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Measuring psychological abilities or traits is trickier than it seems from the published 

literatures (1). We try to study abstract psychological constructs like ‘inhibition’ or 

‘impulsivity’, but we can only measure these indirectly through behaviours such as reaction 

times or self-report ratings. When we apply these measures in clinical and individual 

differences research, our goal is typically to understand why a patient group appear to be 

(e.g.) more ‘impulsive’ than healthy controls, or to use measures of ‘inhibition’ to predict a 

clinical outcome. There are many potential pitfalls and wrong turns in the path towards 

achieving this goal. In our recent work, we have shown that our intuitions about what makes 

a good cognitive task can sometimes lead us astray (2,3). Here, we discuss how these issues 

intersect with the goals of computational psychiatry. 

We recently described what we referred to as the ‘reliability paradox’, where tasks 

that produce robust and replicable effects can simultaneously have poor reliability for 

individual differences (2). Take the widely used Stroop task (4) as an example. Participants 

are typically instructed to quickly and accurately identify the font colour of a written colour 

word and ignore the word meaning. We then subtract reaction times or errors in congruent 

trials (e.g. ‘red’ in red font) from incongruent trials (‘blue’ in red font) to create a ‘Stroop 

cost’, which is assumed to reflect the individual’s ability to overcome their automatic 

tendency to read the word. The Stroop effect is easily reproducible in a variety of samples 

(5), and as such we might consider it to be a ‘reliable’ task.  

However, when we correlated individuals’ Stroop costs in reaction times between 

sessions performed three weeks apart, we observed a test retest reliability of ICC=0.64 across 

two studies. This is much lower than we’d hope for clinical research (6), and other widely 

used and replicable experimental effects had even poorer retest correlations. Figure 1 

illustrates the consequences of this. If we simulate performance on a test assuming a 

reliability of r=0.64, 28% of individuals who place in the top half of performers on the first 
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occasion will place in the bottom half at time two (and vice-versa; Figure 1A). Further, this 

noise means that we need sample sizes 2.5 times larger than we would expect if we had not 

considered it (Figure 1B).  

 

Figure 1. Panel A shows simulated scores on a cognitive test performed on two occasions 

assuming a test-retest reliability of r=0.64. Only a subset of the total simulated population 

(N=1,000,000) are plotted. Even a measure that is considered to have ‘good’ reliability can 

frequently lead to misclassifications at an individual level, which is important for clinical 

applications. Panel B shows the results of a power analysis where we assume that we are 

correlating our test scores with an external variable (e.g. psychiatric symptoms). The blue 

line shows the required sample sizes (y-axis) for different underlying correlations (x-axis) 

both our cognitive test and our measure of psychiatric symptoms could be measured without 

noise (i.e. if the reliability were r=1). The red line shows the required sample sizes if we 

assume the same underlying correlation, but now both variables have a reliability of r=0.64. 

For example, if we assume a medium underlying correlation (r=0.3) between test 

performance and symptoms, our required sample size increases from N=85 to N=210 in the 
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presence of this level of noise. For more details, see (2). Our power analyses use a two-tailed 

significance test with a significance threshold (α) of 0.05 and a power (1-β) of 0.8. The code 

to reproduce these figures is available on the Open Science Framework 

(https://osf.io/wnhjm). 

  

  This reliability paradox occurs because opposing characteristics make a task 

successful in experimental and individual differences research. The success of the Stroop task 

in experimental contexts reflects its ability to nearly always produce a significant average 

effect. This works because the effect is present and of similar size in most people. In contrast, 

individual differences research requires variability in the measure in order to reliably identify 

high and low performers. So the very consistency that makes a task popular in experiments 

counts against us for individual differences.  

A second problem is that alternative ways of measuring the same psychological 

construct don’t always correlate with each other (even after taking reliability issues into 

account). This is most stark when alternative ways of calculating a measure from the same 

task don’t correlate; for example the Stroop effect is sometimes measured using reaction 

times, and sometimes by using errors. But these alternative Stroop effects measured in the 

same participants often do not correlate well with each other (3). The same is true for many 

tasks where one can choose to use reaction times or errors (3,7). The choice of which to use is 

rarely explicitly justified in papers. 

