulse

sequences. Spectra are simulated with a linewidth of 1Hz, with a later

multi-line width (MLW) training dataset containing 0.75Hz, 1Hz and

1.25Hz spectra. These ‘MLW’ basis sets are created to later investigate

the effect of training the network on a range of line widths, as in an
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experimental setting, line width varies depending on the quality of the

B0 shimming over the ROI.

FID-A

FID-A is a Matlab MRS simulation and processing tool. MEGA-PRESS

simulation is performed using their example MEGA-PRESS shaped edit-

ing routine, which has been modified to save spectra to disk and later

loaded by Python. As with the PyGamma basis set, spectra are simulated

with a linewidth of 1Hz, with a later MLW training dataset containing

0.75Hz, 1Hz and 1.25Hz spectra.

Experimental Dataset

In order to evaluate network performance, experimental datasets [75] cre-

ated as part of Chapter 3 are used. These MEGA-PRESS (TE= 68ms and

repetition time (TR)= 2000ms) spectra were acquired on a MAGNETOM

Skyra 3 T (Siemens Healthcare GmbH, Erlangen, Germany) system at

Swansea University using the Siemens WIP 859D.1.

Four datasets for phantoms of known composition, E1, E3 & E4a

and E4b, were used. E1, E3 and E4a were acquired with an acquisition

bandwidth of 1250Hz, while E4b was acquired at 2000Hz (for the same

phantoms as E4a). The published experimental dataset also contains a

non-pH calibrated dataset E2, which was excluded as it was deemed not

representative of the in-vivo environment. E4c and E4d, also contained

in the dataset, are repeat runs of E4a and E4b and we obtained similar

results for them, so they are not further discussed here.

4.1.2 Spectra Pre-Processing

Before the spectra are fed to the network, they are B0 corrected w.r.t. the

2 ppm NAA singlet peak due to NAA’s low sensitivity to temperature of

0.01 ppm/◦C [24]. For the experimental spectra, they are filtered using a

first-order Butterworth filter to reduce noise. No phase correction done

for simplicity, as it is complex and can often require human interaction [8].

Experimental and simulated spectra are mean-centred and normalised

so that the largest peak has amplitude ±1 across acquisitions with x ′ =

x/max(|x|). As different acquisition bandwidths are found across the

basis sets and experimental datasets, these are dealt with by zero-filling

1 Work in Progress; the product is currently under development and is not for sale in the
US and in other countries. Its future availability cannot be ensured.
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the time domain signal to achieve a spectral resolution of 2048 points in

the selected ppm range.

4.1.3 Dataset Generation

Training and validation datasets are generated by taking linear combina-

tions of individual metabolite signals from a basis set. Each metabolite

has a scaling factor in [0, 1], corresponding to a relative concentration.

The scaling factors are sampled using a low discrepancy (quasi-Monte

Carlo) Sobol sequence [139], which provides good uniform coverage of

possible states with a low number of data points. Time-domain noise is

added from a normal distribution (µ = 0 and σ randomly chosen in the

range [0, 0.25]) to 50% of the dataset to improve simulation accuracy and

network robustness. This noise model was chosen as it closely resembles

what is seen in experimental spectra, by characterising the noise pro-

file from spectral areas that do not contain a metabolic signal for 4, 160

phantom spectra.

4.1.4 Performance Evaluation

Performance of the networks is evaluated by the error ε, which is calcu-

lated as the mean of the absolute differences of the actual ai,j and the pre-

dicted pi,j relative concentration for every label (metabolite) j = 1, . . . ,L,

for every prediction (spectrum) i = 1, . . . ,N:

ε =
1

NL

N∑
i=1

L∑
j=1

|ai,j − pi,j|. (4.2)

The standard deviation σ is calculated in the usual way,

σ2 =

N∑
i=1

L∑
j=1

(pi,j − ε)
2/(NL) (4.3)

This provides a good indication of overall network performance but is

insensitive to low concentration metabolites. To counter this, an in-depth

regression and MAPE analysis is later performed for the best network

on a per-metabolite basis in Section 4.2.4.

4.1.5 Experiments

A range of network structures, spectra, representations and basis sets

are investigated to find a favourable combination. Network structure
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and batch sizes are investigated first, followed by the effect of different

representations of the spectra and the choice of basis set. The LCModel

basis set is used for the first two experiments as the analysis program

has been shown to perform well in Chapter 3, suggesting a good fit

with experimental data. Training and validation are performed using

simulated spectra as described in Section 4.1.3. Initial experiments in

Sections 4.2.1 and 4.2.2 are trained for 100 epochs, with 4, 000 training,

1, 000 validation samples. For the final experiment in Section 4.2.3, more

compute time is dedicated to refining the networks over 200 epochs

with 5, 000 training samples. A light early stopping criteria is utilised

throughout to prevent over-fitting, with a minimum loss decrease of

10−12, a patience (number of epochs without improvement) of 15 with

‘restore best weights’ enabled. Network performance is benchmarked

using the previously mentioned experimental datasets in Section 4.1.1.

4.2 results

The following section presents results from a range of experiments ex-

ploring network architecture, input data formatting, basis set choices and

comparison with state-of-the-art quantification methods.

4.2.1 Network Structure Investigation

An initial investigation is performed to explore the effect of mini-batch

sizes, convolutional kernel widths and pooling vs. stridden convolutions

on performance with the benchmark datasets. Three variants of the

network are tested (small, medium and large) over a range of mini-batch

sizes (64, 32, 16) for two major variants of each network, either using

stridden convolutions or max-pooling. These two variants are explored

as convolutions with strides have been shown to be advantageous over

max-pooling methods [144]. Networks are trained using all three spectra

(edit-off, edit-on and difference) and all three data representations (real,

imaginary and magnitude/absolute value) stacked to form a 9× 2048
input tensor for each sample.

The results in Tables 4.4, 4.5 and 4.6 show the general trend that

using convolutions with strides obtains a substantially higher perform-

ance over max-pooling. Networks with smaller convolutional kernels are

substantially quicker than their larger counterparts as they are less com-

putationally expensive to calculate. The ‘small’ network, using stridden
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Table 4.4: Performance of MRSNet trained with LCModel basis set, all three
acquisitions, all three data types using convolutions with strides.

Btch.Sze. Trn. Vld. E1 E3 E4a E4b

16 S 0.00933

σ0.008

0.01113

σ0.011

0.12954

σ0.099

0.08898

σ0.075

0.07845

σ0.056

0.10344

σ0.080

16 M 0.00858

σ0.008

0.01090

σ0.011

0.14440

σ0.126

0.08013

σ0.064

0.08157

σ0.055

0.11970

σ0.074

16 L 0.00769

σ0.007

0.00968

σ0.011

0.12680

σ0.106

0.07382

σ0.051

0.08439

σ0.057

0.12502

σ0.068

32 S 0.01096

σ0.010

0.01293

σ0.013

0.11980

σ0.099

0.08003

σ0.063

0.06619

σ0.053

0.13130

σ0.093

32 M 0.00948

σ0.009

0.01194

σ0.012

0.14928

σ0.127

0.08752

σ0.070

0.09360

σ0.059

0.12649

σ0.076

32 L 0.01169

σ0.010

0.01409

σ0.013

0.17127

σ0.134

0.06996

σ0.043

0.06271

σ0.046

0.10637

σ0.081

64 S 0.01150

σ0.010

0.01274

σ0.012

0.11599

σ0.092

0.07378

σ0.060

0.07168

σ0.048

0.12210

σ0.090

64 M 0.00961

σ0.008

0.01135

σ0.011

0.12914

σ0.111

0.09217

σ0.067

0.11139

σ0.049

0.13296

σ0.074

64 L 0.01348

σ0.011

0.01567

σ0.014

0.11031

σ0.097

0.11308

σ0.080

0.10906

σ0.093

0.08609

σ0.085

convolutions and a mini-batch size of 64 achieves a good balance between

performance and training time on the benchmark datasets, making it the

chosen network architecture for the following experiments.

4.2.2 Data-Type and Channels

Using MEGA-PRESS data provides a unique opportunity to explore how

training networks on different combinations of acquired spectra for one

scan (edit-off, edit-on and difference) affects performance. Additionally,

three data types have been chosen to represent the spectrum by taking the

real, imaginary or magnitude component of the frequency domain signal.

These components, shown previously in Figure 4.1 are explored by using

the same generated dataset for training and validation but considering

different combinations of spectra and data types.
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Table 4.5: Performance of network trained with LCModel basis set, all three
acquisitions, and all three data types using max pooling.

Btch.Sze. Trn. Vld. E1 E3 E4a E4b

16 S 0.02319

σ0.020

0.02537

σ0.022

0.23780

σ0.183

0.12593

σ0.086

0.14338

σ0.100

0.16654

σ0.093

16 M 0.02155

σ0.018

0.02419

σ0.022

0.25608

σ0.203

0.12456

σ0.095

0.14460

σ0.097

0.18350

σ0.108

16 L 0.02955

σ0.024

0.03267

σ0.027

0.23548

σ0.203

0.10779

σ0.085

0.11319

σ0.088

0.15390

σ0.100

32 S 0.02550

σ0.021

0.02848

σ0.024

0.24714

σ0.194

0.14428

σ0.107

0.15845

σ0.115

0.16844

σ0.097

32 M 0.02825

σ0.022

0.03044

σ0.025

0.26010

σ0.203

0.11713

σ0.084

0.11767

σ0.089

0.16157

σ0.086

32 L 0.02463

σ0.019

0.02652

σ0.022

0.23353

σ0.153

0.11028

σ0.061

0.10509

σ0.068

0.11382

σ0.074

64 S 0.02502

σ0.021

0.02701

σ0.024

0.25574

σ0.175

0.13671

σ0.103

0.14247

σ0.109

0.14566

σ0.089

64 M 0.03168

σ0.025

0.03358

σ0.027

0.24458

σ0.197

0.12839

σ0.095

0.15139

σ0.105

0.14814

σ0.097

64 L 0.04081

σ0.028

0.04236

σ0.030

0.24200

σ0.196

0.11145

σ0.087

0.10594

σ0.082

0.15611

σ0.097

Results in Tables 4.7, 4.8 and 4.9 show a clear performance advantage

of utilising the magnitude representation for all acquisition types. This is

expected, as there is a level of phase uncertainty from the experimental

signal leading to a potential disagreement with the real and phase spectra

from the benchmark set when compared to the basis set. However, using

the magnitude spectra does increase the linewidth when compared to

only the real spectrum; which is typically preferred for quantification

for this reason. Despite this, the networks prefer the more predictable

magnitude spectra, at the cost of dealing with the increased linewidth.

The best combination of acquisitions is the edit-off and difference, as

these provide the maximal amount of information with no repetition of

data. The reduced performance for the difference only acquisition can

be attributed to the Creatine (Cr) spectra, wherein the LCModel basis

set that was used to train the network assumes perfect editing, where
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Table 4.6: Timing performance of MRSNet trained with LCModel basis set, all
three acquisitions (edit off, edit on and diff), all three data (real,
imaginary and magnitude) types using convolutions with strides.

