O-annulation to Polycyclic Aromatic Hydrocarbons: a Tale of Optoelectronic Properties from Five- to Seven-Members Rings

Luka Đorđević,†‡ Domenico Milano,‡ Nicola Demitri§ and Davide Bonifazi†,¶,*

† School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom.
‡ Department of Chemical and Pharmaceutical Sciences, Trieste; University of Trieste, via Licio Giorgieri 1, Trieste 34127, Italy.
§ Elettra – Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy.
¶ Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38 1090, Vienna, Austria.

Supporting Information Placeholder

ABSTRACT: We take advantage of the Pummerer oxidative annulation reaction to extend PAHs through the formation of an intramolecular C−O bond with a suitable phenol substituent. Depending on the peripheral topology of the PAH precursor (e.g., pyrene, boron-dipyrromethene or perylene bisimide) five-, six- and seven-member O-containing rings could be obtained. The effect of the O-annulation on the optoelectronic properties was studied by various methods, with the pyrano-annulated pyrene and BODIPY derivatives depicting quantitative emission quantum yields.

The π-extension of polycyclic aromatic hydrocarbons (PAHs) is a powerful approach in the chemical toolbox for tailoring properties of organic molecules and materials.1 Amid the synthetic approaches, fusing and replacing benzene rings with heterocycles have emerged as attractive routes to tailor the band gaps, redox properties, self-assembly properties, aromaticity, and chemical stability of PAHs.2 Traditionally, PAHs have been synthesized through multistep protocols building on polyarylated precursors, followed by a planarization reaction to obtain the fused aromatic scaffold. Representative examples of this approach are the hexa-peri-hexabenzocoronene (HBC) and its heteroatom-doped analogues.3 Another approach comprises of the annulative π-extension (APEX) reactions of PAHs, which can be selective at their bay- or k-regions.4 A recent example accomplishes APEX on thiophene, benzofuran and indole derivatives, using a Pd-catalyzed dual C−H annulation with π-extensive dibenzosiloles and dibenzogermoles.5 Another general strategy includes the (benz)annulation reactions of o-ethynylbiaryls precursors.6 Ethynylbiaryls can also be combined with anthranil, through Au-catalyzed π-extension, for preparing N-doped PAHs.7 π-Extension through alkyne annulation has recently attracted attention for the synthesis of non-planar PAHs. Examples includes PAHs prepared through electrocatalysis with accessible boronic acids,8 as well as Rh-catalysis for synthesizing N- and S-doubly doped, and cationic thiazoloquinolinium scaffolds.9 Compared to the five- or six-membered N- or S-containing heteroaromatics, O-based extended π-system are less common, with the 7-member rings being very rare, i.e. oxepin,10 and five-member furans11 the most popular rings. The two main synthetic approaches include intramolecular carbon−heteroatom bond formation of biaryl alcohols12 and intramolecular C−C bond formation of biaryl ethers.13 As depicted in Scheme 1, the preparation of five- and six-membered O-annulated PAHs were successfully reported through, for example, base-promoted cyclization of o-ethynylphenol substructures,14 acid-mediated cyclization of alkynes with alcohols or ketones,15 acid-mediated condensation between ketones and phenols,16 Friedel-Crafts reactions, (followed by cyclohydrogenation),17 Claisen-condensation between arylaldehydes and naphthols (followed by oxidation),18 cross-condensation between hydroquinone and arylaldehyde derivatives for the simultaneous formation of C−C and C−O bonds,19 and Rh-catalyzed C−H activation/annulations of arylaldehydes with diaryl alkynes.20 In this context, our group has recently applied the Pummerer oxidative cyclisation21 as planarization reaction for the synthesis of O-doped nanographenes22 and molecular ribbons with various peripheral topologies (armchair and zig-zag),23 as well as for the
cyclization of 2,2′-binaphthol derivatives for the preparation of π-extended and imide-based peri-xanthorbenzoxanthenes (PXX). Similar Cu-catalyzed C–H/C–O cyclization of 2,2′-binaphthol derivatives was recently used to develop chiral FXXs, exhibiting intense circularly polarized luminescence both in solution and the solid state.