 So how do we go about reliably measuring the psychological abilities and traits that 

we are interested in, and link them to psychiatric or neuropsychological symptoms? Can 

computational models help us? In the first instance, models help us to be explicit about what 

we are trying to measure (8). Constructing a cognitive task is like constructing a scene in 
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which to view the cognitive mechanisms of interest. In doing so we implicitly and explicitly 

make choices about what other functions are also involved. Take the Stroop task again as an 

example. It is used as a window into processes of cognitive control or inhibition. The task 

inevitably also draws upon visual processes and word reading. If you are a slow reader, you 

will have a smaller Stroop effect (try it as you learn a second language; the Stroop effect can 

measure how automatic you are becoming). An appropriate model provides a way to 

disentangle these processes.  

Models can also help us understand problems and how to overcome them. For 

example, most task performance is influenced by whether individuals favour accuracy or 

speed. It is often assumed that subtracting conditions (e.g. incongruent Stroop trials minus 

congruent Stroop trials) controls for this, but we have shown using model simulations that it 

does not (3). This actually explains why Stroop effects measured with speed or accuracy do 

not always correlate. This understanding, in turn, points us to ways to lessen this problem, by, 

for example, changing the task set up, instructions or constraints on participants to reduce the 

variability in speed-accuracy behaviour (intermixing trials within blocks, emphasising speed) 

(3). 

 Using a model does not inherently overcome the reliability paradox. For a model-

based analysis to uncover reliable individual differences in a cognitive ability, we still rely on 

a task that can capture different levels of that ability. A solution to this is to assess reliability 

early in task development, and in multiple populations. For example, healthy participants 

may all perform at ceiling in tasks that are intended as screening tools for dementia. The 

correlational reliability in a healthy sample would therefore be low, but the task could still be 

sensitive to differences between healthy controls and individuals with dementia. In that case, 

correlational reliability may be less important than diagnostic sensitivity. Recently, Paulus et 

al. (9) proposed a roadmap for computational psychiatry which includes evaluating properties 
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such as reliability and sensitivity to the target population at early stages. There are also 

several potential indirect benefits in their proposals, including optimising factors such as trial 

numbers. Increasing the number of trials can give us more precise measures, which improves 

reliability by decreasing measurement noise. But task duration is important in clinical 

research, so it is useful to evaluate the balance of reliability and duration early on in a project. 

This can be done with simulation and subsampling (see supplementary material D of 2). 

Finally, we consider two examples where the application of a model has led to 

improved reliability relative to traditional measures. As we noted above, we should not 

expect models to create reliable variance where there is none. However, the impurity of 

behavioural measures may lead to a reliable cognitive ability being masked by confounding 

processes. A recent example of this can be seen in the application of a choice reaction time 

model to the dot-probe task (7). The dot-probe task is similar to the Stroop task in its 

construction. It traditionally measures attentional bias by using the difference in reaction 

times to a probe preceded by either threat-related stimuli or neutral stimuli. And like with the 

Stroop task, factors such as speed-accuracy trade-offs will also contribute to the size of 

attentional bias costs (3). Instead, the authors reasoned that the attentional orienting effect 

should manifest in the portion of the reaction time that precedes the individual making a 

decision about the probe. When attentional bias was calculated from a model parameter 

representing this non-decision time, they observed improved reliability compared to the 

traditional behavioural subtraction.  

Another recent example compared the reliability of a range of statistical and 

modelling approaches in a reinforcement learning task (10). They observed improved 

reliability when it was calculated within a hierarchical modelling framework, relative to both 

traditional behaviour and non-hierarchical versions of the same models. Here, the benefits 

appeared to reflect the statistical properties of the approach rather than the theoretical 
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assumptions of any given model. It is noteworthy that when we apply a modelling approach 

we are often doing more than simply applying our theoretical knowledge of the underlying 

mechanisms. We may combine different behavioural measures (e.g. reaction time and 

accuracy) or utilise other sources of information about the sample being tested or our prior 

beliefs about the range of underlying parameters. All of this can help emphasise signal over 

noise in the data.  

At first glance, the questions “Am I measuring the cognitive ability I want to 

measure?” and “How reliable is my measure of cognitive ability?” may seem like one in the 

same. However, improving our ability to reliably distinguish between individuals or groups is 

not an automatic result of improving the mapping between our theories and our measures. 

Both are essential goals for computational psychiatry, and psychology more broadly, and 

achieving these goals relies on evaluating, reporting, and optimising our measures (1,9). 
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