Batchsize Network Seconds per Epoch

16 Small 51

16 Medium 90

16 Large 112

32 Small 50

32 Medium 84

32 Large 100

64 Small 48

64 Medium 81

64 Large 96

the normal and inverted spectrum in the edit-on and edit-off acquisition

match amplitude. As such, there is no residual Cr signal in the difference

spectrum (which is not always the case in practice), as it has been edited

out leading to difficulties in quantification. Networks perform worse

when redundant data is supplied, for example, in the case of using the

edit-off, on and difference magnitude spectra. This could be because the

network is provided with too many degrees of freedom, increasing the

training difficulty. For the following experiments, we choose networks

that use the magnitude edit-off and difference spectra as inputs.

4.2.3 Choice of Basis Set

We compare the performance of three basis sets from LCModel, PyGamma

and FID-A as described in Section 4.1.1 as differences in the basis sets

may have a significant impact on quantification performance [56, 57].

Networks are trained and tested using the magnitude of the edit-off and

difference spectrum with an increased number of training samples 5, 000,

1, 000 validation and test spectra, and with an increased number of 200

epochs for training.

Datasets were generated using the same metabolite concentration and

noise values across the three basis sets to create a like-for-like comparison.

Results in Table 4.10 suggest that for overall quantification, the single
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linewidth (1Hz) FID-A basis performs the best for E1, E4a and E4b,

while the LCModel basis outperforms the others for the E3 dataset. The

PyGamma basis performs substantially worse overall. This suggests that

overall the FID-A basis set is the best choice for training the network for

general quantification.

We also investigate the effect of training the networks on basis sets

generated with multi-line width (MLW). In practice, the linewidth of the

experimental spectra is variable, depending on a multitude of environ-

mental factors as described in Section 2.1.4. Spectra are simulated using

basis sets with line-widths of 0.75Hz, 1Hz and 1.25Hz for the PyGamma

and FID-A basis sets. For LCModel this was not possible as there is only

one fixed linewidth basis set and we do not have access to the underlying

generator. The network is trained using the same values for metabolite

concentrations and noise as the single linewidth experiment. The gener-

ated spectra are split evenly between the defined line-widths. Table 4.10

shows that the overall accuracy of the networks trained with PyGamma

improves but is marginally worse for FID-A. The use of simulators over

fixed basis sets could be advantageous here as training a network on a

range of line-widths should allow it to generalise to broader line-widths,

typically seen in practice. However, in this instance, it appears that the

linewidth of 1Hz for FID-A closely matches the experimental spectra and

using multiple line-widths has provided no improvement.

4.2.4 Comparison with state-of-the-art

Unlike previous sections where performance was measured against all

five metabolites, the performance in this section is evaluated on reduced

sets of metabolites (see Table 4.11). The sets are based on which metabol-

ites are present in the phantom and an intersection of metabolites the

selected programs can report.

Cr is omitted from the analysis as it is not reported by LCModel for

MEGA-PRESS difference analysis. Glu and Gln values are combined and

reported as Glx as they are generally considered unresolvable at 3 T

due to their similar chemical structure and resulting spectrum. For the

reduced metabolite sets, reported concentration values are re-scaled to

c ′r = cr/
∑
r∈R cr where R is the index set of the reduced metabolite set.

Absolute quantification is not performed, as this requires a reference

which is not possible for our water-suppressed spectra.
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Quantification software settings, results and procedures are available

in Section 3.2.4. The error measures have been changed to focus on

individual metabolite error for this article rather than the NAA/GABA

ratio.

An additional quantification method has been included in this chapter,

compared to Chapter 3: VeSPA. It has been added as we are using a

basis set generated by their simulator, and the work required once a

basis set is simulated is not substantial. Comparing the performance of

the quantification performance with VeSPA and MRSNet trained with

the VeSPA basis will indicate the underlying quality of the basis set.

VeSPA quantification was performed using the Voigt line shape, with

automatic B0 correction, phase shift and basic baseline removal using

wavelet filtering. The basis set used for the VeSPA quantification is the

the same simulated MEGA-PRESS basis used for training MRSNet as

described in Section 4.1.1.

The results in Tables 4.12 and 4.13 show that overall MRSNet is

more accurate and precise than other methods for quantification us-

ing MEGA-PRESS. In contrast to the results in Table 4.10, training the

network with the LCModel basis set provides the best performance in

this instance. This performance increase is due to the reduced set of meta-

bolites for analysis. However, when evaluating MRSNet performance in

the general case, across all metabolites, the FID-A basis set outperforms

the LCModel basis on average.

4.2.4.1 Regression Analysis

The following subsections present graphed regression analysis for the

E1,E3,E4a and E4b phantoms comparing the best MRSNet architecture

(‘small’, stridden convolutions) trained with the LCModel basis set, com-

pared with LCModel. R2, Slope (sl), intercept (int), p-value (p), and

standard error (se) values are displayed on each graph in the legend. The

ideal quantification method would have a slope of 1 and an intercept at

0, as represented by the faint grey diagonal line.

These following results show that the performance of MRSNet is com-

parable to LCModel, except for E4b, where both struggle. The E4b dataset

is considerably noisier than the others and the performance may be due

to LCModel’s pre-processing steps. Analysis of all series shows that only

E4b suffers from inversion of the edit-on or off the spectrum, resulting

in a poor difference spectrum, caused by the MR scanner software (also

see [56]).
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Figure 4.2: Regression analysis for MRSNet basis set (blue, ?) compared with
LCModel analysis (orange,×) for GABA (top row) and NAA (bottom
row) for E1.

Figure 4.2 shows the regression analysis for the best network architec-

ture trained using the LCModel basis set, compared with the fit from

LCModel for both GABA and NAA fit to the E1 phantom. Overall per-

formance is comparable between the two methods, with LCModel out-

performing MRSNet with an overall more accurate slope, intercept and

more consistent predictions based on the R2 values for both GABA and

NAA. Interestingly, both methods correctly predict an intercept near 0 for

GABA, but they both substantially over-predict the intercept for NAA.

Figure 4.3: Regression analysis for MRSNet basis set (blue, ?) compared with
LCModel analysis (orange,×) for GABA (top row) and NAA (bottom
row) for E3.

Figure 4.3 shows the regression analysis for the E3 phantom, comparing

MRSNet with LCModel. LCModel outperforms MRSNet in terms of slope
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accuracy, but the intercepts are worse, leading to a set of predictions that

are further away from the ideal quantification method. Overall, MRSNet

is closer to the ground truth for E3. Both methods perform well in terms

of R2 for GABA (0.99), however the R2 values for NAA are lower with

0.84 for LCModel 0.92 for MRSNet; this is a stark contrast to E1 R2

performance for both methods.

Figure 4.4: Regression analysis for MRSNet basis set (blue, ?) compared with
LCModel analysis (orange,×) for GABA (top row) and NAA (bottom
row) for E4a.

Figure 4.4 shows the regression analysis for MRSNet compared with

LCModel for E4a. As with E3, MRSNet is overall closer to the ideal

quantification method represented by the grey line, in addition to having

a more accurate slope for GABA and NAA, and a more consistent set of

predictions indicated by the higher R2 value. This is an interesting result,

as the E4 phantom is the tissue-mimicking Gel and LCModel is designed

to quantify in-vivo data. The E4 data has a substantially broader linewidth

(4Hz) than the datasets used to train MRSNet (1Hz), suggesting that it

can reasonably generalise broader line widths. It is important to recognise

that both methods struggled with accurate quantification of NAA, but

not GABA which is another surprising trend as the NAA signal is not

hard to identify as it dominates in the spectra.

Finally, Figure 4.5 shows the regression analysis for the 2000Hz bandwidth

(BW) E4 phantom. Here it is clear that MRSNet struggles to quantify

both metabolites with low R2 values, a slope near 0.1 for NAA and a

negative slope for GABA. This is likely due to the much higher linewidth

for the E4b series which is around (8Hz) for the NAA peak. LCModel

outperforms MRSNet, with a comparatively reasonable set of predictions

for GABA and NAA. However, as with E3 and E4a LCModel continues
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Figure 4.5: Regression analysis for MRSNet basis set (blue, ?) compared with
LCModel analysis (orange,×) for GABA (top row) and NAA (bottom
row) for E4b.

to struggle to accurately quantify NAA, with a intercept of 0.19 and R2

of 0.39.

4.2.4.2 MAPE analysis

Mean absolute percentage error (MAPE) is used to further understand

and analyse the performance of the network on an individual metabolite

basis for GABA and NAA across all benchmark datasets. This is done

for both LCModel and MRSNet trained with the LCModel basis due the

performance advantage shown in Table 4.14. A similar trend continues to

the regression analysis, where MRSNet outperforms LCModel on aver-

age, except for GABA quantification which bounces between LCModel

and MRSNet trained with the FID-A ‘MLW’ basis, suggesting that the

GABA model from FID-A may be a better fit to experimental data.

The large error seen in Tables 4.12 and 4.13 can be attributed to the

performance of NAA quantification, as it has the highest concentration in

all benchmark phantoms. Any improvement seen in NAA quantification

has the largest impact on the error in Eq. (4.2) and is reflected in the

overall performance in Tables 4.12 and 4.13. While NAA is not typically

the target of edited MRS, it can be utilised as an internal reference

compound. So any improvement in the accuracy of NAA would indirectly

improve quantification for all other metabolites.
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Table 4.7: Network performance for different combinations of acquired spectra
(edit-off, edit-on, difference) and data types (real: R, imaginary: I,
magnitude: M) using the ‘small’ network with strided convolutions
and the LCModel basis for training and validation dataset generation.