Scheme 1. Common synthetic approaches towards O-annulated PAHs

Now, we report on the π-extension through O-fusion on different classes of PAHs. Specifically, we used the Cu-mediated ring closure of relevant phenol precursors to obtain five-, six- and seven-member O-containing heterocycles. Different ring sizes were accessible through the appropriate choice of substituted PAHs, which include pyrene, boron-dipyrromethene (BODIPY) and perylene bisimide (PBI). The synthetic routes are depicted in Scheme 2.

To obtain furan-bearing 1Omed (Scheme 2, i-iv), pyrene was first borylated, through Ir-catalyzed C–H activation, in 2-position. Suzuki-Miyaura Pd-catalyzed cross-coupling with 5-tert-butyl-2-iodoanisole, afforded anisole-substituted pyrene 1OMe. After demethylation with BF\textsubscript{3} and PivOH in DMSO gave furan derivative 1Omed in fair yield. For pyran-embedded heteroarene 2Omed regioselective bromination of pyrene with NBS and cross-coupling with the relevant boronic acid, led to anisole derivative 2OMe (Scheme 2, v-vii). Demethylation and C–O ring closure (with CuO in boiling nitrobenzene) gave product 2Omed in excellent yield.

For the BODIPY derivative, it was possible to obtain the phenol-substituted boron-dipyrromethene precursor 3OMe through TFA-catalyzed condensation of salicylaldehyde and 2,5-dimethylpyrrole, followed by DDQ oxidation to dipyrromethene and its treatment with BF\textsubscript{3} in the presence of Et\textsubscript{3}N (Scheme 2, vii-xi). Molecule 3OMe was successfully converted into 3Omed in excellent yield, using Cu(OAc)\textsubscript{2}, Cs\textsubscript{2}CO\textsubscript{3} and PivOH in DMSO. BODIPY derivative 3Omed was also benzylated to 3Omed for recording reference electrochemical data.

At last, molecule 4Omed annulated at the bay region with an oxepin ring was prepared (Scheme 2, xii-xvi). In the synthetic strategy, perylene bisanhydride was converted into the relevant PBI with 3-aminopentane (in molten imidazole), followed by bromination with Br\textsubscript{2}. Subsequent Pd-catalyzed Suzuki cross coupling and deprotection with BB\textsubscript{3} of the corresponding anisole, gave phenol-bearing PBI precursor 4OMe. Finally, 4OMe was converted into 4Omed, using Cu(OAc)\textsubscript{2}, Cs\textsubscript{2}CO\textsubscript{3} and PivOH in DMSO in an excellent yield. The structure of 4Omed was confirmed by bidimensional NMR investigations (Figures S52-S54), and excluded the presence of any arene-oxide tautomer.

Scheme 2. Synthesis of O-annulated PAHs

Single crystals for X-ray diffraction were obtained for compounds 1Omed, 2Omed and 3Omed (Figure 1 and ESI Section 6). For molecule 1Omed, two different monoclinic crystalline phases were found (α, β). The compounds crystallize in centrosymmetric space groups with one (α,β)Omed or two (3Omed) crystallographically independent molecules. In all crystals, the aromatic cores are flat (R.M.S.D. of atoms from their mean plane are: 0.06(5) Å for αOmed, 0.09(7) Å for βOmed and 0.03(3) Å for 3Omed). Crystal packing of molecules αOmed and 2Omed (Figures 1b and 1d) show the presence of dimers linked by crystallographic inversion centers with π···π pairing (dπ···π 3.36(9) Å and 3.30(3) Å in 2Omed and αOmed, respectively). On the other hand, in phase β the molecules of 1Omed lack significant π···π stacking contacts, preferring a herringbone arrangement governed by C–H···π interactions (Figure 1b). Finally, molecule 3Omed arranges in π···π stacked pillars,
with average interplanar distances between the aromatic cores of 3.38(10) Å (Figure 1f).