AQ DAT TRN VLD E1 E3 E4a E4b

O R 0.01386

σ0.011

0.01521

σ0.014

0.13292

σ0.089

0.10046

σ0.080

0.08394

σ0.065

0.10424

σ0.084

O I 0.01265

σ0.012

0.01494

σ0.014

0.13159

σ0.092

0.07989

σ0.054

0.09348

σ0.067

0.11512

σ0.070

O M 0.01565

σ0.016

0.01949

σ0.024

0.06863

σ0.054

0.07800

σ0.063

0.06419

σ0.050

0.07662

σ0.054

O RI 0.01203

σ0.011

0.01400

σ0.013

0.09873

σ0.064

0.10943

σ0.075

0.09235

σ0.067

0.08462

σ0.072

O RIM 0.01105

σ0.010

0.01366

σ0.013

0.10024

σ0.062

0.09750

σ0.050

0.08600

σ0.059

0.09015

σ0.078

N R 0.01453

σ0.013

0.01695

σ0.017

0.22904

σ0.192

0.13183

σ0.124

0.11652

σ0.100

0.17211

σ0.077

N I 0.01256

σ0.012

0.01570

σ0.017

0.22129

σ0.191

0.13696

σ0.133

0.12930

σ0.119

0.19410

σ0.112

N M 0.01944

σ0.019

0.02567

σ0.030

0.21743

σ0.200

0.15283

σ0.100

0.15292

σ0.098

0.16059

σ0.095

N RI 0.01369

σ0.012

0.01648

σ0.018

0.23515

σ0.182

0.13795

σ0.130

0.13242

σ0.114

0.19135

σ0.101

N RIM 0.01468

σ0.014

0.01851

σ0.019

0.23231

σ0.194

0.17241

σ0.135

0.18429

σ0.101

0.19757

σ0.095

D R 0.04300

σ0.041

0.04888

σ0.047

0.08484

σ0.073

0.09208

σ0.059

0.09231

σ0.071

0.10738

σ0.081

D I 0.03993

σ0.040

0.04649

σ0.046

0.06341

σ0.066

0.11511

σ0.066

0.11253

σ0.070

0.10329

σ0.092

D M 0.04142

σ0.041

0.05125

σ0.050

0.04967

σ0.063

0.08806

σ0.069

0.08591

σ0.066

0.10017

σ0.074

D RI 0.03963

σ0.040

0.04671

σ0.047

0.07428

σ0.066

0.07755

σ0.047

0.07148

σ0.052

0.08196

σ0.063

D RIM 0.03918

σ0.040

0.04647

σ0.047

0.07753

σ0.079

0.06767

σ0.046

0.08112

σ0.057

0.09246

σ0.061
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Table 4.8: Network performance for different combinations of acquired spectra
(edit-off, edit-on, difference) and data types (real: R, imaginary: I,
magnitude: M) using the ‘small’ network with strided convolutions
and the LCModel basis for training and validation dataset generation.

AQ DAT TRN VLD E1 E3 E4a E4b

ON R 0.01396

σ0.011

0.01626

σ0.014

0.20498

σ0.159

0.18993

σ0.146

0.16938

σ0.135

0.14621

σ0.082

ON I 0.01425

σ0.012

0.01640

σ0.014

0.23126

σ0.170

0.16219

σ0.128

0.15234

σ0.120

0.19090

σ0.095

ON M 0.01415

σ0.012

0.01642

σ0.016

0.14484

σ0.118

0.11244

σ0.086

0.12549

σ0.078

0.13234

σ0.070

ON RI 0.01434

σ0.013

0.01636

σ0.015

0.18232

σ0.135

0.16390

σ0.093

0.15403

σ0.095

0.15630

σ0.072

ON RIM 0.01618

σ0.013

0.01801

σ0.016

0.15784

σ0.132

0.17001

σ0.130

0.12872

σ0.105

0.12797

σ0.080

OD R 0.01361

σ0.011

0.01440

σ0.013

0.06866

σ0.053

0.08917

σ0.051

0.07371

σ0.051

0.09721

σ0.076

OD I 0.01203

σ0.011

0.01358

σ0.013

0.07983

σ0.053

0.04921

σ0.028

0.05918

σ0.042

0.10686

σ0.081

OD M 0.01549

σ0.013

0.01759

σ0.017

0.05956

σ0.042

0.04519

σ0.031

0.04288

σ0.034

0.06034

σ0.054

OD RI 0.01292

σ0.011

0.01461

σ0.013

0.11167

σ0.090

0.05455

σ0.043

0.04936

σ0.037

0.10697

σ0.082

OD RIM 0.01344

σ0.012

0.01509

σ0.015

0.07955

σ0.057

0.11050

σ0.074

0.09290

σ0.059

0.10666

σ0.085

ND R 0.01704

σ0.014

0.01819

σ0.016

0.20824

σ0.177

0.14069

σ0.106

0.14328

σ0.103

0.17063

σ0.080

ND I 0.01439

σ0.012

0.01552

σ0.014

0.19468

σ0.161

0.13248

σ0.087

0.13502

σ0.084

0.17786

σ0.098

ND M 0.01888

σ0.018

0.02156

σ0.022

0.15265

σ0.131

0.10383

σ0.078

0.12364

σ0.076

0.12842

σ0.056

ND RI 0.01673

σ0.014

0.01840

σ0.016

0.22594

σ0.191

0.15966

σ0.118

0.15320

σ0.106

0.19460

σ0.086

ND RIM 0.01957

σ0.019

0.02295

σ0.022

0.23033

σ0.184

0.16489

σ0.111

0.17125

σ0.101

0.17671

σ0.091
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Table 4.9: Network performance for different combinations of acquired spectra
(edit-off, edit-on, difference) and data types (real: R, imaginary: I,
magnitude: M) using the ‘small’ network with strided convolutions
and the LCModel basis for training and validation dataset generation.

AQ DAT TRN VLD E1 E3 E4a E4b

OND R 0.01326

σ0.011

0.01486

σ0.013

0.13909

σ0.086

0.09442

σ0.067

0.08806

σ0.058

0.10422

σ0.083

OND I 0.01251

σ0.010

0.01393

σ0.012

0.16848

σ0.112

0.08873

σ0.081

0.09467

σ0.081

0.14555

σ0.085

OND M 0.01336

σ0.011

0.01517

σ0.014

0.07679

σ0.055

0.06491

σ0.053

0.06009

σ0.040

0.06971

σ0.046

OND RI 0.01624

σ0.013

0.01710

σ0.015

0.15457

σ0.107

0.13011

σ0.067

0.14073

σ0.074

0.15130

σ0.086

OND RIM 0.01418

σ0.012

0.01612

σ0.014

0.14309

σ0.104

0.08350

σ0.073

0.09529

σ0.070

0.11978

σ0.081

Table 4.10: A comparison of basis set influence on MRSNet performance, using
the ‘small’ network with stridden convolutions. Networks are trained
using the magnitude of the edit-off and difference acquisition. MLW
denotes that the dataset is comprised of multiple linewidth spectra.

Basis TRN VLD E1 E3 E4a E4b

LCModel0.01206

σ0.009

0.01547

σ0.017

0.07936

σ0.061

0.04553

σ0.035

0.04991

σ0.038

0.06702

σ0.046

FID-A 0.01120

σ0.009

0.01374

σ0.013

0.04744

σ0.035

0.05323

σ0.036

0.04670

σ0.033

0.05960

σ0.049

FID-A

MLW

0.00995

σ0.008

0.01308

σ0.013

0.04773

σ0.035

0.05963

σ0.041

0.05407

σ0.040

0.06302

σ0.051

PyGamma0.01337

σ0.012

0.01688

σ0.017

0.09081

σ0.071

0.09496

σ0.057

0.09396

σ0.064

0.10269

σ0.066

PyGamma

MLW

0.01133

σ0.009

0.03436

σ0.037

0.08465

σ0.061

0.07521

σ0.058

0.06994

σ0.062

0.08147

σ0.064
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Table 4.11: Metabolites used to compare MRSNet to the state-of-the-art.

E1 E3 E4a E4b

Metabolite set [NAA,

GABA]

[NAA,

GABA,

Glx]

[NAA,

GABA,

Glx]

[NAA,

GABA,

Glx]

LCModel, VeSPA and jMRUI report individual Glu and Gln values which
have been combined into Glx. GANNET and TARQUIN report the combined
Glx.

Table 4.12: State-of-the-art quantification performance.

Analysis program E1 E3 E4a E4b

VeSPA 0.1192

σ0.096

0.1199

σ0.081

0.1552

σ0.105

0.2016

σ0.122

TARQUIN 0.1125

σ0.093

0.0708

σ0.049

0.0705

σ0.070

0.1341

σ0.090

LCModel 0.0462

σ0.030

0.0956

σ0.041

0.0919

σ0.054

0.1266

σ0.095

AQSES † 0.2081

σ0.092

0.1432

σ0.088

0.1865

σ0.117

-

QUEST † 0.2044

σ0.098

0.1402

σ0.080

0.1958

σ0.144

-

GANNET 0.1405

σ0.103

0.3092

σ0.158

0.3012

σ0.179

0.5334

σ0.603

† Quantification was not performed for the E4b dataset.
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Table 4.13: MRSNet quantification performance.

MRSNet (basis source) E1 E3 E4a E4b

LCModel 0.0318

σ0.014

0.0321

σ0.021

0.0402

σ0.022

0.0720

σ0.050

FID-A 0.0746

σ0.044

0.0617

σ0.034

0.0402

σ0.033

0.0735

σ0.060

FID-A MLW 0.0636

σ0.032

0.0714

σ0.044

0.0722

σ0.041

0.0864

σ0.054

PyGamma 0.0408

σ0.021

0.0842

σ0.057

0.0674

σ0.041

0.0994

σ0.063

PyGamma MLW 0.0501

σ0.022

0.0708

σ0.044

0.0679

σ0.044

0.0704

σ0.055
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4.2.5 Basis Comparison

The variety of performance shown in the basis comparison experiment

and subsequent MAPE analysis (see Tables 4.10 and 4.14) can be ex-

plained by the variance of spectra generated from three data sources.

As mentioned in Section 2.3.2, dataset and simulator creators have a

large range of options available to them for simulation parameters, along

with a range of metabolite models, resulting in a large range of possible

spectra.

Fig. 4.6 compares the difference spectra from PyGamma, FID-A and

LCModel with an additional in-house experimentally acquired pure

GABA phantom spectrum using MEGA-PRESS. From visual inspection,

it is clear to see that none of the simulated data sources aligns perfectly

with the experimental spectrum. This may be due to a multitude of reas-

ons, including each simulator using a different GABA model: PyGamma

uses Govindaraju Govindaraju et al. [45], FID-A uses Near et al. [103]

and LCModel uses Kaiser et al. [60]. All simulators use Govindaraju et
al. [45] values for the other metabolite models. A different GABA model

is often chosen due to the well-known issue that the values in [45] are

rough approximations of the true values [70]. In addition to simulation

parameters, there is a multitude of experimental factors that can alter the

resulting spectrum, further complicating the issue of matching simulation

to experimental results. In an ideal scenario, networks should be trained

on a large range of experimental data to cover the potential variation of

spectra. However, in practice, this is a non-trivial task, with phantom

creation being difficult and time-consuming in addition to needing a

large amount of data to cover the potential experimental variations of the

spectra.

4.3 evaluation and discussion

MRSNet is quick to train on GPUs (18 minutes on an NVIDIA Titan X

GPU), with a relatively low number of samples (5, 000). Once trained,

it requires no special hardware and it takes on average 24±2ms to

process a single spectrum with the network, using a dual-core 2.7GHz i7-

7500u CPU, with the network occupying 95MB disk space. Furthermore,

it requires no interaction from a user with specialist knowledge for

potentially complicated processing steps, such as phase-correction.
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Figure 4.6: Example of spectra differences for the magnitude MEGA-PRESS
difference GABA spectra from multiple sources, from top to bottom:
PyGamma, FID-A, LCModel, experimental spectrum.

The data type and channel experiments in Section 4.2.2 is not gener-

ally applicable to all basis sets in Section 4.2.3, as this study was only

performed using the LCModel basis set. As shown, other basis sets have

different spectra and may have a more accurate representation of real or

phase data, but it is expected that the magnitude spectra will remain the

best performing due to the issue of uncertainty in phase reconstruction

from the scanner.

Networks in this thesis are only trained and tested with one timing

variant of a single pulse sequence (MEGA-PRESS at 3 T with TE= 68ms,

TR= 2000ms) with a benchmark dataset collected from one scanner, and

for a single frequency window (4.5 ppm to 1.5 ppm). This network should

generalise to different MEGA-PRESS spectra, but it is unlikely that it

will work as accurately with different strength B0 fields, scanner man-

ufacturers, pulse sequences or pulse sequence timings without further

training.

The performance improvements that MRSNet has over current quanti-

fication methods as shown in Table 4.14 may be due to the fact that it uses

two spectra as an input (edit off and difference), compared to the single

difference spectra used by the quantification programs. This additional

spectrum naturally provides more information to the networks. This is a

benefit of utilising CNNs, a network could be trained to quantify a much
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larger number of spectra at once, such as stacking multiple acquisitions

that vary the TE time. This variation of TE alters the spectra considerably

in-vivo, where individual protons in metabolites relax at different rates,

shifting the intensity of spectral peaks, thus providing more information

to the networks. This multi TE implementation would of-course require

retraining the network to learn and accept the new input data format

and would be an interesting avenue to explore for future work.

One major disadvantage of the MRSNet architecture is that it has been

designed under the assumption that there will always be at least one

of the metabolites it has been trained to detect present. The softmax

normalisation function on the final layer of the network normalises all

the outputs to have a sum of one, which restricts the network to always

report a ratio and to never report that there are no metabolites present.

This is not necessarily a concern for an in-vivo application, as there would

never be a spectra that does not contain NAA, GABA, Cr, Glu or Gln.

This is more a consideration for when testing the networks, to ensure

that there is at least one metabolite present in the phantoms or generated

datasets. This issue is a consequence of designing a normalisation scheme

for both the input spectra and output labels to the network. A route for

future work would be to explore different scaling and normalisation

schemes for the input and output data, such as using linear or sigmoid

based outputs.

Finally, in-vivo data has not been used to evaluate this method due to

the lack of ground truth data, which would, of course, be very difficult

to obtain. Additionally, we have chosen to explore a limited number

of metabolic signals, while there is a much larger range of spectra and

macromolecule signals that are obtainable with MRS in-vivo. This is some-

thing to be explored as future work, expanding the range of metabolites

that the network is able to detect.

4.4 summary

The contribution in this chapter is novel for a range of reasons: it

is the first work that quantifies a multi-acquisition protocol such as

MEGA-PRESS. In addition, there is a great deal of depth into how these

multi-acquisitions can be represented to the neural network. This has

shown that the edit-off and difference absolute spectra provide the

best results when optimising fitting for the benchmark datasets. Ad-

ditionally, networks are trained on a range of simulated data sources
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(PyGamma, LCModel, FID-A) to compare performance, and are finally

benchmarked against current state of the art methods, such as LCModel,

jMRUI (AQSES and QUEST), TARQUIN, GANNET and VeSPA. This has

shown that in the general case, training the network should be done with

the FID-A basis, however, when looking at a reduced set of metabolites

that excludes Cr, the LCModel basis outperforms the alternatives. This

highlights the non-trivial task of basis set selection and the need for more

accurate characterisation.

This chapter has demonstrated that the overall accuracy and precision

of metabolite quantification in MRS is improved by a convolutional

neural network by comparing its performance to current state-of-the-art

methods. We have found that a 2D CNN, using stridden convolutions,

and utilising ‘small’ 1×N convolutions along the frequency axis of the

input spectra is the best performing network architecture.

Finally, all of the code for collection and simulation of basis sets along

with training and testing of the network have been made publicly avail-

able here [14].



5
P U L S E S E Q U E N C E O P T I M I S AT I O N

This chapter focuses on a different approach to improving quantification.

In previous chapters the approach was focused on post-data-collection

methods improving MRS through quantification tools. This chapter in-

vestigates improving the data coming from the scanner with a novel

method of pulse sequence design that enables a chemically selective

pulse-sequence. These control pulses are optimised through the use of

quantum control techniques applied to metabolites within a simulated

MRS environment.

The goal of this chapter is to determine if there are suitable controls

that can be designed and be successful in a substantially more difficult

environment than typically seen in quantum optimal control. This is a

novel application, where the range of inhomogeneity in MRS are large

and vast which propose a significant challenge. As such a method has

been developed that allows the optimisation of controllers that are robust

with respect to a range of B0 and B1 instabilities.

5.1 introduction

We propose a method to find excitation pulses that ensure the spectra

for different metabolites are sufficiently distinct to significantly simplify

the analysis of the resulting combined spectra. For each metabolite of

interest, a target quantum state is pre-selected that ensures the resulting

spectra do not overlap. Optimal control techniques for quantum systems

are used to find RF pulses that simultaneously achieve the desired state

for multiple metabolites and with that a distinct spectrum for each

metabolite. Moreover, the pulse sequences are optimised such that they

are robust to a range of environmental instabilities and typically MRI

scanner uncertainties.

Two metabolite sets are used to demonstrate the method in simula-

tion: (i) Gln and Glu; (ii) NAA, Cr and GABA. Both of these targets are

challenging due to significant overlap and large differences in concentra-

tions. These metabolites are of particular clinical and research interest, as

previously introduced in Section 2.3.1.

103
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Computational results indicate that suitable pulses that are robust to

B0 and B1 instabilities can be found. They are theoretically realisable on

current 3 T MR scanners, enabling the separation of GABA, NAA, Cr as

well as Gln, Glu in the combined spectra with a single RF pulse for each

target. Additionally, we show that these pulses can be optimised within

realistic energy and time constraints (6 100ms), and remain robust to

scanner instabilities such as inhomogeneity of the main magnetic field

(B0 ±5Hz) and uncertainties in the RF control fields (B1±2.5%).

In this section, we introduce the underlying physics of the simulation,

our algorithm for optimising the RF pulse, the target functional and target

state selection. Our algorithm finds an RF control pulse to simultaneously

place multiple metabolites into states such that their spectra are easily

distinguishable. It is based on an optimisation approach from optimal

control of quantum systems [83] and requires models of the hydrogen

nuclear spin dynamics. We first describe the spin dynamics models, how

simulation is performed, and outline our control algorithm. Finally, the

algorithm is adjusted to optimise RF pulses within realistic ranges of

expected uncertainties in the system and realistic scanner limits.

5.2 method

A simple pulse sequence is optimised that is composed of a single RF

pulse followed by an immediate readout. Control amplitudes, duration

and number of steps are initially randomly initialised and optimised

with the gradient-based, L-BFGS with bound-constraints (L-BFGS-B) [9,

98, 174], as this has been shown to provide excellent performance [83,

157]. Control amplitudes are updated concurrently to reduce the number

of computationally expensive function calls.

Simulation for this method has been introduced and covered in Sec-

tion 2.2 of the background of this thesis. Metabolites are simulated as

closed-systems to reduce the computational complexity. Simulation and

optimisation code is implemented in a MATLAB framework developed

for the optimisation of MR RF pulses; QControl [15]. Computation is

divided among several machines, with each machine responsible for one

optimisation run (one set of metabolites and pulse sequence paramet-

ers). No additional parallelisation was done, as these were found to be

detrimental in testing, leading to an increased runtime and memory re-

quirement when using MATLAB due to the overhead of Matlab’s parpool

parallelisation method.
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Optimisation of RF pulses is done in two phases. Initially, pulses are

found for a ‘simple’ target, which is a set of systems at resonance with

a set of randomly generated values for duration, the number of time

steps and initial RF pulse. The second stage of optimisation performs the

much more computationally expensive and harder robust optimisation,

where the starting point is one of the best pulses from the initial phase

with an error > 0.05. This is done to reduce the total overall time spent

optimising pulses, by finding the best case initial values to optimise for.

There is an assumed relationship here; pulses that can drive the set of

metabolites into the desired state for the simpler non-robust case would

be a good starting point for the robust optimisation.

Target state selection and controllability

Target states represent the orientation of each of the spins in the metabol-

ite. By individually selecting spins to be placed in the transverse plane,

it is possible to manipulate the resulting spectrum, by leaving the other

spins in the ground state, in alignment with the field.

For simplicity, target states for a group of metabolites are chosen

manually by selecting specific resonances per metabolite that create non-

overlapping spectra with a maximal distance between peaks. These are

selected by inspecting the chemical shift values of all protons of the

metabolites in the set and choosing a combination that has the maximum

distance between metabolite peaks. Several similar targets are chosen

per metabolite set later in Section 5.3 to maximise the possibility of

finding a pulse sequence that achieves one of the targets. Target state

selection is currently done manually for simplicity, however, this could

be automated by inspecting the chemical shifts of each metabolite and

selecting combinations that maximise range and uniformity.

Additional resonances are added to the target state if they are within

±0.1 ppm of the main chosen resonance. This is primarily done to enable

robust optimisation w.r.t. B0 further down the line; as the B0 inhomogen-

eity increases, the frequency selective components of the control pulses

become less accurate, affecting neighbouring spins. As we are simulating

a 3 T scanner, ±0.1 ppm is roughly equal to ±12.6Hz so gives us room for

drift in B0 where later we optimise pulses for a ±5Hz B0 range. Secondly,

protons that have similar chemical shifts in a metabolite are typically

strongly coupled, potentially making the target harder, as it would need

to precisely excite only one of the spins.
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These selected resonances are translated to a target density matrix

and placed into a superposition with the ground state. These targets are

equivalent to a 90° rotation around the x-axis to bring target spins into

the transverse plane, ready for readout. Spins that are not selected for

excitation are left in the ground state, in alignment with the B0 field.

Target states that select more than one spin naturally create more

complex targets, as a larger number of excitation subspaces need to be

utilised to achieve a full 90° rotation. An excitation subspace is a logical-

grouping of the state probabilities, in this instance states that represent a

single excitation are grouped into the first excitation subspace, e.g. for

a two spin system: |01〉 & |10〉. For the second excitation subspace, this

would be |10〉 for a two spin system, and so on.

For example, for a three spin system, where two spins have been

selected as the target the states in superposition would be:

|ψT 〉 = |000〉+ |100〉+ |010〉+ |110〉 . (5.1)

The target state vectors would be expanded to the density matrix as in

Equation 5.2.

ρ =
∑
j

pj
∣∣Ψj〉 〈Ψj∣∣ , (5.2)

+ẑ = |0〉

−ŷ

+x̂

|1〉

|ψ〉

(a) |000〉 + |110〉

+ẑ = |0〉

−ŷ

+x̂

|1〉

|ψ〉

(b) |000〉 + |100〉 + |010〉 + |110〉

Figure 5.1: Projection of multiple excitation target states on the Bloch Sphere.