Final compounds, along with their precursors, were characterized and their photophysical, electrochemical and computational data are summarized in Table 1 (see also ESI, Sections 3-5). From the Table, it is apparent that the O-annealation impacted the optoelectronic properties, with the extent of the effect depending on the type of the O-ring as well as the structure of the precursor chromophore/luminophore. For instance, furan-embedded 1OMe exhibits red-shifted UV-Vis absorption and emission profiles (λ\textsubscript{max} = 399 nm and λ\textsubscript{em} = 401 nm, respectively), along with a stronger emission (Φ\textsubscript{em} = 33%) if compared to anisole-pyrene 1OMe (λ\textsubscript{max} = 339 nm and λ\textsubscript{em} = 396 nm, with Φ\textsubscript{em} = 4%). The O-annealation reaction yielding pyrenes 1fused and 2fused is accompanied also by a narrowing of the Stokes shift, compared to anisole-substituted pyrenes 1OMe and 2OMe, from 57 nm and 39 nm to 2 nm and 17 nm, respectively. Previously reported benzothiophene-fused pyrenes, pyrene[b]phosphole and -benzo[b]thiophene, showed λ\textsubscript{max} = 414 (λ\textsubscript{em} = 414 nm) and 354 nm (λ\textsubscript{em} = 406 nm), with Φ\textsubscript{em} = 30 and 4%, respectively.30 Similarly, pyrene[b]phosphole showed absorption and emission maxima at λ\textsubscript{max} = 338 and λ\textsubscript{em} = 373 nm with Φ\textsubscript{em} = 25%.31 On the other hand, pyrano-fused heteroarene 2fused showed a stronger bathochromic shift in the absorption (λ\textsubscript{max} = 433 nm) and emission (λ\textsubscript{em} = 450 nm) profiles with the fluorescence quantum yield value exceptionally reaching unity (Φ\textsubscript{em} = 100%).

Table 1. Photophysical, electrochemical and computational data of compounds reported herein

<table>
<thead>
<tr>
<th>Cpd.</th>
<th>λ\textsubscript{max} [nm]</th>
<th>E\textsubscript{ox}b [eV]</th>
<th>λ\textsubscript{em,max} [nm]</th>
<th>Φ\textsubscript{em}c [%]</th>
<th>τ\textsubscript{em} [ns]</th>
<th>E\textsubscript{ox,1} [V]</th>
<th>E\textsubscript{red,1} [V]</th>
<th>EHOMO [eV]</th>
<th>ELUMO [eV]</th>
<th>E\textsubscript{gap} [eV]</th>
<th>E\textsubscript{gap} [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1OMe</td>
<td>339</td>
<td>3.13</td>
<td>396</td>
<td>4</td>
<td>11.7</td>
<td>+0.85</td>
<td>-2.28e</td>
<td>-5.65</td>
<td>-2.52</td>
<td>3.13</td>
<td>3.41</td>
</tr>
<tr>
<td>1fused</td>
<td>399</td>
<td>3.09</td>
<td>401</td>
<td>33</td>
<td>7.3</td>
<td>+0.76</td>
<td>-2.33e</td>
<td>-5.56</td>
<td>-2.47</td>
<td>3.09</td>
<td>3.26</td>
</tr>
<tr>
<td>2OMe</td>
<td>345</td>
<td>3.23</td>
<td>384</td>
<td>25</td>
<td>16.7</td>
<td>+0.68</td>
<td>-2.55e</td>
<td>-5.48</td>
<td>-2.25</td>
<td>3.23</td>
<td>3.41</td>
</tr>
<tr>
<td>2fused</td>
<td>433</td>
<td>2.76</td>
<td>450</td>
<td>quant.</td>
<td>4.5</td>
<td>+0.44</td>
<td>-2.32e</td>
<td>-5.24</td>
<td>-2.48</td>
<td>2.76</td>
<td>2.86</td>
</tr>
<tr>
<td>3OMe</td>
<td>505</td>
<td>2.38</td>
<td>522</td>
<td>24</td>
<td>2.8</td>
<td>+1.06f</td>
<td>-1.36f</td>
<td>-5.86</td>
<td>-3.44</td>
<td>2.42</td>
<td>2.67</td>
</tr>
<tr>
<td>3fused</td>
<td>472</td>
<td>2.54</td>
<td>489</td>
<td>quant.</td>
<td>5.7</td>
<td>+1.14</td>
<td>-1.36</td>
<td>-5.94</td>
<td>-3.44</td>
<td>2.50</td>
<td>2.75</td>
</tr>
<tr>
<td>4OMe</td>
<td>530</td>
<td>2.14</td>
<td>617</td>
<td>20</td>
<td>1.6</td>
<td>+1.08</td>
<td>-1.15</td>
<td>-5.88</td>
<td>-3.65</td>
<td>2.23</td>
<td>2.20</td>
</tr>
<tr>
<td>4fused</td>
<td>538</td>
<td>2.20</td>
<td>611</td>
<td>4</td>
<td>6.0</td>
<td>+1.10</td>
<td>-1.08</td>
<td>-5.90</td>
<td>-3.72</td>
<td>2.18</td>
<td>2.14</td>
</tr>
</tbody>
</table>