Figure 5.1 shows a projection of the effect of using only the second

excitation subspace if there are two spins in the targets state. To achieve

a full 90◦ rotation into the transverse plane, the number of excitation

subspaces utilised must match the number of excited spins.

Using multiple excitation subspaces makes the targets harder to optim-

ise, as transitions between subspaces are not possible from the system
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dynamics alone; energy must be driven between the subspaces sequen-

tially by the control fields ux(t)Hx, uy(t)Hy, or lowered down with the

dissipative lowering operator σ−. As we are optimising over a closed-

system simulation, only the RF control fields can facilitate energy transfer

between the subspaces.

Simple, one spin targets only require one subspace transition and

balancing the energy between two total subspaces (ground and first).

Where for two spins, this becomes two subspace transitions and balancing

the energy between three subspaces (ground, first and second), and so

on. This balancing act becomes harder once optimisation is performed

for multiple metabolites concurrently, each with their targets, potentially

exciting a different number of subspaces. This is ultimately where the

difficulty lies in the optimisation.

It is worth mentioning, that there is a multitude of other targets that

could be optimised for. In this instance, the goal is to still receive a signal

from each of the metabolites in the set. It could be easily changed to only

receive a signal from one metabolite by setting the target states for the

remaining molecules in the simulated set to remain in the ground state.

Finally, it is important to touch on the motion of controllability of

quantum systems. As we are working with a set number of pre-determined

controls [Hx,Hy], that have hard limits on the maximum amplitude they

can impose, in addition to having restrictions on how short each ∆t can

be due to a scanner transmit limitation of 2.5× 10−8ms, we expect that

targets states will not be fully obtainable. Besides, there will be some

metabolites that do not satisfy requirements for complete controllability

as outlined in [127, 128]. However, in this instance, we do not need to

have full control, and it will be possible to reach a near-optimal solution

that will produce the desired unique spectra, given enough time and

with the appropriate targets. The constraints are ultimately the largest

issue in regards to the controllability of these systems, with the effect of

this displayed as the Pareto front visible in the optimisation landscape

Figures 5.10 and 5.11 for error over the duration.

Target functions

Two target functions are defined, one for a simple optimisation, where

the set of metabolites is simulated without any B0 or B1 instabilities, with

the second optimising the best pulses from the first phase over a range

of B0 and B1 instabilities. This is done to find good candidate solutions

to the much harder and computationally expensive robust optimisation,
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this eliminates settings and pulses early on that would perform poorly

as robust controllers.

Both of the target functions aim to minimise the error when transition-

ing from an initial state ρ0 to a pre-determined target state ρtar at time

T :

f(u, T) = Re
(

Tr
{
ρtarρ(T)

†
})

(5.3)

Where ρ(T) = UTρ0U
†
T and UT is computed according to Eq. (2.10)

and ρ0 is the initial state of the system.

As the eigendecomposition is readily available from the calculation of

the propagators, it is quick to compute the gradients using the spectral

method. The numerical gradient is used as it performs substantially

better than the approximate gradient for L-BFGS [83].

As introduced in Section 2.2, the piecewise constant controls form

a matrix u = [uj,k] where j is the control signal index and k the time

interval index in [0,K]. The derivative for the gradient with respect to a

single control amplitude uj,k is as follows:

∂f(u, T)
∂uj,k

=Re
(

Tr
{
ρtarUK · · ·

(
∂Uk
∂uj,k

)
· · ·U0ρ0U†0 · · ·U

†
K

}
+ Tr

{
ρtarUK · · ·U0ρ0U†0 · · ·

(
∂U
†
k

∂uj,k

)
· · ·U†K

}) (5.4)

with ∂Uk
∂uj,k

as follows:〈
λl

∣∣∣∣ ∂U∂uj,kλm
〉

=−i∆t 〈λl|Hj |λm〉 e−i∆tλl if λl = λm

−i∆t 〈λl|Hj |λm〉 e
−i∆tλl−e−i∆tλm

−i∆t(λl−λm) if λl 6= λm
.

(5.5)

The derivative is given element-wise in the orthonormal eigenbasis

{|λi〉} to the real eigenvalues {λi}.

Full details are out of the scope of this thesis, but an extensive ex-

planation of this target function can be found in [83]. As optimisation is

done on a set of metabolites, the target function is run individually per

metabolite, with the error and gradient values being averaged over the

set.
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Algorithm 1 Pseudo-code of robust error function.

function ErrorFunction(ctrl, metabolites, targets, B0 offsets, B1
offsets)

err,grad,n← [], [], 0

for all (M, T) in (metabolites, targets) do

err(n),grad(n)← eval(ctrl,M, T , 0, 0)

n++

for B0 in B0 offsets do

err(n),grad(n)← eval(ctrl,M, T ,B0, 0)

n++

end for

for B1 in B1 offsets do

err(n),grad(n)← eval(ctrl,M, T , 0,B1)

n++

end for

end for

return mean(err),mean(grad)

end function

To produce pulses that are robust to environmental factors, a range

of B0 and B1 instabilities are integrated into the target function shown

in Algorithm 1. Both are introduced by simulating an additional set of

metabolites with a given level of B0 or B1 distortion in a cross from

resonance, where one arm is responsible for simulating a ± B0 range,

with the other simulating the ±B1 range. A cross has been chosen due

to the large increase in computational time, simulating an entire grid

would be computationally prohibitive as displayed in Table 5.5. Error

and gradient are calculated in the usual way and is averaged out over all

metabolites. Here, we use a B0 range of ±5Hz at 1Hz intervals, with a

B1 range of ±5% at 1% intervals, which requires 21 sets of metabolites to

be simulated.

B0 is included by simulating metabolite with an additional σz off-

set to the system Hamiltonian. The larger the optimised B0 range the

more chance of proton resonances overlapping with others, leading to

frequency selective components of the pulse driving additional spins,

creating an extremely difficult control problem. B1 instabilities are more

difficult to characterise, where potential noise sources, distortions and

environmental effects are numerous. To cover a large range of sources

of distortion, B1 instability is integrated by modulating the global pulse

amplitude and simulating the effect on the metabolites.
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Optimisation for the robust target uses the best non-robust pulse

sequences as the starting point for the harder target, this has been done

to reduce the total time needed to compute these pulses. The assumption

is that if we cannot produce successful controllers for the simplified

problem, we can rule out using those initial conditions for the more

complex, robust optimisation. Additionally, when attempting to optimise

robust pulses from an initial random or zero pulse, it often fails within

a few iterations as it fails to converge due to flat gradients, by seeding

the optimisation we avoid this issue, but we may be converging to a

local-minima.

Pulses are chosen as the starting point for optimisation if they have

not been used for a robust optimisation before, and if they have a final

error of 6 0.05, effectively filtering out the poorly performing controllers

before running the much more expensive optimisation. This allows us to

save time computing pulses for settings that would never work effectively,

such as those that are too short in duration.

Constraints

Scanner limits are integrated into the generation and optimisation of

the RF pulse, based off the 3 T Siemens Magnetrom located at Swansea

University, UK. RF amplitude generation and optimisation are capped

at 800 Rad/s, in line with experimentally validated values, this limit is

imposed by running the box constrained optimiser L-BFGS-B. Generation

of the minimum RF transmit time is limited to 25ns, in-line with the

scanner limitation. In addition, we are aiming to achieve a total RF

duration under 100ms, as the scanner does not allow single pulses longer

than 100ms. There are schemes to enable longer pulses, by stacking them

back-to-back, but the ideal candidate pulses will be under 100ms in

duration.

Optimisation conditions

All metabolites start in the ground state, aligned with the B0 field. Simula-

tion Larmor frequency is 2.89 T (123.32MHz), in line with the B0 strength

of the 3 T scanner at Swansea University, UK. All metabolite models use

the values from the landmark paper by Govindaraju et al. [45], however,

issues of model accuracies are discussed later on in 5.4.4. The pulse

sequence being optimised is an RF pulse followed by immediate readout;

the duration and number of time steps of the pulse are randomly chosen

within the following ranges: ∆t[1× 10−5 : 5× 10−5 : 2× 10−1] time steps
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: [10 : 10 : 2000]. With the RF being randomly generated and optimised

within the scanner limits of ±800 rad/s.

5.3 results

We explore the effectiveness of this method with two metabolite sets that

are particularly relevant to current research; Glx : [Glu, Gln] and GABA:

[Cr, NAA, GABA].

5.3.1 Glutamine and Glutamate

Glutamine-Glutamate as a target proposes a significant challenge, as

they share a very similar chemical structure. As a consequence they

produce heavily overlapping spectra as shown in Figure 5.2, both are

tightly coupled producing complex multiplet structures between 2 ppm

and 3.8 ppm. This is a substantial problem when scanning at 3 T or below,

they are usually jointly combined to Glx as the peaks are incredibly

difficult to resolve accurately.

Multiple targets have been selected, as shown in Table 5.1. These targets

provide maximal distance between peaks, removing the overlap between

the two metabolites.

Figure 5.2: Combined Glx spectrum from a simulated FID pulse sequence.

Figure 5.4 displays the best non-robust spectra achieved for each of the

targets. All of the spectra meet the objective, they have no overlapping

peaks, and are individually resolvable.
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Table 5.2 shows the best-achieved error values for the Glx targets for the

non-robust and robust optimisation. Overall the results show that pulse

sequences can be achieved for this difficult target, and can reach high

fidelities. As expected the error for the robust optimisation is increased

but is still acceptable.

Figure 5.3: Best robust pulse for the Glx 1 (bottom), with the non-robust pulse
used as the starting point for the optimisation (top). Duration:131ms,
∆t = 1.3× 10−4ms, 1000 time steps.

Figure 5.3 shows the best pulse optimised for the robust Glx 1 pulse,

and the non-robust pulse used as the starting point for the robust optim-

isation. It is clear to see how complex these pulses are, compared to the

traditional pulses that are typically much smoother, such as a Gaussian

sync pulse. The non-robust case as is relatively smooth, with only a few

points hitting the maximum amplitude. In contrast, the pulse for the

robust target is substantially more aggressive, frequently reaching near

the maximum allowed amplitude. This is an indication of how much

harder the robust targets are to reach, and how much more control is

required for a high fidelity result.
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Figure 5.4: The best achieved spectra for the non-robust Glx targets. Top row:
Glx 1, Glx2 Bottom row: Glx 3 Glx 4.
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Table 5.1: Target resonances for Glx, peak values are in ppm. Peaks that fall
within ±0.1 ppm range are grouped into the same target.

Glx Target

1 2 3 4

State

Gln |01100〉 |00011〉 |10000〉 |10000〉

Glu |10000〉 |10000〉 |01100〉 |00011〉

Resonances (ppm)

Gln 2.10 2.12 2.43 2.45 3.75 3.75

Glu 3.74 3.74 2.03 2.12 2.33 2.35

Figure 5.5: A comparison of the best spectra for Glx Target 1 for the non-robust
optimisation on the left and the robust optimisation on the right.

The target presented here is a significant challenge, due to the strength

of the couplings and the similarity of the structure of the metabolites.

These factors combined with the optimised B0 drift of ±5Hz which is

equivalent to ±0.04 ppm at 123.23MHz. This means that some of the

protons are not individually addressable with frequency-selective pulses

as each resonance from Glutamine will overlap with at least one from

Glutamate, and vice versa.

However, despite this, Figure 5.5 shows a side by side comparison

of the best spectra achieved for Glx 1 in the non-robust and robust

case. The results clearly show the similarities between the spectra, with

minimal distortion between them. This is further backed up by the best

performance errors shown in Table 5.2, where the difference in fidelity for

the non-robust and robust pulses is 3.4× 10−3, however, this translates

to a minimal difference in the spectra.
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Table 5.2: Performance of Glx targets. "# Runs" refers to the number of completed
optimisation runs.

Best overall Best under 100ms

Glx Target # Runs Error Duration Error Duration

Non-robust

1 345 5.3×10−5 186ms 5.3×10−3 96ms

2 356 1.7×10−3 176ms 1.8×10−2 96ms

3 344 9.2×10−5 193ms 3.9×10−3 96ms

4 361 2.3×10−3 171ms 1.9×10−2 96ms

Robust

1 177 1.7×10−2 131ms 4.9×10−2 94ms

2 139 3.2×10−2 151ms 6.0×10−2 99ms

3 169 2.8×10−2 175ms 6.6×10−2 91ms

4 161 2.2×10−2 191ms 6.0×10−2 98ms

Due to the high fidelity achieved of the Glx 1 target, it will be chosen

going forward as the main target for analysis of the robustness optimisa-

tion.

5.3.2 GABA, Creatine and NAA

GABA has six observable spins arranged into three pairs of magnetically

equivalent nuclei. There are three resulting resonances — two triplets at

2.28 ppm and 3.01 ppm, and a quintet at 1.89 ppm. Detection of GABA

Figure 5.6: Combined GABA, Cr and NAA spectrum from a simulated FID
pulse sequence.
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using MRS is complicated by the presence of other, more plentiful mo-

lecules that produce interfering signals. For instance, NAA, Cr, and Glx

all produce peaks in the same range as the GABA resonances as shown

in Figure 5.6. It is possible to acquire in-vivo GABA spectra using J-

difference editing techniques such as MEGA-PRESS, which removes the

obscuring Cr signal at 3 ppm. However such techniques are susceptible

to signal instabilities such as frequency drift [155].

Multiple targets have been selected, to produce the largest peak dis-

tance between the metabolites, as shown in Table 5.3. The high-frequency

protons (6.9 ppm Cr and 7.4 ppm NAA) are ignored, as they are not

conventionally used in MRS.

Table 5.4 displays the error achieved for optimisation of the GABA tar-

gets in the robust and non-robust optimisation with Figure 5.8 displaying

the best spectra achieved for the non-robust case. Similarly to the Glx tar-

gets, the results are excellent, with all targets achieving a higher fidelity

when compared to the Glx targets. Additionally, the resulting spectra are

distinguishable. GABA target 3 has been chosen going forward for the

robustness analysis, again due to the high overall fidelity achieved.

Figure 5.7 displays the best robust optimised pulse sequence for the

GABA 3 target and the non-robust pulse used as the starting point for

the optimisation. The non-robust pulse at the top of the figure is very

calm, utilising only a small range of the possible amplitudes available. In

contrast to the non-robust Glx pulse, this could be an indication of how

this is overall an easier target, due to the very different structure of the

molecules involved. The robust pulse at the bottom of the figure is much

more aggressive, with fast switches to higher amplitudes. However, this

still reaches lower energy limits than the Glx pulse, further hinting that

the GABA target might be easier overall.

The robustness optimisation for the GABA pulse has also been success-

ful, with a decrease in the fidelity of 1.5× 10−3 that has a minimal impact

on the resulting spectra as shown in Figure 5.9. There are additional

features that can be seen from GABA that overlap with the Cr peak at

3 ppm, but these are incredibly small and would be typically be lost

below the noise floor in experimental conditions.
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Figure 5.7: Best pulse sequence for the GABA 3 target, non-robust pulse top,
robust-pulse bottom. Duration:156ms, ∆t = 1.95× 10−4ms, 800 time
steps.
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Table 5.3: GABA target vectors and corresponding resonances. Peaks that fall
within ±0.1 ppm range are grouped into the same target.

GABA Target

1 2 3

State

Cr |00111〉 |11000〉 |11000〉

NAA |0111000〉 |0111000〉 |00001000〉

GABA |110000〉 |000011〉 |001100〉

Resonances (ppm)

Cr 3.91 3.02 3.02

NAA 2.00 2.00 4.38

GABA 3.01 2.28 1.88

Table 5.4: Performance of GABA targets. "# Runs" refers to the number of com-
pleted optimisation runs.

Best overall Best under 100ms

GABA Target # Runs Error Duration Error Duration

Non-robust

1 437 7.4×10−6 198ms 7.3×10−4 99ms

2 491 1.8×10−5 195ms 1.4×10−3 96ms

3 438 7.3×10−6 193ms 1.4×10−4 98ms

Robust

1 161 8.3×10−3 136ms 4.0×10−2 99ms

2 201 1.4×10−2 172ms 1.4×10−2 91ms

3 166 7.9×10−3 156ms 2.3×10−2 98ms

Figure 5.8: Best spectra found for the three GABA targets in the non-robust case.
From left to right: Target GABA 1, GABA 2, GABA 3.
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Figure 5.9: GABA 3 target spectra for the best non-robust pulse (left) and best
robust pulse (right).

5.4 evaluation

In the following section, we review the effectiveness of the best pulses

over a range of instabilities, metabolite models, and dissipation, the

optimisation landscape and the importance of individual J-couplings.

5.4.1 Optimisation Landscape

Pulse performance is assessed on three key indicators: RF duration, RF

∆t and ‘aggression’. Aggression is a rudimentary measure of how quickly

a pulse needs to switch large amplitudes. We define the aggression metric
as:

A =
1

M(K− 1)

M∑
c=1

K−1∑
t=1

|P(c, t) − P(c, t+ 1)|, (5.6)

where P are the the pulse channels, in this case P = [ux,uy] with

M being the number of pulse channels. This metric aims to produce

a normalised value across all pulses to determine how fast and hard

the pulse switches between time steps. The assumption is that more

"aggressive" pulses will be harder to implement, pushing the scanner

hardware close to operating limits, increasing the amount of distortion.

Figure 5.10 displays all of the previously mentioned properties for both

the non-robust Glx 1 and GABA 3 targets. There are a few surprising

characteristics of this problem, firstly the optimisation is well behaved

with regards to the error vs. duration graph found on the right-hand

side. The gradual slope, with minimal outliers, suggests that these targets

are relatively easy to achieve but we have hit a quantum speed limit,

visible as the Pareto front. The speed limit is due to how fast we can force
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Figure 5.10: Optimisation landscape of Glx target 1 (top) and GABA target 3

(bottom). All graphs plot log error on the y axis, from left to right x
axis values: Aggression vs Error, time step vs Error, and Duration
vs Error.

Figure 5.11: Optimisation landscape of robust Glx target 1 (top) and GABA
target 3 (bottom). All graphs plot log error on the y axis, from left
to right x axis values: Aggression vs Error, time step vs Error, and
Duration vs Error.



5.4 evaluation 121

Table 5.5: Mean runtime metrics of each of the targets, runtime shown is the
mean number of hours.

Mean Runtime

Target Non-Robust Robust

Glx

1 1.18σ0.86 13.02σ9.96

2 1.15σ0.86 12.10σ8.59

3 1.19σ0.87 11.99σ9.59

4 1.26σ0.89 12.37σ9.13

GABA

1 6.45σ4.51 56.49σ48.25

2 6.78σ4.49 64.88σ48.55

3 6.43σ4.28 54.68σ41.00

these metabolites into the desired states, which is constrained by the

minimum time step duration of the pulse and the energy limits imposed

in Section 5.2.

Secondly, when assessing ‘aggression’, both the GABA and Glx targets

favour smooth pulses. This is a good indicator that these will be realisable

on physical hardware. Finally, there appears to be a negative effect

of having too fine-grained control over the size of the time step, as

error increases as this decreases. This could be because as the time step

decreases, the gradient does too; effectively inhibiting the optimiser from

successfully finding minima.

Figure 5.11 shows the same selection of metrics for the robust optim-

isation of the Glx 1 and GABA 3 targets. The results, in general, are

more scattered, but the general trends from before continue. The error vs.

duration is relatively well behaved, pulses favour low aggression and too

fine a time step leads to an increase in error. The results are in general

noisier, suggesting that the problem is harder and it is more difficult to

find a similar Pareto front, to do so would require more optimisation

runs with more variation in the initial conditions.

Table 5.5 shows the average runtime and error statistics from the optim-

isations. The simulation and optimisation was run in MATLAB (2018b)

independently across 42 machines (Intel i7-4790 CPU, 16GB RAM). Ma-

chines pick optimisation jobs from a custom in-house scheduler at ran-
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Table 5.6: Mean error metrics of each of the targets with standard deviation.

Mean Error

Target Non-Robust Robust

Glx

1 5.93×10−2σ9.93×10−2 5.78×10−2σ2.90×10−2

2 7.84×10−2σ9.25×10−2 5.85×10−2σ1.94×10−2

3 6.68×10−2σ1.03×10−1 7.34×10−2σ3.22×10−2

4 6.12×10−2σ7.63×10−2 5.35×10−2σ2.41×10−2

GABA

1 3.39×10−2σ8.70×10−2 3.26×10−2σ1.58×10−2

2 4.32×10−2σ9.93×10−2 2.70×10−2σ1.24×10−2

3 2.52×10−2σ6.93×10−2 2.01×10−2σ1.40×10−2

dom. There are no parallelism techniques employed as running sequential

code was found to be faster experimentally.

In general, the Glx targets are substantially faster to compute, this is

due to the reduced number of metabolites (2 compared to Glxs 3), and

fewer spins per metabolite ([2× 5] vs [2× 6, 1× 7] for GABA).

As the density matrix of each system is 2N, where N is the number

of spins. Scaling of the problem between the non-robust and robust

optimisation is relatively linear. The robust optimisation simulates 21

times the number of systems for each iteration but is run for 500 total

iterations, rather than 1000, the average timings for the robust are around

13.5 times the non-robust times. This is a problem that would lend

itself well to heavy parallelisation, however, due to time and memory

constraints, this was not implemented in this instance.