aSpectra were measured in CH\textsubscript{2}Cl\textsubscript{2} (spectroscopic grade) at rt. bCalculated optical gap as E\textsubscript{g} = 1240/λ\textsubscript{em}. cRelative fluorescence quantum yields measured using either Quinine sulfate, Coumarin 153 or Rhodamine 6G as references. dElectrochemical data obtained from differential pulse voltammetry experiments in anhydrous CH\textsubscript{2}Cl\textsubscript{2}, containing 0.1 M Bu\textsubscript{4}PF\textsubscript{6} using glassy carbon working electrode, Pt counter-electrode and Ag wire reference electrode. All potentials are referenced versus the Fe3+/Fe2+ couple used as internal standard. HOMO and LUMO energy levels were approximated using the equations HOMO = -(4.80 + E\textsubscript{ox,1}) and LUMO = -(4.80 + E\textsubscript{red,1}). eEstimated as E\textsubscript{red,1} = E\textsubscript{ox,1} + E\textsubscript{g}. fMeasured using benzylated derivative 3OMe. gCalculated from TD-DFT calculations, performed at the CAM-B3LYP/6-31G(d,p) level of theory.
As observed for pyrene derivative 2^{fused}, the dramatic enhancement of the emission quantum yield (Φ_{em} = quantitative) is attributed to the pyranyl ring that, restricting the rotational degrees of freedom, disfavors any non-radiative deactivation of the excited state.13

![Figure 2](image1)

Figure 2. a) Absorption (left) and emission (right) spectra for BODIPY derivatives 3^{fused} and 3^{unfused} in CH$_2$Cl$_2$ (inset: solutions upon irradiation with a hand-held UV lamp). b) Mayer bond order analysis for the two optimized structures (red and blue values show a decrease and increase in bond order values, respectively).

For the annulated PBI derivative, the presence of the oxepin ring in 4^{fused} caused minor shifts to the absorption and emission spectra (λ_{max} = 538 nm and λ_{em} = 611 nm for 4^{fused} compared to λ_{max} = 530 nm and λ_{em} = 617 nm for 4^{unfused}) and a notable decrease of the emission quantum yield (from 20% to 4%). Considering the increase of +5.6° of the core-twist in the O-annulated PBI derivative derived from the shallow envelope structure of the oxepin substructure (Figure S20), one could hypothesize that the decrease of the singlet emission intensity is accompanied by an increase of the population of the triplet excited state.33 This phenomenon is triggered by an enhancement of the intersystem crossing following a perturbation of the singlet-triplet energy gap.34 As no phosphorescence signal was detected either at rt or in frozen medium for both PBI derivatives, we indirectly measured the triplet generation by studying the photosensitization of O$_2$ in a cycloaddition reaction. Thus, we performed the oxidation of O-acceptor 9,10-dimethylanthracene (DMA) in air-equilibrated CH$_2$Cl$_2$ using either $4^{\text{O-OMe}}$ or 4^{unfused} as photosensitizers, and monitored the formation of 9,10-endoperoxanthracene (Figure S5). As clearly appears from the inset of Figure S5, the oxygenation of DMA is faster in the presence of 4^{unfused} than with 4^{fused}. These observations suggest that, in contrast to the pyranyl ring, the oxepin ring has a detrimental effect on the singlet radiative properties as well as on the triplet population. We conjectured that the non-radiative deactivation is caused by a rapid inversion of the envelop-like conformation of the oxepin ring.