5.4.2 B0 & B1 Robustness

To assess the performance achieved through our B0 B1 optimisation

scheme outlined in Section 5.2, pulse sequences are simulated over a

regular grid of B0 and B1 offsets. The range of these grids extends far

beyond acceptable limits for spectroscopy (B0 ±50Hz and B1 ±25%), but

are useful for highlighting the expected performance over the range. The

values in these graphs are the mean error for the simulated systems at the

given offset, anything over 0.1 is considered to be unacceptable, as this
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Figure 5.12: B0, B1 landscape for Glx target 1. Left, simple pulse sequence
optimised at resonance, right pulse sequence optimised over B0±
5Hz and B1 ± 5% ranges.

Figure 5.13: B0, B1 landscape of target GABA target 3. Simple target on the left,
robust target on the right

is typically where the spectra begin to visually deviate from the target

substantially.

Figure 5.12 shows the overall performance impact that can be achieved

by optimising over a range of instabilities for Glx. Surprisingly as shown

on the left, a large variance in total B1 energy has a limited impact on

performance for pulses that are not optimised for it. However, these same

non-robust are very unstable with respect to any B0 drift. The robust

optimisation changes this landscape considerably, creating a much larger

acceptable region of B0 instability while maintaining much of the original

B1 range. From this analysis, it would appear that a ±5Hz B0 and up-to

a ±15% B1 range would be acceptable in an experimental setting.

Similar trends continue for GABA target 3 as shown in Figure 5.13.

The non-robust pulse produces a solution that is relatively stable for B1
instabilities but falls over quickly when B0 varies. The robust pulse has a

much larger effective area over the B0 and B1 range, where it appears
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that a ±12.5% B1 and ±7% B0 would work in practice. However, the B0
range is not symmetric around the resonance frequency but shifted to

favour a positive B0 offset by around 2Hz.

5.4.3 Controls and the Hyperfine Structure

Evaluating the importance of the J-couplings for the controls is a complex

task, where a full investigation would requite a continuous evaluation

across all couplings at each time step of the system evolution. To simplify

this, we have chosen to evaluate the contribution of each coupling remov-

ing them from the structure of the molecule, re-simulating the control

and evaluating the impact on performance. Although this method is not

exhaustive, and will not show if there is a chain of couplings that are

used in unison, it will highlight if there are couplings that are incredibly

important for a particular pulse sequence and target.

Glx

Figure 5.14 displays the error difference found when removing each of

the J-couplings for Glutamine and Glutamate, for both the robust and

non-robust pulses.

The J-couplings play a large role in the non-robust pulse, for Glutamate,

the pulse sequence is heavily dependant on the majority of the couplings,

suggesting that the optimised pulse is utilising the dynamics of the

system to achieve the desired target state. For Glutamine, the effect is

similar but predominantly utilises the couplings between the protons

linking the spins in the 2.1 ppm to 2.4 ppm range.

For the robust pulse, the effect of removing the J-couplings is much

less substantial but the removal of the majority of the couplings would

lead to an increase in error and spectra that would be unsuitable. Glutam-

ate is dependant on multiple couplings to remain successful, whereas

Glutamine is only heavily dependant on one coupling between 2.432 ppm

and 2.129 ppm to achieve adequate control. This suggests that these con-

trols are not simply frequency selective, but are utilising the hyperfine

structure in both the non-robust and robust case.

GABA

Figure 5.15 shows the effect of the removal of the J-couplings and the

resulting performance of the pulse for the GABA 1 target. In contrast to

the Glx J-couplings, the dynamics of the systems are very different. In
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Figure 5.14: Effect of removing J-couplings for the best Glx 1 pulse. Glutam-
ate left, Glutamine Right, non-robust pulse top and robust pulse
bottom.
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Figure 5.15: Effect of removing J-couplings for the best GABA 3 pulse. GABA
left, NAA Right, non-robust pulse top and robust pulse bottom.
Creatine has been omitted as it has no couplings.
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Figure 5.16: Different GABA models, nodes have chemical shift values in ppm,
edges are J-coupling strength in Hz. Note the additional couplings
in the Near model.

the non-robust case, the error difference for removing any of the GABA

couplings is not all that substantial, which is surprising as it is a tightly

coupled molecule. For NAA, the pulse is heavily dependant on the four

couplings in the upper left, where the pulse surprisingly utilises the

coupling to the high-frequency 7.8 ppm spin.

In contrast, in the robust case, the GABA pulse is much more heavily

dependent on the J-couplings and NAA would remain largely unaffected

by the removal of a large majority.

This represents a large change in the way the pulse sequences are

achieving their targets in the robust case, where NAA appears to be

generally ignoring the hyperfine structure of the molecule and the GABA

control component utilising it.

5.4.4 Metabolite Models

Metabolite models are a disputed area in MRS [70], with GABA alone

having three models from Govindaraju, Kaiser et al. [60] and Near et
al. [103], displayed as weighted graphs in Figure 5.16. As optimisation

is performed over a ±5Hz offset, any minor variations in the resonance

frequencies of the protons would be insignificant, as this target effectively

allows these to drift up to ±0.04 ppm. The major consideration when

testing these metabolite models is the changes in the strength of the

J-couplings and the structure itself.

All three of the GABA models have very similar spectra for the robust

optimised GABA target. This is likely due to the reduced dependency

on the J-coupling structure as displayed in Figure 5.15. Additionally,

Table 5.7 shows the error differences between the metabolite models

for all three targets and confirms the high performance of the different

models. This result is surprising for the Near model, as it is substantially

different from the others, with a total of 11 couplings compared to 8 used
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Figure 5.17: GABA 3 target robust pulse simulated with multiple GABA mod-
els. From top to bottom: Near et al. [103], Kaiser et al. [60] and
Govindaraju et al. [45].

in the Govindaraju and Kaiser models. It also highlights the difficulty in

defining accurate models, there seems to be a number of possible ’correct’

solutions that produce similar spectra.

5.4.5 Open system simulation

So far, we have only discussed the spectra in for the open system simula-

tion, for each of the best robust pulses, we have simulated the dissipative

Table 5.7: Individual metabolite error for different GABA models for the best
GABA robust pulses. The Govindaraju et al. [45] model is used for the
optimisation.

Model source

GABA Target Govindaraju Kaiser Near

1 8.673× 10−3 3.715× 10−3 3.658× 10−3

2 1.435× 10−2 3.530× 10−3 3.743× 10−3

3 8.999× 10−3 3.668× 10−3 4.478× 10−3
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Figure 5.18: Open system simulation of two robust pulses for the Glx 1 target,
best pulse under 100ms on the left, best overall pulse on the right

Figure 5.19: Open system simulation of two robust pulses for the GABA 3 target,
best pulse under 100ms on the left, best overall pulse on the right
(156ms).

spectra. The values used in this paper are based on the average relaxation

times in white matter at 3 T of T1 = 69ms and T2 = 1084ms [145].

Figure 5.18 shows the effect of a complete dissipative simulation of

the robust pulses. The higher fidelity, longer robust pulses fares much

better, maintaining the target spectra through dissipation. In contrast,

the shorter pulse falls apart, with elements of each metabolites over-

lapping substantially. This result suggests that longer pulses will be

necessary to achieve the molecule states that will produce the spectra in

an experimental setting.

Similarly, Figure 5.19 shows the effect of a complete dissipative sim-

ulation of the GABA 3 robust pulse. Following a similar storyline to

before, the more accurate, longer control has more stability when ro-

bustness is considered. This result suggests that longer pulses will be

necessary to achieve the molecule states that will produce the spectra in

an experimental setting.
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5.5 evaluation and discussion

Overall, we have shown that optimisation of MR pulse sequences with

quantum control techniques can create extremely desirable characteristics

in the resulting spectrum. The optimised RF pulses for all seven targets

produce distinct spectra for each of the metabolites. Additionally, it is

possible to further optimise the non-robust pulses for each of the targets

to be robust to a range of control and system instabilities. Furthermore,

all of these pulse sequences have been found with a realistic constraint

on the maximum energy and duration of each pulse.

Optimisations were only done to a subset of metabolites, there is

no indication of how well this method will work with a larger set of

metabolites. Additionally, no simulations were done to see how the pulse

sequences distort the spectra of other metabolites. This would be key

to accurate quantification, as the current state of the art methods utilise

inverse problem solving, fitting known signals to the input spectrum. This

would require the generation of a new basis set for quantification with

each pulse sequence, which would be straight forward. Hence existing

tools could be used with minor modification.

Optimisation of larger ranges of inhomogeneity would require more

complex targets, as they would require more spin resonances to be

absorbed into the target, as when the B0 range increases, protons are no

longer individually addressable. This would severely limit the number of

possible targets for more metabolites. We have proposed a range (±7Hz)
that is reasonable for spectroscopy with current hardware. If over time

the calibration accuracy of scanner hardware w.r.t. B0 should increase,

the B0 range used for optimisation could decrease.

Current MRS pulse sequences utilise a spacial localisation scheme,

we have provided no such method. In addition, the use of refocusing

pulses is not appropriate for this application as it destroys the target

states. One possible way around this is that it may be possible to optimise

the final RF pulse in a PRESS or STEAM pulse sequence to perform the

selective excitation. Other solutions would be to perform outer volume

suppression and/or 3D phase encoding.

There is a hard limit on the size of metabolites that would be feasible

to simulate due to the computational and memory requirements scal-

ing exponentially with the number of spins. It is possible to split the

metabolite graphs into sub-graphs if there is no interaction between the

spins, such as splitting Cr into 6 individual spin systems, as there are

no J-couplings. However, this method requires careful consideration of
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how operators interact with these systems. Hogben et al. [54] have im-

plemented a method in their Matlab based simulation library ‘Spinach’,

that enables simulation of systems with 40+ spins. This is achieved by

removing long-range couplings that have a negligible effect and reducing

the state space of the system, under reasonable assumptions on the limits

of MR based experiments. This, in theory, could be used to great success,

however as we are performing a non-typical MR experiment, removing

states that are used by the optimal controls would be detrimental to their

ability to perform. This would have to be carefully checked and validated

before restricting the range of system states that could be used as control

paths for the optimised RF pulses.

Robust optimisation is currently very slow. This problem would lend

itself to massively parallel computing extremely well, bringing down the

overall runtime substantially by simulating each ‘set’ of metabolites on a

separate machine. This could bring the time for the robust optimisation

in line with the non-robust if there were enough free machines to satisfy

one metabolite set for each system.

There are many directions for future work, most importantly would

be experimental validation of this method. Once this has been achieved,

a larger range of metabolites and targets should be tested, including

a review of the effect of the pulses on the large range of metabolites

found in-vivo. Following this, exploring a range of scanner strengths and

spatial localisation schemes to move the pulse sequence further towards a

generally available method. Once this technique has been experimentally

validated, it would then be imperative to benchmark the performance

of quantification when compared with other pulse sequences. Finally,

much more could be done on the computational side by improving the

overall performance by utilising parallel computing methods. A greater

speed-up could be achieved through the use of GPUs to calculate the

system states, as long as the metabolite models can fit into GPU memory.

5.6 summary

This chapter has displayed that it is theoretically possible to optimise

RF pulses for specific metabolite states concurrently, enabling a level of

customisation to the resulting spectra that has previously not been seen.

Also, high-quality RF pulses can found that are robust over a realistic

range of B0 and B1 instabilities and within energy and time restrictions.
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This chapter has also presented a method of target state selection that

places spins of interest into the transverse plane and leaves other spins

in alignment with the static field. This allows for the spectra to only be

composed of the spins of interest, however, this target state selection is

arbitrary. In theory, any target state could be selected and optimised for,

such as only exciting one metabolite out of a handful of brain metabolites.

This is likely not realisable given the energy and time constraints, but it

is important to understand the flexibility of this method.

Overall, this chapter has shown that quantum control techniques can

successfully be applied in simulations to the unstable MR environment.

The optimisation can be leveraged to transfer energy to desired states

to produce predetermined spectra that have desirable characteristics.

The resulting spectrum provides the ability to uniquely resolve metabol-

ites that have significantly overlapping spectral features with popular

pulse sequences, such as PRESS or STEAM. We have also shown that

by integrating a large range of realistic and expected instabilities with

regards to system parameters and control, we can produce robust pulse

sequences to mitigate the impact of this and making them theoretically

implementable.



6
E P I L O G U E

The theme of the research presented in this thesis is to further develop

MRS methods for quantification and RF pulse design. We summarise

the main findings in Section 6.1, discuss future work in Section 6.2 and

conclude with Section 6.3.

6.1 thesis summary

The four contributions of this work laid out in Section 1.3 are covered by

Chapter 3 (C1), Chapter 4 (C2), and Chapter 5 (C3,C4) respectively and

are summarised below.

6.1.1 Benchmarking Quantification

We started with benchmarking current quantification methods, presented

in Chapter 3. The focus of this chapter is on GABA quantification with

MEGA-PRESS.

A range of experimental phantoms were collected by collaborators at

Swansea University and the spectra analysed with state-of-the-art quan-

tification methods (LCModel, GANNET, TARQUIN and jMRUI). It was

overall found that LCModel was the best performing tool, but the general

accuracy was poor with the GABA-to-NAA ratio by underestimated by

38% − 55% for the pH neutral phantoms. This is despite LCModel being

considered to be the gold standard of quantification methods.

This work has highlighted the need for more rigorous benchmarking of

quantification methods. However, this itself is a complex task due to the

difficulty of acquiring spectra with the associated ground truth, and the

complexity of the quantification software adding not only a significant

time requirement, but also the potential for bias due to different users. In

addition, when benchmarking basis set methods, additional time must

be spent simulating or sourcing basis sets, which ultimately have a large

impact on the quality of the fit. In an ideal world, there would be a

transferable basis set file format to enable a like-for-like comparison

between quantification methods, but currently this simply is not the case.

133
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This leads to difficulty evaluating the fitting method in isolation, as a

different basis set end up being used for different fitting methods and

the two aspects cannot be easily separated.

This work has lead to a range of recommendations for the future of

benchmarking quantification. Attempts should be made to create a bench-

marking standard, to empower researchers to test, develop and improve

on quantification methods. In order to do this, additional phantoms

should be made and scanned at more locations with a larger range of

pulse sequences and their TE timing variants. In addition, efforts should

be made to unify a basis set format to enable saving and loading between

quantification methods, as the simulation of basis sets should not be

coupled to the process of quantification.

6.1.2 MRSNet

The second objective was to investigate the use of machine learning

for MRS quantification as discussed in Chapter 4. While research into

machine learning application to MRS quantification is not new [26, 78],

this work is the first exploration of using machine learning for edited

spectroscopy specifically with MEGA-PRESS for the quantification of

GABA.

This chapter explores a large range of possible ways to represent the

spectra to a neural network, as, unlike some other pulse sequences,

MEGA-PRESS has two acquisitions (edit off, edit on) and their difference.

This creates a unique opportunity to study the effect of varying com-

binations of the acquisitions as training data to the network, combined

with altering the data representation (real, imaginary and/or absolute

values). Furthermore, a range of neural network architecture variants and

parameters were explored to find the best performing network.

Work presented in this chapter has shown that a CNN approach has

comparable performance with LCModel, which is the best performing

quantification method from Chapter 3. Specifically, we found that us-

ing the absolute value edit off and difference spectra provides the best

performance. On the specific experimental dataset we were even able

to demonstrate improved performance compared to LCModel, but the

limited nature of the study, as already explained, means that this may

not hold in general. Nevertheless, the approach is highly promising and,

in particular, it is quite simple to adapt this to a range of spectra acquired

with pulse sequences similar to MEGA-PRESS, assuming suitable train-
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ing data can be simulated and of course it would have to be validated

again.

6.1.3 Pulse Sequence Optimisation

Finally, we devised of a novel method of RF pulse optimisation towards

chemically selective MRS in Chapter 5.

Excitation of spins in MRS is typically done with broadband excita-

tion pulses, exciting all metabolites in the ROI to generate the spectra.

While in many cases this is advantageous, for the detection of low-signal

metabolites this is a major issue, especially where spectra are obscured

by more prevalent metabolites, such as GABA. While there are spectral

editing sequences, such as MEGA-PRESS [92] and HERMES [123] to ad-

dress this issue, they require careful consideration, especially due to the

multiple acquisitions involved.

A method was developed where individual spins per metabolite can

be chosen for excitation. The selected spins are translated into target

states for a group of metabolites, with two groups used as a case study:

[Glu & Gln] and [GABA, NAA & Cr]. These targets are then set via a

target functional for an optimisation method over the RF pulse. It is quite

complex to decide whether such a pulse exists in theory, so instead high-

fidelity pulses are sought numerically. If a RF pulse realising the targets to

high fidelity has been found, it enables customising the resulting spectra

from the selected metabolites, removing unwanted spectral features that

overlap with signals of interest. This significantly simplifies spectral

analysis and quantification.

In addition, the presented optimisation approach allows us to consider

a range of scanner uncertainties to also optimise for the robustness of the

pulses. This integration of scanner instabilities into the optimisation is

imperative for these pulses to be experimentally validated, as without

they are extremely sensitive to changes to the B0 and B1 fields. The

method presented showed that it is possible to optimise pulses for the

aforementioned metabolite sets over a ±5Hz B0 range and a B1 range of

±5% of total pulse energy.

The work has shown that it is theoretically possible to create optimised

RF pulses that enable chemically selective excitation at 3 T . In addition,

these optimised pulses are realistic with respect to scanner constraints

and a range of B0 and B1 instabilities, as shown by simulations.



6.2 future work 136

6.2 future work

Contributions made towards this thesis can be used as a foundation to a

range of future work to enhance MRS.

6.2.1 Benchmarking Quantification

Firstly, one of the main motivations for Chapter 3 was a recognition of the

lack of open experimental datasets with ground truth data. This is some-

thing that is commonly done in MRI and machine learning communities,

and should be extended to include MRS.

In order to facilitate this, an open source standard for the storage of

basis set data should be created, as there is currently no universally

accepted format between quantification software. LCModels proprietary

file format is the closest to being universally adopted, but it is poorly

documented and as such it is difficult to develop robust methods to save

and load data in this format. A mark up language, with a high level of

compatibility across programming languages, such as YAML or JSON

could be used.

A wider collaboration on the creation of experimental basis sets along

with a unified resource to publicly upload and release them should

be created, such as a website. By creating a unified resource, it would

greatly simplify the process of sourcing these datasets. This website

could act as a repository for spectra, include guidance in create and

contribute their own phantom spectra, and allow users to upload their

created spectra. The overall aim would be to expand the dataset, adding

additional pulse sequences, scanners and magnet strengths and to make

this publicly available. In addition, this website could automate the

process of benchmarking and optimising quantification methods and

offer recommendations for the currently best performing settings.

6.2.2 MRSNet

From the work completed in Chapter 4, there are a range of directions for

future work. The study in this thesis focused on the frequency domain for

a single pulse sequence at one TE, TR timing for five metabolites. Different

representations of the input data could be investigated, such as using

the complex time-domain signal, multiple TE acquisitions, multiple short-

time Fourier transforms or reduced frequency domain data such as peak
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locations, amplitudes and phases. Networks could be trained and tested

for a larger number of metabolites and a range of pulse sequences and

timings to see how well they can learn to generalise. Importantly, such

work must continue to be linked to experimental work with calibrated

phantoms to try to ensure accuracy and reliability in-vivo.

In addition, if the work for a centralised repository of benchmark data

was created, this could greatly benefit the development of quantification

methods. If enough data was available, it would be trivial to augment

experimental datasets for training and validation of new neural networks.

Of course the MRSNet approach could also be adapted to the spectra

acquired with the optimised RF pulses. For this to be studied further,

however, these would first have to be realised experimentally to better

understand any practical issues that may be involved. Given that these

spectra are expected to be much simpler, a simpler fitting or machine

learning approach, such as support vector machines or random forests,

may be sufficient.

6.2.3 Pulse Sequence Optimisation

Finally, Chapter 5 has shown that it is in theory possible to create pulses

for specific metabolite excitation states. The next logical step from this

work is to experimentally realise these pulses and to test their effective-

ness. This should be closely followed by comparing the quantification

performance with current pulse sequences, by generating basis sets to

be used by current state-of-the-art methods. Experimental realisation,

however, is not a trivial task, as it requires careful calibration and char-

acterisation to ensure the custom RF pulses are realised with sufficient

high accuracy.

Once the method has been validated, there is a large range of potential

research avenues to pursue. Firstly, the method presented only looks

at a handful of metabolites. As this is not the case in-vivo, optimising

pulse sequences to be effective on a larger range of metabolites would be

interesting. By doing this, it would begin to highlight the limits of this

method where controlling a large range of metabolites concurrently is no

longer possible. In order for this to be achieved, a range of performance

improvements would be necessary to maximise the number of metabolites

that can be taken into account. This could be achieved by utilising GPUs

for calculation of metabolite states and utilising methods employed in

Spinach [54] to enable the simulation of larger spin systems.
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Moreover, there is no spatial localisation scheme provided for the RF

pulses, and development of a method is needed, after the approach

has been in principle validated experimentally. In development of a

spatial localisation scheme, the optimisation routine could be extended

to additionally control the gradients for this to be achieved. Alternatively,

existing spatial localisation schemes may be adapted, but care has to be

taken that these do not counter the effects of the custom RF pulse.

6.3 final remarks

This thesis has covered a range of MRS topics in quantification and

optimisation of pulse sequences. Work that has been completed for this

thesis has shown improvements over current methods in quantification

and metabolite separation with pulse sequences. While the work does

not represent a complete solution that is ready for implementation in a

clinical environment, it is a significant step forward on the foundations

to lead towards this broader goal.
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