CV and DPV electrochemical investigations (Table 1, ESI section 4) suggest that, in the case of the pyrene derivatives, both 1^{fused} and 2^{fused} feature lower oxidation potentials if compared to precursors 1^{unfused} and 2^{unfused} ($\Delta E_{\text{ox,1}}$ = 90 and 240 mV, respectively, where $\Delta E_{\text{ox,1}} = E_{\text{ox,1}}^{\text{fused}} - E_{\text{ox,1}}^{\text{precursor}}$). As far as the reductive processes are concerned, the reduction of 4^{fused} is anodically shifted of 230 mV when compared to 4^{unfused}, whereas that of 2^{fused} and 2^{unfused} that are lower (ΔE_{red} = 40 and 470 mV) than those of their precursors, with the strongest shrinking effect observed with the pyranyl derivative, in full agreement with the optical data. As far as 3^{fused} is concerned, the reduction potential is virtually the same as that of 3^{unfused}, whereas the oxidation process unexpectedly occurs at a slightly higher potential ($\Delta E_{\text{ox,1}}$ = 80 mV). These observations suggest the presence of a destabilization effect of the O-annulation on the first oxidative event. In agreement with the blue-shift observed in the absorption profile, these electrochemical data indicate that the widening of the electrochemical bandgap is likely caused by an energy lowering of the HOMO level. This behavior contrasts to recent reports describing widening of molecular bandgap in meso-β-heteroaryl-fused BODIPYs caused by the raising of the LUMO energy level.35 At last, a 50 meV shrinking of the electrochemical bandgap was observed when passing from $4^{\text{O-OMe}}$ to 4^{unfused}, in contrast to the optical investigations, which suggested a 60 meV blue shift of the lowest energy electronic transition.

![Figure 3](image2)

Figure 3. NICS$_{\text{axz-XY}}$-scan for pyrene, 1^{fused} and 2^{fused}.

We have also performed theoretical calculation in order to gain a deeper insight into different heteroatom extended PAHs. After optimization of the structures, time-dependent (TD)-DFT calculations (CAM-B3LYP/6-31G**/6-31G**) reproduced fairly well the experimental UV-Vis spectra (ESI, Figure S21-23). Nucleus-Independent Chemical Shifts (NICS)37 were used as a criterion to access aromaticity in the planar f_{fused} and f_{unfused} molecules (Figure 3 and ESI). The new formed furan ring is slightly aromatic and does not influence the aromaticity of the pyrene ring. Previously reported five-member ring benzoheterocycle fused pyrenes, pyrene-benzo[\text{h}]phosphole and -benzo[\text{h}]silole derivatives, on the other hand, were showed to be slightly anti-aromatic and non-aromatic, respectively.30

In summary, we have decorated three classes of PAHs (pyrene, boron-dipyromethene and perylene bisimide) with phenol substituents. Then, we applied the Pummerer oxidative cyclization for the intramolecular formation of C–O bond, which lead to the formation of O-embedded five-, six- and seven-member rings. The annulations led to substantial changes in the photophysical and electrochemical properties, compared to the parent compounds. While annulation with the pyranyl ring depicts the strongest bathochromic shifts with the emission yields reaching quantitative values, the oxepin annulation has a detrimental effect on the emission properties.

ASSOCIATED CONTENT

Supporting Information
Supporting Information contains synthetic protocols and characterizations, photophysical data, electrochemical data, crystal structures and computational details (PDF). The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Author
* bonifazi@cardiff.ac.uk; davide.bonifazi@univie.ac.at

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
Any additional relevant notes should be placed here.

ACKNOWLEDGMENTS

D.B. gratefully acknowledges the EU through the ERC Starting Grant “COLORLANDS” and MC-RISE “INFUSION” projects, the MIUR through the FIRB (“SUPRACARBON”, contract n° RBFR10DAK6), and the School of Chemistry at Cardiff University for financial support. We thank Andrea Fermi and Tommaso Battisti (Cardiff University) for the lifetime measurements and the attempts to measure any phosphorescent signals and the 1O$_2$-oxidation experiment of DMA.

REFERENCES

